TW200916994A - Droop control device and method capable of predicting the current-sharing degree - Google Patents

Droop control device and method capable of predicting the current-sharing degree Download PDF

Info

Publication number
TW200916994A
TW200916994A TW96137919A TW96137919A TW200916994A TW 200916994 A TW200916994 A TW 200916994A TW 96137919 A TW96137919 A TW 96137919A TW 96137919 A TW96137919 A TW 96137919A TW 200916994 A TW200916994 A TW 200916994A
Authority
TW
Taiwan
Prior art keywords
current
slope
output
voltage
circuit
Prior art date
Application number
TW96137919A
Other languages
Chinese (zh)
Other versions
TWI366082B (en
Inventor
Hsin-Hsin Ho
Ke-Horng Chen
Chun-Yu Hsieh
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW96137919A priority Critical patent/TW200916994A/en
Publication of TW200916994A publication Critical patent/TW200916994A/en
Application granted granted Critical
Publication of TWI366082B publication Critical patent/TWI366082B/zh

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

This invention relates to a droop control device and method capable of predicting the current-sharing degree, applied in redundant or distributed power supply systems and capable of achieving a better sharing effect of load current. The device includes a trans-conductance amplifier, a slope adjustment circuit, a voltage incrementing circuit. In this invention, a trans-conductance parameter is used to improve the slope of output voltage with respect to the output current, and the trans-conductance parameter is used to enable each of the power supply module of distributed power supply systems to have a better and similarslope. The invention dynamically raises the output voltage so as to increase the output current in stepped manner until reaching the range that the system can sustain.

Description

200916994 九、發明說明: 【發明所屬之技術領域】 ,發明是有關於一種斜率控制裝置及其方法, 是有關於一種應用於分散式電源系統,可預測 均化程度之裝置及其方法。 【先前技術】 、目刚,通信系統或是電腦伺服主機越來越常使 用分散式電源系統(Distributed p〇wer Systems)。分散 式電源系統係並聯多組容量較小的電源模組以提供 f f、、口負載端* $ ’因在匕與一般中央式電源系統相 比有下列的優點: 处#丨·可使用模組化電源設計:使用中央式電源系 、’ /、電時,當客戶所需的功率規格有所變更時,使 =需要耗費時日以重新設計電源系統。反觀分散 ΪΓίΐ統,因其採用模組化的設計,所以能按照 而求功率的大小來決定並聯的電源模組之數 ^。此外,當某一並聯模組出現短路或故障的情形 時,使用者亦可針對此故障模組進行維修,而不 要關閉供電系統。 2. 可降低單一模組中功率元件的電流應力:使 刀放式電源系統的另一好處是可平均分散負 所需之輸出電流至各並聯模組中,因此單一模袓可 採用較低額定的元件來實現,系統整體的效率及體 積也因此獲得改善。 3. 可達到有效的熱管理:一般而言,電子元件 面之/皿度母上升]〇。C時,其使用壽命約減少一 200916994 半。有效的熱管理可以避免因局部溫度過高或是溫 度分布差異太大時,電子元件提早失效或是使用壽 命降低等問題。分散式電源系統因為能平均分配模 組的電流’所以熱源分佈也較平均。此外,使用者 也可運用較大面積的PCB板來分散熱量。 4·容易實現冗餘架構之電路設計:分散式電源 系統很容易做到N+1級的冗餘架構設計。N+1級的 冗餘架構是將N+1組的電源模組並聯使用,在正常 的操作狀態時,系統由N個模組供電,當其中一組 模組發生故障時,該模組會退出供電,而系統仍然 維持N個模組供電的狀態。因此,冗餘架構的好處 是可以提高系統的穩定性。 目前為止,分散式電源系統分配負載電流的機 制有兩種方法,分別為斜率控制法(Droop Methods) 和主動式均流法(Active Current-Sharing Method)。 主動式均流法和斜率控制法最大的不同在於主動式 均流法的並聯模組需要額外的接腳(pinout),這些接 腳是用來讓並聯模組的均流控制電路(Current Sharing Control, CS control)分享彼此之間輸出電流 的資訊,進而調整自身的信號,以讓負載電流能平 均分擔到每一組並聯的電源模組上。這些互相連接 的接腳,通常稱之為均流匯流排(Current-Sharing bus,CS_Bus)。均流匯流排提供一共同參考位準給 並聯的電源模組當依據,使模組能依照本身的輸出 電流和參考位準的差值來做調整。而斜率控制法則 不使用上述的均流匯流排,而改用一參考電壓作為 調整輸出功率的依據。 200916994 下 因此,斜率控制法優於 主動式均流法的特點如 1 ·電路設計簡單且容易擴充. 2. 模組間不需要額外的連 3, 化能力強和可靠 ^制法的特點如下: 2·較佳的均流能力。 法的電源模組之中,者售恭带:广隹仉用斜率控1 之下降。其叫原理^著規t彳各電壓會隨 到負載電流平均分配的效果,if,換15的輸出阻抗,來達 量,是由綠^ mu j 負載電流所需要的總需求 請參考第1圖,其絡千 出電?,電流之波二意圖統 =先源模組之輸出電壓對輸出電二 疋’而各輸_始職設定值_為 =r異應值至負載端的輸出電流„與輸出電: 從第1圖可以觀察到’當個別模組的起始電壓值誤 差越小時,電流分配的效果越好。另一方面,當起始誤差值 固疋時,如果提局輸出電屬對於輸出電流之斜率,亦有 助於減少個別模組輸出電流的差異值。然而,’傳統 的斜率控制法,其斜率會受限於系統可容許的工作電壓範圍 而無法提高。 有馨於習知技藝之各項問題,為了能夠兼顧解 200916994 =之〔本發明人基於多年研究開發與諸多實務經 驗,提出一種可預測均流程度之斜率控 甘 方法,以作核善上述缺狀#財式魏據及其 【發明内容】 ^鐘於此,本發明之目的就是在提供一種 2&程度之斜率控龍置及其方法,轉決使用斜 率控制法之電源系統的均流能力不佳之問題。 ’、 钭率==明之/的’提出一種可預測均流程度之 ;,此斜率控制裝置包含一轉導放大電路u 整,路及-電壓遞增電路。其中,電源模組的 二 經過一取樣電阻產生一偵測電壓。轉導放大 二 電壓轉導成一偵測電流,並輸出此偵測電流之資气。〆貝, 斜率調整電路再根據此偵測電流 ° 出電壓對輸出電流的斜率,_電壓遞增電路 ,電流之資訊及已修改之斜率,逐步拉升輸 生的下降量仍維持在系統可接受之變動3出電4増而產 此外,本發明更提出一種可 =方r用來縮小多個電源模組所供;:的以 ,机之_差異值。首先’本發明之方法先從 ^出 ΐ取rm電壓及一輸出電流,並計算出-原始ί ^然後’再利用-取樣電阻從輸出電流中取得= 接下來,再用-回娜與偵測電電流電二 率。最後’再根據該已修改斜率逐步拉升輸出‘ 200916994 輸出電壓仍維持在系統可接受之變動值内。 承上所述,因依本發明之可預測均流程度之斜率控 制裝置及其方法,可使輸出電壓維持在系統可承受範圍 .内且提升輸出電壓對輸出電流之斜率,因而縮小多個電 源模組間輸出電流的差異值,進而提升此電源系統之均 流能力。 茲為使貴審查委員對本發明之技術特徵及所 達到之功效有更進一步之瞭解與認識,謹佐以較佳 之實施例及配合詳細之說明如後。 【實施方式】 以下將參照相關圖示,說明依本發明較佳實施 例之可預測均流程度之斜率控制法及其裝置,為使 便於理解,下述實施例中之相同元件係以相同之符 號標示來說明。 請參考第2圖,其繪示為本發明之可預測均流程 度之斜率控制裝置之實施例之方塊圖。其中,電源 模組100包括一電源供應電路110及一回授控制電路 120。每一組電源模組100皆透過輸出電阻Rs連接 到負載300。偵測模組200包括一轉導放大電路 210、一斜率調整電路220及一電壓遞增電路230。 電源供應模組110根據回授控制電路120之信號,提 供一輸出電壓及輸出電流至負載300,此時偵測模組 200之轉導放大電路210亦會偵測輸出電流。轉導放 大電路210將輸出電流取樣後分別饋入斜率調整電 路220與電壓遞增電路230中。斜率調整電路220 之功用在於放大電源模組100之輸出電壓對輸出電 9 200916994 流之斜率,以產生一改良斜率。電壓遞增電路23〇則 步進拉升輸出電壓’使輸出電壓隨輸入電流遞增而 產生的下降量,維持在系統可接受之變動值内。 請參考第3圖’其繪示本發明之可預測均流程 度之斜率控制裝置之另一實施例之方塊圖。承上所 述,轉導放大電路210包含一取樣保持電路24〇, 例如一電流鏡或一電感電流平均值產生裝置。取樣 保持電路240將轉導放大電路21〇所輸出之偵測電 流複製為兩組,再分別饋入斜率調整電路22〇與電 壓遞增電路230之中。其中,斜率調整電路22〇可 以利用-電壓回授調整電路221㈣測電流以各種 倍率饋入回授控制電路12〇中,或是調整回授控制 電路120之回授電阻12卜從而提升電源模組1〇〇 之輸出電壓對於輸出電流之斜率。 在斜率提升的同時,電源模組100的輪出電壓隨 輸出電流遞增而產生之最大變動值也會增加,使得 輸出電壓會超過系統之電氣規格限制。因此,步進 升壓電路加在輸出電壓達到最小工作電壓時被觸發以 提升輸出賴,躺麵本發明之斜率控條情出電壓隨 輸入電流遞增而產生的下降量仍維持在系統可接受之變動值 内。 接下來請參考第4圖,其繪示為本發明之可預 測均流程度之斜率控制裝置之實施例 圖。其電源供應電路11〇與回授控制電路= 為本技術領域中具有通常知識者所悉知,在此 贅述。電源供應電路110於本實施例中是一組直流 200916994 轉直流的電壓模式之切換轉換器,當其應用於一分 散式電源供應系統時,每一組電源模組1〇〇的輸出 ^會加上一功率電晶體,以防止個別電源模組ι〇〇 有故障或是短路的失效情形發生。 如第4圖所示,個別電源模組1〇〇 加上-功率電晶體,其等效電阻Rs於本實= 可作為輸出電阻RS。電源模組1〇〇經由輸出電阻 ^連接到共同輸出端Vg,以提供負載端_之電 流需求。在本實施例中,轉導放大電路21〇包括一 轉導=大器212及一電流鏡元件211。轉導放大器 212’是用來偵測輸出電流1〇流經輸出電阻RS時^ 測電Μ Vc ’並將其縮小㈣倍後轉導成偵測 、洲· c再透過電流鏡21丨傳送到回授電阻 21 上以形成電壓差ΔΥίΙ。 一承上所述,當電源模組1〇〇進入穩態工作時, „電路120會讓誤差放大器之負端輸入值等 端輸人之參考電壓值(假設放大^理想放大 =)。當輸出電流Ιο等於〇Α時(亦即無載),共同輸 出端電壓V。會等於個別模組之無載輸出電壓值的最 大值,假設電源模組100之無載輸出電壓v〇1是最 大值’則輸出電壓V〇=V〇i。 當輸出電流1〇逐漸增加時,取樣電阻Rs上流過 的,流產生之偵測電壓Ve也會逐漸增加,故轉導放 大器212輸出的偵測電流Ις亦會逐漸增大。因為回 授控制電路120中誤差放大器之高增益現象,其負 端輸入值還是較纽端的參考電隸Μ,所以 轉導放大ϋ 212輸出的價測電流Ic #全部流到R1 200916994 上以產生電壓差Δν(1。 根據等效電路模型,吾人可以計算出輸出電壓200916994 IX. Description of the Invention: [Technical Field] The invention relates to a slope control device and a method thereof, and relates to a device and a method thereof for predicting the degree of homogenization applied to a distributed power supply system. [Prior Art], the communication system or the computer server is increasingly using distributed power systems (Distributed p〇wer Systems). The decentralized power system is connected with multiple sets of smaller power modules to provide ff and port load terminals. * $ 'Because it has the following advantages compared with the general central power system: Power supply design: When using the central power supply system, '/, when the power specifications required by the customer are changed, it takes time to redesign the power system. In contrast, because of the modular design, the number of power modules connected in parallel can be determined according to the power. In addition, when a parallel module is short-circuited or faulty, the user can also repair the faulty module instead of turning off the power supply system. 2. It can reduce the current stress of power components in a single module: another advantage of the knife-mounted power system is that it can evenly distribute the negative required output current to each parallel module, so a single module can be used with lower ratings. The components are implemented to improve the overall efficiency and volume of the system. 3. Effective thermal management can be achieved: in general, the surface of the electronic component rises. At C, its service life is reduced by approximately one by one. Effective thermal management avoids problems such as premature failure of electronic components or reduced life due to excessive local temperature or when the temperature distribution is too different. Decentralized power systems have a more even distribution of heat sources because they distribute the current of the module evenly. In addition, users can use a larger area of PCB board to dissipate heat. 4. Easy to implement redundant architecture circuit design: Decentralized power system It is easy to achieve N+1 level redundant architecture design. The N+1-level redundant architecture uses N+1 groups of power modules in parallel. In normal operating conditions, the system is powered by N modules. When one of the modules fails, the module will The power is removed and the system maintains the power of the N modules. Therefore, the benefit of redundant architecture is that it can improve the stability of the system. So far, distributed power systems have two methods for distributing load currents, namely, the Droop Methods and the Active Current-Sharing Method. The biggest difference between the active current sharing method and the slope control method is that the parallel module of the active current sharing method requires additional pins (pinouts) for the current sharing control circuit of the parallel module (Current Sharing Control). , CS control) share the information of the output current between each other, and then adjust its own signal, so that the load current can be evenly distributed to each group of parallel power modules. These interconnected pins are commonly referred to as Current-Sharing buses (CS_Bus). The current sharing busbar provides a common reference level for the parallel power supply module, so that the module can be adjusted according to the difference between its output current and the reference level. The slope control law does not use the above-mentioned current sharing bus, but uses a reference voltage as the basis for adjusting the output power. Therefore, the slope control method is superior to the active current sharing method. For example, the circuit design is simple and easy to expand. 2. There is no need for additional connections between modules. The ability to be strong and reliable is as follows: 2. Better current sharing capability. Among the power modules of the law, the seller sells the belt: the decline of the slope control 1 is widely used. It is called the principle ^ regulation t彳 each voltage will follow the effect of the average distribution of the load current, if, change the output impedance of 15, the amount of arrival, is the total demand required by the green ^ mu j load current, please refer to Figure 1. , its power is thousands of power?, the current wave two intentions = the output voltage of the first source module to the output power two 疋 ' and each input _ initial job set value _ is = r corresponding value to the output current of the load „ Output power: It can be observed from Fig. 1 'When the error of the initial voltage value of the individual module is small, the effect of current distribution is better. On the other hand, when the initial error value is fixed, if the output voltage is fixed, The slope of the output current also helps to reduce the difference in output current of individual modules. However, the traditional slope control method, the slope of which is limited by the allowable operating voltage range of the system, cannot be improved. In order to be able to solve the problems of 200916994 = [The inventor based on years of research and development and many practical experience, proposed a slope control method for predicting the degree of current sharing, in order to verify the above-mentioned lack of shape #财式Wei and its Ming content] ^ Bell here, the purpose of the present invention is to provide a 2 & degree of slope control and its method, the use of the slope control method of the power system's current sharing capacity is not good. ', 钭 rate = =明的的' proposes a predictable level of current sharing; the slope control device comprises a transconductance amplifying circuit u, a path and a voltage increasing circuit, wherein the second of the power module generates a detection through a sampling resistor Voltage, transconductance amplification, two voltages are converted into a detection current, and the power of the detection current is output. The mussel, the slope adjustment circuit is further based on the detection current, the slope of the output voltage, the voltage increment circuit, The current information and the modified slope, the gradual increase of the drop in the output is still maintained in the system acceptable change 3 power generation 4 増 production, in addition, the present invention further proposes a square r can be used to reduce multiple power modes The group is supplied; the value of the machine is different. First, the method of the present invention first extracts the rm voltage and an output current from the ^, and calculates - the original ί ^ then 'reuses the sampling resistor from the output current Take = Next, use the - return and detect the electric current rate. Finally, 'step up the output according to the modified slope' 200916994 The output voltage remains within the acceptable variation of the system. The slope control device and method thereof for predicting the degree of current sharing according to the present invention can maintain the output voltage within the system tolerable range and increase the slope of the output voltage to the output current, thereby reducing the output current between the plurality of power modules. The value of the difference, which in turn increases the current sharing capability of the power system. In order to give the reviewer a better understanding and understanding of the technical features and the efficacies of the present invention, the preferred embodiment and the detailed description are provided. [Embodiment] Hereinafter, a slope control method and a device for predicting the degree of current sharing according to a preferred embodiment of the present invention will be described with reference to the related drawings. For ease of understanding, the same components in the following embodiments are used. The same symbol is used to indicate. Please refer to FIG. 2, which is a block diagram showing an embodiment of a slope control device for predictable average process of the present invention. The power module 100 includes a power supply circuit 110 and a feedback control circuit 120. Each set of power modules 100 is connected to the load 300 through an output resistor Rs. The detection module 200 includes a transduction amplifying circuit 210, a slope adjusting circuit 220 and a voltage increasing circuit 230. The power supply module 110 provides an output voltage and an output current to the load 300 according to the signal of the feedback control circuit 120. The transduction amplifier circuit 210 of the detection module 200 also detects the output current. The transconductance amplification circuit 210 samples the output current and feeds it into the slope adjustment circuit 220 and the voltage increment circuit 230, respectively. The function of the slope adjustment circuit 220 is to amplify the slope of the output voltage of the power module 100 to the output current 9 200916994 to produce a modified slope. The voltage-increasing circuit 23〇 step-pulled the output voltage' to cause the output voltage to decrease with the input current to be maintained within the acceptable variation of the system. Please refer to FIG. 3, which is a block diagram showing another embodiment of the slope control device for predictable average flow of the present invention. As described above, the transduction amplifying circuit 210 includes a sample and hold circuit 24, such as a current mirror or an inductor current average generating means. The sample-and-hold circuit 240 copies the detected currents outputted by the transduction amplifying circuit 21A into two groups, and feeds them into the slope adjusting circuit 22 and the voltage increasing circuit 230, respectively. The slope adjusting circuit 22 can use the voltage feedback adjustment circuit 221 (4) to measure the current to be fed into the feedback control circuit 12A at various magnifications, or adjust the feedback resistor 12 of the feedback control circuit 120 to improve the power module. The slope of the output voltage for the output current. As the slope increases, the maximum variation of the turn-off voltage of the power module 100 as the output current increases will increase, causing the output voltage to exceed the system's electrical specification limits. Therefore, the step boost circuit is triggered to increase the output when the output voltage reaches the minimum operating voltage, and the falling amount of the slope control strip voltage of the present invention increases with the input current is still acceptable in the system. Within the change value. Next, please refer to Fig. 4, which is a diagram showing an embodiment of a slope control device for predicting the degree of current sharing of the present invention. Its power supply circuit 11 and feedback control circuit = are known to those of ordinary skill in the art and are described herein. In this embodiment, the power supply circuit 110 is a set of DC 200916994 to DC voltage mode switching converter. When applied to a distributed power supply system, the output of each group of power modules is increased. The last power transistor is used to prevent the failure of individual power modules from malfunction or short circuit. As shown in Fig. 4, the individual power modules 1 加上 plus a power transistor, the equivalent resistance Rs of which can be used as the output resistance RS. The power module 1 is connected to the common output terminal Vg via an output resistor ^ to provide a current demand at the load terminal. In the present embodiment, the transduction amplifying circuit 21A includes a transconductance detector 212 and a current mirror element 211. The transconductance amplifier 212' is used to detect that the output current 1〇 flows through the output resistor RS, and the measurement voltage Vc' is reduced (four) times and then converted into detection, and then transmitted to the current mirror 21丨. The resistor 21 is fed back to form a voltage difference ΔΥίΙ. As mentioned above, when the power module 1〇〇 enters steady state operation, the circuit 120 will let the input voltage of the negative terminal of the error amplifier input the reference voltage value (assuming amplification ^ ideal amplification =). When the current Ιο is equal to 〇Α (ie, no load), the common output voltage V will be equal to the maximum value of the unloaded output voltage of the individual module, assuming that the unloaded output voltage v〇1 of the power module 100 is the maximum value. 'The output voltage V 〇 = V 〇 i. When the output current 1 〇 gradually increases, the detection voltage Ve generated by the flow over the sampling resistor Rs will gradually increase, so the detection current output by the transconductance amplifier Ις It will also gradually increase. Because of the high gain phenomenon of the error amplifier in the feedback control circuit 120, the negative input value is still the reference power of the new terminal, so the price measurement current Ic# outputted by the transconductance amplification ϋ 212 flows to R1 200916994 to generate a voltage difference Δν (1. According to the equivalent circuit model, we can calculate the output voltage

Vo和輸出電流1〇的關係式如下:The relationship between Vo and output current 1〇 is as follows:

Vo+Io · Rs · (1+ gm · Rl)=Vref ...... (1) 令一放大參數 Ka=Rs(l+ gm· Rl)=Rs(l+Ca),則 式(1)可以簡化成如下之式(2):Vo+Io · Rs · (1+ gm · Rl)=Vref ...... (1) Let an amplification parameter Ka=Rs(l+ gm· Rl)=Rs(l+Ca), then equation (1) Can be simplified to the following formula (2):

Vo=Vref-IoKa=Vref-IoRs(l+gm · R1) ...... (2) 反觀傳統斜率控制法輸出電壓Vo和輸出電流Ιο關係 式,其為:Vo=Vref-IoKa=Vref-IoRs(l+gm · R1) (2) In contrast to the conventional slope control method, the output voltage Vo and the output current Ιο relationship are:

Vo+Io · Rs=Vref ...... (3) 上式之推導僅需將本實施例之偵測模組200從第5 圖中刪除,即可輕易利用等效電路模型推演,在此 概不贅述。 比較式(2)與式(3),吾人可輕易得知使用本發明 之改良式斜率控制法的模組,其輸出電壓Vo對於輸 出電流1〇的改良斜率Mo’可以增加(Ι+Ca)倍,故電 源模組100間的最大輸出電流差值可以改進(1+Ca) 倍,其推導簡述如下: 傳統斜率控制法中兩電源模組100之輸出電流 1〇的差異值計算方法如下:Vo+Io · Rs=Vref ...... (3) The derivation of the above formula only needs to remove the detection module 200 of the embodiment from the fifth figure, and can be easily deduced by the equivalent circuit model. This will not be repeated. Comparing equations (2) and (3), we can easily know that the module using the improved slope control method of the present invention can increase the output voltage Vo for the improved slope of the output current 1 Mo Mo' (Ι+Ca). Therefore, the maximum output current difference between the power module 100 can be improved by (1+Ca) times, and the derivation is briefly described as follows: In the conventional slope control method, the difference value of the output current of the two power modules 100 is calculated as follows: :

Vol=Vref-Iol · Rs -Vo2=Vref-Io2 · Rs Δ Vo= Δ Ιο · Rs 而使用本發明之改良式斜率控制法的兩電源模 組100之輸出電流1〇的差異值計算方法如下:Vol=Vref-Iol · Rs -Vo2=Vref-Io2 · Rs Δ Vo= Δ Ιο · Rs The difference value of the output current 1〇 of the two power supply modules 100 using the improved slope control method of the present invention is calculated as follows:

Vol=Vref-Iol · Rs(l+gm · Rl) —Vo2=Vref-Io2 · RsH+gm » Rl) 12 200916994 △ ν〇=ΔΙο · Rs · (l+gm · Rl) 因此,上式可以整理如下列式(4)所示: △ Io(max)= △ Vo(max)/Ka ...... (4) 其中△ Vo(max)為個別電源模組100無載至有載時輸 出電壓的最大變動值。 請參閱第5圖,其繪示為第5圖所示之實施例 之輸出電壓Vo與輸出電流1〇波形示意圖。上述運作 原理可由第5圖中之第一區間(Region 1)得到印證, 此時,本實施例的電源模組100之輸出電壓Vo在額 定電流内的最大變動值△ Vo(drp)會隨斜率增加而加 大(Ι+Ca)倍。也就是說,當輸出電流1〇在負載300 之額定電流Io(rate)的1/(1+Ca)倍時,輸出電壓Vo 會到達系統可接受的輸出電壓最低值Vo(min),而此 時輸出電流1〇遠低於額定電流Io(rate),因此不足以 供應負載300使用。 因此,如第4圖所示,本實施例之電壓遞增電 路230包含一步進升壓電路231及一判斷電路232。 其中,步進升壓電路231可由一組可規劃的電流鏡 陣列電路所構成。電流鏡陣列電路的輸出電流是在 判斷電路232觸發後,導通陣列電路之開關以加總 電流而取得。當輸出電壓Vo到達輸出電壓最低值 Vo(min)時,電流鏡陣列電路的導通電流會增加,從 而提高輸出電壓Vo。因此,本實施例之輸出電壓Vo 與輸出電流Ιο的波形會進入如第5圖所示之第二區 間(Region 2)、第三區間(Regine 3)......等,以確保本 實施例之輸出電壓仍落於電源模組100所能承受之 電氣規格内。 13 200916994 從另一個角度觀之,本實施例之電源模組100 其輸出電壓Vo隨著改良斜率Mo’增加輸出電流1〇, 因而在第5圖所示之波形轉折處,亦即Io(rate)的 1/Ka、2/Ka,...、(Ka-1)/Ka倍數時,被步進升壓電路 231向上調整。根據上述理論,吾人可將式(2)改寫成 式(5)如下:Vol=Vref-Iol · Rs(l+gm · Rl) —Vo2=Vref-Io2 · RsH+gm » Rl) 12 200916994 △ ν〇=ΔΙο · Rs · (l+gm · Rl) Therefore, the above formula can be sorted out As shown in the following formula (4): △ Io(max)= △ Vo(max)/Ka (4) where Δ Vo(max) is the output of the individual power module 100 when it is unloaded to loaded The maximum variation of the voltage. Please refer to FIG. 5, which is a schematic diagram showing the waveforms of the output voltage Vo and the output current 1〇 in the embodiment shown in FIG. 5. The above operation principle can be confirmed by the first interval (Region 1) in FIG. 5. At this time, the maximum variation value Δ Vo(drp) of the output voltage Vo of the power module 100 of the present embodiment in the rated current varies with the slope. Increase and increase (Ι+Ca) times. That is, when the output current 1〇 is 1/(1+Ca) times the rated current Io(rate) of the load 300, the output voltage Vo reaches the minimum acceptable value of the system voltage Vo(min), and this The output current 1〇 is much lower than the rated current Io(rate), so it is not sufficient for the supply load 300 to be used. Therefore, as shown in FIG. 4, the voltage increasing circuit 230 of the present embodiment includes a step boosting circuit 231 and a determining circuit 232. The step boost circuit 231 can be constructed by a set of programmable current mirror array circuits. The output current of the current mirror array circuit is obtained after the judgment circuit 232 is triggered, and the switch of the turn-on array circuit is obtained by summing the current. When the output voltage Vo reaches the output voltage minimum value Vo(min), the on current of the current mirror array circuit increases, thereby increasing the output voltage Vo. Therefore, the waveforms of the output voltage Vo and the output current Ιο of the present embodiment enter the second interval (Region 2), the third interval (Regine 3), etc. as shown in FIG. 5 to ensure the present. The output voltage of the embodiment still falls within the electrical specifications that the power module 100 can withstand. 13 200916994 From another point of view, the output voltage Vo of the power module 100 of the present embodiment increases the output current by 1〇 with the improved slope Mo′, and thus the waveform transition shown in FIG. 5, that is, Io(rate When 1/Ka, 2/Ka, ..., (Ka-1)/Ka is multiplied, the step boost circuit 231 is adjusted upward. According to the above theory, we can rewrite equation (2) into equation (5) as follows:

NN

Vo=Vref+ Σ Δ Vo(drp)-Io · Ka where Ca=N ... (5)Vo=Vref+ Σ Δ Vo(drp)-Io · Ka where Ca=N ... (5)

Ca=l 因此,第5圖共有(1+Ca)個區間。 其中,第5圖之Vo(nom)是電源模組100工作 時的輸出電壓值,第5圖之Vo(max)與Vo(min)是電 氣規格中的最大和最小工作電壓值,而第5圖之 Io(rate)是電源模組100的滿載電流(或稱額定電 流),△ Vo(drp)是輸出電流1〇由無載到滿載時輸出電 壓Vo的變化。 綜上所述,本發明之可預測均流程度之斜率控 制裝置,可有效解決習知技術中電源系統之均流能 力不佳的問題。 請參閱第6圖,其繪示本發明之可預測均流程 度之斜率控制方法之步驟流程圖。其步驟說明如下: 如步驟S10所示:取得一輸出電壓Vo及一輸出 電流1〇,並利用輸出電壓Vo與輸出電流1〇之最大 容忍值 計算原始斜率Mo= △ Vo/ △ 1〇。 如步驟S20所示:提供一輸出電阻Rs,並依據 輸出電流1〇及輸出電阻Rs而產生一偵測電壓Vc。 如步驟S30所示:提供一轉導參數Gm,並利 14 200916994 用偵測電壓Vc及轉導參數Gm產生一偵測電流 Ic=Vc · Gm。 如步驟S40所示:提供一回授電阻R1,並利用 回授電阻R1及偵測電流Ic增加電壓下降量,進而產 生一大於原始斜率Mo之改良斜率Mo’=Rs(l+Rl · Gm)Mo。 如步驟S50所示:提供一輸出電壓最低值 Vo(min),作為判斷輸出電壓Vo是否太低之依據。 如步驟S60所示:當輸出電壓Vo低於輸出電 壓最低值Vo(min),則步進拉升輸出電壓Vo,使得 輸出電壓能維持在系統可接受的電氣規格内。 此外,為了使多個並聯之電源模組具有相同的斜 率,若個別電源模組的取樣電阻Rs不同時,本發明之 可預測均流程度之斜率控制法於一實施例中,可利 用轉導參數及回授電阻對上述之改良斜率Mo’進行補 償。 更進一步的說,本發明之可預測均流程度之斜率 控制法於一實施例中可以提供一改良斜率大於原始 斜率Ka倍,因而使不同電源模組所供應之輸出電流 之間的差異值縮小Ka倍。因此,使用本發明之可預 測均流程度之斜率控制法的電源供應系統,其輸出 電壓與輸出電流之波形將產生Ka個分佈區間。 請參閱第7圖,其繪示本發明之一實施例之輸 出電壓與輸出電流波形示意圖。由第7圖中可以看 出使用本實施例之電源模組,由於電源模組之輸出 電壓電流之斜率經過修改後變得較為陡峭,所以兩 個電源模組之輸出電壓II與輸出電壓12之間的差異 15 200916994 值與第1圖所示之習知技術的電源模組之輸出電壓 II與輸出電壓12之間的差異值將較之下,明顯縮 小。由此可知,本發明可預測均流程度之斜率控制裝 置及其方法可有效提升電源系統之均流能力。 以上所述僅為舉例性,而非為限制性者。任何 未脫離本發明之精神與範疇,而對其進行之等效修 改或變更,均應包含於後附之申請專利範圍中。 【圖式簡單說明】 第1圖係為習知技術之輸出電壓與輸出電流波形示 意圖; 第2圖係為本發明之可預測均流程度之斜率控制裝置之 實施例之方塊圖; 第3圖係為本發明之可預測均流程度之斜率控制裝置之 另一實施例之方塊圖; 第4圖係為本發明之可預測均流程度之斜率控制裝置之 實施例之電路結構圖; 第5圖係為本發明之可預測均流程度之斜率控制裝置一實施例 之輸出電壓對於輸出電流波形示意圖; 第6圖係為本發明一實施例之可預測均流程度之斜率控制 法之步驟流程圖;以及 第7圖係為本發明一實施例之輸出電壓與輸出電流波 形示意圖。 16 200916994 【主要元件符號說明】 100 :電源模組; 110 :電源供應電路; 120 :回授控制電路; 121 :回授電阻; 200 :偵測模組; 210 :轉導放大電路; 211 .電流鏡元件, 212 :轉導放大器; 220 :斜率調整電路; 221 :電壓回授調整電路; 230 :電壓遞增電路; 231 :步進升壓電路; 232 :判斷電路; 240 :取樣保持電路; 300 :負載;以及 S10〜S60 :步驟。 17Ca = l Therefore, Figure 5 has a total of (1 + Ca) intervals. Among them, Vo(nom) in Fig. 5 is the output voltage value when the power module 100 is in operation, and Vo(max) and Vo(min) in Fig. 5 are the maximum and minimum operating voltage values in the electrical specification, and the fifth The Io(rate) of the figure is the full load current (or rated current) of the power module 100, and Δ Vo(drp) is the change of the output voltage Vo when the output current is 1 无 from no load to full load. In summary, the slope control device for predicting the degree of current sharing of the present invention can effectively solve the problem of poor current sharing capability of the power supply system in the prior art. Please refer to FIG. 6 , which is a flow chart showing the steps of the slope control method for predictable average process of the present invention. The steps are as follows: As shown in step S10, an output voltage Vo and an output current 1 取得 are obtained, and the original slope Mo = Δ Vo / Δ 1 计算 is calculated by using the maximum tolerance value of the output voltage Vo and the output current 1 〇. As shown in step S20, an output resistor Rs is provided, and a detection voltage Vc is generated according to the output current 1〇 and the output resistor Rs. As shown in step S30, a transduction parameter Gm is provided, and a detection current Ic=Vc · Gm is generated by the detection voltage Vc and the transduction parameter Gm. As shown in step S40, a feedback resistor R1 is provided, and the voltage drop amount is increased by using the feedback resistor R1 and the detection current Ic, thereby generating an improved slope Mo'=Rs(l+Rl·Gm) greater than the original slope Mo. Mo. As shown in step S50, an output voltage minimum value Vo(min) is provided as a basis for judging whether the output voltage Vo is too low. As shown in step S60: when the output voltage Vo is lower than the output voltage minimum value Vo(min), the output voltage Vo is stepped up so that the output voltage can be maintained within an acceptable electrical specification of the system. In addition, in order to make the plurality of parallel power supply modules have the same slope, if the sampling resistance Rs of the individual power supply modules is different, the slope control method of the predictable current sharing degree of the present invention can be used in one embodiment. The parameter and the feedback resistor compensate for the improved slope Mo' described above. Furthermore, the slope control method of the predictable current sharing degree of the present invention can provide an improved slope greater than the original slope by a factor of Ka, thereby reducing the difference between the output currents supplied by different power modules. Ka times. Therefore, with the power supply system of the predictive current equalization degree slope control method of the present invention, the waveforms of the output voltage and the output current will produce Ka distribution intervals. Please refer to FIG. 7, which is a schematic diagram showing waveforms of output voltage and output current according to an embodiment of the present invention. It can be seen from FIG. 7 that using the power module of the embodiment, since the slope of the output voltage and current of the power module is modified to be steep, the output voltage II and the output voltage of the two power modules are The difference between the value of the 200916994 and the output voltage II and the output voltage 12 of the conventional power supply module shown in Fig. 1 will be significantly reduced. It can be seen that the slope control device and the method thereof for predicting the degree of current sharing can effectively improve the current sharing capability of the power system. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing waveforms of output voltage and output current of a conventional technique; FIG. 2 is a block diagram of an embodiment of a slope control apparatus for predictable current sharing degree of the present invention; A block diagram of another embodiment of a slope control device for predictable current sharing degree of the present invention; FIG. 4 is a circuit configuration diagram of an embodiment of a slope control device for predictable current sharing degree of the present invention; The figure is a schematic diagram of the output voltage versus the output current waveform of an embodiment of the slope control device for predicting the degree of current sharing of the present invention; FIG. 6 is a flow chart of the slope control method for predicting the degree of current sharing according to an embodiment of the present invention. FIG. 7 and FIG. 7 are schematic diagrams showing waveforms of output voltage and output current according to an embodiment of the present invention. 16 200916994 [Description of main component symbols] 100: power supply module; 110: power supply circuit; 120: feedback control circuit; 121: feedback resistor; 200: detection module; 210: transduction amplifier circuit; Mirror element, 212: transconductance amplifier; 220: slope adjustment circuit; 221: voltage feedback adjustment circuit; 230: voltage increment circuit; 231: step boost circuit; 232: judgment circuit; 240: sample and hold circuit; Load; and S10~S60: steps. 17

Claims (1)

200916994 十、申請專利範圍: 1. 一種可預測均流程度之斜率控制裝置,適用一採用斜 率控制法之電源模組,該電源模組具有一輸出電壓對應該 電源模組之一輸出電流之原始斜率,其中該電源模組包括 一取樣電阻,該偵測模組包含: 一轉導放大電路,係根據一該電源模組之該輸出電流 經過該取樣電阻所產生之偵測電壓,來產生一偵測電 流,並輸出一該偵測電流之資訊; 一斜率調整電路,係根據該偵測電流之資訊,以修改 該原始斜率;以及 一電壓遞增電路,當該輸出電壓根據該已修改斜率,隨 著該輸出電流遞增而遞減到低於一輸出電壓最低值,且該 輸出電流低於一電流預設值時,該電壓遞增電路根據該資 訊,拉升該輸出電壓使該輸出電流可持續遞增以接近該電 流預設值。 2. 如申請專利範圍第1項之斜率控制裝置,其中該轉導放大 電路包括一轉導放大器。 3. 如申請專利範圍第1項之斜率控制裝置,其中該轉導放大 電路更包括一取樣保持電路,係對該偵測電流進行取樣以 產生該貧訊。 4. 如申請專利範圍第3項之斜率控制裝置,其中該取樣保持 電路係為一電流鏡。 5. 如申請專利範圍第1項之斜率控制裝置,其中該斜率調整 電路包括一回授電阻。 6. 如申請專利範圍第1項之斜率控制裝置,其中該電壓遞增 電路係為一步進升壓電路。 7. 如申請專利範圍第1項之斜率控制裝置,其中該已修改斜 18 200916994 數值’而該已修改斜率之符號 8;ϊ:=ίΐ之斜率控制方法,可減少複數採用斜 思I法之電/原模虹所輸出之複數個輪出電流之門的產 異值,該斜率控制方法包含: 之間的差 由每-該電源模組取得一輸出電壓及一輸, 描:一該:媒出電壓與該輸出電流取得-原始斜率:: ,供-取樣電阻’並以該輸出電流經過該 所產生之電壓作為一偵測電壓; 7 味導參數,並细糊測電壓及導參數產 生一偵測電流;以及 f双座 低/供阻’ t利用該回授電阻及該偵測電流降 低該,輸出電洲,而修改該原始斜率; 辦而當遞該^出電於壓中t據^已修改斜率’隨著該輸出電流遞 二低值’且該輪出電流低於-預設 電飢值時,則步進拉升該輸出電壓, 遞增以接近該預設電流值。 《輸出電抓持續 9.如申請專利範圍第8項的之斜率控制方法,Α中更包 用,轉導參數及該賴電崎财良斜行 複數個電源模組具有相同之已修改斜率。τ_便这 讥如申請專利範圍第8項之斜率控制方法 二導參數使該改良斜率大於該原始 斜率之一倍數’進而使該不同電源模組所供應 輸出電流之間的差異值縮小該倍數。 、…〇Λ 11·如申請專利範圍第8項之斜率控制方法,盆中 電壓與該輸出電流之波形具有複數個區間分葙 個區間分布之個數與該倍數成正比。 δΛ複數 200916994 12. 如申請專利範圍第8項之斜率控制方法,其中該些電 源模組係應用於一冗餘或分散式的電源供應系統,該電源 供應系統係提供一預設負載電流予一負載,該預設電流值 係為該預設負載電流除以該些電源模組之數目之平均電 流值。 13. 如申請專利範圍第8項之斜率控制方法,其中該已修 改斜率之數值大於該原始斜率之數值,而該已修改斜率之 符號(sign)係與該原始斜率相同。 20200916994 X. Patent application scope: 1. A slope control device capable of predicting the degree of current sharing, applicable to a power module using a slope control method, the power module having an output voltage corresponding to the original output current of one of the power modules a slope, wherein the power module includes a sampling resistor, the detection module includes: a transduction amplifier circuit, which generates a detection voltage generated by the output current of the power module through the sampling resistor Detecting current and outputting information of the detected current; a slope adjusting circuit for modifying the original slope according to the information of the detected current; and a voltage increasing circuit, when the output voltage is according to the modified slope, As the output current increases and decreases to a value lower than an output voltage, and the output current is lower than a current preset value, the voltage increasing circuit pulls the output voltage according to the information to continuously increase the output current. To approach the current preset value. 2. The slope control device of claim 1, wherein the transduction amplifier circuit comprises a transconductance amplifier. 3. The slope control device of claim 1, wherein the transduction amplifying circuit further comprises a sample and hold circuit for sampling the detected current to generate the poor signal. 4. The slope control device of claim 3, wherein the sample and hold circuit is a current mirror. 5. The slope control device of claim 1, wherein the slope adjustment circuit comprises a feedback resistor. 6. The slope control device of claim 1, wherein the voltage increasing circuit is a step boost circuit. 7. For example, the slope control device of claim 1 of the patent scope, wherein the modified oblique 18 200916994 value 'and the modified slope symbol 8; ϊ:= ΐ ΐ slope control method can reduce the complex number using the oblique thinking I method The output value of the gates of the plurality of round currents output by the electric/original mode rainbow, the slope control method comprises: the difference between each of the power modules is obtained by an output voltage and an input, and the following: The dielectric output voltage and the output current are obtained - the original slope::, the supply-sampling resistor' and the output current is passed through the generated voltage as a detection voltage; 7 taste parameters, and the voltage and the derivative parameters are generated a detecting current; and f two-seat low/supply resistance 't using the feedback resistor and the detecting current to reduce the output current, and modifying the original slope; and when the power is applied to the voltage t According to ^ has modified the slope 'following the output current two low value' and the round current is lower than the preset power hunger value, the output voltage is stepped up and increased to approach the preset current value. "Output power catching continues 9. If the slope control method of the patent application scope item 8 is applied, the transmission parameters and the power supply module of the Laisaki Electric Co., Ltd. have the same modified slope. Τ_便讥 such as the slope control method of the eighth application of the patent scope, the second derivative parameter is such that the modified slope is greater than one of the original slopes' . ......11. As in the slope control method of claim 8, the waveform of the voltage in the basin and the waveform of the output current have a plurality of intervals, and the number of intervals is proportional to the multiple. δΛ complex number 200916994 12. The slope control method according to claim 8, wherein the power supply modules are applied to a redundant or decentralized power supply system, and the power supply system provides a preset load current to the The load, the preset current value is the average current value of the preset load current divided by the number of the power modules. 13. The slope control method of claim 8, wherein the modified slope value is greater than the original slope value, and the modified slope sign is the same as the original slope. 20
TW96137919A 2007-10-09 2007-10-09 Droop control device and method capable of predicting the current-sharing degree TW200916994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96137919A TW200916994A (en) 2007-10-09 2007-10-09 Droop control device and method capable of predicting the current-sharing degree

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96137919A TW200916994A (en) 2007-10-09 2007-10-09 Droop control device and method capable of predicting the current-sharing degree

Publications (2)

Publication Number Publication Date
TW200916994A true TW200916994A (en) 2009-04-16
TWI366082B TWI366082B (en) 2012-06-11

Family

ID=44726234

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96137919A TW200916994A (en) 2007-10-09 2007-10-09 Droop control device and method capable of predicting the current-sharing degree

Country Status (1)

Country Link
TW (1) TW200916994A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796951B (en) * 2022-02-14 2023-03-21 晶豪科技股份有限公司 Linear charger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796951B (en) * 2022-02-14 2023-03-21 晶豪科技股份有限公司 Linear charger

Also Published As

Publication number Publication date
TWI366082B (en) 2012-06-11

Similar Documents

Publication Publication Date Title
US11762405B2 (en) Power combiner and balancer
JP4688227B2 (en) Power supply paralleling compensated droop method (C-droop method)
TWI661669B (en) Multi-stage amplifier
TW201535948A (en) Power supply with enhanced phase current sharing
TW201108586A (en) Voltage regulator automatically adjusting an output voltage according to a load current and method thereof
TW200903970A (en) Paralleling voltage regulators
US6646425B2 (en) Multi-cell voltage regulator and method thereof
US11664724B1 (en) Power bus voltage drop compensation using sampled bus resistance determination
US7724552B2 (en) Power supply
US20150061620A1 (en) Current control circuit
CN103733491A (en) Semiconductor device and power supply system provided with same
US6774612B1 (en) Device and method for reducing DC/DC converter initial set-point error and margining error
JP2009531013A (en) Converter with differential input pairs coupled in parallel
TW200531415A (en) Droop amplifier circuit
US7795754B2 (en) Slope control device capable of predicting uniform-current-sharing level and method thereof
TW200916994A (en) Droop control device and method capable of predicting the current-sharing degree
TWM581332U (en) Power switch circuit
JP2011215882A (en) Power control device and information communication apparatus using the same
US7898234B1 (en) Device and method for rapid voltage ramp-up to regulator target voltage
TW202129453A (en) Voltage regulator and voltage regulating method
US7423514B2 (en) Constant-power constant-temperature resistive network
JP6703088B2 (en) DC regulator through load
US9436191B2 (en) Voltage regulation system for integrated circuit
TWI234329B (en) Master-slave current distribution circuit
TW508897B (en) DC/DC converter capable of distributing current equally in parallel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees