TW200916583A - Cell expansion - Google Patents

Cell expansion Download PDF

Info

Publication number
TW200916583A
TW200916583A TW97121470A TW97121470A TW200916583A TW 200916583 A TW200916583 A TW 200916583A TW 97121470 A TW97121470 A TW 97121470A TW 97121470 A TW97121470 A TW 97121470A TW 200916583 A TW200916583 A TW 200916583A
Authority
TW
Taiwan
Prior art keywords
cells
cell
cord blood
rti
coated
Prior art date
Application number
TW97121470A
Other languages
Chinese (zh)
Inventor
Sakis Mantalaris
Wesley Randle
Original Assignee
Novathera Ltd
Imp College Innovations Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0711111A external-priority patent/GB0711111D0/en
Priority claimed from GB0713299A external-priority patent/GB0713299D0/en
Application filed by Novathera Ltd, Imp College Innovations Ltd filed Critical Novathera Ltd
Publication of TW200916583A publication Critical patent/TW200916583A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0647Haematopoietic stem cells; Uncommitted or multipotent progenitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0012Cell encapsulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/145Thrombopoietin [TPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/26Flt-3 ligand (CD135L, flk-2 ligand)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/74Alginate

Abstract

The present invention provides in one aspect a method of ex-vivo expanding umbilical cord blood CD34+ progenitor cells, comprising: (a) encapsulating umbilical cord blood cells in a support matrix; (b) seeding the encapsulated cells into a dynamic culture vessel; and (c) culturing the cells in the dynamic culture vessel under conditions allowing for CD34+ progenitor cell expansion.

Description

200916583 九、發明說明: 【發明所屬之技術領域】 本發明有關於用以擴增細胞族群的方法之領域,特 別地臍帶jk幹和/或源祖細胞(progenitor cells)。 5 【先前技術】 臍帶血幹細胞自1988年以來在治療45種不同的血 液障礙上已被移植超過8000次並且已被用來在有關癌 症的高劑量化學療法之後修復以及回復骨髓。然而,使 10 用臍帶血單位作為供用於移植的幹細胞來源是受到限制 的,因為在單一臍帶血單位中CD34+源祖細胞的相對低 數目。一個平均臍帶血單位僅含有足夠治療一位重30kg • 的患者的CD34+源祖細胞。臍帶的混合也呈現一些問題 . 且它不被視為是理想的標準。因此對於CD34+細胞擴增 15 技術有一個明顯的需求以使得要被使用的臍帶血單位能 夠治療有需要的病患的全部類別(Kurtzberg ei α/. 1996; : Wagner et al. 1996; Kapelushnik et al. 1998; Shpall et al. 2000; Jaroscak ei a/. 2003a) ° 這些年來CD34+源祖細胞的體外擴增已在多樣的以 2〇 靜態以及動態為主的系統中被嘗試,包括使用生物反應 器。這些研究已證實細胞擴增的潛能但在同時還無法導 致常規性的臨床應用。 持續的了解、發現以及採用細胞激素、細胞亞型的 分離與鑑定以及在各種不同生物反應器與支撐支架概念 200916583 的發展持續驅使有關CD34+源祖細胞的未來擴增技術。 某些臨床試驗已被策劃但技術仍然需要進一步的改進 (Hoffman et al. 1993; Wagner 1993; Andrews et al. 1994; Purdy et al. 1995; Gehling et al. 1997; Bachier et al. 1999; 5 Chabannon et al. 1999a; McNiece et al. 1999; Nielsen 1999; McNiece et al. 2000a; McNiece and Briddell 2001; Noll et al. 2002; Wolf 2002; Knustsen et al. 1998; Vilquin ei a/. 2002)。200916583 IX. INSTRUCTIONS: FIELD OF THE INVENTION The present invention relates to the field of methods for amplifying cell populations, particularly umbilical cord jk stem and/or progenitor cells. 5 [Prior Art] Cord blood stem cells have been transplanted more than 8,000 times since the treatment of 45 different blood disorders since 1988 and have been used to repair and restore bone marrow after high-dose chemotherapy for cancer. However, the use of cord blood units as a source of stem cells for transplantation is limited because of the relatively low number of CD34+ progenitor cells in a single cord blood unit. An average cord blood unit contains only enough CD34+ progenitor cells to treat a patient weighing 30 kg •. The mixing of the umbilical cord also presents some problems. And it is not considered to be the ideal standard. There is therefore a clear need for CD34+ cell expansion 15 technology to enable cord blood units to be used to treat all categories of patients in need (Kurtzberg ei α/. 1996; : Wagner et al. 1996; Kapelushnik et al) 1998; Shpall et al. 2000; Jaroscak ei a/. 2003a) ° In vitro expansion of CD34+ progenitor cells over the years has been attempted in a variety of static and dynamic systems, including the use of bioreactors. . These studies have demonstrated the potential for cell expansion but at the same time have not led to routine clinical applications. Continued understanding, discovery, and isolation and identification of cytokines, cell subtypes, and the development of various bioreactors and support scaffold concepts 200916583 continue to drive future amplification technologies for CD34+ progenitor cells. Some clinical trials have been planned but the technology still needs further improvement (Hoffman et al. 1993; Wagner 1993; Andrews et al. 1994; Purdy et al. 1995; Gehling et al. 1997; Bachier et al. 1999; 5 Chabannon Et al. 1999a; McNiece et al. 1999; Nielsen 1999; McNiece et al. 2000a; McNiece and Briddell 2001; Noll et al. 2002; Wolf 2002; Knustsen et al. 1998; Vilquin ei a/. 2002).

Lui等人(2006a)先前已嘗試在靜態培養中使用外源 ίο 性細胞激素以及兔子骨髓間葉幹細胞來擴增被包覆 (encapsulated)在藻酸鈣(calcium alginate)中的臍帶血細 胞。這個方法被發現到對於CD34+細胞以及CFU-GM的 • 總數具有一個負面的衝擊。這是重要的,因為具有多潛 • 能(multipotency)的喪失的擴增是沒有多少實用的。 15 由Lui等人(2006b)的隨後工作使用一個為特定目的 所建造的旋轉壁容器生物反應器(rotating wall vessel bioreactor)以及一個具有外源性細胞激素但不具有細胞 包覆的細胞·稀釋進料步驟。 WO 2005/007799描述有關在一生物反應器中體外 2〇 擴增幹/源祖細胞的方法。一廣泛範圍的細胞類型被討 論’諸如皮膚細胞、肝細胞、神經細胞以及骨細胞。各 種不同的條件被採用,包括使用外源性細胞激素以及過 渡金屬(要注意地銅)螯合劑。過渡金屬螯合劑被用來抑 制源祖細胞的分化。然而這份文件並未特別地教示在一 200916583 動態培養容器中使用包覆來擴增CD34+源祖細胞。 US6440734教示有關造血源祖細胞的長期培養之方 法與裝置。這份文件描述在一靜態、經鈕包覆的支架且 未使用外源性細胞激素但是有血清的存在下擴增臍帶血 5 幹細胞。被建議的是使用一範圍的生物劑(包括’凝膠狀 劑’)之經钽塗覆之基質的包衣(coating)或浸潰 (impregnation)。 WO 2006/081435教示提供衍生自臍帶血及其一組 合物之容易取得的細胞材料的方法。這份文件描述電磁 10 輻射組合生物反應器技術的新穎用途。在此技術中包覆 沒有被提及。 W02006/079854教示用於胚胎幹細胞培養的方法, • 其中經包覆的胚胎幹細胞在3D培養物中被維持並且分 . 化。然而這份文件沒有提供有關於細胞類型(諸如臍帶血 15 幹或源祖細胞,包括衍生自其的CD34+源祖細胞)的教 示,因為它的教示被限定於胚胎幹細胞。 因而有一些用於擴增特定種類的幹以及源祖細胞的 現有方法。不過對於生長較大數量的幹以及源祖細胞(特 別是衍生自臍帶血的CD34+源祖細胞)的改進方法以供 20 臨床移植應用以及再生性醫學的研究有一明顯的需求。 【發明内容】 因此,在一個具體例中,本發明提供一種體外擴增 腾帶血CD34+源祖細胞的方法,包含有:(1)將腾帶血細 200916583 胞包覆在一支持基質(support matrix)中;(b)將經包覆的 細胞種植入一動態培養容器中;以及(c)在允許CD34+源 祖細胞擴增的條件下培養該動態培養容器中的細胞。 在另一具體例中,本發明提供一種可得到或一由上 5 面所定義之方法所獲得之臍帶血CD34+源祖細胞的經包 覆的細胞,或者經擴增之族群。 在又一具體例中,本發明提供一種包含有被包覆在 一支持基質中之臍帶血球的動態培養容器。 在又一具體例中,本發明提供一種例如可得到或一 10 由上面所定義之方法所獲得之臍帶血C D 3 4 +源祖細胞的 經包覆的細胞,或者經擴增之族群供用於再生性療法。 在又一具體例中,本發明提供一種例如可得到或一 ' 由上面所定義之方法所獲得之臍帶血CD34+源祖細胞的 . 經包覆的細胞,或者經擴增之族群供用於再生性療法的 15 用途。 在又一具體例中,本發明提供一種可得到或一由上 I 面所定義之方法所獲得之臍帶血CD34+源祖細胞的經包 覆的細胞,或者經擴增之族群供製備一用以治療需要再 生性療法的一疾病或病況的醫劑的用途。 20 在又一具體例中,本發明提供一種用以治療一需要 再生性療法的個體的方法,包含有對該個體投藥一治療 有效數量之一藉由如上面所定義的方法所得到的源祖細 胞。 在又一具體例中,本發明提供一方法,包含有:(a) 200916583 將臍帶血細胞包覆在一支持基質(例如適合的保護性支 持基質)中;以及(b)冷凍經包覆的細胞。 該等被用在本發明之方法中的細胞可以從具有一臍 帶之動物的任何物種(亦即從任何胎盤哺乳類動物)而被 5 獲得。特別地,該等細胞可以是人類、非人類靈長類、 馬、犬、牛、豬、山羊、綿羊、儒齒或鼠的來源。在一 較佳具體例中,該等細胞是得自於一來自一物種之動物 的臍帶,該物種是馬科,尤佳地馬屬,例如一馬、斑馬 或驢;最佳地該等細胞得自於一馬。在另一尤佳具體例 10 中該等細胞是人類細胞,亦即,衍生自人類臍帶血。 較佳地該等細胞在收集臍帶血之後的72小時之内 被包覆。因為臍帶血的收集典型地發生在分娩之後,該 等細胞較佳地在產後72小時内被包覆,更佳地在出生之 . 後的48或24小時内。另擇地,臍帶可以被冷凍且該等 15 細胞可以在解凍之後被收集以及包覆。 該支持基質較佳地包含有一水凝膠(hydrogel)。使用 在該支持基質中的較佳的材料包括藻酸、纖維連接蛋白 以及曱基纖維素,包括那些材料的各個獨立地或其混合 物。該支持基質較佳地呈一珠粒的形式。水凝膠相較於 20 支架表現出較低的質量輸送(mass transport)問題。水凝 膠也可以被溶解以允許簡易復原該等細胞。 在一具體例中,該等細胞被包覆在一珠粒中,例如 一水凝膠珠粒,以一為每珠粒100至300,000個細胞的 密度,例如 500 至 300,000、3000 至 300,000、3000 至 200916583 200,000、5000 至 200,000、500 至 10〇,〇〇〇,每珠粒大約 5,000或大約200,000個細胞。該等珠粒的平均直徑可以 是 0.1 至 5mm、0.5 至 5mm、i 至 5mm、2 至 3 mm 或在 特定具體例中大約2.5 mm。 5 在將該等細胞包覆在支持基質中之後,在一具體例 中,經包覆的細胞可以被冷凍。在冷凍之後,冷涞之經 包覆的細胞可以被貯存無限期以供稍後的使用。當被需 要的時候,冷凍之經包覆的細胞可以在其他方法被施行 之前被解凍,亦即,在該動態培養容器中種植(seeding) 10 或培養解凍之經包覆的細胞。這些實施例使得臍帶血擴 增能夠直接地從冷凍被實施因此在擴增之前限制解凍後 操作與後續的細胞損失與傷害。 該方法較佳地在沒有血清存在下被施行 ,例如在一 . 具體例中,該等細胞被培養在-無血清培養基中。該等 細胞較佳地也可以被培養在沒有—過渡金屬螯合劑存在 下被培養。 在—具體例中’該動態培養容器是一生物反應器。 更仏地該生物反應益是—旋轉壁容器生物反應器。一供 使用在本發明中之尤佳的動態培養容器是一 harv生物 2〇 反應斋或一 NovaPod™生物反應器。 孩等細胞可以被培養在一無細胞激素的培養基中’ 或另擇地在一含有一或多種細胞激素的培養基中。當該 培養基含有一或多種細胞激素,在一具體例中,該等細 胞激素是早期作用細胞激素(early acting cytokines) ° 適 10 200916583 合的早期作用細胞激素的實例包括,但不限於幹細胞因 子、FLT3配位子、介白素-6以及介白素-3。在另一具體 例中,該等細胞激素含有一或多種幹細胞因子(stem cell factor, SCF)、jk 小板生成素(thrombopoietin,TPO)以及顆 5 粒球-群落刺激因子(granulocyte-colony stimulating factor, G-CSF),例如該培養基可含有SCF、TPO以及 G-CSF。例如’細胞激素可以呈一為1至1〇〇〇、1至5〇〇、 1 至 200、1 至 1〇〇、1〇 至 1〇〇、1 至 50 或 1 至!〇 ng/ml 的濃度存在。 10 在一具體例中,該等細胞在一存在有間葉幹細胞中 被培養。該等間葉幹細胞可以是與臍帶血球被包覆或被 包含在培養基内。經包覆的細胞較佳地在步驟(c)中被培 • 養在一懸浮培養物中。 根據本發明的特定具體例,一藉由實施本發明而被 15 獲得之經擴增的細胞族群(衍生自一單一的臍帶血樣品) 可以被投藥給一個需要再生性治療的單一個體。換句話 說,由一個單一新生兒所取出之在臍帶血單位中被發現 到的源祖細胞可以被擴增到足以提供足夠的細胞來治療 依單一病患,例如一個成人病患。經擴增的細胞族群可 20 以被用來治療任何需要再生性治療的疾病或病況,特別 地需要以骨髓譜系的細胞治療的疾病或病況。經擴增之 細胞族群的應用包括,但不限於骨髓移植、輸血醫學、 器官重ί、再生性醫學、組織工程、基因治療、毒物學 以及研究。根據本發明之實施例的尤佳地要被治療的病 200916583 況包括血液障礙以及在化學療法之後的骨髓喪失。本發 明也可以被用於篩選以及毒物研究。 本發明的具體例也可以因而有利地使臍帶血球族群 被擴增以使得它們更能應用於治療中。特別地,在一支 5 持基質中使用包覆組合以一動態培養容器可以在體外重 建一環境,其特別適合腾帶血CD34+源祖細胞擴增,而 抑制細胞分化。再者,本發明的方法不需要使用試劑(諸 如血清或過渡金屬螯合劑),其存在對於下游應用(諸如 人類細胞移植療法)來說可能是有問題的。 10 發明的詳細說明 本發明涉及來自臍帶血之源祖以及幹細胞的體外擴 增與培養的方法以及它們可能的用途。特別地,在一具 體例中,人類腾帶血CD34+源祖細胞(如同例如存於在膚 . 色血球層中)可以根據本發明的方法在生物反應器中被 15 大量地體外擴增並且生長。特別地,在一具體例中,該 方法可以被用於幹與源祖細胞的大規模體外擴增,導致 大數量幹和/或源祖細胞的再生性族群,其可以被應用在 諸如,例如骨髓移植、輸血醫學、器官重建、再生性醫 學、組織工程、基因治療、毒物學以及研究。値得注意 2〇 地,本方法的具體例是無基質細胞(stroma-cell free)。該 等具體例亦不需要細胞的繼代(passaging)。 在某些具體例中,該方法可以涉及,例如一個2-100 倍,例如一個2-50倍、一個2-20倍或一個5至20倍的 臍帶血CD34+源祖細胞在2至30天内的擴增,較佳地 12 200916583 在大約10的天内的5-1 〇倍擴增。為了要提供足夠的細 胞供移植,一平均臍帶血單位為3χ1 〇8總有核細胞必須 被擴增4-5倍。然而,關鍵性參數是當總有核細胞擴增 時的總CD34+源祖細胞可包括非常少的經擴增之cd34+ 5 源祖細胞。一平均臍帶血單位含有2xl06 CD34+源祖細 胞(亦即少於1%總有核細胞)以一為lxl05 CD34+細胞/kg 的劑量率夠供一最多重20kg的病患。一個CD34+源祖 細胞的5_6倍擴增因此需要使臍帶血單位臨床上地應用 在平均成人患者。較佳地經擴增的細胞維持多潛能 10 (multipotency)。 本發明的具體例藉由提供在一生物反應器中擴增臍 帶血CD34+源祖細胞的方法來滿足目前已知型態的缺 15 定義 如此處所用的術語”體外(ex_viv〇),,意指一種細胞從 \ 一活的生物被移出並且在生物外面被增殖的方法。 如此處所用的,關於本發明之方法的,,細胞擴增(ceU expansion)’’或’’擴增(expanding)”意指一種基本上缺少細 20 胞分化的細胞增生的過程。歷經擴增的細胞因而維持它 們的細胞更新特性(cell renewal properties)。 “源祖細胞(progenitor cell)”在此處一般而言意指未 成熟或未分化的細胞,它可以自我更新並且可以分化成 各種不同的成熟細胞類型(adult cell types)。造血源祖細 13 200916583 胞的某些類型可以另擇地被意指為幹細胞。 “臍帶血CD34+源祖細胞”是表現C34抗原的細胞, 它們衍生自臍帶血中的造血幹細胞。它們可以引起骨髓 和/或淋巴譜系的細胞。 5 間葉幹細胞”是在骨髓、企液、皮(dermis)以及其他 位置被發現到的分化全能胚細胞(plurip〇tent blast cells) ’它們可以分化成多種組織類型。 有關“包覆的(encapsulated),,或“包覆 (encapsulating)”它表示細胞(cell)或細胞(ceus)完全地被 1〇 包埋在支持基質之内。假設尺寸(例如表面積相對於體積 的比例)能夠使營養素、代謝物、細胞激素等等可以易於 擴散入/出珠粒以到達被包埋在珠粒中的細胞…^丨)或細 胞(cells),珠粒的外型不是特別相關的。 動悲培養容器”如此處所用的意指在非靜態條件 15 (non-static conditions)下用於培養細胞的任何類型的容 器。一動態培養容器典型地藉由一攪拌或混合機構來維 « 持一針對細胞生長的均質環境,並且變項(諸如溫度以及 pH)可以被監測與控制。一動態培養容器典型地包含有一 或多種用於維持容器内穩定之環境條件的有效方法 2〇 (active means)(例如它不是依賴擴散以供運輸容器内的 營養素),並且能夠允許經培養之細胞的連續進料。 如此處所用的“生物反應器”意指一種生物和/或生 化過程在經監測與被控制的環境與操作條件(例如pH、 溫度、壓力、營養素供應以及廢物移除)下發展的裝置。 200916583 造血幹細胞(hematopoietic stem cells,HSC)是引起 所有血液細胞類型的幹細胞以及早期前驅細胞,包括骨 腾(單核球以及巨嗟細胞、嗟中性球、嗟鹼性球、嗟酸性 球、紅血球、巨核細胞/血小板與某些樹狀細胞)與淋巴 譜系(T-細胞、B-細胞、NK-細胞、某些樹狀細胞)。作為 幹細胞,它們受到它們形成多重細胞類型的能力以及它 們自我更新的能力而被界定。個別的HSC具有引起任何 末期血球類型的能力。在分化期間,衍生自HSC的子、細 胞接受一系列的定向決定(commitment decisions) ’ 對於 15 20 某些譜系來說維持分化潛能但喪失其他的。中間細1^ (intermediate cells)在它們的譜系潛能中逐漸地變成受^ 的,直到最終地譜系定向的末期細胞被產生。 在人類中,白血球(造血單核球細胞)含有造炎、 的一混合物。超過99%的單核球細胞是譜系定向的炎 Λ 1 經分化的細胞。造血幹以及源祖細胞的亞型(subtyPe 以及它們的譜系潛能可以由各種不同存在於它們表 尤会 7 4几原性彳己而被界定。CD3 4是—種細胞表面^^ 其可以媒介細胞黏附(cell adhesion),且其典型地被伟 0 為一有關於非分化的造血幹以及源祖細胞的樺5 -iff CD133是另一種在造血幹細胞被發現的糖蛋白’片 被用作為非分化的細胞的標記。CD38是一種衣〆〆 核球細胞的表面上被發現的糖蛋白,其可以被用作:、' # 分化的細胞的標記。非譜系定向和/或未分化的斡以及/ 祖細胞典型地包含低水準的標記(諸如thy-1 谱系 面的 15 200916583 CD71),其指定一種更為成熟的源祖族群。各種不同的 造血細胞類型可以由其他的標記所鑑定,諸如對於骨髓 CD13 & CD33、對於紅血球CD71、對於B細胞CD19、 對於巨核細胞CD61、對於單核球細胞Mac-1 5 (CDllb/CD18)、對於顆粒球Gr-1或對於T-細胞CD3、 CD4、CD5 與 CD8。 根據本發明,CD34+源祖細胞較佳地是非譜系定向 的源祖細胞,例如包含有少於1%的總單核球細胞的 CD34+ lin-、CD34+CD38-或 CD34+CD133+。然而,在 10 另擇的具體例中本發明也可以被用來擴增譜系定向的源 祖細胞,例如CD34+CD33+ (骨髓定向的源祖細胞)、 CD34+CD3+ (淋巴定向的源祖細胞)以及CD34+CD61 + (巨核細胞定向的細胞)。 被使用在本發明之方法中的CD34+源祖細胞是衍生 15 自臍帶血球。在某些具體例中,臍帶血樣品可以經過一 選定、純化或某些分類步驟以提供一富含CD34+源祖細 胞的樣品。富含CD34+源祖細胞的細胞樣品接著被使用 在本發明的方法中,例如用於作為被使用在包覆步驟中 的腾帶血球。 20 有關於純化或萃取來自臍帶血的造血幹和/或源祖 細胞的方法在該技藝中為已知的。例如,造血單核球細 月匕了以藉由將血液樣品施用在一 Ficoll-Hypaque layer與 在密度緩衝離心之後收集Ficoll-Hypaque以及血液血清 間存在的介面層而得自於一血液樣品。介面層基本上由 16 200916583 存在於血液樣品中的白血球所構成。“膚色血球層(buffy coat cells)”在此處被用來意指大多數白血球族群,它們 可以在一經離心之血液樣品的膚色血球層部份中被發現 到,存在於澄清以及紅色層之間。為免疑慮,可以被用 5 於本發明之方法中的腾帶血膚色血球層細胞可以得自於 任何處理操作步驟。換言之,”膚色血球層細胞”意指在 一經離心之血液樣品的膚色部份中被發現到的細胞類 型,不需要是由此一方法所實際得到的細胞。 造血單核球細胞,例如膚色血球層細胞(衍生自臍帶 10 血樣品)可以被用作為在本發明之方法的較佳具體例的 步驟(a)中被意指為臍帶血球,因為它們含有CD34+源祖 細胞。另擇地,CD34+源祖細胞可以進一步地被增富, • 例如,差異性密度離心和/或免疫分離 (immunoseparation),例如使用免疫磁性分離或流動式細 15 胞測量術/螢光-活化的細胞-分類(FACS)。選擇性針對造 血幹系與源祖細胞類型的抗體,例如單株抗-CD34和/ 或抗-CD38抗體,可以被用在選擇/增富步驟中。此等抗 體是商業上可取得的和/或可以藉由標準技術而被獲得。 被使用於供細胞生長以增加在支持基質結構中之細 20 胞數目(亦即擴增,其中細胞藉由細胞分裂而歷經自我更 新)的培養基可以是支持細胞生長的培養基,理想地在最 低或無細胞分化的情況下。有關造血幹細胞擴增之各種 不同適當的維持培養基在該技藝中是已知的,諸如 Stemline II (Sigma, St Louis, MO)。包覆被使用於依據本 17 200916583 發明之方法中的臍帶CD34+源祖細胞的支持基質,組合 使用一動態培養容器可以一起抑制要被使用之各種不同 培養基的細胞分化。舉例來說,在抑制分化的培養基中 不需要包括額外的特定試劑(諸如細胞激素)。有關於培 5 養源祖細胞以允許細胞擴增的適當環境條件在該技藝中 為已知的,例如此步驟可以在37°C下以及5% C02被實 施。為了要允許CD34+細胞的擴增,培養物中的pH是 容器較佳地是至少6.7,更佳地6.8至7.4。滲透壓 (omolarity)較佳地是 0.25 至 0.35 mOsmol/kg,更佳地 0.28 10 至 0.32 mOsmol/kg。 在某些具體例中,細胞激素也可以被含括在培養基 中。在一具體例中,一或多種抑制或保護對抗細胞之細 胞〉周亡(定向的細胞死亡(committed cell death))的細胞激 素被使用。在一個實例中,細胞激素可以是一種早期作 15 用細胞激素。 在進一步的具體例中,細胞激素在培養基中的組合 ί 和/或濃度可以不同於細胞激素在珠粒(例如在水凝膠中) 中的組合。 在一實例中,早期作用細胞激素(諸如,但不限於幹 2〇 細胞因子(SCF)、FLT3配位子、介白素-6以及介白素-3) 可以被使用。因此在特定的具體例中培養基可以含有一 或多種下列濃度的細胞激素:呈50至150 ng/ml的SCF、 呈 50 至 150 ng/ml 的 Flt3、呈 10 至 100 ng/ml 的 IL-3 以及呈10至100 ng/ml的IL-6。更多的細胞激素可以在 18 200916583 上面細胞激素的一或多者以外或取代上面細胞激素的一 或多者而存在。例如,細胞激素可包含一或多種幹細胞 因子、血小板生成素以及顆粒球_群落刺激因子,各者呈 1至1〇〇〇 ng/ml的》辰度範圍’例如1至500 ng/ml、10 5 至 100 ng/m卜 1 至 50 ng/ml 或 1 至 10 ng/mi。 雖然使用細胞激素在特定具體例中是被偏好的,使 用一過面》辰度疋較不被偏好的。一高濃度的生長因子會 增加實施該方法的成本。亦,在某些具體例中一過高濃 度可能潛在地誤導細胞擴增以及分化至異常的途徑。在 10 本發明的特定具體例中有利的是,一較低濃度的細胞激 素(相較於在先前技藝的特定方法中所採用者)可以被使 用。舉例來說,在特定具體例中,各細胞激素的濃度可 以是200 ng/ml或更低、1〇〇 ng/ml或更低、5〇 ng/mi或 更低、20 ng/ml或更低,或1〇 ng/ml或更低,例如}至 15 _ ng/m卜 1 至 5〇 ng/ml 或 1 至 10 ng/ml。 靜態培養容器(諸如一組織培養平盤)允許細胞僅2 . 維地生長並且可能遭受諸如缺少混合、不良控制選擇以 及有關慣常進料的需求。使用生物反應器的步驟(其提供 -個動態培養系統)連同受控制的培養條件可以使得細 豸在-更接近於那些在活生物的3維環境中擴增。 在本發明的某些具體财,細胞被種植人並且培養 ::巧拌燒瓶或一旋轉燒瓶生物反應器中。旋轉生物反 應器提供一個均質環境並且县於 J貝衣兄1且易於刼作、允許取樣、監測 控制°钱件。典型的操作模式包括批次、進料_ 200916583 批次以及灌注模式(藉由一外部過濾模組或内部裝置(諸 如撥拌濾、器)與細胞滞留互換的培養基)。 旋轉燒瓶可以是具有一個中心磁性攪拌棒以及側臂 供添加與移除細胞和培養基,並且以富含C〇2i空氣予 5 以充氣的塑膠或玻璃瓶。經接種的旋轉燒瓶被置放在一 攪拌器上並且在適當的培養條件下被培育。舉例來說, 培養物可以呈一為每分鐘1〇·25〇轉速、較佳地30-100 轉速,以及最佳地50轉速被攪拌。被設計來控制具有 1-12升的培養體積的旋轉器以及旋轉燒瓶系統是商業上 ίο 可取得的’諸如 Coming ProCulture System (Coming, Inc.,Lui et al. (2006a) have previously attempted to amplify umbilical cord blood cells encapsulated in calcium alginate using exogenous cytokines and rabbit mesenchymal stem cells in static culture. This method was found to have a negative impact on the total number of CD34+ cells and CFU-GM. This is important because the amplification with loss of multipotency is not very practical. 15 Subsequent work by Lui et al. (2006b) uses a rotating wall vessel bioreactor constructed for a specific purpose and a cell with exogenous cytokines but no cell coating. Steps. WO 2005/007799 describes a method for the expansion of stem/source progenitor cells in vitro in a bioreactor. A wide range of cell types are discussed, such as skin cells, hepatocytes, nerve cells, and bone cells. A variety of different conditions have been employed, including the use of exogenous cytokines and transition metal (note copper) chelating agents. Transition metal chelators are used to inhibit differentiation of progenitor cells. However, this document does not specifically teach the use of a coating to amplify CD34+ progenitor cells in a 200916583 dynamic culture vessel. US6440734 teaches methods and devices for the long-term culture of hematopoietic progenitor cells. This document describes the expansion of cord blood 5 stem cells in a static, button-coated scaffold without the use of exogenous cytokines but in the presence of serum. It is suggested to use a coating or impregnation of a range of biologic agents (including 'gels'). WO 2006/081435 teaches a method of providing readily available cellular material derived from cord blood and its compositions. This document describes the novel use of electromagnetic 10 radiation combined bioreactor technology. The coating is not mentioned in this technique. W02006/079854 teaches a method for embryonic stem cell culture, wherein • coated embryonic stem cells are maintained and differentiated in 3D culture. However, this document does not provide a description of cell types (such as cord blood 15 stem or progenitor cells, including CD34+ progenitor cells derived therefrom), as its teachings are limited to embryonic stem cells. There are thus some existing methods for amplifying specific types of stem and source progenitor cells. However, there is a clear need for improved methods for growing larger numbers of stem and progenitor cells (especially CD34+ progenitor cells derived from cord blood) for clinical transplantation applications and for regenerative medicine. SUMMARY OF THE INVENTION Accordingly, in one embodiment, the present invention provides a method for in vitro expansion of mitochondrial blood CD34+ progenitor cells, comprising: (1) coating a blood cell of 200916583 cells on a support matrix (support) (b) planting the coated cells into a dynamic culture vessel; and (c) culturing the cells in the dynamic culture vessel under conditions that permit expansion of the CD34+ progenitor cells. In another embodiment, the invention provides a coated cell, or an expanded population, of cord blood CD34+ progenitor cells obtainable or obtained by the method defined by the above. In still another embodiment, the present invention provides a dynamic culture vessel comprising cord blood cells coated in a support matrix. In still another embodiment, the invention provides a coated cell, such as a cord blood CD3 4 + progenitor cell obtainable or a method obtained by the method defined above, or an expanded population for use in Regenerative therapy. In still another embodiment, the invention provides a coated cell, or an expanded population, for regenerative, for example, or obtained from a cord blood CD34+ progenitor cell obtained by the method defined above. 15 uses of therapy. In still another embodiment, the present invention provides a coated cell of a cord blood CD34+ progenitor cell obtained by the method defined by the above I face, or an expanded population for preparation. The use of a medical agent that treats a disease or condition requiring regenerative therapy. In yet another embodiment, the invention provides a method for treating an individual in need of regenerative therapy, comprising administering to the individual a therapeutically effective amount of one of the source ancestors obtained by the method as defined above cell. In still another embodiment, the invention provides a method comprising: (a) 200916583 coating cord blood cells in a support matrix (eg, a suitable protective support matrix); and (b) freezing the coated cells . The cells used in the method of the present invention can be obtained from any species of an animal having an umbilical cord (i.e., from any placental mammal). In particular, the cells may be of human, non-human primate, horse, dog, cow, pig, goat, sheep, Confucian or murine source. In a preferred embodiment, the cells are umbilical cords derived from an animal of a species, the species being the equine, especially the genus, such as a horse, zebra or scorpion; optimally such cells From one horse. In another preferred embodiment 10, the cells are human cells, i.e., derived from human umbilical cord blood. Preferably, the cells are coated within 72 hours of collecting cord blood. Since the collection of cord blood typically occurs after delivery, the cells are preferably coated within 72 hours postpartum, more preferably within 48 or 24 hours after birth. Alternatively, the umbilical cord can be frozen and the 15 cells can be collected and coated after thawing. The support matrix preferably comprises a hydrogel. Preferred materials for use in the support matrix include alginic acid, fibronectin, and mercaptocellulose, including each of those materials, or mixtures thereof. The support matrix is preferably in the form of a bead. Hydrogels exhibit lower mass transport problems than 20 scaffolds. The hydrogel can also be dissolved to allow easy recovery of the cells. In one embodiment, the cells are coated in a bead, such as a hydrogel bead, at a density of from 100 to 300,000 cells per bead, for example from 500 to 300,000, 3000 to 300,000, 3000. To 200916583 200,000, 5000 to 200,000, 500 to 10 〇, 〇〇〇, about 5,000 or about 200,000 cells per bead. The beads may have an average diameter of 0.1 to 5 mm, 0.5 to 5 mm, i to 5 mm, 2 to 3 mm or, in a specific embodiment, about 2.5 mm. 5 After coating the cells in a support matrix, in one embodiment, the coated cells can be frozen. After freezing, the cold-coated coated cells can be stored indefinitely for later use. When desired, the frozen coated cells can be thawed prior to other methods being performed, i.e., seeding 10 or culturing the thawed coated cells in the dynamic culture vessel. These examples enable umbilical cord blood expansion to be performed directly from freezing and thus limit post-thaw operation and subsequent cell loss and injury prior to expansion. The method is preferably carried out in the absence of serum, for example, in a specific example, the cells are cultured in a serum-free medium. Preferably, the cells can also be cultured in the absence of a transition metal chelating agent. In the specific example, the dynamic culture vessel is a bioreactor. Even more so, the biological benefit is the rotary wall container bioreactor. A preferred dynamic culture vessel for use in the present invention is a harv bio 2 reaction or a NovaPodTM bioreactor. The cells, such as children, can be cultured in a medium free of cytokines' or alternatively in a medium containing one or more cytokines. When the medium contains one or more cytokines, in one embodiment, the cytokines are early acting cytokines. Examples of early acting cytokines include, but are not limited to, stem cell factors, FLT3 ligand, interleukin-6 and interleukin-3. In another embodiment, the cytokines comprise one or more stem cell factors (SCF), jk small plateogen (thromppoietin, TPO), and granulocyte-colony stimulating factor , G-CSF), for example, the medium may contain SCF, TPO, and G-CSF. For example, the cytokine can be one to one, one to five, one to two hundred, one to one, one to one, one to fifty or one to! The concentration of 〇 ng/ml is present. 10 In one embodiment, the cells are cultured in the presence of mesenchymal stem cells. The mesenchymal stem cells may be coated with or contained in the cord blood cells. The coated cells are preferably cultured in a suspension culture in step (c). According to a particular embodiment of the invention, an expanded population of cells obtained from the practice of the invention (derived from a single cord blood sample) can be administered to a single subject in need of regenerative therapy. In other words, the source progenitor cells found in a cord blood unit taken from a single newborn can be expanded enough to provide sufficient cells to treat a single patient, such as an adult patient. The expanded population of cells can be used to treat any disease or condition requiring regenerative treatment, particularly a disease or condition that is treated with cells of the myeloid lineage. Applications of expanded cell populations include, but are not limited to, bone marrow transplantation, transfusion medicine, organ weight, regenerative medicine, tissue engineering, gene therapy, toxicology, and research. Diseases to be treated, particularly preferably according to embodiments of the invention 200916583 include blood disorders and bone marrow loss following chemotherapy. The invention can also be used for screening as well as for toxicological studies. Specific embodiments of the invention may also advantageously facilitate expansion of the cord blood cell population to make them more useful in therapy. In particular, the use of a coating combination in a 5 holding matrix allows for the reconstitution of an environment in vitro in a dynamic culture vessel, which is particularly suitable for the expansion of blood CD34+ progenitor cells and inhibits cell differentiation. Moreover, the methods of the present invention do not require the use of reagents (such as serum or transition metal chelators), the presence of which may be problematic for downstream applications, such as human cell transplantation therapies. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to methods for in vitro expansion and culture of ancestral cord blood stem cells and stem cells and their possible uses. In particular, in a specific example, human wilted blood CD34+ progenitor cells (as in, for example, in the chromophore layer) can be extensively expanded and grown in vitro in the bioreactor according to the method of the present invention. . In particular, in one embodiment, the method can be used for large-scale in vitro expansion of stem and source progenitor cells, resulting in a regenerative population of large numbers of stem and/or progenitor cells, which can be applied, for example, for example Bone marrow transplantation, transfusion medicine, organ reconstruction, regenerative medicine, tissue engineering, gene therapy, toxicology, and research. Attention is drawn to the fact that a specific example of the method is stroma-cell free. These specific examples also do not require the passage of cells. In certain embodiments, the method can involve, for example, a 2-100 fold, such as a 2-50 fold, a 2-20 fold, or a 5-20 fold umbilical cord blood CD34+ progenitor cell within 2 to 30 days. Amplification, preferably 12 200916583 5-1 fold amplification in approximately 10 days. In order to provide sufficient cells for transplantation, an average cord blood unit is 3χ1 〇8 and total nucleated cells must be expanded 4-5 times. However, a key parameter is that total CD34+ progenitor cells when total nucleated cells are expanded can include very few amplified cd34+5 progenitor cells. An average cord blood unit contains 2xl06 CD34+ progenitor cells (i.e., less than 1% of total nucleated cells) at a dose rate of lxl05 CD34+ cells/kg for a patient weighing up to 20 kg. A 5-6 fold expansion of a CD34+ progenitor cell therefore requires the clinical application of cord blood units in an average adult patient. Preferably, the expanded cells maintain pluripotency 10 (multipotency). A specific example of the present invention satisfies the currently known form of the deficiency 15 definition by providing a method for amplifying cord blood CD34+ progenitor cells in a bioreactor, as used herein, in vitro (ex_viv〇), meaning A method in which cells are removed from a living organism and propagated outside the organism. As used herein, with respect to the methods of the invention, cell expansion (ceU expansion) or 'expanding' It refers to a process of cell proliferation that is substantially devoid of fine 20 cell differentiation. The expanded cells thus maintain their cell renewal properties. "Progenitor cell" as used herein generally refers to an immature or undifferentiated cell that is self-renewing and can differentiate into a variety of different adult cell types. Hematopoietic progenitor 13 200916583 Certain types of cells may alternatively be referred to as stem cells. "Umbilical cord blood CD34+ progenitor cells" are cells expressing C34 antigen derived from hematopoietic stem cells in cord blood. They can cause cells of the bone marrow and/or lymphoid lineage. 5 mesenchymal stem cells are plurip〇tent blast cells found in bone marrow, corpus, dermis, and other locations. They can differentiate into a variety of tissue types. ), or "encapsulating" it means that the cell or cell is completely embedded within the support matrix by one. It is assumed that the size (e.g., the ratio of surface area to volume) enables nutrients, metabolites, cytokines, and the like to be easily diffused into/out of the beads to reach cells embedded in the beads... or cells The appearance of the beads is not particularly relevant. "Music culture container" as used herein means any type of container used to culture cells under non-static conditions. A dynamic culture vessel is typically maintained by a mixing or mixing mechanism. A homogeneous environment for cell growth, and variables such as temperature and pH can be monitored and controlled. A dynamic culture vessel typically contains one or more effective methods for maintaining stable environmental conditions within the container. (for example, it does not rely on diffusion for transporting nutrients in the container) and is capable of allowing continuous feeding of cultured cells. As used herein, "bioreactor" means a biological and/or biochemical process that is monitored and Devices developed under controlled environmental and operational conditions such as pH, temperature, pressure, nutrient supply, and waste removal. 200916583 Hematopoietic stem cells (HSCs) are stem cells and early precursor cells that cause all blood cell types. Including bone stalk (mononuclear ball and giant scorpion cells, sputum neutral ball, alkaline ball, sputum acidity Balls, red blood cells, megakaryocytes/platelets and certain dendritic cells) and lymphoid lineages (T-cells, B-cells, NK-cells, certain dendritic cells). As stem cells, they are exposed to their ability to form multiple cell types. And their ability to self-renew. Individual HSCs have the ability to cause any type of end-stage blood cells. During differentiation, children and cells derived from HSC receive a series of commitment decisions' for 15 20 certain lineages In this way, the differentiation potential is maintained but the other is lost. The intermediate cells gradually become affected by their lineage potential until the final lineage-directed cells are produced. In humans, white blood cells (hematopoietic Nucleated cells contain a mixture of inflammatory cells. More than 99% of mononuclear cells are lineage-directed cells of differentiated cells. Hematopoietic stems and subtypes of progenitor cells (subtyPe and their lineage potential can be The various differences exist in their table and are defined by the fact that the CD3 4 is the cell surface ^^ Cell adhesion, and it is typically used as a non-differentiated hematopoietic stem and progenitor cells of birch 5-iff CD133 is another glycoprotein that is found in hematopoietic stem cells. Marker of the cell. CD38 is a glycoprotein found on the surface of the nucleus nucleus cells, which can be used as: a marker for '#differentiated cells. Non-lineage-directed and/or undifferentiated sputum and/ Progenitor cells typically contain low levels of markers (such as thy-1 lineage 15 200916583 CD71), which designate a more mature source ancestor population. A variety of different hematopoietic cell types can be identified by other markers, such as for bone marrow CD13 & CD33, for erythrocyte CD71, for B cell CD19, for megakaryocyte CD61, for mononuclear cell Mac-1 5 (CDllb/CD18) For granules Gr-1 or for T-cells CD3, CD4, CD5 and CD8. According to the invention, the CD34+ progenitor cells are preferably non-lineage-directed progenitor cells, such as CD34+ lin-, CD34+CD38- or CD34+CD133+ comprising less than 1% of total mononuclear cells. However, in an alternative embodiment of 10, the invention may also be used to amplify lineage-directed progenitor cells, such as CD34+CD33+ (bone marrow-directed progenitor cells), CD34+CD3+ (lymphoid-directed progenitor cells). And CD34+CD61 + (megakaryocyte-directed cells). The CD34+ progenitor cells used in the methods of the invention are derived from cord blood cells. In some embodiments, the cord blood sample can be subjected to a selection, purification or some sorting step to provide a sample enriched in CD34+ progenitor cells. A cell sample enriched with CD34+ progenitor cells is then used in the method of the invention, e.g., as a ligated blood cell used in the coating step. 20 Methods for purifying or extracting hematopoietic stem and/or progenitor cells from cord blood are known in the art. For example, a hematopoietic mononuclear ball is obtained from a blood sample by applying a blood sample to a Ficoll-Hypaque layer and an interfacial layer present between Ficoll-Hypaque and blood serum after density buffer centrifugation. The interface layer consists essentially of white blood cells present in the blood sample on 16 200916583. "Buffy coat cells" are used herein to mean the majority of the white blood cell population that can be found in the skin layer of the skin of a centrifuged blood sample, between the clear and red layers. For the avoidance of doubt, the blood-stained hemosphere cells that can be used in the method of the present invention can be obtained from any processing procedure. In other words, "skin hemocyte cells" means the type of cells found in the skin color portion of a centrifuged blood sample, and does not need to be the cells actually obtained by this method. Hematopoietic mononuclear cells, such as skin color hematopoietic cells (derived from umbilical cord 10 blood samples), can be used as umbilical cord blood cells in step (a) of a preferred embodiment of the method of the invention because they contain CD34+ Source progenitor cells. Alternatively, CD34+ progenitor cells can be further enriched, for example, by differential density centrifugation and/or immunoseparation, for example using immunomagnetic separation or flow cytometry/fluorescence-activated Cell-Classification (FACS). Antibodies that selectively target hematopoietic stem and progenitor cell types, such as monoclonal anti-CD34 and/or anti-CD38 antibodies, can be used in the selection/enrichment step. Such antibodies are commercially available and/or can be obtained by standard techniques. The medium used for cell growth to increase the number of fine cells in the support matrix structure (ie, amplification, wherein the cells undergo self-renewal by cell division) may be a medium that supports cell growth, ideally at a minimum or In the absence of cell differentiation. Various suitable maintenance media for hematopoietic stem cell expansion are known in the art, such as Stemline II (Sigma, St Louis, MO). The coating is applied to a support matrix of umbilical cord CD34+ progenitor cells according to the method of the invention of the present invention, in the method of the invention of the present invention, and a combination of a dynamic culture vessel can suppress the cell differentiation of the various media to be used together. For example, it is not necessary to include additional specific reagents (such as cytokines) in the medium that inhibits differentiation. Suitable environmental conditions for culturing progenitor cells to allow cell expansion are known in the art, for example, this step can be carried out at 37 ° C and 5% CO 2 . In order to allow amplification of CD34+ cells, the pH in the culture is preferably at least 6.7, more preferably 6.8 to 7.4. The omolarity is preferably from 0.25 to 0.35 mOsmol/kg, more preferably from 0.28 10 to 0.32 mOsmol/kg. In some embodiments, cytokines can also be included in the culture medium. In one embodiment, one or more cytokines that inhibit or protect against cell cell death (committed cell death) are used. In one example, the cytokine can be an early cytokine. In a further embodiment, the combination of cytokine in the medium and/or concentration may be different from the combination of cytokines in the beads (e.g., in a hydrogel). In one example, early acting cytokines such as, but not limited to, dry 2 cytokine (SCF), FLT3 ligand, interleukin-6, and interleukin-3 can be used. Thus, in a particular embodiment, the medium may contain one or more of the following concentrations of cytokines: 50 to 150 ng/ml of SCF, 50 to 150 ng/ml of Flt3, and 10 to 100 ng/ml of IL-3. And IL-6 at 10 to 100 ng/ml. More cytokines may be present in addition to or in lieu of one or more of the above cytokines in 18 200916583. For example, the cytokine may comprise one or more stem cell factors, thrombopoietin, and granule globule-community stimulating factors, each of which has a range of 1 to 1 ng/ml, such as 1 to 500 ng/ml, 10 5 to 100 ng/m b 1 to 50 ng/ml or 1 to 10 ng/mi. Although the use of cytokines is preferred in certain specific cases, the use of a face-to-face is less preferred. A high concentration of growth factor increases the cost of implementing the method. Also, in some specific examples, an excessive concentration may potentially mislead cells for expansion and differentiation into abnormal pathways. In a particular embodiment of the invention, it is advantageous that a lower concentration of cytokines (as compared to those employed in the prior art methods) can be used. For example, in a particular embodiment, the concentration of each cytokine can be 200 ng/ml or lower, 1 ng/ml or lower, 5 ng/mi or lower, 20 ng/ml or more. Low, or 1〇ng/ml or lower, such as} to 15 _ ng/m b 1 to 5 ng/ml or 1 to 10 ng/ml. Static culture vessels, such as a tissue culture pan, allow the cells to grow only 2. and may suffer from such requirements as lack of mixing, poor control options, and related customary feeds. The step of using a bioreactor, which provides a dynamic culture system, along with controlled culture conditions, allows the fines to be expanded - closer to those in a 3-dimensional environment of living organisms. In certain specific aspects of the invention, the cells are grown and cultured in a flask or a rotating flask bioreactor. The rotating bioreactor provides a homogeneous environment and is easy to produce, allows sampling, and monitors control money. Typical modes of operation include batch, feed_200916583 batch, and perfusion mode (medium exchanged with cell retention by an external filtration module or internal device (such as a filter). The spinner flask can be a plastic or glass bottle with a central magnetic stir bar and side arms for the addition and removal of cells and culture medium, and enriched with C〇2i air for 5 to inflate. The inoculated spinner flask was placed on a stirrer and incubated under appropriate culture conditions. For example, the culture can be stirred at a speed of 1 Torr. 25 Torr per minute, preferably 30-100 rpm, and optimally at 50 rpm. A rotator designed to control a culture volume of 1-12 liters and a rotating flask system is commercially available [such as Coming ProCulture System (Coming, Inc.,

Acton,MN)。該等旋轉燒瓶典型地被配備以供監測培養 基中之pH、溫度、氧與C〇2飽和度,代謝物的水準(諸 如葡萄糖、氮、胺基酸等等)的探針,以及在流體竄槽 (fluid communication),選擇性地在一螺動泵(具有培養 15 基、氣體、特定營養素與類似物的新鮮供應與廢物移除) 的協助下,以使得培養基可以被移除或補充以在一預定 、速率下維持對幹細胞擴增而言的最佳條件。 剪應力(shear stress)以及擾渦(turbulent eddies)有時 是有關攪拌燒瓶生物反應器的一個考量。用於實施本發 20 明之細胞培養方法的適當懸浮培養條件可以使用一低剪 應力、高混合、動態環境而被達成。這可以使得足夠的 營養素與氣體通透過所使用的支持基質結構。由一旋轉 流體環境所產生的動態層流(dynamic laminar flow)是一 種用於降低營養素與廢物的擴散限制同時最小化剪應力 20 200916583 水準的有效率的方法。旋轉壁容器已被用於各種不同細 胞類型的活體外細胞生長(參見,例如Vunjak-Novalovic et al, J Orthop Res 1999;17:130-38, Rhee , et al, In Vitro Cell Dev 2001; 37:127-40, Licato et al In Vitro Cell Dev,Acton, MN). The rotating flasks are typically equipped with probes for monitoring pH, temperature, oxygen and C〇2 saturation in the culture medium, levels of metabolites (such as glucose, nitrogen, amino acids, etc.), as well as in fluids. Fluid communication, optionally assisted by a screw pump (with fresh supply of 15 bases, gas, specific nutrients and analogs, and waste removal) so that the medium can be removed or supplemented to The optimal conditions for stem cell expansion are maintained at a predetermined rate. Shear stress and turbulent eddies are sometimes a consideration for stirred flask bioreactors. Suitable suspension culture conditions for carrying out the cell culture method of the present invention can be achieved using a low shear stress, high mixing, dynamic environment. This allows sufficient nutrients and gases to pass through the support matrix structure used. The dynamic laminar flow produced by a rotating fluid environment is an efficient method for reducing nutrient and waste diffusion limitations while minimizing shear stress. Rotating wall containers have been used for in vitro cell growth of a variety of different cell types (see, for example, Vunjak-Novalovic et al, J Orthop Res 1999; 17: 130-38, Rhee, et al, In Vitro Cell Dev 2001; 37: 127-40, Licato et al In Vitro Cell Dev,

5 2001;37:121-26 以及 pei, et ai, FAseB J 2002;16:1691-94)。因此’根據本發明的較佳具體例,該 生物反應器是一旋轉壁容器生物反應器。適當的旋轉壁 容器生物反應器在該技藝中是熟知的,例如HARV (例如 NASA HARV)、RWV 生物反應器、Synthecon 的 Roller ίο Cell 以及 RCCS-1 (Synthecon Inc,Houston TX)、European Space Agency bioreactor (Fokker,Netherlands),或其他模 擬微重力或灌注的系統,諸如氣升生物反應器,以及來 J 自Coming的各種類型的旋轉瓶(Coming,Inc.,Acton, MN)。在一較佳具體例中,RWV是一來自Synthecon的 15 HARV (Synthecon Inc,Houston TX)。在另一具體例中, 該生物反應器是一得自於NovaThera Limited,Cambridge UK 的 NovaPodTM生物反應器,例如在 http://www.novathera.com 戶斤 描 述的, 例 士 口 http://www.novathera.com/documents/NovaPod I Brochu 2〇 re Medica 07.pdf.。雖然攪拌生物反應器可能產生剪應 力,NovaPod已降低剪應力。剪應力也可以藉由包覆(其 對細胞提供額外的保護而不會降低質量輸送)而被減少。 供包覆所使用的支持基質是可通透的以允許營養 素、代謝物,以及生長因子的擴散與質量輸送。被包覆 21 200916583 在一支持基質内的細胞(a ceU)或細胞(cells)可以呈一珠 粒的形式而被提供,例如一般而言球形珠粒。一或複數 源祖細胞可以被包覆在各個支持基質結構(諸如一珠粒) 中。典型地,各個珠粒可含有100至i百萬個活細胞、 5 3000 至 300,000 個細胞、3000 至 2〇〇,〇〇〇 個細胞、5〇〇〇 至200,000個細胞、5000至50〇,〇〇〇個細胞、10,000至 300,000個細胞、20,000至200,〇〇〇個細胞,每個珠粒大 約5,000或大約200,000個細胞。 在2D傳統的培養物中,假設細胞尺寸為15 μιη ίο (0.0015 cm)以及井平盤尺寸為1.2 cm2,實際的細胞密度 可以是10000細胞/0.0018 cm3。相較之下,假設每個珠 粒有5000個細胞被使用’假設珠粒的直徑為2.5 mm, 3D培養物中的實際細胞密度是5000細胞/〇〇36cm3。相 較於2D,在此3D培養物中有大約一個40倍的較低細 15 胞密度。在本發明的某些具體例中,使用每珠粒(2.5mm 直徑)5000/細胞允許適當的細胞擴增。較高的密度(諸如 母珠粒20,000或2〇〇,〇〇〇細胞)可以被用來增加擴增率分 別達15倍至30倍。另擇地,在某些具體例中,從源自 臍帶樣品之可用細胞的低數目的觀點看來,以較低密度 20 的擴增可能是較被偏好的。 特別被偏好的是支持基質結構,例如珠粒,是由一 適當的支持基質材料(在培養時間的期間維持完整)所構 成。被包覆在支持基質内的細胞(cell)或細胞(ceUs)可以 被放入一培養容器中,諸如一 RWV生物反應器 22 200916583 (Synthecon, US A)或其他模擬微重力或灌注生物反應器 並且被培育在維持和/或分化培養基中而沒有明顯的損 傷歷時延長的期間。 較佳地該支持基質材料由一凝膠形成多醣所構成或 5 含有一凝膠形成多醣,諸如瓊脂糖或藻酸(典型地範圍從 大約0.5至大約2% w/v,較佳地從大約0.8至大約1.5% w/v,更佳地大約0.9至1.2% w/v)。該基質可由藻酸單 獨所構成或可進一步含有諸如明膠的成分(典型地從大 約0.05至大約2% v/v,例如0.05至大約1% v/v,大約 ίο 0.08至大約0.5% v/v,或大約1% v/v)。含有明膠有助於 生成均勻的珠粒尺寸並且協助維持結構一致性。在藻酸 支持基質珠粒中含有明膠能夠使細胞媒介的收縮以及支 架材料的填充(packing)。 在較佳的具體例中,該支持基質材料包含有a)藻酸 15 與曱基纖維素,或b)藻酸與纖維連接蛋白,或c)藻酸、 甲基纖維素以及纖維連接蛋白。這些成分的各者的數量 , 可以被改變以達到一所欲的支持基質的稠度以及硬度, 其最為有助於細胞擴增。較佳地該支持基質包含有0.01 至1% v/v曱基纖維素,更佳地0.1至1.0% v/v甲基纖維 20 素,以及最佳地大約0.1% v/v曱基纖維素。較佳地該支 持基質包含有0.5至500 gg/ml纖維連接蛋白,較佳地1 至100 pg/ml纖維連接蛋白,更佳地1至50 pg/ml纖維 連接蛋白以及最佳地大約50 pg/ml纖維連接蛋白。在一 尤佳的具體例中,該支持基質包含有0.05至0.5% v/v 23 200916583 甲基纖維素以及1至100 Mg/ml纖維連接蛋白。 藻酸是一種萃取自褐藻的水溶性線性多醣並且由具 有1-4連結# CX-L-葡萄醣經酸與p_D_甘露糖搭酸殘基的 父替段(alternating blocks)所構成。藻酸與大多數的二_ 5與多價陽離子形成凝膠,雖然Ca2+是最為廣泛地被使用 的。 λ田。亥支持基負疋呈含有一單一細胞的珠粒形式,該 等珠粒可以是,例如直徑從大約2〇至15〇公忽 (micron),較佳地從大約4〇至大約1〇〇公忽。含有複& 1〇 細胞的珠粒可具有一平均直徑例如0,1至l〇mm、〇.5至 10 mm、1至i〇mm、!至5mm、大約2〇至大約25公 厘’大約2.3公厘或大約2.5 mm。 在本發明的某些方面,偏好採用的支持基質可以易 於被溶解以釋放細胞,而不需要使用胰蛋白酶作用 15 (trypSmiSation)。在移除支持基質以釋放細胞是所希求的 例子中,水凝膠基質,例如藻酸以及以藻酸為主的基質, 是被偏好的,因為它們可以使用檸檬酸鈉以及氣化鈉溶 液而易於被溶解。 除了在包覆步驟(a)之後的選擇性冷凍步驟,一根據 〇 本發明的方法或用途可更進一步包含有冷凍經包覆的細 胞以供貯存,例如在細胞培養以及擴增步驟(c)之後。經 包覆的細胞可以使用標準操作程序而被冷凍,並且可以 被冷凍在它們被培養的維持或分化培養基中。一用於冷 /東經包覆之細胞的適當方法涉及使用緩慢冷束操作步驟 24 200916583 (如同由 Stensvaag et al (2004) Cell Transplantation 13 (1): 35所描述的)冷凍保存在二曱亞砜(DMS〇)中。 本發明的方法可進一步包含有從支持基質釋放細胞 (a cell)或細胞(cells)。本發明因此提供由此而被獲得的 5 細胞(a cel1)或細胞(cells)。若藻酸或以藻酸為主的基質 被用於包覆,細胞的釋放可以透過藻酸溶解而被達成。 此等溫和的溶解方法相較於標準酵素方法(諸如胰蛋白 酶作用,它們可能影響細胞在長期培養中的行為有利 r 的。 ίο 在某些具體例中,本發明的方法可包含有又一誘發 經擴增之細胞族群的分化的步驟。分化可以在細胞仍被 包覆之時,或另擇地在從支持基質釋放細胞之後被誘發。 在某些具體例中,包覆的移除有利於細胞的分化。 某些細胞株於維持生長的細胞分裂週期之後歷經自發性 15 分化,特別地在分化沒有被抑制的情況下。任何支^分 化的培養基適用於使用在本發明的方法中。分化培養基 % 可能是類似於那個被用在擴增步驟中者,除了在—抑^ 分化的物質被包括在用來培養/擴增源祖細胞的培養美 的具體例十,此物質是不被包括在分化培養基中。適: 20 細胞分化的條件可包含有關CD34+源祖細胞的分化的: 刺激。有關分化的刺激可以是一有關分化成例如 或淋巴造血譜系的刺激。除此之外在分化步驟令 條件可以是類似於那些在擴增步驟中所使用者。又兄 例如,因此分化以及擴增步驟可以在相同的容器中 200916583 =物分化方法的整合方法適宜地在於-燒 中,經包覆懸浮培養物中被實施。在擴增期 胞群落在#姓6、徂細胞分裂且細胞數目被增加,使得細 形成逸一+八基質結構内形成。經包覆的細胞接著分化 構之内分:的細二:有在3d基質結 細胞可以繼而被維=去中,進分化或終端分化的 增力心胞群落在支持==形:使得細胞數目被 10 15 20 二具體例中,誘發分化的一試劑可以被添加到 在一容器内的細胞族群中,包括但不限於Ca2+、EGF、 阿伐-FGF、貝他_FGF、pDGF、角質細胞生長因子 (keratinocyte growth fact〇r,KGF)、TGF 貝他、細胞激素 (例如1L_1阿伐、IL-1貝他、IFN-加馬、TFN)、視網酸 (retlnolc acid)、運鐵蛋白(transferring)、激素(例如雄性 素、動情素、胰島素、泌乳素、三碘甲狀腺素、氫皮質 酮、地塞米松)、丁 酸鈉、TPA、DMS0、NMF、DMF、 基質元素(例如膠原蛋白、粘蛋白、硫酸乙醯肝素,或它 們的組合)。 擴增以及分化步驟的持續(duration)沒有特別地受 到限定。舉例來說,擴增步驟可以維持至少1、5、10、 30或100天,例如1至30天。 依據本發明的方法所製備之經培養以及擴增的細胞 族群’或自其而得到的經分化細胞可被用作為一藥劑 (medicament),例如在再生性療法中。典型地該等細胞 26 200916583 在移除支持基質之後(亦即從包覆將細胞釋放之後)被投 藥給一病患。一般而言,再生性療法包括一廣泛多樣的 治療步驟,其中身體的一組織或器官被放大、修復或取 代以一所欲細胞族群(諸如一幹細胞或源祖細胞族群)的 5 移植(enSraftment)、移植(transplantation)或灌注。在本發 明的較佳具體例中,該等細胞在高劑量的化學療法之 後被用來治療A液障礙或修復骨髓。根據本發明之經擴 增的細胞族群可以被用作為自體或同種,包括經配對或 失配的HLA型造血移植。 1〇 經培養的細胞可以被用來修復由於疾病所造成的組 織與器官的損傷。在此一具體例中,一病患可以被投藥 經培養的源祖細胞以再生或修復因為疾病的結果而已被 損害的組織或器官,例如,在化學療法或放射之後增強 免疫系統,或在心肌梗塞之後修復心臟組織。經培養的 15 細胞可以在骨髓移植中被用來放大或取代骨髓細胞。<人 類自體或同種骨髓移植目前被用作為有關疾病(諸如白 ^病、淋巴瘤或其他威脅生命的疾病)的療法。然而這些 操作步驟的缺點是大數量的捐贈者骨髓必須被移除以確 保有足夠的細胞用於移植。根據本發明之經擴增的細胞 2〇 族群可以提供降低對於大时義贈之f求的幹細胞以 及源祖細胞。 因此在一具體例中,經擴增的細胞族群可以被用在 化學療法以外的補充性治療。大多數被用來標乾以及摧 毀癌細胞的化學治療劑藉由殺死所有的增生細胞(亦即 27 10 20 200916583 進入細胞分裂的細胞)而作用。因為骨 ,也增生組織之一,造血幹細胞最 = 傷或摧毁且結果,血球生成被減少或終止。化 ,地被終止以允許病患的造血系統在重新開= 療法之别補充血賴應。對以祕止輯細胞來說可 能要耗時—或數則來增生並增加白血球數目至化學療 法可重新’的可接受水準(#再次,骨㈣細胞被摧 士雖然血球在化學療法治療之間會再生,然而,癌有 $間生長並且可能因為天擇而對化學療法藥物變得更有 ^因此較長的化學療法被給予且治療之間持續期 間越短,成功殺死癌的機會越大。為了縮短化學療法治 療之間的時間,根據本發明所生成之經擴增的源袓細胞 族群可以被引入病患中。此治療可以降低病患將展現一 低血球計數的時間,並且將因此容許化學療法治療的較 早恢復。 本發明亦含括包含有根據本方法所生成之經擴增的 CD34+源祖細胞族群的藥學組成物。這些細胞可以與, 或做為一混合物與其它幹細胞被使用在移植上的用途或 其他用途。該經擴增的細胞族群(典型地從支持基質被釋 放之後)可以被未冷凍地被使用,或冷凍以供稍後使用。 若該細胞族群是要被冷凍的,一標準冷凍保存劑(例如 DMSO、甘油、Epilife (註冊商標)Cell Freezing Medium Cascade Biologies))在它被冷凍之前被添加至經增富的 28 5 10 15 20 200916583 細胞族群中。 在某些具體例中,—或多個源袓細胞族群可以被投 遞到有需要的病患。在—具體例中,本發明提供治療或 預防-個體之-疾病或障礙的方法,包含有對此治療或 預防是需要的—㈣㈣—治療有效數量㈣祖細胞 (得自於此處所界定的方法)。 在另-具體例中,本發明提供一種治療或預防一個 體之疾病或障礙的方法,包含有對此治療或預防是需要 的-個體投藥-治療有效數量之由本發明的方法所#得 的CD34+源祖細胞。 又 在另一具體例中,經擴增的細胞族群可以被用來治 療任何由發炎所引起或與發炎相關的疾病、病況或‘ 礙。發炎可以出現在任何器官或組織,例如肌肉;神經 系統,包括腦、脊髓以及週邊神經系統;血管組織,包 括心組織,·胰臟;腸或其他消化道的器官;肺臟;腎臟; 肝臟,生殖器m组織(endothelial tis㈣,或内皮 組織(endodermal tissue)。 細胞族群也可以被用來治療免疫相關的障礙,特別 地自體免疫障礙,包括那些與發炎有關者。因此,在某 些具體例中,本發明提供一種治療一具有一自體免疫疾 病或病況的個體的方法,包含有對此個體投一 效數量之由本方法賴得的源祖細胞,其中該疾病口或障 礙"Τ以疋但不限於糖尿病、肌萎縮性側索硬化症 (amylotrophic lateral sclerosis,ALS)、重症肌無力 29 200916583 (myasthenia gravis)、糖尿病神經病變或狼瘡(diabetic neuropathy or lupus)、急性或慢性過敏(例如季郎性過 敏、食物過敏、對特定抗原的過敏)。其它可以被治療的 疾病包括再生不全性貧血(aplastic anemia)、骨髓發育不 5 良(myelodysplasia)、心肌梗塞、癲癇疾病(seizure disorder)、多發性硬化症(multiple sclerosis)、中風、低 jk壓、心跳停止(cardiac arrest)、缺灰(ischemia)、發炎、 與年齡有關的認知功能喪失(age-related loss of cognitive function)、輻射傷害(radiation damage)、腦性麻痺 ίο (cerebral palsy)、神經退化性疾病、阿茲海默症、帕金森 症、利氏病、AIDS癡呆、失憶、肌萎縮性側索硬化症 (ALS)、缺血性腎病、腦或脊髓創傷、心-肺繞道、青光 眼(glaucoma)、視網膜缺血(retinal ischemia)、視網膜創 傷(retinal trauma)、溶素體儲積病(lysosomal storage 15 disease),諸如泰一薩(Tay-Sachs)、尼曼一匹克 (Niemann-Pick)、法布立氏(Fabry’s)、高歇氏 (Gaucher’s)、亨氏(Hunter’s),以及胡耳勒氏(Hurler’s)症 候群,還有其他神經節苷脂症(gangliosidoses)、黏多糖 病(mucopolysaccharidoses)、肝醣病(glycogenoses)、先天 20 性代謝異常、腎上腺腦白質失養症 (adrenoleukodystrophy)、囊腫纖維化(cystic fibrosis)、肝 糖貯積症(glycogen storage disease)、甲狀腺低能症 (hypothyroidism)、鐮狀細胞貧血症(sickle cell anemia)、 皮爾生症候群(Pearson syndrome)、龐貝氏症(Pompe’s 30 200916583 disease)、苯酮尿症(phenylketonuria,PKU)、紫質症 (porphyrias)、楓糖漿尿病(maple syrup urine disease)、高 胱胺酸尿症(homocystinuria)、 黏多糠病 (mucoplysaccharidenosis)、慢性肉芽腫病(chronic 5 granulomatous disease)與酪胺酸血症(tyrosinemia)、泰一 薩二氏症、癌症、腫瘤或其他病理學或新生病況。 在其他的具體例中,該等細胞可以被用在治療任何 因為創傷所造成的傷害,特別是涉及發炎的創傷。此創 傷相關的病況之實例包括中樞神經系統(CNS)傷害 '包 10 括對腦、脊髓,或圍繞CNS損傷的組織至週邊神經系統 (PNS);或對身體任何部分的損傷。此創傷可以是由意外 所造成,或可以是一醫學程序(諸如外科手術或動脈如管 • 手術)的正常或異常結果。創傷可以是骨折、一血管的破 壞或阻塞(諸如在一中風或靜脈炎(phlebitis))的結果。在 15 特定的具體例中,細胞可以被使用在自體或異體組織再 生或替代療法或步驟,包括但不限於角膜上皮營養障礙 (corneal epithelial defects)、軟骨修復、顏面磨皮(facial dermabrasion)、粘膜(mucosal membranes)、鳴膜(tympanic membranes)、腸襯壁(intestinal linings)、神經學結構 2〇 (neurological structures)(例如視網膜、基底膜中的聽神 經、嗅上皮的嗅神經)、燒傷與針對皮膚創傷性損傷或有 關其他受損或罹病器官或組織之重建的傷口復原的治 療。 依據本發明之被投藥給一個體的細胞劑量將視個體 3 1 200916583 的大小以及需要治療之病況的本質而定。典型地,一接 受一幹細胞灌注的病患(例如有關於一骨趨移植)接受一 單位的細胞,其中一單位是大約ίο9個有核細胞(對應於 1-2 X 108個幹細胞)。根據本發明,一病患較佳地以至少 5 105個CD34+源祖細胞/kg予以治療,例如對於一位一般 男性成人來說總數106至107個CD34+細胞,或大約7x 106個CD34+源祖細胞。 該等源祖細胞可以呈任何藥學上或醫學上可接受的 方式被投藥給一病患,包括透過注射或輸液。該等細胞 10 或補充的細胞族群可含有,或被包含在任何藥學上可接 受的載劑中。該臍帶血或臍帶血衍生的幹細胞可以被攜 帶、貯存,或運輸於任何藥學上或醫學上可接受的容器 内,例如,一血袋、運送袋、塑膠管或瓶。 15 【實施方式】 實施例1 細胞來源: 造血細胞是來自被包含在膚色血球層内之腾帶血 (UCB)的 CD34+源祖細胞(HPC)。 20 收集以及處理: 在正常足月分娩(經告知的同意被給予)之後人類臍 帶血球被得自於臍帶血。臍帶血被收集在標準250mL血 袋(含有CPD抗凝血劑)中並且在產後24小時内使用 32 2009165835 2001; 37: 121-26 and pei, et ai, FAseB J 2002; 16: 1691-94). Thus, in accordance with a preferred embodiment of the invention, the bioreactor is a rotating wall vessel bioreactor. Suitable rotating wall vessel bioreactors are well known in the art, such as HARV (e.g., NASA HARV), RWV bioreactor, Synthecon's Roller ίο Cell, and RCCS-1 (Synthecon Inc, Houston TX), European Space Agency bioreactor (Fokker, Netherlands), or other systems that simulate microgravity or perfusion, such as airlift bioreactors, and various types of spinners from Coming (Coming, Inc., Acton, MN). In a preferred embodiment, the RWV is a 15 HARV (Synthecon Inc, Houston TX) from Synthecon. In another embodiment, the bioreactor is a NovaPodTM bioreactor from NovaThera Limited, Cambridge UK, for example, as described at http://www.novathera.com, such as http://www.novathera.com http://www.novathera.com http://www.novathera.com www.novathera.com/documents/NovaPod I Brochu 2〇re Medica 07.pdf. Although the agitated bioreactor may produce shear stress, NovaPod has reduced shear stress. Shear stress can also be reduced by coating, which provides additional protection to the cells without reducing mass transport. The support matrix used for coating is permeable to allow diffusion and mass transport of nutrients, metabolites, and growth factors. Coated 21 200916583 Cells (a ceU) or cells within a support matrix can be provided in the form of a bead, such as a generally spherical bead. One or more progenitor cells can be coated in various support matrix structures, such as a bead. Typically, each bead may contain from 100 to i million living cells, from 53,000 to 300,000 cells, from 3000 to 2 cells, from one cell, from 5 to 200,000 cells, from 5000 to 50 inches. One cell, 10,000 to 300,000 cells, 20,000 to 200 cells, each cell, approximately 5,000 or approximately 200,000 cells per bead. In 2D conventional cultures, the cell size is 15 μιη ίο (0.0015 cm) and the well plate size is 1.2 cm2. The actual cell density can be 10,000 cells/0.0018 cm3. In contrast, assume that 5000 cells per bead are used. 'Assume that the diameter of the beads is 2.5 mm, and the actual cell density in the 3D culture is 5000 cells/〇〇36 cm3. Compared to 2D, there is about a 40-fold lower fine cell density in this 3D culture. In some embodiments of the invention, the use of each bead (2.5 mm diameter) 5000/cell allows for proper cell expansion. Higher densities (such as parent beads 20,000 or 2 〇〇, 〇〇〇 cells) can be used to increase amplification rates by a factor of 15 to 30, respectively. Alternatively, in some embodiments, amplification at a lower density of 20 may be preferred from the standpoint of the low number of available cells derived from the umbilical cord sample. It is particularly preferred that the support matrix structure, such as beads, be formed from a suitable support matrix material that remains intact during the incubation period. Cells or cells (ceUs) encapsulated within a support matrix can be placed in a culture vessel, such as an RWV bioreactor 22 200916583 (Synthecon, US A) or other simulated microgravity or perfusion bioreactor And it is cultivated in the maintenance and/or differentiation medium without significant damage for a prolonged period of time. Preferably the support matrix material consists of a gel forming polysaccharide or 5 comprises a gel forming polysaccharide such as agarose or alginic acid (typically ranging from about 0.5 to about 2% w/v, preferably from about 0.8 to about 1.5% w/v, more preferably about 0.9 to 1.2% w/v). The matrix may be composed of alginic acid alone or may further comprise a component such as gelatin (typically from about 0.05 to about 2% v/v, such as from 0.05 to about 1% v/v, from about 0.08 to about 0.5% v/v). , or about 1% v/v). Containing gelatin helps to create a uniform bead size and helps maintain structural consistency. The inclusion of gelatin in the alginic acid-supporting matrix beads enables shrinkage of the cell medium and packing of the scaffolding material. In a preferred embodiment, the support matrix material comprises a) alginate 15 and mercaptocellulose, or b) alginic acid to fibronectin, or c) alginic acid, methylcellulose, and fibronectin. The amount of each of these ingredients can be varied to achieve the consistency and hardness of a desired support matrix, which is most beneficial for cell expansion. Preferably, the support matrix comprises 0.01 to 1% v/v mercapto cellulose, more preferably 0.1 to 1.0% v/v methyl fiber 20, and most preferably about 0.1% v/v mercapto cellulose. . Preferably the support matrix comprises from 0.5 to 500 gg/ml fibronectin, preferably from 1 to 100 pg/ml fibronectin, more preferably from 1 to 50 pg/ml fibronectin and optimally about 50 pg /ml fibronectin. In a particularly preferred embodiment, the support matrix comprises 0.05 to 0.5% v/v 23 200916583 methylcellulose and 1 to 100 Mg/ml fibronectin. Alginic acid is a water-soluble linear polysaccharide extracted from brown algae and consists of parenting blocks with 1-4 linkage # CX-L-glucose via acid and p_D_mannose acid residues. Alginic acid forms a gel with most of the 1-5 and polyvalent cations, although Ca2+ is the most widely used. λ field. The support matrix is in the form of beads containing a single cell, which may be, for example, from about 2 to 15 micrometers in diameter, preferably from about 4 to about 1 inch. suddenly. The beads containing the complex & 1〇 cells may have an average diameter such as 0,1 to l〇mm, 〇.5 to 10 mm, 1 to i〇mm,! To 5 mm, from about 2 Torr to about 25 mm' to about 2.3 mm or about 2.5 mm. In certain aspects of the invention, the preferred support matrix can be readily dissolved to release cells without the use of trypsin 15 (trypSmiSation). In the case where the support matrix is removed to release the cells, hydrogel matrices such as alginic acid and alginic acid-based matrices are preferred because they can use sodium citrate and sodium carbonate solution. Easy to be dissolved. In addition to the selective freezing step after the coating step (a), a method or use according to the invention may further comprise frozen coated cells for storage, for example in cell culture and amplification step (c) after that. The coated cells can be frozen using standard procedures and can be frozen in the maintenance or differentiation medium in which they are cultured. A suitable method for cold/east coated cells involves the use of a slow cold beam manipulation step 24 200916583 (as described by Stensvaag et al (2004) Cell Transplantation 13 (1): 35) cryopreservation in disulfoxide (DMS〇). The method of the invention may further comprise releasing a cells or cells from the support matrix. The present invention thus provides 5 cells (a cel1) or cells thus obtained. If alginic acid or an alginic acid-based matrix is used for coating, the release of cells can be achieved by dissolution of alginic acid. These mild solubilization methods may affect the behavior of cells in long-term culture favorably r compared to standard enzyme methods (such as trypsin action.) In some embodiments, the methods of the invention may involve further induction. The step of differentiation of the expanded cell population. Differentiation can be induced while the cells are still being coated, or alternatively after releasing the cells from the support matrix. In some embodiments, the removal of the coating facilitates Differentiation of cells. Certain cell lines undergo spontaneous 15 differentiation after the cell division cycle in which growth is maintained, particularly in the case where differentiation is not inhibited. Any medium for differentiation is suitable for use in the method of the present invention. The medium % may be similar to the one used in the amplification step, except that the substance to be differentiated is included in the specific example 10 of the culture beauty used to culture/amplify the source progenitor cells, and the substance is not included in Differentiation medium. Suitable: 20 cell differentiation conditions may include differentiation of CD34+ progenitor cells: stimulation. The stimulation of differentiation may be related to differentiation. For example, stimulation of the lymphoid hematopoietic lineage. In addition to the differentiation step, the conditions can be similar to those of the user in the amplification step. Brother, for example, therefore the differentiation and amplification steps can be in the same container 200916583 = object The method of integration of the differentiation method is suitably carried out in a burned suspension, and is carried out in a coated suspension culture. In the amplification phase, the cell population is split in #6, the 徂 cell divides and the number of cells is increased, so that the fine-formed one-eight matrix is formed. Formed within the structure. The coated cells are then differentiated into the inner part of the structure: the second two: there are 3d matrix cells can be followed by the dimension = go, the differentiation or terminal differentiation of the empowerment of the heart cell community in support == shape : making the number of cells 10 15 20 2 In a specific example, a reagent for inducing differentiation can be added to a cell population in a container, including but not limited to Ca2+, EGF, Ava-FGF, beta _FGF, pDGF , keratinocyte growth factor (KGF), TGF beta, cytokines (eg 1L_1 Ava, IL-1 beta, IFN-gamma, TFN), retnolc acid, transport Ferritin , hormones (eg, androgens, eosin, insulin, prolactin, triiodothyronine, hydrocorticosterone, dexamethasone), sodium butyrate, TPA, DMS0, NMF, DMF, matrix elements (eg collagen, mucin) The heparin sulfate, or a combination thereof. The duration of the amplification and differentiation steps is not particularly limited. For example, the amplification step can be maintained for at least 1, 5, 10, 30 or 100 days, for example 1 to 30 days. The cultured and expanded cell population prepared according to the method of the present invention or the differentiated cells obtained therefrom can be used as a medicament, for example, in a regenerative therapy. Typically, such cells 26 200916583 are administered to a patient after removal of the support matrix (i.e., after release of the cells from the coating). In general, regenerative therapies include a wide variety of treatment steps in which a tissue or organ of the body is enlarged, repaired, or replaced with a 5 transplant (enSraftment) of a desired cell population (such as a stem cell or a source progenitor population). , transplantation or perfusion. In a preferred embodiment of the invention, the cells are used to treat fluid disorder A or repair bone marrow after high dose chemotherapy. The expanded population of cells according to the present invention can be used as an autologous or homologous, including paired or mismatched HLA-type hematopoietic transplants. 1〇 Cultured cells can be used to repair tissue and organ damage caused by disease. In this embodiment, a patient can be administered a cultured progenitor cell to regenerate or repair a tissue or organ that has been damaged as a result of the disease, for example, to enhance the immune system after chemotherapy or radiation, or in the myocardium Repair the heart tissue after the infarction. Cultured 15 cells can be used to amplify or replace bone marrow cells in bone marrow transplantation. <Human autologous or allogeneic bone marrow transplantation is currently used as a therapy for diseases such as white disease, lymphoma or other life-threatening diseases. However, the disadvantage of these procedures is that a large number of donor bone marrow must be removed to ensure that there are enough cells for transplantation. The expanded cell 2〇 population according to the present invention can provide stem cells and progenitor cells which are reduced in response to the big time. Thus in one embodiment, the expanded population of cells can be used in a complementary treatment other than chemotherapy. Most chemotherapeutic agents used to dry and destroy cancer cells act by killing all proliferating cells (ie, cells that enter cell division on 27 10 20 200916583). Because of bone, and one of the hyperplastic tissues, hematopoietic stem cells are most likely to be injured or destroyed and as a result, blood cell production is reduced or terminated. The ground is terminated to allow the patient's hematopoietic system to re-open the blood of the therapy. It may take time for the cells to be stopped, or a few to accumulate and increase the number of white blood cells to the acceptable level of chemotherapy. (# Again, the bone (four) cells are destroyed by the blood cells between the chemotherapy treatments. Will regenerate, however, cancer has $ between growth and may become more chemotherapeutic because of natural selection. Therefore, longer chemotherapy is given and the duration between treatments is shorter, the greater the chance of successfully killing cancer In order to shorten the time between chemotherapy treatments, the expanded source cell population generated according to the present invention can be introduced into a patient. This treatment can reduce the time during which the patient will exhibit a low blood count, and will therefore Allowing early recovery of chemotherapy therapy. The invention also encompasses pharmaceutical compositions comprising an expanded population of CD34+ progenitor cells produced according to the method. These cells can be mixed with, or as a mixture with, other stem cells Use for transplantation or other uses. The expanded population of cells (typically after release from the support matrix) can be rendered unfrozenly , or frozen for later use. If the cell population is to be frozen, a standard cryopreservation (eg DMSO, glycerol, Epilife (registered trademark) Cell Freezing Medium Cascade Biologies) is added to it before it is frozen The enriched 28 5 10 15 20 200916583 cell population. In some embodiments, - or a plurality of source cell populations can be delivered to a patient in need thereof. In a specific embodiment, the invention provides a method of treating or preventing - an individual - a disease or disorder, comprising the need for treatment or prevention - (iv) (d) - therapeutically effective amount (four) progenitor cells (obtained from the methods defined herein) ). In another embodiment, the invention provides a method of treating or preventing a disease or disorder in a subject, comprising the need for an individual to administer or treat a therapeutically effective amount of CD34+ obtained by the method of the invention. Source progenitor cells. In yet another embodiment, the expanded population of cells can be used to treat any disease, condition, or condition that is caused by inflammation or associated with inflammation. Inflammation can occur in any organ or tissue, such as muscle; the nervous system, including the brain, spinal cord, and peripheral nervous system; vascular tissue, including heart tissue, · pancreas; organs of the intestine or other digestive tract; lung; kidney; liver, genitals m tissue (endothelial tis (four), or endodermal tissue. Cell populations can also be used to treat immune-related disorders, particularly autoimmune disorders, including those associated with inflammation. Therefore, in some specific cases The present invention provides a method for treating an individual having an autoimmune disease or condition, comprising administering to the individual an effective number of progenitor cells derived from the method, wherein the disease mouth or disorder " But not limited to diabetes, amylotrophic lateral sclerosis (ALS), myasthenia gravis 29 200916583 (myasthenia gravis), diabetic neuropathy or lupus (diabetic neuropathy or lupus), acute or chronic allergies (eg Jilang Sexual allergies, food allergies, allergies to specific antigens. Others can be treated Diseases include aplastic anemia, myelodysplasia, myocardial infarction, seizure disorder, multiple sclerosis, stroke, low jk pressure, cardiac arrest (cardiac arrest) ), ischemia, inflammation, age-related loss of cognitive function, radiation damage, cerebral palsy, neurodegenerative disease, Az Hyperthermia, Parkinson's disease, Rie's disease, AIDS dementia, amnesia, amyotrophic lateral sclerosis (ALS), ischemic nephropathy, brain or spinal cord trauma, heart-lung bypass, glaucoma, retinal defect Retinal ischemia, retinal trauma, lysosomal storage 15 disease, such as Tay-Sachs, Niemann-Pick, Fabry ( Fabry's), Gaucher's, Hunter's, and Hurler's syndrome, as well as other gangliosidoses, Mucopolysaccharidoses, glycogenoses, congenital 20 metabolic abnormalities, adrenoleukodystrophy, cystic fibrosis, glycogen storage disease, thyroid hypoenergy Hypothyroidism, sickle cell anemia, Pearson syndrome, Pompe's 30 200916583 disease, phenylketonuria (PKU), porphyrias ), maple syrup urine disease, homocystinuria, mucoplysaccharidenosis, chronic granulomatous disease and tyrosinemia , Taiyi Sa's disease, cancer, tumor or other pathology or new condition. In other embodiments, the cells can be used to treat any injury caused by trauma, particularly inflamed wounds. Examples of such wound-related conditions include central nervous system (CNS) injury, including damage to the brain, spinal cord, or tissues surrounding the CNS injury to the peripheral nervous system (PNS); or damage to any part of the body. This trauma can be caused by an accident or can be a normal or abnormal result of a medical procedure such as surgery or an artery such as a tube • surgery. The wound can be the result of a fracture, destruction or blockage of a blood vessel, such as a stroke or phlebitis. In a particular embodiment, the cells can be used in autologous or allogeneic tissue regeneration or replacement therapy or procedures including, but not limited to, corneal epithelial defects, cartilage repair, facial dermabrasion, Mucosal membranes, tympanic membranes, intestinal linings, neurological structures (eg retina, auditory nerve in the basement membrane, olfactory nerve of the olfactory epithelium), burns and targets Treatment of wound traumatic wounds or wound healing associated with reconstruction of other damaged or rickets of organs or tissues. The dose of cells administered to a subject in accordance with the present invention will depend on the size of the individual 3 1 200916583 and the nature of the condition in need of treatment. Typically, a patient who is perfused with a stem cell (e. g., with respect to a bone graft) receives one unit of cells, one of which is about ίο9 nucleated cells (corresponding to 1-2 X 108 stem cells). According to the invention, a patient is preferably treated with at least 5 105 CD34+ progenitor cells/kg, for example a total of 106 to 107 CD34+ cells, or about 7 x 106 CD34+ progenitor cells for a typical male adult. . The progenitor cells can be administered to a patient in any pharmaceutically or medically acceptable manner, including by injection or infusion. Such cells 10 or supplemented cell populations may contain, or be included in, any pharmaceutically acceptable carrier. The cord blood or cord blood-derived stem cells can be carried, stored, or transported in any pharmaceutically or medically acceptable container, such as a blood bag, shipping bag, plastic tube or bottle. [Embodiment] Example 1 Cell source: Hematopoietic cells are CD34+ progenitor cells (HPC) derived from sputum blood (UCB) contained in the blood layer of the skin color. 20 Collection and treatment: Human umbilical cord blood is obtained from cord blood after normal term delivery (by informed consent). Cord blood is collected in a standard 250 mL blood bag (containing CPD anticoagulant) and used within 24 hours postpartum 32 200916583

Sep ax (Bio safe)技術而被處理供用於UCB。腾帶血早位 (膚色血球層)使用一速率控制的冷束器而被冷凉在1 〇% DMSO中並且貯存在液態氮的液相中。在使用它們之 前,該等細胞被快速地解滚(使用一個37 °C水浴)至 5 Stemline II 無血清培養基(Sigma,St. Louis, MO, USA)中 並且在Stemline II培養基中被洗滌3次以移除DMSO。 細胞計數、流動式細胞測量術以及群落形成分析在 這點被施行。 10 藻酸/纖維連接蛋白/甲基纖維素包覆 藻酸被混合以0.1% v/v曱基纖維素以及50 pg/ml 纖維連接蛋白。 一全部為每室(chamber) 1 〇7個活細胞被包覆在一全 - 部為500個珠粒中’例如每個珠粒2.OxlO4活細胞。包覆 15 培養基疋補充以 Stemspan CC100 cytokine mix 的 Stemline II。 * 青徽素、鏈黴素以及健他黴素被用在培養基中以防 止臍帶血單位中細菌污染的生長。 臍V血膚色血球層細胞被計數,並且於室溫(21) 下X 1.6 X 1 〇細胞/mL被再懸浮於〇 無菌經過濾的 低黏度藻酸(此特定產物是一種錢、親水性、膠體、聚 糖搭酸,主要地由帶有連結的無水仰·甘露糖路 及Q1% (v/v)豬明膠(叫脱,υκ)(全部 被今解在?38,阳7.4)溶液中。利用一螺動栗(]^〇(^11}_1, 33 200916583Sep ax (Bio safe) technology is processed for use in UCB. The early blood (blood layer of the skin color) was cooled in 1% DMSO using a rate-controlled cold bundle and stored in the liquid phase of liquid nitrogen. The cells were quickly unrolled (using a 37 ° C water bath) to 5 Stemline II serum-free medium (Sigma, St. Louis, MO, USA) and washed 3 times in Stemline II medium before using them. To remove DMSO. Cell counting, flow cytometry, and colony formation analysis were performed at this point. 10 Alginic acid/fibronectin/methylcellulose coating Alginic acid was mixed with 0.1% v/v thioglycol and 50 pg/ml fibronectin. One is for each chamber 1 〇 7 living cells are coated in a whole - part of 500 beads 'for example, each bead 2.OxlO4 living cells. Cover the medium and supplement the Stemline II with Stemspan CC100 cytokine mix. * Chlorophyll, streptomycin and jitamycin are used in the culture medium to prevent the growth of bacterial contamination in cord blood units. Umbilical V blood-stained hematopoietic cells were counted and X 1.6 X 1 〇 cells/mL were resuspended in sterile sterile low-viscosic alginic acid at room temperature (21) (this specific product is a kind of money, hydrophilic, Colloid and glycan acid, mainly consisting of a mixture of anhydrous mannose mannose road and Q1% (v/v) pig gelatin (called 脱, υ κ) (all in this solution in ?38, yang 7.4) solution Use a screw chest (]^〇(^11}_1, 33 200916583

Amersham Biosciences,UK)、一 流速生成單一液滴(flow rate producing single droplets)、一具有 30 mm 的落下高 度(drop height)(經管路滅菌並且接著以1M NaOH殺菌 歷時30分鐘且以無菌PBS予以洗滌3次)’細胞凝膠溶 5 液被通過蠕動泵並且使用一 25標尺(gauge)針頭(BectonAmersham Biosciences, UK), a flow rate producing single droplets, a drop height of 30 mm (sterilized by tubing and then sterilized with 1 M NaOH for 30 minutes and washed with sterile PBS) 3 times) 'Cell gel solution 5 is passed through a peristaltic pump and uses a 25 gauge needle (Becton)

Dickinson,UK)滴入至配於蒸餾水(呈pH 7.4)的無菌、室 溫(21。〇、100 mM 氣化鈣溶液(CaCl2; Sigma, UK)與 1〇 mM N-(2-羥乙基)-哌-N-(2-乙烷磺酸)(HEPES; Sigma, UK)。細胞-凝膠溶液與CaCl2溶液接觸後立刻凝結,形 1〇 成球狀珠粒(在隆起之後2.3 mm直徑)。珠粒於室溫(21 °C)下維持在溫和攪拌的CaCl2溶液中歷時6-10分鐘。該 等珠粒在PBS中被洗滌3次並且被置放在維持培養基 中 〇 每個藻酸珠粒的最適總細胞計數可以是20,〇〇〇個 15 細胞的範圍内。然而重要的是確認各個珠粒含有最適數 目的CD34+源祖細胞而非總細胞計數。臍帶血膚色血球 i 層細胞因此被评估有關總CD34+細胞百分率以試圖將每 個珠粒的CD34+源祖細胞數目標準化。 2〇 藻酸珠粒溶解Dickinson, UK) Instilled into sterile, room temperature (21. 〇, 100 mM calcium carbonate solution (CaCl2; Sigma, UK) and 1 mM N-(2-hydroxyethyl) in distilled water (pH 7.4) - Piper-N-(2-ethanesulfonic acid) (HEPES; Sigma, UK). The cell-gel solution condenses immediately after contact with the CaCl2 solution, forming a spherical bead (2.3 mm diameter after bulging) The beads were maintained in a gently stirred CaCl 2 solution at room temperature (21 ° C) for 6-10 minutes. The beads were washed 3 times in PBS and placed in maintenance medium for each alga The optimum total cell count for acid beads can be in the range of 20, 15 cells. However, it is important to confirm that each bead contains the optimal number of CD34+ progenitor cells rather than the total cell count. Cord blood color blood cell i layer The cells were therefore evaluated for the percentage of total CD34+ cells in an attempt to normalize the number of CD34+ progenitor cells per bead. 2 Alginic acid beads dissolved

一無菌的解聚合作用緩衝液被用來溶解由5〇 mM 一水檸檬酸二納(Fluka, UK)、77 mM氣化納(bdh Laboratory supplies,UK)與 10 mM HEPES 所構成的珠 粒。溶解缓衝液(Ca2+—耗竭)被加入至經pbs洗滌的珠粒 34 200916583 歷時15-20分鐘同時溫和地攪拌。溶液於400g被離心歷 時10分鐘並且球粒(pellet)被洗蘇以PBS且於300g再次 被離心歷時3分鐘。 5 細胞激素組合 該等細胞激素當被使用時的工作濃度為100 ng/mL 重組型人類Flt-3配位子;100ng/mL重組型人類幹細胞 因子;20 ng/mL重組型人類IL-3 ; 20 ng/mL重組型人類 IL-6。 10 種植生物反應器 經包覆的細胞被培養於一 HARV生物反應器的 50mL 的 Stemline II 培養基(補充以 Stemspan CC100 細胞 激素混合物(cytokine cocktail)與抗生素)中。該生物反應 15 器的轉速是17.5 RPM,且該等細胞被培養在37°C於5% C02的空氣中。 進料經包覆的細胞至生物反應器中 第0天是生物反應器起動之時。該生物反應器在第 20 3、5與7天被進料並且在第10天被收穫。舊的培養基 被抽離且50mL新鮮、溫的Stemline II培養基(被補充以 Stemspan II細胞激素混合物)被力σ入至珠粒。該等珠粒被 再懸浮並且重新引入生物反應器中。 35 200916583 收穫生物反應器 該生物反應器在第ίο天被收穫。珠粒以及培養基從 生物反應器腔室被移出到一離心管中且細胞藉由溶解藻 酸/甲基纖維素/纖維連接蛋白而被釋放。該等細胞在 5 1500 rpm下被離心歷時5分鐘,舊的培養基被倒出並且 被置換以新鮮培養基。細胞使用流動式細胞測量術以及 群洛形成单位顆粒球-巨嗟細胞(colony forming unit granulocyte macrophage, CFU-GM)分析而被評估。該群 落形成單位顆粒球巨噬細胞(CFU-GM)分析經常被用來 10 評估源祖數目在供骨髓移植的細胞族群上的適當性。 分析技術 型態評估··為了要描繪所生成培養族群,細胞的整 分(aliquots of cells)被置放在一載玻片(cytocentrifuge, 15 Shandon,Runcorn, UK)上、固定並且在梅·格倫華與吉氏 染色(May-Grunwald and Giemsa stain)中被染色。 CFU-GM分析以及CD34+/lin-(譜系陰性)流動式細 胞測量術依據製造薇商的指示使用標準操作程序而被實 施。CD34+源祖細胞使用一經標記之抗-CD34單株抗體 20 (商業上可取得的)而被鑑定。 計算 總有核細胞(total nucleated cell,TNC)的體外擴增、 CD34+din-細胞以及CFU被報導作為累積個數;每ml 36 200916583 的細胞數目乘以最終培養體積,或是作為倍數-擴增;累 積個數除以起始種植細胞數目。CFU頻率被計算為群落 數目除以細胞數目。 5 統計 下面的統計試驗被使用:無母數檢定(Wilcoxon Rank Test,Wilcoxon秩檢定)被應用於試驗研究族群間 的差異性供量化參數。所有被應用的試驗是雙尾的,且 5%或更少的p値被視為是統計上顯著的。數據使用SAS ίο 軟體(SAS Institute)而被分析。 實施例2 在又一實施例中,該方法是如同在實施例1中被施 行,除了在流動式細胞測量術步驟中,CD34+/CD133 + 15 被用作為一標記組合。一抗-CD133單株抗體可以被用來 鑑定CD133 +細胞。 實施例3與4 在進一步的實施例中,該方法如同在a)實施例1以 20 及b)實施例2中所描述的被施行,除了包覆培養基是 PBS取代Stemline II且沒有細胞激素被加入至培養基 中〇 實施例5至8 37 200916583 在進一步的實施例中,該方法如同在實施例1至4 各者中所描述的被施行,除了大約每珠粒有200,000個 活細胞被包覆。 5 實施例9 在本實施例中,造血CD34+源祖細胞使用一具有下 列修飾之類似於那個在實施例1中所描述的方法被擴 增。 人類臍帶血(hCB)單核球細胞經由密度梯度Ficoll 10 離心而從hCB單位被收穫。CD34+源祖細胞使用一磁性 細胞選別器(magnetic cell sorter,MACS)被分離,且只有 純度大於95%的hCB CD34+細胞被使用。另擇地CD34+ ' 源祖可以從一商業來源而被冷涞地獲得。 經分離的hCB CD34+源祖被包覆在一水凝膠(含有 15 配於PBS中的1.1 (w/v)°/〇藻酸以及1 (v/v)%明膠)中,在 一沒有血清的擴增培養基中。該等細胞以一為每水凝膠 珠粒5000個細胞的細胞密度被包覆,各個珠粒具有一為 大約2.5mni的直徑。經包覆的細胞被允許在一 NovaPod ™生物反應器系統中擴增歷時10天。 2〇 被包覆在水凝膠珠粒中的CD34+源祖以一為5000 個細胞/水凝膠的細胞密度被培養歷時10天且在第0、4 與7天被進料。細胞激素幹細胞因子(SCF)、血小板生成 素(TP0)以及顆粒球-群落刺激因子(GCSF)被加入培養基 (StemLine II)中,在第〇天以一為1〇 ng/mi的濃度與在 38 200916583 第4及7天以100 ng/m卜兩個個別的實驗在這些條件下 被施行(表1中的A1與A2),且結果被平均。 一個帶有高細胞存活率(90%)之在總細胞數目上的 6.7倍增加被達成(參見第2與3圖)。被培養在相同培養 5 基但是缺少細胞激素(表1中的實驗B)之經包覆的 CD34+源祖顯示一較低程度的總細胞擴增。在10天的擴 增之後,CD34+源祖族群的百分比從96%降低至76%, 如同由流動式細胞測量術所證實的(第1圖),暗示一個 淨5.3倍的增加(表1)。在第10天,珠粒内的細胞被培 10 養又一個期間而沒有培養基更新並且允許自發性分化, 指明它們保持增生潛能(第4圖)。 因此hBC CD 34+源祖歷時10天的3D包覆以及 NovaPod生物反應器培養,被包覆在無血清StemLine II 培養基的藻酸與明膠中,具有低濃度(l〇〇ng/mL)的3種 15 存活細胞激素(TPO、G-CSF與SCF)造成一個6.7倍的總 有核細胞的擴增與一個在CD 34+源祖的5.3倍增加。 39 200916583 表1 實驗 培養基 總有核細胞的擴增 CD34+細胞的擴增 (大約75.72%純度) A1 在第0天具有10mg/mL 以及在第4與7天 100ng/mL之配於藻酸/ 細胞混合物SCF、TPO & G-CSF 的 StemLine II 第 4 天=4600±875 第 7 天=8145±1055 第 10 天=36015±4063 1〇天擴增=7.2倍 (第 0 天=5000,第 10 天=36015) 10天擴增=5.9倍 (第 0 天=4786.5,第 10 天=27990.858) A2 在第0天具有10mg/mL 以及在第4與7天 1 OOng/mL之配於藻酸/ 細胞混合物SCF、TPO & G-CSF 的 StemLine II 第 4 天=4500±912 第 7 天=8000±714 第 10 天=31278±1734 10天擴增=6.3倍 (第 0 天=5000,第 10 天=31278) 10天擴增=5.0倍 (第 0 天=4786.5,第 10 天=23683.7016) A(l&2) 平均 在第0天具有10mg/mL 以及在第4與7天 1 OOng/mL之配於藻酸/ 細胞混合物SCF、TPO & G-CSF 的 StemLine II 第 4 天=4550±830 第 7 天=8073±838 第 10 天=33646±3844 10天擴增=6.7倍 (第 0 天=5000,第 10 天=31278) 天擴增=5.3倍 (第 0 天=4786.5,第 10 天=25476.7512) B 只有 StemLinell 第 4 天=2450±957 第 7 天=3800±849 第 10 天=5700±572 10天擴增=U4倍 (第 0 天=5000,第 10 天二5700) 10天擴增=1.lx減少 (第 0 天=4786.5,第 10 天=4316.04) 40 200916583 5 et al. (1994). Curr. et al. (1999). Exp et al. (1999a). Int. et al. (1997). Exp. 參考文獻 Andrew, R. G., (3):187-196. Bachier, C. R., 615-623. Chabannon, C·, 511-518. Gehling, U. M., 1125-1139.A sterile depolymerization buffer was used to dissolve the beads consisting of 5 mM mM dihydrate (Fluka, UK), 77 mM sodium bromide (UK) and 10 mM HEPES. Lysis buffer (Ca2+-depletion) was added to the pbs washed beads 34 200916583 while gently stirring for 15-20 minutes. The solution was centrifuged at 400 g for 10 minutes and the pellet was washed with PBS and centrifuged again at 300 g for 3 minutes. 5 cytokine combination of these cytokines when used at a working concentration of 100 ng / mL recombinant human Flt-3 ligand; 100 ng / mL recombinant human stem cell factor; 20 ng / mL recombinant human IL-3; 20 ng/mL recombinant human IL-6. 10 Planting Bioreactor The coated cells were cultured in 50 mL of Stemline II medium (supplemented with Stemspan CC100 cytokine cocktail and antibiotics) in a HARV bioreactor. The speed of the bioreactor was 17.5 RPM, and the cells were cultured at 37 ° C in 5% CO 2 in air. Feeding the coated cells to the bioreactor Day 0 is the time when the bioreactor is started. The bioreactor was fed on days 20, 5 and 7 and harvested on day 10. The old medium was withdrawn and 50 mL of fresh, warm Stemline II medium (supplemented with Stemspan II cytokine mixture) was forcefully injected into the beads. The beads are resuspended and reintroduced into the bioreactor. 35 200916583 Harvesting bioreactor The bioreactor was harvested on day ίο. The beads and medium are removed from the bioreactor chamber into a centrifuge tube and the cells are released by dissolving the alginate/methylcellulose/fibronectin. The cells were centrifuged at 5 1500 rpm for 5 minutes, the old medium was poured out and replaced with fresh medium. Cells were evaluated using flow cytometry and colony forming unit granulocyte macrophage (CFU-GM) analysis. This colony forming unit particle globular macrophage (CFU-GM) assay is often used to assess the appropriateness of the number of ancestral ancestors on the cell population for bone marrow transplantation. Analytical Technique Type Assessment · In order to depict the resulting culture population, the aliquots of cells are placed on a slide (cytocentrifuge, 15 Shandon, Runcorn, UK), fixed and in Mege It was dyed in the May-Grunwald and Giemsa stain. CFU-GM analysis and CD34+/lin- (lineage negative) flow cell measurements were performed using standard operating procedures according to the instructions of the manufacturer. CD34+ progenitor cells were identified using a labeled anti-CD34 monoclonal antibody 20 (commercially available). In vitro expansion of total nucleated cells (TNC), CD34+ din-cells, and CFU were reported as cumulative numbers; the number of cells per ml 36 200916583 was multiplied by the final culture volume, or as a multiple-expansion Increase; the cumulative number divided by the number of starting implanted cells. The CFU frequency is calculated as the number of colonies divided by the number of cells. 5 Statistics The following statistical tests were used: Wilcoxon Rank Test (Wilcoxon Rank Test) was applied to the differential supply parameters between the experimental study populations. All of the tests applied were two-tailed, and 5% or less of p値 was considered to be statistically significant. The data was analyzed using the SAS ίο software (SAS Institute). Example 2 In yet another embodiment, the method was performed as in Example 1, except that in the flow cytometry step, CD34+/CD133 + 15 was used as a combination of markers. Primary antibody-CD133 monoclonal antibody can be used to identify CD133+ cells. Examples 3 and 4 In a further embodiment, the method is carried out as described in a) Example 1 in 20 and b) Example 2, except that the coating medium is PBS instead of Stemline II and no cytokines are Addition to the medium Example 5 to 8 37 200916583 In a further embodiment, the method is carried out as described in each of Examples 1 to 4 except that approximately 200,000 viable cells per bead are coated . 5 Example 9 In this example, hematopoietic CD34+ progenitor cells were expanded using a method similar to that described in Example 1 with the following modifications. Human umbilical cord blood (hCB) mononuclear cells were harvested from hCB units by density gradient Ficoll 10 centrifugation. CD34+ progenitor cells were isolated using a magnetic cell sorter (MACS) and only hCB CD34+ cells with a purity greater than 95% were used. Alternatively, CD34+'s source ancestors can be obtained coldly from a commercial source. The isolated hCB CD34+ source ancestor was coated in a hydrogel (containing 15 (w/v) ° / alginic acid and 1 (v / v)% gelatin in PBS), in a serum-free In the expansion medium. The cells were coated at a cell density of 5,000 cells per hydrogel bead, each having a diameter of about 2.5 mn. The coated cells were allowed to expand in a NovaPodTM bioreactor system for 10 days. 2〇 The CD34+ source progenitor coated in the hydrogel beads was cultured at a cell density of 5000 cells/hydrogel for 10 days and was fed on days 0, 4 and 7. Cytokine stem cell factor (SCF), thrombopoietin (TP0), and granule globule-community stimulating factor (GCSF) were added to the medium (StemLine II) at a concentration of 1〇ng/mi on day 3 and at 38 200916583 Days 4 and 7 were performed under these conditions with two individual experiments at 100 ng/m (A1 and A2 in Table 1) and the results were averaged. A 6.7-fold increase in total cell number with high cell viability (90%) was achieved (see Figures 2 and 3). The coated CD34+ source progenitor cultured in the same culture but lacking cytokines (Experiment B in Table 1) showed a lower degree of total cell expansion. After 10 days of expansion, the percentage of CD34+ source progenitors decreased from 96% to 76%, as confirmed by flow cytometry (Figure 1), suggesting a net 5.3-fold increase (Table 1). On day 10, the cells in the beads were cultured for another period without medium renewal and allowed spontaneous differentiation, indicating that they maintained proliferative potential (Fig. 4). Therefore, the hBC CD 34+ source ancestors were 10 days of 3D coating and NovaPod bioreactor culture, and were coated in alginic acid and gelatin in serum-free StemLine II medium with low concentration (l〇〇ng/mL). The 15 surviving cytokines (TPO, G-CSF and SCF) caused a 6.7-fold increase in total nucleated cells with a 5.3-fold increase in CD 34+ source ancestors. 39 200916583 Table 1 Experimental medium Total nucleated cell expansion CD34+ cell expansion (approximately 75.72% purity) A1 with 10 mg/mL on day 0 and 100 ng/mL on day 4 and 7 with alginic acid/cell StemLine II of the mixture SCF, TPO & G-CSF Day 4 = 4600 ± 875 Day 7 = 8145 ± 1055 Day 10 = 36015 ± 4063 1 day amplification = 7.2 times (Day 0 = 5000, 10th) Day = 36015) 10 days amplification = 5.9 times (Day 0 = 4786.5, Day 10 = 27990.858) A2 with 10 mg/mL on day 0 and 1 OOng/mL on day 4 and 7 with alginic acid / Cell Mixture SCF, TPO & G-CSF StemLine II Day 4 = 4500 ± 912 Day 7 = 8000 ± 714 Day 10 = 31278 ± 1734 10 Days Amplification = 6.3 times (Day 0 = 5000, 10th) Day = 31278) 10 days amplification = 5.0 times (Day 0 = 4786.5, Day 10 = 23683.7016) A (l & 2) averaged 10 mg/mL on day 0 and 1 OOng/mL on days 4 and 7. StemLine II with alginic acid/cell mixture SCF, TPO & G-CSF Day 4 = 4550 ± 830 Day 7 = 8073 ± 838 Day 10 = 33646 ± 3844 10 Days Amplification = 6.7 times (0 Day = 5000, day 10 = 31278) day amplification = 5.3 times ( Day 0 = 4786.5, Day 10 = 25476.7512) B Only StemLinell Day 4 = 2450 ± 957 Day 7 = 3800 ± 849 Day 10 = 5700 ± 572 10 Days Amplification = U4 times (Day 0 = 5000, Day 10 2, 5700) 10-day amplification = 1.lx reduction (Day 0 = 4786.5, Day 10 = 4316.04) 40 200916583 5 et al. (1994). Curr. et al. (1999). Exp et al (1999a). Int. et al. (1997). Exp. References Andrew, RG, (3): 187-196. Bachier, CR, 615-623. Chabannon, C·, 511-518. Gehling, UM , 1125-1139.

Opin. Hematol. 1 Hematol. 27 (4): J. Oncol. 15 (3): Hematol. 25 (11): 10 15 20Opin. Hematol. 1 Hematol. 27 (4): J. Oncol. 15 (3): Hematol. 25 (11): 10 15 20

Jaroscak, J., et al. Blood, 2003 (a).Jaroscak, J., et al. Blood, 2003 (a).

Kapelushnik, J., et al. J Pediatr Hematol Oncol, 1998 ; 20 (3): 257-9.Kapelushnik, J., et al. J Pediatr Hematol Oncol, 1998 ; 20 (3): 257-9.

Knutsen, G.., et al. Tidsskr Nor Laegeforen, 1998; 118 (16): 2493-7.Knutsen, G.., et al. Tidsskr Nor Laegeforen, 1998; 118 (16): 2493-7.

Kurtzberg, J. , et al. N. Engl. J. Med. 1996; 335 (3): 157-166.Kurtzberg, J., et al. N. Engl. J. Med. 1996; 335 (3): 157-166.

Lui, Y., et al (2006a). Tissue Engineering, abstract Lui, Y., et al (2006b). J. Biotech 124, 592-601 McNiece, I. and R. Briddell Exp. Hematol. 2001; 29(1): 3-11.Lui, Y., et al (2006a). Tissue Engineering, abstract Lui, Y., et al (2006b). J. Biotech 124, 592-601 McNiece, I. and R. Briddell Exp. Hematol. 2001; 29( 1): 3-11.

McNiece, I. , et al. Hematol. Cell Ther. 1999 ; 41 (2):82-86.McNiece, I., et al. Hematol. Cell Ther. 1999 ; 41 (2): 82-86.

Nielsen, L. K. Annu Rev Biomed Eng 1999; 1 : 129-52. Noll, T. ,, et al. Adv Biochem Eng Biotechnol, 2002 ; 74: 41 200916583 111-28.Nielsen, L. K. Annu Rev Biomed Eng 1999; 1 : 129-52. Noll, T. ,, et al. Adv Biochem Eng Biotechnol, 2002 ; 74: 41 200916583 111-28.

Purdy,Μ. H.,, et al. J. Hematother, 1995;4 (6): 515-525. Shpall, E. J.,, et al. Blood 2000 ; 96 (11 (1) ): 207a. Vilquin, J. T.,, et al. Arch Mai Coeur Vaiss 2002 ; 95 (12): 5 1219-25.Purdy, Μ. H.,, et al. J. Hematother, 1995; 4 (6): 515-525. Shpall, EJ,, et al. Blood 2000 ; 96 (11 (1) ): 207a. Vilquin, JT ,, et al. Arch Mai Coeur Vaiss 2002 ; 95 (12): 5 1219-25.

Wagner, J. E. , Jr. J. Hematother. 1993 ; 2(2) : 225-228. Wagner, J. E. ,, et al. Blood 1996 ; 88 (3):795-802.Wagner, J. E., Jr. J. Hematother. 1993; 2(2): 225-228. Wagner, J. E.,, et al. Blood 1996; 88 (3): 795-802.

Wolff, S. N. Bone Marrow Transplant 2002 ; 29 (7); 545-52. 10 上面說明書所提到的所有公開文獻在此處被併入以 作為參考資料。所述本發明的方法以及產物的各種修錦 與變化在不偏離本發明的範_以及精神的情況下對於那 . 些習於該技藝者來說是清楚的。雖然與特定較佳具體例 有關的本發明已被描述,理應被了解的是:所請求的本 15 發明不應被限於该荨特定具體例。更甚者,任何用於娘 施本發明的所述模式之各種修飾(對於習於該技藝者^ ,說為明顯的)是意欲落在下列申請專利範圍的範_ 〇 【圖式簡單說明】 20 本發明的全部方面將參照下面非限定的特定具體你 以及圖式僅藉由實施例的方式而被描述,其中: 歹 第1圖顯示CD34+細胞族群在細胞擴增之前與之 的流動式細胞測量術的結果; * 第2圖顯示以細胞激素培養CD34+細胞族群1〇天 42 200916583 之後在珠粒之内的細胞生長的型態影像。 第3圖顯示於有細胞激素存在或不存在下,在細胞 培養開始之後於不同時間的CD34+細胞族群的活/死染 色的影像以指明細胞存活率。 5 第4圖顯示在沒有更新細胞培養基的情況下,在細 胞擴增之後3D細胞群落的型態影像。分化被發現到指 明了潛能已被維持。 【主要元件符號說明】 10 無 43Wolff, S. N. Bone Marrow Transplant 2002; 29 (7); 545-52. 10 All of the publications mentioned in the above specification are incorporated herein by reference. The various modifications and variations of the methods and products of the present invention are apparent to those skilled in the art without departing from the scope of the invention. Although the invention has been described in connection with a particular preferred embodiment, it should be understood that the claimed invention is not limited to the particular embodiment. Moreover, any of the various modifications of the modes described for the application of the present invention (which are apparent to those skilled in the art) are intended to fall within the scope of the following claims: 简单 [Simple Description] 20 All aspects of the invention will be described with reference to the following non-limiting specific examples and the drawings by way of example only, wherein: Figure 1 shows the flow cells of the CD34+ cell population prior to cell expansion. Results of the measurement; * Figure 2 shows a type image of cell growth within the beads after culturing the CD34+ cell population with cytokines 1 day 42 200916583. Figure 3 shows live/dead staining images of CD34+ cell populations at different times after the start of cell culture in the presence or absence of cytokines to indicate cell viability. 5 Figure 4 shows a type image of the 3D cell population after cell expansion without updating the cell culture medium. Differentiation was discovered to indicate that the potential has been maintained. [Main component symbol description] 10 None 43

Claims (1)

200916583 十、申請專利範圍: 1' 種體外擴增臍帶血CD34+源祖細胞的方法,包含有: (&amp;)將臍帶血細胞包覆在一支持基質中;(b)將經包覆的細 5 胞種植至一動態培養容器中;以及(c)在允許CD34+源袓 細胞培養的條件下培養該動態培養容器中的細胞。 2.如申請專利範圍第!項的方法,其中該等細胞是衍生自 人類臍帶血。 10 15 3. 4. 5.6. 如申請專利範圍第1或2 養在一無血清培養基中。 如前述申請專利範圍任一 器是一生物反應器。 項的方法’其中該等細胞被培 項的方法,其中該動態培養容 如申凊專利範圍第4項的方法 旋轉壁容器生物反應器。 其中該生物反應器是一 如申請專利範圍第5項的方 HARV生物反應器。 其巾㈣物反應器是- 如刖述申請專利範圍任一項 含有—水_。 ㈣心其中該支持基質包200916583 X. Patent Application Range: 1' A method for in vitro expansion of cord blood CD34+ progenitor cells, comprising: (&amp;) coating cord blood cells in a support matrix; (b) coating the fine 5 The cells are grown into a dynamic culture vessel; and (c) the cells in the dynamic culture vessel are cultured under conditions that permit CD34+ source sputum cell culture. 2. If you apply for a patent scope! The method of the item wherein the cells are derived from human umbilical cord blood. 10 15 3. 4. 5.6. If the patent application range is 1 or 2, it is maintained in a serum-free medium. Any of the foregoing patent applications is a bioreactor. The method of the item wherein the cells are cultured, wherein the dynamic culture is carried out as in the method of claim 4 of the patent scope of the rotating wall container bioreactor. The bioreactor is a square HARV bioreactor as in claim 5 of the patent application. The towel (four) reactor is - if any of the scope of the patent application contains - water_. (4) The heart of the support matrix package 如則述申請專利範圍任一項的方法 含有藻酸。 其中該支持基質包 9.如前述申請專利範圍任一項 含有纖維連接蛋白(飯。neetin) /,其中該支持基質包 .如釗述申請專利範圍任一項 含有甲基纖維素。 、、法’其中該支持基質包 lh如前述申請專利範圍任一項 々法’其中該支持基質是 44 5 15 20 200916583 ^ 体粒的形式。 養丄ί:;專:任-項的方法,其中該等細胞被培 ㈣申請;:;;c培養基中。 早期作用細胞=的方法,其中該等細胞激素是 14.=y:=13項的方法,其中該等早期作用細 自於由幹細胞因子、 以及介白素·3所構成的族群。 白素6 15·如申請專利範圍第u u 16:,皮培養在-無細胞激素的培養Γ:其中該等 二專=任一項的方法,其中該等細胞在沒 度金屬螯合劑的存在下被择養。 17. 如前述申請專利範圍 二 驟⑻之後冷凌經包覆的細胞的方法進一步包含有在步 18. Π?第17項的方法,進-步包含有在步驟⑻ 胞存冷練之經包覆的細胞,並且解束經包覆的細 !9.如前述中請專利範圍任—項 集臍帶血之後的72小時之_包覆Γ中該4細胞在收 2〇·如前述申請專利範圍任一項的方法, 間葉幹細胞的存在下被培養。 -中料細胞在有 2L如前述申請專利範圍任一項的方法,進—步 持基質釋放經包覆的細胞。 攸支 过-種藉由任何前述申請專利範圍的方法而獲得之腾帶 45 5 10 20 200916583 灰CD34+源祖細胞的經擴增族群。 23·—種包含有被包覆在一支持基質之臍帶血細胞的動態 培養容器。 浚申明專利範圍弟23項的動態細胞培養容器,其中該 動態細胞培養容器是一旋轉壁容器生物反應器。 25.如申凊專利範圍第23或24項的動態培養容器,其中該 支持基質包含有一水凝膠。 26·如申請專利範圍第23至25項任一項的動態培養容器, 其中該臍帶血細胞包含有CD34+源祖細胞。 27.如申請專利範圍第22項之經擴增細胞族群,其供用於 再生性療法。 28. —種如申請專利範圍第22項之經擴增細胞族群用以製 備一供再生性療法的藥劑之用途。 &amp; 29. :種用於治療-有再生性療法需要的個體之方法,包含 2該個體投藥如申請專利範圍第21項的經包覆 地:申請專利範圍第27至29項之細胞族群、用途或方 :,其中該再生性療法包含有治療—血轉礙或化 法-相關的骨髓流失。 咏 31.:種方法’包含有⑷將臍帶血細胞包覆在—支持 ,以及(b)將經包覆的細胞冷滚。 、、 32· 2請專利範圍第i項或第3至21項任一項的方法, ^中该等細胞是得自於來自-馬科家族之物種的腾帶 33.如申請專利範圍帛12項的方法,其中該等細胞激素包 46 200916583 含有幹細胞因子、血小板生成素以及顆粒球_群落刺激因 子的一或多種。 34. 5 35. 36. 如申請專利範圍第 每珠粒3000至300,000個細胞的密度被包覆。 圍第U或34項的方法,其中該等输 十句直仅為1至1〇 mm。 ^申睛專利範圍第12項的方法,其中各細胞激 至l〇〇ng/ml的濃度存在。 素疋以 47The method of any of the claims is directed to alginic acid. Wherein the support matrix package 9. Any one of the preceding claims includes a fibronectin/ricin/, wherein the support matrix comprises any one of the scope of the patent application containing methylcellulose. And the method wherein the supporting substrate lh is in accordance with any one of the preceding claims, wherein the supporting substrate is in the form of 44 5 15 20 200916583 ^ body particles.养丄ί:;Special: 任-item method, in which the cells are cultured (4) application;:;; c medium. A method of early action of cells = wherein the cytokines are 14. = y: = 13 terms, wherein the early effects are finely derived from a population consisting of stem cell factors and interleukin 3.素素 6 15 · As claimed in the scope of the uu 16: skin culture in - cell-free hormone culture Γ: wherein the two special = any one of the methods, wherein the cells in the presence of metal chelators Be selected. 17. The method of cold-blowing coated cells after the second step (8) of the aforementioned patent application further comprises the method of step 18. 第?, the step further comprises the step of sterilizing in the step (8) Covered cells, and unwrapped coated fine! 9. As mentioned in the foregoing patent scope, the item is collected 72 hours after the cord blood. The 4 cells are in the package. Any of the methods, cultured in the presence of mesenchymal stem cells. - The medium cell is in a process of any one of the preceding claims, wherein the substrate is released into the coated cell. An amplifying group obtained by the method of any of the aforementioned patent claims 45 5 10 20 200916583 An amplified population of gray CD34+ progenitor cells. 23. A dynamic culture vessel containing umbilical cord blood cells coated on a support matrix. A dynamic cell culture vessel of 23 patents, wherein the dynamic cell culture vessel is a rotating wall vessel bioreactor. 25. The dynamic culture vessel of claim 23, wherein the support matrix comprises a hydrogel. The dynamic culture container according to any one of claims 23 to 25, wherein the cord blood cells comprise CD34+ progenitor cells. 27. The expanded cell population of claim 22, for use in regenerative therapies. 28. Use of an expanded population of cells as claimed in claim 22 for the preparation of a medicament for regenerative therapy. &amp; 29. A method for treating a subject in need of a regenerative therapy, comprising: 2 administering the individual as a coated group of claim 21: a cell population of claim 27 to 29, Use or side: wherein the regenerative therapy comprises treatment - blood transfusion or chemistry - related bone marrow loss.咏 31.: The method 'includes (4) coating the cord blood cells with - support, and (b) cold rolling the coated cells. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> The method of claim 1, wherein the cytokine package 46 200916583 comprises one or more of a stem cell factor, a thrombopoietin, and a particle ball-community stimulating factor. 34. 5 35. 36. If the patent application scope is 3000 to 300,000 cells per bead density is coated. The method of U or 34, wherein the ten sentences are only 1 to 1 mm. The method of claim 12, wherein each cell is activated to a concentration of 10 ng/ml. Susie 47
TW97121470A 2007-06-08 2008-06-09 Cell expansion TW200916583A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0711111A GB0711111D0 (en) 2007-06-08 2007-06-08 Cell expansion
GB0713299A GB0713299D0 (en) 2007-07-09 2007-07-09 Cell expansion

Publications (1)

Publication Number Publication Date
TW200916583A true TW200916583A (en) 2009-04-16

Family

ID=39673518

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97121470A TW200916583A (en) 2007-06-08 2008-06-09 Cell expansion

Country Status (2)

Country Link
TW (1) TW200916583A (en)
WO (1) WO2008149129A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950195B1 (en) 2009-03-20 2010-03-29 서울대학교산학협력단 Method for isolation of umbilical cord blood derived-pluripotent stem cell expressing znf281
US9677042B2 (en) 2010-10-08 2017-06-13 Terumo Bct, Inc. Customizable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
AU2012313347A1 (en) * 2011-09-22 2014-05-08 Nohla Therapeutics Australia Pty Ltd Method for the ex vivo expansion of hematopoietic stem and progenitor cells
PT106225B (en) 2012-03-23 2017-11-03 Inst Superior Técnico EXCESSIVE EXPANSION PROCESS OF BIREMETICAL STEM CELLS
EP3068867B1 (en) 2013-11-16 2018-04-18 Terumo BCT, Inc. Expanding cells in a bioreactor
FR3014691B1 (en) * 2013-12-13 2016-02-05 Ets Francais Du Sang CAPSULES CONTAINING CELLS WITH HEMATOPOIETIC POTENTIALITY
JP6783143B2 (en) 2014-03-25 2020-11-11 テルモ ビーシーティー、インコーポレーテッド Passive replenishment of medium
WO2016049421A1 (en) 2014-09-26 2016-03-31 Terumo Bct, Inc. Scheduled feed
WO2017004592A1 (en) 2015-07-02 2017-01-05 Terumo Bct, Inc. Cell growth with mechanical stimuli
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
US11104874B2 (en) 2016-06-07 2021-08-31 Terumo Bct, Inc. Coating a bioreactor
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
JP7393945B2 (en) 2017-03-31 2023-12-07 テルモ ビーシーティー、インコーポレーテッド cell proliferation
CN113667632B (en) * 2021-09-14 2023-10-17 上海艾济生物科技有限公司 Cell culture medium additive, cell culture medium and method for in-vitro cell expansion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1649007A4 (en) * 2003-07-17 2008-05-14 Gamida Cell Ltd Methods for ex-vivo expanding stem/progenitor cells
US7704714B2 (en) * 2004-07-26 2010-04-27 Agency For Science, Technology & Research Encapsulation of cells in biologic compatible scaffolds by coacervation of charged polymers
DE102004043256B4 (en) * 2004-09-07 2013-09-19 Rheinische Friedrich-Wilhelms-Universität Bonn Scalable process for culturing undifferentiated stem cells in suspension
EP1853698A1 (en) * 2005-01-28 2007-11-14 NovaThera Ltd. Methods for embryonic stem cell culture

Also Published As

Publication number Publication date
WO2008149129A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
TW200916583A (en) Cell expansion
US8057789B2 (en) Placental stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells
AU2003216286B2 (en) Embryonic-like stem cells derived from post-partum mammalian placenta and uses and methods of treatment using said cells
JP6180456B2 (en) Postpartum mammalian placenta, its use and placental stem cells derived therefrom
AU2004212009B2 (en) Use of umbilical cord blood to treat individuals having a disease, disorder or condition
CA3046566A1 (en) Post-partum mammalian placental stem cells for use in the treatment of neurological or renal diseases and disorders
AU2012200069B2 (en) Post-partum mammalian placenta, its use and placental stem cells therefrom
NZ579705A (en) Embryonic-like stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells
US20170224739A1 (en) Placental stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells
TALREJA STEM CELLS-A POTENTIAL CURE FOR DIABETES
AU2015203846A1 (en) Post-partum mammalian placenta, its use and placental stem cells therefrom
AU2011202711A1 (en) Embryonic-like stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells