TW200917761A - Method and system for implementing low duty cycle wirless systems - Google Patents

Method and system for implementing low duty cycle wirless systems Download PDF

Info

Publication number
TW200917761A
TW200917761A TW097131365A TW97131365A TW200917761A TW 200917761 A TW200917761 A TW 200917761A TW 097131365 A TW097131365 A TW 097131365A TW 97131365 A TW97131365 A TW 97131365A TW 200917761 A TW200917761 A TW 200917761A
Authority
TW
Taiwan
Prior art keywords
monitor
alarm
response
slot
sensor
Prior art date
Application number
TW097131365A
Other languages
Chinese (zh)
Inventor
Dave A T Cavalcanti
Maulin Dahyabhai Patel
Monisha Ghosh
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200917761A publication Critical patent/TW200917761A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Selective Calling Equipment (AREA)

Abstract

A remote monitoring system includes a monitor and multiple sensors configured to collect sensor data and to send at least a portion of the sensor data and an alarm to the monitor over a wireless communications link. Each sensor receives reservation information from the monitor in a beacon frame or a control frame of a broadcast signaling window in a super-frame. The reservation information identifies data allocation slots of the super-frame for sending sensor data to the monitor, alarm slots of the super-frame for sending the alarm to the monitor in response to an alarm trigger, and a duty cycle schedule. Each sensor periodically awakens from an inactive state according to the duty cycle schedule to send the sensor data to the monitor. Each sensor also awakens in response to the alarm trigger, regardless of the duty cycle schedule, to send the alarm indication to the monitor.

Description

200917761 九、發明說明: 【先前技術】 近來’已越來越多地關注用於各種監視、自動化及控制 應用之無線系統。通常’此等系統係由節點或感測器及一 或多個監視單元組成,該等節點或感測器與該一或多個監200917761 IX. INSTRUCTIONS: [Prior Art] Recently, wireless systems have been increasingly focused on various monitoring, automation, and control applications. Typically, such systems are comprised of nodes or sensors and one or more monitoring units, and the nodes or sensors are associated with the one or more supervisors

視單元無線通信。例如’在醫學領域中,病人之無線監視 可以包括一系列附著於病人之感測器,其透過無線區域網 路(WLAN)、無線個人區域網路(WPAN)、無線人體區域網 路(WBAN)或類似者(例如IEEE 8〇211網路(Wi_Fi)、 WiMedia超寬頻(UWB)網路或 IEEE 8〇2 15 4網路(ZigBee)) 傳送及接收來自集中式監視裝置之信號。該等信號包括感 測器所收集之資料以及監視裝置所提供之控制發信號。一 車巳例係國防先進研究專案局(〇八尺1>/〇在DARpA戰略技術局 感測态帶子提案人資訊小冊子BAA07-44(2007年8月13日) 中所提出的感測器帶子監視系統。 常,無線監視網路之感測器具有極低作用時間循環及 又限制電源可用性及/或壽命。目此,期望儘可能最^化 〃肖耗而不影響監視之有效性。因此無線監視網路 體及媒體存取控制(MAC)層通常係㈣計用以減少、、“ 耗。例如,兔τ$ 、力屬 马了減少電力消耗’感測器可以按 暫時斷電夂, 巧期性間隔 、;民,或進入非作用中狀態或"睡眠垵弋, 便節約能量,紗尨a A 、•果式)以 然後再次開啟電源以致使能夠通信(”嘬碰,, 或逸入你m丄 、丹S星π, 用中狀態或”喚醒模式”)。不過,每當事 報與命令(立+西卜 田爭件觸發警 w、而要無線發送至監視單元及/或自監視單_ 早几無 133667.doc 200917761 線發送)時,此類系統增加回應延時。 所有現需有要無線通信協定不滿足極低作用時間循環監視系統之 出岸用/Γ,臓8G2,11與WiMediam定係針對高輸 出應用而έ又計且太複雜以致無 無法在靖早低成本感測器節點 二删802,15.4協定,但其不提供關鍵應用(例如… :見);“要之可靠性與服務品質叫且並非足夠能量: 【發明内容】 =内容之一態樣中’提供一種用於執行低作用時間 視系統的方法。該方法包括透過—無線網路之—選 疋頻道從-主控裝置接收預約資訊;基於別 :超訊框之至少一已分配資料槽以用於將資科週二 至該主控裝置;基於該預約資 專送 靡於… °貝δί1熾別-警報發信號窗以回 應广-警報觸發事件將一警報傳送至該 發信號窗包括該超訊框之至少-警報槽;及基於該;;! 讯識別預定資料傳輸時間週期,在該等預 時貝 週期期間將該等資料傳送至 輸夺間 mm ^ ζ , ⑮裝置纟料預定時間 在该至少—已分配資料槽中透過該無線 荨貝料傳送至該主控裝置。 子該 該等資料時進入-睡眠模式。4預間週期期間不傳送 可以回應於該警報觸發右偽# & 不同的-時間在該警==:定資料傳輪時間_ 人該睡眠棋式可二=中傳送該警報。此外,進 電力關閉-用於透過該無線網路將 ,33667.d〇c 200917761 該等貝料及/或該等警報傳送至該主控裝置的收發器。 及方法可進-步包括未從該主控裝置接收到該警報之一 應〜時重新傳送δ亥警報。此外,可以回應於該警報而接收 來自該主控裝置的-針對與該f報相關之額外f訊的請 求。可以在包括該針對額外資訊之請求的一訊框中所識別 之至少一回應槽中將該額外資訊傳送至該主控裝置。包括 該針對額外貧訊之請求的該訊框可以為一廣播發信號窗中 所包括的-隨後接收到之信標訊框或請求訊框。 、<忒方法可以進一步包括共用該警報發信號窗時實行一以 爭用為基礎之存取協定以存取該警報發信號窗。例如,該 以爭用為基礎之存取協定可以為一載波感測多向近接 (CSMA)協定、-Al〇ha協定或一槽式AL〇HA協定。 kj 該預約資訊可以包含在該超訊框之—廣播發信號窗中, 其中該廣播發信號窗可以包括該超訊框之至少一槽。或 者’該預約資訊T以包含在該超訊框<一信#訊框中,其 中該信標訊框包括該超訊框之至少—槽。此外,可以基於 從該主控裝置所傳送之該信標訊框發現該無線網路。 本教導内容之另-態樣中,—種低作用時間循環無線裝 置透過一無線網路將資料提供給一監視器。該無線裝置包 括:處理器,其係用於控制該無線裝置以收集該等資料^ 興該監視器通信;一記憶體’其係用於儲存該等已收集資 料;及一收發器。該收發器係經組態用以在一超訊框^至 少一預約槽中接收來自該監視器之預約資訊,在該超 之至少-資料分配槽中將該等已收集資料之至少—部^傳 133667.doc 200917761 送至該監視器,及在該超訊框之一警報發信號窗中將一警 報傳送至該監視器。基於該預約資訊識別該至少—資料: 配槽以及該警報發信號窗之槽。該收發器依據該預約資: 中所提供之-傳輸排程週期性從—非作用中狀態喚醒以傳 送該等已收集資料之該至少一部分。不管該傳輸排程如 何,該收發器也回應於該處理器所提供之—警報觸發而從 該非作用中狀態喚醒以傳送該警報。Viewcell wireless communication. For example, in the medical field, wireless monitoring of patients can include a series of sensors attached to the patient through a wireless local area network (WLAN), a wireless personal area network (WPAN), and a wireless human area network (WBAN). Or similar (eg, IEEE 8〇211 Network (Wi_Fi), WiMedia Ultra Wideband (UWB) network, or IEEE 8〇2 15 4 Network (ZigBee)) transmits and receives signals from a centralized monitoring device. The signals include data collected by the sensor and control signals provided by the monitoring device. One car case is the sensor belt of the National Defense Advanced Research Project Bureau (〇八尺1>/〇 in the DARpA Strategy and Technology Bureau Sensing State Belt Sponsor Information Booklet BAA07-44 (August 13, 2007)) Surveillance system. Often, the sensor of the wireless monitoring network has a very low cycle time and limits power availability and/or lifetime. Therefore, it is desirable to maximize the consumption without compromising the effectiveness of the monitoring. The wireless monitoring network body and the medium access control (MAC) layer are usually used to reduce, "consumption. For example, rabbit τ$, force is a horse to reduce power consumption" sensor can be temporarily powered off, Ingenious interval,; people, or entering a non-active state or "sleeping, saving energy, gauze a A, • fruit) and then turning on the power again to enable communication ("bump,, or Into your m丄, Dan S star π, in the state or "wake mode"). However, when the report and the order (the Li + Xibian dispute triggers the police w, but to be sent wirelessly to the monitoring unit and / or from the monitoring list _ early no 133667.doc 200917761 line transmission), such systems increase Response delay. All of them need to have a wireless communication protocol that does not meet the low-activity time-cycle monitoring system for landing/Γ, 臓8G2, 11 and WiMediam are fixed for high-output applications and are too complicated to be low in Jingshen. The cost sensor node 2 deletes the 802, 15.4 agreement, but it does not provide critical applications (for example: see); "The reliability and service quality is called and not enough energy: [invention content] = one of the contents Providing a method for performing a low-acting time view system, the method comprising: receiving a reservation information from a master device via a selective channel of the wireless network; and based on at least one allocated data slot of the other: hyperframe It is used to transfer the credit to the master device on Tuesday; based on the reservation, the special message is sent to the alarm window to respond to the wide-alarm trigger event, and an alarm is transmitted to the signal window including the At least - an alarm slot of the hyperframe; and based on the ;;! message identifying a predetermined data transmission time period during which the data is transmitted to the deductive room mm ^ ζ, 15 device predetermined time In the - The allocated data slot is transmitted to the master device via the wireless mussel material. The data enters the -sleep mode when the data is used. 4 No transmission during the pre-interval period can be triggered in response to the alarm triggering the right pseudo-# & different - The time is in the alarm ==: the data transmission time _ the person can play the alarm in the sleep mode. In addition, the incoming power is off - used to pass the wireless network, 33667.d〇c 200917761 The beaker and/or the alarms are transmitted to the transceiver of the master device. The method may further include resending the delta alarm when one of the alarms is not received from the master device. Receiving, by the alert, a request from the master device for additional information related to the f report. The additional information may be included in at least one response slot identified in the frame including the request for additional information. The frame is transmitted to the main control device, and the frame including the request for the extra poor message may be a beacon frame or a request frame included in a broadcast signal window. Further including sharing the police The signalling window implements a contention-based access protocol to access the alert signaling window. For example, the contention-based access protocol may be a carrier sense multi-directional proximity (CSMA) protocol, -Al〇ha agreement or a slot type AL〇HA agreement. kj The reservation information may be included in the broadcast signal window of the hyperframe, wherein the broadcast signal window may include at least one slot of the hyperframe. Or 'the subscription information T is included in the hyperframe<one letter# frame, wherein the beacon frame includes at least a slot of the hyperframe. Further, based on the transmission from the master device The beacon frame discovers the wireless network. In another aspect of the present teachings, a low-activity time-cycle wireless device provides data to a monitor via a wireless network. The wireless device includes a processor for controlling the wireless device to collect the data to communicate the monitor communication, a memory for storing the collected data, and a transceiver. The transceiver is configured to receive subscription information from the monitor in at least one reservation slot in at least one reservation slot, and at least the portion of the collected data in the at least-data allocation slot Transmission 133667.doc 200917761 is sent to the monitor, and an alarm is transmitted to the monitor in one of the alarm signal windows of the hyperframe. Based on the reservation information, the at least information: the distribution slot and the slot of the alarm signaling window are identified. The transceiver wakes up from the inactive state to transmit at least a portion of the collected data in accordance with the transmission schedule provided in the subscription. Regardless of the transmission schedule, the transceiver also wakes up from the inactive state to transmit the alarm in response to an alarm trigger provided by the processor.

〇亥收發态可以藉由電力開啟而從該睡眠狀態喚醒。此 卜“至y g約槽可為&超訊框之—信標訊框或包括該 超訊框之多個連續槽的—廣播發信號窗。未從該監視器接 收到該警報之-應答時該收發H可以重新傳送該警報。此 外,該收發器可以回應於該警報而在該超訊框之一後續信 標訊框中接收來自該監視器的_針對與該警報相關之額外 貝訊的明求。忒收發器可以在該超訊框之於該後續信標訊 框中所識別之至少一回應槽t將該處理器所提供之該額外 資訊傳送至該監視器。 本教導内谷之另一態樣中,一種遠端監視系統包括至少 一監視器,其係連接至一無線通信鏈路;及多個感測器, 其係經組態用以收集感測器資料及透過該無線通信鏈路將 §亥4感測态負料之至少一部分以及一警報傳送至該至少一 監視器。各感測器在一信標訊框中或一超訊框之該廣播發 信號窗中所發送之一訊框中接收來自該至少一監視器之預 約資訊。該預約資訊識別:用於將該等感測器資料之該至 少一部分傳送至該監視器的該超訊框之至少一資料分配 133667.doc 10 200917761 槽;回應於-相對應警報觸發而將該警報 _ 该監視器的該超訊框之至 私不傳送至 〜土少 _ ψ. 4α μ ^ η 排程。各感測器依據該作 s —作用時間猶環 用中壯能* f用時間循環排程週期性從— 用中狀態喚醒以將該等感測器資料小— 非作 該監視器。不管該作用時 x 部分傳送至 ]僱%排程如何,各 應於該警報觸發而從該非作m也回 傳送至該監視器。 中狀也喚醒以將該警報指示 可以基於該等已收集感測器 餘電池電力之一指示的至少對應戌測益之剩 該預約資訊可以進-用無線頻道時, 器與該第二 1 α括分別來自該第-監視 測哭久I 的該超訊框之共存時槽。該等减 二:基於該等相對應信標而與該第-監視器或該第二: 視°。之—者相關聯。 孤 【實施方式】 ^面的詳細描述中,基於說明而非限制目的,提出揭 I’疋細即的範例性具體實施例’以提供對依據本教導内 ^:具體實施例的完全瞭解。但是,從本揭示内容獲益 太教白此項技術者會明白背離本文所揭示特定細節的依據 〇導内容之其他具體實施例仍在所附申請專利範圍之範 ::二此外,可省略廣為人知之裝置及方法的說明,以免 2把例性具體實施例之說明。此類方法及裝置明顯在本 教導内容之範疇内。 在各種具體實施例中,為了減少電力消耗及確保可靠 133667.doc 200917761 性,該監視可以包括,例如,透過Wlan、wpan或 wbaN從多個感測器週期性接收f料及/或非同步警報。可 以藉由某些預定事件來觸發該等警報,例如測量參數超過 規定值或可用電力下降而低於—預定臨限值時。該監視可 以進-步包括非同步請求/回應資料交換,其令監視單元 針對至感測n之資料進行㈣程請求。該監㈣統係採用 7將所有複雜操作有效轉移至監視單元之mac協定來執 盯。依據各種具體實施例之該MAC協定相對簡S、可靠、 容錯及能量有效。能量效率尤其重要’因為無線通信期間 所消耗之能量係可能具有受限制電源供應之感測器所消耗 之總能量的最大部分。 該mac協定分別提供監視器與感測器之間之主從配置。 更特定言之’該MAC協定包括受主控件控制的以預約為基 礎之頻道存取,且支援透過決定性發錢窗之週期性資料 傳輸、非同步警報及請求/回應應用。可以存在多個監視 器’在該情況下MAC協定支援各種監視器間之無縫交遞, 實現與共用頻譜之其他系統的共存。 圖1係-監視通信系統100之一具體實施例的功能方塊 圖。熟習此項技術者應瞭解’旧所顯示的各種功能與组 件可使用-軟體控制微處理器、硬線邏輯電路或其組合加 以實體執行。此外’雖然功能組塊在圖艸係基於說明目 的而解說為分離’但是其在任何實體執行方案中可以以各 種方式組合。 監視通信系統1 0 0包括一 監視器110(主控件)與多個感測 133667.doc 200917761 器120、130(從屬件),感測器12〇、13〇透過無線網路或通 信鍵路140之共用頻道與監視器11〇通信。無線通信鏈路 140可以為(例如)wlan、WPAN或WBAN,且可以在任何 適當的頻率範圍中運作,包括未經授權工業、科學及醫學 (ISM)頻帶’例如藍芽所使用之2.4(JHz頻帶。儘管,僅描 述一監視器110與兩感測器120、13〇,但應明白各種執行 方案可以包括多個監視單元及許多感測器,該等感測器之 每一個可以經組態用以與一或許多監視單元通信。 感測器120、13〇可以包括用以收集、處理及/或儲 各種各樣電子資料的實質上相同組件。例#,感測器12〇 包括天線系、统122、收發器124、微處理器126及記憶體 1 2 8 〇 收發器124包括接收器123與發射器125,且針對感測器 120提供用以與無線通信網路中之其他無線裝置(例如監視 f〇)通信的功能性。處理器126係經組態用以結合記憶 體12 8來執行—或多個 能性。有益㈣,處以提供感測器12°㈣ 器126包括其自己的記憶體(例如, 非揮發性έ己憶體)以用% μ + 行軟體程心馬允… 執行軟體程式碼’該可執 可執行程式碼可:C器12〇的各種功能。或者, 處。 了乂儲存於記憶體128内指定的記憶體位置 在一具體實施例中, 系統,其針對感測器12。提:”包括一定向天線 以沿多個方向與其他無”置::以Ο個天線波束選擇 热綠裝置通信的能力。例如,天線系 133667.doc 200917761 統122可以包括多個天線,各天線對應於一天線波束,或 天線系統1 22可以包括一可操控天線,其可以組合多個不 同天線元件以形成沿不同方向之波束。或者,天線系統 I 2 2可以為一非定向或全向天線系統。 監視器1 1 0同樣係一處理裝置,其具無線通信,以及接 收、處理及儲存電子資料的能力。此外,監視器n〇遠端 控制感測器1 20、1 30之各種功能,下面加以論述。監視器The 收发hai transceiver state can be awakened from the sleep state by power on. The "to yg slot" can be the & superframe - the beacon frame or the broadcast signal window including the plurality of consecutive slots of the hyperframe. The alarm is not received from the monitor - the response The transceiver H can retransmit the alarm. In addition, the transceiver can receive the _ from the monitor in the subsequent beacon frame of the hyperframe in response to the alarm, for additional information related to the alarm. The transceiver can transmit the additional information provided by the processor to the monitor in at least one response slot identified by the hyperframe in the subsequent beacon frame. In another aspect, a remote monitoring system includes at least one monitor coupled to a wireless communication link; and a plurality of sensors configured to collect sensor data and transmit the same The wireless communication link transmits at least a portion of the sensed state and an alarm to the at least one monitor. Each sensor is in a beacon frame or a broadcast signal window of a hyperframe One of the frames sent is received from the at least one monitor The subscription information identifies: at least one data distribution for transmitting the at least one portion of the sensor data to the super-frame of the monitor 133667.doc 10 200917761 slot; in response to the corresponding alarm trigger And the alarm _ the super-frame of the monitor is not transmitted to the local _ ψ. 4α μ ^ η schedule. Each sensor is based on the s-action time. f is periodically cycled from the in-state state to wake up the sensor data to be small - not the monitor. Regardless of the effect, the x part is transmitted to the hire % schedule, each should be in the alarm Triggering and transmitting back from the non-m to the monitor. The medium is also awakened to indicate that the alert indication may be based on at least one of the remaining sensor powers of the collected sensor remaining When the wireless channel is used, the second device includes the coexistence time slot of the hyperframe from the first monitoring and monitoring duration 1. The subtraction 2: based on the corresponding beacon The first monitor or the second: In the detailed description of the embodiments, the exemplary embodiments of the present invention are set forth to provide a complete understanding of the specific embodiments in accordance with the present teachings. However, it will be apparent to those skilled in the art from this disclosure that other specific embodiments that depart from the specific details disclosed herein are still within the scope of the appended claims. Descriptions of well-known devices and methods are provided to avoid the description of the exemplary embodiments. Such methods and apparatus are clearly within the scope of the present teachings. In various embodiments, in order to reduce power consumption and ensure reliability 133667.doc 200917761, the monitoring may include, for example, periodically receiving f and/or asynchronous alarms from multiple sensors via Wlan, wpan or wbaN. The alarms may be triggered by certain predetermined events, such as when the measured parameter exceeds a specified value or the available power drops below a predetermined threshold. The monitoring can further include an asynchronous request/response data exchange that causes the monitoring unit to make a (four) request for the data to sense n. The Supervisor (4) system uses 7 to effectively transfer all complex operations to the monitoring unit's mac agreement. The MAC protocol is relatively simple, reliable, fault tolerant, and energy efficient in accordance with various embodiments. Energy efficiency is especially important' because the energy consumed during wireless communication may have the largest portion of the total energy consumed by the sensor that is limited by the power supply. The mac protocol provides a master-slave configuration between the monitor and the sensor, respectively. More specifically, the MAC protocol includes reservation-based channel access controlled by the master control and supports periodic data transmission, asynchronous alarms, and request/response applications through a decisive payment window. There may be multiple monitors'. In this case, the MAC protocol supports seamless handover between various monitors, enabling coexistence with other systems sharing the spectrum. 1 is a functional block diagram of one embodiment of a monitoring communication system 100. Those skilled in the art will appreciate that the various functions and components shown in the old form can be implemented using a software control microprocessor, hardwired logic circuitry, or a combination thereof. Further, although functional blocks are illustrated as separate in the context of the description, they may be combined in various ways in any physical implementation. The monitoring communication system 100 includes a monitor 110 (main control) and a plurality of sensing 133667.doc 200917761 devices 120, 130 (slave), and the sensors 12 〇, 13 〇 pass through the wireless network or the communication key 140 The shared channel communicates with the monitor 11〇. The wireless communication link 140 can be, for example, a wlan, WPAN, or WBAN, and can operate in any suitable frequency range, including an unlicensed industrial, scientific, and medical (ISM) band, such as 2.4 used by Bluetooth (JHz). Frequency band. Although only one monitor 110 and two sensors 120, 13A are described, it should be understood that various implementations may include multiple monitoring units and many sensors, each of which may be configured Used to communicate with one or more monitoring units. The sensors 120, 13A can include substantially identical components for collecting, processing, and/or storing various electronic materials. Example #, the sensor 12 includes an antenna system The transceiver 122, the transceiver 124, the microprocessor 126, and the memory 1 28 transceiver 122 include a receiver 123 and a transmitter 125, and are provided to the sensor 120 for use with other wireless devices in the wireless communication network. (e.g., monitoring the functionality of the communication.) The processor 126 is configured to perform - or multiple abilities in conjunction with the memory 128. Benefits (4), providing the sensor 12° (4) 126 including itself Memory (for example, non发 έ έ ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) The memory location specified in volume 128 is in a particular embodiment, a system that is directed to sensor 12. "It includes a certain direction of the antenna to be in a plurality of directions with the other":: Selecting heat with one antenna beam The ability of the green device to communicate. For example, the antenna system 133667.doc 200917761 system 122 may include multiple antennas, each antenna corresponding to an antenna beam, or the antenna system 1 22 may include a steerable antenna that may combine multiple different antenna elements To form a beam in different directions. Alternatively, the antenna system I 2 2 can be a non-directional or omnidirectional antenna system. The monitor 1 10 is also a processing device that wirelessly communicates, and receives, processes, and stores electronic data. In addition, the monitor n〇 remotely controls the various functions of the sensors 1 20, 1 30, which are discussed below.

II 〇包括天線系統112、收發器114、微處理器116及記憶體 118° 收發器114包括接收器113與發射器115,且針對監視器 110提供用以與其他無線裝置(例如感測器12〇、13〇)通信的 功能性。處理器1 16係經組態用以結合記憶體丨18來執行一 或多個軟體演算法,以提供監視器丨1〇的功能性。有益的 係,處理器116可以包括其自己的記憶體(例如,非揮發性 記憶體)以用於儲存可執行軟體程式碼,該可執行軟體程 式碼允許其實行監視器110的各種功能。或者,可執 式碼可以儲存於記憶體118内指定的記憶體位置處。丁 如以上針對感測器120所述,監視器11〇之天線系統Η] 可以包括-定向天線系.统,其針對監視器11〇提供用以從 多個天線波束選擇以沿多個方向與其他無線裝置通作的: 力。例如’天線系統U2可以包括多個天線,纟天線對: 於-天線波束,或天線系統112可以包括一可操控天線‘: 其可以組合多個不同天線元件以形成一 战/ 口不同方向之波 束。或者’天線系統112可以為-非定向或全向天線系 133667.doc •14- 200917761 統0 在一具體實施例中,實現透過無線通信鏈路140監視器 110與感測器120、130間之通信的本具體實施例之MAC協 定係基於分時多向近接(TDMA)方案,且避免碰撞、最小 化閒置監聽及最小化串聽(overhearing),藉此改善能量效 率及可靠性。如上所述,網路架構係主從式,其中監視器 Π0作為主控件運作,而感測器120、130作為從屬件運 作。各感測器(從屬件)120、130與監視器(主控件)11〇關 聯’監視器1 1 〇控制對無線通信鏈路1 40之存取且授予傳輸 機會。因此,感測器120、130分別不發送或接收資料時藉 由關閉感測器120、130每一個中至少收發器124來實現感 測器1 20、1 30之有效超低電力操作(進入睡眠模式)。 此外,藉由將處理及控制集中於監視器丨1〇中,可以減 少感測器12〇、130之電力消耗及實體屬性,例如大小、重 篁、剛性及類似者。例如’在一具體實施例巾,感測器 120、130可以為在醫學設置中附著於 于又直r (it者π病人身體的撓性感測 器貼片。此類感測器貼片可以監視及儲存從病人所偵測之 資訊,包括生命徵象’例如溫度、呼吸率、心率、血氧位 準、脈搏波形及類似者。此外,一 Α列斋貼片中之多個4 測器可以共用一單一收發考 ^ 一·.. 文七為在該情况下網路可以由多個 貼片形成’各貼片包括多個感測器及—單… 此,各貼片可以相對於MAC層協定用作二口固 點。 a觔疋用作—早一感測器節 感測器i20、130接著按 錄間隔或回應於各種警報觸 133667.doc 200917761 發及非同步請求而將資料傳送至監視器"〇,如下所述。 =器m可為經組態用以接收、處理、儲存及/或顯示此 員貝讯的任何類型裝置。例如,監視器ιι〇可為醫學人員 所W的手持式行動裝置、集中式電腦或伺服器(例如在 護士站中)或類似者。 个過’本教導内容 …人π久炳人監視 ,執行方案。其他解說性具體實施例可以包括收集環境天II 〇 includes an antenna system 112, a transceiver 114, a microprocessor 116, and a memory 118. The transceiver 114 includes a receiver 113 and a transmitter 115, and is provided for the monitor 110 to communicate with other wireless devices (eg, the sensor 12) 〇, 13〇) The functionality of communication. Processor 1 16 is configured to perform one or more software algorithms in conjunction with memory port 18 to provide the functionality of the monitor. Advantageously, processor 116 may include its own memory (e.g., non-volatile memory) for storing executable software code that allows it to perform various functions of monitor 110. Alternatively, the executable code can be stored at a memory location specified in memory 118. As described above for sensor 120, the antenna system of the monitor 11 can include a directional antenna system that is provided for the monitor 11A to select from multiple antenna beams to be in multiple directions. Other wireless devices are: Force. For example, 'antenna system U2 may include multiple antennas, 纟 antenna pair: - antenna beam, or antenna system 112 may include a steerable antenna': it may combine multiple different antenna elements to form a war/port beam in different directions . Alternatively, the 'antenna system 112 can be a non-directional or omnidirectional antenna system 133667.doc • 14- 200917761. In one embodiment, the implementation is between the monitor 110 and the sensors 120, 130 via the wireless communication link 140. The MAC protocol of this embodiment of communication is based on a time division multi-directional proximity (TDMA) scheme and avoids collisions, minimizes idle listening, and minimizes overhearing, thereby improving energy efficiency and reliability. As mentioned above, the network architecture is master-slave, with monitor Π0 operating as the master and sensors 120, 130 operating as slaves. Each sensor (slave) 120, 130 is associated with a monitor (main control) 11 ' monitor 1 1 〇 controls access to the wireless communication link 140 and grants a transmission opportunity. Therefore, when the sensors 120, 130 do not send or receive data, respectively, the effective ultra-low power operation of the sensors 1 20, 1 30 is achieved by turning off at least the transceiver 124 in each of the sensors 120, 130 (going to sleep) mode). In addition, by concentrating processing and control in the monitor, the power consumption and physical properties of the sensors 12, 130, such as size, weight, stiffness, and the like, can be reduced. For example, in a particular embodiment, the sensors 120, 130 can be attached to a flexible sensor patch in a medical setting. This type of sensor patch can be monitored. And storing information detected from the patient, including signs of life such as temperature, respiration rate, heart rate, blood oxygen level, pulse waveform, and the like. In addition, multiple 4 detectors in a single column can be shared A single transceiver test ^ a... text 7 in this case the network can be formed by multiple patches 'each patch includes multiple sensors and - single ... This, each patch can be relative to the MAC layer agreement Used as a two-port fixed point. a tendon is used as early-sensing sensor section sensor i20, 130 then transmits data to monitoring at intervals or in response to various alarms 133667.doc 200917761 and asynchronous requests "〇, as described below. = device m can be any type of device configured to receive, process, store and/or display this betel. For example, the monitor ιι〇 can be used by medical personnel. Hand-held mobile device, centralized computer or server (eg in a nurse) In the station) or the like. Over the contents of this teaching ... people π long-time monitoring, implementation plan. Other illustrative specific embodiments may include collecting environmental days

氣相關資料(例如溫度、濕度及大氣壓力)、收集工礙環境 中之製造資料或收集建築安全環境中之駐地資料,例如移 動與聲音偵測。 圖2係描述依據一具體實施例的一解說性mac協定之超 訊框結構200之結構的方塊圖。依據MAC協定,監視器ιι〇 發送週期性信標訊框,例如信標訊框2〗〇、,其栽送實 現網路通信(例如網路發現、網路識別、節點識別、廣域 網路同步及類似者)之資訊。如圖2之解說性具體實施例所 顯示,超訊框2θθ係分成ΐθθ個各為6毫秒之時槽以便一 超訊框200為600毫秒。信標訊框21〇、27〇佔據連續超訊框 2〇〇中之第一時槽(例如槽0)。(併入信標訊框27〇之超訊框 的其餘部分未加以顯示。)超訊框2〇〇之特定持續時間及超 訊框200内之時槽的數目與持續時間係與作用時間循環、 電力消耗及QoS需要相關。因此,圖2所顯示之值僅為範 例,其可以不同以最佳化各種組態而不背離本教導内容之 精神與範疇。 超訊框200包括預約為發信號窗之時槽,在該等時槽期 133667.doc -16- 200917761 間監視器1 10及/或感測器120、130能夠存取媒體(例如無線 通信鏈路140)。三類型發信號窗係定義在固定時槽處,其 有助於簡化感測器120、130之設計。監視器11〇使用廣播 發信號窗(BSW)221來將具有控制與預約資訊之廣播訊框 發送至感測器120、130。例如,監視器11〇可以在BSW 22 1中提供用於感測器1 20、13 0之槽分配。監視器u 〇可以 在超§凡框200之信標訊框2 1 0中指示一將在BSW 22 1中加以 發送的即將到來廣播訊框。在解說性超訊框2〇〇中,BSW 221佔據緊跟在信標訊框2 1 〇之後的四個槽,槽1至4,儘管 BSW 221之大小與位置可以變化。 超訊框200包括一警報發信號窗(ASW)253,其佔據(例 如)位於超訊框200之結尾附近的四個槽(例如槽92至95)。 感測器120、130使用ASW 253來與監視器110通信,例 如包括發送警報及傳送關聯請求訊框。在所描述之具體 實施例中’ ASW 253係為感測器12〇、13〇所共用,感測器 120、130可以採用以爭用為基礎之存取協定,例如具隨機 退讓之載波感測多向近接(CSMA)、AL〇HA或槽式AL〇HA 以爭用為基礎之協定,以便ASW 253期間存取共用頻道。 因此,傳輸之前感測器120、13〇可以驗證其他流量之不存 在。 在-具體實施例中,可以不使用BSW⑵,在該情況下 BSW 221之槽(例如,超訊框2〇〇中緊跟在信標訊框2丨〇之後 的槽1至4)可以用sASW 223。除ASW 253之外或代替asw 253,可以使用Asw 223來提供以上針對asw 253所論述 133667.doc 17 200917761 的相同通信類型。多個AS W 223、253可用時,不同感測 器可以使用不同ASW 223、253以避免共用相同槽。 超訊框200也包括一共存發信號窗(CSW)260,其係由(例 如)超訊框2 0 0之最後4個槽(例如槽9 6至9 9)組成。c S W 2 6 0 實現在相同無線頻道中運作之多個相鄰主控裝置(例如監 視器1 10)的共存。額外監視器(未描繪)使用CSW 260中之 槽來連結網路及使其個別超訊框與現有監視器(例如監視 器110)之超訊框(例如超訊框200)同步。CSW 260中之槽的 大小或數目決定在相同無線頻道中運作之監視器的最大數 目。例如,圖2所描述之超訊框200的csw 26〇包括四個槽 且因此實現最多四個額外同時發揮功能之監視器合併操 作。已合併監視器使用CSW 260中其個別槽來發送其相對 應的信標訊框。CSW 260之大小也係一系統參數,可以依 據無線頻道之能力以及應用需要來調整該系統參數。 超訊框200之其餘槽係用於感測器12〇、13〇與監視器ιι〇 間之資料通信。 對此等槽之存取係受監視器丨1〇控制Gas-related data (such as temperature, humidity, and atmospheric pressure), collection of manufacturing materials in the environment, or collection of resident data in a building's safe environment, such as movement and sound detection. 2 is a block diagram depicting the structure of a hyperframe structure 200 of an illustrative mac protocol in accordance with an embodiment. According to the MAC protocol, the monitor sends a periodic beacon frame, such as a beacon frame 2, which is configured to implement network communication (eg, network discovery, network identification, node identification, wide area network synchronization, and Similar information). As shown in the illustrative embodiment of Fig. 2, the hyperframe 2θθ is divided into ΐθθ slots of 6 milliseconds each such that a hyperframe 200 is 600 milliseconds. The beacon frames 21〇, 27〇 occupy the first time slot (e.g., slot 0) in the continuous hyperframe 2〇〇. (The rest of the frame of the hyperframe that is incorporated into the beacon frame 27 is not shown.) The specific duration of the frame 2 and the number and duration of time slots in the frame 200 are cyclically related to the action time. Power consumption and QoS need to be relevant. Thus, the values shown in Figure 2 are merely examples, which may vary to optimize various configurations without departing from the spirit and scope of the present teachings. The hyperframe 200 includes a time slot reserved as a signaling window during which the monitor 1 10 and/or the sensors 120, 130 can access the media (eg, a wireless communication chain) during the time slot period 133667.doc -16 - 200917761 Road 140). Three types of signaling window systems are defined at fixed time slots, which help to simplify the design of the sensors 120, 130. The monitor 11 uses a broadcast signal window (BSW) 221 to transmit a broadcast frame with control and reservation information to the sensors 120, 130. For example, the monitor 11A can provide slot assignments for the sensors 1 20, 130 in the BSW 22 1 . The monitor u 指示 can indicate an upcoming broadcast frame to be transmitted in the BSW 22 1 in the beacon frame 2 1 0 of the frame 200. In the illustrative hyperframe 2, the BSW 221 occupies four slots, slots 1 through 4, immediately following the beacon frame 2, although the size and position of the BSW 221 can vary. The hyperframe 200 includes an alarm signaling window (ASW) 253 that occupies, for example, four slots (e.g., slots 92 through 95) located near the end of the hyperframe 200. The sensors 120, 130 use the ASW 253 to communicate with the monitor 110, such as to send an alert and transmit an associated request frame. In the particular embodiment described, 'ASW 253 is shared by sensors 12A, 13A, and sensors 120, 130 may employ contention-based access protocols, such as carrier sensing with random backoff. Multi-directional proximity (CSMA), AL〇HA or trough AL〇HA is a contention-based agreement for access to the shared channel during ASW 253. Therefore, the sensors 120, 13 can verify that other traffic does not exist before transmission. In a specific embodiment, the BSW (2) may not be used, in which case the slot of the BSW 221 (eg, slots 1 to 4 immediately following the beacon frame 2 in the frame 2) may be sASW 223. In addition to or in lieu of asw 253, Asw 223 can be used to provide the same type of communication as discussed above for sg 253 133667.doc 17 200917761. When multiple AS Ws 223, 253 are available, different sensors can use different ASWs 223, 253 to avoid sharing the same slot. The hyperframe 200 also includes a co-existing signaling window (CSW) 260 that is comprised of, for example, the last four slots of the hyperframe 200 (e.g., slots 96 to 9 9). c S W 2 6 0 enables coexistence of multiple adjacent master devices (e.g., monitor 1 10) operating in the same wireless channel. An additional monitor (not depicted) uses slots in the CSW 260 to connect the network and synchronize its individual hyperframes with hyperframes (e.g., hyperframe 200) of existing monitors (e.g., monitor 110). The size or number of slots in the CSW 260 determines the maximum number of monitors operating in the same wireless channel. For example, the csw 26 of the hyperframe 200 depicted in Figure 2 includes four slots and thus implements up to four additional simultaneous monitor operations that function simultaneously. The merged monitor uses its individual slots in the CSW 260 to transmit its corresponding beacon frame. The size of the CSW 260 is also a system parameter that can be adjusted based on the capabilities of the wireless channel and the needs of the application. The remaining slots of the superframe 200 are used for data communication between the sensors 12A, 13A and the monitor ιι. The access to these slots is controlled by the monitor

配給其相對應從屬件之每一個Each of its corresponding slaves

MAC協定支援感測器丨2〇、 資料傳輸。例如,在正常通 133667.doc 200917761 ^過程中(例如該過程中不觸發警報),僅週期性(例如每五 为鐘)傳輸資料。當最初與監視器11〇關聯時感測以2〇、 口 、在已預約ASW(ASW 223及/或ASW 253)内將警告 。孔心以及關聯請求訊框發送至監視器】1〇。監視器no在下 一信標訊框(例如’信標訊框270)中應答警報之成功接收。 需要與警報訊息相㈣額外感測器資料時,監視器110可 以使用下面說明的非同步請求/回應特徵。因A,即使按The MAC protocol supports sensor 丨2〇, data transmission. For example, during normal pass 133667.doc 200917761 ^ (for example, no alarm is triggered during this process), data is only transmitted periodically (for example every five seconds). The sensor will be alerted when it is initially associated with the monitor 11〇, within the reserved ASW (ASW 223 and/or ASW 253). The hole core and the associated request frame are sent to the monitor] 1〇. Monitor no responds to the successful receipt of the alert in the next beacon frame (e.g., 'beacon frame 270'). When it is desired to (4) additional sensor data in conjunction with the alert message, the monitor 110 can use the asynchronous request/response feature described below. Because of A, even if you press

慢很多之速率(例如’每五分鐘)常規傳輸資料,也將來自 感测器120、130之警告以(例如)不及一秒之延遲遞送至監 視器110。 在-具體實施例中,MAC協定之非同步請求/回應特徵 藉由指示信標訊框210、270中之請求使監視器11()能_ 任何日守間《旬問感心12〇、i3〇,該請求也識別個別感測器 120、13〇欲用於將回應反向發送至監視器ιι〇之槽。例 如,信標訊框210中之請求可以將回應分配24〇(例如槽% 至91)識別為超訊框200之其内欲包含來自回應感測器 120、130之資訊的部分。 圖3係依據一具體實施例的一初始化網路且從感測器裝 置接收關聯請求之程序的流程圖。主控裝置(例如監視器 11 0)負責網路初始化,以及相 120、130)之存取控制與認證。 對應從屬裝置(例如感測器 為『貫行初始化,監視器 11 〇視所使用之頻帶掃描通信鏈路i 40之可用頻道(步驟 S3 10),且決定其他監視器是否在該等頻道上運作(步驟 S312)。存在其他監視器(步驟S312 :是)時,監視器ιι〇與 133667.doc •19· 200917761 其他監視器協調其摔 運作之多個監視^),在相同頻道中 皿現益可以使用csw 26〇來 結構及f 3¾ 9 f Μ 來對背其個別超訊框 構及實現㈣槽之智慧賴程。 豆#龄湖哭·>城 现祝益110獲得 /、他““之槽預約且設計非重 中’多個監#哭夕— 具體實施例 、目@ Λ w母—個負責與相同頻道中運作之Α他龄 視器協調通信。哎者, + 他皿 中已經運作之監視f續監視器避免與該頻道 ( 二=實施例中’MAC協定支援感測器在兩監 =之:縫父遞。例如,一第一監視器(例如監視器"。) :如感測器集120、130切換至新監視器 標訊框210、270及/哎Bsw 击播 Ms L 及次BSW 221中傳送指令。感測器丨20、 wo因此僅藉由開始監 作… 水目啊-視益之仏標來調整其操 以#彳Μ示必須佔據超訊框結構2〇〇之csw 26〇中之柙 :。:此’ MAC協定實現多個監視器之共存而不為感測 口口添加額外複雜性。 Ο :驟㈣中,監視器110選擇一操作頻道,以及各種網 „„ 隹徕作頻道中已偵測到其他監視 ^之條件下使用CSW 26G之可用槽開始信標訊框21〇 輸(步驟S3 1 8)。 寻 步驟㈣中,監視器11〇針對基於信標訊框21〇需要^ :為關聯之各感測器(例如感測器咖、_接收一關聯; —皿視為U〇驗證關聯請求(步驟S322)。監視器110决定 一請求感測器不為其群組之部分或應以其他方式防止與監 見器110通仏(步驟S322 ·•否)時,監視器m繼續發送信 133667.doc -20- 200917761 標訊框210,例如,直 -請求感測器係复群,”二 監視器110決定 "〇證實… (步驟S322:是)時,監視器 1ϋ-實邊感測器且開始從已 120、13〇k夂乂 赞。且感測益(例如感測器 号之預定作用;期性接收資料(步驟S324)。依據感測 間循環接收f料’該等感測器在喚醒與睡 民杈式間循裱以節約能量。 聯過程中,監視器"。繼續針對警報信 ==、13°(步驟⑽)。只要不接㈣ S32二,資料(步驟S324)及監視警報信號(步驟 )程序便繼續直到步驟S328中決定通信會期完成(步 驟S328·是)。 接收到一警報信號(步驟S326 :是)時,程序進行至圖 4」圖4係依據—具體實施例的一接收警報信號之程序的流 =圖。在步驟S4l〇中接收一警報識別項,其識別警報之特 疋類I例如,警報識別項可以指示傳送警報之感測器 (例如感測器12Q)具有危險性低電池電力,或感測器120正 在監視之參數(例如溫度或血壓)已超過預定臨限值。步驟 S412中監視器11〇傳送警報之應答。 步驟S414中,監視器11〇決定其是否需要與警報之狀況 相關的額外資料。例如,監視器丨丨〇可以請求血壓之實際 值或先前兩分鐘内之血壓讀數。需要額外資訊(步驟 S414 :是)時,監視器u〇可以製定一非同步請求並(例如) 使用信標訊框210將其傳送至感測器12〇(步驟S41 6)。可以 自動或透過使用者介面處之人介入來製定及傳送非同步請 133667.doc 21 200917761 求。步驟S418中監視器110使用回應分配24〇來接收與警報 相關的請求資訊,回應分配240之槽可以在信標訊框21〇中 加以識別,如先前所述。步驟8418中接收所需資訊之後, 或不請求與警報相關的額外資訊(步驟S414 :否)時,程序 返回至圖3之步驟S 3 2 8。程序繼續,直到會期結束。 圖5係依據一具體實施例的一將資料提供給監視裝置之 程序之流程圖。最初,從屬裝置(例如感測器12〇)掃描通信The slower rate (e.g., 'every five minutes') conventional transmission of data also delivers alerts from the sensors 120, 130 to the monitor 110 for a delay of, for example, less than one second. In a specific embodiment, the asynchronous request/response feature of the MAC protocol enables the monitor 11() by instructing the request in the beacon frame 210, 270 to _ any day guardian. The request also identifies the individual sensors 120, 13 that are intended to be used to send the response back to the slot of the monitor. For example, the request in beacon frame 210 can identify the response allocation 24 (e.g., slots % to 91) as the portion of the hyperframe 200 that is intended to contain information from the response sensors 120, 130. 3 is a flow diagram of a process for initializing a network and receiving an association request from a sensor device, in accordance with an embodiment. The master device (e.g., monitor 110) is responsible for network initialization, as well as access control and authentication for phases 120, 130). Corresponding to the slave device (for example, the sensor is "continuously initialized, the monitor 11 scorns the available channel of the frequency band used for scanning the communication link i 40 (step S3 10), and determines whether other monitors operate on the channels) (Step S312). When there are other monitors (step S312: YES), the monitor ιι〇 cooperates with other monitors of 133667.doc •19· 200917761 to monitor the multiple operations of the fall operation ^), in the same channel You can use the csw 26〇 structure and the f 33⁄4 9 f Μ to construct and implement the (four) slot wisdom. Bean #龄湖哭·>City is now benefiting 110 to get /, he ""Slot reservation and design is not heavy" multiple supervisors #哭夕 - specific examples, 目 @ Λ w mother - one responsible for the same channel In the middle of the operation, his age vision device coordinates communication. The latter, + the monitor that has been running in his dish, the monitor continues to avoid the channel (two = the embodiment of the 'MAC agreement support sensor in the two supervisors = it: the seam parent. For example, a first monitor ( For example, the monitor ".): If the sensor set 120, 130 switches to the new monitor frame 210, 270 and/or Bsw, the broadcast Ms L and the secondary BSW 221 transmit commands. The sensor 丨 20, wo Therefore, only by starting to supervise... The water eye ah - the benefit of the target to adjust its operation # 彳Μ must occupy the super-frame structure 2 c csw 26 〇 柙:: This 'MAC agreement implementation The coexistence of multiple monitors does not add extra complexity to the sensing port. Ο : In step (4), the monitor 110 selects an operating channel, and various networks „„ 其他 其他 其他 其他 其他 其他 其他 其他 其他Under the condition, the available slot of the CSW 26G is used to start the beacon frame 21 (step S3 18). In the search step (4), the monitor 11 is required for the sensor based on the beacon frame 21: (eg, sensor, _receive an association; - the dish is considered to be a U〇 verification association request (step S322). The monitor 110 determines a request When the sensor is not part of its group or should otherwise be prevented from communicating with the monitor 110 (step S322 · • No), the monitor m continues to send the message 133667.doc -20- 200917761 the message box 210, For example, the direct-request sensor is a complex group," when the second monitor 110 determines "〇 confirms... (step S322: YES), the monitor 1 实-real side sensor and starts from 120, 13〇k夂感 。 且 且 且 且 且 且 且 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感To save energy. During the process, the monitor " continues to be directed to the alarm letter ==, 13° (step (10)). As long as the (4) S32 is not connected, the data (step S324) and the monitoring alarm signal (step) program continue until In step S328, it is determined that the communication session is completed (step S328·Yes). When an alarm signal is received (step S326: YES), the process proceeds to FIG. 4, which is based on a program for receiving an alarm signal according to the specific embodiment. Flow = map. Receive an alarm identification item in step S4l, which identifies the alarm For example, the alarm identification may indicate that the sensor that transmitted the alarm (eg, sensor 12Q) has dangerously low battery power, or that the parameter that sensor 120 is monitoring (eg, temperature or blood pressure) has exceeded a predetermined threshold. The monitor 11 transmits a response of the alarm in step S412. In step S414, the monitor 11 determines whether it needs additional information related to the condition of the alarm. For example, the monitor can request the actual value of the blood pressure or the previous value. Blood pressure readings within two minutes. When additional information is required (step S414: YES), the monitor u can make an asynchronous request and transmit it to the sensor 12, for example, using the beacon frame 210 (step S41 6). The non-synchronization can be made and transmitted automatically or through the intervention of the user interface. 133667.doc 21 200917761. In step S418, the monitor 110 uses the response assignment 24〇 to receive the request information associated with the alert, and the slot in response to the assignment 240 can be identified in the beacon frame 21, as previously described. After receiving the required information in step 8418, or not requesting additional information related to the alarm (step S414: NO), the program returns to step S 3 2 8 of FIG. The program continues until the end of the session. Figure 5 is a flow diagram of a process for providing data to a monitoring device in accordance with an embodiment. Initially, slave devices (eg, sensor 12〇) scan for communication

系統1〇〇中所使用之RF譜帶之各種頻道且監聽信標訊框Various channels of the RF band used in the system 1 and listening to the beacon frame

驟S51())以定位其相對應主控裝置。步驟S5i2中感測器i2Q 接收-信標訊框(例如信標訊框21〇)。基於接收到的信標訊 框21〇,感測器120在步驟S514中選擇與之關聯之頻道與主 控裝置(例如監視器110),且在步驟如5與監視器11〇^超 訊框時序同步。 步驟S516中’感測器12〇(例如)在Asw &及/或_ 2幻之槽中將關聯請求訊框發送至監視器1〗〇,且在步驟 中等待後續k標机框(例如信標訊框270)中之一關 聯回應。未接收到關聯回應(步驟S5l8 :否)時,程序返回 至步驟如〇以便感測器12〇繼續掃描可用頻道。在一呈體 實施例中,返回至步驟S51〇之前感測器12〇可以進行預^ 數目之嘗試以獲得關聯回應。 接收到關聯回應(步驟S5i8 :是一 _ ,, 疋關初成功且止常操 作開始。步驟S52〇中,减 ㈣&視11110於信標訊框 (例如_框210)及/或廣播訊框(例如彻221)通 約貝訊識別其指派槽。例 預、力貝訊包括初始超訊框編 I33667.doc -22- 200917761 號、開始槽編號(例如感測器槽分配230之槽編號5)及持續 時間(例如每預約所指派之槽數或六個槽)。 步驟S522中,感測器12〇也識別其將感測器資料發送至 監視器11G所依據的時序。此外,感測器可以接收其接收 後績信標訊框所依據之額外時序資訊,儘管相同時序資訊 可應用於傳送感測H資料及接收信標訊框。時序資訊也可 包含在監視器110所提供的預約資訊中。例如,預約資訊 可以包括識別感測器12〇包括其感測器資料應採用之超訊 框間隔的-重複週期。例如,時序資訊可能需要感測器 120每500個超訊框(其等效於每五分鐘)傳送其感測器資 料,假定超訊框之長度為600毫秒,如圖2之解說性超訊框 結構200所示。藉由此資訊,感測器12〇知道何時其必須將 資料發送至監視器11 〇,且因此可以藉由下一傳輸時間之 前保持處於睡眠模式下來最佳化其省電操作。 步驟S524中,感測器120關閉其收發器丨24(最初發送資 料之前或之後)並進入睡眠模式以省電。即使處於睡眠模 式下時,感測器1 20也監視與各種警報相關之資料(步驟 S526)且追蹤時序(步驟S528)。未觸發警報(步驟μ% :否) 時,感測器120等待下一傳輸週期(步驟S528 :是)。步驟 S530中,感測器12〇(例如)藉由開啟其收發器124而在預排 紅時間喚醒,且將感測器資料發送至監視器丨1 〇。感測器 120在處於其喚醒模式下的同時同樣可以從監視器ιι〇接收 資料。步驟S532中,感測器120可以決定其必須(例如)回 應於來自監視器1 10之非同步請求而重新傳送已發送感測 133667.doc -23- 200917761 器資料(步驟S532:是)。不需要再傳輸(步驟S532:否) 時,感測器120在未完成通信會期(步驟S538 :否)時返回 至睡眠模式(步驟S524)。感測器12〇繼續從睡眠模式甦醒 、週期丨生傳送其感測益資料直到會期結束(步驟^ 3 : 是)。 偵測到觸發警報之感測資料(步驟S526 :是)時,感測器 120用偽號發出警報且按照請求依據圖6將相關資訊提供給 監視器110,圖6係依據一具體實施例的一提供警報信號之 权序之流程圖。因為警報出現不可能與預定喚醒排程— 致,所以感測器1 20必須首先回應於警報觸發而從睡眠模 式喚醒(步驟S608)以便透過通信鏈路14〇通信❶步驟“Μ 中,感測器120在ASW 223及/或ASW 253中將一警報識別 項傳送至監視器丨10且決定是否接收到一接收應答(步驟 %12)。感測器12〇可以保持處於作用中狀態下直到(例如) 在下一信標訊框21〇中接收到應答。或者,感測器12〇可以 重新進入非作用中狀態直到下一信標訊框2丨〇之時間到 來。例如,若在位於目前超訊框2〇〇之結尾附近的asw 253中將警報識別項傳送至監視器丨丨〇,且監視器係經程式 5又s十用以在下一連續信標訊框中作出回應,則歸因於於相 對較短時間週期,感測器12〇可以保持喚醒直到接收到應 合。个迴,若在位於目前超訊框2〇〇之開始附近的Asw 223中將警報識別項傳送至監視器11〇,《監視器係經程式 設計用以在某一稍後信標訊框211〇中作出回應,則感測器 120可以在預期應答時間之前重新進入睡眠模式以節約能 133667.doc •24- 200917761 量’在預期應答時間感測器12〇再次喚醒。 無應答(S612 :否)時,感測器12〇再次(例如)在下一 Asw 223及/或ASW 253中傳送警報識別項直到接收到一應答 (S612 :是)如上所述,用於存取ASW 223、之共用 槽’以及自動重新傳送的以爭用&基礎之協定實現警報至 監視器110之可靠且及時遞送。 已請求與警報相關 例如,感測器120 此外’感測器120決定監視器H〇是否 的額外資訊(步驟S614),如先前所述。Step S51 ()) to locate its corresponding master device. In step S5i2, the sensor i2Q receives a beacon frame (for example, a beacon frame 21A). Based on the received beacon frame 21, the sensor 120 selects the channel associated with the master device (eg, the monitor 110) in step S514, and in the steps of, for example, 5 and the monitor 11 Timing synchronization. In step S516, the sensor 12 transmits the association request frame to the monitor 1 in the Asw & and/or _ 2 slot, and waits for the subsequent k frame in the step (for example) One of the beacons 270) is associated with the response. When the association response is not received (step S5l8: NO), the program returns to the step 〇 so that the sensor 12 〇 continues to scan for available channels. In an embodiment, returning to step S51, sensor 12 can perform a pre-numbered attempt to obtain an associated response. Receiving the association response (step S5i8: is a _, and the initial success and the normal operation start. In step S52, the subtraction (4) & 1110 is in the beacon frame (for example, _box 210) and/or the broadcast frame. (For example, 221) 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 And the duration (for example, the number of slots or six slots assigned per reservation). In step S522, the sensor 12A also recognizes the timing at which the sensor data is transmitted to the monitor 11G. Further, sensing The device can receive additional timing information on which the received beacon frame is received, although the same timing information can be applied to transmit the sensing H data and receive the beacon frame. The timing information can also be included in the reservation provided by the monitor 110. In the information, for example, the appointment information may include a recognition-repetition cycle including the hyperframe interval at which the sensor data should be used. For example, the timing information may require the sensor 120 to have every 500 hyperframes ( It is equivalent to transmitting every five minutes) The sensor data assumes that the length of the hyperframe is 600 milliseconds, as illustrated by the illustrative hyperframe structure 200 of Figure 2. By this information, the sensor 12 knows when it must send data to the monitor 11 Oh, and therefore it is possible to optimize its power saving operation by remaining in the sleep mode before the next transmission time. In step S524, the sensor 120 turns off its transceiver 丨24 (before or after the initial transmission of the data) and goes to sleep. The mode saves power. Even when in the sleep mode, the sensor 120 monitors data related to various alarms (step S526) and tracks the timing (step S528). When the alarm is not triggered (step μ%: no), the sense The detector 120 waits for the next transmission period (step S528: YES). In step S530, the sensor 12 awakes at the pre-row time by, for example, turning on its transceiver 124, and sends the sensor data to The monitor 1201. The sensor 120 can also receive data from the monitor while in its awake mode. In step S532, the sensor 120 can determine that it must respond, for example, from the monitor 1 10 Non- The step request is retransmitted the transmitted sensing 133667.doc -23- 200917761 device data (step S532: YES). When no retransmission is required (step S532: NO), the sensor 120 does not complete the communication session (step S538) : No), returning to the sleep mode (step S524). The sensor 12 〇 continues to wake up from the sleep mode, and periodically transmits its sense data until the end of the session (step ^ 3 : YES). When the sensing data is obtained (step S526: YES), the sensor 120 issues an alarm with a pseudo number and provides related information to the monitor 110 according to the request according to FIG. 6. FIG. 6 is an alarm signal according to an embodiment. Flow chart of the order of rights. Since the occurrence of the alarm is unlikely to occur with the predetermined wake-up schedule, the sensor 1 20 must first wake up from the sleep mode in response to the alarm trigger (step S608) to communicate via the communication link 14 step "Μ, sensing The transmitter 120 transmits an alarm identification item to the monitor 丨 10 in the ASW 223 and/or the ASW 253 and determines whether a reception response is received (step %12). The sensor 12 〇 can remain in the active state until ( For example, a response is received in the next beacon frame 21〇. Alternatively, the sensor 12〇 can re-enter the inactive state until the time of the next beacon frame 2 is reached. For example, if it is located at the current super The alarm identification is transmitted to the monitor in the asw 253 near the end of the frame 2〇〇, and the monitor is programmed to respond to the next continuous beacon frame by the program 5 For a relatively short period of time, the sensor 12A can remain awake until it receives a response. If the alarm is transmitted to the monitor in the Asw 223 located near the beginning of the current frame 2 11〇, "Monitoring The program is designed to respond in a later beacon frame 211, and the sensor 120 can re-enter the sleep mode before the expected response time to save energy 133667.doc •24- 200917761 amount 'in anticipation The response time sensor 12 唤醒 wakes up again. When there is no response (S612: NO), the sensor 12 传送 transmits the alarm identification item again, for example, in the next Asw 223 and/or ASW 253 until a response is received (S612: Yes) As described above, the contention-and-memory-based protocol for accessing the ASW 223, the automatic retransmission, implements reliable and timely delivery of alerts to the monitor 110. The detector 120 further 'the sensor 120 determines whether the monitor H〇 has additional information (step S614) as previously described.

可以在後續信標訊框210中心欠來自以見器11〇之非同步請 求。如以上針對應答所述,感測器12〇可以保持喚醒直到 下一信標2H)查明監視器m是否請求額外資訊,或其可以An asynchronous request from the viewer 11 can be owed at the center of the subsequent beacon frame 210. As described above for the response, the sensor 12A can remain awake until the next beacon 2H) ascertains whether the monitor m requests additional information, or it can

重新進入睡眠模式並在接下來之信標2 i 〇 (例如)根據A § W 223或ASW 253之㈣或者回應之預定時序查明監視器⑴ 是否請求額外資訊時及時重新喚醒。#求額外資訊(步驟 %14 :是)時,感測器12〇收集(必要時)請求資訊且在(例 如)信標訊框210中所識別的回應分配24〇令發送請求資 Λ,#標汛框210包括非同步請求。步驟S6i6中傳送請求 資訊之後,或不請求與警報相關的額外資訊(步驟MM·· 否)時,輊序返回至圖5之步驟S526。感測器i2〇接著繼續 週期性發送資料及監視警報觸發直到會期結束(步驟 S538 :是)。 依據各種具體實施例之MAC協定避免碰撞、閒置監聽及 串聽,且實現從屬裝置(例如感測器12〇、13〇)之超低作用 時間循% #作,藉此節省能量。排程演算法最大化頻道使 133667.doc -25- 200917761 用以針對應用提供所需Q〇S,同時最小化用電。需要時感 測器120、130喚醒以接收信標及/或請求、在預排程時間 發送資料及在已預約ASW 123、153中發送警報。在所有 其他時間,各感測器120、13〇關閉其收發器124以進入睡 眠模式。估計指示依據以上所述MAC協定之具體實施例運 作的感測器120、130之作用時間循環為約百分之一。 雖然本文揭示較佳具體實施例,但許多變化係可行的, 其仍在本教導内容的概念及料内。在閱覽本文之說明 f、圖式及申請專利範圍後,熟習此項技術者會明白此類 、sut纟發明不冗限制’但須在所附中請專利範圍 之精神及範疇内。 【圖式簡單說明】 士圖1係依據—具體實施例的—通信系統之方塊圖,該通 仏系、”先具冑li視器裝置及多個感測器裝置。 圖2係依據一且贈杂& Λ 八體Λ施例之一用於網路内之超訊框結構Re-enter sleep mode and re-awake in time when the next beacon 2 i 〇 (for example) according to A § W 223 or ASW 253 (4) or the predetermined timing of the response to find out whether the monitor (1) requests additional information. #求超信息 (Step %14: YES), the sensor 12 collects (if necessary) the request information and sends a request for the response in the response, for example, identified in the beacon frame 210, # The tag box 210 includes an asynchronous request. After the request information is transmitted in step S6i6, or when additional information related to the alarm is not requested (step MM·· No), the sequence returns to step S526 of Fig. 5 . The sensor i2 then continues to periodically transmit data and monitor the alarm trigger until the end of the session (step S538: YES). The MAC protocol in accordance with various embodiments avoids collisions, idle monitoring, and crosstalk, and achieves ultra-low-period time of slave devices (e.g., sensors 12, 13), thereby conserving energy. The scheduling algorithm maximizes the channel so that 133667.doc -25- 200917761 is used to provide the required Q〇S for the application while minimizing power usage. The sensors 120, 130 wake up to receive beacons and/or requests as needed, transmit data at pre-scheduled times, and send alerts in the reserved ASWs 123, 153. At all other times, each sensor 120, 13 turns its transceiver 124 off to enter a sleep mode. The estimated time period for the sensors 120, 130 operating in accordance with the specific embodiment of the MAC protocol described above is about one percent. While the preferred embodiment is disclosed herein, many variations are possible, which are still within the concept and scope of the present teachings. After reading the description of this document f, the schema and the scope of the patent application, those skilled in the art will understand that such sut is not limited by the invention, but must be within the spirit and scope of the patent scope. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a communication system according to a specific embodiment, which is preceded by a device and a plurality of sensor devices. One of the singular & 八 eight body Λ examples for the super-frame structure in the network

U 的方塊圖。 圖3係依據一具體會絲办丨认 . 罢冰 實&例的一初始化網路且從感測器裝 置接收關聯請求之程序的流程圖。 圖4係依據一且贈杳| μ 、 ’、 12例的一從感測器裝置接收警報之 %序之流程圖。 圖5係依據一呈靜餘 ,,, .、只她列的一與監視器裝置關聯且將資 枓k供給&視器裝置之程序之流程圖。 圖6係依據一且體音 之Μ ,,、體實知例的-將警報提供給監視器裝置 之程序之流程圖。 133667.doc -26- 200917761 【主要元件符號說明】The block diagram of U. Figure 3 is a flow diagram of a procedure for initializing a network and receiving an association request from a sensor device in accordance with a specific wire. Fig. 4 is a flow chart showing the sequence of receiving an alarm from a sensor device according to one and giving 杳|μ, ', 12 cases. Figure 5 is a flow diagram of a program that is associated with a monitor device and that supplies the resource k to the & viewer device in accordance with a sequence of silence, ,, . Fig. 6 is a flow chart showing a procedure for providing an alarm to a monitor device based on a body sound, and a physical example. 133667.doc -26- 200917761 [Main component symbol description]

100 監視通信系統 110 監視器 112 天線系統 113 接收器 114 收發器 115 1 發射器 116 微處理器 118 記憶體 120 ' 130 感測器 122 天線系統 123 接收器 124 收發器 125 發射器 126 微處理器 128 記憶體 140 無線網路/通信鏈路 200 超訊框結構 210 ' 270 信標訊框 221 廣播發信號窗 223 ·}►#· ,心 》、- w -—λ-» 詈稂赞溉菌 230 感測器槽分配 240 回應分配 253 警報發信號窗 133667.doc -27-100 Monitoring Communication System 110 Monitor 112 Antenna System 113 Receiver 114 Transceiver 115 1 Transmitter 116 Microprocessor 118 Memory 120 ' 130 Sensor 122 Antenna System 123 Receiver 124 Transceiver 125 Transmitter 126 Microprocessor 128 Memory 140 Wireless network/communication link 200 Hyperframe structure 210 '270 Beacon frame 221 Broadcast signal window 223 ·}►#· ,心》, - w -—λ-» 詈稂赞溉菌230 Sensor slot assignment 240 response assignment 253 alarm signaling window 133667.doc -27-

Claims (1)

200917761 十、申請專利範圍_· 1. -種用於執行低作 含: 才間循裱監視系統的方法,其包 透過—無線網路之—^ 資訊,· 、疋頻道從一主控裝置接收預約 基於該預約資訊識別—超訊框 以用於將資科週期性傳送至該主控已…料槽 基於該預約資訊識別—邀 觸發將-警報傳送至該主:„回應於-警報 該超訊框之至少一警報槽广、“警報發信號窗包含 基於該預約資訊識別預定複數 在該預定複數個資料傳輸 i傳輸時間週期, 至該主控裝置;傳輪時間週期期間將該等資料傳送 在該預定複數個時間週期期 槽中透過該無線網路將該等資料傳送至該主;; 睡預定複數個時間週期期間不傳送該等資料時進入 睡眠模式。 T貝1 2 3 4 5 6rt Η寺進入一 133667.doc 1 · 如請求項1之方法,甘+ ^ χ '、中回應於該警報觸發,在盥哕預 2 疋複數個資料傳輸時間 隹一 4預 3 號窗中傳送該警報。冋的-時間在該警報發信 4 -項2之方,去’其中進人該睡眠模式包含: 電力關閉-用於透過該無線 : 5 傳送至該主控裝置的收發器β ^亥專貝料及該警報 6 4·如請求項2之方法,其進一步包含·· 200917761200917761 X. Application for patent scope _· 1. - A method for performing low-level processing: the monitoring system of the circumstance, the package is transmitted through the wireless network - ^ information, · 疋 channel receives from a master device The reservation is based on the appointment information identification - the hyperframe is used to periodically transfer the undergraduate to the master. The trough is identified based on the appointment information - the invitation triggers the - alert to the master: „Respond to-alert the super At least one alarm slot of the frame, "the alarm signaling window includes identifying, based on the subscription information, a predetermined plurality of transmission time periods during the predetermined plurality of data transmissions, to the master device; transmitting the data during the transmission time period The data is transmitted to the host through the wireless network during the predetermined plurality of time period slots;; entering sleep mode when the data is not transmitted during a predetermined plurality of time periods of sleep. T bei 1 2 3 4 5 6rt Η寺 enters a 133667.doc 1 · As in the method of claim 1, Gan + ^ χ ', in response to the alarm trigger, in the 盥哕 pre-2 疋 multiple data transmission time 隹4 The alarm is transmitted in the pre-No. 3 window.冋 - Time in the alarm sent 4 - item 2, go 'in which the person enters the sleep mode contains: Power off - used to pass the wireless: 5 Transmitted to the master device transceiver And the alarm 6 4. The method of claim 2, further comprising: · 200917761 =攸該主控裝置接收到該警報之—應答時重新傳送該 吕寻R 〇 如請求項4之方法,其進一步包含: 回應於戎警報而接收來自該主控裝置的一針對與該警 報相關之額外資訊的請求;及 ^在至少—回應槽中傳送該額外資訊,該至少—回應槽 係^包括該針對額外資訊之請求的—訊框中加以識別。 如明求項5之方法’其中包括該針對額外資訊之請求的 °亥訊框包含一隨後接收到之信標訊框。 如請求項2之方法,其進一步包含: 共用該警報發信號窗時,實行一以爭用為基礎之存取 協定以存取該警報發信號窗。 :凊求項7之方法’其中該以爭用為基礎之存取協定包 含一載波感測多向近接(CSMA)協定、一 Al〇Ha協定或 一槽式ALOHA協定的至少一者。 汝明求項1之方法,其中該預約資訊係包含在該超訊框 之一廣播發信號窗中所發送的一訊框中,該廣播發信號 窗包含該超訊框之至少一槽。 10.如請求項丨之方法,其中該預約資訊係包含在該超訊框 之—信標訊框中,該信標訊框包含該超訊框之至少一 槽。 5. 6. 7· 8. 9. η·如請求項10之方法,其中基於從該主控裝置所傳送之該 k標訊框發現無線網路。 種用於透過一無線網路將資料提供給一監視器的低作 133667.doc 200917761 用時間循環無線裝置,該無線裝置包含: —處理器,其係用於控制該無線裝置以收集該等資料 及與該監視器通信; 、 圯憶體,其係用於儲存該等已收集資料;及 -收發器,其係用於在一超訊框之至少一預約槽中接 收來自該監視器之預約資訊,在該超訊框之至少一資料 :配槽中將該等已收集資料之至少—部分傳送至該監視 器,及在該超訊框之一警報發中將一警報傳送至 該監視器,該至少-資料分配槽以及該警報發信號窗之 槽係基於該預約資訊加以識別; 其中该收發器依據該預約資訊中所提供之一傳輸排程 週期性從-非作用中狀態唤醒以傳送該等已收集資料之 該至少一部分,及 其中不管該傳輸排程,該收發器回應於該處理器所提 供之一警報觸發而從該非作用中狀態喚醒以傳送該馨 報。 13. 如请求項12之裝置,其中該收發器藉由電力開啟而從睡 眠狀態喚醒。 14. 如請求項12之裝置,Α由兮E , 其中該至少一預約槽係該超訊框之 一信標訊框。 1 5 ·如請求項12之裝置,兑由兮s . 衣1具平该主少一預約槽係包含該超訊 框之複數個連續槽的一廣播發信號窗。 16.如·^項12之裝置,其中未從該監視器接收到該警報之 一應答時該收發器重新傳送該警報。 133667.doc 200917761 17.如β求項12之震置’其中該收發器回應於該警報而在該 超Λ框之一後續信標訊框中接收來自該監視器的一針對 與該警報相關之額外資訊的請求,及 其中5亥收發器在該超訊框之於該後續信標訊框中所識 別之至少一回應槽中將該處理器所提供之該額外資訊傳 送至該監視器。 18.種遠端監視系統,其包含: 至夕一監視益’其係連接至一無線通信鏈路;及= 攸 the master device receives the alert - the method of retransmitting the LV R, such as claim 4, in response to the method, further comprising: receiving a response from the master device in response to the 戎 alert associated with the alert a request for additional information; and ^ transmitting the additional information in at least the response slot, the at least-response slot system including the request for additional information is identified. The method of claim 5 includes the request for additional information containing a subsequently received beacon frame. The method of claim 2, further comprising: when sharing the alert signaling window, implementing a contention-based access protocol to access the alert signaling window. The method of claim 7 wherein the contention-based access protocol comprises at least one of a carrier sense multi-directional proximity (CSMA) protocol, an Al-Ha agreement, or a slot ALOHA protocol. The method of claim 1, wherein the reservation information is included in a frame sent in a broadcast signal window of the hyperframe, the broadcast signal window including at least one slot of the hyperframe. 10. The method of claim 1, wherein the subscription information is included in a beacon frame of the hyperframe, the beacon frame including at least one slot of the hyperframe. 5. 6. The method of claim 10, wherein the wireless network is discovered based on the k-telephone frame transmitted from the master device. A low-time 133667.doc 200917761 time-based wireless device for providing data to a monitor over a wireless network, the wireless device comprising: - a processor for controlling the wireless device to collect the data And communicating with the monitor; and a memory for storing the collected data; and a transceiver for receiving an appointment from the monitor in at least one reservation slot of a hyperframe Information, at least one of the collected data in the distribution slot: at least part of the collected data is transmitted to the monitor, and an alarm is transmitted to the monitor in one of the alarm frames of the hyperframe The at least-data allocation slot and the slot of the alarm signaling window are identified based on the subscription information; wherein the transceiver wakes up from the inactive state to transmit according to one of the transmission schedules provided in the subscription information. The at least a portion of the collected data, and regardless of the transmission schedule, the transceiver wakes up from the inactive state in response to an alert trigger provided by the processor Songgaixinbao. 13. The device of claim 12, wherein the transceiver wakes up from sleep by powering on. 14. The device of claim 12, wherein the at least one reservation slot is a beacon frame of the hyperframe. 1 5 - The device of claim 12, for the 兮s. 衣1. The main reservation is a broadcast signal window containing a plurality of consecutive slots of the superframe. 16. The device of item 12, wherein the transceiver retransmits the alert when a response to the alert is not received from the monitor. 133667.doc 200917761 17. If the transceiver is in response to the alert, the transceiver receives a response from the monitor associated with the alert in a subsequent beacon frame of the frame. The request for additional information, and the medium-mounted transceiver thereof, transmit the additional information provided by the processor to the monitor in at least one response slot identified by the hyperframe in the subsequent beacon frame. 18. A remote monitoring system comprising: a monitoring device connected to a wireless communication link; and 複數個感測器,其係經組態用以收集感測器資料及透 過θ亥無線通信鏈路將該等感測器資料之至少―部分以及 二報傳达至s亥至少一監視器,該複數個感測器之各感 測器在一超訊框之-信標訊框中接收來自該至少一監視 器之預約 > 汛,該預約資訊識別該超訊框之用於將該等 感測器資料之該至少—部分傳送至該監視器的至少一資 枓分配槽’該超訊框之對—相對應警報觸發回應於將該 警報之一指示傳送至該監視器的至少一警報槽,及一作 用時間循環排程; 其中各感測器依據該作用時間循環排程週期性從 作用中狀態喚醒以將該等感測器資料之該至少—部分傳 送至該監視器,及 刀得 ,各感測器回應於 以將該警報指示傳 其中不管該作用時間循環排程如伺 該警報觸發而從該非作用中狀態喚醒 送至該監視器。 19.如請求項1 8之遠端監視系統, 其中基於該等已 收集感測 133667.doc 200917761 一指示的至 —監視器包 資訊進一步 —監視器之 器各基於該 視器之一者 器資料或該相對應感測器之剩餘電池電力之 少—者來啟動該警報觸發。 20.如請求項18之遠端監視系統,其中當該至少 含一第一監視器與一第二監視器時,該預約 識別用於包括分別來自該第一監視器與該第 信標的該超訊框之共存時槽,該複數個感測 專才目對應信標而與δ玄苐一監視器或該第二監 相關聯。 133667.doca plurality of sensors configured to collect sensor data and communicate at least a portion and a second report of the sensor data to at least one monitor through a wireless communication link. Each of the plurality of sensors receives a reservation from the at least one monitor in a beacon frame of the hyperframe, the subscription information identifying the superframe for the The at least one portion of the sensor data is transmitted to the at least one asset allocation slot of the monitor - the pair of the hyperframes - the corresponding alarm triggers at least one alarm in response to transmitting one of the alarms to the monitor a slot, and an active time cycle schedule; wherein each sensor wakes up from the active state periodically according to the active time cycle schedule to transmit the at least part of the sensor data to the monitor, and the knife In response, each sensor responds to send the alarm indication to the monitor from the inactive state regardless of the active time cycle schedule, such as the alarm trigger. 19. The remote monitoring system of claim 18, wherein the monitor device is further based on the one of the viewers based on the received monitor 133667.doc 200917761 Or the lack of remaining battery power of the corresponding sensor - to initiate the alarm trigger. 20. The remote monitoring system of claim 18, wherein when the at least one first monitor and a second monitor are included, the appointment identification is for including the super from the first monitor and the first beacon respectively The coexistence time slot of the frame, the plurality of sensing professionals corresponding to the beacon and associated with the δ Xuanyi monitor or the second monitor. 133667.doc
TW097131365A 2007-08-20 2008-08-15 Method and system for implementing low duty cycle wirless systems TW200917761A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95672007P 2007-08-20 2007-08-20
US99039107P 2007-11-27 2007-11-27

Publications (1)

Publication Number Publication Date
TW200917761A true TW200917761A (en) 2009-04-16

Family

ID=40378767

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097131365A TW200917761A (en) 2007-08-20 2008-08-15 Method and system for implementing low duty cycle wirless systems

Country Status (2)

Country Link
TW (1) TW200917761A (en)
WO (1) WO2009024925A2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2227063B1 (en) 2009-03-04 2012-03-14 Fujitsu Limited Improvements to wireless sensor networks
EP2227046B1 (en) 2009-03-04 2015-07-29 Fujitsu Limited Improvements to body area networks
TWI425327B (en) * 2009-05-21 2014-02-01 Hon Hai Prec Ind Co Ltd Method of controlling remote electronic device
CN102487525A (en) * 2010-12-02 2012-06-06 中国移动通信集团上海有限公司 Alarm information transmission method, wireless sensor node equipment and gateway node equipment
CN103609094A (en) 2011-04-18 2014-02-26 莫比利策公司 Cover for portable devices adapted to attach modules thereto
GB201110757D0 (en) * 2011-06-24 2011-08-10 Gassecure As Wireless sensor networks
CN106851776B (en) * 2012-01-21 2020-11-17 华为终端有限公司 Method for accessing equipment to network, access point, network access equipment and system
CN102892193B (en) * 2012-09-20 2016-03-30 华为技术有限公司 Data transmission method and equipment
WO2014168525A1 (en) * 2013-04-08 2014-10-16 Telefonaktiebolaget L M Ericsson (Publ) Methods, device and node for discontinuous reception (drx) of data
DE102013214005A1 (en) * 2013-07-17 2015-02-19 Zf Friedrichshafen Ag Method and device for transmitting data and method and device for transmitting an identification signal
US9998991B2 (en) 2013-08-28 2018-06-12 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatuses for discontinuous reception cycle estimation by data packet monitoring
FI125506B (en) 2013-09-10 2015-10-30 Suunto Oy Underwater transceiver, underwater communication system and associated communication method
WO2015038056A1 (en) 2013-09-13 2015-03-19 Telefonaktiebolaget L M Ericsson (Publ) Flexible transmission scheme for wireless communication
US9807631B2 (en) * 2013-11-13 2017-10-31 Fluke Corporation Wireless transmitter network analysis tool
WO2017200675A1 (en) * 2016-05-18 2017-11-23 Qualcomm Incorporated Deep sleep mode abort mechanism for machine-type communication devices
US10070387B2 (en) 2016-05-18 2018-09-04 Qualcomm, Incorporated Deep sleep mode abort mechanism for machine-type communication devices
US10432417B2 (en) * 2017-12-14 2019-10-01 Ademco Inc. Systems and methods for transmitting an updated partition state to sensors or devices
DE102018124691A1 (en) * 2018-10-08 2020-04-09 Bayerische Motoren Werke Aktiengesellschaft Master-slave system
CN109219055B (en) * 2018-10-19 2022-11-11 宁波大学 Main user duty ratio estimation method
US10789800B1 (en) 2019-05-24 2020-09-29 Ademco Inc. Systems and methods for authorizing transmission of commands and signals to an access control device or a control panel device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7826475B2 (en) * 2004-11-01 2010-11-02 Electronics And Telecommunications Research Institute Radio communication system, radio communication apparatus and radio communication method for UWB impulse communication
US20060242127A1 (en) * 2004-12-02 2006-10-26 Ihs Imonitoring Inc. Field sensing network

Also Published As

Publication number Publication date
WO2009024925A3 (en) 2009-08-13
WO2009024925A2 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
TW200917761A (en) Method and system for implementing low duty cycle wirless systems
Nikoukar et al. Low-power wireless for the internet of things: Standards and applications
CN102804694B (en) For managing the terminal equipment of emergency, telegon and method
TWI430681B (en) Improvements to body area networks
KR101307607B1 (en) Improvements to short-range wireless networks
US9369215B2 (en) Asynchronous transmission with double wake up
US9813991B2 (en) Access and power management for centralized networks
US20070091813A1 (en) Automatic channel switching method for low-power communication devices
TW201101887A (en) Improvements to body area networks
JP6082734B2 (en) Wireless communication system
KR20120109050A (en) Method and apparatus of sensor network supporting bidirectional event detection
CN103797881B (en) Personal area network (PAN) coordinator and method for distributing multicycle guarantee time slot
US20160112955A1 (en) Communication protocol between access point and wireless station
CN104918290B (en) A kind of data transmission method
WO2015154499A1 (en) Information interaction method, device and system for wban
Torabi et al. Cross-layer design for prompt and reliable transmissions over body area networks
US9445435B2 (en) Method for transmitting data in a wireless network, and wireless network therefor
Naranjo-Hernández et al. Low-power platform and communications for the development of wireless body sensor networks
Saffari WideScatter: Toward wide area battery-free wireless sensor networks
Ma Performance modelling and analysis of multiple coexisting IEEE 802.15. 4 wireless sensor networks
Hur et al. A hierarchical power-saving method of WUSB over WBAN