TW200916126A - Organic compounds - Google Patents

Organic compounds Download PDF

Info

Publication number
TW200916126A
TW200916126A TW097132233A TW97132233A TW200916126A TW 200916126 A TW200916126 A TW 200916126A TW 097132233 A TW097132233 A TW 097132233A TW 97132233 A TW97132233 A TW 97132233A TW 200916126 A TW200916126 A TW 200916126A
Authority
TW
Taiwan
Prior art keywords
lipid
dry powder
drug
powder formulation
dispersion
Prior art date
Application number
TW097132233A
Other languages
Chinese (zh)
Inventor
Fadi Eskandar
Original Assignee
Novartis Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40149638&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW200916126(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Novartis Ag filed Critical Novartis Ag
Publication of TW200916126A publication Critical patent/TW200916126A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0043Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers

Abstract

A pharmaceutical composition that comprises: (A) one or more drug substances; (B) a lipid; (C) a co-lipid; and (D) a flowability enhancer, wherein the co-lipid and the flowability enhancer together form a liposomal dispersion that comprises lipid vesicles that encapsulate the one or more drug substances. The pharmaceutical composition is optionally dried to form a dry powder formulation that is free-flowing and preferably suitable for inhalation or nasal administration. Processes for preparing the composition and the dry powder formulation are also described.

Description

200916126 九、發明說明: 【發明所屬之技術領域】 本發明係關於含有一或多種囊封於脂質囊泡中之藥物物 質的新穎醫藥組合物及乾粉調配物。本發明亦係關於製造 此等組合物及調配物之方法及以此等組合物及調配物治療 疾病或病症之方法。本發明之其他態樣、目標及優勢將自 下文描述而明白。 【先前技術】 活性面藥成份[API]或藥物物質若以足夠治療有效量達 到治療位點則其在患者中僅能具有藥理學作用。治療上潛 在地極具活性之藥物因其不穩定、由非目標系統吸收或僅 僅不能進入相關細胞而有時在活體内無效。 已知可藉由將藥物囊封於脂質體中來改良某些藥物向其 治療目標之傳遞。以此古—1 , J、’可經由減小巨噬細胞吞噬作 用來而生物可用率卫/七分、| 用羊且/或減少副作用。0地 樂物囊封於脂質體中之嘗 低覆埋效率、不能可再二到以下AW包括AH之 λ 7jc ^ . 也囊封足量API、不穩定性(尤其 在水性核境中歷時延县 u 在儲存期門… )、對機械應力之敏感性、 在儲存期間納自囊泡滲 質、加工鲁拄更用毋理學上不適合之脂 因 不經濟之大規模製造能力。 b 而要經由脂質囊封偖谦— 其克服上述問題中之一或多者:、樂物物質之醫藥組合物’ 用替代。對製備經由脂;至少向已知組合物提供適 的簡單且有效之方、、專遞藥物物質之醫藥組合物 〜乃凌亦存在需要。 133847.doc 200916126 【發明内容】 、第〜、樣中,本發明提供醫藥組合物,其包含:(a) 或夕種藥物物質;脂質;(C)輔脂質;及(D)流動性增 強劑;該醫藥組合物之特徵在於脂質、輔脂質及流動性增 強W起形成包含囊封該或該等藥物物質之脂質囊泡的脂 質分散液。 在第二態樣中,本發明提供乾粉調配物,其包含:(A) 或夕種藥物物質;脂質;輔脂質;及⑴)流動性增 強劑;該調配物之特徵在於脂質、輔脂質及流動性增強劑 起形成包含囊封該或該等藥物物f之脂質囊泡的脂質分 散液且該脂質分散液經乾燥以形成自由流動之乾粉調配 物。 【實施方式】 月曰貝囊泡之平均直徑較佳在7〇 11111與55〇 之間,更佳 在100 nm與450 nm之間,且甚至更佳在1〇〇 11111與25〇 間。 士乾粉調配物較佳$於吸入投肖。當冑配物為可吸入粉末 時,平均空氣動力學粒度較佳不大於1〇微米,更佳不大於 5微米,且甚至更佳不大於3微米。 或者,乾粉調配物適用於以復水後之液體形式或以乾粉 形式經鼻投與。當調配物為經鼻粉末時,平均空氣動力與 粒度較佳大於1 〇微米。 在第三態樣中,本發明提供製備醫藥組合物之方法,嗜 方法包含以下步驟: 133847.doc 200916126 (a) 在高剪切下混合脂質與輔脂質; (b) 拌合一或多種藥物物質;及 封該或該等藥物物質 粉調配物之方法,該 (C)拌合流動性增強劑以形成包含囊 之脂質囊泡的脂質分散液。 在第四態樣中,本發明提供製備乾 方法包含以下步驟: (a) 在高剪切下混合脂質與輔脂質; (b) 拌合一或多種藥物物質; (c) # 口机動性增強劑以形成包含 曩封該或s亥專藥物物質 之月曰負囊泡的脂質分散液; (d) 視情況稀釋該脂質分散液;及 0)乾燥該脂質分散液以形成粉末調配物。 用於本說明書中之術語具有以下含義: 如本文t所用之”卡爾指數(CarrlsIndex)”為粉末流動性 之指示。其係如下來計算: 卡爾指數(%)=(敲緊密度_容積密度)*丨00/敲緊密度 如本文中所用之,·辅脂質,,為使脂質穩定之物質,:如脂 質囊泡穩定劑。 如所用之”dsRNA"表示經改質或未經改質之募核糖核苷 酸或多核糖核苷酸,及其片段或部分,其為染色體組或合 成來源或源自載體表現,其可經部分或完全雙股化且其可 為純端或含有5’-懸垂物及/或3,_懸垂物,且亦可具有包含 單一寡核糖核苷酸之髮夾形式,該單一寡核糖核苷酸向後 指疊於自身上以得到雙股化區域^ dsRNA亦可含有經改質 133847.doc 200916126 之核苷酸殘基。 如本文中所用之π發射劑量”或"ED”為在致動後自器件發 射之藥物物質的總質量。其並不包括於器件内部或表面上 所剩餘之物質。藉由自適當裝置(例如劑量均勻性取樣裝 置(DUSA))中之器件收集總發射質量且藉由經確認之定量 濕式化學檢定將此回收來量測ED。 如本文中所用之”囊封效率”通常係定義為覆埋於脂質結 構中之藥物物質之量且以百分比表示。 如本文中所用之”細顆粒劑量”或"FPDn為在致動後自器 件發射之藥物物質之總質量,該藥物物質係以小於界定限 值之空氣動力學粒度存在。若非明確說明為替代性限值 (諸如1 μιη或3 μηι等),則一般將此限值視為5 μιη。使用慣 性衝擊器或撞擊器,諸如雙級撞擊器(TSI)、多級液體撞擊 器(MSLI)、安得生級聯衝擊器(Andersen Cascade Impactor,ACI)或 Next Generation 衝擊器(NGI)來量測 FPD。各衝擊器或撞擊器在界定之流率下對於各級具有預 " 定之空氣動力學粒度收集截止點。藉由闡明藉由經確認定 量濕式化學檢定所定量之逐級活性劑回收率來獲得FPD 值,在該經確認定量濕式化學檢定中,將簡單級切割(cut) 用以測定FPD或使用逐級沈積之較複雜數學内插法。 如本文中所用之”細顆粒部分”或"FPF"通常係定義為FPD 除以ED且表示為百分比。此處,將ED之FPF稱為FPF(ED) 且計算為FPF(ED)=(FPD/ED)xlOO%。”細顆粒部分”亦可定 義為FPD除以MD且表示為百分比。此處,將MD之FPF稱 133847.doc 200916126 為 FPF(MD)且計算為 FPF(MD)=(FPD/MD)x 1 〇〇%。 如本文中所用之”流動性增強劑”為增強醫藥組合物之流 動性的物質。 如本文中所用之"幾何標準差"或"GSD,,為自雷射繞射粒 度分布資料之氣溶膠多分散性之度量且如下來計算: GSD = ^ VX10 其中X90及Χίο為顆粒之90%及10%在此尺寸以下之粒度。 如本文中所用之"離子平衡劑"為中和藥物物質離子且便 於囊封於脂質中之物質。 如本文中所用之"脂質"意謂醫藥學上可接受之脂質,包 括(例如)中性脂質、聚乙二醇化脂質、陽離子脂質、兩性 離子脂質(諸如輔助脂質)及陰離子脂質。 如本文中所用之”脂質分散液"意謂由包含雙層膜之球形 囊泡組成之結構,其可包含天然或合成磷脂或純界面活性 劑組份。將此等囊泡分散於如水、有機溶劑或油基介質之 合適分散介質中。 如本文中所用之"質量中值空氣動力學直徑"或”μμα〇" ^明與所纣淪之顆粒具有相同沈降速度之球形單元緻密顆 粒的中值尺寸。 平句粒度為如藉由雷射光繞射所量測的顆粒之平均直 ^ χ90平均粒度為—平均粒度,9〇%試樣顆粒具有在該 平均粒度以下更低之平均粒度。Χ50平均粒度為一平均粒 又0 /〇試才篆顆粒具有在該平均纟度以Τ更低之平均粒 133847.doc 200916126 10%試樣顆粒具有在該 度。Χίο平均粒度為一平均粒度 平均粒度以下更低之平均粒度。 如本文中所用之乾粉調配物之"計量劑量”或” Μ 由相關吸入器器件遞呈之 為以稭 旦^ Φ式存在的樂物物質之始晳 量。舉例而言,MD可為存在 之〜質 用於特疋乾粉吸入器之膠 囊中或存在於適用於特定乾粉吸入器器 物物質之質量。 货汜甲的樂 如,文中所用之”非經腸投與"意謂經由諸如以下各者之 途控藉由靜脈内、皮下、古内、时而咖 夂卜皮内、肌肉内、關節内、眼内、 顱内、鞘内注射來投與:靜脈内、 αλ_ 汉广皮·内、肌肉内、 關節内、眼内、顱内、鞘内戋 稍円次至任何其他身體部分或組 織0 ”醫藥學上可接受”係指在合理醫學判斷範内之化合 物、材料、組合物及/或劑型’其適於與哺乳動物(尤其: 類)之組織接觸,而無過多毒性、刺激、過敏性反應:與 合理益處/風險比率相稱之其他問題併發症。 如本文中所用之”RNA”意謂介導核糖核酸干擾之單股或 雙股核酸分子,其包括(但不限於)雙股核酸("dsNA”)、雙 股 RNA(”dsRNA,,)、微型 RNA(,,miRNA”)、短髮夾 rna ("shRNA")、短干擾核酸(”siNA")及短干擾核糖核酸 ("siRNA”)。 如本文中所用之”siRNA"意謂短干擾RNA且係指適用於 RNA干擾之短雙股核糖核酸。此等siRNA具有(例如)在⑺ 至50個核苷酸,尤其(例如)丨5至25個核苷酸之間的長度。 133847.doc -10- 200916126 如本文中所用之”體積平均直徑"或” vmd”意謂使用雷射 繞射或任何其他合適技術所量測的與相關顆粒具有相同體 積之球形單元緻密顆粒的平均尺寸。 在本》兒明書通篇且在其下之申請專利範圍中,除非文中 斤而否則將3 3吾&含"視為表示包括所述整數或步驟或 數或Y驟之群但不排除任何其他整數或步驟或整數或步 驟之群。 就廣義的術浯而言’本發明係關於醫藥組合物。該組合 物匕3 . (A)一或多種藥物物質;(B)脂質;(C)輔脂質;及 、)M·動11 i曰強劑。該醫藥組合物之特徵在於脂質、輔脂 2机動性增H起形成包含囊封該或該等藥物物質之 脂質囊泡的脂質分散液。可將醫藥組合物乾燥以形成自由 流動亡較佳適於吸入及經鼻投與之乾粉調配物。 將藥物物質覆埋於脂質雙層中以形成脂質囊泡。藉由脂 質層進-步塗佈若干脂質囊泡以形成脂質乾粉囊。藉由較 佳=結晶物質之流動性增強劑進—步塗佈此囊以形成具有 所而平均粒度之顆粒。最終顆粒結構形成因小接觸面積故 ㈣㈣聚力之自由流動脂質粉末。 藉由囊封藥物物質’可能增大局部及全身生物可用率, 降低大分子及帶負電荷分子之巨噬細胞吞噬作用,因此減 少副作用(例如,經鼻刺激及對鼻上皮層之損害)且降低藥 物物貝之吸濕特徵,藉此改良物 該-等藥物物質為包括小分子量化合二:分子之任 何醫樂活性物質。合適小分子量化合物包括(但不限於)(例 133847.doc 200916126 如)P2_腎上腺素能受體促效劑(p2-adrenoceptor agonist)、簟 毒驗结抗劑、糖皮質類固醇、非類固醇糖皮質激素受體促 效劑、Aza促效劑、A2B拮抗劑、抗組織胺、卡斯蛋白酶 (caspase)抑制劑、LTB4拮抗劑、LTD4拮抗劑、磷酸二酯 酶抑制劑(尤其PDE4抑制劑或PDE5抑制劑)、黏液溶解藥 (mueolytics)、抗生素、基質金屬蛋白酶抑制劑(MMpi 的)、白三烯受體拮抗劑(LTRA)、IgE合成抑制劑、抗生 素、干擾素、钟通道抑制劑、免疫調節劑、抗腫瘤劑、彈 性蛋白酶抑制劑、在CRTH2受體處之前列腺素D2(pGD2) 拮抗劑活性劑及列關康(prostatin)抑制劑。合適大分子包 括(但不限於)肽、蛋白質、寡核苷酸、RNA(包括dsNA、 dsRNA、miRNA、shRNA、siNA及 siRNA)、DNA、質體、 胰島素、介白素、生長激素、肝素、雌二醇、GLP-l、抗 生素、抗腫瘤劑及抗體。 各藥物物質係以治療有效量或濃度存在。此治療有效量 或濃度為一般技術者所知’因為該量或濃度係隨所用治療 劑及所處理之適應症而改變。 在某些較佳實施例中,藥物物質為寡核苷酸或rNa(尤 其 siRNA) 〇 在某些較佳實施例中,該或該等藥物物質適於吸入投與 或經鼻施用。 ” 脂質為醫藥學上可接受之脂質,其包括中性脂質、陽離 子脂質、兩性離子脂質及陰離子脂質。中性脂質之實例為 (但不限於)磷脂醯膽鹼(其可能經或可能不經氫化或聚乙二 133847.doc •12- 200916126 醇化)*然或合成麟脂醯乙醇胺、麟脂酿絲胺酸、鱗脂 酿甘油、麟脂醯肌醇。在某些較佳實施例中,月旨質為鱗脂 醯膽鹼(例如一-肉豆蔻醯基加⑽咖⑴磷脂醯膽鹼 (DMPC))、一-軟脂醯基磷脂醯膽鹼(Dppc)、氫化磷脂醯 膽驗(例如,類脂S PC_3)或大豆麟脂(例如,類脂π或大 旦卵磷月曰)。月曰質較佳為二_肉豆蔻醯基磷脂醯膽鹼、二-軟 脂醢基填脂醯膽驗、夫自^ > 職大丑卵磷脂或氫化磷脂醯膽鹼。 陽離子月曰質之實例包括(但不限於”,2_二油醯基小三甲 銨丙烧(DOTAP) ’ N-[l-2(2,3-二油基氧基)丙基]_N,N,N_s 甲基氣化銨(DOTMA) ; 2,3-二油醯基氧基·N_叫精胺曱醯 胺基)乙基]-N,N-一甲基+丙錢(D〇spA);二(十八幻酿胺 基二醇(giycu)精胺(DOGS);及 3,[n_n1,N-二甲基乙二胺)_ 胺甲醯基]_膽固醇(D-膽固醇)。兩性離子脂質之實例包括 (C不限於)1,2-一油醯基·sn_甘油基_3_填酸乙醇胺(D〇pE) 及膽固醇。 輔月曰貝(其為使脂質穩定,尤其使脂質囊泡穩定之物質) 可為(仁不限於)膽固肖、聚乙二醇化磷脂醯膽、磷脂醯 甘油、聚山梨醇酷、中7 t乙一知(PEG)、聚乙烯吡咯啶(PVP) 或膽固酵。在某此動! #香& y , 一1佳實施例中,輔脂質為聚乙二酵化磷 脂醯膽驗或膽固醇。 脂質/輔脂質組合之實例包括(但T限於)二-軟脂醯基碟 ㈣膽驗[DPPC]/N-(幾基-曱氧基聚乙二醇-2000)- i,2_二硬 月曰醯基sn-甘油_3_磷酸乙醇胺、鈉鹽[MpEG_a〇〇_ SPE] 一 _軟知醯基磷脂醯膽鹼[Dppc]/N_(羰基_甲氧基 133847.doc -13. 200916126 聚乙二醇-2000)-1,2-二硬脂醯基-sn-甘油-3-磷酸乙醇胺、 鈉鹽[MPEG-2000-DSPE]/膽固醇、二-軟脂醯基磷脂醯膽鹼 [DPPC]/N-(羰基-曱氧基聚乙二醇-2000)-1,2-二硬脂醯基-sn-甘油-3-磷酸乙醇胺、鈉鹽[MPEG-750-DSPE]、二-軟脂 醯基磷脂醯膽鹼[DPPC]/N-(羰基-甲氧基聚乙二醇-2000)-1,2-二硬脂醯基-sn-甘油-3-磷酸乙醇胺、鈉鹽[MPEG-750-DSPE]/膽固醇、二-軟脂醯基磷脂醯膽鹼[DPPC]/N-(羰基-甲氧基聚乙二醇-5000)-1,2-二肉豆蔻醯基-sn-甘油-3-磷酸 乙醇胺、鈉鹽[MPEG-5000-DMPE]、二-軟脂醯基磷脂醯膽 鹼[DPPC]/N-(羰基-甲氧基聚乙二醇-5000)-1,2-二肉豆蔻醯 基-sn-甘油-3-磷酸乙醇胺、鈉鹽[MPEG-5000-DMPE]/膽固 醇、二-軟脂醯基磷脂醯膽鹼[DPPC]/N-(羰基-曱氧基聚乙 二醇-2000)-1,2-二肉豆蔻醯基-sn-甘油-3-磷酸乙醇胺、鈉 鹽[MPEG-2000-DMPE]及二-軟脂醯基磷脂醯膽鹼 PPPC]/N-(羰基-曱氧基聚乙二醇-2000)-1,2-二肉豆蔻醯 基-sn-甘油-3-磷酸乙醇胺、鈉鹽[MPEG-2000-DMPE]/膽固 醇0 流動性增強劑(其為增強醫藥組合物之流動性的物質)可 為(但不限於)疏水性非吸濕性物質,諸如胺基酸、甘露糖 醇、菊粉、蔗糖、乳糖、L-白胺酸、D-白胺酸、異白胺 酸、血清白蛋白、右旋糖、麥芽糖、甘胺酸、麥芽糖醇、 硬脂酸鈣、硬脂酸鎂、赤藻糖醇或其混合物。 在某些較佳實施例中,流動性增強劑為結晶。結晶流動 性增強劑傾向於在脂質分散液中在脂質囊泡之外表面上結 133847.doc 200916126 曰曰 …増強劑為麥芽糖、甘露糖 走糖麥芽糖醇'甘胺酸、硬 在某些較佳實施例中, 醇、菊粉、蔗糖、乳糖、 脂酸鈣或硬脂酸鎂。 當藥物物質為離子時,經常需 ㊉而要醫樂組合物含有離早承 衡劑及/或緩衝系統。離子平 3有離子千 (其為減少藥物物質離子 且以便囊封於中性脂質中之物質 貞)了為(但不限於)硬脂酸 鈣、虱化鈣、鱗酸三鈣、碟酸急_ 技 嶙駸虱—鈣 '山梨酸鈣、丙醆 舞、氯化鎮或硬脂酸鎂。在某些較佳實施例中,離子平衡 劑為氯储、魏三㉝s切脂_。緩衝系統調節脂質分 散液之ΡΗ值且調節藥物物質上之離子電荷。其可為(但不 限於)乳酸、#檬酸、乙酸鹽緩衝液、甘胺酸、鱗酸鹽緩 衝液或tris緩衝液。在某些較佳實施例中,緩衝液為乳酸 (pH 4.0)及磷酸鹽緩衝液(pH 6 5)。 如上所述,本發明之醫藥組合物可經乾燥以形成自由流 動且較佳適於吸入及/或經鼻投與之乾粉調配物。 根據本發明,提供改善人類個體(例如患者)中之藥物物 質誘發之炎症的方法,該方法包含提供如本文中所述之乾 粉調配物。在較佳實施例中,乾粉調配物包含脂質分散 液’該脂質分散液包含諸如DPCC之中性脂質。吾人因此 亦提供包含一或多種藥物物質以便投與人類患者之乾粉調 配物’其中該調配物一旦投與該人類患者,即改善由該藥 物物質誘發之炎症,該乾粉調配物包含諸如DPCC之中性 月曰質、輔脂質及流動性增強劑(例如,結晶流動性增強 133847.doc -15- 200916126 劑)°該乾粉調配物可藉由如本文所述 經由呼吸道之藥物傳遞對於全身及局部作 的藥物投與途徑。與API(尤其為生物分用^為誘人 經腸投藥相比,其經由呼吸道之投 目前習知非 皮或非經腸途徑相比之大量優勢 、,’ 為較簡單之自身投靼,脯支― 口途徨相比其 繞過肝臟收提供大的黏_, … 降低藥物之酶促及ΡΗ降解。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to novel pharmaceutical compositions and dry powder formulations containing one or more pharmaceutical substances encapsulated in lipid vesicles. The invention is also directed to methods of making such compositions and formulations, and methods of treating such diseases or conditions with such compositions and formulations. Other aspects, objects, and advantages of the invention will be apparent from the description. [Prior Art] The active noodle ingredient [API] or drug substance can only have a pharmacological effect in a patient if it is in a therapeutically effective amount to reach a therapeutic site. Treatment of potentially active drugs is sometimes ineffective in vivo because of its instability, its absorption by non-target systems, or its inability to enter relevant cells. It is known to improve the delivery of certain drugs to their therapeutic targets by encapsulating the drug in liposomes. This ancient -1, J, ' can be used to reduce macrophage phagocytosis and bioavailability rate / seven points, | use sheep and / or reduce side effects. The low-burial efficiency of the 0 music is encapsulated in the liposome, and can not be repeated to the following AW including AH λ 7jc ^ . Also encapsulates sufficient API, instability (especially in the water-based nuclear environment) County u in the storage period of the door ...), sensitivity to mechanical stress, during the storage period from the vesicle osmosis, processing reckless use of physico-chemically unsuitable fat due to uneconomic large-scale manufacturing capacity. b is to be replaced by a lipid capsule that overcomes one or more of the above problems: a pharmaceutical composition of a musical substance. There is also a need for a pharmaceutical composition for the preparation of a lipid-containing compound which provides at least a suitable and effective composition for the known compositions. 133847.doc 200916126 SUMMARY OF THE INVENTION The present invention provides a pharmaceutical composition comprising: (a) or a drug substance; a lipid; (C) a co-lipid; and (D) a fluidity enhancer The pharmaceutical composition is characterized by a lipid, a co-lipid, and an increased fluidity to form a lipid dispersion comprising lipid vesicles encapsulating the or the drug substance. In a second aspect, the present invention provides a dry powder formulation comprising: (A) or a drug substance; a lipid; a co-lipid; and (1) a fluidity enhancer; the formulation characterized by a lipid, a co-lipid and The fluidity enhancer functions to form a lipid dispersion comprising lipid vesicles encapsulating the or the drug substance f and the lipid dispersion is dried to form a free flowing dry powder formulation. [Embodiment] The average diameter of the moon mussel vesicles is preferably between 7〇11111 and 55〇, more preferably between 100 nm and 450 nm, and even more preferably between 1〇〇11111 and 25〇. It is better to use a dry powder formulation for inhalation. When the quinone compound is an inhalable powder, the average aerodynamic particle size is preferably not more than 1 Å, more preferably not more than 5 μm, and even more preferably not more than 3 μm. Alternatively, the dry powder formulation is suitable for nasal administration in the form of a reconstituted liquid or in the form of a dry powder. When the formulation is a nasal powder, the average aerodynamic force and particle size are preferably greater than 1 〇 microns. In a third aspect, the invention provides a method of preparing a pharmaceutical composition comprising the steps of: 133847.doc 200916126 (a) mixing lipids and co-lipids under high shear; (b) mixing one or more drugs And a method of sealing the formulation of the drug substance, the (C) mixing fluidity enhancer to form a lipid dispersion comprising a lipid vesicle of the capsule. In a fourth aspect, the invention provides a method of preparing a dry process comprising the steps of: (a) mixing a lipid with a co-lipid under high shear; (b) mixing one or more drug substances; (c) enhancing port mobility The agent is used to form a lipid dispersion comprising a menstrual vesicle that encapsulates the drug substance; (d) diluting the lipid dispersion as appropriate; and 0) drying the lipid dispersion to form a powder formulation. The terms used in this specification have the following meanings: "Carrls Index" as used herein is an indication of powder fluidity. It is calculated as follows: Carr index (%) = (knock tightness _ bulk density) * 丨 00 / knock tightness as used herein, · co-lipids, substances that stabilize lipids, such as lipid vesicles stabilizer. As used herein, "dsRNA" refers to a modified or unmodified ribonucleotide or polyribonucleotide, and fragments or portions thereof, which are genomic or synthetic sources or derived from a vector, which may be Partially or completely double-stranded and which may be pure ends or contain 5'-overhangs and/or 3,_overhangs, and may also have a hairpin form comprising a single oligoribonucleotide, the single oligoribonucleoside The acid is folded back on itself to obtain a double-stranded region. The dsRNA may also contain a nucleotide residue that has been modified by 133847.doc 200916126. The π-emission dose or "ED" as used herein is actuated The total mass of the drug substance emitted from the device. It does not include the material remaining inside or on the surface of the device. The total emission quality is collected by a device from a suitable device, such as a dose uniformity sampling device (DUSA). The ED is measured by a confirmed quantitative wet chemical assay. The "encapsulation efficiency" as used herein is generally defined as the amount of drug substance buried in the lipid structure and expressed as a percentage. "fine" used in The particle dose" or "FPDn is the total mass of the drug substance emitted from the device after actuation, the drug substance being present at an aerodynamic particle size less than the defined limit. If not explicitly stated as an alternative limit (such as 1 μιη) Or 3 μηι, etc., this limit is generally considered to be 5 μηη. Use inertial impactors or impactors such as two-stage striker (TSI), multi-stage liquid impactor (MSLI), Anderson cascade impactor (Andersen Cascade Impactor, ACI) or Next Generation Impactor (NGI) to measure FPD. Each impactor or striker has a pre-defined aerodynamic grain collection cut-off point for each stage at a defined flow rate. Clarify the FPD value obtained by confirming the quantified active agent recovery quantified by quantitative wet chemical assays in which simple cuts are used to determine FPD or use stepwise More complex mathematical interpolation of deposition. As used herein, "fine particle fraction" or "FPF" is generally defined as FPD divided by ED and expressed as a percentage. Here, the FPF of ED is called FPF (ED) And Calculated as FPF (ED) = (FPD / ED) x lOO%. "fine particle portion" can also be defined as FPD divided by MD and expressed as a percentage. Here, the FPF of MD is called 133847.doc 200916126 is FPF (MD) And calculated as FPF (MD) = (FPD / MD) x 1 〇〇%. As used herein, "fluidity enhancer" is a substance that enhances the fluidity of a pharmaceutical composition. As used herein, "geometry standards The difference " or "GSD, is a measure of the aerosol polydispersity from the laser diffraction particle size distribution data and is calculated as follows: GSD = ^ VX10 where X90 and Χίο are 90% and 10% of the particles in this size The following granularity. "Ion balance agent" as used herein is a substance that neutralizes a drug substance ion and is encapsulated in a lipid. As used herein, "lipid" means a pharmaceutically acceptable lipid, including, for example, neutral lipids, pegylated lipids, cationic lipids, zwitterionic lipids (such as helper lipids), and anionic lipids. As used herein, "lipid dispersion" means a structure consisting of a spherical vesicle comprising a bilayer membrane, which may comprise a natural or synthetic phospholipid or a pure surfactant component. These vesicles are dispersed, such as water, In a suitable dispersion medium of organic solvent or oil-based medium. As used herein, "mass median aerodynamic diameter" or "μμα〇" is a spherical unit dense with the same sedimentation velocity. The median size of the particles. The average particle size of the particles as measured by laser light diffraction is an average of χ90 average particle size - average particle size, and 9% of the sample particles have a lower average particle size below the average particle size. The average particle size of Χ50 is an average granule and 0/〇 test 篆 granules have an average granule at that average 纟 Τ 133 133 847 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Χίο The average particle size is an average particle size below the average particle size. The "metering dose" or " of the dry powder formulation as used herein is presented by the relevant inhaler device as the initial amount of the musical substance present in the form of straw Φ. For example, MD may be present in the capsule of a special dry powder inhaler or in the presence of a substance suitable for a particular dry powder inhaler. The mercy of the armor, the "parenteral administration" used in the text means that it is controlled by intravenous, subcutaneous, ancient, temporal, intramuscular, intra-articular, intra-articular, etc. Intraocular, intracranial, intrathecal injection for administration: intravenous, αλ_ Hanguangpi·intra, intramuscular, intra-articular, intraocular, intracranial, intrathecal, sputum to any other body part or tissue 0” "Pharmaceutically acceptable" means a compound, material, composition, and/or dosage form that is within the scope of sound medical judgment. It is suitable for contact with tissues of a mammal (especially: class) without excessive toxicity, irritation, or allergies. Reaction: Other problematic complications commensurate with a reasonable benefit/risk ratio. As used herein, "RNA" means a single or double-stranded nucleic acid molecule that mediates ribonucleic acid interference, including but not limited to double-stranded nucleic acids ( "dsNA"), double-stranded RNA ("dsRNA,,), microRNA (,, miRNA)), short hairpin rna ("shRNA"), short interfering nucleic acid ("siNA"), and short interfering ribonucleic acid ( "siRNA"). As used herein, "siRNA" refers to short interfering RNA and refers to short double-stranded ribonucleic acid suitable for RNA interference. Such siRNAs have, for example, from (7) to 50 nucleotides, especially, for example, 丨5 to Length between 25 nucleotides. 133847.doc -10- 200916126 "Volume average diameter" or "vmd" as used herein means measured and correlated using laser diffraction or any other suitable technique. The particles have the same size as the average size of the spherical unit dense particles. In the scope of the patent application and the patent application scope thereof, unless the context of the text, 3 3 I & include " is considered to include the integer or step or number or group of Y steps but not Exclude any other integer or step or group of integers or steps. In the broadest sense of the art, the present invention relates to pharmaceutical compositions. The composition 匕3. (A) one or more drug substances; (B) lipids; (C) co-lipids; and, M) kinetics. The pharmaceutical composition is characterized in that the lipid and the co-lipid 2 are increased in mobility to form a lipid dispersion comprising lipid vesicles encapsulating the drug substance or the drug substance. The pharmaceutical composition can be dried to form a dry powder formulation which is preferably free of fluidity and which is preferably suitable for inhalation and nasal administration. The drug substance is embedded in a lipid bilayer to form a lipid vesicle. Several lipid vesicles are further coated by the lipid layer to form a lipid dry powder capsule. The capsule is further coated by a fluidity enhancer of a preferred = crystalline material to form particles having an average particle size. The final particle structure forms a free-flowing lipid powder due to the small contact area (4) (4). By encapsulating the drug substance 'may increase local and systemic bioavailability, reduce macrophage phagocytosis of macromolecules and negatively charged molecules, thus reducing side effects (eg, nasal stimulation and damage to the nasal epithelial layer) and The hygroscopic characteristic of the drug substance is reduced, whereby the drug substance is a pharmaceutical substance comprising a small molecular weight compound: a molecule. Suitable small molecular weight compounds include, but are not limited to, (example 133847.doc 200916126 eg) P2_adrenoceptor agonist (p2-adrenoceptor agonist), scorpion venom inhibitor, glucocorticosteroid, non-steroidal glucocorticoid Hormone receptor agonist, Aza agonist, A2B antagonist, antihistamine, caspase inhibitor, LTB4 antagonist, LTD4 antagonist, phosphodiesterase inhibitor (especially PDE4 inhibitor or PDE5) Inhibitors), mueolytics, antibiotics, matrix metalloproteinase inhibitors (MMpi), leukotriene receptor antagonists (LTRA), IgE synthesis inhibitors, antibiotics, interferons, clock channel inhibitors, immunity Modulators, antineoplastic agents, elastase inhibitors, prostaglandin D2 (pGD2) antagonist active agents at the CRTH2 receptor, and prostatin inhibitors. Suitable macromolecules include, but are not limited to, peptides, proteins, oligonucleotides, RNA (including dsNA, dsRNA, miRNA, shRNA, siNA, and siRNA), DNA, plastids, insulin, interleukin, growth hormone, heparin, Estradiol, GLP-1, antibiotics, antitumor agents and antibodies. Each drug substance is present in a therapeutically effective amount or concentration. This therapeutically effective amount or concentration is known to those of ordinary skill' because the amount or concentration will vary with the therapeutic agent employed and the indication being treated. In certain preferred embodiments, the drug substance is an oligonucleotide or rNa (especially siRNA). In certain preferred embodiments, the or the drug substance is suitable for administration by inhalation or nasal administration. Lipids are pharmaceutically acceptable lipids including neutral lipids, cationic lipids, zwitterionic lipids, and anionic lipids. Examples of neutral lipids are, but are not limited to, phospholipid choline (which may or may not be Hydrogenation or polyethylene II 133847.doc • 12- 200916126 alcoholation) * or synthetic linoleum ethanolamine, linoleic acid, glycerin, linoleic acid, in certain preferred embodiments, The genus is squamous choline (eg, one-myristyl ketone (10) coffee (1) phospholipid choline (DMPC)), one-lipidylphospholipid choline (Dppc), hydrogenated phospholipid guanidine test ( For example, lipid S PC_3) or soybean linoleum (for example, lipid π or large denier phosphatase). The sorghum is preferably di-myristyl phospholipid choline, di-lipid ruthenium Lipid sputum test, husband from ^ > Occupational ugly lecithin or hydrogenated phospholipid choline. Examples of cationic enamel include (but not limited to, 2 - dioleyl trimethylammonium propylene (DOTAP) ' N-[l-2(2,3-dioleyloxy)propyl]_N,N,N_s methyl ammonium hydride (DOTMA); 2,3-dioleyloxy group N_called spermine曱Amidino)ethyl]-N,N-methyl+propanol (D〇spA); bis (18 glysine diol (giycu) spermine (DOGS); and 3,[n_n1,N -Dimethylethylenediamine)-aminomethylmercapto]-cholesterol (D-cholesterol). Examples of zwitterionic lipids include (C is not limited to) 1,2-monooleyls.sn.-glyceryl_3_acidic ethanolamine (D〇pE) and cholesterol. Auxiliary moon mussels (which are substances that stabilize lipids, especially those that stabilize lipid vesicles) can be (not limited to) cholesterol, PEGylated phospholipids, phospholipid glycerol, polysorbate, medium 7 t Yizhizhi (PEG), polyvinylpyrrolidine (PVP) or cholesterol. In some cases, #香& y, in a preferred embodiment, the co-lipid is a polyacetylidene phosphate test or cholesterol. Examples of lipid/co-lipid combinations include (but T is limited to) di-lipid oxime-based discs (four) biliary assays [DPPC]/N-(severyl-decyloxy polyethylene glycol-2000)-i, 2_di-hard Sodium sulfhydryl-sn-glycerol _3_phosphoethanolamine, sodium salt [MpEG_a〇〇_SPE] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Polyethylene glycol-2000)-1,2-distearoyl-sn-glycerol-3-phosphoethanolamine, sodium salt [MPEG-2000-DSPE]/cholesterol, bis-lipidyl phospholipid choline [ DPPC]/N-(carbonyl-decyloxy polyethylene glycol-2000)-1,2-distearoyl-sn-glycerol-3-phosphoethanolamine, sodium salt [MPEG-750-DSPE], two- Peptidyl phospholipid choline [DPPC]/N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt [ MPEG-750-DSPE]/cholesterol, bis-lipidylphosphatidylcholine [DPPC]/N-(carbonyl-methoxypolyethylene glycol-5000)-1,2-dimyristyl-sn - glycerol-3-phosphoethanolamine, sodium salt [MPEG-5000-DMPE], bis-lipidylphosphatidylcholine [DPPC]/N-(carbonyl-methoxypolyethylene glycol-5000)-1, 2-dimyristyl-sn-glycerol-3-phosphoethanolamine, Salt [MPEG-5000-DMPE]/cholesterol, bis-lipidylphosphatidylcholine [DPPC]/N-(carbonyl-decyloxy polyethylene glycol-2000)-1,2-dimyristyl -sn-glycerol-3-phosphoethanolamine, sodium salt [MPEG-2000-DMPE] and di-pipylphosphatidylcholine choline PPPC]/N-(carbonyl-decyloxy polyethylene glycol-2000)-1 , 2-dimyristyl-sn-glycerol-3-phosphoethanolamine, sodium salt [MPEG-2000-DMPE]/cholesterol 0 fluidity enhancer (which is a substance that enhances the fluidity of a pharmaceutical composition) can be ( But not limited to) hydrophobic non-hygroscopic substances such as amino acids, mannitol, inulin, sucrose, lactose, L-leucine, D-leucine, isoleucine, serum albumin, right Rotose, maltose, glycine, maltitol, calcium stearate, magnesium stearate, erythritol or mixtures thereof. In certain preferred embodiments, the flow enhancer is crystalline. Crystalline fluidity enhancers tend to precipitate on the outer surface of lipid vesicles in lipid dispersions. 133847.doc 200916126 増...The strongener is maltose, mannose, sugar maltitol 'glycine, hard at some preferred In the examples, alcohol, inulin, sucrose, lactose, calcium or calcium stearate. When the drug substance is an ion, it is often necessary to have a pharmaceutical composition containing an early weighing agent and/or a buffer system. Ion Ping 3 has an ion thousand (which is a substance that reduces the ion of the drug substance and is encapsulated in the neutral lipid), but is not limited to calcium stearate, calcium telluride, tricalcium citrate, and sour acid. _Technology - calcium 'sodium sorbate, acetaminophen, chlorinated or magnesium stearate. In certain preferred embodiments, the ion balance agent is a chlorine storage, Wei San 33s cut fat. The buffer system regulates the enthalpy of the lipid dispersion and modulates the ionic charge on the drug substance. It can be, but is not limited to, lactic acid, #酸酸, acetate buffer, glycine, sulphate buffer or tris buffer. In certain preferred embodiments, the buffer is lactic acid (pH 4.0) and phosphate buffer (pH 65). As indicated above, the pharmaceutical compositions of the present invention may be dried to form a dry powder formulation which is free flowing and which is preferably suitable for inhalation and/or nasal administration. According to the present invention, there is provided a method of improving the drug substance-induced inflammation in a human subject (e.g., a patient), the method comprising providing a dry powder formulation as described herein. In a preferred embodiment, the dry powder formulation comprises a lipid dispersion. The lipid dispersion comprises a neutral lipid such as DPCC. We therefore also provide a dry powder formulation comprising one or more drug substances for administration to a human patient, wherein once the formulation is administered to the human patient, the inflammation induced by the drug substance is improved, the dry powder formulation comprising such as DPCC Sexual enamel, co-lipids, and fluidity enhancers (eg, crystal flow enhancer 133847.doc -15-200916126). The dry powder formulation can be administered systemically and locally by drug delivery via the respiratory tract as described herein. The route of drug administration. Compared with API (especially for bio-invasive ^ as an attractive enteral drug, it is currently a relatively simple self-injection compared to the conventional non-skin or parenteral route through the respiratory tract," The branch-mouth route provides a larger viscosity than the bypass of the liver, which reduces the enzymatic and deuterium degradation of the drug.

胃吸入傳遞藥物物質亦使得能夠局部施用於肺中, 減少副作用且改良在較高局部濃度下藥物之有效性。 以供在治療呼吸道疾病中吸人之乾粉調配物—般藉由混 合微粉化活性醫藥成份與粗载劑顆粒來調配以得到有序混 合物。然而,超細顆粒傾向於具有不良流動性及氣溶膠化 特導致相對較低之可呼吸部分’亦即沈積於肺周邊之 氣溶膠部分。另一擔心為顆粒-顆粒間的相互作用力,諸 如疏水結合、靜電及毛細.管水相互作用’其可導致形成聚 集物及聚結物。此等因素可導致習知製備之乾粉系統的效 率之顯著^。此可使得製造昂貴大分子之乾粉不經濟且 導致長期穩定性之擔心。 就廣義術語而言,鼻内投與途徑僅傾向於用以傳遞習知 藥物以治療局部不適,諸如鼻充血及竇感染。然而,新近 某些臨床試驗已證明當治療諸如哮喘、過敏症、囊腫性纖 維化、嚴重急性呼吸道症候群及由呼吸道融合病毒及流感 病毒引起之感染的嚴重呼吸道疾病時,鼻内途徑亦可適 用--參見 Hussain Α.,Jc/v. Drwg £)以 7?ev_ (1998) 29·· 3 9-49; 133847.doc •16- 200916126Stomach inhalation delivery of the drug substance also enables topical application to the lungs, reducing side effects and improving the effectiveness of the drug at higher local concentrations. A dry powder formulation for inhaling in the treatment of respiratory diseases is typically formulated by mixing micronized active pharmaceutical ingredients with coarse carrier particles to provide an ordered mixture. However, ultrafine particles tend to have poor fluidity and aerosolization, resulting in a relatively low respirable portion' that is, an aerosol portion deposited on the periphery of the lung. Another concern is particle-particle interaction forces, such as hydrophobic binding, electrostatic and capillary. Tube-water interactions, which can result in the formation of aggregates and agglomerates. These factors can lead to significant efficiencies in conventionally prepared dry powder systems. This can make the dry powder for the manufacture of expensive macromolecules uneconomical and cause long-term stability concerns. In broad terms, intranasal routes of administration are only preferred to deliver conventional drugs to treat local discomfort, such as nasal congestion and sinus infections. However, recent clinical trials have shown that intranasal routes are also applicable when treating severe respiratory diseases such as asthma, allergies, cystic fibrosis, severe acute respiratory syndrome, and infections caused by respiratory syncytial and influenza viruses. - see Hussain Α., Jc/v. Drwg £) by 7?ev_ (1998) 29·· 3 9-49; 133847.doc •16- 200916126

Nyce及 Metzger, iVa/wre (1997) 385:721-725; Finotto等人, 五:Φ· Md. (2001) 193: 1247-1260; Allakhverdi等人, J. Respir. Crit. Care Med. (2002) 165: 1015-1021, Aurora J.,Drwg 幻;(2007) 85。經鼻投藥可為用 於藥物全身性施用之誘人方法,因為其允許非侵襲性施用 同時期望獲得改良之患者順應性。鼻腔為吸收提供大的表 面積’其係經充當界面活性劑之表面活性脂蛋白所覆蓋且 因此可有助於藥物物質之細胞内攝取,該等藥物物質包括 消炎劑、 免疫刺激劑、激素、肽、蛋白質、 抗體、募核苷 酸、疫苗、pDNA、RNA、DNA及抗腫瘤劑。 液體經鼻喷霧劑及液滴為最常用於鼻内投藥之藥物調配 物。然而’乾粉調配物可比液艚舖献Nyce and Metzger, iVa/wre (1997) 385:721-725; Finotto et al., V: Φ·Md. (2001) 193: 1247-1260; Allakhverdi et al., J. Respir. Crit. Care Med. (2002 ) 165: 1015-1021, Aurora J., Drwg Fantasy; (2007) 85. Nasal administration can be an attractive method for systemic administration of a drug because it allows for non-invasive administration while at the same time achieving improved patient compliance. The nasal cavity provides a large surface area for absorption. It is covered by a surface active lipoprotein that acts as a surfactant and thus can contribute to the intracellular uptake of drug substances, including anti-inflammatory agents, immunostimulants, hormones, peptides. , proteins, antibodies, nucleotides, vaccines, pDNA, RNA, DNA and anti-tumor agents. Liquid nasal sprays and droplets are the most commonly used pharmaceutical formulations for intranasal administration. However, 'dry powder formulations can be compared to liquid rafts.

股Π将定區域且提供持續釋放作用。 續釋放作用。 另外, 可將經鼻傳遞系統設計為靶向鼻腔中 之特定區域The femoral hernia will be regional and provide sustained release. Continued release. In addition, the nasal delivery system can be designed to target specific areas of the nasal cavity

沈積, 其中滲透性一般較高, 仍网配物可靶向鼻後部中之 因此在鼻中提供較短滯留時 I33847.doc 200916126 間及因此之全身性吸收,且此乾粉形成本發明之—實施 儘管使用液體經鼻噴霧傳遞系統來靶向特定鼻區由於所 產生液滴之廣;乏分布以及對噴霧模式之依賴性而具有挑戰 性,但本發明之經鼻乾粉娜物可精確且有效地將藥物傳 遞至鼻中之相關區域。 ’ 以供經鼻及/或肺投藥之自由流動乾粉的本發明之乾粉Deposition, wherein the permeability is generally high, and the reticulated ligand can be targeted to the posterior portion of the nose, thereby providing a short retention in the nose, and thus systemic absorption, and the dry powder forms the present invention. Although the use of a liquid nasal spray delivery system to target a particular nasal area is challenging due to the wide range of droplets produced; the lack of distribution and dependence on the spray pattern, the nasal dry powder of the present invention can be accurately and efficiently The drug is delivered to the relevant area in the nose. Dry powder of the present invention for free flowing dry powder for nasal and/or pulmonary administration

調配物提供多種適用益處。舉例而言,其傾向於比傳:: 質分散液調配物更穩定m有效地傳遞藥物物質且允 許減少待施用之劑量,其使得藥物物質能夠靶向鼻腔、上 氣管或肺泡沈積之特定區_以便局部《全身十生施用且其並 不需要使用防腐劑。 諸如硬脂酸鎂之抗黏劑已用以處理在含有低分子量藥物 物質之乾粉調配物中的此等問題中之一些。然❿,當調配 大刀子為肽、蛋白質、寡核普酸、rna*dna時,此等藥 W並不適合。另外,其並不有助於使API靶向細胞中或中 止肺之天然清除機制直至已有效傳遞藥物。 脂質囊封之乾燥顆粒通常具有不良流動性及高黏性,其 在包括填充及包裝之下游加工中產生問題n令人驚 °牙地本發明之乾粉調配物大體上自由流動,同時具有低 黏性。 _ 本發明之乾粉調配物亦具有良好物理化學粉末特徵,如 j員粒/顆粒接觸面積及顆粒/包裝材料接觸面積減小而 黏著性/内平:fr, 人 減小。此可確保所需粉末氣溶膠化特徵及 133847.doc -18· 200916126 主要包裝或吸人器件中之較少粉末保留。 乾粉調配物亦可含有醫藥 劑、佐劑、穩定劑、防腐劑、分形劑,諸如載 項技術中習知之其他試劑(已顧及: 劑’諸如碌酸鹽、擰檬酸鹽、丁二酸越、性;緩衝 酸或其鹽;抗氧化劑,諸如抗壞血酸;夂=他有機 如聚乙烯吡咯啶酮;單醣、_ ’ D物’諸 鑪維去七甘/ 一醣及其他碳水化合物,包括 =素U生物、葡萄糖、甘露糖或糊精 如贿A;糖醇,諸如甘露糖醇或山梨糖醇;平衡科 諸如及/或非離子型界面活性劑,諸如聚Γ=: 剞之拉〜挪^ 叙技術者可根據非經腸劑 上过賦二:特性藉由常規實驗且無任何不當負擔來選擇 上述賦㈣彳中之_或多者。所用各賦形#j 術中習知之範圍内變化。 j在此項技 就廣義術語而言,藉由包含 之醫藥組合物·· …下步驟之方法製備本發明 (a) 在高剪切下混合脂質與辅脂質; (b) 拌合一或多種藥物物質;及 ⑷拌合流動性增強劑以形成包含囊封該或該等藥物物質 之脂質囊泡的脂質分散液。 寸在料中,藉由在有或無超音輔助之諸如c〇iieu# :切::合益(Niro Pharmasystems,⑽一)之高剪切混合 斋中混合脂質與輔脂質來形成脂質顆粒。較佳將脂質顆粒 133847.doc -19· 200916126 2節在月日貝轉移溫度以上之恆溫下。脂質及輔脂質可與包 '或夕種'谷背彳之溶劑系統混合在一起,脂質、輔脂質、 樂物物質溶解於該溶劑系統中。此通常為諸如醇(例如乙 醇或異丙醇)之有機溶劑。 在步驟(b)中,可使用任何此項技術已知之適用於所用 藥物物質之方法混合藥物物質與脂質。然而,此較佳以連 續混σ方式緩慢進行以促進充分且均質之混合及藥物物質 於月曰貝囊泡中之覆埋但避免藥物物質之降解或變性。在一 較佳實施例中,使用抽吸系統(對於在1〇…與⑺❹L之間的 批料尺寸而言流率例如為(M „11/„1丨11至55〇 ml/min)以連續 此合之方式在受控溫度下將藥物物質緩慢注射於脂質顆粒 分散液中。當藥物物質為離子時,經常需要醫藥組合物含 有離子平衡劑及/或緩衝系統。該等物質可在步驟(b)中與 藥物物質混合。 在步驟(c)中,使用任何此項技術已知之適於形成囊封於 脂質囊泡中之該或該等藥物物質的脂質分散液之方法使流 動性增強劑(有或無缓衝鹽)與脂質顆粒與藥物物質之混合 物混合。如藉由使用 Master ZetaSiZer(Malvem Inst]«umentsFormulations offer a variety of applicable benefits. For example, it tends to be more stable than: the plastisate formulation is more stable, m effectively delivers the drug substance and allows for a reduction in the dose to be administered, which enables the drug substance to target a specific area of the nasal cavity, upper trachea or alveolar deposition _ In order to apply locally to the whole body and it does not require the use of preservatives. Anti-adhesives such as magnesium stearate have been used to treat some of these problems in dry powder formulations containing low molecular weight pharmaceutical materials. Then, when blending large knives with peptides, proteins, oligonucleotides, and rna*dna, these drugs are not suitable. In addition, it does not help to target the API to the cells or to arrest the natural clearance mechanism of the lungs until the drug has been effectively delivered. Lipid-encapsulated dry granules generally have poor flow and high viscosity, which cause problems in downstream processing including filling and packaging. n. The dry powder formulation of the present invention is substantially free flowing and has low viscosity. Sex. The dry powder formulation of the present invention also has good physicochemical powder characteristics, such as a contact area of the particles/particles of the granules and a reduced contact area of the granules/packaging material and an adhesive/internal: fr, which is reduced by humans. This ensures the desired powder aerosolization characteristics and less powder retention in the primary packaging or inhalation devices. The dry powder formulation may also contain pharmaceuticals, adjuvants, stabilizers, preservatives, flaking agents, such as other agents well known in the art of carrying the art (considering: agents such as citrate, citrate, succinic acid , sexual; buffer acid or its salt; antioxidants, such as ascorbic acid; 夂 = he organic such as polyvinylpyrrolidone; monosaccharide, _ 'D thing' furnace to go to seven sugar / one sugar and other carbohydrates, including = U-bio, glucose, mannose or dextrin such as bribe A; sugar alcohols such as mannitol or sorbitol; balance family such as and / or non-ionic surfactants, such as poly-Γ =: 剞 pull ~ move ^ The technologist can select the _ or more of the above-mentioned Fu (4) 藉 by routine experiment without any undue burden. The use of each of the morphings j In the broad term, the present invention is prepared by the method of the pharmaceutical composition comprising the following steps: (a) mixing the lipid with the co-lipid under high shear; (b) mixing one or a plurality of drug substances; and (4) mixing a fluidity enhancer to form an inclusion a lipid dispersion of lipid vesicles encapsulating the drug substance or substances. In the material, with or without supersonic assistance such as c〇iieu#: cut:: Heyi (Niro Pharmasystems, (10) one) The high-shear mixed mixture is mixed with lipid and co-lipid to form lipid particles. It is preferred to have lipid particles 133847.doc -19· 200916126 2 knots at a constant temperature above the temperature of the sylvestre. Lipids and co-lipids can be combined with the package' Or the solvent system of the glutinous glutinous glutinous rice is mixed together, and the lipid, co-lipid, and music substances are dissolved in the solvent system. This is usually an organic solvent such as an alcohol (for example, ethanol or isopropanol). The drug substance and the lipid may be mixed by any method known in the art for the drug substance to be used. However, it is preferably carried out slowly in a continuous mixed sigma manner to promote sufficient and homogeneous mixing and drug substance in the month of mussel. Buried in the vesicles but avoids degradation or denaturation of the drug substance. In a preferred embodiment, a suction system is used (for a batch size between 1 〇... and (7) ❹L, for example, the flow rate is (M „ 11/„1丨11 to 55 〇ml/min) The drug substance is slowly injected into the lipid particle dispersion at a controlled temperature in a continuous manner. When the drug substance is an ion, it is often required that the pharmaceutical composition contains an ion balance agent and/or a buffer system. The substance may be mixed with the drug substance in step (b). In step (c), any lipid dispersion known in the art to be suitable for forming the drug substance or substances encapsulated in the lipid vesicle is used. The method of mixing a fluidity enhancer (with or without a buffer salt) with a mixture of lipid particles and a drug substance, such as by using Master ZetaSiZer (Malvem Inst]«uments

Ltd,UK)進行之動態光散射技術來測定,囊泡之平均直徑 較佳在70 nm與550 nm之間,更佳在10〇 nm與45〇 nm2 間,且甚至更佳在1〇〇 nm與250 nm之間。 可進一步加工本發明之醫藥組合物以製備乾粉調配物。 額外步驟包含: (d)視情況稀釋該脂質分散液;及 133847.doc •20- 200916126 ⑷乾燥該脂質分散液以形成乾粉調配物。 在步驟⑷中,當需要稀釋時,使用水或緩衝溶液將脂 質分散液較佳稀釋至最終滚度之,%,較佳2%至5%且最 佳=2。/。。然而,當製備用於經鼻投與之乾粉調配物時,使 用水或緩衝溶液將脂質分散液較佳稀釋至最終濃度之2% 至20% ’較佳5%至10%。 /步驟⑷中’使用任何此項技術已知且合適之方法(- 較佳方法更詳細地描述於下文中)乾燥脂質分散液。較佳 將脂質分散液噴霧乾燥。所得乾粉調配物大體上自由流 動。 根據本發明,提供製造包含囊封一或多種藥物物質(例 如,siRNA及/或募核苷酸)之脂質囊泡的脂質分散液之乾 辛刀調配物(例如具有大於2〇 μιη之平均粒度以便將粉末傳遞 至鼻础部或例如具有在1 〇 1^111至2〇 μιη之間的平均粒度以 便傳遞至鼻後部)的方法,該方法包含: (a) 在高剪切(例如5〇 rpm45〇 rpm以上)下混合脂質與辅 脂質; (b) 拌合一或多種藥物物質;及 (c) 拌合流動性增強劑以形成包含囊封該或該等藥物物質 之脂質囊泡的脂質分散液; (d) 視情況使用水或緩衝溶液將脂質分散液稀釋至最終濃 度之5%至10%之間; (e) 乾燥脂質分散液(例如藉由在約13(TC或130°C以上之溫 度下噴霧乾燥)以形成粉末調配物。 133847.doc -21 - 200916126 在-些實施例中’此方法係以順 燥步驟係在13(rCn_ u ()至()來進仃且乾 去…Γ 丁。本發明擴展至藉由本發明之方 法製&的乾粉調配物。The dynamic light scattering technique carried out by Ltd, UK) determines that the average diameter of the vesicles is preferably between 70 nm and 550 nm, more preferably between 10 〇 nm and 45 〇 nm 2 , and even more preferably at 1 〇〇 nm. Between 250 nm. The pharmaceutical compositions of the present invention can be further processed to prepare dry powder formulations. Additional steps include: (d) diluting the lipid dispersion as appropriate; and 133847.doc • 20- 200916126 (4) drying the lipid dispersion to form a dry powder formulation. In the step (4), when dilution is required, the lipid dispersion is preferably diluted to a final rolling degree, preferably 2% to 5% and most preferably 2, using water or a buffer solution. /. . However, when preparing a dry powder formulation for nasal administration, the lipid dispersion is preferably diluted with water or a buffer solution to a final concentration of 2% to 20% 'preferably 5% to 10%. /Step (4) The lipid dispersion is dried using any method known and suitable in the art (the preferred method is described in more detail below). Preferably, the lipid dispersion is spray dried. The resulting dry powder formulation is substantially free flowing. According to the present invention, there is provided a dry scalpel formulation for producing a lipid dispersion comprising lipid vesicles encapsulating one or more drug substances (e.g., siRNA and/or nucleotides) (e.g., having an average particle size greater than 2 Å μηη A method for delivering a powder to the base of the nose or, for example, having an average particle size between 1 〇 1 ^ 111 and 2 〇 μηη for delivery to the posterior portion of the nose, the method comprising: (a) at high shear (eg 5 〇) Mixing the lipid and the co-lipid at rpm 45 rpm or higher; (b) mixing the one or more drug substances; and (c) mixing the fluidity enhancer to form a lipid comprising a lipid vesicle encapsulating the drug substance or the drug substance Dispersing solution; (d) Dilute the lipid dispersion to between 5% and 10% of the final concentration, optionally with water or a buffer solution; (e) Dry the lipid dispersion (eg by at about 13 (TC or 130 ° C) Spray drying at the above temperature to form a powder formulation. 133847.doc -21 - 200916126 In some embodiments, the method is followed by a smoulding step at 13 (rCn_u() to () Go to... The invention extends to the method by the invention &Amp; dry powder formulations.

::用最優化噴霧乾燥技術來進行步驟⑷之乾燥方法, 二中使用旁路噴霧噴嘴來霧化月旨f分散液,該旁路嘴 係使用如空氣或氮氣之加壓氣體來操作以形成尺寸為5 叫之液滴。將此等液滴懸浮於例如空氣或氮氣之妖氣 體中以便乾燥。在此乾料程期間,水細基於乾燥;^ 之擴政速率來蒸發。同日寺’包括脂質囊泡之調配物的所有 親水性組合物均向液滴中心移動,而如額外脂質疏水性尾 部1)之疏水性組合物向氣體/液滴界面移動。藉由經由 擴散過程之潮式控制(tide controlling)來調節此動力學過 程’可製仔有效囊封一或多種藥物物質之脂質乾粉顆粒。 另外,流動性増強劑沈澱於此等粉末囊之表面上,使得降 低顆粒-顆粒接觸面積,其顯著改良粉末流動性及氣溶膠 化效能。 因此,相應地提供製造包含囊封一或多種藥物物質(例 如,siRNA及/或募核苷酸)之脂質囊泡的脂質分散液之乾 粉調配物的方法,該方法包含: (a) 在尚剪切(例如5〇卬爪或” rpm以上)下混合脂質與輔 脂質; ' (b) 拌合一或多種藥物物質;及 (c) 拌合流動性增強劑(例如呈結晶形式),諸如麥芽糖、 甘露糖醇、_、蔗糖、乳糖、右旋糖、麥芽糖醇、甘胺 133847.doc -22- 200916126 酸、硬脂酸鈣或硬脂酸鎂以形成包含囊封該或該等藥物物 質之脂質囊泡的脂質分散液; (句視情況稀釋該脂質分散液; (e)乾燥脂質分散液以形成粉末調配物,其中該乾燥方法 包含在(約)13〇t:或130°C以上之溫度下將脂質分散液噴霧 乾燥以形成懸浮於氣態氣氛(例如,空氣、氧氣、氮氣)中 之在5 μπι與5 0 μηι之間的分散液小滴。 在一些實施例中,此方法係以順序0)至進行。 在某些較佳實施例中,乾粉調配物可以不大於1〇微米 但較佳不大於5微米之1量巾值空氣動力學直徑(MMAD)吸 入。對於某些粉末組合物而言,平均mmad不大於丨至3微 米,其可確保肺臟深沈積,及不大於35微米,但較佳不大 於25微米之體積平均直徑(viyiD)。 在f些較佳實施例中,當乾粉具有大於10微米之質量中 值空氣動力學直徑(MMAD)或平均粒度時,乾粉調配物適 於經鼻施用。如上所述,其中粉末平均粒度大於約20 _ 的本發明之乾粉調配物可靶向鼻前部中之藥物沈積且產生 局部效應。而其中粉末平均粒度㈣_與20_之間的本 發明之乾粉調配物可靶向鼻後部中之藥物沈積 性吸收。 、 /、土对 〇J s周整該方法以製造具有受 板其*7乾向肺道之任何所需區域。 本發明之醫藥組合物及乾粉調配物可用以治療多種疾病 及病症’其係藉由藥物物質之選擇來規定。組合物可藉由 133847.doc -23- 200916126 任何合適途徑來投與,例如經口,例如以錠劑或膠囊之形 式;非經腸,例如靜脈内;局部投與至皮膚(例如在牛皮 癖治療中);鼻内;或較佳藉由吸入。 口服劑型可包括錠劑及膠囊。用於局部投與之調配物可 採用乳膏、軟膏、凝膠或例如貼片劑之經皮傳遞系統的形 式。用於吸入之組合物可包含氣溶膠或其他可霧化調配物 或乾粉調配物。然而,在本發明之一較佳實施例中,醫藥 組合物係呈適於吸入投與之乾粉調配物的形式。在本發明 之一較佳實施例中,醫藥組合物為適於吸入投與之脂質分 散液。在本發明之另一較佳實施例中,醫藥組合物係呈適 於經鼻投與之乾粉調配物的形式。在本發明之一較佳實施 例中,醫藥組合物為適於經鼻投與之脂質分散液。 本發明之可吸入乾粉調配物可採用常用於醫藥行業中之 各種形式。例如可將其包裝於膠囊、發泡或任何其他包裝 系統中且使用各種吸入/經鼻器件將其以乾粉形式施用於 呼吸道或鼻腔。用於傳遞囊封形式之乾粉的合適器件為例 如(但不限於)在US 3,991,761(包括AEROLIZER™器件)或 WO 05/1 13042中之描述,而合適DPI器件包括在WO 97/20589(包括 CERTIHALER™器件)、WO 97/30743(包括 TWISTHALER™ 器件)、WO 05/14089(包括 GEMINI™ 器 件)、WO 05/37353(包括 GYROHALERtm 器件)及 w〇 99/64095(MicroDoseTM)中所述之彼等者。 用於將乾粉傳遞至鼻腔之合適單位劑量器件包括在WO 96/22802(包括DIRECTHALERtm器件)、us 6626379(包括 133847.doc -24- 200916126:: The drying method of step (4) is carried out by optimizing the spray drying technique, and the bypass spray nozzle is used to atomize the dispersion liquid, which is operated by using a pressurized gas such as air or nitrogen to form The size is 5 droplets. These droplets are suspended in a deuterium such as air or nitrogen for drying. During this dry process, the water is evaporated based on the rate of expansion; All of the hydrophilic compositions of the same day's compound including lipid vesicles move toward the center of the droplet, while the hydrophobic composition such as the additional lipid hydrophobic tail 1) moves toward the gas/droplet interface. Adjusting this kinetic process by tide controlling through a diffusion process can effectively seal lipid dry powder particles of one or more drug substances. In addition, the fluidity reducing agent precipitates on the surface of the powder capsules, so that the particle-particle contact area is lowered, which significantly improves the powder fluidity and aerosolization efficiency. Accordingly, a method of making a dry powder formulation comprising a lipid dispersion of a lipid vesicle encapsulating one or more drug substances (eg, siRNA and/or nucleotides) is provided, the method comprising: (a) Shearing lipids and co-lipids under shear (eg, 5 jaws or above rpm); '(b) mixing one or more drug substances; and (c) mixing fluidity enhancers (eg, in crystalline form), such as Maltose, mannitol, _, sucrose, lactose, dextrose, maltitol, glycine 133847.doc -22- 200916126 acid, calcium stearate or magnesium stearate to form a capsule or the like a lipid dispersion of a lipid vesicle; (sequentially diluting the lipid dispersion; (e) drying the lipid dispersion to form a powder formulation, wherein the drying method is included at (about) 13 〇 t: or above 130 ° C The lipid dispersion is spray dried at a temperature to form a droplet of dispersion between 5 μm and 50 μm suspended in a gaseous atmosphere (eg, air, oxygen, nitrogen). In some embodiments, the method is In the order 0) to proceed. In some preferred embodiments, the dry powder formulation may be inhaled at a towel aerodynamic diameter (MMAD) of no greater than 1 micron but preferably no greater than 5 microns. For certain powder compositions, the average mmad is no greater than丨 to 3 microns, which ensures deep deposition of the lungs, and a volume average diameter (viyiD) of no more than 35 microns, but preferably no more than 25 microns. In some preferred embodiments, when the dry powder has a mass greater than 10 microns The dry powder formulation is suitable for nasal administration when the median aerodynamic diameter (MMAD) or average particle size is used. As described above, the dry powder formulation of the present invention having a powder average particle size greater than about 20 Å can be targeted to the nasal anterior portion. The drug is deposited and produces a local effect. The dry powder formulation of the present invention in which the average particle size of the powder (4) and 20_ can be targeted to the drug deposition absorption in the posterior part of the nose. /, soil versus 〇J s To produce any desired area having a *7 dry-direction lung tract. The pharmaceutical compositions and dry powder formulations of the present invention can be used to treat a variety of diseases and conditions, which are defined by the choice of drug substance. Administered by any suitable route, for example, orally, for example, in the form of a lozenge or capsule; parenterally, such as intravenously; topically applied to the skin (eg, in the treatment of psoriasis); Oral; or preferably by inhalation. Oral dosage forms may include lozenges and capsules. Formulations for topical administration may be in the form of a cream, ointment, gel or a transdermal delivery system such as a patch. The composition for inhalation may comprise an aerosol or other atomizable formulation or dry powder formulation. However, in a preferred embodiment of the invention, the pharmaceutical composition is in the form of a dry powder formulation suitable for inhalation administration. In a preferred embodiment of the invention, the pharmaceutical composition is a lipid dispersion suitable for inhalation administration. In another preferred embodiment of the invention, the pharmaceutical composition is in the form of a dry powder formulation suitable for nasal administration. In a preferred embodiment of the invention, the pharmaceutical composition is a lipid dispersion suitable for nasal administration. The inhalable dry powder formulations of the present invention can take a variety of forms commonly used in the pharmaceutical industry. For example, it can be packaged in a capsule, foam or any other packaging system and applied to the respiratory or nasal cavity as a dry powder using various inhalation/nasal devices. Suitable devices for delivering dry powder in encapsulated form are for example, but not limited to, those described in US 3,991,761 (including AEROLIZERTM devices) or WO 05/1 13042, while suitable DPI devices are included in WO 97/20589 ( Includes CERTIHALERTM devices), WO 97/30743 (including TWISTHALERTM devices), WO 05/14089 (including GEMINITM devices), WO 05/37353 (including GYROHALERtm devices), and w〇99/64095 (MicroDoseTM) Those who are. Suitable unit dose devices for delivering dry powder to the nasal cavity are included in WO 96/22802 (including DIRECTHALERtm devices), us 6626379 (including 133847.doc -24- 200916126

Pfeiffer乾粉經鼻施用器)中所述之彼等者。用於經鼻投與 之合適多劑量DPI器件包括在WO 04/33009(包括POWERJET™ 器件)、WO 06/90149(包括OPTINOSE™乾粉經鼻施用器) 及 WO 90/13328 及 WO 96/16687(包括 TURBOHALER™ 器 件)中所述之彼等者。 本發明之脂質分散液及可吸入乾粉調配物在施用之前即 刻亦可在媒劑中復水且使用喷霧器、水性液滴吸入器或經 鼻施用器來氣溶膠化。合適喷霧器包括傳統喷霧器,諸如 噴射喷霧器’例如PARI LC系列(PARI GmbH)以及振動膜 喷霧器’諸如 OMRON Micro A-I-R、(OMRON)、Pfeiffer dry powder nasal delivery device). Suitable multi-dose DPI devices for nasal administration include WO 04/33009 (including POWERJETTM devices), WO 06/90149 (including OPTINOSETM dry powder nasal applicators), and WO 90/13328 and WO 96/16687 ( These include those described in the TURBOHALERTM device. The lipid dispersions and respirable dry powder formulations of the present invention may also be reconstituted in the vehicle immediately prior to administration and aerosolized using a nebulizer, an aqueous droplet inhaler or a nasal applicator. Suitable nebulizers include conventional nebulizers such as jet nebulizers' such as the PARI LC series (PARI GmbH) and vibrating membrane nebulizers such as OMRON Micro A-I-R, (OMRON),

Aeroneb®(Nektar Therapeutics Inc.) ' PARI eFlow®(PARI GmbH)、PARI eFlow®rapid、iNeb吸入器(Respironics)以及 軟霧或軟喷霧吸入器,諸如AERx®(Aradigm Corp.,US)、Aeroneb® (Nektar Therapeutics Inc.) ' PARI eFlow® (PARI GmbH), PARI eFlow®rapid, iNeb inhaler (Respironics) and soft or soft spray inhalers such as AERx® (Aradigm Corp., US),

Mystic(Ventaira Pharmaceuticals Inc.)、Aria(ChrysalisMystic (Ventaira Pharmaceuticals Inc.), Aria (Chrysalis

Techn〇logles Inc.)或 Respimat®(Boehringer Ingelheim)。 亦可在合適推進劑系統中分配本發明之可吸入乾粉調配 物,該推進劑系統係諸如(但不限於)氫氟烷烴(hfa),諸 如HFA134a或d HFA227,其有或無其他賦形劑且使用合適 加壓計量吸入器(PMDI)來氣溶膠化。 因此根據本發明,提供用於吸入及/或經鼻傳遞一或多 種藥物物質(諸如寡核苷酸及/或siRNA)之醫藥組合物,該 組合物包含脂質分散液, 藥物物質之脂質囊泡。 根據本發明之另一態樣 該脂質分散液包含囊封—或多種 ’提供用於吸入及/或經鼻傳遞 133847.doc -25- 200916126 一或多種藥物物質(諸如寡核苷酸及/或siRNA)之乾粉調配 物’該組合物包含脂質分散液,該脂質分散液包含平均直 徑在70 nm與550 nm之間(較佳在1〇〇 nm與250 nm之間)的 囊封該或該等藥物物質之脂質囊泡。 因此根據本發明’提供用於吸入及/或經鼻傳遞一或多 種藥物物質(諸如募核苷酸及/&siRNA)之醫藥組合物,該 組合物包含脂質分散液,該脂質分散液包含囊封一或多種 藥物物質之脂質囊泡’其中藉由包含以下步驟之方法形成 該分散液: (a) 在南到切下混合脂質與輔脂質(諸如聚乙二醇化磷脂醯 膽驗或膽固醇); (b) 拌合一或多種藥物物質;及 (0掉合流動性增強劑以形成包含囊封該或該等藥物物質 之脂質囊泡的脂質分散液。 根據本發明之另一態樣,提供用於吸入及/或經鼻傳遞 一或多種藥物物質(諸如募核苷酸及/或siRNA)之乾粉調配 物,該組合物包含脂質分散液,該脂質分散液包含囊封該 或π亥等藥物物質之脂質囊泡,其中藉由包含以下步驟之方 法形成該調配物: (a) 在高剪切下混合脂質與輔脂質; (b) 拌合一或多種藥物物質; (c) 拌合流動性增強劑以形成包含囊封該或該等藥物物質 之脂質囊泡的脂質分散液; (d) 視情況稀釋該脂質分散液;及 133847.doc •26- 200916126 (e)乾燥該脂質分散液以形成粉末調配物。 根據本發明之另一態樣’提供用於經由鼻前部來鼻内投 與一或多種藥物物質(諸如寡核苷酸及/或siRNA)之自由流 動乾粉調配物,該調配物包含脂質分散液,該脂質分散液 包含囊封該或該等藥物物質之脂質囊泡’其中如藉由雷射 繞射所量測之平均囊泡尺寸分布為: (a) 10°/。在X 1〇值以下 (a) 50%在χ5〇值以下 (c) 90%在χ9〇值以下。 在本發明之另一態樣中,提供包含一或多種藥物物質 (諸如募核苷酸及/或siRNA)之大體上如組合物a、Β、c或 D中任一者中所述之醫藥組合物。 根據本發明之另一態樣,提供以一或多種吸入或經鼻傳 遞藥物物質治療人類患者(受例如哮喘、過敏性鼻炎、 COPD、肺部纖維化、肺循環血壓過高及/或囊腫性纖維化 所折磨)之方法,該方法包含提供如在上文中所述之醫藥 組合物或乾燥調配物。 在另一恶樣中,提供如在上文中所述之適用於醫學治療 人類患者之醫藥組合物或乾粉調配物。 本發明亦提供包含與一或多種傳遞器件聯合之如上文中 所述之醫藥組合物的醫藥產品。在另一態樣中,本發明提 供傳遞器件或兩個或兩個以上傳遞器件之包,其含有如上 文中所述之醫藥組合物。 範例 133847.doc •27· 200916126 藉由以下實例來說明本發明。 實例 實例1 製備本發明之醫藥組合物Techn〇logles Inc.) or Respimat® (Boehringer Ingelheim). The inhalable dry powder formulations of the present invention may also be dispensed in a suitable propellant system such as, but not limited to, a hydrofluoroalkane (hfa) such as HFA 134a or d HFA 227 with or without other excipients Aerosolization is carried out using a suitable pressurized metered dose inhaler (PMDI). Thus in accordance with the invention there is provided a pharmaceutical composition for inhaled and/or nasal delivery of one or more drug substances, such as oligonucleotides and/or siRNA, comprising a lipid dispersion, a lipid vesicle of a drug substance . According to another aspect of the invention, the lipid dispersion comprises an encapsulated one or more 'provided for inhalation and/or nasal delivery 133847.doc -25- 200916126 one or more drug substances (such as oligonucleotides and/or Dry powder formulation of siRNA) The composition comprises a lipid dispersion comprising an encapsulation having an average diameter between 70 nm and 550 nm, preferably between 1 〇〇 nm and 250 nm. Lipid vesicles such as drug substances. Thus according to the invention 'providing a pharmaceutical composition for inhaled and/or nasal delivery of one or more drug substances, such as nucleotides and/or siRNAs, comprises a lipid dispersion comprising A lipid vesicle encapsulating one or more drug substances, wherein the dispersion is formed by a method comprising the steps of: (a) mixing the lipid with a co-lipid (such as a pegylated phospholipid, or cholesterol) from the south to the cut. (b) mixing one or more drug substances; and (0 removing the fluidity enhancer to form a lipid dispersion comprising lipid vesicles encapsulating the or the drug substance. According to another aspect of the invention Providing a dry powder formulation for inhaled and/or nasal delivery of one or more drug substances, such as nucleotides and/or siRNAs, the composition comprising a lipid dispersion comprising an encapsulated or π a lipid vesicle of a drug substance such as hai, wherein the formulation is formed by a method comprising the steps of: (a) mixing the lipid with the co-lipid under high shear; (b) mixing one or more drug substances; (c) Mixing fluidity To form a lipid dispersion comprising lipid vesicles encapsulating the or the drug substance; (d) diluting the lipid dispersion as appropriate; and 133847.doc • 26- 200916126 (e) drying the lipid dispersion to form Powder formulation. According to another aspect of the invention 'providing a free-flowing dry powder formulation for intranasal administration of one or more drug substances (such as oligonucleotides and/or siRNA) via the nasal anterior portion, the formulation The lipid dispersion comprises a lipid vesicle encapsulating the or the drug substance, wherein the average vesicle size distribution as measured by laser diffraction is: (a) 10°/. Below X 1 ( value (a) 50% below χ5〇 value (c) 90% below χ9〇 value. In another aspect of the invention, one or more drug substances (such as nucleotides) are provided And/or siRNA) a pharmaceutical composition substantially as described in any one of compositions a, Β, c or D. According to another aspect of the invention, one or more inhaled or nasal delivery drugs are provided Substance treatment for human patients (by, for example, asthma, allergic rhinitis, COPD, pulmonary fibrosis) A method of pulsing blood pressure in a pulmonary circulation and/or erosive fibrosis, the method comprising providing a pharmaceutical composition or a dry formulation as described above. In another wicking, as provided above The invention relates to a pharmaceutical composition or a dry powder formulation for medical treatment of a human patient. The invention also provides a pharmaceutical product comprising a pharmaceutical composition as described above in combination with one or more delivery devices. In another aspect, the invention The invention provides a delivery device or a package of two or more delivery devices comprising a pharmaceutical composition as described above. Example 133847.doc • 27· 200916126 The invention is illustrated by the following examples. EXAMPLES Example 1 Preparation of a pharmaceutical composition of the invention

自以下各物製備醫藥組合物A、B、C及D : 組合物A 組份 量(%) 功能 寡核苷酸A 1.5 藥物物質 氫化PC(類脂SPC-3) 70 用於囊封之脂質材料 聚乙二醇化磷脂醯膽鹼 8 輔脂質(脂質囊泡穩定劑) 磷酸鈣 5 負離子補償 乳酸,pH 4.0 0.1 緩衝液 甘露糖醇 10 流動性增強劑 牛血清白蛋白 2 稀釋劑 磷酸鹽缓衝鹽,pH 6.5 3.4 緩衝液Preparation of pharmaceutical compositions A, B, C and D from the following: Composition A Component amount (%) Functional oligonucleotide A 1.5 Drug substance hydrogenated PC (lipid SPC-3) 70 Lipid material for encapsulation Pegylated phospholipid choline 8 co-lipid (lipid vesicle stabilizer) calcium phosphate 5 anion compensation lactic acid, pH 4.0 0.1 buffer mannitol 10 fluidity enhancer bovine serum albumin 2 diluent phosphate buffer salt , pH 6.5 3.4 buffer

組合物B 組份 量(%) 功能 寡核苷酸A 1.5 藥物物質 二-軟脂醯基磷脂醯膽鹼(DPPC) 60 用於囊封之脂質材料 聚乙二醇化磷脂醯膽鹼 8 輔脂質(脂質囊泡穩定劑) CaCl2.2H20 5 負離子補償 乳酸,pH 4.0 0.1 緩衝液 甘胺酸 5 流動性增強劑 牛血清白蛋白 17 稀釋劑 磷酸鹽缓衝鹽,pH 6.5 3.4 緩衝液Composition B Component Amount (%) Functional Oligonucleotide A 1.5 Drug substance Di-pipylphosphatidylcholine choline (DPPC) 60 Lipid material for encapsulation Pegylated phospholipid choline 8 Co-lipid ( Lipid vesicle stabilizer) CaCl2.2H20 5 Negative ion compensated lactic acid, pH 4.0 0.1 Buffer glycine 5 Flow enhancer Bovine serum albumin 17 Thinner phosphate buffered saline, pH 6.5 3.4 Buffer

組合物C 組份 量(%) 功能 SiRNA A 3 藥物物質 DPPC 60 用於囊封之脂質材料 聚乙二醇化磷脂醯膽鹼 8 輔脂質(脂質囊泡穩定劑) CaCl2.2H20 5 負離子補償 乳酸’ pH 4.0 0.1 緩衝液 麥芽糖 5 流動性增強劑 牛血清白蛋白 15.5 稀釋劑 磷酸鹽緩衝鹽,pH 6.5 3.4 緩衝液 133847.doc -28- 200916126Composition C Component (%) Functional SiRNA A 3 Drug substance DPPC 60 Lipid material for encapsulation Pegylated phospholipid choline 8 Co-lipid (lipid vesicle stabilizer) CaCl2.2H20 5 Negative ion compensated lactic acid 'pH 4.0 0.1 Buffer Maltose 5 Fluidity Enhancer Bovine Serum Albumin 15.5 Thinner Phosphate Buffer Salt, pH 6.5 3.4 Buffer 133847.doc -28- 200916126

組合物D 組份 量(%) 功能 SiRNA A 3 藥物物質 氫化PC(類脂S PC-3) 60 用於囊封之脂質材料 聚乙二醇化磷脂醯膽鹼 10 輔脂質(脂質囊泡穩定劑) 硬脂酸鈣 3 負離子補償 乳酸,pH 4.0 0.1 緩衝液 甘胺酸 5 流動性增強劑 牛血清白蛋白 15.5 稀釋劑 磷酸鹽緩衝鹽,pH 6.5 3.4 缓衝液 寡核苷酸A為具有TLR9-促效劑活性的適用於治療過敏 性發炎疾病(包括過敏性鼻炎)之免疫調節性寡核苷酸或”免 疫物(immunomer)1'。其結構可表示如下: 5'-TCR2AACR2TTCR2-Y-TCTTRlCTGTCT-5' (SEQ.I.D.NO:l) 其中C為胞嘧啶,T為胸腺嘧啶,G為鳥嘌呤,Y為丙二醇 連接子且R1/R2為合成鳥苷衍生物,如下所示: OH ΟΗComposition D Component (%) Functional SiRNA A 3 Drug substance hydrogenation PC (lipid S PC-3) 60 Lipid material for encapsulation Pegylated phospholipid choline 10 Co-lipid (lipid vesicle stabilizer) Calcium Stearate 3 Negative Ion Compensating Lactic Acid, pH 4.0 0.1 Buffer Glycine 5 Fluidity Enhancer Bovine Serum Albumin 15.5 Thinner Phosphate Buffered Salt, pH 6.5 3.4 Buffer Oligonucleotide A is TLR9-Efficient An immunomodulatory oligonucleotide or "immunomer 1" suitable for the treatment of allergic inflammatory diseases, including allergic rhinitis. Its structure can be expressed as follows: 5'-TCR2AACR2TTCR2-Y-TCTTRlCTGTCT-5 '(SEQ.IDNO:l) wherein C is cytosine, T is thymine, G is guanine, Y is a propylene glycol linker and R1/R2 is a synthetic guanosine derivative as follows: OH ΟΗ

Rl =阿糖鳥苦(Arabinoguanosine) 〇Rl = Arabinoguanosine 〇

瞧 R2=2’-脫氧基_7_脫氮雜鳥苷 133847.doc -29- 200916126 在國際專利申請案WO 2006/002038中(參見彼處之SEQ ID NO 22)描述寡核苷酸A及其製備方法。亦在國際專利申 請案 WO 2003/035836 及 WO 2003/057822 中描述免疫物(一 般而言)及其製造方法。所有三個文獻之内容均以引用的 方式併入本文中。 寡核苷酸A為水溶性的,因此將其溶解於0.1%乳酸溶液 (pH 4)中以中和分子上之負電荷。 siRNA A為用於Flu之siRNA。其為在大流行性感冒治療 中使Flu-mRNA靜止(silence)之經化學合成之RNA。使用中 之SiRNA為每股包含21個核苷酸之短雙股寡物質(MW : 14 kDa)。其結構可表示如下: 有義股序列: 5,-GAGCCUAUGUGGAUGGAUUTsT-3, (SEQ.I.D.NO: 2) 反義股序列: 5'-AAUCCAUCCACAUAGGCUCTsT-3' (SEQ.I.D.NO: 3) 其中單字母核苷酸編碼為:A為腺苷,C為胞嘧啶核 苷,G為鳥苷,U為尿嘧啶核苷、sT為胸苷且連字符表示 3'-5'磷酸二酯鍵。此藥物物質亦為帶負電荷及水溶性的, 因此將其溶解於0.1 %乳酸溶液(pH 4)中以減少分子上之負 電荷。 在各情況下,將脂質、輔脂質及溶劑系統傾入高剪切混 合器(Collette Micro Gral高剪切混合器,Niro Pharmasystems, Denmark)中且在 40-60°C 下在 50-150 rpm 之 葉輪速度及200-600 rpm之切碎機速度下混合約20分鐘直 133847.doc -30- 200916126 至形成脂質顆粒。使用提供0 5_丨〇 mL/min之流率的抽吸系 先 ISMATEC樓動聚(ISMATECH SA,Switzerland)將藥物物 質、稀釋劑、乳酸(pH 4.0)及離子平衡劑注入脂質顆粒 中。添加流動性增強劑及緩衝液(pH 6.5)以形成該或該等 囊封於脂質囊泡中之藥物物質的脂質分散液。此係藉由脂 質分散液之濁度歷時兩個小時以上無明顯沈積而明顯。如 藉由使用 Master Zetasizer(Malvern Instruments Ltd,UK)進 行之動態光散射技術所測定,脂質分散液中之脂質囊泡具 有在70 nm與5 50 nm之間的平均直徑。 實例2 製備本發明之乾粉調配物 進一步加工實例1中所製備之醫藥組合物A、b、c及D以 製備本發明之乾粉調配物。 在A及B之情況中,將在實例丨中所形成之奈米懸浮液稀 釋至每體積具有2%固體含量重量,而在實例1 + C&D之情 況中,將其稀釋至每體積具有〇 5%固體含量重量以得到具 有低黏度之脂質分散液,其可易於在噴霧乾燥器中霧化且 形成小的可吸入自由流動粉末顆粒(小於1〇 μηι)〇接著使 用 Biichi 191 噴霧乾燥器(Biich lab〇r Technick Α(},瞧R2=2'-deoxy-7_deazaguanine 133847.doc -29- 200916126 describes oligonucleotide A and in International Patent Application WO 2006/002038 (see SEQ ID NO 22, elsewhere) Its preparation method. Immunological substances (generally) and methods for their manufacture are also described in the International Patent Application WO 2003/035836 and WO 2003/057822. The contents of all three documents are incorporated herein by reference. Oligonucleotide A is water soluble, so it is dissolved in a 0.1% lactic acid solution (pH 4) to neutralize the negative charge on the molecule. siRNA A is an siRNA for Flu. It is a chemically synthesized RNA that silences Flu-mRNA in the treatment of pandemic influenza. The SiRNA in use is a short double-stranded oligosaccharide (MW: 14 kDa) containing 21 nucleotides per share. Its structure can be expressed as follows: Sense strand sequence: 5,-GAGCCUAUGUGGAUGGAUUTsT-3, (SEQ.IDNO: 2) Antisense strand sequence: 5'-AAUCCAUCCACAUAGGCUCTsT-3' (SEQ.IDNO: 3) where single letter nucleus The glycoside is encoded as: A is adenosine, C is a cytosine nucleoside, G is guanosine, U is uridine, sT is thymidine and the hyphen indicates a 3'-5' phosphodiester bond. The drug substance is also negatively charged and water soluble, so it is dissolved in a 0.1% lactic acid solution (pH 4) to reduce the negative charge on the molecule. In each case, the lipid, co-lipid and solvent system was poured into a high shear mixer (Collette Micro Gral high shear mixer, Niro Pharmasystems, Denmark) and at 50-60 rpm at 50-150 rpm. Mix the impeller speed and the chopper speed of 200-600 rpm for about 20 minutes straight to 133847.doc -30-200916126 to form lipid particles. A pumping system providing a flow rate of 0 5_丨〇 mL/min was used to inject the drug substance, diluent, lactic acid (pH 4.0) and ion balance agent into the lipid granules by ISMATEC SA (Switzerland). A fluidity enhancer and a buffer (pH 6.5) are added to form a lipid dispersion of the drug substance or the drug substance encapsulated in the lipid vesicle. This is evident by the fact that the turbidity of the lipid dispersion does not significantly deposit over two hours. The lipid vesicles in the lipid dispersion have an average diameter between 70 nm and 5 50 nm as determined by dynamic light scattering techniques using a Master Zetasizer (Malvern Instruments Ltd, UK). Example 2 Preparation of the dry powder formulation of the present invention The pharmaceutical compositions A, b, c and D prepared in Example 1 were further processed to prepare a dry powder formulation of the present invention. In the case of A and B, the nanosuspensium formed in the example crucible was diluted to have a solids weight of 2% per volume, while in the case of Example 1 + C&D, it was diluted to have a volume per volume. 5% by weight solids to give a lipid dispersion with low viscosity which can be easily atomized in a spray dryer and form small respirable free-flowing powder particles (less than 1 〇μηι), followed by a Biichi 191 spray dryer (Biich lab〇r Technick Α(},

Switzerland)將各經稀釋之脂質分散液噴霧乾燥,在該噴 霧乾燥器中使分散液在9G°C ·1抓之熱空氣中霧化以得到 自由流動之乾粉組合物。如藉由HEL〇s雷射繞射儀 (Sympatech GmbH,Germany)所量測,乾粉之平均幾何粒 度為約4 -1 3 μιη。 133847.doc 31 200916126 實例3 本發明之乾粉調配物之流動性 使用 STAV Π绝、度 s十(j Engelsmann AG,Germany)來測試 實例2 t製備之乾粉調配物。在各情況下,將丨〇 g乾粉調 配物置於量筒中。量測粉末體積且如下以g/cm3&單位計 异容積密度或"BD": BD [g/cm3]=^>末重量(g)/粉末床體積⑻丨或cy) 將乾粉敲拍1250次且量測粉末床體積。如下來計算敲緊 密度或"TBD": TBD [g/cm3] =粉末重量(g)/敲緊粉末床體積(ml或cm3) 如下來計算卡爾指數: 卡爾指數[%]=(敲緊密度-容積密度)*100/敲緊密度 在下表1中給出四種乾粉調配物之卡爾指數: 乾粉 卡爾指數(%) A 22 B 29 —~-—c 30 D 17 此等結果表明乾粉調配物粉末為自由流動的。 實例4 本發明之乾粉調配物之粒度特徵 …藉由HEL〇S雷射繞射儀[SymPateeh GmbH,Germany]測 定實例2中所製備之乾粉調配物的粒度特徵。 下表2中給出結果(n=3): 133847.doc • 32- 200916126 表2 乾粉 VMDium) GSD "^Ί A 12,90 ±2.74 5.10 ±0.37 B 7.58 ±0.05 2.20 ±0.01 ' C 4.18 ±0.03 1.95 ±0.01 D 4.46 ±0.01 1·92±0.00 在該表中’ VMD為體積平均直徑且GSD為幾何標準差。 此等粒度特徵表明乾粉調配物應靶向肺道之所需區域。 實例5Each of the diluted lipid dispersions was spray dried, and the dispersion was atomized in a hot air of 9 G ° C in a spray dryer to obtain a free-flowing dry powder composition. The dry powder has an average geometric particle size of about 4 -1 3 μηη as measured by a HEL〇s laser diffraction instrument (Sympatech GmbH, Germany). 133847.doc 31 200916126 Example 3 Flowability of the dry powder formulation of the present invention The dry powder formulation prepared in Example 2 t was tested using STAV j 、 (j Engelsmann AG, Germany). In each case, the 丨〇g dry powder formulation was placed in a graduated cylinder. Measure the volume of the powder and beat the dry powder as follows in g/cm3 & units of the same bulk density or "BD": BD [g/cm3] = ^ > end weight (g) / powder bed volume (8) 丨 or cy) 1250 times and the volume of the powder bed was measured. Calculate the knock tightness or "TBD": TBD [g/cm3] = powder weight (g) / knock the powder bed volume (ml or cm3) as follows to calculate the Carr index: Carr index [%] = (Knock tight Degree-volume density*100/knock tightness The Carr index of the four dry powder formulations is given in Table 1 below: Dry powder Karl index (%) A 22 B 29 —~-—c 30 D 17 These results indicate dry powder blending The powder is free flowing. Example 4 Particle Size Characteristics of the Dry Powder Formulation of the Invention The particle size characteristics of the dry powder formulations prepared in Example 2 were determined by a HEL〇S laser diffraction apparatus [SymPateeh GmbH, Germany]. The results are given in Table 2 below (n=3): 133847.doc • 32- 200916126 Table 2 Dry Powder VMDium) GSD "^Ί A 12,90 ±2.74 5.10 ±0.37 B 7.58 ±0.05 2.20 ±0.01 ' C 4.18 ± 0.03 1.95 ±0.01 D 4.46 ±0.01 1·92±0.00 In the table, 'VMD is the volume average diameter and GSD is the geometric standard deviation. These particle size characteristics indicate that the dry powder formulation should target the desired area of the lung. Example 5

自醫藥組合物C所製備之乾粉調配物的進一步分析 進一步分析自實例2中醫藥組合物C所製備之乾粉調配 物。將此粉末之特徵概括於下表3中: 表3 參數 結果 ΧΙΟ (μιη) 1.88 ±0.02 —~ Χ50 (μιη) 3.66 ±0.04 Χ90 (μηι) 7.17 ±0.03 容積滲透濃度(mOsmo) 6.33 ±0.58 —~ 粉末密度(g/cm3) 0.1015 卡爾指數 Γ30% VMD(“m) 4.18 ±0.03 GSD 1.95 ±0.01 "1 度,50%之顆粒具有在X50值度量以下之平均粒度且9〇%之 顆粒具有在X90值度量以下之平均粒度。如藉由微滲壓計 (Advanced Inst, lnc, US)量測之容積滲透濃度表明siRNA係 經有效囊封。VMD為體積平均直徑且GSD為幾何標準差。 質量中值空氣動力學直徑[MMAD或daer]可自體積直徑 [dv]藉由下式來計算: 133847.doc -33- 200916126 d〇er 其中P為以g/cm3為單位之粉末密度 此粉末之低密度可確保低MMAD,其產生高精細細顆粒 部分[FPF<5 μηι]。 藉由雷射繞射所量測之脂質分散液粒度分布展示於附圖 之圖1中。藉由雷射繞射所量測之粉末粒度分布展示於圖2 中〇 脂質分散液之平均粒度為517 5 nm。脂質分散液具有 0.47之多分散指數。 ' 此等結果展示乾粉調配物包含適用於吸入投藥且大體上 自由流動之單分散顆粒。 實例6 自醫藥組合物D所製備之乾粉調配物的進一步分析 進一步分析自實例2中醫藥組合物D所製備之乾粉調配 物。此粉末之特徵係概括於下表4中: ΎΚ " 結果 Χ10 (um) 2.01 ±0.00 X50 (um) 3.97 ±0.00 X90 (um) 7.42 ± 0.02 谷積參透濃度(mOsmo) 0 粉末密度(g/cm3) 0.07 卡爾指數 19% VMDium) 4.46 ±0.01 GSD 1_92±0.00 在此表中,10%之顆粒具有在χ10值度量以下之平均粒 度,50%之顆粒具有在χ5〇值度量以下之平均粒度且90%之 133847.doc -34- 200916126 顆粒具有在X90值度量以下之平均粒度。 如藉由微渗壓計(Advanced Inst. Inc, US)量測之容積滲 透濃度表明siRNA係經有效囊封。VMD為體積平均直徑且 GSD為幾何標準差。 質量中值空氣動力學直徑(MMAD或daer)可自體積直徑 [dv]藉由下式來計算: daer = 其中為以g/cm3為單位之粉末密度 丨此粉末之低密度可確保低MMAD,其產生高精細顆粒部 分(FPF <5 μιη) 〇 藉由雷射繞射所量測之脂質分散液粒度分布展示於附圖 之圖3中。藉由雷射繞射(Malvern Zetasizer, UK)所量測之 粉末粒度分布展示於圖4中。 脂質分散液之平均粒度為229.5 nm。脂質分散液具有 0.261之多分散指數。 此等結果展示乾粉調配物適用於吸入投與且大體上自由 '流動。 實例7 製備本發明之其他醫藥組合物 自以下各物製備醫藥組合物E、F、G及Η : 組合物Ε 組份 量(g/i) 功能 募核苷酸A 0.075 藥物物質 二-軟脂醯基磷脂醯膽鹼(DPPC) 3.000 用於囊封之脂質材料 PEG-峨脂醯膽驗 0.250 輔脂質(脂質囊泡穩定劑) 133847.doc -35- 200916126 組份 量(g/i) 功能 CaCl2.2H20 0.250 負離子補償 乳酸,pH 4.5 0.005 緩衝液 Na2HP04.H20 > pH 6.5 0.170 緩衝液 牛血清白蛋白 1.150 稀釋劑 菊粉 0.100 流動性增強劑/顆粒表面改質劑Further Analysis of Dry Powder Formulation Prepared from Pharmaceutical Composition C The dry powder formulation prepared from Pharmaceutical Composition C of Example 2 was further analyzed. The characteristics of this powder are summarized in Table 3 below: Table 3 Parameter results ΧΙΟ (μιη) 1.88 ±0.02 —~ Χ50 (μιη) 3.66 ±0.04 Χ90 (μηι) 7.17 ±0.03 Volume osmotic concentration (mOsmo) 6.33 ±0.58 —~ Powder density (g/cm3) 0.1015 Carr index Γ 30% VMD ("m) 4.18 ± 0.03 GSD 1.95 ±0.01 "1 degree, 50% of the particles have an average particle size below the X50 value and 9% of the particles have The X90 value measures the average particle size below. The volumetric osmotic concentration as measured by a micro-osmometer (Advanced Inst, lnc, US) indicates that the siRNA system is effectively encapsulated. The VMD is the volume average diameter and the GSD is the geometric standard deviation. The median aerodynamic diameter [MMAD or daer] can be calculated from the volume diameter [dv] by the following formula: 133847.doc -33- 200916126 d〇er where P is the powder density in g/cm3. The low density ensures low MMAD, which produces a high-fine fine particle fraction [FPF<5 μηι]. The particle size distribution of the lipid dispersion as measured by laser diffraction is shown in Figure 1 of the accompanying drawings. The particle size distribution measured by the shot is shown in Figure 2 The average particle size of the dispersion was 517 5 nm. The lipid dispersion had a dispersion index of 0.47. 'These results show that the dry powder formulation comprises monodisperse particles suitable for inhaled administration and which are substantially free flowing. Example 6 Self-medicinal composition D Further analysis of the prepared dry powder formulation further analyzed the dry powder formulation prepared from Pharmaceutical Composition D of Example 2. The characteristics of this powder are summarized in Table 4 below: ΎΚ " Results Χ10 (um) 2.01 ±0.00 X50 (um) 3.97 ±0.00 X90 (um) 7.42 ± 0.02 Grain concentration (mOsmo) 0 Powder density (g/cm3) 0.07 Carr index 19% VMDium) 4.46 ±0.01 GSD 1_92±0.00 In this table, 10% The particles have an average particle size below the χ10 value metric, 50% of the particles have an average particle size below the χ5〇 value metric and 90% of the 133847.doc -34- 200916126 particles have an average particle size below the X90 value metric. The volumetric osmotic concentration measured by a micro-osmometer (Advanced Inst. Inc, US) indicates that the siRNA is effectively encapsulated. The VMD is the volume average diameter and the GSD is the geometric standard deviation. The mass median aerodynamic diameter (MMAD or daer) can be calculated from the volume diameter [dv] by the following formula: daer = where is the density of the powder in g/cm3. The low density of this powder ensures low MMAD, It produces a high-fine particle fraction (FPF < 5 μιη). The particle size distribution of the lipid dispersion as measured by laser diffraction is shown in Figure 3 of the accompanying drawings. The particle size distribution measured by laser diffraction (Malvern Zetasizer, UK) is shown in Figure 4. The average particle size of the lipid dispersion was 229.5 nm. The lipid dispersion has a dispersion index of 0.261. These results demonstrate that dry powder formulations are suitable for inhalation administration and are generally free of 'flow. Example 7 Preparation of Other Pharmaceutical Compositions of the Invention Pharmaceutical compositions E, F, G and oxime were prepared from the following: Composition Ε Component amount (g/i) Functional nucleus A 0.075 Drug substance bis-lipid 醯Phospholipid choline (DPPC) 3.000 Lipid material for encapsulation PEG- scorpion sputum test 0.250 Co-lipid (lipid vesicle stabilizer) 133847.doc -35- 200916126 Component (g/i) Function CaCl2. 2H20 0.250 Negative ion compensated lactic acid, pH 4.5 0.005 Buffer Na2HP04.H20 > pH 6.5 0.170 Buffer bovine serum albumin 1.150 Thinner inulin 0.100 Fluidity enhancer / particle surface modifier

組合物F 組份 量(g/i) 功能 寡核苷酸A 0.075 藥物物質 二-軟脂醯基磷脂醯膽鹼(DPPC) 3.000 用於囊封之脂質材料 PEG-磷脂醯膽鹼 0.250 輔脂質(脂質囊泡穩定劑) CaCl2.2H20 0.250 負離子補償 乳酸,pH 4.5 0.005 緩衝液 Na2HP04.H20,pH 6.5 0.170 緩衝液 D,L-白胺酸 1.150 稀釋劑 菊粉 0.100 流動性增強劑/顆粒表面改質劑Composition F Component Amount (g/i) Functional Oligonucleotide A 0.075 Drug Substance Di-pipylphosphatidylcholine choline (DPPC) 3.000 Lipid material for encapsulation PEG-phospholipid choline 0.250 Co-lipid ( Lipid vesicle stabilizer) CaCl2.2H20 0.250 Negative ion compensated lactic acid, pH 4.5 0.005 Buffer Na2HP04.H20, pH 6.5 0.170 Buffer D, L-leucine 1.150 Thinner inulin 0.100 Fluidity enhancer / particle surface modification Agent

組合物G 組份 量(g/1) 功能 siRNAB 0.140 藥物物質 二-肉豆蔻醯基磷脂醯膽鹼(DMPC) 2.000 用於囊封之脂質材料 PEG-填脂酿膽驗 0.250 輔脂質(脂質囊泡穩定劑) 磷酸鈣 0.150 負離子補償 乳酸,pH 4.5 0.005 緩衝液 Na2HP04.H20,pH 6.5 0.170 缓衝液 牛血清白蛋白 1.785 稀釋劑 甘胺酸 0.500 流動性增強劑 組合物Η 組份 量_ 功能 siRNAB 0.140 藥物物質 二-肉豆蔻醯基磷脂醯膽鹼(DMPC) 3.500 用於囊封之脂質材料 膽固醇 0.250 輔脂質(脂質囊泡穩定劑) CaCl2.2H20 0.250 負離子補償 乳酸,pH 4.5 0.005 緩衝液 Na2HP04.H20,pH 6.5 0.170 緩衝液 牛血清白蛋白 0.435 稀釋劑 硬脂酸鎂 0.250 流動性增強劑 為脂質分散液之此等組合物係如實例1中所述來製備, 133847.doc -36- 200916126 其中寡核苷酸A為具有TLR9-促效劑活性之相同免疫調節 寡核苷酸,然而寡核苷酸帶負電荷,其具有-45 mV(使用 Master Zetasizer,Malvern Instruments Ltd, UK來量測)之 g(Zeta)電位,且在囊封之後,ζ電位向具有(0 mV至-6 mV) 之中性值增加。以此方式減少寡核苷酸上之負電荷避免鼻 黏膜中之刺激且使得藥物物質以適於吸收之未電離形式存 在。 siRNA B為相對於螢光素酶設計之siRNA。其為使水解 蟲螢光素(luciferine)從而產生光之螢火蟲蛋白靜止的經化 學合成之RNA。使用中之SiRNA為每股包含21個核苷酸之 短雙股寡物質(MW : 13486 Da)。其結構可表示如下: 有義股序列: 5'-CUUACGCUGAGUACUUCGAdTsdT-3' (SEQ.I.D.NO: 4) 反義股序列: 5'-UCGAAGUACUCAGCGUAAGdTsdT-3' (SEQ.I.D.NO: 5) 其中單字母核苷酸編碼為:A為腺苷,C為胞嘧啶核 苷,G為鳥苷,U為尿嘧啶核苷、sT為胸苷且連字符表示 3·-5'磷酸二酯鍵。此藥物物質亦帶負電荷且為水溶性的, 因此將其溶解於0.1%乳酸溶液(pH 4)中以減少分子上之負 電荷。 將脂質分散液中組合物之固體濃度設為5% w/w。 實例8 用於鼻内投與之本發明之乾粉調配物的製備 將實例7中所製備之醫藥組合物E、F、G及Η喷霧乾燥以 133847.doc -37- 200916126 得到適用於鼻内投與的本發明之乾粉調配物。 使用 Biichi 191喷霧乾燥器(Biich lab〇r Techniek AG,Composition G component amount (g/1) Function siRNAB 0.140 Drug substance di-myristyl phospholipid choline (DMPC) 2.000 Lipid material for encapsulation PEG-filled fat test 0.250 Co-lipid (lipid vesicle) Stabilizer) Calcium phosphate 0.150 Negative ion compensated lactic acid, pH 4.5 0.005 Buffer Na2HP04.H20, pH 6.5 0.170 Buffer bovine serum albumin 1.785 Thinner glycine 0.500 Fluidity enhancer composition Η Component amount _ Functional siRNAB 0.140 Drug substance Di-myristylphospholipid choline (DMPC) 3.500 Lipid material for encapsulation cholesterol 0.250 Co-lipid (lipid vesicle stabilizer) CaCl2.2H20 0.250 Negative ion-compensated lactic acid, pH 4.5 0.005 Buffer Na2HP04.H20, pH 6.5 0.170 Buffer Bovine Serum Albumin 0.435 Diluent Magnesium Stearate 0.250 Fluidity Enhancer These lipid lipid dispersions were prepared as described in Example 1, 133847.doc -36- 200916126 where oligonucleosides Acid A is the same immunomodulatory oligonucleotide with TLR9-agonist activity, whereas the oligonucleotide is negatively charged and has a -45 mV (using Master Zetasizer, Ma) Lvern Instruments Ltd, UK measures the g(Zeta) potential, and after encapsulation, the zeta potential increases to a neutral value of (0 mV to -6 mV). Reducing the negative charge on the oligonucleotide in this manner avoids irritation in the nasal mucosa and allows the drug substance to exist in an unionized form suitable for absorption. siRNA B is an siRNA designed against luciferase. It is a chemically synthesized RNA which hydrolyzes luciferine to produce a light firefly protein. The SiRNA in use is a short double-stranded oligosaccharide (MW: 13486 Da) containing 21 nucleotides per share. Its structure can be expressed as follows: Sense strand sequence: 5'-CUUACGCUGAGUACUUCGAdTsdT-3' (SEQ.IDNO: 4) Antisense strand sequence: 5'-UCGAAGUACUCAGCGUAAGdTsdT-3' (SEQ.IDNO: 5) where single letter nucleus The glycoside is encoded as: A is adenosine, C is a cytosine nucleoside, G is guanosine, U is a uridine nucleoside, sT is thymidine and the hyphen indicates a 3·-5' phosphodiester bond. The drug substance is also negatively charged and water soluble, so it is dissolved in a 0.1% lactic acid solution (pH 4) to reduce the negative charge on the molecule. The solid concentration of the composition in the lipid dispersion was set to 5% w/w. Example 8 Preparation of a dry powder formulation of the present invention for intranasal administration The pharmaceutical compositions E, F, G and hydrazine prepared in Example 7 were spray-dried to 133847.doc -37-200916126 for intranasal application. The dry powder formulation of the present invention administered. Using a Biichi 191 spray dryer (Biich lab〇r Techniek AG,

Switzerland)進行噴霧乾燥以得到自由流動之乾粉。 將2 mm喷族噴嘴用以製備用於經鼻施用之具有大於2〇 μηι平均粒度之乾粉調配物以供標靶之前鼻沈積。將〇 .7 mm噴霧喷嘴用以製備用於經鼻施用之具有在1〇 μηι與20 μιη之間的平均粒度之乾粉調配物以供標靶之後鼻沈積。 實例9 用於鼻内投與之本發明之乾粉調配物的表徵 藉由動態光散射技術使用Master Zetasizer(MalvernSwitzerland) Spray drying to obtain a free flowing dry powder. A 2 mm spray nozzle was used to prepare a dry powder formulation for nasal administration with an average particle size greater than 2 〇 μηι for nasal deposition prior to target. A 〇.7 mm spray nozzle was used to prepare a dry powder formulation for nasal administration with an average particle size between 1 μm and 20 μm for nasal deposition after targeting. Example 9 Characterization of Dry Powder Formulations for Intranasal Administration of the Invention Master Zetasizer (Malvern) by Dynamic Light Scattering Technique

Instruments Ltd,UK)來測定實例7之組合物E、F、G及Η中 母一者之平均囊泡尺寸。因此測定各組合物之多分散指數 (PDI)。其為顆粒分布寬度之指示,低?;^可指示窄分布。 結果展示於下表5中: 表5 脂質分散液 囊泡尺寸(rnn) 多分散指數 Ε 220.7 0.291 F 352.6 0.251 G 207.3 0.205 Η 379.6 0.208 實例10 用於鼻内投與之乾粉調配物的囊封效率 藉由高效液相層析(HPLC),藉由凝膠電泳且藉由毛細管 凝膠電泳(CGE)來測定調配物E v F、G及Η中每一者之囊封 效率。在HPLC方法中’將各乾粉調配物再懸浮於磷酸鹽 緩衝生理食鹽水(PBS)中,簡單地混合,藉由離心萃取非 133847.doc • 38 - 200916126 囊封养核苷酸,且分析上清液之游離寡核苷酸的存在。使 用此方法,將募核苷酸A及siRNA A之囊封效率計算為 >95°/。。在凝膠電泳方法中,將醫藥組合物£、ρ、〇及η中 每一者負載於4%瓊脂糖Ε-凝膠(In vitro gen™)上,在其上帶 負電荷之游離寡核苷酸向帶正電荷之陰極移動。使用uv 透照器來測定寡核苦酸之定性偵測。 在毛細管凝膠電泳中,將脂質體試樣注射於含有可替換 凝膠之經塗佈之毛細管中以便篩分。已使用配備有固定波 長價測器之BECKMAN PA800毛細管電泳儀。組合物E及F 之實例係呈現於圖5中。 所有方法均展示脂質體以及粉末中之囊封效率的一致結 果。 實例11 用於鼻内投藥之乾粉調配物的粒度 使用HELOS雷射繞射以濕分散液(自Synipateeh GmbH, Germany)來量測乾粉調配物e、F、G及Η中每一者之粒 度。結果展不於下表6中: 表6 乾粉 艘積平均直徑(μηι) 目標 νΜΐ)(μιη) E 16.98 ± 1.16 >10 “m _ F 30.03 士 0.26 >10 um 「 G 11.01 ±0.19 >10 HXYi Η 10.53 ±0.06 >10 um 在各情況下,發現體積平均直徑(VMD)對於經鼻沈積而 言最佳。質量中值空氣動力學直徑(MMAE^tdaer)可自體積 直控[dv]藉由下式來計算: 133847.doc •39- 200916126 daer=dv^[p 其中p為以g/cm3為單位之粉末密度 粒度之選擇可用以乾向鼻腔中之特定區域。舉例而言, 乾粉調配物E具有藉由雷射繞射量測的圖6中所示且概括於 表7中之粒度分布⑲向鼻前部中之藥物沈積,其中渗透 性一般低於鼻中其他處: 表7 參δ Ί Χ10 (ixm) 16.75 ±0.49 _Χ50 (μιη) 31.25 ±0.18 " Χ90 (μιη) 43.53 ±0.85 GSD 1·16±〇·〇3 其中10%之顆粒具有在X10值度量以下之平均粒度,50% 之顆粒具有在X5G值度量以下之平均粒度且9G%之顆粒具 有在X90值度量以下之平均粒度,在各情況下其係藉由 ELOS田射繞射以濕分散液(自GmbH,Germa㈣ 來測定,且GSD為先前所量測粒度之幾何標準差。圖认 义中―所不之粒度分布由於沈積於鼻之由皮膚樣上皮加概 的前三分之—而提供長於平常之鼻中滯留時間,該部位限 制吸收’且gj此尤其適用於提供局部治療作用。 …'而’乾粉調配物F具有藉&雷射繞射量測的圖7中所示 且概括於表8中之粒度分布以乾向鼻閣下方之鼻後部中之 樂物沈積,該區域係由薄層黏膜及緻密之血管網所覆蓋, 其中滲透性一般高於鼻中其他處: 133847.doc -40- 200916126 表8 參數 結果 ΧΙΟ(μηι) 3.40 ±0.05 Χ50(μιη) 9.60 ±0.19 Χ90(μηι) 20.83 ± 0.36 GSD 2.48 ± 0.00 其中ΧΙΟ、Χ5〇、χ9〇及GSD具有與前文相同之含義且圖 7及表8中所示之粒度分布由於在此區域中之緻密血管網因 此提供短於平常之鼻中滯留時間,且因此尤其適用於提供 全身性吸收。 實例12 用於鼻内投藥之乾粉調配物的pH值 各乾粉調配物之pH值為酸性,亦即在約pH 4.5與pH 6.5 之間使得投與各調配物之鼻腔的pH有足夠酸性以避免存在 於鼻中之溶菌酶失活且用以抗擊任何通向鼻中之細菌。舉 例而言’乾粉調配物E、F、G及Η分別具有5.3、5.5、6.8 及5.5之pH值。 實例13 用於鼻内投與之本發明之乾粉調配物的流動性 參考容積密度(BD)、敲緊密度(TBD)及尤其卡爾指數(使 用 STAVII密度計(J Engelmann AG, Germany))之量測值來 測定乾粉調配物E、F、G及Η之流動性。 在各情況下,將1 g乾粉調配物置於量筒中。量測粉末 體積且如下以g/cm3為單位計算容積密度或"BD·,: BD [g/cm3] =粉末重量(g)/粉末床體積(mi或cm3) 133847.doc •41 - 200916126 將乾粉敲拍1250次且量測粉末體積床。如下來計算敲緊 密度或"TBD” : TBD [g/cm3] =粉末重量(g)/敲緊粉末床體積或cm” 如下來計算卡爾指數: 卡爾指數[°/。]=(敲緊密度-容積密度)*100/敲緊密度 結果為三個量測值之平均值且展示於下表9中: 表9 乾粉調配物 容積密度(g/cm3) 敲緊密度(g/cm3) 卡爾指數(%) E 0.150 0.177 16 F 0.123 0.166 26 G 0.166 0.200 17 Η 0.222 0.250 11 ------- 決I 1Χ· cur. J.o, 7’ 2.936>),此4粉末具有良好流動性。儘管不欲受 =論限制,但此良好流動性可歸因於在粉末顆粒上部形成 ^ m增強劑奈米晶體’如藉由掃描電子顯微術(p⑻咖 紅20, PhiUips B.v.,The如㈣心)及χ射線粉末繞射分 析(Stoe & Cie GmbH,Gemany)所偵測,例如乾粉調配物 G(參見圖8)。 實例14 用於鼻内投與之乾粉調配物的喷霧乾燥之最佳化 置喷霧乾燥器之旋風器的割點(cuUp〇int)以能夠選 ^度部分從而最優化喷霧乾燥法之產率。 抗靜電塗料進一步塗佈旋' 铷、:KW,, 紘、石夕石衍峰 聚(3,4-伸乙二氧基噻吩) )汆(本乙烯磺酸酯)或兩親媒 133847.doc -42- 200916126 性表面活性劑來塗佈)來增大產率。舉例而言,在Β. γ 191噴霧乾燥n⑽Chi AG,Switzerland)中將f藥組合物 E、F、G及Η(其為脂質分散液)喷霧乾燥。藉由諸如(但 限於)羥丙基甲基纖維素之抗靜電界面活性劑塗佈内禋為 6_3 cm之高效玻璃旋風器。將旋風器内徑設為6 3 二改 良可引起後置過濾、器(baek fil㈣上產品損失的較小顆粒之 分離。在下表10中給出藉由將上述醫藥組合物中每— 霧乾燥所製得之各乾粉調配物的產率。 表10 乾粉調配物 方法產率 E 68 F 62 G 74 Η 75 在實驗室規模下各產率係在6〇%以上,其表明進一步按 比例放大之步驟具有較高產率。 女 實例15 : 在此實例中,使用一種調配物組合物。藉由定製製備方 法,可製備具有兩種不同粒度之自由流動之脂質粉末”吏 用方法1產生之自由流動乾粉顆粒係足夠小以靶向肺泡沈 積使用方法2製備之顆粒係較大以靶向上氣管沈積。兩 種私末均具有窄粒度分布,其確保有效地局部沈積於肺中 之向部位。 133847.doc -43· 200916126 組合物實例i 組份 量[g/L] 功能 siRNAB 0.300 藥物物質 二-軟脂醯基磷脂醯膽鹼(DPPC) 3.500 用於嚢封之脂質材料 PEG-磷脂醯膽鹼 0.200 輔脂質(脂質囊泡穩定劑) 膽固醇 0.500 輔脂質(脂質囊泡穩定劑) CaCl2.2H20 0.250 負離子補償 乳酸,pH 4.5 0.006 缓衝液 Na2HP04.H20 ' pH 6.5 0.017 緩衝液 甘胺酸 0.227 流動性增強劑/顆粒表面改質劑 如前所述,製備方法包含2個步驟。步驟I保持恆定,而 步驟II為經定製以靶向特定乾粉粒度分布之喷霧乾燥法。 步驟1(在高剪切混合下之溶劑注射技術): •將製劑A(DPPC、PEG-PC及膽固醇)溶解於100 ml乙醇 中且置於高剪切混合器中且調節在45士5°C之溫度下。 • 將製劑B(siRNA B、CaCl2.2H20)溶解於800 ml乳酸鹽 緩衝液(pH 4.5)中且使用抽吸系統以3 ml/min之流率 緩慢注射於製劑A中,同時進行連續混合。 • 以10 ml/min之流率使製劑C(溶解於100 ml磷酸鹽緩 衝液(pH 6.5)中之甘胺酸)與製劑A+B混合。 • 所形成之脂質分散液具有〇. 5% w/w之固體含量。 步驟11(喷霧乾燥): • 使用Btichi B-191實驗室規模喷霧乾燥器(Biichi AG, Flawil, Switzerland)將所製備之脂質分散液喷霧乾燥 以形成用於肺部施用之具有定製空氣動力學直徑以 133847.doc -44- 200916126 靶向肺泡區域(方法1)或上氣管(方法2)之自由流動顆 粒。兩種方法之設置參數的完整描述均呈現於表11 中: 表11Instruments Ltd, UK) was used to determine the average vesicle size of one of the compositions E, F, G and sputum of Example 7. Therefore, the polydispersity index (PDI) of each composition was determined. Is it an indication of the width of the particle distribution, low? ;^ can indicate a narrow distribution. The results are shown in Table 5 below: Table 5 Lipid dispersion vesicle size (rnn) Polydispersity index Ε 220.7 0.291 F 352.6 0.251 G 207.3 0.205 Η 379.6 0.208 Example 10 Encapsulation efficiency of dry powder formulations for intranasal administration The encapsulation efficiency of each of the formulations E v F, G and Η was determined by high performance liquid chromatography (HPLC) by gel electrophoresis and by capillary gel electrophoresis (CGE). In the HPLC method, each dry powder formulation was resuspended in phosphate buffered saline (PBS), simply mixed, and the non-133847.doc • 38 - 200916126 encapsulated nucleotides were extracted by centrifugation, and analyzed. The presence of free oligonucleotides in the serum. Using this method, the encapsulation efficiency of nucleotide A and siRNA A was calculated to be >95°/. . In the gel electrophoresis method, each of the pharmaceutical compositions £, ρ, 〇, and η is loaded on a 4% agarose-gel (In vitro genTM), and a negatively charged free oligo is loaded thereon. The glycoside moves toward the positively charged cathode. The uv transilluminator was used to determine the qualitative detection of oligonucleotides. In capillary gel electrophoresis, a liposome sample is injected into a coated capillary containing a replaceable gel for screening. A BECKMAN PA800 capillary electrophoresis instrument equipped with a fixed length detector has been used. Examples of compositions E and F are presented in Figure 5. All methods demonstrate consistent results for liposome and encapsulation efficiency in powders. Example 11 Particle size of dry powder formulations for intranasal administration The particle size of each of the dry powder formulations e, F, G and mash was measured using a HELAS laser diffraction with a wet dispersion (from Synipateh GmbH, Germany). The results are not shown in Table 6 below: Table 6 Average diameter of dry powder reservoir (μηι) Target νΜΐ) (μιη) E 16.98 ± 1.16 >10 “m _ F 30.03 ± 0.26 > 10 um “ G 11.01 ± 0.19 > 10 HXYi Η 10.53 ±0.06 >10 um In each case, the volume mean diameter (VMD) was found to be optimal for nasal deposition. The mass median aerodynamic diameter (MMAE^tdaer) can be directly controlled from volume [dv ] Calculated by: 133847.doc •39- 200916126 daer=dv^[p where p is the choice of the powder density particle size in g/cm3 to dry to a specific area in the nasal cavity. For example, The dry powder formulation E has a drug deposition into the anterior portion of the nose as shown by the laser diffraction measurement shown in Figure 6 and summarized in Table 7, wherein the permeability is generally lower than elsewhere in the nose: 7 δδ Ί Χ10 (ixm) 16.75 ±0.49 _Χ50 (μιη) 31.25 ±0.18 " Χ90 (μιη) 43.53 ±0.85 GSD 1·16±〇·〇3 10% of the particles have an average particle size below the X10 value 50% of the particles have an average particle size below the X5G value and 9G% of the particles have an X90 value The following average particle size is measured, in each case measured by ELOS field diffraction as a wet dispersion (from GmbH, Germa (4), and GSD is the geometric standard deviation of the previously measured particle size. The particle size distribution is limited by the first three-thirds of the skin-like epithelium deposited on the nose—providing longer than the usual nasal retention time, which limits absorption' and is particularly useful for providing local therapeutic effects. 'Dry powder formulation F has the particle size distribution shown in Figure 7 and summarized in Table 8 by the & laser diffraction measurement to dry the nose in the nose of the nose, which is thin Covered by laminar mucosa and dense vascular network, the permeability is generally higher than other parts of the nose: 133847.doc -40- 200916126 Table 8 Parameter results ΧΙΟ(μηι) 3.40 ±0.05 Χ50(μιη) 9.60 ±0.19 Χ90(μηι) 20.83 ± 0.36 GSD 2.48 ± 0.00 where ΧΙΟ, Χ5〇, χ9〇 and GSD have the same meaning as before and the particle size distribution shown in Figure 7 and Table 8 is therefore shorter than usual due to the dense vascular network in this region Nasal retention In particular, and therefore particularly suitable for providing systemic absorption.Example 12 pH of dry powder formulations for intranasal administration The pH of each dry powder formulation is acidic, ie between about pH 4.5 and pH 6.5 The pH of the nasal cavity of each formulation is sufficiently acidic to avoid inactivation of the lysozyme present in the nose and to combat any bacteria that pass into the nose. For example, the dry powder formulations E, F, G and strontium have pH values of 5.3, 5.5, 6.8 and 5.5, respectively. Example 13 Flowability of a dry powder formulation of the present invention for intranasal administration refers to the volumetric bulk density (BD), knock tightness (TBD), and especially the Karl index (using a STAVII densitometer (J Engelmann AG, Germany)). The measured values were used to determine the fluidity of the dry powder formulations E, F, G and hydrazine. In each case, 1 g of dry powder formulation was placed in a graduated cylinder. Measure the volume of the powder and calculate the bulk density in g/cm3 as follows or "BD·,: BD [g/cm3] = powder weight (g) / powder bed volume (mi or cm3) 133847.doc •41 - 200916126 The dry powder was tapped 1250 times and the powder volume bed was measured. Calculate the knock density or "TBD" as follows: TBD [g/cm3] = powder weight (g) / tighten the powder bed volume or cm" Calculate the Carl index as follows: Carr index [°/. ] = (knock tightness - bulk density) * 100 / knock tightness results are the average of the three measurements and are shown in Table 9 below: Table 9 Dry powder formulation bulk density (g / cm3) knock tightness ( g/cm3) Carr index (%) E 0.150 0.177 16 F 0.123 0.166 26 G 0.166 0.200 17 Η 0.222 0.250 11 ------- 决 I 1Χ· cur. Jo, 7' 2.936>), this 4 powder Has good fluidity. Although not intended to be limited by theory, this good fluidity can be attributed to the formation of m m enhancer nanocrystals in the upper part of the powder particles as by scanning electron microscopy (p(8) coffee red 20, PhiUips Bv, The (4) Heart) and X-ray powder diffraction analysis (Stoe & Cie GmbH, Gemany) detected, for example, dry powder formulation G (see Figure 8). Example 14 For the spray drying of the dry powder formulation for intranasal administration, the cut point (cuUp〇int) of the cyclone of the spray dryer was optimized to optimize the spray drying method. Yield. The antistatic coating is further coated with spin 铷, KW, 纮, Shi Xi Shi Yan Feng poly (3,4-extended ethylenedioxythiophene) 汆 (this vinyl sulfonate) or amphiphilic 133847.doc -42 - 200916126 Sex surfactant to coat) to increase the yield. For example, the pharmaceutical compositions E, F, G and hydrazine, which are lipid dispersions, are spray dried in Β. γ 191 spray dried n(10)Chi AG, Switzerland). A high efficiency glass cyclone having an internal enthalpy of 6 to 3 cm is coated by an antistatic surfactant such as, but not limited to, hydroxypropylmethylcellulose. Setting the inner diameter of the cyclone to 6 3 improves the separation of smaller particles that can cause loss of product on the post filter (four). The drying of each of the above pharmaceutical compositions is given in Table 10 below. The yield of each dry powder formulation prepared. Table 10 Dry powder formulation method Yield E 68 F 62 G 74 Η 75 The yield was above 6〇% at laboratory scale, indicating a further scale-up step Higher yield. Female Example 15: In this example, a formulation composition was used. By custom preparation, a free-flowing lipid powder having two different particle sizes can be prepared. The dry powder granules are small enough to target alveolar deposition. The granules prepared using Method 2 are larger to target upper tracheal deposition. Both vesicles have a narrow particle size distribution that ensures efficient local deposition in the lungs. Doc -43· 200916126 Composition example i Component amount [g/L] Functional siRNAB 0.300 Drug substance bis-lipidyl phospholipid choline (DPPC) 3.500 Lipid material PEG-phospholipid choline for sputum seal 0.200 Co-lipid (lipid vesicle stabilizer) Cholesterol 0.500 Co-lipid (lipid vesicle stabilizer) CaCl2.2H20 0.250 Negative ion-compensated lactic acid, pH 4.5 0.006 Buffer Na2HP04.H20 'pH 6.5 0.017 Buffer glycine 0.227 Fluidity enhanced Agent/Particle Surface Modifier As described above, the preparation method comprises 2 steps. Step I is kept constant, and Step II is a spray drying method tailored to target a specific dry powder particle size distribution. Step 1 (in high shear Solvent injection technique with cut mixing): • Dissolve Formulation A (DPPC, PEG-PC and cholesterol) in 100 ml of ethanol and place in a high shear mixer and adjust to a temperature of 45 ± 5 ° C. • Formulation B (siRNA B, CaCl2.2H20) was dissolved in 800 ml of lactate buffer (pH 4.5) and slowly injected into Formulation A at a flow rate of 3 ml/min using a suction system while continuously mixing. Formulation C (glycine dissolved in 100 ml of phosphate buffer (pH 6.5)) was mixed with Formulation A+B at a flow rate of 10 ml/min. • The resulting lipid dispersion had a 〇. 5% w Solid content of /w. Step 11 (spray drying): • Use Btichi B-191 laboratory scale spray dryer (Biichi AG, Flawil, Switzerland) spray dried the prepared lipid dispersion to form a custom aerodynamic diameter for pulmonary application to 133847.doc -44 - 200916126 Free-flowing particles that target the alveolar region (Method 1) or the upper trachea (Method 2). A complete description of the setup parameters for both methods is presented in Table 11: Table 11

參數 方法1 方法2 目標 肺泡沈積 上氣管沈積 噴霧噴嘴 兩個流體平行流喷嘴 兩個流體平行流喷嘴 噴嘴直徑 0.5 mm1 0.7 mm1 進料空氣壓力 7巴1 5巴 吸氣器氣流 120 L/min1 90 L/min 液體進料速率 2.5 mL/min 6 mL/min1 入口溫度 115±5〇C 130±5〇C - 出口溫度 50 ± 5°C 50 ± 5°C *影響粒度之主要因素。 以下發現可源自此實驗: • 因為對於兩個批料而言調配物組成及步驟I均相同, 所以製備具有相同特徵(囊泡尺寸及ζ電位)之脂質分 散液,使用 Master Zetasizer(Malvern Instruments Ltd, UK)測定該等特徵[表12]。 ί, •藉由先前所述之毛細管凝膠電泳方法來量測siRNA於 脂質分散液中之囊封效率。資料呈現於表12中。 表12 脂質分散液 結果 粒度 423 士 20 nm 多分散指數(PDI) 0.28 ±0.01 ζ電位 0·0±3.1 mV 囊封效率[%] 47.0 ±0.08 133847.doc • 45· 1 使用HELOS雷射繞射以濕分散液(Sympatech GmbH, Germany)量測基於粉末體積之粒度[表1 3]: 200916126 表13 乾粉 方法1 方法2 目標 肺泡沈積 上氣管沈積 XI0 [μιηΐ 1.61 ±0.02 2.71 ±0·04 Χ50 Γμιηΐ 3.09 ±0.06 10.62 ±0.07 Χ90 ίμιηΐ 5.29 ±0.03 1 5.52 ±0.02 νΜϋ*Γμιη1 3.73 ± 0.04 12.03 ±0.03 GSD** 1.81 ±0.01 2.39 ±0.08 *νΜϋ=體積平均直徑 **GSD=幾何標準差 •使用 Next Generation 級聯衝擊器[NGI](Copley Scientific Inc., UK)在60 L/min下量測空氣動力學粒 度分布。使用DP4 PennCentury乾粉吸入器(PennCenury Inc.,USA(n=2))使5 mg粉末在該衝擊器中氣溶膠化 [表 14、圖 9、圖 10]。 表14 乾粉 方法1 方法2 目標 肺泡沈積 上氣管沈積 標記siRNA劑量[μΕ] 300 300 每吸入器之注射數目 1 1 流率[L/min] 60 60 自NGI之總回收率[%LC* * *] 93.3 ±3.1 95.7 ±2.0 細顆粒劑量<5 μηι [jig] 198.3 ±8.3 94.6 ±4.8 細顆粒部分<5 μηι [°/〇] 70.8 ± 0.6 33.1 ± 2.4 MMAD*_1 1.5 ±0.0 7.7 ±0.4 GSD** 2.4 ±0.1 4.1 ±0.7 囊封效率[%] 78 ±0.6 80 ±0.8 *MMAD=質量中值空氣動力學直徑 **GSD=幾何標準差 * * *LC=Labelle Claim=300 μ§ siRNA • 方法1產生MMAD為1.5 μηι之顆粒,其確保有效肺泡 133847.doc -46- 200916126 沈積,方法2產生河河入1)為7.7 μηι之顆粒,其主要沈 積於上氣管中。 •方法1產生71%之細顆粒部分(FPF)<5 μιη的顆粒,其 表示約71%之深肺沈積》此高沈積效率可歸因於此粉 末之良好流動及空氣動力學特徵。根據此高效率, 可達成所施用治療劑量之降低,其在昂貴大分子之 情況下為所需的。 •相反地,使用方法2,可產生具有66%顆粒>5 4爪之 FPF,其確保上氣管沈積。 •呈現於圖9及圖10中之粒度分布[PSD]強調兩種方法 均產生具有單模式分布之顆粒。方法1產生小於方法 2之顆粒,然而其亦產生多於方法2之聚結物,其可 自較高咽喉沈積來推斷。此可歸因於與7_8 μιη顆粒 相比1 -2 μιη顆粒所具有之較高表面積。方法1在第4 及第5階段中產生具有高沈積之顆粒,其在6〇 L/min 下分別具有2.82 μιη及1_66 μηι之截斷直徑。與此相 反’方法2在第1及第2階段中產生具有高沈積之顆 粒,其在60 L/min下分別具有>8.06 μιη及8.06 μιη之 截斷直徑。 實例16 •將組合物實例1(實例1 5)用以囊封刺激IF?及TNFa之雙 股 siRNA。 •藉由使用 Malvern Zetasizer(Malvern Instruments Ltd., UK)或使用 Helos Sympatech 顆粒分級機(Sympatech I33847.doc -47- 200916126Parameter Method 1 Method 2 Target Alveolar Deposition Upper Airway Deposition Spray Nozzle Two Fluid Parallel Flow Nozzles Two Fluid Parallel Flow Nozzle Nozzle Diameter 0.5 mm1 0.7 mm1 Feed Air Pressure 7 Bar 1 5 Bar Aspirator Airflow 120 L/min1 90 L /min Liquid feed rate 2.5 mL/min 6 mL/min1 Inlet temperature 115±5〇C 130±5〇C - Outlet temperature 50 ± 5°C 50 ± 5°C *Main factors affecting particle size. The following findings can be derived from this experiment: • Since the formulation composition and step I are the same for both batches, a lipid dispersion with the same characteristics (vesicle size and zeta potential) was prepared using Master Zetasizer (Malvern Instruments) Ltd, UK) determined these characteristics [Table 12]. ί, • The encapsulation efficiency of the siRNA in the lipid dispersion was measured by the capillary gel electrophoresis method previously described. The data is presented in Table 12. Table 12 Lipid Dispersion Results Particle Size 423 ± 20 nm Polydispersity Index (PDI) 0.28 ± 0.01 ζ Potential 0·0 ± 3.1 mV Encapsulation Efficiency [%] 47.0 ± 0.08 133847.doc • 45· 1 Using HELOS Laser Diffraction Particle size based on powder volume measured by wet dispersion (Sympatech GmbH, Germany) [Table 13]: 200916126 Table 13 Dry powder method 1 Method 2 Target alveolar deposition upper tracheal deposition XI0 [μιηΐ 1.61 ±0.02 2.71 ±0·04 Χ50 Γμιηΐ 3.09 ±0.06 10.62 ±0.07 Χ90 ίμιηΐ 5.29 ±0.03 1 5.52 ±0.02 νΜϋ*Γμιη1 3.73 ± 0.04 12.03 ±0.03 GSD** 1.81 ±0.01 2.39 ±0.08 *νΜϋ=volume average diameter**GSD=geometric standard deviation •Use Next Generation The aerodynamic particle size distribution was measured at 60 L/min by a cascade impactor [NGI] (Copley Scientific Inc., UK). 5 mg of powder was aerosolized in the impactor using a DP4 PennCentury dry powder inhaler (PennCenury Inc., USA (n=2)) [Table 14, Figure 9, Figure 10]. Table 14 Dry powder method 1 Method 2 Target alveolar deposition upper tracheal deposition marker siRNA dose [μΕ] 300 300 Injection number per inhaler 1 1 Flow rate [L/min] 60 60 Total recovery from NGI [%LC* * * 93.3 ±3.1 95.7 ±2.0 Fine particle dose <5 μηι [jig] 198.3 ±8.3 94.6 ±4.8 Fine particle fraction <5 μηι [°/〇] 70.8 ± 0.6 33.1 ± 2.4 MMAD*_1 1.5 ±0.0 7.7 ±0.4 GSD** 2.4 ±0.1 4.1 ±0.7 Encapsulation efficiency [%] 78 ±0.6 80 ±0.8 *MMAD=mass median aerodynamic diameter**GSD=geometric standard deviation* * *LC=Labelle Claim=300 μ§ siRNA • Method 1 produces particles of MMAD of 1.5 μηι, which ensure effective alveolar 133847.doc -46- 200916126 deposition, and method 2 produces rivers into 1) 7.7 μηι particles, which are mainly deposited in the upper trachea. • Method 1 produced 71% fine particle fraction (FPF) < 5 μιη particles, which represents about 71% deep lung deposition. This high deposition efficiency can be attributed to the good flow and aerodynamic characteristics of this powder. Based on this high efficiency, a reduction in the therapeutic dose administered can be achieved, which is desirable in the case of expensive macromolecules. • Conversely, using Method 2, an FPF with 66% particles > 5 4 claws can be produced which ensures upper tracheal deposition. • The particle size distribution [PSD] presented in Figures 9 and 10 emphasizes that both methods produce particles with a single mode distribution. Method 1 produces particles smaller than Method 2, however it also produces more agglomerates than Method 2, which can be inferred from higher throat deposition. This is attributable to the higher surface area of the 1-2 μηη particles compared to the 7_8 μηη particles. Method 1 produced particles with high deposition in stages 4 and 5, which had a truncated diameter of 2.82 μηη and 1_66 μηι at 6 〇 L/min, respectively. In contrast, Method 2 produced particles having a high deposition in the first and second stages, which had a cut-off diameter of > 8.06 μηη and 8.06 μηη at 60 L/min, respectively. Example 16 • Composition Example 1 (Example 15) was used to encapsulate a double-stranded siRNA that stimulates IF? and TNFa. • by using Malvern Zetasizer (Malvern Instruments Ltd., UK) or using the Helos Sympatech particle classifier (Sympatech I33847.doc -47- 200916126

GmbH,Germany)來量測粒度分布及ζ電位從而表徵脂 質調配物。 •使用前述毛細管凝膠電泳方法來量測siRNA於脂質體 及粉末中之囊封效率 •使用動態蒸氣吸附裝置(SMS Inc.,UK)來量測藥物物 質粉末及自由流動脂質粉末之吸水。 表15 參數 siRNA 脂質體 粉末 平均粒度 N/A 423 士 20 run 3.09 ± 0 06 多分散指數(PDI) N/A 0.28 ± 0.01 31.25 ± 0 18 ζ電位 -45,3 ± 4.0 mV 0.0 ±3.1 mV N/A . ~ 囊封效率 N/A 33 ± 0.1% 82 ±3 6 在SO% K.H.下之最大吸皮 30% w/w N/A 1.9% w/wGmbH, Germany) was used to measure the particle size distribution and zeta potential to characterize the lipid formulation. • Capillary gel electrophoresis was used to measure the encapsulation efficiency of siRNA in liposomes and powders. • Dynamic vapor adsorption (SMS Inc., UK) was used to measure the water absorption of drug substance powders and free-flowing lipid powders. Table 15 Parameter siRNA Liposomes Powder Average Particle Size N/A 423 ± 20 run 3.09 ± 0 06 Polydispersity Index (PDI) N/A 0.28 ± 0.01 31.25 ± 0 18 ζ Potential -45,3 ± 4.0 mV 0.0 ±3.1 mV N /A . ~ Encapsulation efficiency N/A 33 ± 0.1% 82 ±3 6 Maximum suction in SO% KH 30% w/w N/A 1.9% w/w

可自呈現於表1 5中之資料推斷,當可觀察到ζ電位自_ 45 mV減小至〇 mV時,調配物可有效囊封siRNA。另 外’與脂質調配物相比粉末具有高得多之囊封效 率其可強調各粉末顆粒為完整囊,該囊將脂質囊 泡及游離311^八囊封於其中。此可由SEM資料[圖夏q 證實。 另外,自由流動粉末產生囊封siRNAs其中且因此降 低其吸濕特徵且因此允許更好穩定性的顆粒。 ,然而其 此可藉由 如圖10中之SEM所示,此囊並非為多孔的 在其内部具有如花粉粒顆粒之空的空間, 此專顆粒之體積平均直徑及2氣動力##量中值直 徑之差異來強調。此等顆粒具有3.73 _之侧,同 時之MMAD,此意謂顆粒體積比其空氣動力學 133847.doc -48- 200916126 尺寸之兩倍還大,其表明此等囊中空間之一半為* 的。另外’可如下來計算此等顆粒之實際密度: ^aer ~ ^ ν λ[ρ 其中Ρ為以g/cm3為單位之實際密度,daer為以μηι為單位 之空氣動力學粒度且dv為以μηι為單位之體積直徑。 可如下來計算密度: /?-(l.5/3.7)2 此等顆粒之密度=0.16 g/cm3 顆粒中之空的空間可如下來計算: 進入囊中之空的空間% = [1_ (敲緊密度/顆粒密度)]X 100=[1-(0.25/0.16)]χ 1〇〇] = 56% •將此siRNA囊封於如DPPC之中性脂質中,Dppc為肺 部生物流體之天然組成,中和荷且降低可能 之副作用,諸如由IF?及TNFa之刺激所產生之發炎反 應[圖1 2]。 •另外,因為在使用PennCentury DP4氣管内吸入器件 (PennCentury lnc,USA)以兩個劑量,每劑量為} mg/kg以1〇^對80隻大氣給藥後,未能觀察到副作 用,所以s周配物在活體内係得以良好地耐受。 實例17 -按比例放大試驗 •將組合物實例!(參見實例15)用於按比例放大試驗。 •该方法使用UltimaGral高剪切混合器(GEA pr〇cessFrom the data presented in Table 15, it can be inferred that when the zeta potential is observed to decrease from _45 mV to 〇mV, the formulation can effectively encapsulate the siRNA. In addition, the powder has a much higher encapsulation efficiency than the lipid formulation, which emphasizes that each powder particle is a complete capsule in which the lipid vesicle and free 311 are encapsulated. This can be confirmed by SEM data [Fig. Xiq. In addition, free flowing powders produce particles that encapsulate siRNAs therein and thus reduce their hygroscopic characteristics and thus allow for better stability. However, this can be illustrated by the SEM shown in FIG. 10, which is not a porous space having an empty space such as pollen grains in its interior, and the volume average diameter of the specific particles and the amount of 2 aerodynamics The difference in value diameter is emphasized. These particles have a side of 3.73 _, at the same time MMAD, which means that the particle volume is more than twice the size of its aerodynamics 133847.doc -48- 200916126, which indicates that one-half of the space in these pockets is *. In addition, the actual density of these particles can be calculated as follows: ^aer ~ ^ ν λ[ρ where Ρ is the actual density in g/cm3, daer is the aerodynamic particle size in μηι and dv is in μηι The volume diameter of the unit. The density can be calculated as follows: /?-(l.5/3.7)2 The density of these particles = 0.16 g/cm3 The empty space in the particle can be calculated as follows: Space into the empty space in the capsule % = [1_ ( Knock tightness/particle density)]X 100=[1-(0.25/0.16)]χ 1〇〇] = 56% • This siRNA is encapsulated in a neutral lipid such as DPPC, which is a biological fluid of the lungs. Naturally, neutralizes and reduces possible side effects such as inflammatory reactions caused by IF? and TNFa [Figure 12]. • In addition, because the PennCentury DP4 endotracheal inhalation device (PennCentury lnc, USA) was administered in two doses at a dose of |mg/kg per dose to 80 atmospheres, no side effects were observed, so s The weekly ligand is well tolerated in vivo. Example 17 - Scale Up Test • Example of composition! (See Example 15) for scale-up experiments. • This method uses the UltimaGral high shear mixer (GEA pr〇cess)

Engineering,Denmark)自i [批料尺寸按比例放大至 1〇 L批料尺寸。對於兩個批料而言方法參數係相同 133847.doc -49- 200916126 的。唯一例外為溶劑進料速率,其對於1 L批料而言 設為3 ml/min且對於1 0 L批料而言設為30 ml/min。 •使用 Niro Mobile Minor 喷霧乾燥器(GEA process Engineering,Denmark)使喷霧乾燥過程自5 g按比例 放大至100 g。在表16中說明方法參數: 表16 參數 粉末 喷霧喷嘴 0.5 mm旁路喷嘴 進料氮氣壓力 5.-7 巴 吸氣器氣流 80-110 m3/hr 入口溫度 110-150。。 出口溫度 45-65〇C 進料液體流 0.5-3 kg/hr •按比例放大方法之完整描述呈現於圖12中。 • 當自試驗規模批料獲得之資料可與使用實驗室規模 批料獲得之貧料相當時’成功地進行了方法之試驗 按比例放大[表17]。 表17Engineering, Denmark) from i [batch size scaled up to 1 〇 L batch size. The method parameters are the same for both batches 133847.doc -49- 200916126. The only exception was the solvent feed rate, which was set to 3 ml/min for the 1 L batch and 30 ml/min for the 10 L batch. • Scale the spray drying process from 5 g to 100 g using a Niro Mobile Minor spray dryer (GEA process Engineering, Denmark). The method parameters are illustrated in Table 16: Table 16 Parameters Powder Spray nozzle 0.5 mm bypass nozzle Feed nitrogen pressure 5.-7 bar Aspirator gas flow 80-110 m3/hr Inlet temperature 110-150. . Outlet temperature 45-65 〇C Feed liquid stream 0.5-3 kg/hr • A full description of the scale-up method is presented in Figure 12. • When the data obtained from the pilot scale batch material is comparable to the lean material obtained using the laboratory scale batch material, the method test was successfully performed. Proportional enlargement [Table 17]. Table 17

實驗室規模 試驗規模 脂質體批料尺寸 1 L 100 L 粉末批料尺寸 5 g 1〇〇 g 粒度 423 ± 20 nm 445 士 6 nm 多分散指數(PDI) 0.28 ±0.01 0·20±0_02 ζ電位_ 0·0±3·1 mV 0.0 士 1.6 mV. ΧΙΟ [μιηΐ 1.61 ±0.02 2.23 ± 0.02 Χ50 [μιηΐ 3.09 士 0.06 3.69±0_03 Χ90 [μιηΐ 5.29 ±0.03 6.09 ±0.06 VMD*_1 3.73 ± 0.04 , 3.84 土 0_03 GSD** 1.81 ±0.01 1.77±0.02 . 卡爾指數[%], 25% 30% 方法產率[%] 70% 65% . 粉末流動性 良好流動粉末 良好流動粉末 133847.doc -50- 200916126 *VMD=體積平均直徑 “GSDs幾何標準差 實例18 -加速穩定性資料 •將組合物實例】(參見實例15)儲存於使用鬆開(untied)橡 皮塞封閉(開放儲存穩定性)之白玻璃小瓶中在以下三個 不同條件下歷時兩個月:5。〇、25t:/6〇0/〇 R H•及 40t/75% R.H·。以每種粉末5 mg來分配粉末,其貢獻 每小瓶300 pg之siRNA B。 •表18中所示之資料表明根據本發明之siRNA的長期穩定 性。唯一例外為在40T:及75% R.H.下儲存兩個月之後觀 察到囊封效率降低且粒度分布增大。此可歸因於在2個 月後在75% RH之高相對濕度下CaCl2自調配物中再結晶 出,此為當本文所用之包裝系統鬆開時所預期的。此 係由SEM資料[參見圖14]證實。 經由此等資料外推,在5 °C下穩定最少8個月且在 25°C/60% R.H.下穩定2個月。另外,藉由將粉末包裝於 潮式包裝系統(如Alu/Alu發泡)中以減少水蒸氣向粉末 中之擴散’可達到在4(TC/70% r.h.下長期穩定性顯著 改良之目的。 表18 穩定性資料 0時間 兩個月 5°C _25°C/60% R,H. _ 40°Γ /7S% R Η 目測 白色粉末 白色粉末 卜白色粉末 白色粉末 <LOD* 降解產物[%] <LOD* <LOD* <LOD* ΧΙΟ [μη]粉末 1.61 ±0.02 1.61 ±0.03 1.66 ± 0.03 3 81 ± 0 03 Χ50 [μιη]粉末 3.09 ±0.06 3.10 ±0.05 _ 3.30 ±0.09 15.91 ± 0.04 133847.doc -51 - 200916126 X90 [μπι]粉末 5.29 ±0.03 5.69 ±0.01 6.26 ± 0.04 29.40 ± 0.10 VMD* [μιη]粉末 3.73 士 0.04 3.62 ± 0.03 3.71 ±0.04 17.84 ± 0.20 GSD”粉末 1.81 土 0.01 1.88 ±0.01 1.94 ±0.02 2.78 ± 0.09 siRNA囊封效率 Γ%1 82.0 ± 3.6% 80.0 ± 0.8% 82.0 ±2.1% 72.0 ± 1.0% 水含量[°/。]**** 1.49% 1.56% 1.69% 1.80% 粉末流動性 良好流動之 粉末 良好流動之 粉末 良好流動之 粉末 良好流動之 粉末 *LOD=偵測之限制 ^VMDz體積平均直徑 + s|t*GSD=幾何標準差 “"使用熱解重量分析器(Perkin Elmer,UK)來量測 實例19 •將5 mg含有300 pg siRNA B之組合物I粉末填充於2〇 DIRECTHALER 吸人器件(DireetHaler A/S,Denmark) 中。以12 L/min測試自此等器件之自由流動粉末的發射 劑量均勻性,於玻璃纖維過濾器上收集粉末。 •平均發射劑量等於4.14 土 0.35 mg(n=20)且進入器件中 之粉末的殘餘量為17.5%。所有個別值以及平均值均在 EU藥典說明書中。參見圖14。 實例20 •使用於肺臟中模擬生物情況的特定釋放模型來測試經 由生物流體之siRNA擴散釋放概況。 •將20 μm厚之人工肺界面活性劑(ALS)層設於6個在具有 4〇 nm孔直徑之PET過濾器的頂部之板中。使 用具有0.05%(w/w) DPPC之磷酸鹽緩衝液(pH 7〇)作為 受體培養基。 133847.doc -52- 200916126 •將組合物實例I(參見實例1 5)之5 mg粉末(含有300 pg siRNA B)或0.5 ml脂質體(含有300 pg siRNA B)分配於 ALS層頂部,且使用Rp_HPLC歷經24 hr測定在37°C下經 由ALS及PET膜過濾器擴散至受體培養基的siRNA之 量。 •作為對照物將進入磷酸鹽緩衝液(pH 7.0)中之0.5 ml之 600 pg/ml siRNA B溶液分配於ALS層頂部且如前述來 進行測試。 與siRNA溶液及脂質分散液相比,粉末展示較快之 siRNA釋放概況,因為在2 hr之後siRNA之約660/。自粉 末中釋放’相比之下,siRNA溶液及脂質分散液之分 別53%及32%釋放(參見圖15)。 【圖式簡單說明】 圖1 :使用Malvern Zetasizer量測的組合物C之脂質分散 液粒度分布。 圖2 :使用Sympatech雷射繞射儀量測的組合物c之粉末 粒度分布資料。 圖3 :使用Malvern Zetasizer量測的組合物d之脂質分散 液粒度分布。 圖4 :使用Sympatech雷射繞射儀量測的組合物d之粉末 粒度分布資料。 圖5 .使用毛細管凝膠電泳評估募核苷酸a於調配物組合 物E及F中之囊封效率’其展示大於9〇%之囊封效率。 圖6 :使用Sympatech雷射繞射儀量測的組合物E之粉末 133847.doc -53- 200916126 粒度分布資料,其可靶向進入鼻腔中之前沈積。 圖7 .使用Sympatech雷射繞射儀量測的組合物E之粉末 粒度分布資料,其可靶向至鼻腔中之後沈積。 圖8 :組合物G之粉末的與掃描電子顯微鏡影像組合之X 射線繞射貧料’其強調流動性增強劑奈米晶體在粉末顆粒 上部之存在,其改良粉末流動特徵。 圖9:使用 Next Generation Impactor(NGI)在 60 L/min 下 使用PennCentury DP4吸入器件來量測的組合物〗之空氣動 力學粒度分布。方法1展示在較低階段中與方法2相比更高 之沈積。 圖 1〇 :使用 Next Generation Impactor(NGI)在 60 L/min 下 使用PennCentury DP4吸入器件來量測的組合物〗之累積空 氣動力學粒度分布。與方法2之4 5 μπι相比,使用方法1產 生之顆粒的5 0 %係在1.1 以下。 圖11 :組合物I之粉末的掃描電子顯微鏡(sem)影像,其 展示各粉末顆粒為完整囊。 圖1 2 :使用本發明來囊封發炎觸發之siRNA對細胞因子 表現之作用。儘管裸siRNA觸發INF?及TNFa,但囊封於本 發明之脂質體以及本發明粉末之安慰劑脂質體中的siRNA 並不觸發任何細胞因子介導之炎症。 圖13 : SuperSomes™技術之按比例放大製造過程圖。 圖14 :在40。〇/75〇/〇 R.H.下開放儲存兩個月的組合物I之 掃描電子顯微鏡資料。 圖1 5 .組合物e之使用DirectHaler經鼻器件之計量劑量 133847.doc • 54- 200916126 均勻性資料。 圖1 6 :對於以下三種不同調配物之經由人工肺界面活性 劑之siRNA釋放曲線之間的比較:溶解於pH 7.0緩衝液中 之siRNA、囊封於脂質分散液組合物I中之siRNA及囊封於 組合物I之粉末中的siRNA。 ί.. 133847.doc -55- 200916126 序列表 <H0>瑞士商諾華公司 <120>有機化合物 <130> 52227-EP-EPA2 <140> 097132233 <141> 2008-08-22 <150> EP 07114981.9 <151> 2007-08-24 <150> EP 07123163.3 <151> 2007-12-17 <160> 6 <170> Patentln version 3.3 <210> 1 <211> 11 <212> DNA <213>人造序列 <220> <223>合成序列:寡核苷酸A、免疫調節性寡核苷酸或具有 TLR9促效劑活性之11免疫物(i腿unomer)”的部分 <220〉 <221> misc_feature <222> (3,7jl) <223> η為2'_脱氧基_7_脫氛雜烏苦 <220> <221> misc_feature <222> (11).7(11) <223>經由丙二醇連接子與SEQIDNO:2連接 <400> 1 tcnaacnttc η 11 <210> 2 <211> 11 <212> DNA <213>人造序列 <220> <223>合成序列:寡核苷酸A、免疫調節性寡核苷酸或具有 TLR9促效劑活性之11免疫物(i腿unomer)”的部分 <221> misc_feature <222> (7)..(7) <223> n為阿糖烏苷 <220> <221〉misc一feature <222> (11)..(11) <223>經由丙二醇連接子與SEQIDNO:l連接 <400> 2 tctgtcnttc t Π <210〉 3 <211> 21 133847-序列表.doc 200916126 <212> DNA <213>人造序列 <220> <223>合成序列:siRNA <220> <221> misc_feature <222> (20).7(21) <223>硫代磷酸酯鍵 <400> 3 gagccuaugu ggauggauut t 21 <210〉4 <211> 21 <212> DNA <213〉人造序列 <220> <223>合成序列:siRNA <220> <221> misc_feature <222> (20).7(21) <223>硫代磷酸酯鍵 <400> 4 aauccaucca cauaggcuct t 21 <210> 5 <211> 21 <212> DNA <213>人造序列 <220> <223>合成序列:siRNA <220> <221> misc_feature <222> (20).7(21) <223>疏代磷酸酯鍵 <400> 5 cuuacgcuga guacuucgat t 21 <210> 6 <211> 21Laboratory scale trial size liposome batch size 1 L 100 L powder batch size 5 g 1〇〇g particle size 423 ± 20 nm 445 ± 6 nm polydispersity index (PDI) 0.28 ±0.01 0·20±0_02 zeta potential _ 0·0±3·1 mV 0.0 ±1.6 mV. ΧΙΟ [μιηΐ 1.61 ±0.02 2.23 ± 0.02 Χ50 [μιηΐ 3.09 ± 0.06 3.69±0_03 Χ90 [μιηΐ 5.29 ±0.03 6.09 ±0.06 VMD*_1 3.73 ± 0.04 , 3.84 土0_03 GSD** 1.81 ±0.01 1.77±0.02 . Carr index [%], 25% 30% Method yield [%] 70% 65% . Powder flow good flow powder Good flow powder 133847.doc -50- 200916126 *VMD= Volume average diameter "GSDs geometric standard deviation Example 18 - Accelerated stability data • Example of composition] (see Example 15) was stored in a white glass vial closed with untied rubber stopper (open storage stability) in the following Two different conditions lasted two months: 5. 〇, 25t: /6〇0/〇RH• and 40t/75% RH·. Distribute the powder with 5 mg of each powder, contributing 300 pg of siRNA per vial B. • The data shown in Table 18 indicates the siRNA according to the present invention. Stability. The only exception is a decrease in encapsulation efficiency and an increase in particle size distribution after storage for two months at 40T: and 75% RH. This can be attributed to a high relative humidity of 75% RH after 2 months. The lower CaCl2 is recrystallized from the formulation, which is expected when the packaging system used herein is released. This is confirmed by the SEM data [see Figure 14]. It is extrapolated from this data and stabilized at 5 °C. Stable for at least 8 months and stable for 2 months at 25 ° C / 60% RH. In addition, reduce the diffusion of water vapor into the powder by packaging the powder in a tidal packaging system (such as Alu / Alu foaming) Achieving a significant improvement in long-term stability at 4 (TC/70% rh.) Table 18 Stability data 0 time 2 months 5°C _25°C/60% R, H. _ 40°Γ /7S% R目 Visual white powder white powder white powder white powder <LOD* degradation product [%] <LOD* <LOD* <LOD* ΧΙΟ [μη] powder 1.61 ±0.02 1.61 ±0.03 1.66 ± 0.03 3 81 ± 0 03 Χ50 [μιη] powder 3.09 ±0.06 3.10 ±0.05 _ 3.30 ±0.09 15.91 ± 0.04 133847.doc -51 - 200916126 X90 [μπι] powder 5.29 ±0.03 5.69 ±0.01 6.26 ± 0.04 29.40 ± 0.10 VMD* [μιη] powder 3.73 ± 0.04 3.62 ± 0.03 3.71 ± 0.04 17.84 ± 0.20 GSD" powder 1.81 soil 0.01 1.88 ±0.01 1.94 ±0.02 2.78 ± 0.09 siRNA encapsulation efficiencyΓ %1 82.0 ± 3.6% 80.0 ± 0.8% 82.0 ± 2.1% 72.0 ± 1.0% Water content [°/. ]**** 1.49% 1.56% 1.69% 1.80% Powder Flow Good Flowing Powder Good Flowing Powder Good Flowing Powder Good Flowing Powder *LOD = Detection Limit ^VMDz Volume Average Diameter + s|t*GSD = geometric standard deviation "" using a thermogravimetric analyzer (Perkin Elmer, UK) to measure Example 19 • Fill 5 mg of Composition I powder containing 300 pg of siRNA B in 2 DIRECTHALER inhaling devices (DireetHaler A/ S, Denmark). The emission dose uniformity of free-flowing powders from these devices was tested at 12 L/min and the powder was collected on a glass fiber filter. • The average emission dose was equal to 4.14 soil 0.35 mg (n=20) and The residual amount of powder entering the device was 17.5%. All individual values and average values are in the EU Pharmacopoeia instructions. See Figure 14. Example 20 • Testing of siRNA via biological fluids using a specific release model for simulating biological conditions in the lungs Diffusion release profile • A 20 μm thick artificial lung surfactant (ALS) layer was placed in 6 plates on top of a PET filter with a 4 μm pore diameter. Use 0.05% (w/w) DPPC Phosphate Flush (pH 7〇) as the receptor medium. 133847.doc -52- 200916126 • 5 mg powder (containing 300 pg siRNA B) or 0.5 ml liposome (containing 300 pg) of the composition example I (see example 15) siRNA B) was dispensed on top of the ALS layer and the amount of siRNA diffused into the receptor medium via ALS and PET membrane filters at 37 ° C using Rp_HPLC over 24 hrs. • Entered phosphate buffer (pH as a control) A 0.5 ml of 600 pg/ml siRNA B solution in 7.0 ml was dispensed on top of the ALS layer and tested as described above. Compared to the siRNA solution and the lipid dispersion, the powder exhibited a faster siRNA release profile since after 2 hr siRNA was about 660/. Release from powder' compared to 53% and 32% release of siRNA solution and lipid dispersion, respectively (see Figure 15). [Simplified illustration] Figure 1: Measurement with Malvern Zetasizer Particle size distribution of the lipid dispersion of Composition C. Figure 2: Powder particle size distribution data for Composition c as measured using a Sympatech laser diffractometer. Figure 3: Lipid dispersion particle size of Composition d measured using a Malvern Zetasizer Distribution Figure 4: Using Symp Particle size distribution data of composition d measured by atech laser diffractometer. Figure 5. Evaluation of encapsulation efficiency of nucleotides a in formulation compositions E and F using capillary gel electrophoresis' which exhibited an encapsulation efficiency greater than 9%. Figure 6: Powder of Composition E as measured using a Sympatech laser diffractometer 133847.doc -53- 200916126 Particle size distribution data that can be deposited prior to targeting into the nasal cavity. Figure 7. Powder particle size distribution data for Composition E, measured using a Sympatech laser diffractometer, which can be deposited after implantation into the nasal cavity. Figure 8: X-ray diffraction of the powder of composition G in combination with a scanning electron microscope image. It emphasizes the presence of fluidity enhancer nanocrystals in the upper portion of the powder particles, which improves the powder flow characteristics. Figure 9: Aerodynamic particle size distribution of the composition measured using a PennCentury DP4 inhalation device at 60 L/min using a Next Generation Impactor (NGI). Method 1 shows a higher deposition compared to Method 2 in the lower stage. Figure 1 : Cumulative aerodynamic particle size distribution of the composition measured using a PennCentury DP4 inhalation device at 60 L/min using a Next Generation Impactor (NGI). Compared with the 4 5 μπι of the method 2, 50% of the particles produced by the method 1 are below 1.1. Figure 11: Scanning electron microscope (Sem) image of the powder of Composition I, showing each powder particle as a complete capsule. Figure 12: Use of the present invention to encapsulate the effect of inflammatory-triggered siRNA on cytokine expression. Although naked siRNA triggered INF? and TNFa, the siRNA encapsulated in the liposomes of the invention and the placebo liposomes of the powder of the invention did not trigger any cytokine-mediated inflammation. Figure 13: A scaled-up manufacturing process diagram of SuperSomesTM technology. Figure 14: At 40. 〇/75〇/〇 R.H. Scanning electron microscopy data of composition I for two months of open storage. Figure 15. The dose of composition e using DirectHaler nasal devices 133847.doc • 54- 200916126 Uniformity data. Figure 16. Comparison between siRNA release profiles via artificial lung surfactants for three different formulations: siRNA dissolved in pH 7.0 buffer, siRNA encapsulated in lipid dispersion composition I and capsule siRNA encapsulated in the powder of Composition I. ί.. 133847.doc -55- 200916126 Sequence Listing <H0>Swiss Business Novartis <120>Organic Compound<130> 52227-EP-EPA2 <140> 097132233 <141> 2008-08-22 <lt;;150> EP 07114981.9 <151> 2007-08-24 <150> EP 07123163.3 <151> 2007-12-17 <160> 6 <170> Patentln version 3.3 <210> 1 <211> 11 <212> DNA <213> artificial sequence <220><223> synthetic sequence: oligonucleotide A, immunoregulatory oligonucleotide or 11 immunogen having TLR9 agonist activity (i leg The portion of the "unomer)" <220>221> misc_feature <222> (3,7jl) <223> η is 2'_deoxy_7_deodorant <220><221> Misc_feature <222> (11).7(11) <223> is linked to SEQ ID NO: 2 via a propylene glycol linker <400> 1 tcnaacnttc η 11 <210> 2 <211> 11 <212> DNA <;213> artificial sequence <220><223> synthetic sequence: oligonucleotide A, immunomodulatory oligonucleotide or 11-immunity (i leg unomer) having TLR9 agonist activity <221> misc_feature <222> (7)..(7) <223> n is arabinose <220><221>misc-feature<222> (11).. (11 <223> linked to SEQ ID NO: 1 via a propylene glycol linker <400> 2 tctgtcnttc t Π <210> 3 <211> 21 133847 - Sequence Listing.doc 200916126 <212> DNA <213><220><223> Synthesis sequence: siRNA <220><221> misc_feature <222> (20).7(21) <223> phosphorothioate linkage <400> 3 gagccuaugu ggauggauut t 21 <210>4 <211> 21 <212> DNA <213> artificial sequence<220><223> synthetic sequence: siRNA <220><221> misc_feature <222> (20) .7(21) <223> phosphorothioate linkage <400> 4 aauccaucca cauaggcuct t 21 <210> 5 <211> 21 <212> DNA <213> artificial sequence <220>223>Synthetic sequence: siRNA <220><221> misc_feature <222> (20).7(21) <223>Thylic phosphate linkage <400> 5 cuuacgcuga guacuucgat t 21 <210><211> 21

\ <212> DNA <213>人造序列 <220> <223>合成序列:siRNA <220> <221> misc_feature <222> (20)..(21) <223>硫代磷酸酯鍵 , <400> 6 ucgaaguacu cagcguaagt t 21 -2- 133847-序列表.doc\ <212> DNA <213> artificial sequence <220><223> synthetic sequence: siRNA <220><221> misc_feature <222> (20)..(21) <223> Phospholipid bond, <400> 6 ucgaaguacu cagcguaagt t 21 -2- 133847 - Sequence Listing.doc

Claims (1)

200916126 十、申請專利範圍: 1. 一種醫藥組合物,其包含: (A) —或多種藥物物質; (B) 脂質; (C) 辅脂質;及 (D) 流動性增強劑; 該醫藥組合物之特徵在於該脂質、該辅脂質及該流動性 增強劑一起形成包含囊封該或該等藥物物質之脂質囊泡 的脂質分散液。 2. 如請求項1之組合物’其中該等脂質囊泡之平均直徑係 在70 nm與550 nm之間。 3. 如請求項1或2之組合物,其中該或各藥物物質為β2_腎上 腺素能受體促效劑、蕈毒鹼拮抗劑、糖皮質類固醇、非 類固醇糖皮質激素受體促效劑、Αζα促效劑、α2β拮抗 劑、抗組織胺、卡斯蛋白酶(CASPASE)抑制劑、;lTB4拮 抗劑、LTD4拮抗劑、磷酸二酯酶抑制劑、黏液溶解藥 s / (muc〇lytic)、基質金屬蛋白酶抑制劑、白三烯受體抬 抗劑、生長激素、肝素、雌二醇、前列腺素!)2拮抗劑、 CRTH2受體拮抗劑、色甘酸鈉、ig^合成抑制劑、抗生 素、干擾素、鉀通道抑制劑、免疫調節劑、細胞生長抑 制劑、彈性蛋白酶抑制劑、抗腫瘤劑、列關康 (PROSTATIN)抑制劑、肽、寡核芽酸、rna(諸如 siRNA)、DNA、質體、胰島素、介白素、GLp]、抗腫 瘤劑或抗體。 133847.doc 200916126 4.如珂述請求項中任一 技硫w 、H其中該脂質為二肉奇 蔻醯基碟脂酿勝給、_ n_a _ S —軟月日醯基磷脂醯膽鹼、大豆卵珑 月曰或虱化磷脂醯膽鹼。 P W 5. 如前述請求項中任一項 二醇化磷月”⑯ 輔脂質為聚乙 月曰醯膽鹼或膽固醇。 6. 如前述請求項中任―@ Λ ....、 、之、·且5物,其中該流動性增強劑 為麥芽糖、甘露糖醇、菊粉㈣ 往 庶糖孔糖、右旋糖、麥 =、甘胺酸、血清白蛋白、L-白胺酸、D-白胺酸、 二胺酸、硬脂酸每、硬脂酸鎮、赤藻糖醇或其混合 物0 7·如别述請求項中任―項之組合物,其另外包含離子平衡 劑及/或緩衝系統。 8·如前述請求項中任一項之組合物,其呈乾粉調配物之形 式。 9. 一種乾粉調配物,其包含:(Α)一或多種藥物物質;(β) 脂質;(C)輔脂質;及(D)流動性增強劑;該調配物之特 徵在於該脂質、該輔脂質及該流動性增強劑一起形成包 含囊封該或該等藥物物質之脂質囊泡的脂質分散液且該 月曰質分散液經乾燥以形成自由流動之乾粉調配物。 1 〇·如請求項9之乾粉調配物,其中該粉末之平均粒度不大 於約10微米以便吸入。 1 1.如請求項9之乾粉調配物,其中該粉末之平均粒度不大 於約10微米以便經鼻投與。 12.如請求項11之乾粉調配物,其中該平均粒度係在1 〇 μηι 133847.doc 200916126 與20 μπι之間叫向鼻後部中之藥物沈積。 13·如%求項11之乾粉調配物,其中該平均粒度大於 以|&向該鼻前部中之藥物沈積。 -種製備醫藥組合物之方法,該方法包含以下步驟: (a) 在鬲剪切下混合脂質與輔脂質; (b) 拌合一或多種藥物物質;及 ⑷:合流動性增強劑以形《包含囊封It或該等藥物物 質之脂質囊泡的脂質分散液。 15· -種製備乾粉調配物之方法,該方法包含以下步驟: (a) 在高剪切下混合脂質與輔脂質; (b) 拌合一或多種藥物物質; ⑷拌合流動性增強劑以形《包含囊封該或該等藥物物 質之脂質囊泡的脂質分散液; (d)視情況稀釋該脂質分散液;及 ⑷乾燥該脂質分散液以形成該乾粉調配物。 133847.doc200916126 X. Patent Application Range: 1. A pharmaceutical composition comprising: (A) - or a plurality of drug substances; (B) a lipid; (C) a co-lipid; and (D) a fluidity enhancer; the pharmaceutical composition Characterized in that the lipid, the co-lipid, and the flow enhancer together form a lipid dispersion comprising lipid vesicles encapsulating the or the drug substance. 2. The composition of claim 1 wherein the lipid vesicles have an average diameter between 70 nm and 550 nm. 3. The composition of claim 1 or 2, wherein the or each drug substance is a β2-adrenergic receptor agonist, a muscarinic antagonist, a glucocorticosteroid, a non-steroidal glucocorticoid receptor agonist , Αζα agonist, α2β antagonist, antihistamine, caspase (CASPASE) inhibitor, lTB4 antagonist, LTD4 antagonist, phosphodiesterase inhibitor, mucolytic drug s / (muc〇lytic), Matrix metalloproteinase inhibitors, leukotriene receptor antagonists, growth hormone, heparin, estradiol, prostaglandins! 2 antagonists, CRTH2 receptor antagonists, sodium cromoglycate, ig^ synthesis inhibitors, antibiotics, interferons, potassium channel inhibitors, immunomodulators, cytostatics, elastase inhibitors, antitumor agents, columns PROSTATIN inhibitors, peptides, oligonucleotides, rna (such as siRNA), DNA, plastids, insulin, interleukins, GLp], anti-tumor agents or antibodies. 133847.doc 200916126 4. As described in the request, any of the technical sulphurs, h, H, wherein the lipid is a sirloin-based sulphuric acid, _n_a _ S-soft moon phosphatase choline, Soybean egg yolk or bismuth phospholipid choline. PW 5. The diol phosphatide "16" co-lipid according to any of the preceding claims is polyethyl guanidine choline or cholesterol. 6. As stated in the above request, "@ Λ ...., , , , · And 5, wherein the fluidity enhancer is maltose, mannitol, inulin (4) to sugar sugar, dextrose, wheat =, glycine, serum albumin, L-leucine, D-amine Acid, diamine, stearic acid, stearic acid, erythritol or mixtures thereof. The composition of any of the claims, further comprising an ion balance agent and/or a buffer system The composition of any of the preceding claims, in the form of a dry powder formulation. 9. A dry powder formulation comprising: (Α) one or more drug substances; (β) lipids; (C) a co-lipid; and (D) a fluidity enhancer; the formulation characterized in that the lipid, the co-lipid, and the fluidity enhancer together form a lipid dispersion comprising a lipid vesicle encapsulating the drug substance or the drug substance and The enamel dispersion is dried to form a free-flowing dry powder formulation. 1 〇·If requested A dry powder formulation of the powder wherein the powder has an average particle size of no greater than about 10 microns for inhalation. 1 1. A dry powder formulation according to claim 9 wherein the powder has an average particle size of no greater than about 10 microns for nasal administration. The dry powder formulation of claim 11, wherein the average particle size is between 1 〇μηι 133847.doc 200916126 and 20 μπι called drug deposition in the posterior portion of the nose. 13·% of the dry powder formulation of claim 11, wherein The average particle size is greater than the deposition of the drug into the anterior portion of the nose. The method of preparing a pharmaceutical composition comprises the steps of: (a) mixing the lipid with the co-lipid under sputum shear; (b) Mixing one or more drug substances; and (4): combining a fluidity enhancer to form a lipid dispersion containing lipid vesicles encapsulating It or the drug substance. 15. A method for preparing a dry powder formulation, the method The method comprises the steps of: (a) mixing the lipid and the co-lipid under high shear; (b) mixing one or more drug substances; (4) mixing the fluidity enhancer to form a lipid comprising the drug or the drug substance Vesicle lipid Dispersing solution; (d) diluting the lipid dispersion as appropriate; and (4) drying the lipid dispersion to form the dry powder formulation. 133847.doc
TW097132233A 2007-08-24 2008-08-22 Organic compounds TW200916126A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07114981 2007-08-24
EP07123163 2007-12-13

Publications (1)

Publication Number Publication Date
TW200916126A true TW200916126A (en) 2009-04-16

Family

ID=40149638

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097132233A TW200916126A (en) 2007-08-24 2008-08-22 Organic compounds

Country Status (5)

Country Link
AR (1) AR067997A1 (en)
CL (1) CL2008002479A1 (en)
PE (1) PE20090607A1 (en)
TW (1) TW200916126A (en)
WO (1) WO2009027337A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007264418B2 (en) 2006-06-30 2012-05-03 Iceutica Pty Ltd Methods for the preparation of biologically active compounds in nanoparticulate form
AP2015008955A0 (en) 2009-04-24 2015-12-31 Icuetica Pty Ltd A novel formulation of indomethacin
US8808734B2 (en) 2011-07-11 2014-08-19 Full Spectrum Laboratories Limited Cannabinoid formulations
WO2013164380A1 (en) 2012-05-03 2013-11-07 Janssen R&D Ireland Polyinosinic-polycytidylic acid (poly (i:c)) formulations for the treatment of upper respiratory tract infections
WO2018160295A1 (en) * 2017-01-25 2018-09-07 Yiannios James John Dietary supplement compositions with enhanced delivery matrix, gummies, chocolates, atomizers and powders containing same, and methods of making same
US9526734B2 (en) 2014-06-09 2016-12-27 Iceutica Pty Ltd. Formulation of meloxicam
US20190231783A1 (en) * 2018-02-01 2019-08-01 Corvus Pharmaceuticals, Inc. Pharmaceutical formulations
WO2019152798A1 (en) 2018-02-01 2019-08-08 Corvus Pharmaceuticals, Inc. Pharmaceutical formulations
CA3118780A1 (en) * 2018-11-13 2020-05-22 Civitas Therapeutics, Inc. Respirable polynucleotide powder formulations for inhalation
EP3996686A4 (en) * 2019-07-10 2023-06-28 The University of Hong Kong Pegylated synthetic kl4 peptide, compositions and methods thereof
CN114209651A (en) * 2021-11-18 2022-03-22 上海欣峰制药有限公司 Pharmaceutical preparation of cefotaxime sodium compound and preparation method thereof
CN114053226A (en) * 2021-11-18 2022-02-18 上海欣峰制药有限公司 Pharmaceutical preparation of cefminox sodium compound and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE247971T1 (en) * 1995-08-01 2003-09-15 Novartis Erfind Verwalt Gmbh LIPOSOMAL OLIGONUCLEOTIDE COMPOSITIONS
EP1620544B1 (en) * 2003-04-17 2018-09-19 Alnylam Pharmaceuticals Inc. MODIFIED iRNA AGENTS
US20070160657A1 (en) * 2003-08-01 2007-07-12 National Institute Of Advanced Industrial Science Targeting and intestinal-absorption controlled liposome having sugar chain and therapeutic drug for cancer and diagnostic drug containing the liposome
CN102940891B (en) * 2004-05-05 2016-02-24 赛伦斯治疗有限公司 Lipid, lipid complex and application thereof
GB0418172D0 (en) * 2004-08-13 2004-09-15 Ic Vec Ltd Vector
AU2005326371A1 (en) * 2005-01-28 2006-08-03 Kyowa Hakko Kirin Co., Ltd. Composition for inhibiting expression of target gene
US20070172430A1 (en) * 2006-01-20 2007-07-26 Nastech Pharmaceutical Company Inc. Dry powder compositions for rna influenza therapeutics
ES2549728T3 (en) * 2006-04-20 2015-11-02 Silence Therapeutics Gmbh Lipoplex formulations for specific administration to the vascular endothelium
GB0608838D0 (en) * 2006-05-04 2006-06-14 Novartis Ag Organic compounds

Also Published As

Publication number Publication date
CL2008002479A1 (en) 2009-05-08
WO2009027337A1 (en) 2009-03-05
AR067997A1 (en) 2009-10-28
PE20090607A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
TW200916126A (en) Organic compounds
Guo et al. Pharmaceutical strategies to extend pulmonary exposure of inhaled medicines
Labiris et al. Pulmonary drug delivery. Part II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications
Mehta Dry powder inhalers: a focus on advancements in novel drug delivery systems
Cipolla et al. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans
TWI796665B (en) Inhalation formulations of 1'-cyano substituted carba-nucleoside analogs
KR101621986B1 (en) Pulmonary delivery of a fluoroquinolone
EP2739268B1 (en) Method and formulation for inhalation
AU2021320426A1 (en) Compositions for the delivery of payload molecules to airway epithelium
JP2017509684A5 (en)
AU2021200503B2 (en) Composition comprising at least one dry powder obtained by spray drying to increase the stability of the formulation
Tewes et al. Steroid/mucokinetic hybrid nanoporous microparticles for pulmonary drug delivery
Chellappan et al. Protein and peptide delivery to lungs by using advanced targeted drug delivery
Gaikwad et al. Dry Powder Inhaler with the technical and practical obstacles, and forthcoming platform strategies
US20080292713A1 (en) Respirable Powders
Sachan et al. Recent advances and novel approaches for nose to brain drug delivery for treatment of migraine
WO2023086465A1 (en) Compositions for the delivery of payload molecules to airway epithelium
Boddu et al. Nanocarrier systems for lung drug delivery
US20090324743A1 (en) Pulmonary drug delivery
AU2021200396B2 (en) Pharmaceutical composition containing budesonide and formoterol
CN115708818A (en) General formula for aerosol inhalation of lipid nanoparticles
Vartiainen et al. Development of Inhalable Drug Formulations for Idiopathic Pulmonary Fibrosis
Xu et al. Inhaled RNA Therapeutics for Obstructive Airway Diseases: Recent Advances and Future Prospects. Pharmaceutics 2021, 13, 177