TW200917613A - Power system - Google Patents

Power system Download PDF

Info

Publication number
TW200917613A
TW200917613A TW96136971A TW96136971A TW200917613A TW 200917613 A TW200917613 A TW 200917613A TW 96136971 A TW96136971 A TW 96136971A TW 96136971 A TW96136971 A TW 96136971A TW 200917613 A TW200917613 A TW 200917613A
Authority
TW
Taiwan
Prior art keywords
current
power
value
voltage
reference value
Prior art date
Application number
TW96136971A
Other languages
Chinese (zh)
Other versions
TWI341637B (en
Inventor
Ching-Hsiung Liu
Original Assignee
Ching-Hsiung Liu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ching-Hsiung Liu filed Critical Ching-Hsiung Liu
Priority to TW096136971A priority Critical patent/TWI341637B/en
Publication of TW200917613A publication Critical patent/TW200917613A/en
Application granted granted Critical
Publication of TWI341637B publication Critical patent/TWI341637B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A power system is disclosed. The power system comprises a plurality of power supply units, a voltage sharing bus, and a current sharing bus. The sharing bus is used to transmit a sharing voltage, and the current sharing bus is used to transmit a first current reference value. Each of the power supply units comprises: a power converter, a feed-forward control (FFC) circuit, and a feedback control (FBC) circuit. The feed-forward control circuit is used to generate a second current reference value according to a difference between an input voltage of the power converter and the sharing voltage. The feedback control circuit is used to generate a current compensation value according to the second current reference value and the first current reference value. The power converter can adjusts the output current thereof in accordance with the current compensation value.

Description

200917613 九、發明說明: 【發明所屬之技術領域】 種電力系統’特別是有關於_ 電流/電壓平衡控制電路的電 種具 力系 本發明是有關於一 有前饋控制電路和輸出 統0 【先前技術】200917613 IX. Description of the invention: [Technical field of the invention] The invention relates to a power system, in particular to a current/voltage balance control circuit. The invention relates to a feedforward control circuit and an output system. Prior art

近年來由於半導體技術突飛猛進,因而發展許 電子元件’其具有良好的可控性、耐高壓及耐大電流 性。目則&些電力電子元件廣泛地應用於電力設備中寺 馬達驅動器、電弧爐、電車、充電器及照明器具等: 來說’轉換器(C〇nverter)常應用於電子領域中,例如:= /直流、直流/交流、交流/直流或交流/交流轉換器,其―二 係用以轉換-直流或交流電壓成另—直流或交流電壓。又 通常’電力系統使用轉換器的方式有幾種,例如:中 央電力系統(Central P〇wer System ; CPS)或分散式電力系統 (Distributed Power System ; DPS)。請參照第 i 圖,其繪示 依照習知技術-種中央電力系統的系統方塊圖。在中央電 力系統1G中’單-輸人電源u係電性連接於單一電能轉 換器12及複數個負載13(例如電子元件)。輸入電源^可 為直流電源,而電能轉換器12係用以轉換一直流電壓準位 至另一直流電壓準位,因而輸入電源u可供應電量至負載 13。然而,中央電力系統具有例如:對元件容易造成高電 流壓(Current Stress)、低可靠度及難以維持電力等缺點。 請參照第2圖,其繪示依照習知技術一種分散式電力 200917613 糸m统方_。在分散式電力 源2i係電性連接於複數個電能轉換 中早-輸入電 以供應電量至負载23。分散式電力;?固負栽23 壓、可支援外接多個元件、容易“::有例如:低電流 組來客製化等優點。然而,當單::入電雷力以及可用標準模 或發生故障,導致無法供應/m ^量不足 產生作用。 "冑組電力系統則無法 【發明内容】 因此,本發明之一方面係在提供一種電 力糸統可根據其對應連接之電源 爽 、 輸出電量至負載。 ㈣里來對應調整 根據本發明之一實施例,此電力系統至少包含:_電 壓平均匯流排,用以傳輸—平均㈣;㈣ ;,彼此互相並聯且用以提供電力至-負載,其中每:; 此供應早位係電性連接至電壓平均匯流排以接收平均電 ^且每—電能供應單位至少包含:―電能轉換器,電性 連接至-電源和負m,其中電源係透過電能轉換器之一電 Μ輸入端來提供電力至電能轉換器;一電阻,電性連接至電 壓輸入端;第-比較器,用以根據平均電壓和電能轉換器 之-輸入電壓的差值來產生一電流參考值,其中第一比較 器係電性連接至電阻和電壓輸入端,且電壓平均匯流排之 :端係電性連接於電阻和第—比較器m流㈣ 斋’用以價測電能轉換器之—輸出電流值;第二比較器, 用以根據輸出電流值和電流參考值之差值來產生一電流補 200917613 償值,以使電能轉換器根據電流補償值來調整電能轉換器 之一輸出電流值。 ° 根據本發明之又一實施例,此電力系統至少包:一 電壓平均匯流排,用以傳輸一平均電壓;一電流平 排’用以傳輸一第一電流參考值;複數個電能供庫單位: 彼此互相電性並聯,且用以提供電能至—負載,^ :應單:係電性連接至電壓平均匯流排和電流;均匯^ 位一電能轉換器,電性連接至—電源 用以根據平均電壓和電能轉換器之-輪 =之-端係電性連接至前饋控制電路;以及_反饋“ 電流參考值和第二電流參考值來產工生 反饋控制i路;;中端係電性連接至 能轉換器之-輪出it轉換讀據電流補償值來調整電 根據本發明之再一實施例, ;麼平均匯流排,用以傳輸-平均電壓上:匯: ’用以傳輸-第一電流參考值 :: 以供應電能至—負载,且提供第一電應 能供應單位至少句人.:伢弟電肌參考值,其中主電 第一電源和負載笛—第一電能轉換器,電性連接至一 壓和第-電能轉換考制電路,用以根據平均電 二電流參考值;了第一輸入電麼之差值來產生一第 電能轉換器之—笛—μ第一反饋控制電路,用以根據第一 第一電流補償值,雨出電壓和第二電流參考值來產生一 值;其中第—雷处弟Τ'反饋控制電路產生第一電流參考 電能轉換器之—ί —換器根據第一電流補償值來調整第一 單位,用二提供J:輪出電流值;以及至少-僕電能供應 係電性連接至雷、=至負載,其中至少一僕電能供應單位 、’均匯流排和電流平均匯流排,且每一 200917613 至少一僕電能供應單位至少包含:一第二電能轉換器,電 性連接至一第二電源和負載,其中第二電能轉換器輸出一 第二輸出電壓值;一第二前饋控制電路,用以根據平均電 壓和第二電能轉換器之一第二輸入電壓之差值來產生一第 三電流參考值;以及一第二反饋控制電路,用以根據第一 電流參考值和第三電流參考值來產生一第二電流補償值; 其中第二電能轉換器根據第二電流補償值來調整第二電能 轉換器之一第二輸出電流值。 根據本發明之再一實施例,此電力系統至少包含一電 壓平均匯流排,用以傳輸一平均電壓;一第一電能供應單 位,用以提供電能至一負載,其中第一電能供應單位至少 包含:一第一電能轉換器,電性連接至一第一電源和電阻, 其中第一電能轉換器至少包含一第一電流輸出端和一第一 電壓參考端,且第一電流輸出端係電性連接至負載;一第 一電阻,電性連接至第一電能轉換器之一第一電壓輸入 端;以及一第一比較器,用以根據平均電壓和第一電能轉 換器之一第一輸入電壓之差值來產生一第一電壓補償值, 其中第一比較器係電性連接至第一電阻和第一電壓輸入 端,且電壓平均匯流排之一端係電性連接於第一電阻和第 一比較器之間;其中第一電能轉換器根據第一電壓補償值 來調整第一電能轉換器之一第一輸出電壓;以及一第二電 能供應單位,用以提供電能至負載,其中第二電能供應單 位至少包含:一第二電能轉換器,電性連接至一第二電源 和負載,其中第二電能轉換器至少包含一第二電流輸出端 和一第二電壓參考端,第二電流輸出端係電性連接至第一 電壓參考端;一第二電阻,電性連接至第二電能轉換器之 一第二電壓輸入端;以及一第二比較器,用以根據平均電 壓和第二電能轉換器之一第二輸入電壓之差值來產生一第 二電壓補償值,其中第二比較器係電性連接至第二電阻第 二電壓輸入端,且電壓平均匯流排之另一端係電性連接至 200917613 第二電阻和第二比較器之間;其中第二電能轉換 二電壓補償值來調整第二電能轉換器之一第二輪出電壓。 【實施方式】 請參照第3圖,其係繪示根據本發明第一實施例之電 力系統100的功能方塊示意圖。電力系統1〇〇至少包含: 電能供應單位110、電壓平均匯流排120和至少載 130。每一電能供應單位11〇至少包含:電源14〇、電能轉 換器150和轉換器控制電路16〇。電壓平均匯流排12〇係電 {•生連接至每一電能供應單位11〇之轉換器控制電路16〇。電 力系統100之電源140可為直流或交流電源,例如人力發 電裝置、太陽能發電裝置、燃料電池、風力發電裝置、熱 力發電裝置、水力發電裝置、傳統電力供應裝置或電池。 電源140係用以輸入電源電壓至電能轉換器15〇,以藉由電 能轉換器150來提供電能至負載13〇。電能轉換器15〇可為 直流/直流、直流/交流、交流/直流或交流/交流轉換器,以 將輸入電壓(直流或交流)轉換成輸出電壓(直流或交流)。負 載130可為任何可被電力致動的裝置’例如馬達。再者, 單一個負載13〇或是兩個以上的負載13〇皆可使用於電力 系統100中。 凊參照第4圖,其係繪示根據本發明第一實施例之電 能供應單位110的電路示意圖。轉換器控制電路16〇至少 包含電阻160a和比較器160b。電阻i6〇a係電性連接至電 月b轉換器15〇之電壓輸入端pi,以使電能轉換器丨5〇之輸 入電壓透過電阻l60a輸入至電壓平均匯流排12〇。電壓平 200917613 均匯流排120之一端係電性連接於電阻16〇a和比較器 160b。比較斋160b係用以根據電能轉換器15〇之輸入電壓 和一平均電壓之差值來產生電流參考值,其中平均電壓為 輸入至電壓平均lg流排之全部的輸入電廢乘以加權值後的 平均值。電能轉換E 150至少包含另一轉換器控制電路 152’其中轉換器控制電路152可根據電流參考值來調整電 能轉換器15G之輸出電流。另外’在本實施例中,比較器 160b較佳可為由運算放大器(叩amp)所構成之比較器。本 發明之電能轉換器可包含電氣隔離式元件或非電氣隔離式 元件,因此接地參考電壓GND1之值不一定與接地參考電 壓GND2之值相同。 根據上述之說明可知,電能轉換器15〇可根據其輸入 電壓和平均電壓之間的差值來調整電能轉換器15〇之輸出 電流。 凊參照第5圖,其係繪示根據本發明第一實施例之電 力系統200的電路示意圖。電力系统2〇〇為電力系統· 之-具體_。電力系統2GG至少包含電能供應單位u〇a、 電忐供應單位ii〇b、電壓平均匯流排12〇和負載13〇,其 中電能供應單位llGa和電能供應單位·係類似於電能 供應單位100。電壓平均匯流# 12〇之一端係電性連接至電 能供應單位ll〇a之電阻祕和比較器祕之間,而電廢 平均匯流排120之另—端係電性連接至電能供應單位議 之電阻160a和比較器i6〇b之間。在電力系統細中,電 源H〇a係、用以提供第—電源電壓而電源1條係用以提 供第二電源電壓。當第—電源電壓(例如48v)大於第二電源 200917613 電壓(例如38V)時,雷能徂旛留/ , 輩位1丨可輸出比電能供應 ^ _更夕的輪出電流’以使電能供應單位削 出電流保持在其安全極限值町,如此電能 位松 便得到保護。 Ub ㈣B第6圖,其係繪示根據本發明第—較佳實施例 之電力系、统300的電路示意圖。電力系統3〇〇至少In recent years, due to the rapid advancement of semiconductor technology, it has developed a good controllability, high voltage resistance and high current resistance. The power & electronic components are widely used in electric power equipment, such as temple motor drives, electric arc furnaces, electric cars, chargers, lighting fixtures, etc.: For example, 'converters (C〇nverter) are often used in the field of electronics, such as: = / DC, DC / AC, AC / DC or AC / AC converter, the second - to convert - DC or AC voltage into another - DC or AC voltage. In addition, there are several ways in which power systems use converters, such as the Central P〇wer System (CPS) or the Distributed Power System (DPS). Please refer to the i-th diagram, which shows a system block diagram of a central power system according to the prior art. In the central power system 1G, the single-input power supply u is electrically connected to a single power converter 12 and a plurality of loads 13 (e.g., electronic components). The input power source ^ can be a DC power source, and the power converter 12 is used to convert the DC voltage level to another DC voltage level, so the input power source u can supply power to the load 13. However, the central power system has disadvantages such as high voltage (Current Stress) on the components, low reliability, and difficulty in maintaining power. Please refer to FIG. 2, which illustrates a distributed power 200917613 糸m system _ according to the prior art. The decentralized power source 2i is electrically connected to a plurality of power conversions to supply power to the load 23. Decentralized power; solid-loaded 23-voltage, can support multiple external components, easy to ":: There are advantages such as: low current group to be customized. However, when:: incoming lightning force and available standard mode or failure Therefore, the inability to supply /m ^ is insufficient to produce an effect. "The invention is not possible." Therefore, one aspect of the present invention provides a power system that can supply power according to its corresponding connection. Load (4) Corresponding Adjustment According to an embodiment of the present invention, the power system includes at least: a voltage average busbar for transmission-average (four); (d); parallel to each other and for providing power to the load, wherein Each of: the supply early is electrically connected to the voltage average bus to receive the average power and each of the power supply units comprises at least: "a power converter, electrically connected to - power and negative m, wherein the power is transmitted through the power One of the converters provides an electrical input to the power converter; a resistor electrically connected to the voltage input; and a comparator for the average voltage and power The difference between the input voltages of the converters is used to generate a current reference value, wherein the first comparator is electrically connected to the resistance and voltage input terminals, and the voltage average busbars are: the ends are electrically connected to the resistors and the first comparison The m stream (4) is used to measure the output current value of the power converter; the second comparator is configured to generate a current compensation 200917613 compensation value according to the difference between the output current value and the current reference value, so as to convert the electric energy According to another embodiment of the present invention, the power system includes at least one voltage average bus bar for transmitting an average voltage; For transmitting a first current reference value; a plurality of electrical energy supply units: electrically connected to each other in parallel, and used to provide electrical energy to the load, ^: should be: electrically connected to the voltage average bus and current; a power converter, electrically connected to the power source for electrically connecting to the feedforward control circuit according to the average voltage and the - wheel of the power converter; and _ feedback "current reference The value and the second current reference value are used to generate a feedback control i path; the middle end is electrically connected to the energy converter - the round output is converted to read the current compensation value to adjust the power according to another embodiment of the present invention, What is the average busbar for transmission - average voltage on: sink: 'for transmission - first current reference value:: to supply electrical energy to - load, and provide the first electrical energy supply unit at least sentence.:伢The electric muscle reference value, wherein the main power first power source and the load flute-first electric energy converter are electrically connected to a voltage and first-electric energy conversion test circuit for using the average electric current reference value; a difference between the input powers to generate a first power feedback converter - a first feedback control circuit for generating a value according to the first first current compensation value, the rain output voltage and the second current reference value; The first - Lei Shidi's feedback control circuit generates the first current reference power converter - the converter adjusts the first unit according to the first current compensation value, and provides the J: wheel current value by two; and at least - servant The power supply is electrically connected to the mine, = to Loading at least one of the servant power supply units, the 'mean bus bar and the current averaging bus bar, and each of the 200917613 at least one servant power supply unit comprises at least: a second power converter electrically connected to a second power source and load The second power converter outputs a second output voltage value; a second feedforward control circuit is configured to generate a third current reference according to a difference between the average voltage and a second input voltage of the second power converter And a second feedback control circuit for generating a second current compensation value according to the first current reference value and the third current reference value; wherein the second power converter adjusts the second power according to the second current compensation value One of the second output current values of the converter. According to still another embodiment of the present invention, the power system includes at least one voltage average bus bar for transmitting an average voltage, and a first power supply unit for supplying power to a load, wherein the first power supply unit includes at least a first power converter electrically connected to a first power source and a resistor, wherein the first power converter includes at least a first current output terminal and a first voltage reference terminal, and the first current output terminal is electrically Connected to the load; a first resistor electrically connected to one of the first voltage inputs of the first power converter; and a first comparator for determining the first input voltage according to the average voltage and the first power converter The difference is used to generate a first voltage compensation value, wherein the first comparator is electrically connected to the first resistor and the first voltage input end, and one end of the voltage average bus bar is electrically connected to the first resistor and the first Between the comparators; wherein the first power converter adjusts a first output voltage of the first power converter according to the first voltage compensation value; and a second power supply unit, The second power supply unit includes at least: a second power converter electrically connected to a second power source and a load, wherein the second power converter includes at least a second current output terminal and a first a second voltage output terminal electrically connected to the first voltage reference terminal; a second resistor electrically connected to one of the second voltage input terminals of the second power converter; and a second comparator And generating a second voltage compensation value according to a difference between the average voltage and a second input voltage of the second power converter, wherein the second comparator is electrically connected to the second resistor, the second voltage input terminal, and the voltage The other end of the average bus bar is electrically connected between the second resistor of the 200917613 and the second comparator; wherein the second power converts the two voltage compensation values to adjust the second wheel voltage of one of the second power converters. [Embodiment] Please refer to FIG. 3, which is a functional block diagram of a power system 100 according to a first embodiment of the present invention. The power system 1〇〇 includes at least: an electric energy supply unit 110, a voltage average bus bar 120, and at least a load 130. Each power supply unit 11A includes at least a power source 14A, a power converter 150, and a converter control circuit 16A. The voltage average busbar 12 is electrically connected to the converter control circuit 16 of each power supply unit. The power source 140 of the power system 100 can be a direct current or alternating current power source, such as a human power generating device, a solar power generating device, a fuel cell, a wind power generating device, a thermal power generating device, a hydroelectric power generating device, a conventional power supply device, or a battery. The power source 140 is configured to input a power supply voltage to the power converter 15A to provide power to the load 13 by the power converter 150. The power converter 15 can be a DC/DC, DC/AC, AC/DC or AC/AC converter to convert the input voltage (DC or AC) to an output voltage (DC or AC). Load 130 can be any device that can be actuated by electricity, such as a motor. Furthermore, a single load of 13 turns or more than two loads 13 can be used in the power system 100. Referring to Fig. 4, there is shown a circuit diagram of an electric power supply unit 110 according to a first embodiment of the present invention. The converter control circuit 16A includes at least a resistor 160a and a comparator 160b. The resistor i6〇a is electrically connected to the voltage input terminal pi of the electric circuit b converter 15〇, so that the input voltage of the power converter 丨5〇 is input to the voltage average bus bar 12〇 through the resistor 160a. Voltage level 200917613 One end of the bus bar 120 is electrically connected to the resistor 16A and the comparator 160b. The comparison 160b is used to generate a current reference value according to the difference between the input voltage of the power converter 15〇 and an average voltage, wherein the average voltage is the input power to the input voltage to the average lg flow row multiplied by the weighted value. average value. The power conversion E 150 includes at least another converter control circuit 152' in which the converter control circuit 152 can adjust the output current of the power converter 15G based on the current reference value. Further, in the present embodiment, the comparator 160b is preferably a comparator composed of an operational amplifier. The power converter of the present invention may comprise an electrically isolated component or a non-electrically isolated component, so the value of the ground reference voltage GND1 is not necessarily the same as the value of the ground reference voltage GND2. According to the above description, the power converter 15 can adjust the output current of the power converter 15 according to the difference between the input voltage and the average voltage. Referring to Fig. 5, there is shown a circuit diagram of a power system 200 in accordance with a first embodiment of the present invention. The power system 2 is the power system. The power system 2GG includes at least a power supply unit u〇a, an electric power supply unit ii〇b, a voltage average bus bar 12〇, and a load 13〇, wherein the power supply unit llGa and the power supply unit are similar to the power supply unit 100. One of the voltage average convergence #12〇 is electrically connected to the resistance of the power supply unit ll〇a and the comparator, and the other end of the electric waste average bus 120 is electrically connected to the power supply unit. Between the resistor 160a and the comparator i6〇b. In the power system, the power source H〇a is used to provide the first power supply voltage and the power supply 1 is used to provide the second power supply voltage. When the first-supply voltage (for example, 48v) is greater than the voltage of the second power supply 200917613 (for example, 38V), the lightning energy retention /, the generation 1丨 can output the current output than the power supply ^ _ to enable the power supply The unit cutting current is kept at its safety limit value, so that the power level is loosely protected. Ub (4)B Figure 6 is a circuit diagram showing the power system 300 of the first preferred embodiment of the present invention. Power system 3〇〇 at least

數,電能供應單位31〇。電能供應單位31〇係類似於電能供 應單位11G,但其不同之處在於電能供應單位3Μ更包含電 々“貞測160c、比較n 16〇d和加法胃16〇e。電流偵測器 160c係電性連接至電能轉換器15〇之電流輸出端p〇,以偵 測電能轉換器150之輸出電流。加法器綠係用來計算電 流參考值與一預設電壓Vref之和,其中預設電壓係用 以做為比較時的基準電壓位準。比較器16〇d係用以根據電 能轉換器150之輸出電流與上述的和之間的差值來產生電 流補償值。接| ’電能轉sn 150才艮據電流補償值來調整 其輸出電流。 請參照第7圖和第8圖,第7圖係繪示根據本發明第 二實施例至第五實施例之電力系統4〇〇的功能方塊圖,第8 圖係繪示根據本發明第二實施例至第五實施例之電流平均 匯流排的數種使用方式。電力系統4〇〇至少包含複數個電 能供應單位410、電壓平均匯流排42〇a、電流平均匯流排 420b和至少一負載430。每一電能供應單位41〇至少包含 電源440、電能轉換器450 '前饋控制電路460和反饋控制 電路470。電壓平均匯流排42〇a係電性連接至每一電能供 應單位410之前饋控制電路46〇,而電流均匯流排42〇b係 11 200917613 電性連接至每一電能供應單位410之反饋控制電路470。 電源440可為直流或交流電源,例如人力發電裝置、 太陽能發電裝置、燃料電池、風力發電裝置、熱力發電裝 置、水力發電裝置、傳統電力供應裝置或電池。電源440 用以提供輸入電壓至電能轉換器450,如此可藉由電能轉換 器450來提供電能至負載430。電能轉換器450可為直流/ 直流、直流/交流、交流/直流或交流/交流轉換器,以將輸 入電壓(直流或交流)轉換成輸出電壓(直流或交流)。負載 430可為任何可被電力致動的裝置,例如馬達。再者,單一 個負載430或是兩個以上的負載430皆可使用於電力系統 400 中。 根據本發明之第二實施例,電流平均匯流排420b可利 用直接主僕法(Dedicated Master Method ; DM)、平均電流 法(Average Current Method ; AC)、自動主僕法(Automatic Master Method ; AM)或其他適合的連接方法來電性連接至 電能供應單位410,而平均匯流排420b的控制迴路架構可 例如為:内迴路架構(Inner Loop Regulation ; ILR)、外迴路 架構(Outer Loop Regulation ; OLR)、雙迴路架構(Dual Loop Regulation ; DLR)、單迴路架構(Single Loop Regulation ; SLR)或其他適合的控制迴路架構。 請參照第9圖,其係繪示根據本發明第二實施例之電 力系統500的電路示意圖。電力系統500至少包含複數個 電能供應單位510、電壓平均匯流排520a、電流平均匯流 排520b和至少一負載530。每一電能供應單位510至少包 含:電源540、電能轉換器550、前饋控制電路560和反饋 12 200917613 控制電路570。前饋控制電路560至少包含電阻560a和比 較器560b,而反饋控制電路570至少包含比較器570a、二 極體570b、加法器570c、電流偵測器570d和比較器570e。 在電力系統500中,電流平均匯流排520b係使用自動主僕 法(AM)和内迴路調整架構(ILR)來連接與控制。 在前饋控制電路560中,電阻560a係電性連接至電能 轉換器550之電壓輸入端Pi,以使電能轉換器550之輸入 電壓透過電阻560a來輸入至電壓平均匯流排520a。電壓平 均匯流排之一端係電性連接至電阻560a和比較器560b之 間。比較器560b用以根據電能轉換器550之輸入電壓和一 平均電壓之差值來產生一第一電流參考值,其中平均電壓 為輸入至電壓平均匯流排5 2 0 a之所有輸入電壓值乘以加推 值之後的平均值。 在反饋控制電路570中,比較器570a用以根據電能轉 換器550之輸出電壓和一預設電壓Vref之差值來產生一第 二電流參考值,並且形成並内迴路調整架構(ILR)。二極體 570b之正端係電性連接至比較器570a,而二極體570b之 負端係電性連接至電流平均匯流排520b,其中二極體570b 係適用於自動主僕法。在每一電能供應單位510中,第二 電流參考值可透過二極體570b來輸入至電流平均匯流排 52〇b,如此可使電流平均匯流排520b傳送一第三電流參考 值,此第三電流參考值係從所有的第二電流參考值從中擇 一。加法器570c用以將第一電流參考值和第三電流參考值 相加,以產生一總電流參考值。電流偵測器570d係電性連 接至電能轉換器550之電流輸出端Po,以偵測電能轉換器 13 200917613 550之輸出電流。比較器570e係用以根據電能轉換器550 之輸出電流值與總電流參考值之差值來產生電流補償值, 並形成均流迴路CSL。接著,電能轉換器550根據電壓補 償值來調整其輸出電流值。由於均流迴路CSL係形成於電 壓調整迴路RL之前,因此構成了内迴路控制架構(ILR)。 另外,在電力系統500中,比較器560b、570a和570e較 佳為由運算放大器組成之比較器。 由上述之說明可知,電能轉換器550之輸出電流值可 根據電流平均匯流排所提供之電壓、以及電壓平均匯流排 所提供之電壓來變化。 請參照第10圖,其係繪示根據本發明第二實施例之電 力糸統6 0 0的電路不意圖。電力糸統6 0 0為電力糸統5 0 0 的一個具體範例。電力系統600至少包含電能供應單位 510a、電能供應單位510b、電壓平均匯流排520a、電流平 均匯流排520b和負載530,其中電能供應單位510a和電能 供應單位510b係類似於電能供應單位510。電壓平均匯流 排520a之一端係電性連接至電能供應單位510a之比較器 560b和電阻560a之間,而另一端则電性連接至電能供應單 位510b之比較器560b和電阻560a之間。電流平均匯流排 520b之一端係電性連接至電能供應單位510a之二極體 570b和加法器570c之間,而另一端则電電性連接至電能供 應單位510b之二極體570b和加法器570c之間。在電力系 統600中,電源540a係用以提供第一電源電壓,而電源540b 係用以提供第二電源電壓,其中第一電源電壓係大於第二 電源電壓。舉例而言,當第一電源電壓(例如48V)高於第二 14 200917613 電壓(例如38V)時,電壓平均匯流排520a可使電能供應單 位510a之輸出電流值高於電能供應單位510b之輸出電流 值,以保持電能供應單位510b之輸出電流值低於其安全極 限值,並獲得保護。另外,電流平均匯流排520b可使電力 系統600之電能供應單位510a和510b之輸出電流值之間 的差值比電力系統200之電能供應單位110a和110b之輸 出電流之間的差值更小,如此進一步達成電流平衡的效果。 請參照第11圖,其係繪示根據本發明第二實施例之電 力糸統7 0 0的電路不意圖。電力糸統7 0 0係類似於電力糸 統500,但不同之處在於電力系統700之每一電力供應單位 係使用電阻570g來代替二極體570b。在電力系統700中, 係採用平均電流法(AP)和内迴路控制架構(ILR),因此第三 電流參考值為輸入至電流平均匯流排之全部的第二電流參 考值乘以加權值後的平均值。 請參照第12圖,其係繪示根據本發明第二實施例之電 力系統800的電路示意圖。電力系統800至少包含主電能 供應單位810a、至少一僕電能供應單位800b、電壓平均匯 流排520a、電流平均匯流排520b和負載530。主電能供應 單位810a係類似於電能供應單位510,但不同之處在於主 電能供應單位810a不包含有二極體570b,且電流平均匯流 排520b之一端係電性連接至主電能供應單位810a之比較 器570a和加法器570c之間。另外,僕電能供應單位810b 係類似於主電能供應單位810a,但不同之處在於僕電能供 應單位810b不包含有比較器570a,且電流平均匯流排520b 之一端係電性連接至僕電能供應單位810b之加法器 15 200917613 570c。在電力系統800中,係採用直接主僕法(DM)和内迴 路控制架構(ILR),因此第三電流參考值為主電能供應單位 810a之比較器570a所提供之第二電流參考值。 請參照第13圖,其係繪示根據本發明第三實施例之電 力系統900的電路示意圖。電力系統900至少包含複數個 電能供應單位910、電壓平均匯流排920a、電流平均匯流 排920b和至少一負載930。每一電能供應單位910至少包 含電源940、電能轉換器950、前饋控制電路960和反饋控 制電路970。前饋控制電路960至少包含電阻960a和比較 器960b,而反饋控制電路970至少包含比較器970a、二極 體970b、加法器970c、電流偵測器970d和比較器970e。 在電力系統900中,係採用自動主僕法(AM)和外迴路控制 架構(OLR)。 在前饋控制電路960中,電阻960a係電性連接至電能 轉換器950之電壓輸入端Pi,以使電能轉換器950之輸入 電壓透過電阻960a輸入至電壓平均匯流排920a。電壓平均 匯流排920a之一端係電性連接至電阻960a和比較器960b 之間。第一比較器960b係根據電能轉換器950之輸入電壓 和一平均電壓之差值來產生第一電流參考值,其中平均電 壓為輸入至電壓平均匯流排920a之全部的電能轉換器950 輸入電壓乘以加權值之後的平均值。 在反饋控制電路970中,電流偵測器970d係電性連接 至電能轉換器950之電流輸出端Po,以偵測電能轉換器950 之輸出電流值。二極體970b之正端係電性連接至電流偵測 器970d,而二極體970b之負端係電性連接至電流平均匯流 16 200917613 排920b,其令自動主僕法係利用二極體娜來進行控制。 在每-電能供應單位910中,電能轉換器95〇之輸出電流 值可透過二極體970b來輸入至電流平均匯流排鳴,因此 電流平均匯流排920b可傳輪一第二電流參考值,其中第二 電流參考值係選自由輸入至電流平均匯流排9施之全部的 電能轉換器輸出電流值之—者。比較器9術係根據第二參 考電流值和電能轉換器95〇之輸出電流值的差值來產生一 第一電机參考值,且構成均流迴路。加法器㈣。係用以將 第-電流參考值、第三電流參考值和一預設參考電壓Vref 相加’以產生-總電流參考值。比較器97Ge係用以根據總 電流參考值和電能轉換器950之輸出電壓的差值來產生一 電流補償值。接著,電能轉換器95G根據電流補償值來調 整其輸出電流。由於電壓調整迴路形成於均流迴路之前, 因此構成了外迴路控制架構(0LR)。另外,在電力系統900 中,比較器960b、970a和970e較佳為由運算放大器所構 成之比較器。 由上述之說明可知,電能轉換器.950之輪出電流可隨 著電流平均匯流排920b所傳輸之電壓以及電壓平均匯流排 920a所傳輸之電壓來變化。另外值得注意的是,電力系統 900並不受限於使用預設電壓來動作。 請參照第14圖,其係繪示根據本發明第三實施例之電 力系統1000的電路示意圖。電力系統1〇〇〇為電力系統9〇〇 的一個具體範例。電力系統1000至少包含電力供應單位 91〇a、電力供應單位91〇b、電壓平均匯流排92〇a、電流平 均匯流排920b和負載930,其中電能供應單位91〇a和91〇b 17 200917613 係類似於電能供應單位910。電壓平均匯流排920a之一端 係電性連接至電能供應單位910a之電阻960a和比較器 960b之間,而另一端係電性連接至電能供應單位910b之電 阻960a比較器960b之間。電流平均匯流排920b之一端係 電性連接至電能供應單位910b之二極體970b和比較器 970a之間,而另一端係電性連接至電能供應單位910a之二 極體970b和比較器970a之間。電力系統1000之功能類似 於電力系統600。舉例而言,當電源940a所提供之第一電 源電壓(例如48V)大於電源940b所提供之第二電源電壓(例 如38V)時,電壓平均匯流排920a可使電能供應單位910a 之輸出電流大於電能供應單位91 Ob之輸出電流,並使電能 供應單位910b之輸出電流小於其安全極限值,如此電能供 應單位910b便可得到保護。另外,電流平均匯流排920b 可使電能供應單位910a和910b之輸出電流之差值小於電 力系統200之電能供應單位110a和110b之輸出電流之差 值,如此可平均輸出電流。 請參照第15圖,其係繪示根據本發明第三實施例之電 力系統1100的電路示意圖。電力系統1100係類似於電力 系統900,但不同之處在於電力系統1100之每一電能供應 單位1010係使用電阻970g來代替二極體970b。在電力系 統1100中,係採用平均電流法(AP)和外迴路控制架構 (OLR),因此第二電流參考值為所有輸入至電流平均匯流排 920b之電能轉換器輸出電值乘以加權值之後的平均值。 請參照第16圖,其係繪示根據本發明第三實施例之電 力系統1200的電路示意圖。電力系統1200至少包含:主 18 200917613 電能供應單位1210a、至少一僕電能供應單位1210b、電壓 平均匯排920a、電流平均匯流排920b和負載930。主電能 供應單位1210a係類似於電能供應單位910,但不同之處在 於電能供應單位1210a不包含有比較器970a和二極體 970b,且電流平均匯流排920b之一端係電性連接至主電能 供應單位1210a之電流偵測器970d。另外,僕電能供應單 位1210b係類似於電能供應單位910,但不同之處在於僕電 能供應單位1210b不包含有二極體970b,且電流平均匯流 排920b之一端係電性連接至比較器970a。在電力系統1200 中,採用了直接主僕法(DM)和外迴路控制架構(OLR),因 此第二電流參考值為主電能供應單位1210a之電流偵測器 970d測得之輸出電流值。 請參照第17圖,其係繪示根據本發明第四實施例之電 力系統1300的電路示意圖,電力系統1300至少包含複數 個電能供應單位1310、電壓平均匯流排1320a、電流平均 匯流排1320b和至少一負載1330。每一電能供應單位1310 至少包含:電源1340、電能轉換器1350、前饋控制電路1360 和反饋控制電路1370。前饋控制電路1360至少包含電阻 1360a和比較器1360b,而反饋控制電路1370至少包含比 較器1370a、二極體1370b、加法器1370c、電流偵測器1370d 和比較器1370e。在電力系統1300中,係採用自動主僕法 (AM)和雙迴路控制架構(DLR)。 在前饋控制電路1360中,電阻1360a係電性連接至電 能轉換器1350,因此電能轉換器1350之輸入電壓可透過電 阻1360a來輸入至電壓平均匯流排1320a。電壓平均匯流排 19 200917613 1320a之一端係電性連接於電阻1360a和比較器1360b之 間。比較器1360b係根據電能轉換器1350之輸入電壓和一 平均電壓之差值來產生一第一電流參考值,其中平均電壓 為輸入至電壓平均匯流排1320a之所有的電能轉換器1350 輸入電壓乘以加權值之後的平均值。 在反饋控制電路1370中,比較器1370a係根據預設電 壓Vref和電能轉換器1350之輸出電壓的差值來產生一第 二電流參考值,並且構成了電壓調整迴路。電流偵測器 1370d係電性連接至電能轉換器之電壓輸出端Po,以偵測 測電能轉換器之輸出電流。二極體1370b之正端係電性連 接至電流偵測器1370d,而負端则電性連接至電流平均匯流 排1320b,其中二極體1370b係適用於自動主僕法(AM)。 在每一電能供應單位1310中,電能轉換器1350之輸出電 流值可透過二極體1370b來輸入至電流平均匯流排 1320b,因此電流平均匯流排1320b可傳輸一第三電流參考 值,其中第三電流參考值為所有電能供應單位1310之輸出 電流值之一者。比較器1370e係用以根據電能轉換器1350 之輸出電流值和第三電流參考值之差值來產生一第四電流 參考值。加法器1370c用以將第一電流參考值、第二電流 參考值和第四電流參考值相加,以產生電流補償值。接著, 電能轉換器1350根據電流補償值來調整其輸出電流值。均 流迴路和電壓調整迴路係電性並聯,如此構成了雙迴路控 制架構(DLR)。另外,在電力系統1300中,比較器1360b、 比較器1370a和比較器1370e較佳是由運算放大器所構成 之比較器。 20 200917613 由上述之說明可知,電能轉換器1350之輸出電流可根 據電流平均匯流排1320b所傳輸之電壓以及電壓平均匯流 排1320a所傳輸之電壓來變化。 請參照第18圖,其係繪示根據本發明第四實施例之電 力系統1400的電路示意圖。電力系統1400為電力系統1300 的一個具體範例。電力系統1400至少包含電能供應單位 1410a、電能供應單位1410b、電壓平均匯流排1320a、電 流平均匯流排1320b以及負載1330,其中電能供應單位 1410a和電能供應單位1410b係類似於電能供應單位 1310。電源1340a係用以提供一第一電壓,而電源1340b 用以提供一第二電壓。電壓平均匯流排1320a之一端係電 性連接至電能供應單位1410a之電阻1360a和比較器1360b 之間,而另一端则電性連接至電能供應單位1410b之電阻 1360a和比較器1360b之間。電流平均匯流排1320b之一端 係電性連接至電能供應單位1410a之二極體1370b和比較 器1370e之間,而另一端則電性連接至電能供應單位1410b 之二極體1370b和比較器1370e之間。電力系統1400的功 能係類似於電力系統1000。例如,當第一電壓(例如48V) 高於第二電壓(例如38V)時,電壓平均匯流排1320a會使得 電能供應單位1410a的輸出電流高於電能供應單位1410b 的輸出電流,並保持電能供應單位141 Ob的輸出電流小於 其安全極限值,如此電能供應單位1410b便被妥善地保護。 另外,電流平均匯流排1320b會使得電力系統1400之電能 供應單位1410a和1410b之輸出電流值的差值比電力系統 200之電能供應單位110a和110b之輸出電流值的差值更 21 200917613 低,以平衡電流負擔。 請參照第19圖’其係繪示根據本發明第四實施例之電 力系統1500的電路示意圖。電力系統15〇〇係類似於電力 系統1300,但不同之處在於電力系統15〇〇之每一電能供應 單位1510係利用電阻1370g來代替二極體137扑。在電^ 系統1500中,採用了電流平均法(AC)和雙迴路(DLR)控制 架構,因此第三電流參考值為全部的電能供應單位輸出電 流值乘以加權值後的平均值。 請參照第20圖,其係繪示根據本發明第四實施例之電 力系統1600的電路示意圖。電力系統16〇至少包含主電能 供應單位1610a、至少一僕電能供應單位161〇b、電壓平均 匯流排1320a、電流平均匯流排132〇b和負載133〇。主電 能供應單位1610a係類似於電能供應單位131〇,但不同之 處在於主電能供應單位1610a不包含有比㈣m〇e和二 極體1370b,且電流平均匯流排13鳥之一端係電性連接至 電力供應單位1340a之電流偵測器137〇b。另外,僕電能供 應單位1610b係類似於電能供應單位131〇,但不同之處在 於僕電能供應單位1610b不包含有二極體137〇b,且電流平 均匯流排1320b之一端係電性連接至僕電能供應單位 1610b之比較器1370e。在電力系統16〇〇中,係採用直接 主僕法(DM)和雙迴路控制架構(DLR),因此第三參考電流 值為主電能供應單位〗6丨〇a之輪出電流值。 睛參照第21圖,其係繪示根據本發明第五實施例之電 力系統1700的電路示意圖。電力系統17〇〇包含複數個電 力供應單位1710、M平均M流排n施、電流平均匯流 22 200917613 排1720b和至少一負載1730。每一電能供應單位1710至少 包含電源1740、電能轉換器1750、前饋控制電路1760和 反饋控制電路Π70。前饋控制電路1760至少包含電阻 1760a和比較器1760b,而反饋控制電路1770至少包含比 較器比較器1770a、二極體1770b、加法器1770c和電流偵 測器1770d。在電力系統1700中,採用了自動主僕法(AM) 和單迴路控制架構(SLR)。 在前饋控制電路1760中,電阻1760a係電性連接至電 能轉換器1750之電壓輸入端Pi,如此可使能轉換器1750 之輸入電壓透過電阻1760a輸入至電壓平均匯流排1720a。 電壓平均匯流排1720a之一端係電性連接於電阻1760a和 比較器1720b之間。比較器1760b係根據電能轉換器1750b 之輸入電壓和一平均電壓之差值來產生第一電流參考值, 其中平均電壓為所有輸入至平均電壓匯流排1720a之電能 轉換器輸入電壓值乘以加權值後的平均值。 在反饋控制電路1770中,電流偵測器1770d係電性連 接至電能轉換器1750之電流輸出端Po,以偵測電能轉換器 1750之輸出電流值。二極體1770b之正端係電性連接至電 流偵測器1770d,而負端則電性連接至電流平均匯流排 1720b,其中二極體1770b係適用於自動主僕法(AM)。在每 一電能供應單位1710中,電能轉換器1750之輸出電流值 可輸入至電流平均匯流排1720b,因此電流平均匯流排 1720b可傳輸一第二電流參考值,其中第二電流參考值為所 有電能供應單位1710之輸出電流值之一者。比較器1770a 係根據電能轉換器1750之輸出電流值和第二電流參考值之 23 200917613 差值來產生第三電流參考值。加法器177〇c係用以將第一 電流參考值和第三電流參考值相加,以產生_電流補償 值。接著,電能轉換器Π50根據電流補償值來調整其輸出 電流值。由於電力系統1700不包含有電壓調整迴路,因此 構成了單迴路控制架構(SLR)。另外,在電力系統2 7〇〇中, 比較器17_、177〇a以及177〇e較佳為由運算放大器所構 成之比較器。 根據上述之說明可知,電能轉換器175〇之輸出電流值 可根據電流平均匯流排17鳥所傳輪之電屢以及電壓平、 匯流排1720a所傳輸之電壓來變化。 睛參照第22圖,其係繪示根據本發明第五實施例之電 力系統1800的電路示意圖。電力系統丨8〇〇為電力系統 的-個具體範例。電力系統刪包含有電能供應單位 1810a、電能供應單位181〇b、電壓平均匯流排172如、電 机平均匯流排172〇b和負載173〇,其中電能供應單位 和電忐供應單位181〇b係類似於電能供應單位171〇。電源 1740a係用以提供一第一電壓,而電源i 74仙係用以提供二 第二電壓。電壓平均匯流排mGa之—端係電性連接於電 能供應單位181〇a之電阻176〇a和比較器17_之間,而 另—端係電性連接於電能供應單位1810b之電阻176〇a和 比較器176〇b之間。電流平均匯流排1720b之一端係電性 連接至電能供應單位181加之二極體177卟和比較器m〇a 之間,而另一端係電性連接至電能供應單位]81〇b之二極 體1770b和比較胃1770a之間。電力系統18〇〇之功能和作 動方式係類似於電力系統1〇〇〇。舉例而言,當第―電細 24 200917613 如48V)高於第二電壓(38V)時,電壓平均匯流排1720a會使 得電能供應單位1810a之輸出電流高於電能供應單位 1810b之輸出電流,並保持電能供應單位1810b之輸出電流 低於其安全極限值。另外,電流平均匯流排1720b會使得 電力系統1800之電能供應單位1810a和1810b之輸出電流 之間的差值小於電力系統200之電能供應單位110a和110b 之輸出電流之間的差值,以平均電流負擔。 請參照第23圖,其係繪示根據本發明第五實施例之電 力系統1900的電路示意圖。電力系統1900係類似於電力 系統1700,但不同之處在於電力系統1900之每一電能供應 單位1910係利用電阻1770g來代替二極體1770b。在電力 系統1900中,係採用平均電流法(AP)和單迴路控制架構 (SLR),因此第二電流參考值為所有電能轉換器輸出電流值 乘以加權值之後的平均值。 請參照第24圖,其係繪示根據本發明第五實施例之電 力系統2000的電路示意圖。電力系統2000至少包含主電 能供應單位和2010a、至少一僕電能供應單位2010b、電壓 平均匯流排1720a、電流平均匯流排1720b和負載1730。 主電能供應單位2010a係類似於電能供應單位910a,但不 同之處在於主電能供應單位2010a之反饋控制電路970不 包含有比較器970a和二極體970b,其中電流偵測器970d 係用以偵測電能轉換器950之輸出電流值;加法器970c係 用以將第一電流參考值和一預設電壓Vref相加,以產生一 第五電流參考值;以及比較器970e係用以根據第五電流參 考值和電能轉換器950輸入電壓之差值來產生電流補償 25 200917613 值,然後電能轉換器950根據電流補償值來調整其輸出電 流。另外,電流平均匯流排172〇b之一端係電性連接至主 ,能供應單位2010a之電流偵測器97〇d,以傳輸電能轉換 ,之輪出電流。僕電能供應單位2_係類似於電能供應 皁位1710,但不同之處在於僕電能供應單位2〇1仳不包含 有二極體1770b’且電流平均匯流排之一端係電性連接至比 較,、1770a。在電力系統2〇〇〇中,係採用直接主儒法 =早迴路控制架構(SLR),因此第二電流參考值為電能轉換 器950之輸出電流值。 4參照第25圖,其係繪示根據本發明第 力系統義的電路示意圖。電力系統21。。至;包: 供應單位moa、電能供應單位21議、電壓平均匯流排212〇 和至少一負載2130。電能供應單位211〇a至少包含電源 214〇、電此轉換器2150a和前饋控制電路216〇,其中電能 轉換益2l5Ga至少包含電流輸出端和電壓參考端,且電产 輸,端係電性連接至負載㈣,以提供電能至負載㈣: 電能供應單位211〇b至少包含電源214〇、電能轉換器η鳩 和前饋控制電路216〇,其中電能轉換器21鳥至少包含雨 =出端和電壓參考端。電能轉換器21篇之電流輸^ 糸電性連接至電能轉換器215〇b之電壓參考端,而電能轉 換器2150b之電塵參考端係電性連接至接地參考電壓。 由於電能供應單位2110a和2雇之前饋控制電路 _的功能和作動方式相類似,因此在以下的敘述中,以 應單位2110a之前饋控制電路测來舉例說明。前 工'電路216G至少包含電阻21術和第—比較器 26 200917613 2160b。電阻2160a係電性連接至電能轉換器215〇&之電壓 輸入端,因此電能轉換H 2150a之輪入電壓可透過電阻 2—來輸入至電壓平均匯流排212〇。電壓平均匯流排 2120之-端係電性連接於電阻21咖和比㈣2祕之 間。比較器2160b係根據電能轉換器21術輸入電壓和一 平均電壓之差值來產生一電壓補償值’其中平均電壓為輸 入至電壓平均匯流排212〇之所有的電能轉換器輸入電壓乘Number, the power supply unit is 31〇. The power supply unit 31 is similar to the power supply unit 11G, but the difference is that the power supply unit 3Μ contains electric power “贞160c, comparison n 16〇d, and addition stomach 16〇e. Current detector 160c is electricity The current is connected to the current output terminal p of the power converter 15 to detect the output current of the power converter 150. The adder green is used to calculate the sum of the current reference value and a preset voltage Vref, wherein the preset voltage system is Used as a reference voltage level for comparison. The comparator 16〇d is used to generate a current compensation value according to the difference between the output current of the power converter 150 and the sum of the above. The output current is adjusted according to the current compensation value. Referring to FIG. 7 and FIG. 8 , FIG. 7 is a functional block diagram of the power system 4 根据 according to the second to fifth embodiments of the present invention. Figure 8 is a diagram showing several ways of using the current average busbar according to the second to fifth embodiments of the present invention. The power system 4A includes at least a plurality of power supply units 410 and a voltage average bus 42. a, current average The flow row 420b and the at least one load 430. Each power supply unit 41A includes at least a power source 440, a power converter 450' feedforward control circuit 460, and a feedback control circuit 470. The voltage average bus bar 42A is electrically connected to each A power supply unit 410 feeds forward control circuit 46A, and a current average bus bar 42〇b system 11 200917613 is electrically connected to each of the power supply unit 410 feedback control circuit 470. The power supply 440 can be a direct current or an alternating current power source, such as a human A power generation device, a solar power generation device, a fuel cell, a wind power generation device, a thermal power generation device, a hydroelectric power generation device, a conventional power supply device, or a battery. The power supply 440 is configured to provide an input voltage to the power converter 450, such that the power converter 450 can be Power is supplied to the load 430. The power converter 450 can be a DC/DC, DC/AC, AC/DC or AC/AC converter to convert the input voltage (DC or AC) to an output voltage (DC or AC). The load 430 can be any device that can be actuated by electricity, such as a motor. Again, a single load 430 or more than two The load 430 can be used in the power system 400. According to the second embodiment of the present invention, the current average bus bar 420b can utilize a Dedicated Master Method (DM), an Average Current Method (AC), The Automatic Master Method (AM) or other suitable connection method is electrically connected to the power supply unit 410, and the control loop architecture of the average bus 420b can be, for example, an Inner Loop Regulation (IRR), Outer Loop Regulation (OLR), Dual Loop Regulation (DLR), Single Loop Regulation (SLR) or other suitable control loop architecture. Referring to Figure 9, there is shown a circuit diagram of a power system 500 in accordance with a second embodiment of the present invention. The power system 500 includes at least a plurality of power supply units 510, a voltage average bus 520a, a current average bus 520b, and at least one load 530. Each power supply unit 510 includes at least a power supply 540, a power converter 550, a feedforward control circuit 560, and a feedback 12 200917613 control circuit 570. The feedforward control circuit 560 includes at least a resistor 560a and a comparator 560b, and the feedback control circuit 570 includes at least a comparator 570a, a diode 570b, an adder 570c, a current detector 570d, and a comparator 570e. In power system 500, current average bus 520b is connected and controlled using an automatic master servant (AM) and an inner loop adjustment architecture (ILR). In the feedforward control circuit 560, the resistor 560a is electrically connected to the voltage input terminal Pi of the power converter 550, so that the input voltage of the power converter 550 is input to the voltage average busbar 520a through the resistor 560a. One end of the voltage average bus bar is electrically connected between the resistor 560a and the comparator 560b. The comparator 560b is configured to generate a first current reference value according to the difference between the input voltage of the power converter 550 and an average voltage, wherein the average voltage is the value of all the input voltages input to the voltage average bus bar 5 2 0 a multiplied by The average value after the push value is added. In the feedback control circuit 570, the comparator 570a is configured to generate a second current reference value according to the difference between the output voltage of the power converter 550 and a predetermined voltage Vref, and form an inner loop adjustment architecture (ILR). The positive terminal of the diode 570b is electrically connected to the comparator 570a, and the negative terminal of the diode 570b is electrically connected to the current averaging busbar 520b, wherein the diode 570b is suitable for the automatic master servant method. In each power supply unit 510, the second current reference value can be input to the current average bus bar 52〇b through the diode 570b, so that the current average bus bar 520b can transmit a third current reference value. The current reference is selected from all of the second current reference values. The adder 570c is configured to add the first current reference value and the third current reference value to generate a total current reference value. The current detector 570d is electrically connected to the current output terminal Po of the power converter 550 to detect the output current of the power converter 13 200917613 550. The comparator 570e is configured to generate a current compensation value according to a difference between the output current value of the power converter 550 and the total current reference value, and form a current sharing circuit CSL. Next, the power converter 550 adjusts its output current value based on the voltage compensation value. Since the current sharing circuit CSL is formed before the voltage regulation circuit RL, it constitutes an inner loop control architecture (ILR). Additionally, in power system 500, comparators 560b, 570a, and 570e are preferably comparators comprised of operational amplifiers. As can be seen from the above description, the output current value of the power converter 550 can be varied according to the voltage supplied by the current average bus bar and the voltage supplied by the voltage average bus bar. Referring to Fig. 10, there is shown a circuit diagram of a power system 600 according to a second embodiment of the present invention. The power system 600 is a specific example of the power system 500. The power system 600 includes at least a power supply unit 510a, a power supply unit 510b, a voltage average bus 520a, a current average bus 520b, and a load 530, wherein the power supply unit 510a and the power supply unit 510b are similar to the power supply unit 510. One end of the voltage average bus bar 520a is electrically connected between the comparator 560b of the power supply unit 510a and the resistor 560a, and the other end is electrically connected between the comparator 560b of the power supply unit 510b and the resistor 560a. One end of the current average bus bar 520b is electrically connected between the diode 570b of the power supply unit 510a and the adder 570c, and the other end is electrically connected to the diode 570b of the power supply unit 510b and the adder 570c. between. In power system 600, power source 540a is used to provide a first supply voltage and power supply 540b is used to provide a second supply voltage, wherein the first supply voltage is greater than the second supply voltage. For example, when the first power supply voltage (eg, 48V) is higher than the second 14 200917613 voltage (eg, 38V), the voltage average bus bar 520a may cause the output current value of the power supply unit 510a to be higher than the output current of the power supply unit 510b. The value is such that the output current value of the power supply unit 510b is below its safe limit value and is protected. In addition, the current average bus bar 520b can make the difference between the output current values of the power supply units 510a and 510b of the power system 600 smaller than the difference between the output currents of the power supply units 110a and 110b of the power system 200, This further achieves the effect of current balancing. Referring to Fig. 11, there is shown a circuit diagram of a power system 700 according to a second embodiment of the present invention. The power system 700 is similar to the power system 500, except that each power supply unit of the power system 700 uses a resistor 570g instead of the diode 570b. In the power system 700, an average current method (AP) and an inner loop control architecture (ILR) are used, so the third current reference value is the second current reference value input to all of the current average bus bars multiplied by the weighted value. average value. Referring to Figure 12, there is shown a circuit diagram of a power system 800 in accordance with a second embodiment of the present invention. The power system 800 includes at least a main power supply unit 810a, at least one servant power supply unit 800b, a voltage average bus 520a, a current averaging bus 520b, and a load 530. The main power supply unit 810a is similar to the power supply unit 510, but the main power supply unit 810a does not include the diode 570b, and one end of the current average bus 520b is electrically connected to the main power supply unit 810a. Between comparator 570a and adder 570c. In addition, the servant power supply unit 810b is similar to the main power supply unit 810a, but the difference is that the servant power supply unit 810b does not include the comparator 570a, and one of the current averaging bus bars 520b is electrically connected to the servant power supply unit. Adder 15 of 810b 200917613 570c. In power system 800, a direct master mode (DM) and an internal loop control architecture (ILR) are employed, such that the third current reference is a second current reference provided by comparator 570a of primary power supply unit 810a. Referring to Figure 13, there is shown a circuit diagram of a power system 900 in accordance with a third embodiment of the present invention. Power system 900 includes at least a plurality of power supply units 910, a voltage average bus 920a, a current average bus 920b, and at least one load 930. Each power supply unit 910 includes at least a power source 940, a power converter 950, a feedforward control circuit 960, and a feedback control circuit 970. The feedforward control circuit 960 includes at least a resistor 960a and a comparator 960b, and the feedback control circuit 970 includes at least a comparator 970a, a diode 970b, an adder 970c, a current detector 970d, and a comparator 970e. In the power system 900, an automatic master servant (AM) and an outer loop control architecture (OLR) are employed. In the feedforward control circuit 960, the resistor 960a is electrically coupled to the voltage input terminal Pi of the power converter 950 such that the input voltage of the power converter 950 is input to the voltage average busbar 920a through the resistor 960a. One end of the voltage average bus bar 920a is electrically connected between the resistor 960a and the comparator 960b. The first comparator 960b generates a first current reference value according to a difference between an input voltage of the power converter 950 and an average voltage, wherein the average voltage is an input voltage multiplied by the power converter 950 input to the voltage average bus bar 920a. The average value after the weighted value. In the feedback control circuit 970, the current detector 970d is electrically connected to the current output terminal Po of the power converter 950 to detect the output current value of the power converter 950. The positive terminal of the diode 970b is electrically connected to the current detector 970d, and the negative terminal of the diode 970b is electrically connected to the current average convergence 16 200917613 row 920b, which enables the automatic master servant system to utilize the diode Na came to control. In each of the power supply units 910, the output current value of the power converter 95 can be input to the current average bus bar through the diode 970b, so the current average bus bar 920b can transmit a second current reference value, wherein The second current reference value is selected from the value of all of the power converter output currents applied to the current average busbar 9. The comparator 9 generates a first motor reference value based on the difference between the second reference current value and the output current value of the power converter 95A, and constitutes a current sharing circuit. Adder (4). The system is configured to add a first current reference value, a third current reference value, and a predetermined reference voltage Vref to generate a total current reference value. Comparator 97Ge is operative to generate a current compensation value based on the difference between the total current reference value and the output voltage of power converter 950. Next, the power converter 95G adjusts its output current based on the current compensation value. Since the voltage regulation loop is formed before the current sharing loop, it constitutes the outer loop control architecture (0LR). Additionally, in power system 900, comparators 960b, 970a, and 970e are preferably comparators constructed of operational amplifiers. As can be seen from the above description, the round current of the power converter .950 can vary with the voltage transmitted by the current average bus 920b and the voltage transmitted by the voltage average bus 920a. It is also worth noting that the power system 900 is not limited to using a preset voltage to operate. Referring to Figure 14, there is shown a circuit diagram of a power system 1000 in accordance with a third embodiment of the present invention. The power system is a specific example of the power system 9〇〇. The power system 1000 includes at least a power supply unit 91〇a, a power supply unit 91〇b, a voltage average busbar 92〇a, a current average busbar 920b, and a load 930, wherein the power supply units 91〇a and 91〇b 17 200917613 are Similar to the power supply unit 910. One end of the voltage average bus bar 920a is electrically connected between the resistor 960a of the power supply unit 910a and the comparator 960b, and the other end is electrically connected between the resistor 960a of the power supply unit 910b and the comparator 960b. One end of the current average bus bar 920b is electrically connected between the diode 970b of the power supply unit 910b and the comparator 970a, and the other end is electrically connected to the diode 970b of the power supply unit 910a and the comparator 970a. between. The power system 1000 functions similarly to the power system 600. For example, when the first supply voltage (eg, 48V) provided by the power supply 940a is greater than the second supply voltage (eg, 38V) provided by the power supply 940b, the voltage average bus 920a can cause the output current of the power supply unit 910a to be greater than the electrical energy. The output current of the unit 91 Ob is made, and the output current of the power supply unit 910b is less than its safety limit value, so that the power supply unit 910b can be protected. In addition, the current average bus bar 920b can make the difference between the output currents of the power supply units 910a and 910b smaller than the difference between the output currents of the power supply units 110a and 110b of the power system 200, so that the output current can be averaged. Referring to Figure 15, there is shown a circuit diagram of a power system 1100 in accordance with a third embodiment of the present invention. Power system 1100 is similar to power system 900, except that each power supply unit 1010 of power system 1100 uses a resistor 970g instead of diode 970b. In the power system 1100, an average current method (AP) and an outer loop control architecture (OLR) are employed, so the second current reference value is the output value of all the power converters input to the current average bus bar 920b multiplied by the weighted value. average value. Referring to Figure 16, there is shown a circuit diagram of a power system 1200 in accordance with a third embodiment of the present invention. The power system 1200 includes at least: a main 18 200917613 power supply unit 1210a, at least one servant power supply unit 1210b, a voltage average bus 920a, a current average bus 920b, and a load 930. The main power supply unit 1210a is similar to the power supply unit 910, but the difference is that the power supply unit 1210a does not include the comparator 970a and the diode 970b, and one end of the current average bus 920b is electrically connected to the main power supply. Unit 1210a current detector 970d. In addition, the servant power supply unit 1210b is similar to the power supply unit 910, except that the servant power supply unit 1210b does not include the diode 970b, and one end of the current averaging bus 920b is electrically connected to the comparator 970a. In the power system 1200, a direct master servant (DM) and an outer loop control architecture (OLR) are employed, so the second current reference value is the output current value measured by the current detector 970d of the main power supply unit 1210a. Please refer to FIG. 17, which is a circuit diagram of a power system 1300 according to a fourth embodiment of the present invention. The power system 1300 includes at least a plurality of power supply units 1310, a voltage average busbar 1320a, a current average busbar 1320b, and at least A load 1330. Each power supply unit 1310 includes at least a power source 1340, a power converter 1350, a feedforward control circuit 1360, and a feedback control circuit 1370. The feedforward control circuit 1360 includes at least a resistor 1360a and a comparator 1360b, and the feedback control circuit 1370 includes at least a comparator 1370a, a diode 1370b, an adder 1370c, a current detector 1370d, and a comparator 1370e. In the power system 1300, an automatic master servant (AM) and a dual loop control architecture (DLR) are employed. In the feedforward control circuit 1360, the resistor 1360a is electrically coupled to the power converter 1350, so the input voltage of the power converter 1350 can be input to the voltage average busbar 1320a through the resistor 1360a. One of the voltage average busbars 19 200917613 1320a is electrically connected between the resistor 1360a and the comparator 1360b. The comparator 1360b generates a first current reference value according to the difference between the input voltage of the power converter 1350 and an average voltage, wherein the average voltage is the input voltage of all the power converters 1350 input to the voltage average bus bar 1320a multiplied by The average value after the weighted value. In the feedback control circuit 1370, the comparator 1370a generates a second current reference value based on the difference between the preset voltage Vref and the output voltage of the power converter 1350, and constitutes a voltage adjustment loop. The current detector 1370d is electrically connected to the voltage output terminal Po of the power converter to detect the output current of the power converter. The positive terminal of the diode 1370b is electrically connected to the current detector 1370d, and the negative terminal is electrically connected to the current average busbar 1320b, wherein the diode 1370b is suitable for the automatic master servant (AM). In each power supply unit 1310, the output current value of the power converter 1350 can be input to the current average bus 1320b through the diode 1370b, so the current average bus 1320b can transmit a third current reference, of which the third The current reference value is one of the output current values of all power supply units 1310. The comparator 1370e is configured to generate a fourth current reference value according to the difference between the output current value of the power converter 1350 and the third current reference value. The adder 1370c is configured to add the first current reference value, the second current reference value, and the fourth current reference value to generate a current compensation value. Next, the power converter 1350 adjusts its output current value based on the current compensation value. The current sharing loop and the voltage regulation loop are electrically connected in parallel, thus forming a dual loop control architecture (DLR). Further, in the power system 1300, the comparator 1360b, the comparator 1370a, and the comparator 1370e are preferably comparators composed of operational amplifiers. 20 200917613 As can be seen from the above description, the output current of the power converter 1350 can be varied according to the voltage transmitted by the current average bus 1320b and the voltage transmitted by the voltage average bus 1320a. Referring to Figure 18, there is shown a circuit diagram of a power system 1400 in accordance with a fourth embodiment of the present invention. Power system 1400 is a specific example of power system 1300. The power system 1400 includes at least a power supply unit 1410a, a power supply unit 1410b, a voltage average bus 1320a, a current average bus 1320b, and a load 1330, wherein the power supply unit 1410a and the power supply unit 1410b are similar to the power supply unit 1310. The power source 1340a is for providing a first voltage, and the power source 1340b is for providing a second voltage. One end of the voltage average bus bar 1320a is electrically connected between the resistor 1360a of the power supply unit 1410a and the comparator 1360b, and the other end is electrically connected between the resistor 1360a of the power supply unit 1410b and the comparator 1360b. One end of the current average bus bar 1320b is electrically connected between the diode 1370b of the power supply unit 1410a and the comparator 1370e, and the other end is electrically connected to the diode 1370b of the power supply unit 1410b and the comparator 1370e. between. The functionality of power system 1400 is similar to power system 1000. For example, when the first voltage (eg, 48V) is higher than the second voltage (eg, 38V), the voltage average bus 1320a causes the output current of the power supply unit 1410a to be higher than the output current of the power supply unit 1410b, and maintains the power supply unit. The output current of the 141 Ob is less than its safety limit, so the power supply unit 1410b is properly protected. In addition, the current average bus bar 1320b causes the difference between the output current values of the power supply units 1410a and 1410b of the power system 1400 to be lower than the difference between the output current values of the power supply units 110a and 110b of the power system 200 by 21 200917613 to Balance the current burden. Referring to Figure 19, there is shown a circuit diagram of a power system 1500 in accordance with a fourth embodiment of the present invention. The power system 15 is similar to the power system 1300, except that each of the power supply units 1510 of the power system 15 utilizes a resistance of 1370 g instead of the diode 137. In the electrical system 1500, a current averaging (AC) and dual loop (DLR) control architecture is employed, so the third current reference is the average of the total power supply unit output current value multiplied by the weighted value. Referring to Figure 20, there is shown a circuit diagram of a power system 1600 in accordance with a fourth embodiment of the present invention. The power system 16A includes at least a main power supply unit 1610a, at least one servant power supply unit 161 〇 b, a voltage average bus bar 1320a, a current average bus bar 132 〇 b, and a load 133 。. The main power supply unit 1610a is similar to the power supply unit 131〇, but the difference is that the main power supply unit 1610a does not contain the ratio (4) m〇e and the diode 1370b, and the current average bus bar 13 is electrically connected to one end of the bird. Current detector 137〇b to power supply unit 1340a. In addition, the servant power supply unit 1610b is similar to the power supply unit 131 〇, but the difference is that the servant power supply unit 1610b does not include the diode 137 〇 b, and one end of the current average bus bar 1320b is electrically connected to the servant. The power supply unit 1610b comparator 1370e. In the power system 16〇〇, the direct main servant method (DM) and the dual loop control architecture (DLR) are adopted, so the third reference current value is the current output value of the main power supply unit 〖6丨〇a. Referring to Figure 21, there is shown a circuit diagram of a power system 1700 in accordance with a fifth embodiment of the present invention. The power system 17A includes a plurality of power supply units 1710, an M average M flow row, a current average sink 22 200917613 row 1720b, and at least one load 1730. Each power supply unit 1710 includes at least a power source 1740, a power converter 1750, a feedforward control circuit 1760, and a feedback control circuit Π70. The feedforward control circuit 1760 includes at least a resistor 1760a and a comparator 1760b, and the feedback control circuit 1770 includes at least a comparator comparator 1770a, a diode 1770b, an adder 1770c, and a current detector 1770d. In the power system 1700, an automatic master servant (AM) and a single loop control architecture (SLR) are employed. In the feedforward control circuit 1760, the resistor 1760a is electrically coupled to the voltage input Pi of the power converter 1750 such that the input voltage of the enable converter 1750 is input to the voltage average busbar 1720a through the resistor 1760a. One end of the voltage average bus bar 1720a is electrically connected between the resistor 1760a and the comparator 1720b. The comparator 1760b generates a first current reference value according to a difference between an input voltage of the power converter 1750b and an average voltage, wherein the average voltage is an input voltage value of all the power converters input to the average voltage busbar 1720a multiplied by a weight value. After the average. In the feedback control circuit 1770, the current detector 1770d is electrically connected to the current output terminal Po of the power converter 1750 to detect the output current value of the power converter 1750. The positive terminal of the diode 1770b is electrically connected to the current detector 1770d, and the negative terminal is electrically connected to the current average busbar 1720b, wherein the diode 1770b is suitable for the automatic master servant (AM). In each power supply unit 1710, the output current value of the power converter 1750 can be input to the current average busbar 1720b, so the current average busbar 1720b can transmit a second current reference value, wherein the second current reference value is all electrical energy. One of the output current values of the supply unit 1710. The comparator 1770a generates a third current reference value based on the difference between the output current value of the power converter 1750 and the second current reference value of 23 200917613. The adder 177〇c is for adding the first current reference value and the third current reference value to generate a _current compensation value. Next, the power converter Π50 adjusts its output current value based on the current compensation value. Since the power system 1700 does not include a voltage regulation loop, it constitutes a single loop control architecture (SLR). Further, in the power system 27, the comparators 17_, 177〇a, and 177〇e are preferably comparators constituted by operational amplifiers. According to the above description, the output current value of the power converter 175 can be changed according to the current average of the current-sending busbar 17 and the voltage transmitted by the voltage level and the busbar 1720a. Referring to Figure 22, there is shown a circuit diagram of a power system 1800 in accordance with a fifth embodiment of the present invention. The power system is a concrete example of the power system. The power system includes the power supply unit 1810a, the power supply unit 181〇b, the voltage average bus 172, the motor average bus 172〇b and the load 173〇, of which the power supply unit and the power supply unit 181〇b Similar to the power supply unit 171〇. The power source 1740a is used to provide a first voltage, and the power source i is used to provide two second voltages. The voltage average bus bar mGa is electrically connected between the resistor 176〇a of the power supply unit 181〇a and the comparator 17_, and the other end is electrically connected to the resistor 176〇a of the power supply unit 1810b. Between the comparator 176〇b. One end of the current average busbar 1720b is electrically connected to the power supply unit 181 plus the diode 177卟 and the comparator m〇a, and the other end is electrically connected to the power supply unit] 81〇b diode 1770b and compare stomach 1770a. The function and operation of the power system is similar to that of the power system. For example, when the first-th power 24 200917613 is higher than the second voltage (38V), the voltage average bus 1720a causes the output current of the power supply unit 1810a to be higher than the output current of the power supply unit 1810b, and keeps The output current of the power supply unit 1810b is below its safety limit. In addition, the current average busbar 1720b causes the difference between the output currents of the power supply units 1810a and 1810b of the power system 1800 to be less than the difference between the output currents of the power supply units 110a and 110b of the power system 200 to average the current. burden. Referring to Figure 23, there is shown a circuit diagram of a power system 1900 in accordance with a fifth embodiment of the present invention. Power system 1900 is similar to power system 1700, except that each power supply unit 1910 of power system 1900 utilizes a resistor 1770g in place of diode 1770b. In power system 1900, an average current method (AP) and a single loop control architecture (SLR) are employed, so the second current reference is the average of all power converter output current values multiplied by the weighted value. Referring to Figure 24, there is shown a circuit diagram of a power system 2000 in accordance with a fifth embodiment of the present invention. The power system 2000 includes at least a main power supply unit and 2010a, at least one servant power supply unit 2010b, a voltage average busbar 1720a, a current averaging busbar 1720b, and a load 1730. The main power supply unit 2010a is similar to the power supply unit 910a, but the difference is that the feedback control circuit 970 of the main power supply unit 2010a does not include the comparator 970a and the diode 970b, wherein the current detector 970d is used to detect Measure the output current value of the power converter 950; the adder 970c is configured to add the first current reference value and a predetermined voltage Vref to generate a fifth current reference value; and the comparator 970e is configured to The current reference value and the difference between the input voltages of the power converter 950 are used to generate a current compensation 25 200917613 value, and then the power converter 950 adjusts its output current based on the current compensation value. In addition, one end of the current average bus bar 172〇b is electrically connected to the main body, and the current detector 97〇d of the unit 2010a can be supplied to transmit the electric energy conversion. The servant power supply unit 2_ is similar to the power supply soap level 1710, but the difference is that the servant power supply unit 2〇1仳 does not include the diode 1770b' and one end of the current average bus bar is electrically connected to the comparison, , 1770a. In the power system 2, the direct main method = early loop control architecture (SLR) is employed, so the second current reference value is the output current value of the power converter 950. 4, which is a circuit diagram showing the meaning of the system according to the present invention, with reference to Fig. 25. Power system 21. . To; package: supply unit moa, power supply unit 21, voltage average bus 212 〇 and at least one load 2130. The power supply unit 211〇a includes at least a power source 214〇, an electric converter 2150a, and a feedforward control circuit 216〇, wherein the power conversion benefit 2l5Ga includes at least a current output end and a voltage reference end, and the electric power transmission and the end are electrically connected. To the load (4) to provide power to the load (4): The power supply unit 211〇b includes at least a power source 214〇, a power converter η鸠, and a feedforward control circuit 216〇, wherein the power converter 21 bird includes at least rain=output and voltage Reference end. The current input of the power converter 21 is electrically connected to the voltage reference end of the power converter 215〇b, and the dust reference end of the power converter 2150b is electrically connected to the ground reference voltage. Since the functions and actuation modes of the power supply unit 2110a and the 2-employed feedforward control circuit are similar, in the following description, the unit 2110a feed forward control circuit is used for illustration. The predecessor' circuit 216G includes at least a resistor 21 and a comparator 26 200917613 2160b. The resistor 2160a is electrically connected to the voltage input terminal of the power converter 215〇, and thus the turn-in voltage of the power conversion H 2150a can be input to the voltage average bus bar 212〇 through the resistor 2−. The end of the voltage average busbar 2120 is electrically connected between the resistor 21 and the ratio (4). The comparator 2160b generates a voltage compensation value according to the difference between the input voltage of the power converter 21 and an average voltage. The average voltage is the input voltage multiplied by all the power converters input to the voltage average bus bar 212〇.

以加權值後的平均值。接著電能轉換器2i5Qa根據電壓補 償值來調整其輸出電壓。 W賊弟26圖,其係根據本發明第六實施例之電 力糸統2扇的電路示意圖。電力系統·係類似於電力 之處在於電力系統2200更包含電能供應 二::广供應早位2U0c係類似於電能供應單位 電^’摩〜電能轉換器21他之電流輸出端係電性連接至 電月b供應早位21 l〇a之雷壓夂去# 壓參考端’而電能供應單位2110c 之電屋參考端係電性連接至電 出端。由於電力系統2·之; 應單位㈣e之數量在此並不受限卜/本例不中’電能供 時並: = 知’本發明之電力系統可同 電源,由於母一電源可個别地進行置拖戎舻攄 ,、電量情形’來對應調整輸出二: 單-電源的電量不足或故障時,整而可避免當 ί 由於轉換器可1行根據其對庫連接之 電―情形,來對應調整輸出電量至負載, 27 200917613 較多的電量的雷调 [源了棱供較多的電量,而具有較彡、 的電源可避免提供女之μ+曰 力权少的電罝 可確保電力效率和❹壽命。 t力系統 本發:然已以實施例揭露如上,然其並非用以限定 &quot;可热習此技藝者,在不脫離本發明之精神和範 當視後附之申:=飾,因此本發明之保護範圍 甲π月專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、和優點能更明 ’’、貝易懂,上文特舉—較佳實施例,並配合所附圖式,作 細說明如下: 第1圖係緣示依照習知技術一種中央電力系統的系統 方塊圖。 第2圖係繪示依照習知技術-種分散式電力系統的系 統方塊圖。 第3圖係繪示根據本發明第一實施例之電力系統的功 能方塊示意圖。 第4圖係繪示根據本發明第一實施例之電能供應單位 的電路示意圖。 第5圖係繪示根據本發明第一實施例之電力系統的電 路示意圖。 第6圖係繪示根據本發明第一較佳實施例之電力系統 的電路示意圖。 第7圖係綠示根據本發明第 二實施例至第五實施例之 28 200917613 電力系統的功能方塊圖。 第8圖係繪示根據本發 ^ ^ ^ 十赏啊弟二實施例至第五實施例之 電流平均匯流排的數種使用方气 第9圖係繪示根據本發明當 赞明第二貫施例之電力系統的電 路示意圖。 第10圖係繪示根據本於_ ^明第二實施例之電力系統的電 路示意圖。 第11圖係繪示根據本於明穿 _ 赞明弟二實施例之電力系統的電 路示意圖。 —第12圖⑽讀據本發明第二實施例之電力系統的電 路示意圖。 第13圖係繪示根據本發g日镇_也 +赞明弟二實施例之電力系統的電 略示意圖。 第14圖係繪示根據本菸日日结_也 不务明卓三實施例之電力系統的電 路示意圖。 第15圖係繪示根據本發明笼_ ^ ^ , λα ^ +知啊第二貫施例之電力系統的電 路示意圖。 第16圖係繪示根據本發明笛_ 兩丄/ μ &amp;雨 ^ u月弟二實施例之電力系統的電 路示意圖。 第17圖係繪示根據本黎a日哲 — 豕不七明弟四實施例之電力系統的電 路示意圖。 第18圖係曰不根據本發明第四實施例之電力系統的電 路示意圖。 第19圖係,會不根據本發明第四實施例之電力系統的電 略示意圖。 29 200917613 • 第20圖係繪示根據本發明第四實施例之電力系統的電 路示意圖。 第21圖係繪示根據本發明第五實施例之電力系統的電 路示意圖。 第22圖係繪不根據本發明第五實施例之電力系統的電 路示意圖。 第23圖係繪不根據本發明第五實施例之電力系統的電 路示意圖。 、 第24®係繪示根據本發明第五實施例之電力系統的電 路示意圖。 第25圖係繪示根據本發明第六實施例之電力系統的電 路示意圖。 第26圖係繪示根據本發明第六實施例之電力系統的電 路示意圖。 【主要元件符號說明】 11 :電源 13 :負載 21 :電源 23 :負载 110 :電能供應單位 110b :電能供應單位 130 :負載 150 :電能轉換器 160 :轉換器控制電路 ( 10 :中央電力系統 12 :電能轉換器 20 :分散式電力系統 22 :電能轉換器 100 :電力系統 110a :電能供應單位 120 :電壓平均匯流排 14Q :電源 152 :轉換器控制電路 30 200917613 160a :電阻 160b :比較器 16 0 c :電流债測器 160d :比較器 160e :加法器 200 :電力系統 300 :電力系統 310 :電能供應單位 400 :電力系統 410 :電能供應單位 420a :電壓平均匯流排 420b :電流平均匯流排 430 :負載 440 :電源 450 :電能轉換器 460 :前饋控制電路 470 :反饋控制電路 500 :電力系統 510:電能供應單位 510a :電能供應單位 510b :電能供應單位 520a :電壓平均匯流排 520b :電流平均匯流排 530 :負載 540 :電源 540a :電源 540b :電源 550 :電能轉換器 560 :前饋控制電路 560a :電阻 560b :比較器 570 :反饋控制電路 570a :比較器 570b :二極體 570c :加法器 570d :電流偵測器 570e :比較器 570g :電阻 600 :電力系統 700 :電力系統 800 :電力系統 810a :主電能供應單位 810b :僕電能供應單位 900 :電力系統 910 :電能供應單位 910a :電能供應單位 910b :電能供應單位 920a :電壓平均匯流排 920b :電流平均匯流排 930 :負載 31 200917613 940 :電源 940a :電源 940b :電源 950 :電能轉換器 960 :前饋控制電路 970 :反饋控制電路 960a :電阻 960b :比較器 970a ··比較器 970b :二極體 970c :加法器 970d :電流偵測器 970e :比較器 970g :電阻 1000 :電力系統 1100 :電力系統 1200 :電力系統 1210a ··主電能供應單位 1210b :僕電能供應單位 1300 :電力系統 1310 :電能供應單位 1320a ··電壓平均匯流排 1320b :電流平均匯流排 1330 :負載 1340 :電源 1340a :電源 1340b :電源 1350 :電能轉換器 1360 :前饋控制電路 1370 :反饋控制電路 1360a :電阻 1360b :比較器 1370a :比較器 1370b :二極體 1370c :加法器 1370d :電流偵測器 1370e :比較器 1370g :電阻 1400 :電力系統 1410a :電能供應單位 1410b :電能供應單位 1500 :電力系統 1600 ;電力系統 1610a :主電能供應單位 1610b :僕電能供應單位 1700 :電力系統 1710 :電能供應單位 1720a :電壓平均匯流排 1720b :電流平均匯流排 1730 :負載 32 200917613The average value after the weighted value. The power converter 2i5Qa then adjusts its output voltage based on the voltage compensation value. Fig. 26 is a circuit diagram of a power fan 2 according to a sixth embodiment of the present invention. The power system is similar to the power in that the power system 2200 further includes the power supply two: the wide supply early position 2U0c is similar to the power supply unit. The electric current is electrically connected to the current output. The electric moon b is supplied with the early 21 l〇a lightning pressure to the #voltage reference terminal' and the electric energy supply unit 2110c is electrically connected to the electrical outlet. Due to the power system 2; the number of units (four) e is not limited here / this example is not in the 'electric energy supply time and: = know 'the power system of the present invention can be the same as the power supply, since the mother-power supply can be individually To set the drag and drop, the power situation 'to adjust the output two: single - power supply is insufficient or faulty, and can be avoided when ί because the converter can be connected according to its power to the library - the situation Corresponding to adjust the output power to the load, 27 200917613 More power thunder [sourced more energy for the edge, and has a more ambiguous power supply to avoid the supply of female μ + power less power to ensure power Efficiency and ❹ life. The present invention has been disclosed in the above embodiments, but it is not intended to limit the subject matter of the present invention, and the present invention can be applied without departing from the spirit and scope of the present invention. The scope of protection is defined by the scope of patents in the π month. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the present invention will become more apparent < The following is a block diagram of a system of a central power system according to the prior art. Figure 2 is a block diagram showing the system of a distributed power system in accordance with the prior art. Fig. 3 is a block diagram showing the function of the power system according to the first embodiment of the present invention. Fig. 4 is a circuit diagram showing the power supply unit according to the first embodiment of the present invention. Fig. 5 is a circuit diagram showing the power system of the first embodiment of the present invention. Figure 6 is a circuit diagram showing a power system in accordance with a first preferred embodiment of the present invention. Figure 7 is a functional block diagram of a power system according to the second embodiment to the fifth embodiment of the present invention. Figure 8 is a diagram showing the use of a plurality of current average bus bars according to the present invention, and the second embodiment of the current average bus bar according to the present invention. A schematic circuit diagram of a power system of the embodiment. Fig. 10 is a circuit diagram showing the power system according to the second embodiment of the present invention. Figure 11 is a schematic diagram showing the circuit of the power system according to the embodiment of the present invention. - Fig. 12 (10) is a circuit diagram of a power system according to a second embodiment of the present invention. Figure 13 is a schematic diagram showing the power system of the embodiment of the present invention. Figure 14 is a schematic diagram showing the circuit of the power system according to the embodiment of the present invention. Fig. 15 is a circuit diagram showing the power system of the second embodiment according to the cage _ ^ ^ , λα ^ + according to the present invention. Figure 16 is a circuit diagram showing the power system of the embodiment of the flute _ 丄 丄 μ μ 雨 。 。 。 。 。 according to the present invention. Figure 17 is a schematic diagram showing the circuit of the power system according to the embodiment of Ben Li-Azhe-Zhu Buqi Mingdi. Figure 18 is a circuit diagram of a power system not according to the fourth embodiment of the present invention. Figure 19 is a schematic diagram of a power system which will not according to the fourth embodiment of the present invention. 29 200917613 • Fig. 20 is a circuit diagram showing a power system according to a fourth embodiment of the present invention. Figure 21 is a circuit diagram showing a power system according to a fifth embodiment of the present invention. Figure 22 is a circuit diagram showing a power system not according to the fifth embodiment of the present invention. Figure 23 is a circuit diagram showing a power system not according to the fifth embodiment of the present invention. 24K is a circuit diagram of a power system according to a fifth embodiment of the present invention. Figure 25 is a circuit diagram showing the power system of the sixth embodiment of the present invention. Figure 26 is a circuit diagram showing the power system of the sixth embodiment of the present invention. [Main component symbol description] 11 : Power supply 13 : Load 21 : Power supply 23 : Load 110 : Power supply unit 110b : Power supply unit 130 : Load 150 : Power converter 160 : Converter control circuit ( 10 : Central power system 12 : Power converter 20: distributed power system 22: power converter 100: power system 110a: power supply unit 120: voltage average bus 14Q: power supply 152: converter control circuit 30 200917613 160a: resistor 160b: comparator 16 0 c : Current debt detector 160d: Comparator 160e: Adder 200: Power system 300: Power system 310: Power supply unit 400: Power system 410: Power supply unit 420a: Voltage average bus 420b: Current average bus 430: Load 440: power supply 450: power converter 460: feedforward control circuit 470: feedback control circuit 500: power system 510: power supply unit 510a: power supply unit 510b: power supply unit 520a: voltage average bus 520b: current average bus 530: Load 540: Power supply 540a: Power supply 540b: Power supply 550: Power converter 560: Feedforward control circuit 560a: Electricity 560b: comparator 570: feedback control circuit 570a: comparator 570b: diode 570c: adder 570d: current detector 570e: comparator 570g: resistor 600: power system 700: power system 800: power system 810a: main Power supply unit 810b: servant power supply unit 900: power system 910: power supply unit 910a: power supply unit 910b: power supply unit 920a: voltage average bus 920b: current average bus 930: load 31 200917613 940: power supply 940a: Power supply 940b: Power supply 950: Power converter 960: Feedforward control circuit 970: Feedback control circuit 960a: Resistor 960b: Comparator 970a · Comparator 970b: Diode 970c: Adder 970d: Current detector 970e: Comparison 970g: resistance 1000: power system 1100: power system 1200: power system 1210a · main power supply unit 1210b: servant power supply unit 1300: power system 1310: power supply unit 1320a · voltage average bus 1320b: current average convergence Row 1330: Load 1340: Power Supply 1340a: Power Supply 1340b: Power Supply 1350: Power Converter 1360: Feedforward Control Circuit 1370: feedback control circuit 1360a: resistor 1360b: comparator 1370a: comparator 1370b: diode 1370c: adder 1370d: current detector 1370e: comparator 1370g: resistor 1400: power system 1410a: power supply unit 1410b : Power supply unit 1500: Power system 1600; Power system 1610a: Main power supply unit 1610b: Servo power supply unit 1700: Power system 1710: Power supply unit 1720a: Voltage average busbar 1720b: Current average busbar 1730: Load 32 200917613

1740 :電源 1740b :電源 1760 :前饋控制電路 1760a :電阻 1770a :比較器 17 7 0 c :加法器 1770e :比較器 1800 :電力系統 1810b :電能供應單位 2000 :電力系統 2010b :僕電能供應單位 2100 :電力系統 2110b :電能供應單位 2120 :電壓平均匯流排 2140 :電源 2150b :電能轉換器 2160 :前饋控制電路 1740a I電源 1750 :電能轉換器 1770 :反饋控制電路 1760b :比較器 1770b :二極體 1770d :電流偵測器 1770g :電阻 1810a :電能供應單位 1900 ··電力系統 2010a :主電能供應單位 2110a :電能供應單位 2110c :電能供應單位 2130:負載 2150a :電能轉換器 2150c .電能轉換器 331740: Power supply 1740b: Power supply 1760: Feedforward control circuit 1760a: Resistor 1770a: Comparator 17 7 0 c: Adder 1770e: Comparator 1800: Power system 1810b: Power supply unit 2000: Power system 2010b: Servo power supply unit 2100 : Power System 2110b: Power Supply Unit 2120: Voltage Average Bus 2140: Power Supply 2150b: Power Converter 2160: Feedforward Control Circuit 1740a I Power Supply 1750: Power Converter 1770: Feedback Control Circuit 1760b: Comparator 1770b: Diode 1770d: current detector 1770g: resistor 1810a: power supply unit 1900 · power system 2010a: main power supply unit 2110a: power supply unit 2110c: power supply unit 2130: load 2150a: power converter 2150c. power converter 33

Claims (1)

200917613 十、申請專利範圍: 1 · 一種電力系統,至少包含: 一電壓平均匯流排,用以傳輸一平均電壓;以及 複數個電能供應單位,彼此互相並聯且用以提供電力 至一負載,其中每一該些電能供應單位係電性連接至該電 壓平均匯流排以接收該平均電壓,且每—該些電能供應單 位至少包含: 一電能轉換器,電性連接至一電源和該負載,其 中該電源係透過該電能轉換器之一電壓輸入端來提供 電力至該電能轉換器; 一電阻’電性連接至該電壓輸入端; 一第一比較器,用以根據該平均電壓和該電能轉 換器之一輸入電壓的差值來產生一電流參考值,其中 該第一比較器係電性連接至該電阻和該電壓輸入端, 且該電壓平均匯流排之一端係電性連接於該電阻和該 第一比較器之間; 一電流偵測器,用以偵測該電能轉換器之一輸出 電流值;以及 一第二比較器,用以根據該輸出電流值和該電流 參考值之差值來產生一電流補償值’以使該電能轉換 器根據該電流補償值來調整§亥電能轉換器之一輸出電 流值。 2.如申請專利範圍第1項所述之電力系統,其中每— 5亥些電能供應單位更包含一加法器,其中該加法器係電性 34 200917613 以將該電流參 統,其中該平 以複數個加權 連接至該電能轉換器和該第二比較器之間 考值和一預設電壓值相加。 3.如申凊專利範圍第1項所述之電力 均電壓為該些電能轉換器之該些輸入電壓乘 值之後的平均值。 力系統,其中該電 燃料電池、風力發 、傳統電力供應裝 4.如申請專利範圍第丨項所述之電 源為人力發電裝置、太陽能發電裝置、 電裝置、熱力發電裝置、水力發電裝置 置或電池。 3. -不里%刀系統,至少包含: 電壓平均匯流排,用以傳輸一平均電壓; 及 電机平均匯流排,用以傳輸一第—電流參考值;以 供雷能供應單位,彼此互相電性並聯,且用以提 電二:!?,其中該些電能供應單位係電性連接至該 夫#楚句匯仙排和該電流平均匯流排,以接收該平均電壓 口以第一電流參考值,每一該些電能供應單位至少包含: ,迠轉換器,電性連接至一電源和該負載; Μ 4时别饋控制電路,用以根據該平均電壓和該電能 $換:之-輪入電壓之差值來產生一第二電流參考 於狄中該電屢平均匯流排之一端係電性連接至該前 饋控制電路;以及 二反饋控制電路,用以根據該第一電流參考值和 Ϊ始流參考值來產生一電流補償值,其中該電流 、勻匯流排之一端係電性連接至該反饋控制電路; 其中該電能轉換器根據該電流補償值來調整該電 月匕轉換器之一輸出電流值。 35 200917613 6.如申請專利範圍第5項所述 饋控制電路至少包含: 述之电力系統,其中該前 二:阻,電性連接至該電能轉換器之— 之-輸:―電和該電能轉換器 一比較益係電性連接至該電阻和詼 ,ς、中該第 匯流排之該端係ϋ y 1 + Μ 11 , 5亥平均電壓 it連接料電阻和該第—比較器之間。 _7,丨ί申請專利範圍第5項所述之電力系統,1中琴反 饋控制電路至少包含·· b f π反 和 二第—比較器’用以根據該電能轉換器之一輸出雷壓 預設電壓之差值來產生-第三電流參考值;輸出電壓 ::極體,其中該二極體之—正端係 ,而該二極體之一負端係 = 匯流排之該端; 侵王机千均 者福Γ曰力r法器’用以將該第—電流參考值和該第二電流參 考值相加,以產生一總電流參考值; , 值·,一電流μ器,用以偵測該電能轉換器之該輪出電流 ,用以根據該總電流參考值和該輸出電 /,IL值之差值來產生該電流補償值。 8.如申明專利範圍第5項所述之電力系統,直 饋控制電路至少包含: /、T该反 -第-比較器,用以根據該電能轉換器之—輸 和一預設電壓之差值來產生一第三參考電流值; 排之it間電性連接至該第一比較器和該電流平均匯流 一加法器,用以將該第—電流參考值和該第二電流參 36 200917613 考值相加’以產生一總電流參考值; 值;以及 電&gt;’IL ^貞測器’用以债測該電能轉換号 之該輪出電流 枯—第二比較器,用以根據該輸出電流值 考值之差值來產生該電流補償值。 、〜電流參 9.如申請專利範圍第5項所述之電, 饋控制電路至少包含: Μ力錢’其中該反 值;-電流㈣器’用以制該電能轉換器之該輸出電流 站。—極體,其中該二極體之正端係電性連接至哕雷、、* 債測益,而該二極體之負端係電性連 排之該端; 丧主4電机千均匯流 紅—⑽器’電性連接至該電流_ϋ和該電流平 =匯机排之該端,其中該第一比較器係用以根據 ^值=該第二電流參考值來產生一第三電流來考值.電 老信:力Γ法器,用以將該第三參考電流值和該第二電流參 考值相加,以產生一總電流參考值;以及 / —第二比較器,用以根據該總電流參 流值來產生該電流補償值。 m辑出電 法心·將如專△範圍第9項所述之電力系統,其中該加 預值和該第二電流參考值之和與-預a又電壓相加,以產生該總電流參考值。 #kL1,·.如申請專利範圍第5項所述之電力系統,其中該反 績控制電路至少包含: 值·電々IL偵測器,用以偵測該電能轉換器之該輸出電流 一電阻,電性連接至該電流偵測器和該電流平均匯流 37 200917613 排之該端之間; 均匯;器接=流偵測器和該電流平 值; 左值木產生一第三電流參考 考值::法和該第二電流參 流值:總電流參考值和該輸出電 12·如巾請專利範圍第u項所述之電力系統,1中該 加法器更將該第三電流參考值和該第二電流參考值^和= 一預設電壓相加,以產生該總電流參考值。 /、 13.如申請專利範圍第5項所述之電力 饋控制電路至少包含: rΘ反 —電流偵測器,用以偵測該電能轉換器之該輸出電流; 極體其中該一極體之一正極係電性連接至該電 流偵測器,而該二極體之一負極係電性連接至該 ^ 匯流排之該端; 电爪十均 —第一比較器’電性連接至該電流偵測器和該電流平 均匯流排之該端,其中該第一比較器係用以根據該輪出電 流值和該第一電流參考值來產生一第一三電流參考值; —第二比較器,用以根據該電能轉換器之一輸出電壓 值和一預設電壓之差值來產生一第四電流參考值;以及 —加法器,用以將該第二電流參考值、該第三電流參 考值和該第四電流參考值相加,以產生該電流補償值。 14.如申請專利範圍第5項所述之電力系統,其中該反 饋控制電路至少包含: 38 200917613 值·· 電流偵測器,用以偵測該電能轉換器之該輸出電 流 一二極體,其中該二極體之一正端係電性連接至該電 流偵測器,而該二極體之一負端係電性連接至該電流 匯流排之該端; 一第一比較器,電性連接至該電流偵測器和該電流 均匯流排之該端’纟中該第—比較器係用以根據該輸出電 流值和該第一電流參考值之差值來產生一第三電流糸 值;以及 一加法器,用以將該第二電流參考值和該第三電流參 考值相加’以產生該電流補償值。 15.如中請專利範圍第5項所述之電力系統,其中該 饋控制電路至少包含: -電流偵測器,用以偵測該電能轉換器之該輸出電流 值, 排之間電性連接至該電流偵測器和該電流平均匯流 均匯;間電測器和該電流平 2流值和㈣-電流參考值來產生1三電流參考值; Μ及 一加法ι§,用以將該第二電流參考 相加以產生該電流補償值。 可復和。亥弟一電抓值 均雷專利範圍第5項所述之電力系統,其中該平 權值後的平均值。 輸入電壓值乘以複數個加 Π·如中請專利範圍第5項所述之電力系統,其中該電 39 200917613 S為人力發電裝置、太陽能發電裝置、燃料電池、風力發 番裝置、熱力發電裝置'水力發電裝置、傳統電力供 置或電池。 18. —種電力系統,至少包含: —電壓平均匯流排,用以傳輸一平均電壓; —電流平均匯流排,用以傳輪一第—電流參考值; -主電能供應單位,用以供應電能至—負冑,且提供 '-弟一電流參考值,其中該主電能供應單位至少包含: 一第一電能轉換器,電性連接至—第一電源和該 負載; 一第一前饋控制電路,用以根據該平均電壓和該 第一電能轉換器之一第一輪入電壓之差值來產生一 一電流參考值;以及 反饋控制電路,用以根據該第—電能轉換 裔之一第一輸出電壓和該第二電流參考值來產生一第 、電流補償值,且該第一反饋控制電路產生該第一電 流參考值; 其中該第一電能轉換器根據該第一電 調整該第-電能轉換器之-第一輸出電流值補=末 中兮一僕電能供應單位,用以提供電能至該負載,其 排:= =單位係電性連接至該電壓平均匯流 至少包含句·排,且每—該至少—僕電能供應單位 負巷一Λ二電能轉換器’電性連接至—第二電源和該 負載,」中該—第二電能轉換器輸出一第二輪出電壓值; 第二制電路,用以根據該平均電麗和該 轉換益之一第二輸入電壓之差值來產生一第 —電'&quot;IL參考值;以及 —第二反饋控制電路,用以根據該第一電流參考 40 200917613 值和該第三,流參考值來產生一第二電流補償值; λ ,中該第二電能轉換器根據該第二電流補償值來 調整該第二電能轉換器之一第二輸出電流值。 19·如申凊專利範圍第丨8項所述之電力系統,其中該 第一前饋控制電路至少包含: 电阻,電性連接至該第一電能轉換器之一電壓入 端;以及 二比較器,用以根據該平均電壓和該第一電能轉換器 之一f了輸入電壓來產生該第二電流參考值,其中該第一 比較盗係電性連接至該電阻和該電壓輸入端,且該電壓平 均匯流排之一端係電性連接於該電阻和該第一比較哭之 間0 ° 口 20·如申請專利範圍第18項所述之電力系統,其中該 第二前饋控制電路至少包含: 、 一電阻,電性連接至該第二電能轉換器之一電 端;以及 一比較器,用以根據該平均電壓和該第二電能轉換器 之一第二輸入電壓之差值來產生該第三電流參考值,其中 該第一比較器係電性連接至該電阻和該電壓輸入端,且該 電壓平均匯流排之一端係電性連接於該電阻和該— 器之間。 乎 系統,其中該 21.如申請專利範圍第18項所述之電力 第一反饋控制電路至少包含: 一比較器,用以根據該第一電能轉換器之該第— 電壓和一預設電壓之差值來產生該第一電流參考值則 一加法器,用以將該第一電流參考值和^第二電 考值來產生一總電流參考值; 电 41 200917613 —電流偵測器’用以偵測該第一電能轉換器之 輸出電流值;以及 * 一第二比較器,用以根據該總電流參考值和該 出電流值來產生該第一電流補償值。 和,弟輪 22. 如申請專利範圍第18項所述之電力系統,其中該 第一反饋控制電路至少包含: 、 了加法器,用以將該第一電流參考值和該第三電流參 值相加,以產生一總電流參考值; 二電流偵測器,用以偵測該第二電能轉換器之該第一 輸出電流值;以及 &lt;邊弟一 二比較器,用以根據該總電流參考值和該 流值來產生該第二電流補償值。 乐輪出電 23, 如申請專利範圍第18項所述之電力系統, 第—反饋控制電路至少包含: 、Τ 〇χ 輪出;,用以横測該第一電能轉換器之該第-翰出電流值,以產生該第一電流參考值;以及 比較斋,用以根據該第一輪出電壓值和該第二雪冷 參考值之差值來產生該第一電流補償值。 —電/;'L 第申請專利範圍第18項所述之電力系統,其中該 第—反饋控制電路至少包含: —電流偵測器,用以偵測該第一電能轉換号 輸出電流值,以產生該第—電流參考值;w^之6亥第一 —加法器,用以將該第一電流參考值和該第二 考值相加,以產生一總電流參考值;以及 /nL ^ -比較器,用以根據該第—輸出電壓 電流值來產生該第一電流補償值。 弟一,考 42 200917613 ^ 25·如申請專利範圍第18項所述之電力系統,其中該 弟二反饋控制電路至少包含: 〃 電k偵測器’用以债測該第二電能轉換号之兮第二 輸出電流值; 、^ ~ # 一 •—第一比較器,用以根據該第一電流參考值和該第二 輸出電流值之差值來產生一第四電流參考值; X &amp; 一加法器,用以將該第四電流參考值和該第三參考電 流值相加,以產生一總電流參考值;以及 … f200917613 X. Patent application scope: 1 · A power system comprising at least: a voltage average bus bar for transmitting an average voltage; and a plurality of power supply units connected in parallel with each other to provide power to a load, wherein each One of the power supply units is electrically connected to the voltage average bus bar to receive the average voltage, and each of the power supply units includes at least: a power converter electrically connected to a power source and the load, wherein the The power supply is supplied to the power converter through a voltage input terminal of the power converter; a resistor is electrically connected to the voltage input terminal; a first comparator is configured to adjust the average voltage and the power converter a difference between the input voltages to generate a current reference value, wherein the first comparator is electrically connected to the resistor and the voltage input terminal, and one end of the voltage average bus bar is electrically connected to the resistor and the Between the first comparators; a current detector for detecting an output current value of the power converter; Comparator for generating a current compensation value 'according to the difference of the output current value and the current reference value to cause the power converter to adjust the output current value Hai § one power converter based on the current compensation value. 2. The power system of claim 1, wherein each of the power supply units further comprises an adder, wherein the adder is electrically 34 200917613 to control the current, wherein the A plurality of weighted connections are added between the power converter and the second comparator and a predetermined voltage value is added. 3. The power average voltage as recited in claim 1 is the average value after multiplying the input voltages of the power converters. a power system, wherein the electric fuel cell, the wind power, and the conventional power supply device. 4. The power source as described in the scope of the patent application is a human power generation device, a solar power generation device, an electric device, a thermal power generation device, a hydroelectric power device, or battery. 3. - The % knife system, including at least: a voltage average busbar for transmitting an average voltage; and an average motor busbar for transmitting a first-current reference value; for the supply of lightning energy, mutual Electrical parallel, and used to raise electricity two:! ? The power supply unit is electrically connected to the husband and the current average busbar to receive the average voltage port with a first current reference value, and each of the power supply units includes at least: a 迠 converter electrically connected to a power source and the load; Μ 4: a feed control circuit for generating a second current reference based on the difference between the average voltage and the power-switching voltage One end of the electric current average bus bar is electrically connected to the feedforward control circuit; and two feedback control circuits are configured to generate a current compensation value according to the first current reference value and the initial flow reference value, The one end of the current and the shunting row is electrically connected to the feedback control circuit; wherein the electric energy converter adjusts an output current value of the one of the electric crescent converter according to the current compensation value. 35 200917613 6. The feed control circuit according to claim 5, wherein the feed control circuit comprises at least: the power system, wherein the first two: the resistor is electrically connected to the power converter - the power: the power and the power The converter is electrically connected to the resistor and the 诙, 该, the end of the bus bar ϋ y 1 + Μ 11 , 5 平均 average voltage it is connected between the material resistance and the first comparator. _7, 丨ί applies for the power system described in item 5 of the patent scope, and the 1 zhongqin feedback control circuit includes at least a bf π anti- and a second-comparator to output a lightning pressure preset according to one of the power converters The difference between the voltages produces a third current reference value; the output voltage is: a polar body, wherein the diode is at the positive end, and the negative end of the diode is at the end of the busbar; The machine is configured to add the first current reference value and the second current reference value to generate a total current reference value; a value ·, a current μ device for Detecting the round current of the power converter to generate the current compensation value according to the difference between the total current reference value and the output power/IL value. 8. The power system of claim 5, wherein the direct feedback control circuit comprises at least: /, T the inverse-first comparator for determining a difference between the power converter and the predetermined voltage. The value is used to generate a third reference current value; the row is electrically connected to the first comparator and the current average sink-adder for determining the first current reference value and the second current reference 36 200917613 The value is added 'to generate a total current reference value; the value; and the electric &gt; 'IL ^ Detector' is used to measure the turn-off current of the electric energy conversion number - the second comparator is used according to the output The difference between the current value values is used to generate the current compensation value. The current control unit has at least: Μ力钱' wherein the inverse value; - current (four) device is used to manufacture the output current station of the power converter . a polar body, wherein the positive end of the diode is electrically connected to the thunder, and the debt is measured, and the negative end of the diode is electrically connected to the end; The sinking red-(10) device is electrically connected to the current_ϋ and the current level=the end of the sink row, wherein the first comparator is configured to generate a third according to the value=the second current reference value The current is calculated. The electric signal is used to add the third reference current value and the second current reference value to generate a total current reference value; and / - the second comparator is used The current compensation value is generated according to the total current reference value. The power system according to the ninth aspect of the invention, wherein the sum of the pre-value and the second current reference is added to the pre-a voltage to generate the total current reference. value. The power system of claim 5, wherein the performance control circuit comprises: a value/electricity IL detector for detecting the output current and the resistance of the power converter, Electrically connected to the current detector and the current average sink 37 between the ends of the 200917613 row; the average sink; the device connected = the stream detector and the current level; the left value tree produces a third current reference value :: method and the second current reference value: the total current reference value and the output power 12. According to the power system described in the scope of the patent application, the adder further includes the third current reference value and The second current reference value ^ and = a predetermined voltage are added to generate the total current reference value. /, 13. The power feeding control circuit of claim 5, wherein the power feeding control circuit comprises: rΘ anti-current detector for detecting the output current of the power converter; wherein the pole body is A positive electrode is electrically connected to the current detector, and a negative electrode of the diode is electrically connected to the end of the bus bar; the electric claw is - the first comparator is electrically connected to the current The detector and the current average bus bar, wherein the first comparator is configured to generate a first three current reference value according to the wheel current value and the first current reference value; And generating a fourth current reference value according to a difference between an output voltage value of the power converter and a preset voltage; and an adder for using the second current reference value and the third current reference The value is added to the fourth current reference to generate the current compensation value. 14. The power system of claim 5, wherein the feedback control circuit comprises: 38 200917613 value · a current detector for detecting the output current of the power converter, a diode, One of the diodes is electrically connected to the current detector, and one of the diodes is electrically connected to the end of the current bus; a first comparator, electrical Connected to the current detector and the current terminal of the current ensemble, the first comparator is configured to generate a third current 根据 value according to the difference between the output current value and the first current reference value And an adder for adding the second current reference value and the third current reference value to generate the current compensation value. 15. The power system of claim 5, wherein the feed control circuit comprises: at least: a current detector for detecting the output current value of the power converter, and electrically connecting the rows The current detector and the current average sink are both connected; the current detector and the current 2 stream value and the (4)-current reference value are used to generate a 13 current reference value; and an addition method ι § The second current reference is added to generate the current compensation value. Can be reconciled. Haidi Yidian grabs the value of the power system described in item 5 of the patent scope, which is the average value after the equalization value. The input voltage value is multiplied by a plurality of twisting systems, such as the power system described in claim 5 of the patent scope, wherein the power 39 200917613 S is a human power generating device, a solar power generating device, a fuel cell, a wind generating device, and a thermal power generating device. 'Hydroelectric installations, traditional power supplies or batteries. 18. A power system comprising at least: - a voltage average busbar for transmitting an average voltage; - a current average busbar for transmitting a first-current reference value; - a main power supply unit for supplying electrical energy To - negative, and provide a '--a current reference value, wherein the main power supply unit comprises at least: a first power converter electrically connected to the first power source and the load; a first feedforward control circuit And generating a current reference value according to the difference between the average voltage and a first wheeling voltage of the first power converter; and a feedback control circuit for first, according to the first The output voltage and the second current reference value are used to generate a first current compensation value, and the first feedback control circuit generates the first current reference value; wherein the first power converter adjusts the first power according to the first power The first output current value of the converter is the last power supply unit for supplying power to the load, and the row: == unit is electrically connected to the average current of the voltage to Include a sentence and a row, and each - the at least - the servant power supply unit negative lane one or two power converters 'electrically connected to - the second power source and the load," the second power converter outputs a second round And a second circuit for generating a first electric '&quot;IL reference value according to the difference between the average electric quantity and the second input voltage of the conversion benefit; and a second feedback control circuit, And generating a second current compensation value according to the first current reference 40 200917613 value and the third, flow reference value; λ, wherein the second power converter adjusts the second power according to the second current compensation value One of the second output current values of the converter. The power system of claim 8, wherein the first feedforward control circuit comprises: a resistor electrically connected to one of the voltage inputs of the first power converter; and two comparators The second current reference value is generated according to the average voltage and the input voltage of the first power converter, wherein the first comparison is electrically connected to the resistor and the voltage input end, and the One end of the voltage average bus bar is electrically connected to the power system and the first comparative crying. The power system of claim 18, wherein the second feedforward control circuit comprises at least: a resistor electrically connected to one of the second power converters; and a comparator for generating the first value based on a difference between the average voltage and a second input voltage of the second power converter And a third current reference value, wherein the first comparator is electrically connected to the resistor and the voltage input end, and one end of the voltage average bus bar is electrically connected between the resistor and the device. The system of claim 21, wherein the power first feedback control circuit of claim 18 includes: a comparator for determining the first voltage and a predetermined voltage of the first power converter The difference is used to generate the first current reference value, and an adder is used to generate the first current reference value and the second electrical reference value to generate a total current reference value; the electric 41 200917613 - the current detector is used Detecting an output current value of the first power converter; and * a second comparator for generating the first current compensation value according to the total current reference value and the output current value. The electric power system of claim 18, wherein the first feedback control circuit comprises: at least: an adder for the first current reference value and the third current parameter Adding to generate a total current reference value; two current detectors for detecting the first output current value of the second power converter; and &lt; a brother and a comparator for using the total The current reference value and the current value are used to generate the second current compensation value. The power supply system 23, as in the power system of claim 18, the first feedback control circuit comprises at least: Τ 轮 wheeled; for traversing the first power converter And outputting a current value to generate the first current reference value; and comparing the fast values to generate the first current compensation value according to a difference between the first round-off voltage value and the second snow-cooled reference value. The electric power system of claim 18, wherein the first feedback control circuit comprises: at least: a current detector for detecting the output current value of the first electrical energy conversion number, Generating the first current reference value; the first phase current value of the first phase is added to generate the total current reference value; and /nL ^ - And a comparator configured to generate the first current compensation value according to the first output voltage current value.弟一,考42 200917613 ^ 25 · The power system of claim 18, wherein the second feedback control circuit comprises: 〃 electric k detector 'for debt testing the second electric energy conversion number a second output current value; a first comparator for generating a fourth current reference value according to a difference between the first current reference value and the second output current value; X &amp; An adder for adding the fourth current reference value and the third reference current value to generate a total current reference value; and ... f 出雷;器,用以根據該總電流參考值和該第二輸 出電壓之差值來產生該第二電流補償值。 電力系統,其中該 能轉換器之該第一 26.如申請專利範圍第18項所述之 第一反饋控制電路至少包含: 一電流偵測器’用以偵測該第一電 輸出電流值; 電壓值和一預設電壓 以及 一比較器,用以根據該第一輸出 值之差值來產生一第四電流參考值; 刀口沄器 用Μ將该弟四電流參考值和該第 考值相加,以產生該第一電流補償值。 ▲ / ·如甲謂·專利範 第一反饋控制電路至少包含 二電流偵測器,用以伯測該第二電能 二 輸出電流值; 啊俠™又忑弟一 於山:比較器’用以根據該第—電流參考值和Π 輸出電k值之差值來產生一第四電流參考值 Μ — 一第二比較器,用以根據一第二 電壓絲產生—第五電流參考值;壓值和—預設 一加法器,用以將該第四參考電流值、 流值和該第三參考電流值相加,以產生該第;流“值電 43 200917613 28.如申請專利範圍第18項所述之電力系统,其中該 第一反饋控制電路至少包含: -電流偵測器’ 卩偵蜊該第一電能轉換器之該第一 輸出電流值,以產生該第一電流參考值;以及 -比較器,用以根據該第一輸出電壓值和該第二電流 &gt;考值之差值來產生該第一電流補償值。 位29.如申請專利範圍第18項所述之電力系統,其中該 第一反饋控制電路至少包含: -電流偵測器’用以偵測該第一電能轉換器之該第一 輸出電流值,以產生該第一電流參考值; 一加法器,用以將該第二電流參考值和一預設電壓值 相加,以產生一總電流參考值;以及 去括一t較态’用以根據該第一輸出電壓值和該總電流參 考值之差值來產生該第一補償電流值。 30.如申請專利範圍第18項所述之電力系統,其中該 C 名电-J/Λ* it.? 1ΪΕ* r»A. .1. A 第二電能轉換器之該第二 V 第二反饋控制電路至少包含 一電流偵測器,用以偵 輸出電流值; ㈣根Ϊ該第—電流參考值和該第二輸出 電机值之差值來產生一第四電流參考值;以及 :加法器,用以將該第四電流參考值和該第三電流來 考值相加,以產生該電流補償值。 乂 31.如申請專利範圍第 平均電壓為該第一輸入電壓 個加權值後的平均值。 18項所述之電力系統,其中該 和该些第二輸入電壓乘以複數 44 200917613 第-申Λ專利範圍第18項所述之電力系統,其中該 源或5亥弟二電源為人力發電裝 ^ 置、燃料電池、風力發電裝w 發電裝 裝置傳統電力供««電池。 發電 33·—種電力系統,至少包含: ,壓平均匯流排,用以傳輸一平均電壓; 兮黛一電能供應單位,用以提供電能至—負載,1中 該弟一電能供應單位至少包含: 戰/、中 電阻,:第中;”器,電性連接至一第-電源和該 端和-第:%:r轉換器至少包含一第—電流輪出 接至該;載且該第-電流輸出端係電性連 第-電壓輸電性連接至該第—電能轉換器之一 一第一比較器,用以根據該平均電壓 能,器之一第一輪入電壓之差值來產生^ : 該第一比較器係電性連接至該第-電阻和 έ ... 連接於該第一電阻和該第一比較器之間;’、電性 調整/第中二第:上能轉換器根據該第—電壓補償值來 凋整忒第一電此轉換益之一第一輸出電壓·,以及 一第一電能供應單值,用以提供電能至該負直 該第二電能供應單位至少包含: 、戰八中 一第二電能轉換器’電性連接至一第二電 負載,其中該第二電能轉換器至少包含—第二雷士= 出端和一第二電壓參考端,該第二電 ; 連接至該第一電壓參考端; 缅你冤性 —第二電阻,電性連接至該第二電 第二電壓輸入端;以及 将换益之一 45 200917613 ^ 一第二比較器,用以根據該平均電壓和該第二電 能,換器之一第二輸入電麼之差值來產生一第二電ί 補^值’其中該第二比較器係電性連接至該第二電阻 該第二電壓輸入端,且該電壓平均匯流排之另— 電性連接至該第二電阻和該第二比較器之間;’、 其中該第二電能轉換器根據該第二電壓補 調整該第二電能轉換器之一第二輸出電壓。 34.如申凊專利範圍第33項所述之電力季统,| &amp; 電力系統更包含: 统,其中該 廡第三電能供應單位,電性連接至該第—電能供 Ϊ 電,應單位之間,以提供電能St 、力排’、Η ^姑!~電此供應單位係電性連接至該電壓平均匯 ;三輪出;=平均電壓來調整該第三電能供應單位之一 請專利範圍第33項所述之電力㈣,其中該平 句電屡為δ亥弟一輸入電壓信知兮笛 加權值之平均值。 以-輸人電壓值乘以複數個 一雷、如申°月專利圍第33項所述之電力系統’其中該第 -電源或該第二電源為人力發 燃料電池、風力發雷梦署、為“太發電裝置' # ^ ^ ^ …、力毛電裝置、水力發電裝置、 傳統电力供應裝置或電池。 46And a device for generating the second current compensation value according to a difference between the total current reference value and the second output voltage. The power system, wherein the first feedback control circuit of the energy converter of claim 18 includes: a current detector 'for detecting the first electrical output current value; a voltage value and a preset voltage and a comparator for generating a fourth current reference value according to the difference between the first output values; the knife edge device is configured to add the fourth current reference value and the first test value To generate the first current compensation value. ▲ / · 如 如 如 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利And generating a fourth current reference value Μ according to the difference between the first current reference value and the Π output power k value — a second comparator for generating a fifth current reference value according to a second voltage wire; And presetting an adder for adding the fourth reference current value, the stream value and the third reference current value to generate the first stream; the value "electricity 43 200917613 28. as claimed in claim 18 The power system, wherein the first feedback control circuit comprises: - a current detector 'detecting the first output current value of the first power converter to generate the first current reference value; and - The comparator is configured to generate the first current compensation value according to the difference between the first output voltage value and the second current value. The power system of claim 18, wherein The first feedback control circuit includes at least a current detector 'for detecting the first output current value of the first power converter to generate the first current reference value; an adder for using the second current reference value and a preset The voltage values are added to generate a total current reference value; and a t-state is used to generate the first compensation current value based on the difference between the first output voltage value and the total current reference value. The power system of claim 18, wherein the C name is -J/Λ* it.? 1ΪΕ* r»A. .1. A second second second control of the second power converter The circuit includes at least one current detector for detecting the output current value; (4) generating a fourth current reference value based on a difference between the first current reference value and the second output motor value; and: an adder, And summing the fourth current reference value and the third current to generate the current compensation value. 乂31. If the average voltage of the patent application range is the average value of the first input voltage weighted value The power system of item 18, wherein the second input power Multiplied by the power system described in Item No. 44 of the above-mentioned patent scope, wherein the source or the 5 Haidi power source is a human power generating device, a fuel cell, a wind power generating device, a power generating device, and the like. «Battery. Power generation 33 · A kind of power system, including at least: a pressure average busbar for transmitting an average voltage; a power supply unit for providing power to the load, 1 of the brothers and a power supply unit At least: war/, medium resistance,: middle; "device, electrically connected to a first power supply and the end and - the first: %: r converter includes at least a first - current wheel is connected to the; The first current output terminal is electrically connected to the first voltage comparator and is connected to the first comparator of the first power converter for determining a difference between the first wheel voltages of the one of the average voltages To generate ^: the first comparator is electrically connected to the first-resistance and έ ... is connected between the first resistor and the first comparator; ', electrical adjustment / the second two: on The energy converter is tidy according to the first voltage compensation value The first electrical output is a first output voltage, and a first electrical energy supply single value is used to provide electrical energy to the negative electrical energy. The second electrical energy supply unit comprises at least: Electrically connected to a second electrical load, wherein the second electrical energy converter includes at least a second NVC = an output terminal and a second voltage reference terminal, the second electrical device; connected to the first voltage reference terminal;缅 冤 — — — — — — 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二And a difference between the second input power of the converter to generate a second voltage, wherein the second comparator is electrically connected to the second resistor and the second voltage input terminal, and the voltage is averaged And being electrically connected between the second resistor and the second comparator; ', wherein the second power converter adjusts a second output voltage of the second power converter according to the second voltage compensation. 34. The power system of claim 33, wherein the power system further comprises: a system, wherein the third power supply unit is electrically connected to the first power supply unit, Between the power supply St, the force row ', Η ^ 姑! ~ electricity supply unit is electrically connected to the voltage average sink; three rounds out; = average voltage to adjust the third power supply unit please patent range The electric power (4) mentioned in Item 33, wherein the flat sentence electric power is an average value of the weight value of the input voltage of the δ hai dian. Multiplying the value of the input voltage by a plurality of lightning systems, such as the power system described in Item 33 of the patent application, wherein the first power source or the second power source is a human fuel cell, a wind power system, It is a “too power generation unit” # ^ ^ ^ ..., a power generation unit, a hydroelectric unit, a conventional power supply unit or a battery.
TW096136971A 2007-10-02 2007-10-02 Power system TWI341637B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096136971A TWI341637B (en) 2007-10-02 2007-10-02 Power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096136971A TWI341637B (en) 2007-10-02 2007-10-02 Power system

Publications (2)

Publication Number Publication Date
TW200917613A true TW200917613A (en) 2009-04-16
TWI341637B TWI341637B (en) 2011-05-01

Family

ID=44726444

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096136971A TWI341637B (en) 2007-10-02 2007-10-02 Power system

Country Status (1)

Country Link
TW (1) TWI341637B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI702785B (en) * 2019-01-08 2020-08-21 台達電子工業股份有限公司 Smart grid integration system and method of processing power information
US10928844B2 (en) 2018-10-09 2021-02-23 Pegatron Corporation Electronic device and power supply module thereof
TWI824492B (en) * 2022-04-19 2023-12-01 全漢企業股份有限公司 Power supply system with current sharing and method of current sharing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10928844B2 (en) 2018-10-09 2021-02-23 Pegatron Corporation Electronic device and power supply module thereof
TWI702785B (en) * 2019-01-08 2020-08-21 台達電子工業股份有限公司 Smart grid integration system and method of processing power information
TWI824492B (en) * 2022-04-19 2023-12-01 全漢企業股份有限公司 Power supply system with current sharing and method of current sharing the same

Also Published As

Publication number Publication date
TWI341637B (en) 2011-05-01

Similar Documents

Publication Publication Date Title
US8638008B2 (en) 380 volt direct current power distribution system for information and communication technology systems and facilities
CN201926948U (en) Electric power system
AU757080B2 (en) Solar battery module and power generation apparatus
WO2009044231A2 (en) A power system including a feed-back and a feed-forward control circuit
US9450452B2 (en) Transformer coupled current capping power supply topology
TWI606671B (en) Ups having a delta converter utilized as input power regulator in a double conversion system and method of operating the same
CA2826330C (en) Control arrangement and method for regulating the output voltage of a dc source power converter connected to a multi-source dc system
TW200929770A (en) Power management systems, electronic systems with current sensors and method for managing power
JP2009148160A (en) Hybrid power supply, and power management system and method applied to hybrid power supply
TW201228203A (en) DC power conversion module, control method thereof, junction box and power harvesting system
TWI466406B (en) Solar power generation system and power supply system
WO2015025712A1 (en) Distributed power supply facility system
WO2016121273A1 (en) Power control device, power control method, and power control system
TW201505324A (en) Battery module, power management method of battery module and device having the same
TW200917613A (en) Power system
TW201222189A (en) Partial power micro-converter architecture
JP2012253933A (en) Dc power feeding apparatus
TW201201004A (en) Server power supply system
JP2014150610A (en) Dc power supply device, method for charging storage battery, and device for monitoring and controlling dc power supply device
WO2011039588A1 (en) Power distribution device
TWI408865B (en) Uninterruptible power supply and power suppling method thereof
WO2017038787A1 (en) Power supply device
WO2017149569A1 (en) Power supply system, power supply device, and control device
JP5667915B2 (en) DC power supply
WO2021019814A1 (en) Power conversion device and power generation system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees