TW200918153A - Methods and devices for reducing hazardous air pollutants - Google Patents

Methods and devices for reducing hazardous air pollutants Download PDF

Info

Publication number
TW200918153A
TW200918153A TW097136093A TW97136093A TW200918153A TW 200918153 A TW200918153 A TW 200918153A TW 097136093 A TW097136093 A TW 097136093A TW 97136093 A TW97136093 A TW 97136093A TW 200918153 A TW200918153 A TW 200918153A
Authority
TW
Taiwan
Prior art keywords
fluid stream
slag
component
combustion source
packed bed
Prior art date
Application number
TW097136093A
Other languages
Chinese (zh)
Inventor
Douglas C Comrie
Original Assignee
Douglas C Comrie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Douglas C Comrie filed Critical Douglas C Comrie
Publication of TW200918153A publication Critical patent/TW200918153A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The disclosure provides methods and systems for sequestering and/or reducing sulfur oxides, nitrogen oxides and/or carbon dioxide present in industrial effluent fluid streams. A solid particulate material comprising a slag component, a binder component (distinct from the slag component), and optionally water is formed and then contacted with the effluent fluid stream to reduce at least one of the sulfur oxides, nitrogen oxides, and/or carbon dioxide. The contacting of the effluent stream may occur in a packed bed reactor with the solid dry particulate material. Methods of reducing pollutants from exhaust generated by combustion sources, lime and/or cement kilns, iron and/or steel furnaces, and the like are provided.

Description

200918153 九、發明說明: 【發明所屬之技術領域】 本發明係有關於-種排放減量之方法,特別是一纖燃燒源 所產生之流體流中隔離空氣污染物之方法及其系統。 【先前技術】 . 大多數的工業程序皆利用燃燒源來進行操作,此工業程序包 含麵、、雜、以及焚化鮮。燃燒源依照玉餘序中燃 燒時所使用_料、補的加卫方式、峨器的料、以及其他 操作因子等形式的不同’而會產生多樣的危險性空氣污染物 (hazardous airp〇Uutants,HAPs)。通常經由燃燒源所釋放的危險性 空氣污染物包含硫氧化物(sulfiir 〇xides)、氮氧化物⑽咖 oxides)、二氧化碳、—氧化碳、氫氣酸、i氣碳化物 ((^(^⑽出⑽广微粒物質伽池咖比喊㈣嗜發性有機化 合物、氣溶膠化合物(妳08〇1(;〇111{)_邮、水銀、鉛、氨、以及臭 -氧等等。在廢水或煙道氣離開燃燒源後,各種型式的空氣污染控 -制系統已被麟移除-種❹種這類空氣污染物上。然而大多數 的空氣污染防治設備的能源f求魔大,並且需要高溫操作以及高 成本和昂貴的維修費用。 【發明内容】 鑒於以上的問題,本發明提供一種減少燃燒源所產生之污染 之方法。此方法包含當流體流(fluidstream)自燃燒源離開後,令此 200918153 /瓜體川l接觸於固恶顆粒物質(s〇iidmateria〗),用以減少此 /爪體/现中石瓜氧化物的起始含量(initialam〇unt)。其中,固態顆粒物 貝係藉由摻合-熔渣成分(slag c〇mp〇nent)與一黏結劑成分(漏沉 component)所而形成,熔渣成分含有至少一種活性矽酸鹽化合物 (reactive S1llcate compounds)。在不同的實施例中,從燃燒源離開之 • ΛΜ·體"0_,在與固態顆粒物質接觸之前,流體流的溫度至多約華氏 溫度600度_ 〇F)(約攝氏溫度316度(316 OQ)。相對於流體流接 觸於固態顆粒物質前的起始含量,流體流與固態顆粒物質接觸 後,具有南於20%的硫氧化物移除效率;*在不同的實施例中, 甚至具有更高的魏化物移除效率,約可達到至少約7()%的硫氧 化物移除效率。 此外,本發明提供一種減少燃燒源所產生之污染之方法,其 包含當流體流自燃燒源離開後,令此流體流接觸於固態顆粒物 質,用以減少此流體流中氮氧化物的起始含量。其中,固態顆粒 -物質係藉由含有至少-種活㈣酸鹽化合物之雜成分與黏結劑 .成分所摻合而形成。同時,流體流與固態顆粒物質接觸前,流體 流的溫度至多約_°F (約316。〇。以流體流接觸於固態顆粒物質 後的氮氧化物含量,與流體流接觸於固態顆粒物質前所含有的氮 氧化物之起始含量進行比較,流體流與固態顆粒物質接觸後具有 至少約20%的氮氧化物移除效率。 同時,本發明提供一種減少燃燒源所產生之污染之方法,其 200918153 包含當流體流自燃燒源離開後,令此流體流接觸於固態顆粒物 質’用以減少此流體流中之硫氧化物、氮氧化物、以及二氧化碳 的起始含量。其中,固態顆粒物質係藉由含有至少一種活性矽酸 鹽化合物之熔渣成分與黏結劑成分所摻合而形成。在一實施例 中’流體流與固態顆粒物質接觸前’流體流的溫度至多約6〇〇叩(約 316°C)。當以流體流接觸於固態顆粒物質後的空氣污染物總含 , 量,與流體流接觸於固態顆粒物質前所含有的空氣污染物之起始 ' 含量進行比較,流體流與固態顆粒物質接觸後具有至少約2〇%的 空氣污染物移除效率。 本發明Φς:供一種污染減量系統(pollution abatement system),此 污染減量系統包含一燃燒源及一填充床反應器(packed bed reactor)。燃燒源產生一流體流,此流體流包含至少一空氣污染物, 並在流體流中具有一起始含量,且此空氣污染物係選自於由硫氧 化物、氮氧化物、及二氧化碳所組成之族群。填充床反應器具有 -一入口、一出口、及至少一反應室(chamber);入口係用以接收流 .體流;反應室包含複數個固態顆粒物質,此固態顆粒物質的平均 粒度直徑介於約0.25毫米至約12毫米,且固態顆粒物質係藉由摻 合溶渣成分及黏結劑成分而形成,其中,熔渣成分具有至少一活 性石夕酸鹽化合物。反應室並具有一容積(v〇lume),此容積提供流體 流足夠的滯留時間,使反應室以至少約2〇%的移除效率來減少空 氣污染物在流體流中的起始含量。 200918153 本發明提供-種減少燃燒源產生之污染物之方法,其包含導 引自燃燒騎產生之—流誠進人填充床反應器,此流體流之温 度至多約600〇F (約316。〇。流體流的起始含量中具有至少一空氣 污染物’此空氣污染物係選自於由硫氧化物、氮氧化物及二氧化 .碳所組成之族群。填充床反應H具有至少—含有複數個固態顆粒 .物質的反應室,此固態顆粒物質之平均粒度直徑介於約〇 25毫米 至約12毫米,且固態顆粒物質係藉由摻合熔渣成分及黏結劑成分 而形成,且此熔渣成分具有至少一種活性矽酸鹽化合物。並且, 填充床反應器在運作時具有至少約2〇%的空氣污染物移除效率。 另外,本發明提供一種減少燃燒源產生之污染之方法,其包 含監測燃燒源所產生之流體流中至少一污染物的起始含量,此污 染物係選自於由硫氧化物、氮氧化物及二氧化碳所組成之族群。 流體流在溫度至多約600T (約316〇C)的情形下被導引進入填充床 反應器,而使流體流中的污染物含量減少,其中,填充床反應器 具有至少一含有複數個固態顆粒物質的反應室,此固態顆粒物質 之平均粒度直徑介於約0.25毫米至約12毫米,固態顆粒物質係藉 由摻合溶渣成分及黏結劑成分而形成,此溶渣成分具有至少一種 活性矽酸鹽化合物。當流體流從填充床反應器離開時,流體流之 污染物的含量獲得了減少,其中,流體流之污染物的減少量與流 體流之污染物的起始含量間,具有平均每小時至少約20%的含量 差異。 8 200918153 % 本發明提供一種減少燃燒源所排放出之流體流中硫氧化物、 氮氧化物及/或二氧化碳的方法,此燃燒源為固定(stati〇naiy)燃燒 源(如鍋爐、焚化爐)、水泥黨、石灰E、煉鐵爐及煉鋼爐等。同時, 此方法為提供-種移除硫氧化物、氮氧化物、及/或二氧化物排放 的有效方法,其可控制溫室氣體的排放,並進一步回收利用至少 .一工業上的啦物,並使多數副產物物質形成有關產物。 a_L之關於本發明内容之說明及以下之實施方式之說明係用 以示範與觸本發明之原理,並且提供本發明之專辦請範圍更 進一步之解釋。 【實施方式】 本發明提供-種減少或隔離至少—種氣態空氣污染物的方 法,此氣態空氣污染物係來自於燃燒源所產生的流體流。在一具 體實施例中’此越流包含氣體及/或蒸氣,或是#中帶有固體及/ 或液體的氣體及/或蒸氣,例如帶有微粒、液紐滴(diOplet)及/或 -氣溶膠(aerosol)等。在另一實施例中,流體流係指工業程序中燃燒 -源所產生之一廢水流或一廢氣流。在此實施例中並提供一固態顆 粒物質,此固態顆粒物質可從流體流中有效的移除至少一種污染 物。固顆粒物質係藉由摻合—熔渣成分及—黏結劑成分而形 成。在一具體實施例中,在摻合熔渣成分及黏結劑成分的過程中 更加入水分,以使固態顆粒物質形成球狀的形式。在另一實施例 中,固態顆粒物質係為複數個固態的顆粒或團塊所形成。在一具 200918153 體實施例中,團塊形式的固態顆粒物質具有不規則及多孔性的形 狀’其係藉由摻合熔渣成分、黏結劑成分及選擇性的加入水分而 形成。流體流係流入含有此固態顆粒物質的反應器中,並與此固 態顆粒物質相接觸,使固態顆粒物質移除此流體流中至少一空氣 污染物。在一具體實施例中,空氣污染物係選自於硫氧化物(s〇x; 包含二氧化硫(S〇2)、一氧化硫(S0)、三氧化硫(s〇3)等)、氮氧化 物(N〇X;包含—氧化氮(NO)、二氧化氮(N02)等)、及二氧化碳(c〇2) 所組成之族群。在另一具體實施例中,污染減量系統之固態顆粒 物質,進一步移除其他的空氣污染物,例如一氧化碳(c〇)、氫氯 酸(hydrochloric acid ; HC1)、氟氯碳化物(cW⑽加⑽⑶出㈣; CFC)、微粒物質(particulate matter; pM)、揮發性有機化合物㈣麻 organic compounds ; v〇Cs)、氣溶膠化合物㈣⑽丨 _p〇unds)、 水銀(Hg)、_b)、氨(NH3)、臭氧(q3)、及上述空氣污染物之組 合及其相等物。 因此,依據本發明所揭露之減少燃燒源產生之污染物的方 法,其中顆球狀的固態顆粒物質係用以減少流體流中污染物的含 里。固悲顆粒物質包含―雜成分及一黏結劑成分。且固態顆粒 物質係藉由摻合雜成分及減舰分㈣成。賴成分與黏結 齊L、有不同的性質,且溶渔成分為提供一活性碎酸鹽的來源。在 —具體實施财,雜成分無結贼分更進-步與水摻合,並 在與流體流接觸前充分地錢成固獅式。在此所稱之「充分地 200918153 乾燥」係‘此固態顆粒物質中水分的含量,約低於整體物質的3 重f百分比,可選擇性的約低於!重量百分比,而在另一具體實 施例中約低於G.5 $量百分比。在-實施例巾,_顆粒物質藉由 摻合其他的成分而形成,其他的成分即所謂的次成分,次成分同 時包含有驗性離子(alkali ions)來源及氧化柳aldum 〇χ_來源。 在一具體實施例中,固態顆粒物質可選擇性地包含第三成分,此 第三成分為氧化舞(CaO)來源及鹼金屬離子(alkali metal i〇ns)來源。 溶渣成分(slag component) 熔渣成分為金屬製造業中的工業副產物。在不同的實施例 中’熔渣成分包含一活性矽酸鹽。矽酸鹽為典型的四面體 (tetrahedral)結構’此四面體結構係以鍊狀(chains)、雙鍊狀(d〇uble chains)、片狀(sheets)、二維網狀(three-dimensional networks),以及 其他聚合(無機聚合;ge〇_P〇lymer)的形式連結起來。石夕酸鹽包含石夕 原子及氧原子,且矽原子及氧原子係伴隨著一種或多種金屬及/或 虱。一般來§兒’石夕和氧形成氧化石夕(SiX〇y)的形式,其中石夕原子的 數目(X)通常為1或2 ’而氧原子的數目(y)則在2至7的範圍内(意 即二氧化矽(Si02)、三氧化矽(Si〇3)、島狀矽酸鹽(Si04)、及雙島 狀石夕酸鹽(Si2〇7)等)。同時,大多數的矽酸鹽不溶於水,並在水中 具有安定性。在水中的矽酸鹽化合物需於鹼性條件及增加溫度的 方式來促使其具有較好的溶解度及/或反應性。矽酸鹽化合物在水 中的溶解度和反應性受到許多因子的影響,這些因子中包含與矽 11 200918153 酸鹽陰離子產生複合的陽離子,例如IA族鹼金屬離子元素和銨根 離子(NH4+)傾向於形成水溶性的石夕酸鹽。 石夕酸鹽類較谷易與離子類產生反應,並在水中表現出高度的 /谷解度,這些石夕酸鹽被認為係受到離子化而形成石夕酸根離子(&〇_ • icms)。舉例而言,矽酸根可形成不同的晶體構造,此晶體構造的 範圍從結晶(crystalline)和高階晶形(highly-ordered phases)(例如石 英),至隱晶形(crypto-crystalline phases)(例如像玉髓(chalced〇ny) 的極度細緻結阳構造),再至非晶形(am〇rph〇us phases)或玻璃狀的 非結晶構造(例如蛋白石)。不規則的晶格構造可允許高度的離子撞 擊和破壞矽酸鹽的架體構造。因此,高階及良好結晶的晶形具有 女疋性及非反應性,當隱晶形和非結晶形石夕酸鹽晶格產生不規則 及打開晶格結構時,此矽酸鹽晶格容易受到攻擊而使矽酸鹽具有 活性。 在不同的實施例中,固態顆粒物質中的熔渣成分包含活性矽 酸鹽。舉例而έ (並非用以限制任何的理論),在此認為由於石夕酸二 鈣(dicalcium silicate ’ 2 Ca0 Si02,C2S)和矽酸三鈣(tricaldum silicate,3 Ca0.Si02 ’ C3S)的具體晶形,特別是 丫_矽酸二鈣(y_C2S)、 β-矽酸二i弓(P-C2S)、以及矽酸三|弓(C3S)晶形,使活性矽酸鹽可形 成於熔渣材料内,並因此適合用來與污染物進行反應。例如,這 些活性矽酸鹽在水中會與二氧化碳進行反應。在25〇C (77°F)的水 中及酸鹼值(pH)至少等於9的環境壓力下,活性矽酸鹽化合物會 12 200918153 與二氧化碳進行反應,此活性矽酸鹽化合物係指具有超過1〇%的 總石夕酸鹽化合物之物質。 增加溫度通常可使矽酸鹽化合物在水中的溶解度提高。在不 同的實施例中,熔渣成分包含至少約5%的活性矽酸鹽,可選擇性 地至少約10%’可選擇性地至少約15%的活性矽酸鹽,其中之% (百 分比)為以乾量基準(dry basis)的重量百分比。 許多的炫渣材料包含石夕酸躬(calcium silicates)。在不同的實施 例中,這些矽酸鈣中至少有一部分會與水中的硫氧化物、氮氧化 物、二氧化碳及/或氧化飼進行反應。 如先前技術中所述,熔渣為金屬在製造與加工過程中,一般 會產生的副產品化合物。此熔渣係指包含有廣泛種類的副產品物 質,典型的包含鐵金屬及/或鋼的製造與加工過程中,大部分的非 金屬副產物。通常在加工過程中,渣化劑(Slagging agents)或助熔 劑(flux materials)會被加入熔爐中,用以移除來自於熔化的鐵礦、 廢鋼料、鐵及/或鋼原料中的雜質。典型的助熔劑為石灰石 (limestone ’ CaC03)及/或白雲石(d〇l〇mite,CaC03.MgC03)。熔化 的熔渣形成流動於熔爐頂部的矽酸鹽熔化物,待其冷卻後形成螫 合的矽酸鹽和氧化物。熔渣的成分取決於金屬在熔爐中的加工程 序,並且通常含有金屬硫化物及元素形式的金屬原子。炫渣的成 分和性質同時受到溶爐的類型和後加工處理程序的影響,其不僅 會影響熔渣的化學組成,同時也會影響熔渣的結晶度、相成長、 13 200918153 以及表面形態等’使熔渣的反應性受到衝擊。舉例而言,炼逢中 形成有至少一種活性石夕酸鹽形式,例如γ_石夕酸二妈(y_C2S)、β-石夕 酸二約(P-C2S)、以及矽酸三鈣(C3S)等。並且,炫渣的粒度、孔隙 度、以及表面積等會對反應性造成衝擊,其中較小的粒度及高度 的孔隙度’會使熔渣成分曝露於污染物和水的表面積增加,進而 促使溶渣與目標空氣污染物的反應性提昇。 ρ 鐵礦經由高爐(blast fUmaces)的加工而形成精煉的生鐵。高爐 渣(blast fUmace slags)—般會形成為三種主要的類型:氣冷型 (air-cooled)、粒化、以及球狀(pelletized)(或有孔的(expanded))。氣 冷型高爐渣的形成,係以比周圍條件相對緩慢的冷卻速度,使溶 化的熔渣進行冷卻,並在此冷卻過程終了前以冷卻程序來加速冷 卻,例如灑水。粒化熔渣的形成,係藉由將熔化的熔渣在水中進 行坪火’因此形成細小的無序結構(disordered-structure)之玻璃顆 粒。此類粒化熔渣通常會進一步的研磨,因此而增加物質的膠結 -(cementitious)性質。球狀或有孔的熔渣係經由水注進行冷卻,此一 -水注冷卻的過程導致蒸氣快速的產生,而使物質的結構發展成廣 泛的氣泡結構。 鋼渣(steel slags)係於生鐵和其他鋼物質在煉鋼爐中進一步的 加工過程中而形成。典型的煉鋼爐包含鹼性氧氣爐(basic oxygen process fUmaces ; BOF)、平爐(0pen hearth fomaces ; OHF)、以及 電弧爐(electric arc fomaces ; EAF)。目前大部分鋼的製造程序,係 14 200918153 於-貫作業鋼薇中以驗性氧氣煉鋼法製造,或是於特殊的煉鋼廢 中以電弧爐程序製造。在此以驗性氧氣煉鋼法為例,將熱液態高 爐金屬、廢料、及助炼劑裝料於轉化爐(炫爐)中;並將喷搶置入= 化爐底部以注人碰魏;高魏氣與爐料巾⑽_合並將此 雜質從爐料中移除;這些雜質係由碳(如氣態的—氧化旬、石夕、鐘、 鱗和-些鐵(如液態的氧化物)驗成,這麵f與林及/或白* (石結合而形成鋼渣。在精煉雜作程序終了時,將液態鋼注入^ 繞斗(ladle)中,同時使鋼潰保留於容器中,接著輕敲容器使鋼渣置 入於單獨的盛渣桶内。 ' 鋼可被製成許多不同的等級,同時鋼渣的性質對每—種等級 會產生重大的影響。鋼的等級可區分為高級、中級和低級三種, 其係依據鋼巾的含碳量來區分。較高級_通常具有較高的碳含 置。為了減少鋼中的碳含量,在煉鋼的過程中需含有較大量的氧。 (同時需額外的增加助_的含量,用以移除來自於鋼的雜質以及 .加快紐的形成。所謂的「碳漬(carb〇nslags)」係指溶邊中石炭含量 .的程度超過雜質。舉例而言,破渣巾代紐的碳含量包含那些具 有至少約0.01重量百分比的碳渣,可選擇性地至少約〇1重量百 分比’可選擇性地至少約G5重量百分比,可選擇性地至少約P重 量百分比。 鋼渣典型具有S含量的石夕酸二_及氧化飼。在煉鋼的程序中 會產生一些不同形態的鋼渣,包含溶爐(或流出_)炫渣、_造 15 200918153 (raker slags)、合成(synthetic)(或澆斗)熔渣、以及礦井②或清洗 (cleanou®熔渣。在鋼生產的初期階段鋼渣易產生為熔爐熔渣或流 出熔渣。在熔化的鋼料流出熔爐之後,此熔化的鋼料被轉換至澆 斗内,用以進一步進行精煉,並移除鋼中所含有的其他雜質,在 此過程中,由於添加助熔劑至澆斗中熔化鋼料,而產生其他的鋼 渣這些鋼渣與任何的爐渣留存物(carry〇ver)結合,並協助吸附去 氧化產物(夾雜物(inclusions))、絕熱、以及保護澆斗的耐熔性。在 此一煉鋼階段的鋼渣一般稱為耙(raker)及洗斗熔渣。礦井(故⑴熔渣 和清洗熔渣則為常見於煉鋼操作過程中的其他類型熔渣。礦井熔 逢和清洗縣-般包含於不_作階段巾,掉落在設備地面的鋼 渣中,或是來自於澆斗在輕敲之後所移除的熔渣内。澆斗精煉階 段通常含有相當多外加的助熔劑,同時這些合成熔渣的性質時常 明顯的不同卿些雜驗。這些紐縣富含有氧倾和石夕酸 鹽,同時相當適合用來當做固態顆粒物質中熔渣成分的原料,尤 其這些合成熔渣如同粒料(aggregates)一樣,由於在原位由於特別 疋這些合成炼渣在原位擴展(eXpansi〇n in situ)而無法被廣泛的再 利用。 值得注意的是,熔渣成分可能包含有源自於熔爐及/或加工程 序中不同位置的熔渣組合物,或者可能含有來自不同熔爐或程序 的炫渣組合物。在此所謂的「熔爐」係同時包含鐵礦及鋼轉化爐。 為又而s,尚爐>查產生於鐵擴溶爐,而鋼潰產生於任何的鋼成型 16 200918153 或精煉程序,此鋼渣包含不銹艇,其將於稍候作詳細說明。依 ^這麵渣在程序及隨後的加工_中的位置來源不同,而使大 ^數的雜具林_減分佈、不同軸物性㈣麵1。㈣及結 晶生長。這些關也許進—步的被研磨至所欲達到的粒度分佈及/ 或細度(fineness)(表面積)。 八代表性的驗包括有含約化合物、含石夕化合物、含铭化合物、 含鑑化合物、含鐵化合物、含·合物及/或含硫化合物。在-具 體只加例中炫/查成分中之溶潰材料係選自於含有約Μ至約6〇 重里百分比的氧化飼(calcium 〇xide),可選擇性地約3〇至%,以 及可4擇性地約30至40重量百分比。在不闕實施例中,溶渣 成分中的溶渣材料係選自含有至少約25重量百分比的二氧化石夕 (Si02) ’可選擇性地至少約3〇重量百分比;可選擇性地至少約% 重置百分比。值得注意的,二氧切在組成物中的含量,係反應 於簡單的氧化物分析。在此所制的百分_了另有標示者,皆 疋以重量為基準。值得注意的,在此所述之不同職的化學成分 係經由元素分析計算後,以單-氧化物來表示,-般係以X光螢 光(X ray fluorescence)技術來決定。不同的單一氧化物可能(並且通 系是)在原料中存在有更複雜的化合物,氧化物分析法為一種有用 的方法,係用以在各別組成物中呈現出所關注的化合物之濃度。 單一氧化物分析並不需反映出活性矽酸鹽的濃度,其也許只表現 原料中一氧化石夕總含量中的一部分。 17 200918153 在一具體實施例中,熔渣成分更包含至少約25重量百分比的 氧化鈣;可選擇性地至少約3〇重量百分比;可選擇性地至少約% 重量百分比。如上所述,氧化鈣及矽氧化物(silic〇n〇xide)一般係以 石夕酸約的形式存在’然而,基於整體的單—氧化物分析,氧化舞 與砍氧化物的各別含量至少約25重量百分比。在—具體實施例 中,熔渣成分包含至少一活性成分,此活性成分係選自於矽酸鈣 鹽(CaSi03)、氧化妈、及其組合,其中,賴成分中活性成分之總 含量約為30至90重量百分比。 在一具體實施例中,熔渣成分所包含之熔渣組成物如表一所 示’其係排除了雜質與稀釋劑。 表一 氧化物/金屬 重量百分比(wt. %) 氧化約(Calcium Oxide,CaO) 35 〜55 二氧化矽(Silica, Si02) --——_ —— 10 〜35 氧化铭(Aluminum Oxide, Al2〇3) 0.1 〜10 氧化鐵(Iron Oxide,FeO) [70 〜80%氧化 0.1 〜40 鐵(FeO)及20〜30%三氧化二鐵(Fe203)] 氧化镁(Magnesium Oxide, MgO) 3-10 氧化猛(Manganese Oxide, MnO) 3-10 硫酸鹽(Sulfate,S03) 0.01 〜15 石粦酸鹽(Phosphate, P2O5) 0.01 〜1 18 200918153 金屬鐵(Metallic Iron) ^〜川_ 舉例來說,合適的熔渣一般具有膠結的性質,同時活性矽為 高爐石粉。熔渣的冷卻速度一般要足夠的緩慢,以形成不同的結 晶化合物,包含主要的化合物,如矽酸二鈣、矽酸三詞、鐵酸二 J弓(dicalcium ferrite)、氧化碎-氧化儀乳化石夕(meriwinite ’ 3CaO.MgO_2Si02)、鋁酸鈣(calcium aluminate)、鈣-鎂氧化鐵 (calcium-magnesium iron oxide)、游離石灰(free lime)、以及游離氧 化鎮(free magnesia) 〇 不錄鋼渣(stainless steel slags)特別適合用來當做'熔渣成分的 材料,因為不銹鋼渣包含相對高濃度的游離石灰及/或游離氧化 鎂’以及相對高濃度的矽酸鹽,尤其是活性矽酸鹽結晶形態,如γ_ 矽酸二鈣(Y-C2S)。在結晶成長和相轉移的過程中,由於y_;g夕酸二 鈣的相位在矽酸二鈣結晶晶格中不安定,因此會經由自身粉碎 (self-pulverization)而碎裂成細粉的形式。 * 如先前所述的,不同數量的元素’如鎳、鉻、鉬、和猛等, .可被加入精煉的鐵中以形成鋼:在精煉的鐵中,這些元素的含量 愈高則鋼的等級愈高。這些it素傾向與炫渣中被用來精煉金屬的 化合物做結合。-般來說,不銹鋼含有至少約1().5%鉻。典型的沃 斯田鋼具有至少⑴6%的鉻及至少約8%的鎳。不鱗鋼包含有將近 約1.7重量百分比㈣。愈高等級料_財具錢少含量的 碳,並可能含有銷和猛等其他的元素。舉例來說,低等級的綱 19 200918153 沃斯田不銹鋼具有至多0.08%的碳、介於約17〜19·5〇/〇的鉻、約8 〜10.5%的錄、以及至多2%的锰’其中並不含有鉬。另一代表性 的高等級316L鋼,含有至多0.03%的碳、約π%的鉻、約9%的 鎳、約2%的錳、以及約2.5%的鉬。其中316L鋼之名稱中,「L」 代表低碳含量的意思。最高等級的沃斯田不銹鋼為等級317L_ 沃斯田不銹鋼’其具有至多0.03%的碳、介於約16.5〜18.5%的絡、 約13.5〜17.5%的鎳、約1〜2%的錳、以及約4〜5%的鉬。在 317LMN等級中,其名稱中之「M」和rN」分別代表組合物中所 含鉬和鎳的增加程度。不銹鋼渣傾向與這些不同的元素結合,並 進一步的包含高量的活性及/或水溶性的矽酸鹽,此為在本發明所 揭露之不同實施例中,非常適合用以形成固態顆粒物質的材料。 熔渣成分可進一步的包含活性矽酸鹽的其他來源,除了上述 的熔渣外,包括在上述討論中只要這些來源能提供合適的及/或必 須的活性成分。其他合適的例子為,從放置於高爐的空氣污染防 .治设備中收集而來的高爐(熔鐵爐(cup〇la))粉末,如熔鐵爐捕捉器 .(cupola arrester)的;慮餅。另一種合適的工業副產物來源則為紙類脫 墨污泥私塵(paper de-inking sludge ash)。許多不同的製造/工業程序 副產物,可做為依據本發明所揭示之固態顆粒物質之材料中活性 石夕I鹽的適當來源。這些已熟知的副產物包含有氧化鋁及/或氧化 石夕4 、’、e a任代表性的製造產物及/或工業副產物,將被可預期 的使用於本發明所揭露之具體實施例中。 20 200918153 黏結劑成分(Binder component) 在不同的實施例中’黏結劑成分被用以和熔渣成分摻合,以 形成團塊顆粒固體的形態。在不同的實施例中,這些黏結劑成分 能夠使熔渣成分保持在固態顆粒物質的形態,並具有預定的粒 度,因此,當固態顆粒物質使用於工業污染減量設備中,能同時 經得起搬運與裝卸。以下將有詳盡的說明。在不同的實施例中, 固態顆粒物質具有熔渣成分和黏結劑成分,並排列於填充床反應 器内。-流體流被導引人填絲反應器,並流通於反應床上的固 態顆粒物質’流體流中之至少—種空氣污染物藉由接觸這些固態 顆粒物質被雜。結合任-絲性_結魏分將可被翻的使 用於本發明帽揭露的具體實施例。在不同的實施例巾,黏結劑 成分係包含選自於由普通的;皮特蘭水泥(〇rdinary cement; OPC)、波特蘭水泥熟料(clinker)、關轉(興gum)、殿 粉、及糖蜜所組成之族群及其組合。 •在-具體實施财’ 係藉由摻合黏結劑成分及 .炫渣成分而形成,其中魅成分及黏結劑成分的比例,在乾重基 準下約為6比i (6:1)至99比i (99:1)。在一具體實施例中,固態 顆粒物質係聽混合⑽縫基準下,触摻合約丨至2()重量百 分比的黏結劑成分而形成,可選擇性地約3至1〇重量百分比的黏 結劑成分’以及選擇性關4至6重量百分比_結劑成分。此 外,在-具㈣施财,雜#j成分赠渣成分係於含有水分的 200918153 情形下進行摻合’用以形成固態顆粒物質,舉例而言,在濕量基 準(wet basis)下,黏結劑成分與溶渣成分可與約5至30重量百分 比的水進行摻合,可選擇性地約7至2〇重量百分比的水,並且在 某些實施例中,為約1〇至15重量百分比的水。在一具體實施例 .中,黏結劑成分和熔渣成分係被均勻地及/或徹底地混合,用以形 成固態顆粒物質。 波特蘭水泥(Portland Cement) 在本發明所揭露之一具體實施例中,黏結劑成分係選自水硬 膠結性(hydraulic cementiti〇us)組成物。因此,在一具體實施例中, 黏結劑成分包含波特蘭水泥成分,其包含用以舉綱普通的波特 蘭水泥、修飾過的(modified)波特蘭水泥、混合的水硬水泥 (hydrauHceements)、以及水泥熟料。「水硬水泥」意指在經由接觸 水泥中的礦物成分並進行水合作職會變硬的水泥,甚至於當浸200918153 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for reducing emissions, and more particularly to a method and system for isolating air pollutants in a fluid stream produced by a fiber combustion source. [Prior Art] Most industrial processes operate using a combustion source that contains noodles, impurities, and incineration. The combustion source will produce a variety of dangerous air pollutants according to the different types of materials used in the combustion of the jade, such as the use of materials, the way of supplementing, the materials of the boiler, and other operational factors (hazardous airp〇Uutants, HAPs). The dangerous air pollutants normally released through the combustion source include sulfur oxides (sulfiir 〇xides), nitrogen oxides (10) coffee oxides, carbon dioxide, carbon oxides, hydrogen acids, and i gas carbides ((^(^(10)) (10) Wide-particle substance gamma-cafe than (four) philogenic organic compounds, aerosol compounds (妳08〇1 (; 〇111{)_ postal, mercury, lead, ammonia, and odor-oxygen, etc. in wastewater or smoke After the gas leaves the combustion source, various types of air pollution control system have been removed by the arsenal - such air pollutants. However, most of the air pollution control equipments require high energy and require high temperatures. Operation and high cost and expensive maintenance cost. SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a method of reducing pollution generated by a combustion source, the method comprising: after the fluid stream leaves the combustion source, 200918153 / Gua Duchuan 1 contacted with solid particles (s〇iidmateria) to reduce the initial content of this / claw / current melon oxide (initialam〇unt). Blending-slag a slag c〇mp〇nent formed with a binder component (sinking component) containing at least one reactive S1 cate compounds. In various embodiments, from a combustion source Leaving • ΛΜ·body"0_, the temperature of the fluid stream is at most about 60 degrees Fahrenheit _ 〇F) (about 316 degrees Celsius (316 OQ) before contact with the solid particulate matter. Contact with the fluid flow in contact with the solid state The initial content of the particulate matter, after contact with the solid particulate material, has a sulfur oxide removal efficiency of about 20%; * in different embodiments, even higher removal efficiency of the propionate, about A sulfur oxide removal efficiency of at least about 7% can be achieved. Further, the present invention provides a method of reducing contamination from a combustion source comprising contacting the fluid stream with a solid state after the fluid stream exits the combustion source a particulate material for reducing the initial content of nitrogen oxides in the fluid stream, wherein the solid particulate material is formed by blending a heterogeneous component containing at least one of the active (tetra) acid salt compounds with a binder. At the same time, before the fluid stream contacts the solid particulate material, the temperature of the fluid stream is at most about _°F (about 316. 〇. The nitrogen oxide content after the fluid stream contacts the solid particulate material, before the fluid flow contacts the solid particulate material Comparing the initial levels of nitrogen oxides contained, the fluid stream has a nitrogen oxide removal efficiency of at least about 20% upon contact with the solid particulate material. At the same time, the present invention provides a method of reducing contamination from a combustion source, Its 200918153 includes contacting the fluid stream with solid particulate matter after the fluid stream exits the combustion source to reduce the initial levels of sulfur oxides, nitrogen oxides, and carbon dioxide in the fluid stream. Among them, the solid particulate material is formed by blending a slag component containing at least one active citrate compound with a binder component. In one embodiment, the temperature of the fluid stream before the contact of the fluid stream with the solid particulate material is at most about 6 Torr (about 316 ° C). When the total content of air pollutants after contact with the solid particulate matter by the fluid flow is compared with the initial content of the air pollutants contained before the fluid flow contacts the solid particulate matter, the fluid flow contacts the solid particulate matter. Has an air pollutant removal efficiency of at least about 2%. The present invention provides for a pollution abatement system comprising a combustion source and a packed bed reactor. The combustion source produces a fluid stream comprising at least one air pollutant and having an initial content in the fluid stream, and the air pollutant is selected from the group consisting of sulfur oxides, nitrogen oxides, and carbon dioxide. Ethnic group. The packed bed reactor has an inlet, an outlet, and at least one chamber; the inlet is for receiving a flow. The reaction chamber comprises a plurality of solid particulate materials, and the average particle size of the solid particulate material is between From about 0.25 mm to about 12 mm, the solid particulate material is formed by blending a slag component and a binder component, wherein the slag component has at least one active phosphonate compound. The reaction chamber also has a volume that provides sufficient residence time for the fluid stream to reduce the initial level of air contaminants in the fluid stream with a removal efficiency of at least about 2%. 200918153 The present invention provides a method for reducing contaminants produced by a combustion source, which comprises directing a self-burning packed bed reactor from a combustion rider, the temperature of the fluid stream being at most about 600 F (about 316 Torr. The initial content of the fluid stream has at least one air pollutant 'this air pollutant is selected from the group consisting of sulfur oxides, nitrogen oxides, and carbon dioxide. The packed bed reaction H has at least - contains plural a solid particle. The reaction chamber of the substance, the solid particle material having an average particle size diameter of about 〇25 mm to about 12 mm, and the solid particulate material is formed by blending the slag component and the binder component, and the melting The slag component has at least one active phthalate compound. Moreover, the packed bed reactor has at least about 2% air pollutant removal efficiency during operation. Additionally, the present invention provides a method of reducing pollution from a combustion source, Including monitoring an initial content of at least one contaminant in the fluid stream produced by the combustion source, the contaminant being selected from the group consisting of sulfur oxides, nitrogen oxides, and carbon dioxide The fluid stream is directed into the packed bed reactor at a temperature of up to about 600 T (about 316 ° C) to reduce the amount of contaminants in the fluid stream, wherein the packed bed reactor has at least one of a plurality of a reaction chamber of solid particulate matter having an average particle size diameter of from about 0.25 mm to about 12 mm, the solid particulate material being formed by blending a slag component and a binder component, the slag component having at least one An active citrate compound. When the fluid stream exits the packed bed reactor, the amount of contaminants in the fluid stream is reduced, wherein the reduction in the contaminant of the fluid stream is between the initial content of the contaminant of the fluid stream, There is a difference in content of at least about 20% per hour on average. 8 200918153 % The present invention provides a method for reducing sulfur oxides, nitrogen oxides and/or carbon dioxide in a fluid stream discharged from a combustion source, the combustion source being fixed (stati) 〇naiy) combustion sources (such as boilers, incinerators), cement parties, lime E, ironmaking furnaces and steelmaking furnaces, etc. At the same time, this method provides the removal of sulfur oxides, An effective method for the emission of oxides and/or dioxide which controls the emission of greenhouse gases and further recycles at least one industrial product and causes most of the by-product materials to form related products. The description of the content and the following description of the embodiments are intended to illustrate and explain the principles of the invention, and to provide a further explanation of the scope of the invention. [Embodiment] The present invention provides a reduction or isolation of at least one species. A method of gaseous air pollutants from a fluid stream produced by a combustion source. In a particular embodiment, 'this flow contains gas and/or vapor, or # carries solids and/or The liquid gas and/or vapor, for example, contains particles, diOplet and/or aerosol. In another embodiment, fluid flow refers to a wastewater stream or an exhaust stream produced by a combustion-source in an industrial process. In this embodiment, a solid particulate material is provided which is effective to remove at least one contaminant from the fluid stream. The solid particulate material is formed by blending a slag component and a binder component. In one embodiment, moisture is added during the incorporation of the slag component and the binder component to form the solid particulate material in a spherical form. In another embodiment, the solid particulate material is formed from a plurality of solid particles or agglomerates. In a 200918153 embodiment, the solid particulate material in the form of agglomerates has an irregular and porous shape which is formed by blending a slag component, a binder component, and selectively adding moisture. The fluid stream flows into a reactor containing the solid particulate material and is contacted with the solid particulate material to cause the solid particulate material to remove at least one air contaminant from the fluid stream. In a specific embodiment, the air pollutant is selected from the group consisting of sulfur oxides (s〇x; including sulfur dioxide (S〇2), sulfur monoxide (S0), sulfur trioxide (s〇3), etc.), nitrogen oxide (N〇X; contains nitrogen oxide (NO), nitrogen dioxide (N02), etc.), and carbon dioxide (c〇2). In another embodiment, the solid particulate matter of the pollution reduction system further removes other air pollutants such as carbon monoxide (c〇), hydrochloric acid (HC1), and chlorofluorocarbon (cW(10) plus (10)(3) (4); CFC), particulate matter (pM), volatile organic compounds (IV) hemp organic compounds; v〇Cs), aerosol compounds (4) (10) 丨_p〇unds), mercury (Hg), _b), ammonia ( NH3), ozone (q3), and combinations of the above air pollutants and their equivalents. Accordingly, in accordance with the present invention, a method of reducing contaminants produced by a combustion source wherein the spherical solid particulate material is used to reduce the inclusion of contaminants in the fluid stream. The solid particle material contains a "hetero component" and a binder component. And the solid particulate matter is formed by blending the impurity components and reducing the ship's (four). The ingredients and binders have different properties, and the fish-soluble ingredients are the source of an active crush. In the specific implementation of the financial, the impurity-free thief is further stepped into the water and blended with the water and fully smashed into a solid lion before contacting the fluid stream. As used herein, "sufficiently dried in 200918153" is the content of moisture in this solid particulate matter, which is about 3 percent lower than the overall mass of the whole material, and can be selectively lower than! The percentage by weight, and in another specific embodiment, is less than the percentage of G.5 $. In the embodiment, the particulate matter is formed by blending other components, and the other components are so-called secondary components, and the secondary components simultaneously contain the source of the alkaline ions and the source of the oxidized willow aldum. In a specific embodiment, the solid particulate material can optionally comprise a third component, the third component being a source of oxidative dance (CaO) and an alkali metal ion. Slag component The slag component is an industrial by-product of the metal manufacturing industry. In various embodiments, the slag component comprises a reactive citrate. Citrate is a typical tetrahedral structure. This tetrahedral structure is chained, d〇uble chains, sheets, two-dimensional networks. ), and other forms of polymerization (inorganic polymerization; ge〇_P〇lymer) are linked. The oxalate salt contains a stone atom and an oxygen atom, and the ruthenium atom and the oxygen atom system are accompanied by one or more metals and/or ruthenium. Generally, § 儿 '石夕 and oxygen form the form of oxidized stone (SiX〇y), wherein the number of X-ray atoms (X) is usually 1 or 2' and the number of oxygen atoms (y) is 2 to 7. In the range (ie, cerium oxide (SiO 2 ), antimony trioxide (Si 〇 3 ), island bismuth silicate (Si 04 ), and double island oxalate (Si 2 〇 7), etc.). At the same time, most of the citrate is insoluble in water and has stability in water. The phthalate compound in water needs to be promoted to have good solubility and/or reactivity under alkaline conditions and by increasing the temperature. The solubility and reactivity of phthalate compounds in water are affected by a number of factors, including cations complexed with cesium 11 200918153 acid anions, such as Group IA alkali metal ions and ammonium ions (NH4+) tend to form Water-soluble oxalate. The sulphate reacts with ionics and exhibits a high degree of/glutination in water. These oxalates are thought to be ionized to form a lithospermium ion (& 〇_ • icms) ). For example, citrate can form different crystal structures ranging from crystalline and highly-ordered phases (eg, quartz) to crypto-crystalline phases (eg, jade The extremely fine tangent structure of the chalced〇ny, and then to the amorphous (am〇rph〇us phases) or glassy amorphous structure (such as opal). Irregular lattice configurations allow for high levels of ion strike and destruction of the silicate structure. Therefore, the high-order and well-crystallized crystal forms are virgin and non-reactive, and the silicate crystal lattice is easily attacked when the cryptomorphic and amorphous crystalline crystal lattices are irregular and open lattice structures are formed. The citrate is made active. In various embodiments, the slag component of the solid particulate material comprises an active phthalate. For example, έ (not to limit any theory), it is considered here that due to the specificity of dicalcium silicate ' 2 Ca0 SiO 2 , C 2 S ) and tricalcium silicate ( 3 Ca 0. SiO 2 ' C 3 S ) Crystal form, especially 丫_ 二 矽 二 y y y y y y y y y y y P P ( ( P P P P P P P P P P P P P P P C C C C C C C C C C C C C C C C C C C C And therefore suitable for reacting with contaminants. For example, these active phthalates react with carbon dioxide in water. The active citrate compound will react with carbon dioxide at 25 〇C (77 °F) in water and at an ambient pressure of at least 9 (pH). The active citrate compound means having more than 1 〇% of the total compound of the compound. Increasing the temperature generally increases the solubility of the phthalate compound in water. In various embodiments, the slag component comprises at least about 5% active citrate, optionally at least about 10% 'optionally at least about 15% active citrate, of which % (percent) It is the weight percentage on a dry basis. Many slag materials contain calcium silicates. In various embodiments, at least a portion of these calcium citrate will react with sulfur oxides, nitrogen oxides, carbon dioxide, and/or oxidized feed in the water. As described in the prior art, slag is a by-product compound that is generally produced during the manufacture and processing of metals. This slag refers to a wide variety of by-product materials, typically containing a large proportion of non-metallic by-products during the manufacture and processing of ferrous metals and/or steel. Typically, during processing, Slagging agents or flux materials are added to the furnace to remove impurities from the molten iron ore, scrap, iron and/or steel feedstock. Typical fluxes are limestone (CaC03) and/or dolomite (d〇l〇mite, CaC03.MgC03). The molten slag forms a citrate melt flowing on top of the furnace which, upon cooling, forms a combined bismuth citrate and oxide. The composition of the slag depends on the addition of the metal in the furnace and usually contains metal sulfides and metal atoms in the form of elements. The composition and properties of the slag are affected by both the type of the furnace and the post-processing process, which not only affects the chemical composition of the slag, but also affects the crystallinity, phase growth of the slag, 13 200918153 and surface morphology. The reactivity of the slag is impacted. For example, at least one active phosphonic acid salt form is formed in the refining chamber, such as γ_石夕酸二妈 (y_C2S), β-石夕酸二约(P-C2S), and tricalcium citrate (C3S) )Wait. Moreover, the particle size, porosity, and surface area of the slag will impact the reactivity, and the smaller particle size and high porosity will increase the surface area of the slag component exposed to pollutants and water, thereby promoting slag. Increased reactivity with target air pollutants. The ρ iron ore is processed by blast fUmaces to form refined pig iron. Blast fUmace slags are generally formed into three main types: air-cooled, granulated, and pelletized (or expanded). The air-cooled blast furnace slag is formed by cooling the molten slag at a relatively slow cooling rate compared to ambient conditions, and cooling is accelerated by a cooling process, such as watering, before the end of the cooling process. The granulated slag is formed by tempering the molten slag in water' thus forming fine-ordered-structured glass particles. Such granulated slags are typically further ground, thereby increasing the cementitious nature of the material. The spherical or porous slag is cooled by water injection, and this process of cooling the water causes the vapor to be rapidly generated, and the structure of the substance develops into a broad bubble structure. Steel slags are formed during the further processing of pig iron and other steel materials in steelmaking furnaces. Typical steelmaking furnaces include basic oxygen process fUmaces (BOF), open hearth (0pen hearth fomaces; OHF), and electric arc fomaces (ECF). At present, most of the steel manufacturing procedures are manufactured by the Oxygen Steelmaking Process in the Steelworking Process, or by the EAF process in special steelmaking waste. Taking the oxygen gas steelmaking method as an example, the hot liquid blast furnace metal, scrap, and the refining agent are charged into the reforming furnace (the bright furnace); and the spray is placed in the bottom of the furnace to attract people. ; high Wei gas and furnace towel (10) _ combined to remove this impurity from the charge; these impurities are determined by carbon (such as gaseous - oxidation, stone, bell, scale and - some iron (such as liquid oxide) In this way, f and forest and / or white * (stone combined to form steel slag. At the end of the refining process, the liquid steel is injected into the ladle, while the steel collapse remains in the container, then light Knock the container to place the steel slag in a separate slag bucket. 'Steel can be made in many different grades, and the properties of the steel slag can have a major impact on each grade. The grade of steel can be divided into high grade, intermediate grade and The lower three types are distinguished by the carbon content of the steel towel. The higher grade _ usually has a higher carbon content. In order to reduce the carbon content in the steel, a larger amount of oxygen is required in the steel making process. An additional amount of auxiliaries is needed to remove impurities from the steel and to accelerate the shape of the nucleus The term "carb 〇 lag s 」 系 系 系 系 系 系 系 系 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 Optionally at least about 1% by weight 'optionally at least about G5 weight percent, optionally at least about P weight percent. Steel slag typically has an S content of oxalic acid di- and oxidative feed. Procedures in steelmaking There will be some different forms of steel slag, including furnace (or outflow _) slag, _ _ 15 200918153 (raker slags), synthetic (or bucket) slag, and mine 2 or cleaning (cleanou® melting Slag. In the initial stage of steel production, steel slag is easily produced as furnace slag or slag. After the molten steel flows out of the furnace, the molten steel is converted into a bucket for further refining and removal. Other impurities contained in the steel, in the process, due to the addition of flux to the molten steel in the bucket, resulting in other steel slag. These steel slag is combined with any slag retention and assists in adsorption. Chemical products (inclusions), insulation, and protection of the refractory resistance of the bucket. The steel slag in this steelmaking stage is generally called raker and washing slag. Mine (so (1) slag and cleaning Slag is another type of slag commonly found in steelmaking operations. Mine melting and cleaning county - generally included in the stage slag, falling in the steel slag on the equipment floor, or from the bucket in the light Inside the slag removed after knocking. The bucket refining stage usually contains quite a lot of additional flux, and the properties of these synthetic slags are often distinctly different. These New County are rich in aerobic and stone eve The acid salt is also suitable as a raw material for the slag component in the solid particulate matter, especially these synthetic slags are like aggregates, due to the special in situ expansion of these synthetic slags in situ (eXpansi〇 n in situ) and cannot be widely reused. It is worth noting that the slag composition may contain slag compositions derived from different locations in the furnace and/or addition process, or may contain a desmear composition from a different furnace or process. The so-called "melting furnace" here includes both iron ore and steel reformers. For the sake of s, the furnace is produced in an iron spreader, and the steel is produced in any steel forming 16 200918153 or refining procedure, which contains a stainless boat, which will be described in detail later. According to the position of the slag in the program and the subsequent processing _, the source of the slag is different, and the number of the slag is reduced by the distribution, and the different axial properties (four) are 1. (4) and crystallization growth. These may be ground to the desired particle size distribution and/or fineness (surface area). Eight representative tests include a compound containing a compound, a compound containing a compound, a compound containing a compound, a compound containing a compound, an iron-containing compound, a compound, and/or a sulfur-containing compound. The lysing material in the smear/inspection component is selected from the group consisting of a sulphuric acid feed (calcium 〇xide) containing a percentage of about Μ to about 6 ,, optionally about 3 〇 to %, and 4 alternatively about 30 to 40 weight percent. In an embodiment, the slag material in the slag component is selected from the group consisting of at least about 25 weight percent of cerium oxide (SiO 2 )', optionally at least about 3 liters by weight; optionally at least about % Reset percentage. It is worth noting that the amount of dioxo in the composition is reflected in a simple oxide analysis. The percentages made here are otherwise indicated on the basis of weight. It is worth noting that the chemical composition of the different jobs described herein is calculated by elemental analysis and is expressed as a mono-oxide, which is determined by X-ray fluorescence. Different single oxides may (and are generally) present more complex compounds in the feedstock, and oxide analysis is a useful method for presenting the concentration of the compound of interest in the individual compositions. The single oxide analysis does not need to reflect the concentration of active citrate, which may only represent a fraction of the total content of the primary oxide in the raw material. 17 200918153 In a specific embodiment, the slag component further comprises at least about 25 weight percent calcium oxide; optionally at least about 3 weight percent; alternatively at least about percent by weight. As mentioned above, calcium oxide and strontium oxide (silic〇n〇xide) are generally present in the form of alkaloids. However, based on the mono-oxide analysis of the whole, the respective contents of oxidized dance and chopped oxide are at least About 25 weight percent. In a specific embodiment, the slag component comprises at least one active ingredient selected from the group consisting of calcium citrate (CaSi03), oxidized mother, and combinations thereof, wherein the total content of active ingredients in the lysine component is about 30 to 90 weight percent. In one embodiment, the slag composition contained in the slag composition is as shown in Table 1 which excludes impurities and diluent. Table I Oxide/Metal Weight Percent (wt. %) Oxidation About (Calcium Oxide, CaO) 35~55 Ceria (Silica, Si02) --——_—— 10~35 Oxidation (Aluminum Oxide, Al2〇 3) 0.1 to 10 iron oxide (Iron Oxide, FeO) [70 to 80% oxidation 0.1 to 40 iron (FeO) and 20 to 30% ferric oxide (Fe203)] Magnesium Oxide (MgO) 3-10 Manganese Oxide (MnO) 3-10 Sulfate (Sulfate, S03) 0.01 ~ 15 Phosphate (Phosphate, P2O5) 0.01 ~ 1 18 200918153 Metallic Iron (Metallic Iron) ^~ Sichuan _ For example, suitable The slag generally has a cementitious nature, and the active enthalpy is blast furnace stone powder. The cooling rate of the slag is generally slow enough to form different crystalline compounds, including major compounds such as dicalcium citrate, citric acid, dicalcium ferrite, oxidized crushed-oxidized milk Meridianite (3CaO.MgO_2Si02), calcium aluminate, calcium-magnesium iron oxide, free lime, and free magnesia (stainless steel slags) is particularly suitable for use as a 'slag slag component because stainless steel slag contains relatively high concentrations of free lime and/or free magnesium oxide' and relatively high concentrations of citrate, especially active citrate crystals. Morphology, such as γ_dicalcium citrate (Y-C2S). In the process of crystal growth and phase transfer, since the phase of y_;g dicalcium phosphate is unstable in the crystal lattice of dicalcium citrate, it will be broken into fine powder by self-pulverization. . * As previously stated, different amounts of elements 'such as nickel, chromium, molybdenum, and fission, etc., can be added to refined iron to form steel: in refined iron, the higher the content of these elements, the higher the steel The higher the level. These itins tend to combine with the compounds used in the slag to refine metals. In general, stainless steel contains at least about 1 (). 5% chromium. A typical Worth steel has at least (1) 6% chromium and at least about 8% nickel. The non-scale steel contains approximately 1.7 weight percent (four). The higher the grade, the less money, the less carbon, and may contain other elements such as pin and fierce. For example, the low grade of the 19th 191818 Vostian stainless steel has up to 0.08% carbon, chrome between about 17~19. 5 〇 / 〇, about 8 ~ 10.5% recorded, and up to 2% manganese ' It does not contain molybdenum. Another representative high grade 316L steel contains up to 0.03% carbon, about π% chromium, about 9% nickel, about 2% manganese, and about 2.5% molybdenum. Among the names of 316L steel, "L" means low carbon content. The highest grade of Vostian stainless steel is grade 317L_Worthian stainless steel' which has at most 0.03% carbon, between about 16.5 to 18.5% of the network, about 13.5 to 17.5% of nickel, about 1 to 2% of manganese, and About 4 to 5% of molybdenum. In the 317LMN grade, the "M" and rN" in the name indicate the degree of increase in molybdenum and nickel contained in the composition, respectively. Stainless steel slag tends to combine with these various elements and further comprises a high amount of active and/or water soluble cerate, which is well suited for forming solid particulate matter in various embodiments of the present invention. material. The slag component may further comprise other sources of active citrate, in addition to the slag described above, including in the above discussion, so long as these sources provide suitable and/or necessary active ingredients. Other suitable examples are blast furnace (cup〇la) powders collected from air pollution control equipment placed in a blast furnace, such as cupola arresters; . Another suitable source of industrial by-products is paper de-inking sludge ash. A number of different manufacturing/industrial process by-products can be used as a suitable source of active Schiff I salt in the materials of the solid particulate material disclosed in accordance with the present invention. These well-known by-products, including alumina and/or oxidized oxides, ', ea, representative manufacturing products and/or industrial by-products, are contemplated for use in the specific embodiments of the present invention. . 20 200918153 Binder component In various embodiments, the binder component is used to blend with the slag component to form agglomerate particulate solids. In various embodiments, the binder component maintains the slag component in the form of a solid particulate material and has a predetermined particle size. Therefore, when the solid particulate material is used in an industrial pollution reduction device, it can withstand handling at the same time. With loading and unloading. The following will be described in detail. In various embodiments, the solid particulate material has a slag composition and a binder component and is disposed in a packed bed reactor. - The fluid stream is directed to the human-filled reactor and at least one of the solid particulate matter in the fluid stream circulating in the reaction bed is contaminated by contact with the solid particulate material. The combination of any-filamentous-segmentation will be used to make the specific embodiment disclosed in the cap of the present invention. In different embodiments, the binder component is selected from the group consisting of ordinary; 〇rdinary cement (OPC), Portland cement clinker, shutting (gum), temple powder, And the group consisting of molasses and combinations thereof. • The - specific implementation of the system is formed by blending the binder component and the slag component, wherein the ratio of the enchant component and the binder component is about 6 to i (6:1) to 99 on a dry weight basis. Than i (99:1). In one embodiment, the solid particulate material is formed by a blending of a 10% by weight binder component, optionally about 3 to 1 weight percent of the binder component. 'And selectively off 4 to 6 weight percent _ knot ingredients. In addition, in the case of (4) Shicai, the miscellaneous #j component slag component is blended in the case of 200918153 containing moisture to form solid particulate matter, for example, on a wet basis, bonding The agent component and the slag component may be blended with from about 5 to 30 weight percent water, optionally from about 7 to 2 weight percent water, and in certain embodiments, from about 1 to 15 weight percent. Water. In a specific embodiment, the binder component and the slag component are uniformly and/or thoroughly mixed to form a solid particulate material. Portland Cement In one embodiment of the invention, the binder component is selected from the group consisting of hydraulic cementitius compositions. Thus, in one embodiment, the cement component comprises a Portland cement component comprising a conventional Portland cement, modified Portland cement, mixed hydraulic cement (hydrauHceements) ), as well as cement clinker. "Hydraulic cement" means cement that hardens through contact with mineral components in cement and undergoes water cooperation, even when dip

入於水中時。「波特蘭水泥」為此躺巾所習知者,並可於濕式法 (wet P_ss)或乾式維y 巾製造。賴濕式法及乾式 法的程序Μ ’但在處珊段皆會對補進行加減理。用於水 泥製造的原料包含不_,綱、氧切、鐵、聽,並且,除 了其他的原料(如泥土、砂、或頁岩)之外,通常含有石灰石 (limestone)。 在水泥製造的第一階 何的水分自原料内逐出, 段為預熱階段,此職階段侧以將任 移除水合作㈣水分,並將原料溫度升 22 200918153 溫至相當於1500°F (相當於_。〇。第二化,段為锻燒階段,鍛燒 階段一般發生於溫度介於約15〇〇αρ及2〇〇〇αρ (相當於11〇〇。〇之 間,其中石灰石(CaC03)在鍛燒反應中藉由逐出二氧化碳而轉變為 石灰(CaO)。然後將原料在燃燒區中力口熱至最高溫度介於約2·。^ 至30GGT (相當於I·%錢5〇。〇,使原料充分地雜及溶融, 因此形成無機化合物,例如石夕酸二躬(C2S或2Ca〇.si〇2)、石夕酸三 鈣(C3S 或 3Ca0.Si02)、紹化三約(C3A 或 3Ca0.A1203)、及鋁鐵 酸四鈣(04从或4Ca0.A1203.Fe203)。此熔態原料被冷卻後凝固 為小結塊之中間產物,即所謂的熟料,此熟料隨後自磚窯中被移 除。然後將水泥熟料精細的研磨以及與其他添加物(例如阻燃劑 (set-retardant)、石膏)混合’以形成普通的波特蘭水泥。美國材料 試驗協會(ASTM ; American Society for Testing and Materials),C 150國際性測s式稱為「波特蘭水泥標準規格(stan(jard Specification for Portland Cement)」’其針對不同的應用提供八種類型之普通的 波特蘭水泥,分別命名為:第1型、第1A型、第2型、第2A型、 第3型、第3A型、第4型、以及第5型。在一具體實施例中,黏 結劑成分包含選自於第1型、第1A型、第3型、及/或第3A型的 波特蘭水泥。 一般而言’波特蘭水泥包含約35〜65%的矽酸三鈣、約15〜 40%的矽酸二鈣、約0〜15%的鋁酸三鈣、以及約6〜20%的鋁鐵 酸四鈣,然而這些水硬活性成分會依據水泥的類型而改變。經由 23 200918153 典型的單一金屬氧化物分析,第1型普通的波特蘭水泥包含將近 64X»的氧化飼、21%的氧化石夕、5〇/〇的氧化|呂、3%的氧化鐵、以及 微量的其他化合物,如鎂氧化物、硫氧化物、鉀氧化物及鈉氧化 物等等。本發明中藉由元素分析計算之單一氧化物分析,係為一 種習知之技術’然而’如先前所述’不同的活性成分也許實際上 呈現於更複雜分子的來源中,例如矽酸二鈣、矽酸三鈣、鋁鐵酸 三妈、及ig酸三名弓。 在一具體實施例中,黏結劑成分包含波特蘭水泥熟料,其主 要的組成成分及參數如以下表二所示,其係排除了雜質及稀釋劑。 表二 氧化物/金屬 重量百分比(wt. %) 氧化_(Calcium Oxide, CaO) 59 〜68 二氧化矽(Silica, Si02) 18 〜27 氧化銘(Aluminum Oxide, Al2〇3) 2〜7 氧化鐵(Iron Oxide,FeO) [70〜80%氧化鐵 (FeO)及 20 〜30%三氧化二鐵(Fe203)] 0.2 〜6.5 氧化鎂(Magnesium Oxide, MgO) 0.5 〜5 硫酸鹽(Sulfate, S03) 1.5 〜5 納當量(Na2〇e equivalent) 0.05 〜1.3 燒失量(Loss on Ignition %, LOI) 0〜3 在不同的火山灰及/或膠結性物質中所含的鹼,可以鈉當量 24 200918153 (Na2〇e ―)來表示’其係估計在氧化鈉和氧化鉀同時存在 時,藉由如下列所示之方程式一計算出的量。 方程式一 :z = x + (〇.658. y) 其中z為納當量Na20e,x為組成物中氧化納(Na2〇)的含量, y為組成物中氧化雜20)的含量。此納當量在波特蘭 水泥中的侧從高於_重量百分比,至高於或料約㈦重量 百为比,可選擇性地至少約!重量百分比。燒失量_ ^础 _係用狀量樣品中揮發性物質的量,-般係用以指出高溫處 理㈣卿essin祕完成的程度。代表性的燒失量測試參數為美國 材料試驗齡的CU4職:「树水泥化學純之鮮測試方法 (Standard Test Methods f〇r Chemical Analysis of HydraulicWhen entering the water. "Portland Cement" is known to those who lie on the towel and can be made in wet method (wet P_ss) or dry type y towel. The procedure of the wet method and the dry method Μ ‘but the addition and subtraction will be added to the section. Raw materials used in the manufacture of cement include non-, methane, oxygen, iron, and, in addition to other materials (such as soil, sand, or shale), usually contain limestone. In the first stage of cement manufacturing, the moisture is ejected from the raw material, and the section is preheating stage. The side of this stage will remove water (4) moisture, and raise the temperature of the raw material by 22 200918153 to 1500 °F. (equivalent to _. 〇. second, the section is the calcination stage, the calcination stage generally occurs at temperatures between about 15 〇〇 αρ and 2 〇〇〇 αρ (equivalent to 11 〇〇. ,, among which limestone (CaC03) is converted to lime (CaO) by ejecting carbon dioxide in the calcination reaction. Then the raw material is heated in the combustion zone to a maximum temperature of about 2··· to 30 GGT (equivalent to I·% money) 5〇.〇, the raw materials are fully mixed and melted, thus forming inorganic compounds, such as diterpenoid acid (C2S or 2Ca〇.si〇2), tricalcium omega acid (C3S or 3Ca0.SiO2), Shaohua Tris (C3A or 3Ca0.A1203), and tetracalcium aluminate (04 or 4Ca0.A1203.Fe203). The molten material is cooled and solidified into an intermediate product of small agglomerates, so-called clinker, which is cooked. The material is then removed from the brick kiln. The cement clinker is then finely ground and combined with other additives (eg set-retardant) Gypsum) mixed to form ordinary Portland cement. American Society for Testing and Materials (ASTM; American Society for Testing and Materials), C 150 international test s called "Portland Specification for Standards (stan (jard Specification for Portland Cement)"" offers eight types of common Portland cement for different applications, named: Type 1, Type 1A, Type 2, Type 2A, Type 3, Type 3A, Type 4 and Type 5. In a specific embodiment, the binder component comprises Portland cement selected from the group consisting of Type 1, Type A A, Type 3, and/or Type 3A. 'Portland cement contains about 35 to 65% tricalcium citrate, about 15 to 40% dicalcium citrate, about 0 to 15% tricalcium aluminate, and about 6 to 20% aluminum ferrite. Calcium, however, these hydraulically active ingredients will vary depending on the type of cement. Through the typical single metal oxide analysis of 23 200918153, Type 1 ordinary Portland cement contains nearly 64X» of oxidized feed and 21% of oxidized stone. , 5 〇 / 〇 oxidation | Lu, 3% of iron oxide, and traces of other compounds, such as Oxides, sulfur oxides, potassium oxides, sodium oxides, etc. The single oxide analysis calculated by elemental analysis in the present invention is a conventional technique 'however' as described previously 'different active ingredients may It is actually present in sources of more complex molecules such as dicalcium citrate, tricalcium citrate, triammonium ferrite, and three bows of ig acid. In one embodiment, the cement component comprises Portland cement clinker, the major constituents and parameters of which are shown in Table 2 below, which exclude impurities and diluents. Table II Oxide/Metal Weight Percent (wt. %) Oxidation_(Calcium Oxide, CaO) 59~68 Ceria (Silica, Si02) 18~27 Oxidation (Aluminum Oxide, Al2〇3) 2~7 Iron Oxide (Iron Oxide, FeO) [70~80% iron oxide (FeO) and 20~30% ferric oxide (Fe203)] 0.2 ~6.5 Magnesium Oxide (MgO) 0.5 〜5 Sulfate (Sulfate, S03) 1.5 to 5 nano equivalents (Na2〇e equivalent) 0.05 to 1.3 Loss on Ignition % (LOI) 0~3 The alkali contained in different pozzolan and/or cementitious substances can be sodium equivalent 24 200918153 ( Na2〇e ―) indicates that it is estimated to be an amount calculated by Equation 1 shown below when both sodium oxide and potassium oxide are present. Equation 1 : z = x + (〇.658. y) where z is the nanoequivalent Na20e, x is the content of sodium oxide (Na2〇) in the composition, and y is the content of the oxidization impurity 20 in the composition. The nanoequivalent in the Portland cement side is from above _weight percent to above or about (seven) weight percent, optionally at least about! Weight percentage. Loss on ignition _ ^Basic _ is the amount of volatile matter in the sample, which is used to indicate the degree of high temperature treatment (4). The representative loss on ignition test parameter is CU4 in the US material test age: "Standard Test Methods f〇r Chemical Analysis of Hydraulic

Cement)」’將樣品加熱並測量其減少的重量,用以估計揮發性物 質的減少量。 如先月’j所述’波特蘭水泥熟料在含量高於約Μ重量百分比 時可Ik後地與其他的材料混合,可選性地範圍為約2〜1〇重量 例如’、型的波特蘭水;尼添加物包含石膏(硫酸J弓;calcium sulfate)、飛灰、以及高爐石粉。 ,固態雛物質係藉由摻合含有波特蘭水泥之_賊分而形 成土乾1基準下,此具有波特蘭水泥之黏結劑成分,於總混合 物中之含量約丨〜15重量百分比,可選擇性地約3〜12重量百分 匕X及可選擇性地約4〜1〇重量百分比。在一具體實施例中, 25 200918153 約為5〜10重量百分比。 如先前所述,在不同的實施例中,黏結劑成分與熔渣成分在 含有水的情形下摻合。系統中的水分含量因強化、硬化、以及聚 結的程度而支配著膠結性的相形成量。舉例而言,在典型混凝土 中,波特蘭水泥中的水分比例範圍從少於0.35至約0.65,一般用 以完成水泥化合物之水合反應的最少含量為0.25。因此,如上所 述’約8至25重量百分比的水分被加入乾混合物中,可選擇性地 約10至15重量百分比的水分被加入於乾混合物中,此乾混合物 包含熔渣成分及黏結劑成分。在具有波特蘭水泥的黏結劑成分經 由水硬反應而凝固或硬化之後’形成聚結的固態顆粒物質,此固 態顆粒物質係使用於本發明所揭露之污染減量設備及方法中。 殿粉基(starch-based)黏結劑成分 在一具體實施例中,黏結劑成分包含澱粉基黏結劑成分。澱 粉一般被分類為複合碳水化合物的聚葡萄糖混合物,其具有心直 -鏈澱粉(α-amylose)及支鏈澱粉(amyl〇pectin)。α_直鏈澱粉為藉由α • (1—4)鍵結的線性聚合分子,而支鏈殿粉則為分支的聚合分子,其 具有a (1—>4)葡萄糖基和在正則間隔(reguiar interyais)(意即平均 母24至30個葡萄糖基)具有一 α (1—6)分支點(branch points)。直 鏈澱粉和支鏈澱粉在澱粉分子中的比例—般為丨比2至約丨比4。 合適的殿粉係衍生自不同的植物中,包括稻米、小麥、玉米、樹 薯、及/或馬玲薯。澱粉基黏結劑成分可選擇性地被修飾 26 200918153 (modified) ’以改善不同的物理性質,例如稠化(thickening)或黏著 (adhesive)性質,又或者以未修飾的形式來使用。化學修飾法可包 含酉旨化作用(esterification)或預膠化作用(pregelatinization)。因此, 「澱粉基黏結劑」一辭不只包含從天然植物來源中分離或萃取的 澱粉’並且包含這些天然成分的衍生物、合成或半合成的相等物。 澱粉基黏結劑成分通常混合於水中,其中澱粉基成分約為25至9〇 重1百分比,可選擇性地約3〇至50重量百分比的澱粉,以及剩 餘的水及/或溶劑(如聚乙烯醇)。 固悲顆粒物質藉由摻合包含殿粉或殿粉衍生物的黏結劑成分 而形成,在乾基準下,此黏結劑成分約為總混合物的丨至15重量 百分比,可選擇性地約丨至5重量百分比的黏結劑成分,以及選 擇性地為總混合物中約3至5重量百分比的黏結劑成分。 關華膠(Guar Gum) 在一具體實施例中,黏結劑成分包含關華膠。關華膠即習知 ‘的瓜拉那豆(gUaran),為一種甘露糖(galact〇mannan)(為甘露糖主鏈 •上具有半乳糖側基(galact〇se side gr〇ups)的多醣類),一般係衍生自 關華豆(Cyamopsis tetragcmoloba)的植物種子。關華膠一般具有甘 露糖和半乳糖殘基的比例約為^比i至2比!。關華膠為增稠劑 矛乳化知彳,並可用於父聯本發明中的試劑,例如詞(其可能存在於 熔渣成分、其他的黏結劑成分、或第三成分當中)。「關華膠」一辭 不只包含來自於關華豆植物中分離或萃取的萃取物,並且包含這 27 200918153 些天然萃取物的衍生物、合成或半合成物。_膠可提供 水性的或絲的形式,選雜地與水絲劑進行重組。—般關華 膠代表性的含水量約為4〇至6〇重量百分比。 固態顆粒物質藉由摻合具有_膠_結劑成分㈣成,在 乾基準下’絲結劑成分約為總混合物的丨至U重量百分比,可 選擇性地約1至5重量百分比的關華膠黏結劑成分,以及可選擇 性地約1至3重量百分比的黏結劑成分。 糖蜜(Molasses) 在-具體實施例巾’黏、賴成分包含糖蜜或其他糖基黏結劑 成刀。糖蜜即習知的向梁糖漿(s〇rghumsymp),為一種甘蔗或甜菜 精煉過程巾所產生的_的糖_產物。糖漀通常以二氧化硫處 的甘蔗加工程序中,汁液從植物本體中被萃取出來,然後煮沸至 形成結晶並移除蔗糖。此程序通常會進行三次,並產生所謂的「第 糖蛍(first molasses)」、「第二糖蜜(second m〇iasses)」、以及最後 的「廢糖蜜(blackstrap molasses)」,在每一次程序中皆充分的減少 庶糖的含量。而在甜菜的加工程序中,從甜菜中萃取出汁液並將 其煮彿以進行結晶化’然而’通常只有最後結晶化步驟形成所謂 的「甜菜糖蜜(beet-molasses)」。在此所使用的,「糖蜜(m〇lasses)」 一般意指在糖類萃取及精煉過程中所產生的副產物,並包括這些 天然副產物的相等物、衍生物、合成或半合成相等物。糖蜜為一 28 200918153 種濃稠的黏著觸,#其與本發明·露之雜成分混合時,用 以提供形成所需的固態顆粒物質形態。 糖蛍黏結劑成分可以含水或脫水的形式使用。當使用含水的 糖蜜黏結劑成分時,糖蜜一般具有約15至6〇重量百分比的含水 量’可選擇性地為約20至50重量百分比。 第二成分(Third Component)(氧化約及驗) 在不同的實施例中,固態顆粒物質選擇性地包含一第三成 分,此第三成分含有氧化釣以及一驗金屬離子的來源(例如為納及/ 或鉀離子)。在一具體實施例中,此第三成分包含一原料,此原料 係產生或製造於工業程序中。某些實施例中,利用重複使用廢棄 物質的優點,這些廢棄物質為在其他地方被丟棄、堆放、或掩埋 者,將於稍候有更詳細的說明。然而,許多氡化鈣及鹼金屬離子 的適當來源,可為自然界的物質,例如礦物,或是經加工製造的 商業產品。在不同的實施例中,第三成分包含一物質,此物質係 -選自於由水泥窯灰、石灰窯灰、甜菜石灰、熟料灰、熟石灰及生 、石灰所組成之族群其中之一或其組合。這些混合物包含任一具有 至少兩種成分的組合物。在一具體實施例中,第三成分包含一物 質’此物質係選自於由水泥窯灰、石灰窯灰及甜菜石灰所組成之 族群其中之一或其組合。第三成分可包含氧化鈣及鹼金屬離子的 其他來源,舉例而言’第三成分可包含廢水處理薇污泥、木紫和 紙污泥、碳化鈣(calcium carbide)製造業的副產物,及其他習知且 29 200918153 月匕4疋供氧化約和驗金屬離子的物質。 如先前所述,衫的氧倾和驗金屬離子的來源可具有不同 的組成,其係取決於此來源製造時的特定程序、此來源於製造時 所使用的原料和燃料中所具有的特殊成分、原料儲藏或堆放時的 狀態和朗、以及其侧子的改變。 、關於這個點’在某些實施例中,第三成分包含至少―種活性 「成;7 ’此雜成分係選自於由氧简、氧化鉀、及氧化鈉所組成 之族群或其組合。在—具體實關中,第三成分包含至少一活性 成刀,此活性成分係選自於由氧化舞、氧化納、及氧化卸所組成 之族群或其組合,其巾,此活性成分在_齡物f巾的總含量 勺為30至60重里百分比。第三成分可選擇性地包含除氧化約及 驗金屬氧化物之外,其他的活性化合物,同時,此活性成分並不 侷限於那些在上述巾已列舉者。在—具體實動彳中,第三成分包 ( δ至少30%重量百分比的氧化|弓。 在另貫&例巾’第二成分包含至少3Q重量百分比的游離石 、灰。「游離石灰(free lime)」係指物質在水中進行水解反應時,物質 中可輕易得到的游離氧蝴。生石灰含有高濃度的脫水(游離)石灰 或氧化!《5 ’使其可與水妨反應,意即熟化。減的,熟石灰或 3水石灰已喊水反應娜成氫氧簡(以^卿)。雜石灰含量 通常被躲含魏簡㈣的反舰鋪。在本發明所揭露之一 具體貫施例中,游離石灰可約為5%或甚至更高。 30 200918153 在某些實施例中,第三成分包含—定含量的馨子來源,此 鹼離子(alkali i〇n)來源的形式為氧化納(Na2〇)及/或氧化钟 (K20) ’且其含量為至少約丨重量百分比。值得注意的,—些驗金 屬離子與不同的錯陰離子(c〇_ex心㈣複合,例如硫酸鹽類 _ates),然而’典型的驗含量分析為各別的呈現出驗金屬離;及 硫酸鹽類。在-具體實施例中,驗離子來源的含量在氧化納及/或 广氧化鉀的形式下,係為至少約3重量百分比,可選擇性地至少約* 、 重量百分比。 納當量Na2〇e (如方程式一所示),其範圍從至少為_重量 百分比,至至少約1重量百分比,可解性地歧少約2重量百 分比,可選擇性地至少約3重量百分比。在某些實施例中,至少 約5重量百分比。 以下將以更詳細的描述作為綱,驗金屬離子啟動固態顆教 (物質所需的反應條件’例如提供高的酸驗值,用以加快和一個或 多個污_的反應速率,以及在固態顆粒㈣中有助於形成適當 .的產物來與污染物進行反應,其具體地例子為二氧化碳。 田 在-具體實關巾,第三成分的組成物如町表三所示,其 係排除了雜質與稀釋劑。 表· 重量百分比(wt. %丨 —----- 30-45 氧化物 氧化約(Calcium Oxide,CaO) 31 200918153 二氧化矽(Silica,Si02) 10 〜20 氧化 1 呂(Aluminum Oxide, Al2〇3) 2〜7 氧化鐵(Iron Oxide, Fe2〇3) 1〜3 氧化鎮(Magnesium Oxide, MgO) 0.5 〜3 硫酸鹽(Sulfate,S03) 1〜15 氧化鈉(Sodium Oxide, Na20) 0.1 〜1 氧化鉀(Potassium Oxide, K20) 0.1 〜15 在某些實施例中,第三成分包含水泥熏灰(cement kiln dust ; CKD) ’其一般係指在波特蘭水泥的製造過程中,水泥磚窯或相關 的加工設備所產生的副產物。波特蘭水泥可用濕式磚窯或乾式碑 窯來製造。雖然濕式法及乾式法的程序不同,但皆在過程中對原 料進行加熱程序。水泥製造業的原料包含鈣、氧化矽、鐵、以及 鋁的來源,並且一般包含石灰石、及除此之外其他不同的物質, 例如黏土、砂及/或頁岩。 一般來說,水泥窯灰(CKD)包含一不同微粒的組合物,此微粒 係產生於磚窯、前處理設備、及/或原料處理系統中的不同區域。 例如熟料灰,其來自部分的充分鍛燒物質的灰塵,以及原料(含水 的及脫水的)灰塵。如先前所述的,水泥窯灰中組成物的不同,係 取決於製造及加工狀態中所使用的原料及燃料,以及在水泥製造 私序中收集水泥窯灰的收集點所在的位置。水泥窯灰可包括從石專 窯廢氣〗;IL、熟料冷卻器廢水、鍛燒前廢水、空氣污染防治設備等 32 200918153 等’所收集而來的灰塵或齡物質。熟料冷卻器灰塵即從碑黨中 熟料冷卻區域所收集的灰塵,並且典型的具有化學組成物,此化 學組成物與波特蘭水泥非常的相似。 雖然水泥1灰雜成物會隨著不同的磚m變,由於水泥 —窯灰為熟料及鍛燒物質中所存在的灰塵,水泥窯灰通常具有至少 -些膠關及/錢結雜f。典㈣水泥絲喊物包括含砍化 合物,如矽酸鹽,包含矽酸三鈣、矽酸二鈣;含鋁化合物,如鋁 酸鹽,包含鋁酸三鈣;以及含鐵化合物,如鐵酸鹽,包含鋁鐵酸 四約。水泥窯灰一般包含相對局含量的氧化詞。標準的水泥窯灰 組成物包含約10至60重量百分比的氧化鈣,可選擇性地約25至 50重量百分比,以及選擇性地約30至55重量百分比。在一些實 施例中,水泥窯灰包含約1〜10%濃度的游離石灰,可擇性地約1 〜5%,在某些實施例中則為約3〜5%。此外,水泥寞灰典型地包 含鈉及鉀鹼金屬離子,各別地約0.1至10重量百分比,以及可選 擇性地約0_2至5重量百分比。水泥窯灰也許包含額外的鹼金屬離 -子、驗土金屬離子及硫,和其他的物質。水泥窯灰同時典型地包 含約10至20重量百分比的氧化矽(Si02)、約2至7重量百分比的 氧化鋁(A1203)、以及約1至3重量百分比的氧化鐵(Fe203)。 典型的水泥窯灰粉塵具有特殊的重力,其範圍約從2.6至 2.8,最大粒度約0.3毫米(300微米(μιη)),同時布蘭氏細度(Blaine fineness)(特定的表面區域)之範圍約從4,600 cm2/g (每克每平方公 33 200918153 分)至 14,〇〇〇 cm2/g。 在本發明所揭露之一具體實施例中,固態顆粒物質中的第三 成分包含石灰(即生石灰)或石灰窯灰(lime kiln dust; LKD)。石灰 窯灰為石灰製造時的副產物。石灰窯灰為從石灰磚窯或相關加工 5又備收集而來的灰塵或微粒物質。依據石灰的製造程序,石灰可 被分類為高!%灰或含鎂;5灰。石灰通常藉由鍛燒反應來加熱石 灰質的原料’例如碳酸鈣(calcium carb〇nate ; CaC03),以形成游 離氧化鈣和二氧化碳。高鈣石灰具有高濃度的氧化鈣,並典型的 八有些雜貝,包括含銘化合物及含鐵化合物。高的石灰典型地 形成於高純度的碳酸鈣(約95%純度或更高)。在石灰窯灰中所含的 典型氧化飼係衍生自咼妈石灰的加工程序,使石灰窯灰中氧化妈 的含量相似於石灰產物本身的氧化鈣濃度,其可為至少約75重量 百分比,可選擇性地至少約85重量百分比,以及在一些實施例中 為至少約90重量百分比。在一些石灰的製程中,白雲石(d〇1〇mite; -CaC03_MgC03)被加熱分解後主要產生氧化鈣及氧化鎂 • (magnesium oxide ; Mg0),因此形成所謂的含鎂石灰。藉由含鎂 石灰加工後所產生的的石灰或石灰窯灰中,氧化鈣的含量可為至 少約45重量百分比,可選擇性地至少約5〇重量百分比,以及在 一具體實施例中,為至少約55重量百分比。雖然石灰及石灰窯灰 白會受到所使用的石灰加工程序的不同而改變,但石灰與石灰窯 灰一般皆具有相對高濃度的游離石灰。在這些石灰或石灰窯灰產 34 200918153 物中游離石灰的典型含量約為10〜50%,可選擇性地為2〇〜4〇%。 此外,石灰窯灰及石灰產物典型地包含鈉及鉀驗金屬離子, 此鈉及鉀鹼金屬離子的含量各別約0.01至1重量百分比,並可選 擇性地約0.03至0.25重量百分比。石灰及/或石灰熏灰可能包含有 其他的驗金屬離子、鹼土金屬離子(如上述之氧化鎂)及硫,和其他 的物質。石灰窯灰同時包含約1至10重量百分比的氧化石夕(siHca ;Cement)” heats the sample and measures its reduced weight to estimate the reduction in volatile matter. Portland cement clinker, as described in the 'j', may be mixed with other materials at a content above about Μ by weight, optionally in the range of about 2 to 1 〇, for example, a type of wave. Portland water; nitrile additives include gypsum (calcium sulfate), fly ash, and blast furnace stone powder. The solid material is formed by blending a squid containing Portland cement to form a soil dry 1 component, which has a cement composition of Portland cement, and the content in the total mixture is about -15 15% by weight. Optionally, it is about 3 to 12 weight percent 匕X and optionally about 4 to 1 weight percent. In one embodiment, 25 200918153 is about 5 to 10 weight percent. As previously stated, in various embodiments, the binder component and the slag component are blended in the presence of water. The moisture content of the system dominates the amount of cemented phase formation due to the degree of strengthening, hardening, and coalescence. For example, in typical concrete, the proportion of moisture in the Portland cement ranges from less than 0.35 to about 0.65, typically at a minimum of 0.25 for the hydration reaction of the cement compound. Thus, as described above, 'about 8 to 25 weight percent moisture is added to the dry mixture, and optionally about 10 to 15 weight percent moisture is added to the dry mixture, which contains the slag component and the binder component. . After the cement component having Portland cement is solidified or hardened by a hydraulic reaction, a coalesced solid particulate material is formed, which is used in the pollution reducing apparatus and method disclosed in the present invention. Starch-based cement component In one embodiment, the cement component comprises a starch-based binder component. The starch is generally classified as a polydextrose mixture of complex carbohydrates having a-amylose and amylopectin. __Amylose is a linear polymeric molecule bonded by α • (1-4), while branched-chain powder is a branched polymeric molecule with a (1—>4) glucosyl group and at regular intervals (reguiar interyais) (meaning that the average mother has 24 to 30 glucosyl groups) has an α (1 - 6) branch points. The ratio of amylose and amylopectin in the starch molecule is generally from 2 to about 丨. Suitable temples are derived from different plants, including rice, wheat, corn, cassava, and/or marlin. The starch-based binder component can be optionally modified 26 200918153 (modified) to improve different physical properties, such as thickening or adhesive properties, or in an unmodified form. Chemical modification methods may include esterification or pregelatinization. Thus, the term "starch-based binder" encompasses not only starches isolated or extracted from natural plant sources, but also derivatives, synthetic or semi-synthetic equivalents of these natural ingredients. The starch-based binder component is typically mixed in water, wherein the starch-based component is about 25 to 9 weight percent, optionally from about 3 to 50 weight percent starch, and the remaining water and/or solvent (eg, polyethylene). alcohol). The solid-grain particulate matter is formed by blending a binder component containing a temple powder or a temple powder derivative. On a dry basis, the binder component is about 15% by weight of the total mixture, and can be selectively approximated to 5 weight percent of the binder component, and optionally about 3 to 5 weight percent of the binder component of the total mixture. Guar Gum In one embodiment, the binder component comprises Guanhua gum. Guanhua gum is known as 'GUaran', a kind of mannose (galact〇mannan) (a mannose backbone with polysaccharides with galact〇se side gr〇ups) Class), generally derived from plant seeds of Cyamopsis tetragcmoloba. Guanhua gum generally has a ratio of mannose and galactose residues of about ^ to i to 2! . Guanhua gum is a thickener. It is used as a thickener and can be used as a reagent in the parent's invention, such as the word (which may be present in the slag component, other binder components, or the third component). The term "Guanhua Gum" includes not only extracts extracted or extracted from Guanhua bean plants, but also derivatives, synthetic or semi-synthetic products of these natural extracts. _ Glue can be supplied in aqueous or silk form and reconstituted with a water-based agent. The typical water content of the rubber is about 4 to 6 weight percent. The solid particulate material is formed by blending with a binder component (4). On a dry basis, the composition of the silk binder is about 5% by weight of the total mixture, and optionally about 1 to 5 weight percent of Guanhua. The binder component, and optionally from about 1 to 3 weight percent of the binder component. Molasses In the specific embodiment, the viscous and glacial ingredients contain molasses or other sugar-based binders. Molasses is a conventional sugar syrup (s〇rghumsymp), a sugar-product produced by a sugar cane or sugar beet refining process towel. The glycocalyx is usually extracted from the plant body by a sugar cane processing procedure at the sulfur dioxide, which is then boiled to form crystals and remove the sucrose. This procedure usually takes three times and produces so-called "first molasses", "second m〇iasses", and finally "blackstrap molasses" in each procedure. All are sufficient to reduce the content of sugar. In the processing of sugar beets, the juice is extracted from the sugar beets and boiled for crystallization. However, only the final crystallization step usually forms the so-called "beet-molasses". As used herein, "m〇lasses" generally refers to by-products produced during the extraction and refining of sugars, and includes equivalents, derivatives, synthetic or semi-synthetic equivalents of these natural by-products. Molasses is a thick adhesive contact, which is used in combination with the present invention to provide the desired form of solid particulate material. The glycocalyx binder component can be used in aqueous or dehydrated form. When an aqueous molasses binder component is used, the molasses typically has a water content of from about 15 to about 6 weight percent, optionally from about 20 to 50 weight percent. Second Component (Oxidation Test) In various embodiments, the solid particulate material selectively comprises a third component comprising oxidative fishing and a source of metal ions (eg, And / or potassium ions). In a specific embodiment, the third component comprises a feedstock which is produced or manufactured in an industrial process. In some embodiments, the advantages of reusing waste materials, which are discarded, stacked, or buried elsewhere, are described in more detail later. However, many suitable sources of calcium and alkali metal ions can be natural materials such as minerals or processed commercial products. In various embodiments, the third component comprises a substance selected from the group consisting of cement kiln dust, lime kiln dust, beet lime, clinker ash, slaked lime, and raw and lime. Its combination. These mixtures comprise any composition having at least two components. In a specific embodiment, the third component comprises a substance selected from the group consisting of cement kiln dust, lime kiln dust, and beet lime, or a combination thereof. The third component may comprise other sources of calcium oxide and alkali metal ions, for example, 'the third component may include wastewater treatment of Wei sludge, wood violet and paper sludge, by-products of calcium carbide manufacturing, and others. Conventional and 29 200918153 匕 4疋 for the oxidation of metal ions and substances. As previously stated, the source of oxygen and metal ions of the shirt may have different compositions depending on the particular procedure at the time of manufacture of the source, from the raw materials used in the manufacture and the particular ingredients in the fuel. , the state and lang of the raw materials stored or stacked, and the changes of their sides. In this regard, in certain embodiments, the third component comprises at least one species of activity "7"; the heterocomponent is selected from the group consisting of oxygen, potassium oxide, and sodium oxide, or a combination thereof. In a specific implementation, the third component comprises at least one active knives, the active component being selected from the group consisting of oxidative dance, sodium oxide, and oxidative discharge, or a combination thereof, and the active ingredient is at age The total content of the f towel is 30 to 60% by weight. The third component may optionally contain other active compounds in addition to the oxidation and metal oxides, and the active ingredient is not limited to those mentioned above. The towel has been enumerated. In the specific action, the third component package (δ is at least 30% by weight of oxidized | bow. The second component contains at least 3Q weight percent of free stone, ash in the other & "Free lime" means free oxygen which is readily available in a substance when it is hydrolyzed in water. The quicklime contains a high concentration of dehydrated (free) lime or oxidized! "5' makes it compatible with water." Respond That is, aging, slaked lime or 3 water lime has shouted water to react into hydrogen and oxygen (to ^ Qing). The content of miscellaneous lime is usually hidden from the anti-ship shop of Wei Jian (4). In an embodiment, the free lime may be about 5% or even higher. 30 200918153 In certain embodiments, the third component comprises a source of scented sesame ions in the form of an oxidized source of alkali ions (alkali i〇n) Nano (Na2〇) and/or oxidation clock (K20)' and its content is at least about 丨 by weight. It is worth noting that some metal ions are complexed with different wrong anions (c〇_ex core (4), such as sulfate Class _ates), however, 'typical assay content analysis for each of the present inventions; and sulfates. In the specific embodiment, the ion source is in the form of sodium oxide and/or potassium oxide. Lower, at least about 3 weight percent, optionally at least about *, weight percent. Nanoequivalent Na2〇e (as shown in Equation 1), ranging from at least _ weight percent to at least about 1 weight percent, Resolvablely less than about 2 weight percent, optional At least about 3 weight percent. In certain embodiments, at least about 5 weight percent. As will be described in more detail below, the metal ions initiate solid state teaching (required reaction conditions for the substance), for example, providing high The acid value is used to accelerate the reaction rate with one or more of the pollutants, and to contribute to the formation of a suitable product in the solid particles (4) to react with the contaminant, a specific example of which is carbon dioxide. The solid cover towel, the composition of the third component is shown in Table 3, which excludes impurities and diluents. Table · Weight percent (wt. %丨------ 30-45 Oxidation of oxides (Calcium Oxide,CaO) 31 200918153 Cerium Oxide (Silica, Si02) 10 ~20 Oxidation 1 Lu (Aluminum Oxide, Al2〇3) 2~7 Iron Oxide (Feronium Oxide, Fe2〇3) 1~3 Oxidation Town (Magnesium Oxide, MgO) 0.5 〜3 Sulfate (Sulfate, S03) 1~15 Sodium Oxide (Na20) 0.1 〜1 Potassium Oxide (K20) 0.1 〜15 In some embodiments, the third component contains cement smoked Gray (cement kiln dust; CKD) 'It is generally referred to in Porter In the manufacture of cement, cement kiln or related processing equipment produced byproduct. Portland cement can be made from wet brick kilns or dry-type kiln. Although the procedures of the wet method and the dry method are different, the heating process is performed on the raw materials in the process. Raw materials for the cement manufacturing industry include sources of calcium, strontium oxide, iron, and aluminum, and generally contain limestone, and other materials other than clay, sand, and/or shale. In general, cement kiln dust (CKD) contains a composition of different particulates that are produced in different areas of the brick kiln, pretreatment equipment, and/or feedstock processing system. For example, clinker ash, which comes from a part of the dust of the fully calcined material, and the raw material (aqueous and dehydrated) dust. As previously stated, the composition of the cement kiln ash varies depending on the materials and fuels used in the manufacturing and processing conditions, as well as the location at which the collection points for the cement kiln dust are collected in the private manufacturing order. The cement kiln dust may include dust or age substances collected from the stone kiln exhaust gas; IL, clinker cooler wastewater, pre-calcined wastewater, air pollution control equipment, etc. 32 200918153. Clinker cooler dust is the dust collected from the clinker cooling zone of the monument, and typically has a chemical composition that is very similar to Portland cement. Although the cement 1 ash product will change with different bricks, the cement kiln dust usually has at least some glue and/or money for the dust present in the clinker and calcined material. . Code (4) Cement wire shreds include chopped compounds such as citrate, including tricalcium citrate and dicalcium citrate; aluminum-containing compounds such as aluminates, including tricalcium aluminate; and iron-containing compounds such as ferric acid The salt contains about four ferric acid. Cement kiln ash generally contains oxidized words relative to the local content. The standard cement kiln dust composition comprises from about 10 to 60 weight percent calcium oxide, optionally from about 25 to 50 weight percent, and optionally from about 30 to 55 weight percent. In some embodiments, the cement kiln dust comprises about 1 to 10% free lime, alternatively from about 1 to 5%, and in some embodiments from about 3 to 5%. Further, the cement ash typically contains sodium and potassium alkali metal ions, each independently from about 0.1 to 10 weight percent, and optionally from about 0 to about 5 weight percent. Cement kiln dust may contain additional alkali metal ions, soil metal ions and sulfur, and other substances. The cement kiln dust typically also contains from about 10 to 20 weight percent cerium oxide (SiO 2 ), from about 2 to 7 weight percent alumina (A 1203), and from about 1 to 3 weight percent iron oxide (Fe 203). Typical cement kiln dust has a special gravity ranging from about 2.6 to 2.8, a maximum particle size of about 0.3 mm (300 microns), and a range of Blaine fineness (specific surface area). It is from about 4,600 cm2/g (33 200918153 points per gram square) to 14, 〇〇〇cm2/g. In one embodiment of the present invention, the third component of the solid particulate material comprises lime (i.e., quicklime) or lime kiln dust (LKD). Lime Kiln ash is a by-product of lime production. Lime kiln dust is dust or particulate matter collected from lime brick kilns or related processing. Lime can be classified as high according to the lime manufacturing procedure! % ash or magnesium; 5 ash. Lime is typically heated by a calcination reaction, such as calcium carbonate (calcium carb〇nate; CaC03), to form free calcium oxide and carbon dioxide. High-calcium lime has a high concentration of calcium oxide, and typically eight scallops, including infused compounds and iron-containing compounds. High lime is typically formed in high purity calcium carbonate (about 95% pure or higher). The typical oxidative feeding system contained in the lime kiln dust is derived from the processing procedure of the aunt lime, which makes the content of the oxidized mother in the lime kiln ash similar to the calcium oxide concentration of the lime product itself, which may be at least about 75 weight percent. Optionally at least about 85 weight percent, and in some embodiments at least about 90 weight percent. In some lime processes, dolomite (d〇1〇mite; -CaC03_MgC03) is heated and decomposed to produce mainly calcium oxide and magnesium oxide (MgO), thus forming so-called magnesium-containing lime. The calcium oxide may be present in the lime or lime kiln dust produced by processing the magnesium-containing lime by at least about 45 weight percent, optionally at least about 5 weight percent, and in one embodiment, At least about 55 weight percent. Although lime and lime kiln ash will vary depending on the lime processing procedure used, lime and lime kiln ash generally have a relatively high concentration of free lime. The typical content of free lime in these lime or lime kiln ash 34 200918153 is about 10 to 50%, alternatively 2 〇 to 4 〇%. In addition, lime kiln ash and lime products typically comprise sodium and potassium metal ions, each of which is present in an amount of from about 0.01 to about 1 weight percent, and optionally from about 0.03 to about 0.25 weight percent. Lime and/or lime soot may contain other metal ions, alkaline earth metal ions (such as magnesium oxide as described above) and sulfur, and other substances. The lime kiln dust also contains about 1 to 10 weight percent of oxidized stone eve (siHca;

Si02)、約0.1至5重量百分比的氧化銘(aiumina,· ai2〇3)、以及約 0.5至2重量百分比的氧化鐵(ir011 oxide ; Fe2〇3)。典型的石灰窯 灰具有特殊的重力,其範圍從2.6至3.0,最大粒度約2毫米(2〇〇〇 微米),同時布蘭氏細度(Blaine flneness)(特定的表面區域)之範圍 約從 1,300 cm2/g 至 1〇,〇〇〇 cm2/g。 本發明所揭露之-實施例中,固態顆粒物質中另一種做為第 三成分的物質,為糖精煉石灰副產物。石灰被使用於衍生自甘蔬、 甜菜、楓樹汁及高梁巾的_生產。舉例而言,甘紅甜菜被收 成並與水加工後以形成原抑awj’uice)(通常為糖蜜產物),此原汁 財具有健雜及含有可轉的肺。料(sugarju㈣因此含 有嚴糖木展、及不同的非糖物,例如有機和無機鹽、胺基酸、 色素及问刀子物貝(如蛋白質和果膠)。含水石灰被加入糖汁中,用 以提高酸驗健卿歧應_射鄉_不溶簡有機化合 物在傳統的糖純化方法中,會加入石灰及二氧化碳以形成沉澱 物(泥幻,此娜物係由碳_和部分上述的非糖物化合物所組 35 200918153Si02), about 0.1 to 5% by weight of oxidized inscription (aiumina, · ai2〇3), and about 0.5 to 2% by weight of iron oxide (ir011 oxide; Fe2〇3). Typical lime kiln ash has a special gravity ranging from 2.6 to 3.0 with a maximum particle size of about 2 mm (2 μm), while Blaine flneness (specific surface area) ranges from 1,300 cm2/g to 1 inch, 〇〇〇cm2/g. In the embodiment disclosed in the present invention, another substance which is the third component of the solid particulate matter is a by-product of the sugar refined lime. Lime is used in the production of sweetened vegetables, beets, maple sap and sorghum towels. For example, the red-red beet is harvested and processed with water to form the original awj'uice (usually a molasses product), which is rich in nutrients and contains reversible lungs. (sugarju (4) therefore contains strict sugar wood, and different non-sugars, such as organic and inorganic salts, amino acids, pigments and knives (such as protein and pectin). Water-containing lime is added to the juice, used In order to improve the acid qijianqing _ _ _ _ _ insoluble simple organic compounds in the traditional sugar purification method, will add lime and carbon dioxide to form a precipitate (sudden, this Na system from carbon _ and some of the above non-sugar Compound group 35 200918153

'王1饭稱马|甜菜 一辭的使用僅代表在糖 通常以含水的形式(氫氧化鈣; I 一步充分的精煉。甜菜傾向需 同日守其泥漿副產物通常被稱為「'Wang 1 rice called horse|Beet The use of the word is only expressed in the form of sugar usually in the form of water (calcium hydroxide; I step by step full refining. Beet tends to need to keep its mud by-product on the same day is often called "

在不同的實施射’ _齡物質包含至少約重量百 分比之黏結舰分、及至少約8〇至97重量百分比之縣成分。 在-具體實細巾’輯顆粒物質包含在乾鱗下(如先前所述), 約5至10重量百分比之含有波特蘭水泥之黏結劑成分,以及95 重量百分比之含有補触之雜成分。# —可選雜的第三成 分存在於_顆粒物質中’細態顆粒㈣中的黏結劑成分約為i 至15重量百分比,熔渣成分約為40至7〇重量百分比,以及第三 成分介於約15至57重量百分比。在—具體實施例中,固態顆粒 物質包含佔總固態顆粒物質組成物約5至1〇重量百分比之含有波 36 200918153 特蘭水泥的黏結劑成分、約3〇至65重量百分比之含有不錄鋼渣 的炫渣成分、以及約3G至&重量百分比之含有水泥絲的第三 成刀了選擇性地,在乾基準下,溶渣成分約為4〇重量百分比, 水泥窯灰約為40重#百分比,以及含有波制水泥祕結劑成分 約為K)重量百分比。可選擇性地,賴成分與第三成分的比例範 圍約為"比1至1比99,可選擇性地約0.5比1至1比〇·5,以 及可1擇|1地約為丨比丨’軸分及黏結劑成分,以及可選擇性 的水、第三成分、或其他可選擇性的添加物,可在—混合器 拌器或研磨機中結合及加I,以_充分的混合各別的成分。 口此推CT炼產成分及黏結劑成分以形成複數個球狀的固態 顆粒物質。此球狀顆粒可能為聚結的、並且具有高度孔隙結構, 例如具有至少約KK) em2/g的表面積,可選雜地至少約· cm2/g ’選擇性地至少約’同時在一些實施例中為至少 約4,000 em2/g。較小的粒度傾向於具有較大的表面積,係用以啟 動活性成分的反應。這錄度及細射藉由_職成分及/或 第三成分㈣成,此驗成分及_三成分的粒度相對小於所需 的聚結粒度,同時,可藉由控制黏結劑成分加入於炼渣成分的相 對量來達成。藉由礙磨或研磨方法進—步對摻合物質加工,例如, 魅成分齡結舰分(錢可轉性地第三齡)⑽合前或換 合後,置於球磨機中碾磨或研磨以減小粒度。 在一具體實施例中,固態顆粒物質包含球狀顆粒。各種不同 37 200918153 的^均粒度直徑是可被預期的,例如,複數個顆粒具有約〇.25至 12也米的平均粒度餘。_帽粒可選擇性地具有約Q25至6 宅米的平均粒度直徑,可選擇性地具有約〇 5至6毫米的平均粒度 直禮,可選擇性地具有約丨至6毫米的平均粒度直徑,及可 -地約2至6毫米的平均粒度直徑。在另—實施财,平均粒度直 .徑約為6至9毫米或約為9至12絲。粒度直徑係取決於填充床 反應㈣體積大小、通過反應輯需的壓力降和停留時間、以及 所需減少的污染物含量。舉例而言,一種有用的方程式係以媒介 中微粒直㈣觀點,巾驗計算通過填絲祕力降,此方程式 為Ergim方程式,如以下之方程式二所示: 工 方程式二:The different ageing materials comprise at least about a weight percent of the bonded ship, and at least about 8 to 97 weight percent of the county component. In the case of a specific fine towel, the particulate matter is contained under dry scale (as previously described), about 5 to 10 weight percent of the cement component containing Portland cement, and 95 weight percent of the impurity component containing the touch. . #— The optional third component is present in the _ particulate material. The binder component in the fine particle (4) is about i to 15 weight percent, the slag component is about 40 to 7 weight percent, and the third component is It is about 15 to 57 weight percent. In a specific embodiment, the solid particulate material comprises from about 5 to about 1% by weight of the total solid particulate material composition of the binder component comprising wave 36 200918153 Portland cement, and from about 3 to 65 weight percent of the non-recorded steel slag The slag component, and the third knives containing about 3G to & weight percent of the cement yarn, selectively, on a dry basis, the slag composition is about 4 〇 weight percent, and the cement kiln dust is about 40 weights. The percentage, as well as the composition containing the wave cementing agent, is about K) weight percent. Alternatively, the ratio of the Lai component to the third component may be in the range of about 1 to 1 to 99, optionally about 0.5 to 1 to 1 to 〇·5, and may be 1 to 1 Comparing 'axis and binder composition, and optional water, third component, or other optional additives, can be combined and added in a mixer or grinder, to Mix the individual ingredients. The CT refinery component and the binder component are pushed to form a plurality of spherical solid particulate materials. The spheroidal particles may be coalesced and have a high pore structure, for example having a surface area of at least about KK) em2/g, optionally at least about · cm 2 /g 'optionally at least about 'at the same time in some embodiments The middle is at least about 4,000 em2/g. Smaller particle sizes tend to have a larger surface area and are used to initiate the reaction of the active ingredient. This recording and fine shot is formed by the _ occupational component and/or the third component (4). The particle size of the test component and the _three component is relatively smaller than the required coalescence particle size, and at the same time, it can be added to the smelting process by controlling the binder component. The relative amount of slag component is achieved. The processing of the blended material is carried out by means of obstruction or grinding, for example, the enchanting age of the ship (the third age of the money can be rotated) (10) before or after the replacement, grinding or grinding in a ball mill To reduce the particle size. In a specific embodiment, the solid particulate material comprises spherical particles. The average particle size diameter of various different 37 200918153 is expected, for example, a plurality of particles having an average particle size of about 2525 to 12 meters. The cap particles may optionally have an average particle size diameter of from about Q25 to 6 house meters, optionally having an average particle size of from about 5 to 6 mm, optionally having an average particle size diameter of from about 丨 to 6 mm. And an average particle size diameter of about 2 to 6 mm. In another implementation, the average particle size is about 6 to 9 mm or about 9 to 12 filaments. The particle size diameter depends on the size of the packed bed reaction (iv), the pressure drop and residence time required for the reaction, and the desired reduction in contaminant content. For example, a useful equation is the direct (four) view of the particles in the medium. The calculation is calculated by the filling force. This equation is the Ergim equation, as shown in Equation 2 below: Equation 2:

dP dL G PSc^pdP dL G PSc^p

150(1-Φ)^150(1-Φ)^

+ 1.75G dP/dL為填充床每單位長度之壓力降,L為填充床之單位長度 (英呎)。此外Ορυ,G為表面質量速度,其單位為lbm/ft2 hr (磅 .質量/平方英吸·小時),其中p為流量之密度,而υ為表面速度(即 .在相同體積流率下流體流過空反應器的速度),可藉由流體體積流 率除以截面積而得。φ為填充床之孔隙度,可藉由填充的固體體 積除以總填充床體積而得。gc為重力常數,其值為32174 lbm’ft/s2’lbf (碎質量·英吸/秒平方.磧力)’而%為固體填充物 質的相當平均微粒直徑,同時,μ為流體通過填充床的動態黏度, 其單位為lbm/ft.hr (石旁質量/英呎.小時)。 38 200918153 在典型的製造設備中,廢水或廢氣流在不同的程序中具有範 圍約從10,000 acfm (每分鐘實際立方英呎;actual cubie feet pei> minute ; actual ft3/min)(約為每分鐘 285 立方公尺(m3/min)),至 3,000,000acfm (約85,000m3/min)。然而,在本發明中,此流率的 改變係取決於程序中所使用之設備的容量及類型,並且難以通用 化。例如’典型的水泥製造設備之碑窯廢氣通常約介於1〇〇,〇〇〇 acfm (約 2,800 m3/min)至 400,000 acfm (約 11,〇〇〇 m3/min),而典型 ' 的鍋爐廢氣的流率範圍可從約100,000 acfm (約2,800 m3/min)至約 600,000 acfm (約17,000 m3/min)。因此’在一具體實施例中,填充 床反應器可用於處理典型的工業廢氣氣體流率並容許其接觸於固 態顆粒物質。 在一具體實施例中,所使用的體積流率約為41,000 acfm,固 態顆粒物質的平均粒度直徑約為1至6毫米。同樣地,填充床反 應器入口與出口的壓力差小於或等於250 Pa (帕)。 本發明所揭露之一具體實施例中,接觸於固態顆粒物質係發 .生於流體化床反應器(fluidized bed reactor)、文氏乾式條氣塔 (venturi dry scrubber)、填充床反應器、及/或上述任何的組合或相 等物。並不限於以上所列舉出的反應器,其他習知的適用於產生 氣體/固體反應的反應器,係可被預期的使用於本發明中。在一具 體實施例中,燃燒源所產生之流體流被導引入含有複數個固態顆 粒物質之填充床反應器,此固態顆粒物質係藉由摻合熔渣成分與 39 200918153 黏者劑成分而形成。 流體化床反應器在反應過程中,係將固態顆粒物質懸浮於向 上喷射策嘴之氣體中,並在本發明中已為習知。例如,氣體流體 化床使用固態吸附劑物質來捕捉化石燃料燃燒時所產生的污染 物。在一具體實施例中,流體係向上流動並且具有足夠的流速, 以經由磨擦力將複數個顆粒提起。在此方法中,達成使混合的固 體和氣體之擾動。 本發明之一具體實施例中,流體流可包含經由燃燒反應後之 充足的水分,或在流體流或固態顆粒物質置入反應器前加入水/蒸 虱於流體流或固態顆粒物質中,若有必要的話,以使其能與在反 應器中的乾燥固態顆粒物質進行反應。舉例來說,流體流中典型 的水分含虿一般少於或等於約3重量百分比,可選擇性地少於或 等於約0.5重量百分比。然而,在另—具體實施例巾,流體流可能 通過滌氣器或其他設備,使流體流在進入反應器時的含水量增 加,也許使流體流的含水量更高而達到飽和點。 填充床反應器係由一具有填充床媒介的塔槽(t〇wer)所構成。 可選擇性地,填絲巾可進—步具有㈣減的小物件或階 層。造些物件的空間形式可為鞍形、環形、網狀或特殊形式,用 以使固態顆粒物質與流體流之間達到最大的,雖然在固態顆 粒物質之間最小化壓力降與保持所需要的孔隙度會減少其設置。 填充床反應器典型的操作的壓力降遠低於其他反應器(如文氏滌氣 200918153 塔反應器(venture scrubber)) ’並且典型地提供較高的污染物移除效 率。 如「第1圖」和「第2圖」所示為填充塔反應n之示意圖。 填充塔10為典型的設計方式’在最A貞載時,平均麵氣體流速 將不會超過設計長體流速。對於A多數的填絲反魅來說,其 平均氣體流速的變化量取決於出口狀態,約從8至25 ft/s (英吸/ 秒)(約2.5至7 m/s (公尺/秒))’然而本發明中並不限制任何特定的 流速。廢水/煙道氣體從填充塔1G之人p 12進人。流體流係產生 於熔爐、焚化爐、鍋爐、或碑窯的上游,並包含至少一污染物, 此污染物係選自於由硫氧化物、氮氧化物、及二氧化碳所組成之 族群,同時具有來自於燃燒反應所產生的水蒸氣。填充塔10具有 一外反應室13及一内反應室丨4,此外反應室13及内反應室14 分別包含一具有複數個固態顆粒物質2〇的反應床16,以形成設置 於反應室中的填充介質本體22。此複數個固態顆粒物質2〇包含任 一先前所述之不同種類的固態顆粒物質。流體流進入反應床16並 流過填充介質本體22 ’以接觸各別的固態顆粒物質2〇,並在此發 生反應,使固態顆粒物質20吸附流體流中的目標污染物,及/或與 此目標污染物發生反應,因此將這些污染物從通過的流體流中移 除。其亦可以多重階段進行,且每一階段皆具有一填充介質本體 22。在與填充床16之填充介質本體22接觸之後,流體流從填充 塔1 〇之一出口 2 6離開。填充塔丨〇的設計會受到下列因素的影響: 200918153 固態顆粒物f2G的組成'度及粒度,目標污祕的移除程度, 入口氣雜水流體)的溫度和壓力,以及除此之外,其他在此領域 中所習知的因子。 典型的操作壓力變化約介於1㈣(約7 kPa (千帕))至⑽psi (約690 kPa) ’軸在本發财並未關這些典型的壓力。反應床 • 16的體積容許不同的化學及物理程序來完成。氣體/蒸氣_固體在 塔内接觸可具有局的污染物移除效率以及最大化的試劑利用性。 在不同的實&例中’必需使填充塔1()的人口 12及出口 %之流體 二的壓力差或壓力降制最小化。典型的出口 12及人口 %間的 壓力差之範圍必需小於或等於250Pa(l英对水柱)。 位於反應床16入口之反應室14可包含額外的設備(圖未顯 不)’此⑤備制以使固態顆粒物質20產生擾動,並轉固態顆粒 物貝20的所在位置,例如擔板、多孔性結構物質、或鞍形媒介, 此鞍祕;1係用以保持反應床16的位置,當流動的流體散佈並擾 動的穿過反應床16時,以促進反應床16中流體流和固態顆粒物 貝2〇之間的接觸機會。此外,内反應室14及反應床係按一定尺 寸製作’或者皆具有一足以提供滯留時間的體積,用以能夠使處 理後白W體流中硫氧化物、氮氧化物、及/或二氧化碳的含量減少 勺20/〇。坪留時間一般以τ (等於反應器體積除以流體流率;τ = reaetof volume/gas flow rate)表示,其係為分子在填充塔内的平均時 間同樣地,依據本發明所揭露之一具體實施例,内反應室14所 42 200918153 具有的體積大小為允許流體流具有足夠的滯留時間,用以和固態 顆粒物質20於反應床16中進行反應’並達到移除至少一種目標 污染物。如同先前所述’這些反應室13、14的體積可藉由所欲處 理的流體流之流率來決定。其中’從填充塔出口 26離開的流體流 可利用回收循環(圖未顯示),將此離開反應器後的流體流再導引進 入填充塔入口 12,用以移除其他的污染物。 在另一實施例中,本發明提供一種減少流體流所排放出的硫 f - " 氧化物、氮氧化物及/或二氧化碳的方法,此流體流係產生於固態 燃燒源(如鋼爐、焚化爐)、水泥窯、石灰窯、煉鐵爐及煉鋼爐等。 如上所述’此方法可進一步的移除至少一種污染物,此污染物係 選自於由一氧化碳、氟氣碳化物、氫氣酸、微粒物質、揮發性有 機化合物、氣溶膠化合物、水銀、鉛、氨、以及臭氧所組成之群 族。依據此方法,在不同的實施例中,提供一種移除硫氧化物、 # 氮氧化物、及/或二氧化物排放的有效方法,並因此控制溫室氣體 .的排放,只要進一步回收至少一種工業上的副產物,並應用於此 .新用途上。 如「第3圖」所示,為依據本發明所揭之具體實施例中,一 種污染物移除系統之流程示意圖。一燃燒源100產生一流體流 112,此流體流112具有至少一種污染物。將此流體流112導引進 入一填充床反應器114,此填充床反應器114具有複數個如先前所 述之固態顆粒物質。在與填充床反應器114内之固態顆粒物質接 43 200918153 觸前’流體流m可具有至多約嶋(將近聚)之溫度。這類 反應’即這些發生於溫度至多約卿(將近316。〇之反應,被視 為低皿」在些貫細例中,此接觸發生於至多約彻。f (將近 232。〇的環境中,可選擇性地至多約轉(將近2〇4。〇,可選擇 性地至多約聊(將近177。〇,可選擇性地約(將近 .135°〇,可選擇性地至多約2卿(將近121。〇,可選擇性地至多 約·。F (將近93。〇,可選擇性地至多約請(將近㈣),可 選擇=也至多約贿(將近38。〇,以及在一具體實施例中,係 在先前所述之反應H壓力顧下之環境溫度。在另—具體實施例 中,此接觸發生於溫度約介於275〇F (將近135。〇)至4游(將近 232。〇,可選擇性地約介於3〇〇〇F (將近149。〇至35〇叩(將近 177 C)。據此’以熱交換器為例,流體流112在接觸固態顆粒物 質之前可被冷卻。或者,填充床反應器114可被設置於系統中燃 燒下游那邊的低溫區域。本發明之優點為在如此低溫之下,能有 .效的移除相當數量的硫氧化物、氮氧化物、及/或二氧化碳。 因此,在另一實施例中,本發明揭露一種減少燃燒源產生之 污染的方法,其係於流體流112自燃燒源1〇〇離開後,藉由此流 體流112與固態顆粒物質於低溫下接觸,以減少流體流112中硫 氧化物的起始含量。如先前所述,此固態顆粒物質係藉由摻合熔 渣成分與黏結劑成分而形成,其中,溶渣成分具有一種或多種活 性矽酸鹽化合物。在另一實施例中,本發明所揭露之一種減少燃 200918153 燒源產生之污_方法,其係於流體流112自燃燒源⑽離開後, 藉由此流體流112與嶋雛物質於低溫下接觸,以減少流體流 112中氮氧化物的起始含量。其巾,固態顆粒物質係藉由推合雜 成分與黏結献分而形成,並且,赫齡具有—種或多種活性 石夕酸鹽化合物。在-具體實施例中,藉由與固態顆粒物質於低溫 下接觸,使《流112巾至少—歡氣污染物的起始含量被移除, 此空氣>5染物係選自於由硫氧化物、氮氧化物、及二氧化碳所組 成之族群。 例如,相對於未經過處理的流體流112中琉氧化物、氣氧化 物、及/或二氧化物的起始含量,從填絲反應器m賴之處理 後的流體流112 ’其具有減量的硫氧化物、氮氧化物、及/或二氧 化物。在-具體實施例中,填充床反應器114的移除效率為至少 約20% ’可選擇性地至少約25%,可選擇性地至少約3〇%,可選 擇性地至少約35%。移除效村藉由以下之株式三計算而得。 方程式三:狀(%) = 1〇〇 l — i〕 I Ej 其中,移除效率(RE)為從流體流中移除的污染物含量之百分 比,Ει為流體流中污染物的平均含量(進入反應器入口前所測得的 質量流率),以及Eo為流體流離開反應器後,流體流中污染物的 平均含量(離開反應器後所測得的質量流率)。 在流體流在反應床與固態顆粒物質接觸之後’從流體流中所 45 200918153 移除的硫氧化物含餘當於可獅性地至少約2q重量百分比的移 矛、=率可選擇性地至少約25重量百分比,可選擇性地至少約如 百刀比可選擇性地至少約4〇重量百分比,可選擇性地至少 約50重量百分比,可選擇性地至少約6〇重量百分比,可選擇性 地至少約7〇重量百分比,可選擇性地至少約75重量百分比,可 選擇性地至少約8G重量百分比,可選擇性地至少約%重量百分 t曰匕可選擇性地至少約9〇重量百分比,可選擇性地至少約%重 :百刀比移除效率係反映出相對於流體流與固態顆粒物質接觸 ^起始含量,流體油_粒鮮接職,硫氧化物的減 y、虽牛例而w在此所述之移除效率亦可為歷經一定時間間隔 的平均值,即平均移除效率,例如為歷經—分鐘、十分鐘、半小 時或-小時之平均移除效率。在—具體實施财,硫氧化物的移 除效率為至少75%,可選擇地為至少_,可選擇地為至少85%, 並且在-些實關巾為至少慨。藉由將關反應器之流體流再 次導引進人反應H人口,使流體流再循環,如先前所述,此再循 環的流體流被進-步的纽,用以移除好的污_,以及提供 在此所述之每一種空氣污染物較高的移除效率。 流體流在反應床中與固態顆粒物質接觸後,藉由移除效率所 反映出的氮氧化物移除量為至少約1〇%,可選擇性地至少約 15%,可選擇性地至少約20%,可選擇性地至少約25%,可選擇 性地至少約30% ’可選擇性地至少約40%,可選擇性地至少約 46 200918153 50%,可選擇性地至少❸6Q%,可選擇性地至少約7()%。在—具 體實施例中’氮氧化物的移除效率為至少約鳩,可選擇性地為 至少約25%。 流體流在反應床中與固態顆粒物質接觸後,藉由移除效率所 -反映出的—氧化碳移除量為至少約1G%,可選擇性地至少約 15%,可選擇性地至少約观,可選擇性地至少約 25%,可選擇 I·生地至v約30% ’可選擇性地至少約35%,可選擇性地至少約 40〇/。,可選擇性地至少約篇,可選擇性地至少約_,可選擇 性地至少約。在—具體實關巾,A氧化物的歸效率為至少約 20%,可選擇性地為至少約75%。並且,在—實施射,流體流 係與固態雜㈣在低溫下綱,其中流誠具有低於約+ 1.75G dP/dL is the pressure drop per unit length of the packed bed, and L is the unit length of the packed bed (inch). In addition, Ορυ, G is the surface mass velocity in units of lbm/ft2 hr (pounds mass/square s), where p is the density of the flow and υ is the surface velocity (ie, the fluid at the same volumetric flow rate) The velocity of the flow through the empty reactor can be obtained by dividing the fluid volume flow rate by the cross-sectional area. φ is the porosity of the packed bed and can be obtained by dividing the filled solid volume by the total packed bed volume. Gc is the gravitational constant, which is 32174 lbm'ft/s2'lbf (crushed mass per gram/second square. 碛 force)' and % is the equivalent average particle diameter of the solid fill material, while μ is the fluid passing through the packed bed Dynamic viscosity in lbm/ft.hr (stoneside mass/mile.hour). 38 200918153 In a typical manufacturing facility, the wastewater or waste stream has a range of approximately 10,000 acfm (actual cubie feet pei>minute; actual ft3/min) in different procedures (approximately 285 per minute) Cubic meters (m3/min)) to 3,000,000acfm (about 85,000 m3/min). However, in the present invention, this flow rate change depends on the capacity and type of equipment used in the program, and is difficult to generalize. For example, 'typical cement manufacturing equipment, the kiln exhaust gas is usually about 1 〇〇, 〇〇〇acfm (about 2,800 m3 / min) to 400,000 acfm (about 11, 〇〇〇m3 / min), and the typical ' boiler The flow rate of the exhaust gas can range from about 100,000 acfm (about 2,800 m3/min) to about 600,000 acfm (about 17,000 m3/min). Thus, in one embodiment, a packed bed reactor can be used to treat typical industrial exhaust gas flow rates and allow them to contact solid particulate matter. In one embodiment, the volumetric flow rate used is about 41,000 acfm and the solid particulate material has an average particle size diameter of about 1 to 6 mm. Similarly, the pressure difference between the inlet and outlet of the packed bed reactor is less than or equal to 250 Pa (Pascals). In one embodiment of the present invention, contact with solid particulate material is generated from a fluidized bed reactor, a venturi dry scrubber, a packed bed reactor, and / or any combination or equivalent of the above. It is not limited to the reactors listed above, and other conventional reactors suitable for producing a gas/solid reaction can be expected to be used in the present invention. In one embodiment, the fluid stream produced by the combustion source is directed to a packed bed reactor containing a plurality of solid particulate materials by blending the slag composition with the 39 200918153 adhesive composition. form. Fluidized bed reactors suspend solid particulate matter in a gas that is directed upwardly during the reaction and are well known in the art. For example, gas fluidized beds use solid adsorbent materials to capture contaminants generated when fossil fuels are burned. In a specific embodiment, the flow system flows upwards and has a sufficient flow rate to lift a plurality of particles via friction. In this method, disturbances of the mixed solids and gases are achieved. In one embodiment of the invention, the fluid stream may comprise sufficient moisture after the combustion reaction, or may be added to the fluid stream or solid particulate material prior to the fluid stream or solid particulate material being placed in the reactor, if If necessary, to enable it to react with the dry solid particulate material in the reactor. For example, a typical moisture content in a fluid stream is generally less than or equal to about 3 weight percent, and optionally less than or equal to about 0.5 weight percent. However, in another embodiment, the fluid flow may be passed through a scrubber or other equipment to increase the water content of the fluid stream as it enters the reactor, perhaps to bring the water content of the fluid stream to a higher saturation point. The packed bed reactor consists of a tray with a packed bed medium. Alternatively, the shredded towel can be further advanced with (4) reduced small objects or layers. The spatial form of the objects may be saddle, toroidal, mesh or special form to maximize the separation between solid particulate matter and fluid flow, although minimizing pressure drop and retention between solid particulate matter. Porosity reduces its setting. The typical operation of a packed bed reactor has a much lower pressure drop than other reactors (e.g., Venturi scrubber 200918153 venture scrubber) and typically provides higher contaminant removal efficiency. A schematic diagram of the packed column reaction n is shown in "Fig. 1" and "Fig. 2". Packing column 10 is a typical design. At the most A load, the average face gas flow rate will not exceed the design long body flow rate. For the majority of A's wire-filling anti-magic, the average gas flow rate varies depending on the state of the exit, from about 8 to 25 ft / s (in British / second) (about 2.5 to 7 m / s (meters / sec) )) ' However, any particular flow rate is not limited in the present invention. The wastewater/flue gas enters from the person p 12 of the packed column 1G. The fluid flow system is generated upstream of the furnace, the incinerator, the boiler, or the kiln, and includes at least one contaminant selected from the group consisting of sulfur oxides, nitrogen oxides, and carbon dioxide, and has From the water vapor produced by the combustion reaction. The packed column 10 has an outer reaction chamber 13 and an inner reaction chamber 丨4, and the reaction chamber 13 and the inner reaction chamber 14 respectively comprise a reaction bed 16 having a plurality of solid particulate materials 2〇 to form a reaction chamber disposed in the reaction chamber. The medium body 22 is filled. The plurality of solid particulate materials 2〇 comprise any of the different types of solid particulate materials previously described. The fluid stream enters the reaction bed 16 and flows through the packing medium body 22' to contact the respective solid particulate matter 2, where it reacts to cause the solid particulate material 20 to adsorb target contaminants in the fluid stream, and/or Target contaminants react and therefore remove these contaminants from the passing fluid stream. It can also be carried out in multiple stages, with each stage having a filling medium body 22. After contact with the filled medium body 22 of the packed bed 16, the fluid stream exits from an outlet 26 of the packed column 1 . The design of the packed tower is affected by the following factors: 200918153 The composition of the solid particulate matter f2G 'degree and particle size, the degree of removal of the target contamination, the temperature and pressure of the inlet gas-water fluid, and, among other things, A factor well known in the art. Typical operating pressure variations range from about 1 (four) (about 7 kPa (kPa)) to (10) psi (about 690 kPa). The shaft does not have these typical pressures in this Fortune. Reaction Bed • 16 volumes allow for different chemical and physical procedures to be completed. Gas/vapour_solids contact within the column can have localized contaminant removal efficiency and maximize reagent utilization. In a different real & example, it is necessary to minimize the pressure difference or pressure drop of the fluid 12 of the packed column 1 () and the fluid 2 of the outlet. The typical pressure difference between outlet 12 and population % must be less than or equal to 250 Pa (l-pair to water column). The reaction chamber 14 at the inlet of the reaction bed 16 may contain additional equipment (not shown) which is prepared to cause disturbance of the solid particulate matter 20 and to rotate the position of the solid particulate material 20, such as the support plate, porosity Structural material, or saddle medium, this saddle; 1 is used to maintain the position of the reaction bed 16, as the flowing fluid spreads and perturbs through the reaction bed 16 to promote fluid flow and solid particulate matter in the reaction bed 16. 2 chances of contact between. In addition, the inner reaction chamber 14 and the reaction bed are made to have a size or have a volume sufficient to provide a residence time for enabling treatment of sulfur oxides, nitrogen oxides, and/or carbon dioxide in the white body stream. The content is reduced by 20/〇. The ping time is generally expressed as τ (equal to the reactor volume divided by the fluid flow rate; τ = reaetof volume/gas flow rate), which is the average time of the molecules in the packed column. Similarly, according to one of the disclosed In an embodiment, the inner reaction chamber 14 of 421818153 has a volume that allows the fluid stream to have sufficient residence time to react with the solid particulate material 20 in the reaction bed 16 and to remove at least one target contaminant. As previously described, the volume of these reaction chambers 13, 14 can be determined by the flow rate of the fluid stream to be treated. The fluid stream exiting from the packed column outlet 26 can be recirculated into the packed column inlet 12 for removal of other contaminants by a recovery cycle (not shown). In another embodiment, the present invention provides a method of reducing sulfur f- " oxides, nitrogen oxides, and/or carbon dioxide emitted by a fluid stream that is produced in a solid state combustion source (eg, a steel furnace, Incinerators, cement kilns, lime kilns, ironmaking furnaces and steelmaking furnaces. As described above, the method further removes at least one contaminant selected from the group consisting of carbon monoxide, fluorine gas carbide, hydrogen acid, particulate matter, volatile organic compounds, aerosol compounds, mercury, lead, A group of ammonia and ozone. According to this method, in various embodiments, an efficient method of removing sulfur oxides, #NOx, and/or dioxide emissions is provided, and thus greenhouse gas emissions are controlled, as long as at least one industry is further recovered By-products on and used in this new use. As shown in Fig. 3, a flow diagram of a contaminant removal system in accordance with a particular embodiment of the present invention. A combustion source 100 produces a fluid stream 112 having at least one contaminant. This fluid stream 112 is introduced into a packed bed reactor 114 having a plurality of solid particulate materials as previously described. In connection with the solid particulate matter in the packed bed reactor 114, the pre-touch fluid stream m can have a temperature of up to about 嶋 (close to poly). This kind of reaction's that these occur at temperatures up to about 卿 (nearly 316. The reaction of 〇 is regarded as a low dish). In some cases, this contact occurs at most circa.f (nearly 232. 〇 in the environment) , optionally at most about to turn (nearly 2〇4. 〇, optionally up to about Talk (nearly 177. 〇, optionally about (nearly .135° 〇, optionally up to about 2 qing ( Nearly 121. 〇, can be selectively up to about .. F (nearly 93. 〇, can be selectively up to about (near (four)), optional = also at most about bribes (nearly 38. 〇, and in a specific implementation In the example, the ambient temperature is measured in the previously described reaction H. In another embodiment, the contact occurs at a temperature of between about 275 〇F (nearly 135 〇) to 4 游 (nearly 232. 〇, optionally about 3〇〇〇F (nearly 149.〇 to 35〇叩 (nearly 177 C). According to this, in the case of a heat exchanger, the fluid stream 112 can be contacted before contacting the solid particulate matter. Cooling. Alternatively, packed bed reactor 114 can be placed in a low temperature zone downstream of the combustion in the system. The advantage is that at such low temperatures, a significant amount of sulfur oxides, nitrogen oxides, and/or carbon dioxide can be effectively removed. Thus, in another embodiment, the present invention discloses a reduction in combustion source generation. The method of contamination is followed by fluid stream 112 exiting from combustion source 1 by contacting fluid stream 112 with solid particulate matter at a low temperature to reduce the initial level of sulfur oxides in fluid stream 112. Said solid particulate material is formed by blending a slag component with a binder component, wherein the slag component has one or more active phthalate compounds. In another embodiment, one of the disclosed inventions The method of reducing the amount of nitrogen oxides in the fluid stream 112 is reduced by the fluid stream 112 being contacted with the scavenging material at a low temperature after the fluid stream 112 exits the combustion source (10). The content of the towel, the solid particulate material is formed by pushing the impurity component and the adhesion component, and the Heron has one or more active oxalate compounds. In a specific embodiment, by The particulate matter is contacted at a low temperature, so that the initial content of at least the gas-contaminant is removed, and the air >5 dye is selected from the group consisting of sulfur oxides, nitrogen oxides, and carbon dioxide. For example, the treated fluid stream 112' from the sizing reactor m is relative to the initial content of cerium oxide, gas oxide, and/or dioxide in the untreated fluid stream 112. Having a reduced amount of sulfur oxides, nitrogen oxides, and/or dioxide. In a particular embodiment, the packed bed reactor 114 has a removal efficiency of at least about 20% 'optionally at least about 25%, Optionally at least about 3%, optionally at least about 35%. The removal effect is calculated by the following formula 3. Equation 3: Shape (%) = 1〇〇l — i] I Ej where removal efficiency (RE) is the percentage of contaminant removed from the fluid stream and Ει is the average amount of contaminant in the fluid stream ( The mass flow rate measured before entering the reactor inlet), and Eo is the average amount of contaminant in the fluid stream after the fluid stream exits the reactor (the mass flow rate measured after leaving the reactor). After the fluid stream is contacted with the solid particulate material in the reaction bed, the sulfur oxides removed from the fluid stream 45 200918153 contain a spear, at least about 2q weight percent of the spear, and the rate can be selectively at least About 25 weight percent, optionally at least about 100% by weight, optionally at least about 4 weight percent, optionally at least about 50 weight percent, optionally at least about 6 weight percent, optionally At least about 7 weight percent, optionally at least about 75 weight percent, optionally at least about 8 weight percent, and optionally at least about 1 weight percent t曰匕, optionally at least about 9 weight percent Percentage, optionally at least about % by weight: the 100-knife ratio removal efficiency reflects the initial content of the contact with the fluid stream and the solid particulate matter, the fluid oil _ grain fresh pick-up, the sulfur oxide minus y, although The removal efficiency described herein may also be an average over a certain time interval, ie, an average removal efficiency, such as an average removal efficiency over a period of minutes, minutes, ten minutes, or hours. In particular, the sulfur oxide removal efficiency is at least 75%, alternatively at least _, alternatively at least 85%, and at least some of the actual wipes. Recirculating the fluid stream by reintroducing the fluid flow from the reactor into the human reaction H population, as previously described, the recirculating fluid stream is stepped in to remove the good _, And providing a higher removal efficiency for each of the air pollutants described herein. After the fluid stream is contacted with the solid particulate material in the reaction bed, the amount of nitrogen oxide removal reflected by the removal efficiency is at least about 1%, optionally at least about 15%, and optionally at least about 20%, optionally at least about 25%, optionally at least about 30% 'optionally at least about 40%, optionally at least about 46 200918153 50%, optionally at least Q6Q%, Optionally at least about 7 (%). In a particular embodiment, the nitrogen oxide removal efficiency is at least about 鸠, and optionally at least about 25%. The amount of carbon oxide removal reflected by the removal efficiency after the fluid stream is contacted with the solid particulate material in the reaction bed is at least about 1 G%, optionally at least about 15%, and optionally at least about Optionally, at least about 25%, alternatively from about 1% to about 30%, optionally at least about 35%, alternatively at least about 40%. Optionally, at least about, optionally at least about _, alternatively at least about. In a specific closure, the A oxide has an efficiency of at least about 20%, and optionally at least about 75%. Moreover, in the implementation of the shot, the fluid flow system and the solid impurity (4) are at a low temperature, wherein the flow has a lower than about

600°F (約316°C)的溫度。 另外’依據本發明之—實闕’複數種污染物同時地被移除 於流體流。舉例來說,越流於填絲反應針與_顆粒物質 接觸後,流體流巾硫氧化物、氮氧化物、以及二氧化碳的 量,以至少約20%的移除效率減少,可選擇性地至少約挪,可 選擇性地至少約30% ’可選擇性地至少約35%,並且在—些實施 例中,硫A化物、氮氧化物、及二氧化碳總含量的移除效率為至 少約4〇%。例如’在-具體實施射’在日销_為小時之美準 下’流體流中硫氧化物、氮氧化物、及二氧化碳的起始總錄量 之移除效率為至少約20%。 ' 47 200918153 如此,在一具體實施例中,流體流在離開反應器後,流體流 中的一種或多種污染物的濃度受到監測。在本發明中此一監測方 法已為習知之技術’並且可包含一持續排放監測系統(continuous emission monitoring systems ; CEMs),其係用以提供一預定區間 内,流體流中目標污染物的平均濃度,例如每分鐘的克數(g/min)。 假使預先設定污染物的移除效率,則所監測到的流體流中目標污 染物的濃度,將暗示填充介質本體被耗盡以及需要置換新鮮的填 充介負本體之時機。此一預定的移除效率可因此被應用於一控制 系統中,並且可藉由系統經驗上的觀察來決定,及/或藉由預測模 型化系統來決疋。假使硫軋化物、氮氧化物、及/或二氧化碳的濃 度超過預定的設定點,即會經由填充介質本體進行處理並被移 除。在一具體實施例中,反應器係可離線操作,以將填充介質本 體置換為新鮮的填充介質本體,然後再使反應器回復上線操作。 在二氧化碳及/或硫氧化物與固態顆粒物質進行反應之後,此 耗盡的固態顆粒物質包含反應所產生的碳酸鈣及/或硫酸鈣。在一 具體實施例中,耗盡的固態顆粒物質可於反應器中再生與重複使 用在另一貫施例中,聚結的固態顆粒物質可藉由表面研磨及篩 選來移除。從此表面移除的物質含有碳酸鈣及/或硫酸鈣。此方法 中,耗盡的固態顆粒物質的表面被再生,用以和流體流中的污染 物進行額外的反應,並且可以再次使用於反應床中。在另一實施 】中,可研磨聚結的固悲顆粒物質,如在磨研機中研磨,然後再 48 200918153 與新的黏結劑混合’以再次形成固態顆粒物_粒。據此,固態 顆粒物質可被再生魅複使用。由於祕錢贿、齡物質具有 妷酸!弓及/或硫酸約,在其他的工業程序中,可選擇性地被當成原 料來使用,像是在水泥製造業的原料或在鐵及/或鋼製造程序中的 助熔劑。 . 如「第5圖」所示,在其他實施例中,反應器2〇〇可以連續 使用,並且可具有至少兩個隔離操作的内部反應室2〇2。在操作 時’僅活化其中-個反應室2〇4,同時旁通閥2〇8使流體流從去活 化的另-反應室206流失。使在去活化的反應室2〇6中之固態顆 粒物質21G可被置換,因此提供污染移除系統連續不間斷的操作。 在填充介質本體巾的複數侧態難物f可被直接地裝填於反應 床中,此反應床係如先前述具有適當空_設備。又或者,這些 固態顆粒物質可被裝置於可更置換的替換匣中(圖未顯示),此替換 S係可放置於内反應室中。因此,在—具體實施例中,污染隔離 •系統具有連續性與再生性。 • 在不同的實施例中,本發明提供一種污染減量系統,其包含 -燃燒源’此燃燒源產生—具有至少—種空氣污雜之流體流, 此空氣污染物係選自由硫氧化物、氮氧化物、及二氧化碳所組成 之族群,存在於流體流巾的空氣污染物具有―起始含量。污染 減里系統包含-填充床反應、器,此填充床反應器具有用以接收流 體流之一入口及一出口。填充床反應器更具有至少一反應室,此 49 200918153 反應室包含概辦均粒度餘約細G25絲至12絲的固能 顆粒物質。im麵物質韻由摻合㈣成分與鱗織分㈣ 成’且熔清成分具有至少-種活性卿魏合物。反應室具有一 可提供足夠滯留時間的容積,㈣使空氣污染物的減少量相對於 起始含量,以至少約20%移除效率來移除。 ‘如上所述’具活性之化合物係指活性0酸鹽。此外,本發明 亚非關於任何特定的理論’在—具體實闕巾,流體流中的氧 化約可能同時扮演著與至少-種污染物(硫氧化物(s〇x)、氮氧化 物(NOX)、及/或二氧化碳(C〇2》產生反應的角色。固態顆粒物質 與二氧化碳之間可能歷經了下列反應機制:從燃燒源離開之流體 流中含有水蒸氣,並且二氧化碳在鹼性酸鹼值的環境下形成碳酸 鹽陰離子,碳酸鹽陰離子與存在於活性矽酸鹽中的鈣離子產生反 應,並形成碳酸鈣。環境的鹼度被認為會驅使二氧化碳與氧化鈣 和矽酸鹽產生反應,並且進一步的被認為傾向在耗盡的固態顆粒 .物質中形成活性矽酸鹽產物。耗盡的固態顆粒物質仍含有活性矽 •酸鹽及足夠量的鹼金屬離子,此足夠量的鹼金屬離子有助於維持 酸驗值。碳酸化反應使固態顆粒物質的酸鹼值降低(朝向更加中和 的狀態)’因此具鹼性之可選擇性的第三成分可被使用於調節酸鹼 度。以上僅為舉例說明,並非用以限制本發明。 請再次參閱「第3圖」和「第4圖」,在流體流112離開填充 床反應器114後,至少一種空氣污染防治設備(air p〇iiuti〇n c〇ntr〇i 50 200918153 devices 120 ; APCDs) 120進一步的處理此流體流112。除了硫氧 化物(SOX)、氮氧化物(Ν〇χ)、及/或二氧化碳(C〇2)之外,流體流 包含至少一種其他的污染物。舉例來說,除了硫氧化物、氮氧化 物、及/或二氧化碳之外,從鍋爐、磚窯、熔爐、及焚化爐中找到 的一般空氣污染物,包含一氧化碳、氫氣酸、氟氯碳化物、微粒 物質、揮發性有機化合物、氣溶膠化合物、水銀、鉛、氨、臭氧、 % 及以上之組合及其相等物。因此,在一些實施例中,填充床反應 器114可適用於附帶地移除上述這些其他的污染物,然而,如「第 3圖」所示,可預期附加於下游的空氣污染防治設備(APCDs) 120a ’必需要減少一種或多種其他的污染物至可接受的濃度。典 型可仿效的空氣污染防治設備12〇包含靜電集塵器、袋式除塵器、 旋風集塵器、活性碳集塵器、煙氣脫硫集塵器、蓄熱氧化爐、變 壓吸附裝置、選擇性催化反應器、選擇性非催化反應器等等。 如「第4圖」所示,在一具體實施例中,在流體流112進入 .填充床反應器之前114,污染移除系統更包含至少一空氣污染防治 -设備120a、120b,用以預處理流體流112。因此,任何會對固態 顆粒物貝產生危害或是產生不需要的反應’或者是會腐餘或損害 硬體設備的其他辟物可祕除。赫流112在藉㈣絲反應 器114及空軋污染防治設備i2〇a及/或處理後,流體流H2 被引導至煙道122,並排出至大氣中。 在具體貫加例中,本發明提供一種減少來自於水泥製造設 51 200918153 備之硫氧化物(SOX)、氮氧化物(NOX)、及二氧化碳(C02)排放的 方法。其包括令水泥製造原料(具有#弓、石夕、銘、及鐵的來源)於磚 窯中進行反應,用以產生熟料及流體流,此流體流包含硫氧化物、 氮氧化物、及二氧化碳;至少部分的流體流與固態顆粒物質接觸, 此固態顆粒物質係為先前述之實施例中之固態顆粒物質;產生一 產物’此產物包含碳酸鈣及/或硫酸鈣。於先前所述之實施例中之 % 任一程序可適用於本實施例中,例如,在流體流與固態顆粒物質 < ‘接觸前’流體流可經由至少一空氣污染防治設備處理,以移除至 少一種空氣污染物。石灰石(即碳酸鈣)為石灰及水泥製造時所使用 的原料。同樣地,石膏(即硫酸鈣)與波特蘭水泥熟料一起被研磨, 用以形成波特蘭水泥。在一具體實施例中,產物中包含碳酸鈣或 硫酸躬,有助於其之重複使用,以做為生產熟料及/或石灰之原料。 因此,在水泥f造時所產生的碳峡’隨後地與此·結合以生 產熟料,或是硫酸鈣與熟料結合而產生水泥。 * 本發騎揭示之方法可減少從水泥及/或石灰製造設備,以及 .煉鐵及/或煉鋼設備所排放之硫氧化物(s〇x)、氮氧化物㈣^)、及 -氧化奴(032)。此方法包括令至少—部分的流體流與固態顆粒物 質接觸,此流體流包含硫氧化物(s〇x)、氮氧化物^⑽)、及二氧 火(),、係產生於煉鐵及/或煉鋼程序m炼爐可為於先 前描述溶渣來源中之任何—種炼爐,例如高爐(鐵礦加工)、平_ 加工)、驗性氧化爐(鋼加工)、或電弧爐(鋼加工)。固態顆粒物質包 52 200918153 含黏結劑成分、溶渣成分,不同於黏結劑成分。產物包含所產生 的碳酸药,其可被當成工業程序中的原料而被重複利用。 在其他實施例中’本發明提供一種減少碳氫化合物燃燒源所 排出之硫氧化物(SOX)、氮氧化物(NOX)、及二氧化碳(c〇2)的方 法,此碳氫化合物燃燒源如電力廠鍋爐或焚化爐。碳氫化合物燃 燒源包含固定點的來源’其係於燃燒碳氫化合物時而形成的硫氧 化物、氮氧化物、及一氧化>5厌,此固定點來源包含那些燃燒石化 燃料(如媒、甲烷)、合成燃料(如石油焦、合成氣、乙醇)、或其他 種類碳氫化合物的設備。此方法包含令至少一部分之流體流與固 態顆粒物質接觸,此流體流包含石化燃料燃燒後所產生的硫氧化 物、氮氧化物、及二氧化碳。固態顆粒物質係如先前所述之任何 一種。產物包含碳酸鈣及/或硫酸鈣,係可被當成工業程序中的原 料而被重複利用。本發明所揭露之不同的實施例已如上所述,以 下例一之說明係作為舉例說明,並非用以限制這些實施例。 例一 固‘%顆粒物質係藉由摻合10重量百分比之第3型波特蘭水泥 (除了研磨細度產生早期強度的範圍從320至670 m2/g (平方公尺/ 克)布蘭克細度(Blaine fineness)之外,其化學及物理性質類似於第 1型波特蘭水泥;其中,早期強度一般約大於45〇 m2/g布蘭克細 度)’以及90重量百分比不錄鋼渣而形成之混合物;加入3〇%的 水於此混合物中(在濕基準下之63%的熔渣及7%的波特蘭水泥" 53 200918153 直到顆球狀微粒形成,並具有約2至6毫米的平均顆粒直徑。將 固態顆粒物質置入於填充床反應器,此填充床反應器具有一分割 為三個階層的反應床。填充床反應器之直徑為8英吋(約20公分), 長度約為3英呎(91公分)。反應床被裝置於高度約2.5英吸(約% 公分)。操作一燃媒爐使產生一流體流,此流體流具有約每分鐘 41,000立方英呎的流率,並包含硫氧化物(SOX)、氮氧化物 (NOX)、及二氧化碳。當流體流從填充床反應器之入口進入時的溫 度約為323°F (約162°C)。相對於在填充床反應器入口處的流體 流’離開填充床反應器的流體流中,硫氧化物的濃度減少約85重 量百分比(即每100克的硫氧化物進入填充床反應器,之後僅剩15 克的硫氧化物在離開填充床反應器的流體流中),氮氧化物減少約 25%,而二氧化碳則減少約31〇/〇。 在不同的實施例中,本發明提供一種回收利用工業副產物的 方法’此工業副產物係為在其他地方被丟棄、堆放、或掩埋者。 ,例如,在一具體實施例中,係提供一種回收利用工業副產物的方 -法。固態顆粒物質係藉由摻合一第一製造成分及一第二製造成分 而形成。第一製造成分為一熔渣成分,此熔渣成分具有至少一活 性矽酸鹽化合物。第二製造成分為一黏結劑成分,此黏結劑成分 為一廢液,如糖蜜。一產生於工業程序之流體流,流體流包含硫 氧化物、氮氧化物、及二氧化碳,並且此流體流係於稍候與固態 顆粒物貝接觸。產生一產物,此產物包含破酸妈及/或硫酸妈,並 54 200918153 可有益的重複使用於工業程序中。在一些實施例中,在固態顆粒 物質與流體流接觸之後以及在產物產生之後,固態顆粒物質被耗 盡,並且至少有一部分被耗盡的固態顆粒物質可於工業製造程序 中被回收利用。 以此方法,本發明所揭露之方法提供進一步永續發展的方 案’其包含為了後代而於當前生長及發展的需求與保護自然與人 造環境的需求之間取得平衡。並且,本發明所提供之方法與系統, 係於低溫時用以減少不同的定點來源所排放的硫氧化物、氮氧化 物’及/或二氧化碳’除了減少溫室氣體的排放外,並提供這些定 點來源能遵守不_規定,以透過二氧化碳排放细交易制度而 接叉到經濟及商業上的利益,以及減少流體流巾硫氧化物、氮氧 化物、及/或二氧化碳之潛在的腐蝕性及無效率的伴隨物。 雖然本發明以前述讀佳實關揭露如上,然其並非用以限 定本發明,任何熟習姆技藝者,在不脫離本發明之精神和範圍 内田可作些許之更動與潤飾,因此本發明之專利保護範圍須視 本說明書所附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖為本發明之一貫施例中具有填充床反應器之排放減量 系統之示意圖; 第2圖為本發明實施例中填充床反應器之局部剖面示意圖; 第3圖為本發明之具體實施例之流程示意圖; 55 200918153 第4圖為本發明之具體實施例之流程示意圖;以及 第5圖為本發明之一實施例中具有填充床反應器之排放減量 系統之示意圖。 【主要元件符號說明】 10 填充塔 100 燃燒源 112 流體流 114 填充床反應器 12 入口 120a 空氣污染防治設備 120b 空氣污染防治設備 122 煙道 13 外反應室 14 内反應室 i • 16 反應床 20 固態顆粒物質 200 反應器 202 内部反應室 204 反應室 206 反應室 208 旁通閥 56 200918153 210 固態顆粒物質 22 填充介質本體 26 出口600 °F (about 316 ° C) temperature. Further, in accordance with the present invention, a plurality of contaminants are simultaneously removed from the fluid stream. For example, the amount of sulfur oxides, nitrogen oxides, and carbon dioxide in the fluid flow wiper is reduced by at least about 20% removal efficiency, optionally at least after the filamentizing reaction needle is contacted with the particulate matter. Johor, optionally at least about 30% 'optionally at least about 35%, and in some embodiments, the removal efficiency of the total content of sulfur A, nitrogen oxides, and carbon dioxide is at least about 4 〇. %. For example, the removal efficiency of the initial total amount of sulfur oxides, nitrogen oxides, and carbon dioxide in the fluid stream is at least about 20%. '47 200918153 As such, in one embodiment, the concentration of one or more contaminants in the fluid stream is monitored after the fluid stream exits the reactor. In the present invention, this monitoring method is a well-known technique' and may include a continuous emission monitoring system (CEMs) for providing an average concentration of target contaminants in a fluid stream within a predetermined interval. , for example, grams per minute (g/min). Given the pre-set removal efficiency of the contaminants, the concentration of the target contaminant in the monitored fluid stream will imply that the filling medium body is depleted and that it is time to replace the fresh filling medium. This predetermined removal efficiency can thus be applied to a control system and can be determined by empirical observations of the system and/or by predictive modeling systems. If the concentration of sulphur, nitrogen oxides, and/or carbon dioxide exceeds a predetermined set point, it is processed and removed via the filling medium body. In one embodiment, the reactor is operated off-line to replace the filling medium body with a fresh filled medium body and then returning the reactor to an on-line operation. After the reaction of carbon dioxide and/or sulfur oxides with the solid particulate material, the depleted solid particulate material comprises calcium carbonate and/or calcium sulfate produced by the reaction. In one embodiment, the depleted solid particulate material can be regenerated and reused in the reactor. In another embodiment, the coalesced solid particulate material can be removed by surface grinding and screening. Substances removed from this surface contain calcium carbonate and/or calcium sulfate. In this method, the surface of the depleted solid particulate material is regenerated for additional reaction with contaminants in the fluid stream and can be reused in the reaction bed. In another embodiment, the coalesced solid particles can be ground, such as by grinding in a grinder, and then mixed with a new binder at 48 200918153 to form solid particulates again. According to this, the solid particulate matter can be reused. Because of secret money bribes, ageing substances have tannins! Bow and / or sulfuric acid, in other industrial processes, can be selectively used as raw materials, such as raw materials in cement manufacturing or in iron and / or steel A flux in the manufacturing process. As shown in Fig. 5, in other embodiments, the reactor 2 can be continuously used, and can have at least two internal reaction chambers 2〇 for isolation operation. In operation, only one of the reaction chambers 2〇4 is activated, while the bypass valve 2〇8 causes the fluid flow to be lost from the deactivated further reaction chamber 206. The solid particulate material 21G in the deactivated reaction chamber 2〇6 can be replaced, thus providing a continuous uninterrupted operation of the pollution removal system. The plurality of side states of the filling medium body can be directly loaded into the reaction bed, and the reaction bed has the appropriate space_device as described above. Alternatively, these solid particulate materials can be placed in a replaceable cartridge (not shown) which can be placed in the internal reaction chamber. Thus, in a particular embodiment, the pollution isolation system has continuity and regenerability. • In various embodiments, the present invention provides a pollution abatement system comprising a combustion source 'this combustion source produces' a fluid stream having at least one air pollution selected from the group consisting of sulfur oxides, nitrogen The group of oxides and carbon dioxide, the air pollutants present in the fluid flow towel have an initial content. The pollution reduction system comprises a packed bed reactor having an inlet for receiving a stream of fluid and an outlet. The packed bed reactor further has at least one reaction chamber, and the reaction chamber contains a solid particle material having a uniform particle size of about G25 to 12 filaments. The im surface material rhyme is composed of a blended (four) component and a scale weave (iv) and the molten component has at least one active weiwei. The reaction chamber has a volume that provides sufficient residence time, and (iv) the amount of air contaminant reduction is removed relative to the initial level by at least about 20% removal efficiency. The compound "having as described above" means an active acid salt. In addition, the present invention relates to any particular theory in which the oxidation in a fluid stream may simultaneously act with at least one type of contaminant (sulfur oxide (s〇x), nitrogen oxides (NOX). And/or carbon dioxide (C〇2) reacts. The following reaction mechanisms may occur between solid particulate matter and carbon dioxide: the fluid stream exiting the combustion source contains water vapor, and the carbon dioxide is at a basic pH. The carbonate anion is formed in the environment, and the carbonate anion reacts with the calcium ion present in the active citrate to form calcium carbonate. The alkalinity of the environment is believed to drive the reaction of carbon dioxide with calcium oxide and citrate, and It is further believed that it tends to form an active citrate product in the depleted solid particles. The depleted solid particulate material still contains active bismuth salts and a sufficient amount of alkali metal ions, which is sufficient for the alkali metal ions. Helps maintain the acid value. The carbonation reaction reduces the pH of the solid particulate matter (toward a more neutral state). The ingredients may be used to adjust the pH. The above are merely illustrative and are not intended to limit the invention. Please refer to "Fig. 3" and "Fig. 4" again, after the fluid stream 112 leaves the packed bed reactor 114, at least one Air pollution control equipment (air p〇iiuti〇nc〇ntr〇i 50 200918153 devices 120; APCDs) 120 further processes this fluid stream 112. In addition to sulfur oxides (SOX), nitrogen oxides (Ν〇χ), and / In addition to carbon dioxide (C〇2), the fluid stream contains at least one other contaminant. For example, in addition to sulfur oxides, nitrogen oxides, and/or carbon dioxide, from boilers, brick kilns, furnaces, and incinerators General air pollutants found in carbon monoxide, hydrogen acid, chlorofluorocarbons, particulate matter, volatile organic compounds, aerosol compounds, mercury, lead, ammonia, ozone, combinations of % and above, and equivalents thereof. In some embodiments, the packed bed reactor 114 may be adapted to incidentally remove such other contaminants as described above, however, as shown in "Fig. 3", it may be expected to be attached to the downstream air. Control Equipment (APCDs) 120a 'Requires the reduction of one or more other contaminants to acceptable concentrations. Typical imitative air pollution control equipment 12〇 includes electrostatic precipitators, bag filters, cyclones, active Carbon dust collector, flue gas desulfurization dust collector, thermal storage oxidation furnace, pressure swing adsorption device, selective catalytic reactor, selective non-catalytic reactor, etc. As shown in Figure 4, in a specific implementation In the example, before the fluid stream 112 enters the packed bed reactor 114, the pollution removal system further includes at least one air pollution control device 120a, 120b for pretreating the fluid stream 112. Therefore, any solid particulate matter Produce a hazard or produce an unwanted reaction' or other filth that would rot or damage hardware equipment can be secreted. After the helium stream 112 is treated and/or processed by the (four) filament reactor 114 and the empty rolling contamination control device i2〇a, the fluid stream H2 is directed to the flue 122 and discharged to the atmosphere. In a specific example, the present invention provides a method of reducing sulfur oxide (SOX), nitrogen oxides (NOX), and carbon dioxide (C02) emissions from cement manufacturing facilities. It includes reacting cement manufacturing materials (sources of #弓, 石夕, Ming, and iron) in a brick kiln to produce clinker and fluid streams containing sulfur oxides, nitrogen oxides, and carbon dioxide. At least a portion of the fluid stream is contacted with a solid particulate material which is the solid particulate material of the preceding embodiments; producing a product which comprises calcium carbonate and/or calcium sulfate. Any of the procedures in the previously described embodiments may be suitable for use in the present embodiment, for example, fluid flow and solid particulate matter < 'before contact' fluid flow may be treated via at least one air pollution control device to move In addition to at least one air pollutant. Limestone (ie calcium carbonate) is the raw material used in the manufacture of lime and cement. Similarly, gypsum (i.e., calcium sulfate) is ground together with Portland cement clinker to form Portland cement. In one embodiment, the product comprises calcium carbonate or barium sulfate to aid in its reuse as a raw material for the production of clinker and/or lime. Therefore, the carbon gorge produced by the cement f is subsequently combined with this to produce clinker, or calcium sulfate is combined with clinker to produce cement. * This method of riding can reduce the sulfur oxides (s〇x), nitrogen oxides (4), and oxidation from cement and/or lime manufacturing equipment, as well as iron and/or steelmaking equipment. Slave (032). The method includes contacting at least a portion of the fluid stream with a solid particulate material comprising sulfur oxides (s〇x), nitrogen oxides (10), and oxy- sulphur (), which are produced in ironmaking and / or steelmaking process m furnace can be any of the previously described slag sources - such as furnaces, such as blast furnace (iron ore processing), flat _ processing, tempering oxidizing furnace (steel processing), or electric arc furnace ( Steel processing). Solid particulate matter package 52 200918153 Contains binder components and slag components, unlike binder components. The product contains the produced carbonated acid which can be reused as a raw material in an industrial process. In other embodiments, the present invention provides a method of reducing sulfur oxides (SOX), nitrogen oxides (NOX), and carbon dioxide (c〇2) emitted from a hydrocarbon combustion source, such as a hydrocarbon combustion source such as Power plant boiler or incinerator. Hydrocarbon combustion sources contain a source of fixed points 'which are formed by the combustion of hydrocarbons, sulfur oxides, nitrogen oxides, and oxidized >5, which are sources of combustion that contain fossil fuels (such as media). , methane), synthetic fuels (such as petroleum coke, syngas, ethanol), or other types of hydrocarbon equipment. The method includes contacting at least a portion of the fluid stream with a solid particulate material comprising sulfur oxides, nitrogen oxides, and carbon dioxide produced by combustion of the fossil fuel. The solid particulate material is any of those previously described. The product, comprising calcium carbonate and/or calcium sulfate, can be reused as a raw material in an industrial process. The various embodiments of the present invention have been described above, and the description of the following examples is illustrative and not intended to limit the embodiments. Example 1 solid-% particulate matter by blending 10% by weight of Type 3 Portland cement (except for fineness of grinding to produce early strength ranging from 320 to 670 m2/g (m ^ 2 / gram) Blanc In addition to the fineness (Blaine fineness), its chemical and physical properties are similar to those of Type 1 Portland cement; of which, the early strength is generally greater than about 45 〇m2/g of Blanc fineness) and 90% by weight of slag is not recorded. And forming a mixture; adding 3% by weight of water in the mixture (63% slag under wet basis and 7% Portland cement " 53 200918153 until the formation of spherical particles, and having about 2 to An average particle diameter of 6 mm. The solid particulate material is placed in a packed bed reactor having a reaction bed divided into three stages. The packed bed reactor has a diameter of 8 inches (about 20 cm). The length is approximately 3 inches (91 cm). The reaction bed is installed at a height of approximately 2.5 inches (approximately % centimeters). Operation of a fuel furnace produces a fluid flow having a flow rate of approximately 41,000 cubic feet per minute. Flow rate and contains sulfur oxides (SOX), nitrogen oxides (NOX) And carbon dioxide. The temperature at which the fluid stream enters from the inlet of the packed bed reactor is about 323 °F (about 162 °C). It leaves the packed bed reactor relative to the fluid stream at the inlet of the packed bed reactor. In the fluid stream, the concentration of sulfur oxides is reduced by about 85 weight percent (ie, every 100 grams of sulfur oxides enters the packed bed reactor, after which only 15 grams of sulfur oxide remains in the fluid stream exiting the packed bed reactor), Nitrogen oxides are reduced by about 25%, while carbon dioxide is reduced by about 31 〇/〇. In various embodiments, the present invention provides a method of recycling industrial by-products. This industrial by-product is discarded and stacked elsewhere. Or, in the case of a burial, for example, in a specific embodiment, a method for recycling industrial by-products is provided. The solid particulate material is formed by blending a first manufacturing component and a second manufacturing component. The first manufacturing component is a slag component having at least one active phthalate compound. The second component is a binder component, and the binder component is a waste liquid such as molasses. A fluid stream produced in an industrial process, the fluid stream comprising sulfur oxides, nitrogen oxides, and carbon dioxide, and the fluid stream is in contact with the solid particulate matter at a later time to produce a product comprising a deacidified mother and/or sulfuric acid. Ma, and 54 200918153 may be beneficially reused in industrial processes. In some embodiments, after the solid particulate material is contacted with the fluid stream and after the product is produced, the solid particulate material is depleted and at least a portion is depleted The solid particulate material can be recycled in an industrial manufacturing process. In this way, the method disclosed by the present invention provides a solution for further sustainable development, which includes the current growth and development needs for future generations and the protection of natural and man-made environments. A balance is struck between needs. Moreover, the method and system provided by the present invention are used to reduce sulfur oxides, nitrogen oxides 'and/or carbon dioxide' emitted by different fixed-point sources at low temperatures, in addition to reducing greenhouse gas emissions, and providing these fixed points. Sources can comply with non-regulations, to meet economic and commercial benefits through a carbon dioxide emissions trading system, and to reduce the potential corrosiveness and inefficiency of sulfur oxides, nitrogen oxides, and/or carbon dioxide in fluid wipes. Companion. While the present invention has been described above with reference to the above, it is not intended to limit the present invention, and any skilled artisan may make some modifications and refinements without departing from the spirit and scope of the present invention. The scope of protection shall be subject to the definition of the scope of the patent application attached to this specification. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a discharge reduction system having a packed bed reactor in a consistent embodiment of the present invention; FIG. 2 is a partial cross-sectional view showing a packed bed reactor in an embodiment of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 4 is a schematic flow chart of a specific embodiment of the present invention; and FIG. 5 is a schematic diagram of a discharge reduction system with a packed bed reactor according to an embodiment of the present invention. . [Main component symbol description] 10 Packing tower 100 Combustion source 112 Fluid stream 114 Packed bed reactor 12 Inlet 120a Air pollution control equipment 120b Air pollution control equipment 122 Flue 13 External reaction chamber 14 Internal reaction chamber i • 16 Reaction bed 20 Solid state Particulate matter 200 reactor 202 internal reaction chamber 204 reaction chamber 206 reaction chamber 208 bypass valve 56 200918153 210 solid particulate matter 22 filled medium body 26 outlet

5757

Claims (1)

200918153 十、申請專利範圍: 1. 包括: ’該流體流包含一硫氧化 一種減少燃燒源產生之污染之方法, 提供自一燃燒源離開之一流體流 物; 提供一固態材料,該固態材料係藉由摻合-稼逢成八及一 黏結劑成分而形成,且t魄渣成分具有至少—活性石夕酸^化合 物;以及 1 σ 令該流體流與該固態材料相接觸; 其中,該流體流與該固態材料接觸前,該流體流之溫度至 多約60(TF ’並且’相對於該流體流與關材料接觸前,該流 體流之該硫氧化物的起始含量,該流體流與該_材料接觸 後,该流體流之該硫氧化物的移除效率為至少約7〇〇/〇。 2. 如請求項1所述之減少燃燒源產生之污染之方法,更包含監測 該流體流與_態材料接觸前及接觸後,該硫氧化物之含量。 3. 如請求項1所述之減少燃燒源產生之污染之方法,其中該黏結 劑成分係選自於由波特蘭水泥、水泥熟料、糖蜜、關華膠、及 澱粉所組成之族群其中之一或其組合所組成之族群。 4·如請求項1所述之減少燃燒源產生之污染之方法,其中該熔渣 成分係選自於由碳渣、爐渣、及鋼渣所組成之族群其中之一或 其組合所組成之族群。 5.如請求項1所述之減少燃燒源產生之污染之方法,其中該溶渣 58 200918153 成分係選自於由氣冷高爐渣、球狀高爐渣、高爐石粉、有孔及 /或球狀尚爐渣、鹼性氧氣爐鋼渣、平爐鋼渣、及電弧爐鋼渣所 組成之族群其中之一或其組合所組成之族群。 6. 如請求項1所述之減少燃燒源產生之污染之方法,其中該固態 材料更包g弟二成分,且該第三成分包含一氧化J弓來源及一 鹼金屬離子來源。 7. 如明求項1所述之減少燃燒源產生之污染之方法,其中該固態 材料包含複數個顆粒,且該等顆粒具有約〇25毫米至約12毫 米之平均粒度直徑。 8. 如請求項7所述之減少燃燒源產生之污染之方法,其中該流體 流與該固態材料係於一填充床反應器中相接觸。 9. 如請求項8所述之減少燃燒源產生之污染之方法,其中該流體 流與該固態材料相接觸時’該填充床反應器之入口與該填充床 反應器之出口之間的壓力差,至多約250帕。 10. 如請求項1所述之減少燃燒源產生之污染之方法,更包含回收 首次與該固態材料接觸之該流體流,並令該流體流與該固態材 料再次接觸,用以移除更多量之硫氧化物。 11. 如請求項1所述之減少燃燒源產生之污染之方法,其中該固態 材料包含複數個顆粒,且該等顆粒具有約丨毫米至約6毫米之 平均粒度直徑。 12. 如请求項1所述之減少燃燒源產生之污染之方法,其中該固態 59 200918153 材料中,該熔渣成分及該黏結劑成分之比例,在乾量基準下約 為6比1至99比卜 13.如請求項丨所述之減少燃燒源產生之污染之方法,其中推合該 炼邊成分與該黏結劑成分係包含與水掺合。 .14·如請求項丨所述之減少燃燒源產生之污染之方法,其_該流體 流與該固態材料接觸後,更減少至少一污染物,該污染物係選 f 自於由—氧化&及氮氧化騎組成之族群,且該赫流與該固 態材料接觸後,該污染物之移除效率至少約2〇%。 15.如請求項14所述之減少缝誠生之污染之方法,其中該流 體流與姻態材料接觸後,更減少一第三空氣污染物,該第三 空氣污染物係選自於由—氧化破、氟氯碳化物、氫氯酸、微粒 物質、揮發性有機化合物、氣溶膠化合物、水銀、船、氨、以 及臭氧所組成之族群。 (16.如請求項!所述之減少燃燒源產生之污染之方法,其中該固態 材料在乾畺基準下所含有之該熔渣成分約為8〇至重量百分 - 比,以及該黏結劑成分約為3至20重量百分比。 17.如睛求項1所述之減少燃燒源產生之污染之方法,其中該流體 机係產生於由鋼爐、熔爐、焚化爐、水泥磚窯、及石灰磚窯所 組成之族群其中之一或其組合所組成之族群。 8.如明求項1所述之減少燃燒源產生之污染之方法,其中該流體 心與该固態材料接觸前’該流體流之溫度約介於275叩至 60 200918153 450叩。 19. 如請求項1所述之減少燃燒源產生之污染之方法,其中該流體 流與該固態材料接觸後,該流體流之該硫氧化物的移除效率為 至少約80%。 20. —種減少燃燒源產生之污染之方法,包括: * 提供自—輯_開之m該缝流包含—氮氧化 物; 提供-固騎料,該___由摻合—驗成分及一 黏結劑成分而形成,且該炼造成分具有至少一活性石夕酸鹽化合 物;以及 令δ亥流體流與該固態材料相接觸; 其中’該流體流與該固態材料接觸前,該流體流之溫度低 於約_〇F ’ ϋ且,相對於該流體流與關材料接觸前,該流 體流之該氮氧化_起始含量,職體流與該㈣材料接觸 ,後’該流體流之該氮氧化物的移除效率為至少約2〇%。 .21.如請求項20所述之減少燃燒源產生之污染之方法,更包含監 測該流體流__材料接觸前及接觸後,該氮氧化物之含 量。 22.如請求項20所述之減少燃燒源產生之污染之方法,其中該黏 結劑成分係選自於由波特蘭水泥、水泥熟料、糖蜜、關華膠、 及殿粉所組成之族群其中之—或其組合所組成之族群。 61 200918153 23·如請求項20所述之減少燃燒源產生之污染之方法,其中爷熔 渣成分係選自於由碳渣、爐渣、及鋼渣所組成之族群其中之一 或其組合所組成之族群。 24. 如請求項2〇所述之減少燃燒源產生之污染之方法,其中★亥熔 渣成分係選自於由氣冷高爐渣、球狀高爐渣、高爐石粉、有孔 及/或球狀高爐渣、驗性氧氣爐鋼渣、平爐鋼造、及電弧爐鋼渣 所組成之族群其中之一或其組合所組成之族群。 25. 如請求項2G所述之減少職源產生之污染之方法,其中該固 態材料更包含-第三成分,且該第三成分包含—氧化舞來源及 一鹼金屬離子來源。 26·如請求項2〇所述之減少燃燒源產生之污染之方法,其中該固 態材料包含複數個顆粒,且該等顆粒具有約0.25毫米至約12 毫米之平均粒度直徑。 27. 如請求項26所述之減少輯源產生之污染之方法,其中該流 體流與該固態材料係於一填充床反應器中相接觸。 28. 如請求項27所述之減少職源產生之污染之方法,其中該流 體抓與顧恶材料相接觸時,該填充床反應器之人口與該填充 床反應器之出口之間的壓力差,至多約為25〇帕。 29_如凊求項20所述之減少燃燒源產生之污染之方法,更包含回 收首人…玄固態材料接觸之該流體流,並令該流體流與該固態 材料再次接觸,用以移除更多量之氮氧化物。 62 200918153 30. 如請求項20所述之減少燃燒源產生之污染之方法,其中該固 態材料包含複數個顆粒,且該等顆粒具有約丨毫米至約6毫米 之平均粒度直徑。 ^ 31. 如請求項20所述之減少燃燒源產生之污染之方法,其中該固 ,祕料中,該炼渣成分及該黏結劑成分之比例,在乾量基準下 約為6比1至99比1。 32. 如請求項20所述之減少燃燒源產生之污染之方法,其中推合 該熔渣成分與該黏結劑成分係包含與水摻合。 33. 如請求項20所述之減少燃燒源產生之污染之方法,其中該固 態材料在乾量基準下所含有之該熔渣成分約為80至97重量百 分比,以及該黏結劑成分約為3至20重量百分比。 34. 如請求項2〇所述之減少職源產生之污染之方法,其中該流 體流與該固態材料接觸後,更減少至少一污染物,該污染物係 it自料二氧化碳及硫氧化騎城之族群,且财體流與該 '固態材料接觸後,該污染物之移除效率至少約20¾。 .35,如請求項34所述之減少燃燒源產生之污染之方法,其中該流 體流與該固態材料接觸後,更減少一第三空氣污染物,該第三 空氣巧染物係選自於由—氧化碳、氟氯碳化物、氫紐、微粒 物資、揮發性有機化合物、氣溶膠化合物、水銀、錯、氨、以 及臭氧所組成之族群。 36.如5月求項2〇所述之減少燃燒源產生之污染之方法,其中該流 63 200918153 體抓係產生於由锅爐、炼爐、焚化爐、水泥碑窯、及石灰碑熏 所組成之族群其中之一或其組合所組成之族群。 如請求項20所述之減少概騎生之污染之方法,其中該流 體流與該固態材料接觸前,該流體流之溫度約介於275〇p至 45〇°F。 见如請求項1所述之減少燃燒源產生之污染之方法,其中該流體 流與該固態材料接觸後,該流體流之該氮氧化物的移除效率為 至少約25%。 39·—種減少燃燒源產生之污染之方法,包括: 提供自一燃燒源離開之—流體流,該流體流包含一空氣污 染物,且該空氣污染物包含硫氧化物、氮氧化物、及二氧化碳; 提供-固態材料’該固態材料係藉由摻合一炼渣成分及一 黏結劑成分而形成,且該炫渣成分具有至少一活性石夕酸鹽化合 物;以及 令该流體流與該固態材料相接觸; 其中,該流體流與_態材料接觸前,該麵流之溫度至 多約_°F ’並且’相對於該流體流與_材料接觸前,該流 體流之該找污_的起始含量,概财__材料接觸 後,該流體流之该空氣污染物的移除效率為至少約概。 40.如請求項39所述之減少燃燒源產生之污染之方法,更包含監 測該流體流與該固態材料接觸前及接觸後,該空氣污染物之含 64 200918153200918153 X. Patent application scope: 1. Included: 'The fluid stream comprises a sulfur oxidation method for reducing pollution from a combustion source, providing a fluid flow away from a combustion source; providing a solid material, the solid material system Formed by blending - Jiafeng into eight and a binder component, and the t-slag component has at least - active rock compound; and 1 σ causes the fluid stream to contact the solid material; wherein the fluid The temperature of the fluid stream is at most about 60 (TF ' and before the stream is contacted with the solid material, and the initial content of the sulfur oxide of the fluid stream before the fluid stream contacts the material, the fluid stream After the material is contacted, the sulfur oxide removal efficiency of the fluid stream is at least about 7 〇〇 / 〇 2. The method of reducing the pollution generated by the combustion source as described in claim 1 further comprises monitoring the fluid flow The method of reducing the amount of sulfur oxides produced before and after contact with the _ state material. 3. The method of claim 1, wherein the binder component is selected from Portland cement. a group consisting of one of a group consisting of cement clinker, molasses, Guanhua gum, and starch, or a combination thereof. 4. The method of reducing pollution caused by a combustion source according to claim 1, wherein the slag The component is selected from the group consisting of one of a group consisting of carbon residue, slag, and steel slag, or a combination thereof. 5. The method of claim 1, wherein the slag is reduced by a combustion source. 58 200918153 The composition is selected from the group consisting of air-cooled blast furnace slag, spherical blast furnace slag, blast furnace stone powder, perforated and/or spherical slag, basic oxygen furnace steel slag, open hearth steel slag, and electric arc furnace steel slag. A method of reducing the pollution produced by a combustion source according to claim 1, wherein the solid material further comprises a component of the second component, and the third component comprises a source of oxidized J and 7. A method of reducing the pollution produced by a combustion source according to claim 1, wherein the solid material comprises a plurality of particles, and the particles have an average of from about 25 mm to about 12 mm. 8. The method of claim 7, wherein the fluid stream is contacted with the solid material in a packed bed reactor. 9. The reduction as claimed in claim 8 A method of causing contamination by a combustion source, wherein the pressure difference between the inlet of the packed bed reactor and the outlet of the packed bed reactor when the fluid stream is in contact with the solid material is up to about 250 Pa. The method of reducing pollution caused by a combustion source according to Item 1, further comprising recovering the fluid flow in contact with the solid material for the first time, and contacting the fluid flow with the solid material to remove a larger amount of sulfur oxidation. 11. The method of claim 1, wherein the solid material comprises a plurality of particles, and the particles have an average particle size diameter of from about 丨 mm to about 6 mm. 12. The method of claim 1, wherein the ratio of the slag component to the binder component is about 6 to 1 to 99 on a dry basis. A method of reducing contamination by a combustion source as recited in claim 1, wherein the blending of the refining component and the binder component comprises blending with water. .14. The method of reducing pollution caused by a combustion source as claimed in claim 1, wherein the fluid stream is further reduced in contact with the solid material by at least one contaminant selected from the group consisting of - oxidation & And a group of nitrogen oxide rides, and the removal efficiency of the contaminant is at least about 2% after contact with the solid material. 15. The method of claim 14, wherein the fluid stream is contacted with the parent material to reduce a third air pollutant selected from the group consisting of - A group of oxidized, chlorofluorocarbons, hydrochloric acid, particulate matter, volatile organic compounds, aerosol compounds, mercury, ships, ammonia, and ozone. (16) The method of reducing pollution caused by a combustion source, wherein the solid material has a slag composition of about 8 Torr to a weight percent ratio on a dry basis, and the binder The composition is about 3 to 20 weight percent. 17. The method of reducing pollution caused by a combustion source according to claim 1, wherein the fluid machine is produced from a steel furnace, a furnace, an incinerator, a cement brick kiln, and a lime brick kiln. 8. A method comprising one or a combination of the group consisting of 8. The method of reducing pollution caused by a combustion source according to claim 1, wherein the temperature of the fluid stream before contacting the fluid core with the solid material A method of reducing contamination by a combustion source as described in claim 1 wherein the fluid stream is displaced by the sulfur oxide after the fluid stream is contacted with the solid material The efficiency is at least about 80%. 20. A method for reducing pollution caused by a combustion source, comprising: * providing a self-sequence_opening m the slit flow comprising - nitrogen oxides; providing - solid riding material, the __ _ by blending - test ingredients and one Forming a binder component, and the smelting component has at least one active silicate compound; and contacting the δ HAI fluid stream with the solid material; wherein 'the fluid stream flows before contacting the solid material The temperature is lower than about 〇F' ϋ and the nitrogen oxidation_starting content of the fluid stream is contacted with the (iv) material before the fluid stream is contacted with the shut-off material, and then the fluid stream is The nitrogen oxide removal efficiency is at least about 2%. The method of reducing the pollution generated by the combustion source according to claim 20, further comprising monitoring the fluid stream before and after contacting the material. 22. The method of claim 20, wherein the binder component is selected from the group consisting of Portland cement, cement clinker, molasses, Guanhua gum, and a temple. 61. The method of claim 20, wherein the slag component is selected from the group consisting of carbon residue, slag, and the combination thereof. And steel slag A group consisting of one or a combination thereof. 24. A method of reducing pollution from a combustion source as claimed in claim 2, wherein the component of the slag is selected from the group consisting of air-cooled blast furnace slag, spherical a group consisting of one of or a combination of blast furnace slag, blast furnace stone powder, perforated and/or spherical blast furnace slag, oxygenated furnace steel slag, open hearth steel, and electric arc furnace steel slag. 2G. The method of reducing pollution caused by a job source, wherein the solid material further comprises a third component, and the third component comprises a source of oxidized dance and a source of an alkali metal ion. 26 as described in claim 2 A method of reducing contamination by a combustion source, wherein the solid material comprises a plurality of particles, and the particles have an average particle size diameter of from about 0.25 mm to about 12 mm. 27. The method of claim 26, wherein the fluid stream is contacted with the solid state material in a packed bed reactor. 28. The method of claim 23, wherein the pressure difference between the population of the packed bed reactor and the outlet of the packed bed reactor is when the fluid is contacted with the material. , up to about 25 〇pa. 29_ The method of reducing pollution caused by a combustion source as described in claim 20, further comprising recovering the fluid flow contacted by the first person... the solid material, and bringing the fluid flow into contact with the solid material again for removal More amount of nitrogen oxides. The method of claim 20, wherein the solid material comprises a plurality of particles, and the particles have an average particle size diameter of from about 丨 mm to about 6 mm. ^ 31. The method of claim 20, wherein the ratio of the slag component to the binder component is about 6 to 1 on a dry basis. 99 to 1. 32. The method of claim 20, wherein the slag component and the binder component are blended with water. 33. The method of claim 20, wherein the solid material has a slag composition of about 80 to 97 weight percent on a dry basis and the binder component is about 3 Up to 20 weight percent. 34. The method of claim 2, wherein the fluid stream is contacted with the solid material to reduce at least one pollutant, the pollutant is a carbon dioxide and sulfur oxidation riding city The population has a removal efficiency of at least about 203⁄4 after contact with the 'solid material'. The method of claim 34, wherein the fluid stream is contacted with the solid material to reduce a third air pollutant, the third air coloring agent being selected from the group consisting of - Groups of carbon oxides, chlorofluorocarbons, hydrogen hydrides, particulate matter, volatile organic compounds, aerosol compounds, mercury, malodor, ammonia, and ozone. 36. The method of reducing pollution caused by a combustion source as described in the item 2 of May, wherein the stream 63 200918153 is produced by a boiler, a furnace, an incinerator, a cement kiln, and a limestone smoked house. A group consisting of one or a combination of the constituent ethnic groups. A method of reducing pollution by riding as described in claim 20, wherein the fluid stream has a temperature of between about 275 〇p and 45 〇F before contacting the solid material. See the method of claim 1 for reducing contamination by a combustion source, wherein the fluid stream has a nitrogen oxide removal efficiency of at least about 25% upon contact with the solid material. 39. A method of reducing pollution from a combustion source, comprising: providing a fluid stream exiting a combustion source, the fluid stream comprising an air pollutant, and the air pollutant comprises sulfur oxides, nitrogen oxides, and Carbon dioxide; providing - solid material 'the solid material is formed by blending a slag component and a binder component, and the slag component has at least one active silicate compound; and the fluid stream and the solid Contacting the material; wherein, before the fluid flow contacts the _state material, the temperature of the surface flow is at most about _°F′ and 'the smear of the fluid flow relative to the fluid flow before contacting the _ material The initial content, the amount of money __ after the material is contacted, the removal efficiency of the air pollutant of the fluid stream is at least approximately. 40. The method of reducing pollution from a combustion source as recited in claim 39, further comprising monitoring the fluid contaminant before and after contact with the solid material 64 200918153 ο 41. 如請求項39所述之減少燃燒源產生之污染之方法,更包含回 收首次與該固態材料接觸之該流體流,並令該流體流與該固態 材料再次接觸,用以移除更多量之空氣污染物。 42. —種污染減量系統,包含: 一燃燒源’該燃燒源產生-流體流,且該流體流包含至少 -空氣污染物,該空氣污染物係選自於由硫氧化物、氮氧化 物、及二氧化碳所組成之族群,且該空氣污染物於該流體流中 具有一起始含量;以及 一填充床反應器,該填充床反應器具有一入口,用以接收 該流體流、-出π、及至少—反應室,該反應室包含複數個固 態顆粒物質’且該等固態顆粒物質具有約⑽毫米至約η毫 米之平均粒度直徑,其中,該固態顆粒物質係藉由推合一炼= 成分及一黏結劑成分而形成,且該炫渣成分具有至少一、、舌性石夕 酸鹽; 其中,該反應室具有-容積,該容積係用以提供該流體流 與該固態顆粒物質接觸於該反應室中之一充足的滞留時間,且 相對於該线污染物之該起始含量,該充足的滯留時間提供至 少20%之§亥空氣污染物之移除效率。 43·如請求項42所述之污染減量系統,其中該反應室容設有一替 換匣,該替換匣包含該等固態顆粒物質。 65 200918153 44.如請求項42所述之污誠量线,其巾觀魅包含複數個 階層。 45·如請求項42所狀污染減量祕,其巾轉絲反應器包含 至少二反應室,其中,於操作時該等反應室其中之一為一活化 的反應室,係用以接收該流體流,而該等反應室其中之另一則 為-去活化的反應該流體流於操作時係流通於該活化 的反應室。 46·如請求項42所述之污染減量系統,其中該驗成分包含不錄 鋼逢,該麟舰分包含波錢及/或水泥熟料。 47. 如請求項42所述之污染減量系統,其中該流體流與該固態顆 粒物質接觸前之溫度至多約600〇F。 48. 々明求項42所述之污錢量线,其巾該流體流包含硫氧化 物、氮氧化物、及二氧化碳。 ^求員42所述之污誠量系統,其巾該空氣污染物包含一 /匕物且相對於该硫氧化物之該初始含量,該填充床反應 器具有至少'約70%之該硫氧化物之移除效率。 h 42所述之污染減量系統,其中該空氣污染物包含- 氧化物’且該填充床反應器具有至少約80%之該硫氧化物之 移除效率。 51.如請求項们&、丄 、z所述之污染減量系統,其中該空氣污染物包含一 二氧化石山, 灭’且相對於該二氧化碳之該初始含量,該填充床反應 66 200918153 器具有至少約20%之該硫氧化物之移除效率。 52. 如請求項42所述之污_量系統,其巾該空氣污染物包含〆 氮氧化物’且㈣於魏氧化物之該補含量,該填充床反應 器具有至少約20%之該氮氧化物之移除效率。 53. —種減少燃燒源產生之污染之方法,包括: 導引自-燃燒源產生之-流體流進人—填絲反應器,其 中,該流體流之溫度至多約6WF,且該流體流更包含至少一 空氣污染物之初始含量,該空氣污染物係選自於由硫氧化物、 氮氧化物、及二氧化碳所組成之族群,該填充床反應器具有一 入口,用以接收該流體流、—出口、及至少一反應室,該反應 室包含有複數個固態顆粒物質’該等固態顆粒物質具有約〇 ^ 毫米至約U毫米之平均粒度直徑,該等固態顆粒物質係藉由 摻合一熔渣成分及一黏著劑成分而形成,且該熔渣成分包含至 少一活性矽酸鹽化合物; 令該流體流與該固態顆粒物質相接觸;以及 當該流體流離開該填充床反應器後,監測該流體流中至少 一空氣污染物的含量; 其中’相對於該空氣污染物之初始含量’該流體流離開該 填充床反應器後,該流體流之該空氣污染物減少20%的含量。 54. 如請求項53所述之減少燃燒源產生之污染之方法,其中該固 態顆粒物質裝設於一替換匣中’該替換匣係放置於該反應室。 67 200918153 55. 如請求項53所述之減少燃燒源產生之污染之方法,其中該入 口及該出口之間具有一壓力差,該壓力差約為25〇帕。 56. 如請求項53所述之減少燃燒源產生之污染之方法,其中該流 體流之溫度介於約275°F至約450oF。 57. 如請求項53所述之減少燃燒源產生之污染之方法,其中該黏 結劑成分包含波特蘭水泥、水泥熟料、糖蜜、關華膠、及/或澱 粉。 58. 如請求項53所述之減少燃燒源產生之污染之方法,其中該熔 渣成分包含碳渣、爐渣、及/或鋼渣。 59. 如請求項53所述之減少燃燒源產生之污染之方法,其中於該 流體流與該填充床反應器之該入口之間,更包含至少一空氣污 染防治設備,其中,於該流體流進入該填充床反應器之前,藉 由該空氣污染防治設備處理該流體流。 60·如請求項53所述之減少燃燒源產生之污染之方法,其中於該 流體流與該填充床反應器之該出口之間,更包含至少一空氣污 染防治設備,其中,於該流體流離開該填充床反應器之後,藉 由該空氣污染防治設備處理該流體流。 61. 如請求項53所述之減少燃燒源產生之污染之方法,更包含回 收首次與該固態顆粒物質接觸後之該流體流,並令該流體流與 該固態顆粒物質再次接觸,用以移除更多量之該空氣污染物。 62. —種減少燃燒源產生之污染之方法,包括: 68 200918153 監測至少一污染物之起始含量,該污染物係存在於一燃燒 源所產生之一流體流中,且該污染物係選自於由硫氧化物、氮 氧化物及二氧化碳所組成之族群; 於該流體流之溫度至多約6〇〇叩時,將該流體流導引進入 一填充床反應器中,用以減少該污染物的含量,其中,該填充 床反應器具有至少一反應室,該反應室包含複數個固態顆粒物 質,該等固態顆粒物質具有約0.25毫米至約12毫米之平均粒 度直徑,該等固態顆粒物質係藉由摻合一熔渣成分及一黏結劑 成为而形成,且該溶邊成分包含至少一活性石夕酸鹽化合物,其 中,離開於該填充床反應器之該流體流中,該污染物的含量減 少;以及 该流體流離開該填充床反應器後,監測該流體流之該污染 物的含量。 63.如請求項62所述之減少燃燒源產生之污染之方法,其中該反 應室包含一替換匣’該替換含有複數個固態顆粒物質,其中減 少該污染物的含量,更包括當監測發現離開該填充床反應器之 該流體流中’該污染物的含量超過一預定程度時,利用一新的 替換匣置換一耗盡的固態顆粒物質。 64‘如請求項62所述之減少燃燒源產生之污染之方法,更包含檢 測離開該填充床反應器之該流體流中,硫氧化物、氮氧化物或 二氧化碳的含量’使相對於進入該填充床反應器之該流體流’ 69 200918153 具有20%的移除效率。 65.如請求項62所述之減少燃燒源產生之污染之方法,更包含回 收離開該填充床反應器之該流體流,用以移除更多量之該空氣 污染物。 C 70ο 41. The method of claim 39, wherein the method of reducing contamination by a combustion source further comprises recovering the fluid stream that is first contacted with the solid material and re-contacting the fluid stream with the solid material for removal. A large amount of air pollutants. 42. A pollution reduction system comprising: a combustion source 'the combustion source generates a fluid flow, and the fluid flow comprises at least - an air pollutant selected from the group consisting of sulfur oxides, nitrogen oxides, And a population of carbon dioxide, and the air pollutant has an initial content in the fluid stream; and a packed bed reactor having an inlet for receiving the fluid stream, - π, and at least a reaction chamber comprising a plurality of solid particulate materials ' and the solid particulate materials having an average particle size diameter of from about (10) millimeters to about η millimeters, wherein the solid particulate matter is controlled by a composition = a component and a Forming a binder component, and the dashed component has at least one, a lingual acid salt; wherein the reaction chamber has a volume for providing the fluid stream in contact with the solid particulate material in the reaction A sufficient residence time in one of the chambers, and the sufficient residence time provides at least 20% removal of the air pollutants relative to the initial content of the line of contaminants Rate. 43. The pollution abatement system of claim 42, wherein the reaction chamber contains a replacement crucible comprising the solid particulate material. 65 200918153 44. The stain line as described in claim 42 contains a plurality of classes. 45. The waste reduction reactor of claim 42 comprising at least two reaction chambers, wherein one of the reaction chambers is an activated reaction chamber for receiving the fluid flow during operation And the other of the reaction chambers is a deactivated reaction. The fluid stream is circulated to the activated reaction chamber during operation. 46. The pollution abatement system of claim 42, wherein the component comprises a non-recorded steel, and the lining contains a wave of money and/or cement clinker. 47. The pollution abatement system of claim 42, wherein the temperature of the fluid stream prior to contact with the solid particulate material is at most about 600 F. 48. The dirt metering line of claim 42, wherein the fluid stream comprises sulfur oxides, nitrogen oxides, and carbon dioxide. The method of claim 42, wherein the air pollutant comprises a substance and the initial level of the sulfur oxide has at least '70% of the sulfur oxidation relative to the initial content of the sulfur oxide. The efficiency of removal of objects. The pollution abatement system of h42, wherein the air pollutant comprises -oxide' and the packed bed reactor has at least about 80% removal efficiency of the sulfur oxide. 51. The pollution reduction system of claim &, 丄, z, wherein the air pollutant comprises a rock dioxide mountain, and the initial level of the carbon dioxide is relative to the initial content of the carbon dioxide, the packed bed reaction 66 200918153 has At least about 20% of the sulfur oxide removal efficiency. 52. The soil system according to claim 42, wherein the air pollutant comprises niobium oxynitride and (iv) the supplemental content of the WE oxide, the packed bed reactor having at least about 20% of the nitrogen Oxide removal efficiency. 53. A method of reducing pollution from a combustion source, comprising: directing a fluid generated from a combustion source into a human-filler reactor, wherein the temperature of the fluid stream is at most about 6 WF, and the fluid flow is more Including an initial content of at least one air pollutant selected from the group consisting of sulfur oxides, nitrogen oxides, and carbon dioxide, the packed bed reactor having an inlet for receiving the fluid stream, An outlet, and at least one reaction chamber, the reaction chamber comprising a plurality of solid particulate materials having a mean particle size diameter of from about 〇^ mm to about U mm, the solid particulate material being melted by blending Forming a slag component and an adhesive component, and the slag component comprises at least one active phthalate compound; contacting the fluid stream with the solid particulate material; and monitoring the fluid stream after exiting the packed bed reactor a content of at least one air contaminant in the fluid stream; wherein 'the initial content relative to the air contaminant' is after the fluid stream exits the packed bed reactor The air pollutant of the fluid stream is reduced by 20%. 54. A method of reducing contamination by a combustion source as recited in claim 53, wherein the solid particulate material is disposed in a replacement crucible and the replacement crucible is placed in the reaction chamber. A method of reducing pollution from a combustion source as recited in claim 53 wherein there is a pressure differential between the inlet and the outlet, the pressure differential being about 25 kPa. 56. The method of claim 53 wherein the temperature of the fluid stream is reduced from about 275 °F to about 450 °F. 57. The method of claim 53 wherein the binder component comprises Portland cement, cement clinker, molasses, Guanhua gum, and/or starch. 58. The method of claim 53 wherein the slag composition comprises carbon residue, slag, and/or steel slag. 59. The method of claim 53 wherein reducing contamination by a combustion source, wherein the fluid stream and the inlet of the packed bed reactor further comprise at least one air pollution control device, wherein the fluid flow The fluid stream is treated by the air pollution control device prior to entering the packed bed reactor. 60. The method of claim 53, wherein the method further comprises at least one air pollution control device between the fluid stream and the outlet of the packed bed reactor, wherein the fluid flow is After exiting the packed bed reactor, the fluid stream is treated by the air pollution control device. 61. The method of claim 53 for reducing pollution from a combustion source, further comprising recovering the fluid stream after first contact with the solid particulate material, and re-contacting the fluid stream with the solid particulate material for removal In addition to the greater amount of this air pollutant. 62. A method of reducing pollution from a combustion source, comprising: 68 200918153 monitoring an initial content of at least one contaminant present in a fluid stream produced by a combustion source, and the contaminant is selected From a population consisting of sulfur oxides, nitrogen oxides, and carbon dioxide; directing the fluid stream into a packed bed reactor to reduce the contamination when the temperature of the fluid stream is at most about 6 Torr The content of the material, wherein the packed bed reactor has at least one reaction chamber, the reaction chamber comprising a plurality of solid particulate materials having an average particle size diameter of from about 0.25 mm to about 12 mm, the solid particulate matter Formed by blending a slag component and a binder, and the fringing component comprises at least one active phosphonate compound, wherein the contaminant exits the fluid stream of the packed bed reactor The content of the fluid stream is reduced; and after the fluid stream exits the packed bed reactor, the amount of the contaminant of the fluid stream is monitored. 63. The method of claim 62, wherein the reaction chamber comprises a replacement 匣' the replacement comprises a plurality of solid particulate matter, wherein reducing the content of the contaminant, further comprising When the content of the contaminant in the fluid stream of the packed bed reactor exceeds a predetermined level, a depleted solid particulate material is replaced with a new replacement crucible. 64. The method of claim 62, wherein the method of reducing contamination by a combustion source further comprises detecting a level of sulfur oxides, nitrogen oxides, or carbon dioxide in the fluid stream exiting the packed bed reactor. The fluid stream of the packed bed reactor '69 200918153 has a removal efficiency of 20%. 65. A method of reducing contamination by a combustion source as set forth in claim 62, further comprising recovering the fluid stream exiting the packed bed reactor for removing a greater amount of the air pollutant. C 70
TW097136093A 2007-09-19 2008-09-19 Methods and devices for reducing hazardous air pollutants TW200918153A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US97363207P 2007-09-19 2007-09-19

Publications (1)

Publication Number Publication Date
TW200918153A true TW200918153A (en) 2009-05-01

Family

ID=41527444

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097136093A TW200918153A (en) 2007-09-19 2008-09-19 Methods and devices for reducing hazardous air pollutants

Country Status (2)

Country Link
AR (1) AR068502A1 (en)
TW (1) TW200918153A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8246727B2 (en) 2007-09-19 2012-08-21 C-Quest Technologies, L.L.C. Methods and devices for reducing hazardous air pollutants
US8367025B2 (en) 2006-03-10 2013-02-05 C-Quest Technologies LLC Carbon dioxide sequestration materials and processes
TWI481445B (en) * 2009-08-21 2015-04-21 Sued Chemie Inc Oxidation catalyst and method for destruction of co, voc and halogenated voc

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8367025B2 (en) 2006-03-10 2013-02-05 C-Quest Technologies LLC Carbon dioxide sequestration materials and processes
US8246727B2 (en) 2007-09-19 2012-08-21 C-Quest Technologies, L.L.C. Methods and devices for reducing hazardous air pollutants
US8506916B2 (en) 2007-09-19 2013-08-13 C-Quest Technologies LLC Methods and devices for reducing hazardous air pollutants
TWI481445B (en) * 2009-08-21 2015-04-21 Sued Chemie Inc Oxidation catalyst and method for destruction of co, voc and halogenated voc

Also Published As

Publication number Publication date
AR068502A1 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
AU2008302185C1 (en) Methods and devices for reducing hazardous air pollutants
RU2440178C2 (en) Materials and methods for sequestering carbon dioxide
TW200918153A (en) Methods and devices for reducing hazardous air pollutants
AU2012200916B2 (en) Carbon dioxide sequestration materials and processes