TW200915644A - Cathode of lithium-ion battery and method for making same - Google Patents

Cathode of lithium-ion battery and method for making same Download PDF

Info

Publication number
TW200915644A
TW200915644A TW096136380A TW96136380A TW200915644A TW 200915644 A TW200915644 A TW 200915644A TW 096136380 A TW096136380 A TW 096136380A TW 96136380 A TW96136380 A TW 96136380A TW 200915644 A TW200915644 A TW 200915644A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
negative electrode
ion battery
carbon
tin
Prior art date
Application number
TW096136380A
Other languages
Chinese (zh)
Other versions
TWI414100B (en
Inventor
Chen Feng
Hao-Xu Zhang
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW096136380A priority Critical patent/TWI414100B/en
Publication of TW200915644A publication Critical patent/TW200915644A/en
Application granted granted Critical
Publication of TWI414100B publication Critical patent/TWI414100B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a cathode of lithium-ion batteries including a carbon nanotube composite film. The carbon nanotube composite film includes a carbon nanotube film structure and a pluratity of nano-scale stannum oxide particles. The carbon nanotube film structure includes at least two crossed carbon nanotube layers. The nano-scale stannum oxide particles adhere to the wall of the carbon nanotubes and fill in the cavity of the carbon nanotubes. The present invention also relates to a method for making the cathode of lithium-ion batteries including the steps of: providing a carbon nanotube array; drawing at least two carbon nanotube layers out from the carbon nanotube array by a drawing device to form a carbon nanotube film structure; and providing a pluratity of nano-scale stannum oxide particles to the carbon nanotube film structure to form a carbon nanotube composite film, then obtaining the cathode of lithium-ion batteries.

Description

200915644 .•九、發明說明: .【發明所屬之技術領域】 本發明涉及一種鐘離子雷、冰自k “ l也負極及其製備方法,尤其 以及一種基於奈米碳管的鋰離子 r, 于電池負極及其製備方法。 【先前技術】 鋰離子電池係一種新型的綠色化 错雨、冰 A. ^ , 电源,與傳統的錄 、…也、鎳風笔池相比具有電壓高、壽命長、能量密产大 =優^自測年日本索尼公司推出第 ^ 後,::經得到迅速發展並廣泛用於各種可搗式設備: 決於其製作材料的性能;盆中負生能特點主要取 一 体 ,、f負極材料係其關鍵材料之 一。一種好的負極材料應具有以下特點:比能量高;相對 鋰電極的電極電位低;充放電反庳、 、 古(=的相谷性好;比表面積小(<10平方米/克),比密度 Ϊ源“二喪鐘過程中尺寸和機械穩定性好; 貝原豆虽q貝格低廉;在空氣中穩定、無毒副作 離子電池負極包括集電體和負極材料,集電體雨^柄 箔、鎳箔或鋁箔,傳統的鋰離子姑y木、’5 碳系材料或金屬類材料。恤的負極材料通常採用 2使用的碳系材料為人造石墨或天然石墨等石墨化 ::材:這些材料的優點係比容量“勘毫安培時/ 八旦(/g)〜400 mAh/g ),循環效率高(>95% ),循環妄 〒長和電池内部沒有金屬鐘而不存在安全問題。夺米碳: _b〇n nano⑽e,⑽)係近年來發現的一種新型碳系^ 200915644 * .料,由單層或多層的石墨片狀結構捲曲而成。奈米碳管的 層間距為0.34奈米,略大於石墨的層間距,有利於鋰離子 的嵌入和脫出。奈米碳管作鋰離子電池負極材料,鋰離子 不僅可嵌入中空管内,而且可嵌入到層間的缝隙、空穴之 中,具有嵌入深度小、過程短,嵌入位置多等優點。使用 該類材料製作的鋰離子電池負極通常包括集電體、粘結劑 和奈米碳管。一般將奈米碳管和枯接劑混合均勻後塗於集 電體上制得電池負極。然而,碳系材料的種類、製備方法 和熱處理溫度不同時,均會導致負極材料組成和結構上的 差異,進而引起鋰離子嵌入行為與性能的差異,而且碳系 材料的可逆儲鋰容量均較低。 與碳系材料相比,金屬類的負極材料則具有較高的儲 裡容量。其中,錫係一種比容量較大的儲裡材料,比容量 在1000 mAh/g以上。使用該類材料製作的鋰離子電池負 極通常包括集電體和金屬錫。一般採用電鍍法將金屬錫單 質直接鍍在集電體上制得電池負極,其中錫單質在嵌鋰過 程中可以與鋰反應形成鋰合金。但在充放電過程中錫電極 體積變化較大,高達600%,因此在鋰的反復可逆嵌入和 脫出過程中,錫粒子易發生粉化,結構受到破壞,因而循 環性能較差。隨著循環次數的增加,錫電極存儲容量下降 較快(言青參見,“Improvement in electrochemical properties of nano-tin-poly aniline lithium-ion composite anodes by control of electrode microstructure’’,Journal of Power Source, Xiang-Wu Zhang et al., V109, pl36-141(2002))。 8 200915644 .這些缺點限制了以錫作為負極材料在鐘離子電池中的廣泛 應用。 曰一有鑒于此,提供一種具有充放電效率高、可逆儲鋰容 置而且循環性能好㈣離子電池負極實為必要。 【發明内容】 太二!重鐘離Γ電池負極,包括—奈米碳管複合薄膜。該 S U臈包括—奈米碳管薄膜結構和多個奈米級 ’晶乳=物顆粒。其中該奈米碳管薄膜結構包括至少兩層重 Γ二:又设置的奈米碳管薄膜,該奈米級錫氧化物顆粒附 薄膜結構中的奈米碳管管壁上或者填 未石厌賞溥膜結構中的奈采碳管管腔内。 所述奈米碳管薄膜包括多個 的奈米碳管束。 列固百位相連且擇優取向排列 述奈:二=離也負極進一步還可以包括-集電體,上 金屬基::妓口 /#膜设置於該集電體之上。所述集電體為 -,子電池負極的製備方法,其包括以下步驟·· 管陣列;採用一拉伸工具從奈米碳管 拉取獲付一奈米碳管薄士. 人太平級锡®μ 奈米碳管薄膜結構中複 錫乳化物顆粒形成一奈米碳管 到一鋰離子電池負極。 攸向仔 構。該有機溶劑為乙醇、乙寻膜、··。 所述使用有機溶劑處理奈来碳管薄膜結構:方:【括 200915644 膜結構表面浸潤整 通過試管將有機溶劑滴落在奈米碳管薄 個奈米碳管薄膜結構。 、/=鐘離子電池負極的製備方法進—步可以包括將該 奈米碳管複合薄膜粘附於一集電體上。 —相較于先前技術,所述雜料電池貞㈣將奈米碳 w膜結構與錫氧化物材料複合。通過自組織的方式,錫 氧化物顆粒附著在奈米石炭管薄膜結#中的奈㈣管管壁上 或者填充在奈米碳管薄膜中的奈米碳管管腔 管複^薄膜。其中錫氧化物顆粒係奈米級的。該 =膜用於鋰離子電池負極可有效增加鋰離子的嵌入 ,不米、’及的錫氧化物顆粒在存儲和釋放鐘過程中,體積 夂化小’不容易進一步細化’可以明顯改善存儲容量的衰 減和電極的循環性能;奈米級的錫氧化物顆粒具有比表面 積大的特點’用於鐘離子電池負極時具有高速充放電的優 【實施方式】 以下將結合附圖對本技術方案實施例作進一步的 說明。 '‘ 女明參閱圖1及圖2,本技術方案實施例提供了 一種鋰 離:電池負極10 ’該鋰離子電池負極10包括一奈米碳管 複二薄膜14。該奈米碳管複合薄膜14包括一奈米碳管薄 :、、。構16和夕個奈米級錫氧化物顆粒w。其中奈米級錫 氧化物顆粒18在奈米碳管薄膜結構16中。 進步地’所述奈米碳管薄膜結構包括至少兩層重 10 200915644 •疊且交叉設置的奈米碳管薄膜,奈米碳管薄臈之間通過凡 .德瓦爾力緊遂、結合。該奈米石炭管薄膜包括多個首位相連且 擇優取向排列的奈米碳管束’相鄰的奈米碳管束之間通過 凡德瓦爾力連接。奈米碳管薄膜的寬度可為1厘米~1〇厘 米’奈米碳管薄膜的厚度為0.01微米〜10〇微米。奈米碳 管薄膜結構16具有多個微孔,該微孔孔徑分佈均勻,微孔 孔徑大小一般小於100奈米。該奈米碳管薄膜結構16中的 奈米碳管薄膜的層數不限,且相鄰兩層奈米碳管薄臈之間 交叉的角度不限,具體可依據實際需求製備。請參閱圖2, 本技術方案實施例優選提供了一奈米碳管薄膜結構16,包 括重疊且交又設置的200層奈米碳管薄膜,奈米碳管薄= 之間交又的角度為90度。其中,該奈米碳管薄膜結構μ 所具有的微孔孔徑大小為60奈米,該奈米碳管薄膜 16中奈米碳管薄膜的寬度為5厘米,奈米碳管薄 為50微米。 予及 ^進步地’所述奈米級錫氧化物顆粒18附著在奈米石山 T薄膜結構16十的奈米碳管管壁上或者填充在奈:::: 賴結構16中的奈米碳管管腔内。奈米級錫氧 則粒徑大小為3奈米,奈米。奈米級錫氧化物顆:: 與奈未碳管薄膜結構16之間通過凡德瓦爾力相結合 術方案實施例優選的奈米級錫氧化物顆粒18 為6奈米。 彳工人小 另外,該鋰離子電池負極1〇進一步還可以包括—集電 —。所述的奈米碳管複合薄膜14設置於該集電體12 11 200915644 上該集電體12可為-金屬基板,本實施例優選的集電體 12為銅结。 、奈米碳管薄膜結構16中的奈米碳管薄膜具有良好的 導電性能,且奈米碳管薄膜相互交又地重疊設置,故夺米 碳管複合薄膜14本身已娘且有 牙〇、,·工具有一定的自支撐性及穩定 性。實際應料,可直接將該奈米碳管複合薄膜14用作裡 離子電池負極1〇。另外,該奈米碳管複合薄膜14具有極 大的比表面積,且該奈米碳管複合薄膜14中的微孔結構有 助於吸附大量㈣離子,可改善電池存儲容量衰減的明顯 性’具有良好的高速充放電特性。 進一步地,奈米級錫氧化物顆粒18附著在奈米碳管薄 膜結構16中的奈米碳管管壁上或者填充在奈米石发管薄膜 結構=巾的奈米碳管管腔内,可以有效地發揮錫氧化物 18的南放電容量和奈米碳管的低放電電位的優勢,同時由 於奈米碳管的限定作用’也緩解了奈米碳管空腔内錫氧化 物18在反復鋰嵌/脫過程中的結構應變,有利於並 環性能。 、口,、倨 請參閱圖3,本技術方案實施例㈣子電池負極 製備方法主要包括以下幾個步驟: 步驟-:提供一奈米碳管陣列,優選地, 順排奈米碳管陣列。 干彳句題 本實施例中,超順排奈来碳管陣列的製備方法採用化 學氣相沈積法,其具體步驟包括:(a)提供—平整美广 該基底可選用P型或N型石夕基底’或選用形成有^土匕:的 12 200915644 石夕基底,本實施㈣選為採用4英寸㈣基底;⑴在基 底表面均勻形成一催化劑層,該催化劑層材料可選用鐵 (Fe )鈷(c〇 )、鎳(犯)或其任意組合的合金之一;(c ) 將上述形成有催化劑層的基底在7〇(rc〜9〇(rc的空氣中退 火約30刀|里〜9〇分鐘;(d )將處理過的基底置於反應爐中, 在保護氣體環境下加熱到500t〜74CTC ’然後通入碳源氣 體反應約5分鐘〜30分鐘,生長得到超順排奈米碳管陣列, 其尚度為200微米〜400微米。該超順排奈米碳管陣列為多 =彼此平行且垂直於基底生長的奈米碳管形成的純奈米碳 g陣列。通過上述控制生長條件,該超順排奈米碳管陣列 中基本不含有雜質,如無定型碳或殘留的催化劑金屬顆粒 等。該奈米碳管陣列中的奈米碳管彼此通過凡德瓦爾力接 觸形成陣列。 本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性 質較活潑的碳氫化合物,本實施例優選的碳源氣為乙炔; 保護氣體為氮氣或惰性氣體,本實施例優選的保護氣體為 氬氣。 … 可以理解,本貫施例提供的奈米複管陣列不限於上述 製備方法。本實施例提供的奈米碳管陣列為單壁奈米碳管 陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種。 步驟二:採用一拉伸工具從奈米碳管陣列中拉取獲得 —奈米碳管薄膜結構16。 該奈米碳管薄膜結構16包括至少兩層重疊且交叉設 置的奈米碳管薄膜。該奈米碳管薄膜的製備具體包括以下 13 200915644 .·步驟:(a)從上述奈米碳管陣列中選定一定寬度的多個奈 •米碳管片斷,本實施例優選為採用具有一定寬度的膠帶接 觸奈米碳官陣列以選定一定寬度的多個奈米碳管束;(b ) 以一定速度沿基本垂直于奈米碳管陣列生長方向拉伸多個 該奈米奴管束,以形成一連續的奈米碳管薄膜。 在上述拉伸過程中,該多個奈米碳管束在拉力作用下 &拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用, 該選定的多個奈米碳管束分別與其他奈米碳管束首尾相連 料續地被拉出,從而形成—奈米碳管薄膜。該奈米碳管 薄膜多個首尾相連且定向排列的奈米碳管束,相鄰的 奈米碳管束之間通過凡德瓦爾力連接。該奈米碳管薄膜中 奈米碳管的排列方向基本平行于奈米0薄膜的拉伸方 向。 另外,所述步驟二中製備的奈米碳管薄膜結構16& 進一步使用有機溶劑處理。 具體的,可通過試管將有機溶劑滴 結構16表面浸潤整個奈米 &辱膜 反s /辱膜、,.口構16。該有機溶劑 枝^ ^ T私丙酮、二氯乙烷或氯 仿,本貫施例中優選採用 婉古她一卞,兮Β上 及不未石反官溥膜結構16 ^ , 隹谭土性有機洛劑的表面張力的 作用下,奈米碳管薄膜結構16 t 邻八取隹+ n Τ的千仃的奈米碳管片斷會 邛刀水集成奈米碳管束,因此, 声而麯拉L , 这不未石反官潯膜結構16 简:=二無枯性,且具有良好的機械強度及勤性, 有機^處理後的奈求碳管薄膜結構16能方便地應 14 200915644 .·用於宏觀領域。另外,該處理後的奈米碳管薄膜結構μ .中奈米碳管聚集成束,使得該奈米碳管薄膜結構16中平行 的奈米碳管束之間基本相互間隔,且奈米碳管薄膜結構Z 中的奈米碳管束交叉排列形成微孔結構。 本技術領域技術人員應明白,本實施例使用有機溶劑 處理後的奈米碳管薄膜結構16中的微孔結構與奈米碳管 薄膜的層數有關,當層數越多時,所形成的微孔結構 控越小。 本實施例中,該奈米碳管薄膜結構16的寬度與奈米碳 官陣列所生長的基底的尺寸有關,該奈米碳管薄膜結構Μ 的長度不限,可根據實際需求制得。本實施例中採用4英 寸的基底生長超順排奈米碳管阵列。另外,本實施例還可 利用將奈米碳管薄膜部分重疊且交叉設置形成具有任音寬 度和長度的奈来石炭管薄膜結構16,不|本實施例步驟二中 從奈米碳管陣列直接拉出的奈米碳管薄膜的寬度限制。 步驟三:在奈米碳管薄膜結構16中複合奈米級的錫氧 化物顆粒18,形成一奈米石炭管複合薄膜14,從而得到本實 施例的鋰離子電池負極10 ^ 所述奈米級的錫氧化物顆粒18附著在奈米碳管薄膜 :=6巾的奈求&官官壁上或者填充在奈米石炭管薄膜結 構16中的奈米碳管管腔内。 二體地複合奈米級的錫氧化物顆粒Μ于奈米礙管薄 膜:構16中製備該奈求碳管複合薄膜14的方法具體包括 15 200915644 (一)功能化奈米碳管薄膜結構16。將奈米碳管薄膜 結構16放入一裝有無機酸的容器中,在9〇。〇〜14(TC下保 持4小時~6小時。利用無機酸的腐蝕功能,使得奈米碳管 薄膜結構16中的奈米碳管管端呈開口狀態,並使奈米碳管 外表面與管腔内表面得到部分改性。 本實施例優選將奈米碳管薄膜結構16放入一裝有硝 酸的咼壓釜中,在12〇°c下保持5個小時,得到一功能化 的奈米碳管薄膜結構16。 (一)以聚合物包覆功能化的奈米碳管薄膜結構16。 將功旎化後的奈米碳管薄膜結構16浸入到一聚合物溶液 中5小時〜7小時,使聚合物包覆在奈米碳管薄膜結構16 上將處理後的奈米碳管薄膜結構w用去離子水反復沖 洗’除去不穩定包覆的聚合物。 人本Λ轭例優選在溶有聚乙烯吡咯烷酮的乙醇/丙酮混 口广液中浸泡6個小時’得到一聚合物包覆的奈米碳管薄 二)附著錫離子于被聚合物包覆的奈米碳管薄膜 才16上。將被聚合物包覆的奈米碳管薄膜結構16放入 ^含錫溶液的容器中,在9代.。口<呆持2小時 吏仔錫離子附著到聚合物上。將被錫離子附著的 2 s賴結構16自然冷卻後,從所述裝有含錫溶液的 有機溶劑除去多餘的錫鹽。所述含錫純 k : 3有錫的無機鹽或者有機錫作為原料,溶解 水、醇或嗣等有機溶劑中所得到。其中含錫溶液的錫: 16 200915644 為3摩爾/升〜ι〇摩爾/升。 本實施例優選將被聚合物包覆的奈米碳管薄膜結構 16放入一裝有SnC12.2H2〇溶液的高壓釜中,在1〇〇它下保 持,3個小時。將被錫離子附著的奈米碳管薄膜結構μ自然 冷部,從裝有SnCl2.2H20溶液的高壓爸中取出並用丙嗣除 去多餘的錫鹽,得到一附著有錫離子的奈米碳管薄膜結構 16 〇 (四)將附著有錫離子的奈米碳管薄臈結構16浸入水 :,行水解’從而形成附著有錫氧化物的奈米碳管薄膜結 锡離子在室溫下就可水解生成錫氧化物18。進__步 還可以包括將附著有錫離子的奈米碳管薄膜結構 置在加熱的環境中水解,以促進錫氧化# 18的快速生 或者在附著有錫離子的奈米碳管薄膜結構16中加入濃 也可以促進錫氧化物18的快速生成。 本實施例優選將附著有錫離子的奈米碳管薄膜結構 NH:: i〇C的水中進行水解,並加入-定量的濃 3 Η 0’㈣卜附著有奈米級錫氧化物顆粒μ 官缚膜結構16。 (五)將附著有錫氧化物的奈米碳管薄膜結構 =熱^包覆在奈米碳”膜結構16上的聚合物分解,得 中,太 =碳管複合薄膜14。水解後的奈米碳f薄膜結㈣ 構=級的錫氧化物顆粒18直接附著在奈米碳管薄膜結 石…:。在保護氣體的環境下,將附著有錫氧化物的奈米 ^㈣結構16升溫至3〇叱〜權。c後並保持2〇分鐘〜4〇 17 200915644 分鐘,使包覆在奈米碳管薄膜結構16上的聚合物分解。這200915644 .·9, invention description: [Technical field of the invention] The present invention relates to a bell ion mine, ice from k "l also negative electrode and its preparation method, in particular, and a lithium ion based lithium ion r, Battery anode and its preparation method [Prior Art] Lithium-ion battery is a new type of greening faulty rain, ice A. ^, power supply, with high voltage and long life compared with traditional recording, ... , energy production is large = excellent ^ self-test year Japan Sony Corporation launched the second ^:: has been rapidly developed and widely used in a variety of portable equipment: depending on the performance of its materials; the negative characteristics of the basin Take one, f negative electrode material is one of its key materials. A good negative electrode material should have the following characteristics: high specific energy; low electrode potential relative to lithium electrode; charge and discharge 庳, , ancient (= good phase contrast The specific surface area is small (<10 m2/g), which is better than the density source. "Dimensional and mechanical stability during the two deaths; Beiyuan bean is cheaper than qbeige; stable in air, non-toxic auxiliary ion battery anode package Including collector and anode materials, current collector foil, nickel foil or aluminum foil, traditional lithium ion y wood, '5 carbon material or metal material. The negative material of the shirt is usually 2 carbon system The material is graphitized such as artificial graphite or natural graphite:: material: the advantages of these materials are the specific capacity "A milliamperes / eight denier (/g) ~ 400 mAh / g), high cycle efficiency (> 95%), There is no metal clock inside the cycle and there is no safety problem inside the battery. The carbon is: _b〇n nano(10)e, (10)) is a new type of carbon system discovered in recent years. 200915644 *. Single or multi-layer graphite sheet The structure of the carbon nanotubes is 0.34 nm, which is slightly larger than the interlayer spacing of graphite, which is beneficial to the insertion and extraction of lithium ions. The carbon nanotubes are used as anode materials for lithium ion batteries, and lithium ions are not only It is embedded in the hollow tube and can be embedded in the gaps and cavities between the layers. It has the advantages of small embedding depth, short process, and many embedding positions. The negative electrode of lithium ion battery fabricated by using such materials usually includes a collector and a binder. And carbon nanotubes. Generally will be nano The tube and the binder are uniformly mixed and then applied to the current collector to prepare a battery negative electrode. However, when the type, the preparation method and the heat treatment temperature of the carbon-based material are different, the composition and structure of the anode material are different, thereby causing lithium. The difference between ion intercalation behavior and performance, and the reversible lithium storage capacity of carbon-based materials are lower. Compared with carbon-based materials, metal-based anode materials have higher storage capacity. Among them, tin is a specific capacity. Large reservoir materials with a specific capacity of more than 1000 mAh/g. Lithium-ion battery anodes made from this type of material usually include current collectors and tin metal. Generally, the metal tin is directly plated on the current collector by electroplating. A battery anode is obtained, wherein the tin element can react with lithium to form a lithium alloy during lithium intercalation. However, during the charging and discharging process, the volume of the tin electrode changes greatly, up to 600%. Therefore, in the process of repeated reversible embedding and deintercalation of lithium, the tin particles are prone to pulverization, the structure is damaged, and the cycle performance is poor. As the number of cycles increases, the storage capacity of the tin electrode decreases rapidly ("Improvement in electrochemical properties of nano-tin-poly aniline lithium-ion composite anodes by control of electrode microstructure'', Journal of Power Source, Xiang -Wu Zhang et al., V109, pl36-141(2002)). 8 200915644 . These shortcomings limit the wide application of tin as a negative electrode material in clock-ion batteries. In view of this, it provides a charge and discharge efficiency. High and reversible lithium storage and good cycle performance (4) The negative electrode of the ion battery is necessary. [Summary] The second is the negative electrode of the battery, including the carbon nanotube composite film. The SU臈 includes the carbon nanotube. a film structure and a plurality of nano-scale 'crystallized body particles. The carbon nanotube film structure comprises at least two layers of double-twisted: another set of carbon nanotube film, the nano-sized tin oxide particle attached film The carbon nanotube tube wall in the structure is filled in the lumen of the carbon nanotube in the ruthenium membrane structure. The carbon nanotube membrane comprises a plurality of carbon nanotube bundles. The columnar solid and the preferred orientation are arranged: the second electrode and the negative electrode further may further include a current collector, and the upper metal substrate: the gargle/# film is disposed on the current collector. A method for preparing a negative electrode of a sub-battery, comprising the following steps: • an array of tubes; using a stretching tool to draw a carbon nanotube from a carbon nanotube. The human Taiping tin® μ nano carbon In the tube film structure, the complex tin emulsion particles form a carbon nanotube to a negative electrode of a lithium ion battery. The organic solvent is ethanol, the film is found, and the organic solvent is used to treat the carbon nanotubes. Film structure: square: [including 200915644 membrane structure surface infiltration through the test tube to drop the organic solvent on the carbon nanotube thin carbon nanotube film structure. / / = clock ion battery anode preparation method can include The carbon nanotube composite film is adhered to a current collector. - Compared to the prior art, the ceramic battery (4) composites the nano carbon w film structure with the tin oxide material. Tin oxide particles attached to the nano-carbon tube film #中的奈 (4) Tube wall or a carbon nanotube tube tube filled in a carbon nanotube film. The tin oxide particles are nano-scale. The film is used for the negative electrode of lithium ion battery. It can effectively increase the intercalation of lithium ions. During the storage and release of the tin oxide particles, the volumetric deuteration is not easy to further refine, which can significantly improve the attenuation of the storage capacity and the cycle performance of the electrode. Nano-sized tin oxide particles have a large specific surface area. 'High-speed charge and discharge when used in a negative electrode of a battery ion battery. [Embodiment] Hereinafter, embodiments of the present technical solution will be further described with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2, the embodiment of the present invention provides a lithium ion: battery negative electrode 10'. The lithium ion battery negative electrode 10 includes a carbon nanotube second film 14. The carbon nanotube composite film 14 comprises a carbon nanotube thinner: , . 16 and a nano-scale tin oxide particle w. The nano-sized tin oxide particles 18 are in the carbon nanotube film structure 16. Progressively, the carbon nanotube film structure comprises at least two layers of carbon nanotube film which are stacked and cross-shaped, and the carbon nanotubes are tightly bonded and bonded by van der Waals force. The nano-carboniferous film comprises a plurality of carbon nanotube bundles arranged in a preferentially oriented orientation and adjacent carbon nanotube bundles connected by van der Waals force. The carbon nanotube film may have a width of from 1 cm to 1 cm. The thickness of the carbon nanotube film is from 0.01 μm to 10 μm. The carbon nanotube film structure 16 has a plurality of micropores, and the pore size distribution is uniform, and the pore size of the micropore is generally less than 100 nm. The number of layers of the carbon nanotube film in the carbon nanotube film structure 16 is not limited, and the angle of intersection between the adjacent two layers of carbon nanotubes is not limited, and can be prepared according to actual needs. Referring to FIG. 2, the embodiment of the present technical solution preferably provides a carbon nanotube film structure 16, including a 200-layer carbon nanotube film which is overlapped and disposed, and the carbon nanotubes are thin and the angle between the two is 90 degrees. Wherein, the carbon nanotube film structure μ has a pore size of 60 nm, and the carbon nanotube film 16 has a width of 5 cm and a carbon nanotube of 50 μm. The nano-scale tin oxide particles 18 are adhered to the nano-carbon tube wall of the nano-stone structure of the nano-stone structure or filled with nano carbon in the nano-structure: Inside the tube lumen. Nano-scale tin oxide has a particle size of 3 nm, nanometer. The nano-sized tin oxide particles:: The combination of the vanadium-forced film structure 16 and the van der Waals force. The preferred nano-sized tin oxide particles 18 are 6 nm.彳 Workers Small In addition, the lithium ion battery anode 1 〇 may further include - collector. The carbon nanotube composite film 14 is disposed on the current collector 12 11 200915644. The current collector 12 can be a metal substrate. The preferred current collector 12 of the present embodiment is a copper junction. The carbon nanotube film in the carbon nanotube film structure 16 has good electrical conductivity, and the carbon nanotube film overlaps and overlaps each other, so the rice carbon nanotube composite film 14 itself has a gingival, , · Tools have a certain degree of self-support and stability. Actually, the carbon nanotube composite film 14 can be directly used as the negative electrode of the ionic battery. In addition, the carbon nanotube composite film 14 has a very large specific surface area, and the microporous structure in the carbon nanotube composite film 14 contributes to adsorption of a large amount of (tetra) ions, which can improve the visibility of battery storage capacity attenuation. High-speed charge and discharge characteristics. Further, the nano-sized tin oxide particles 18 are attached to the wall of the carbon nanotube tube in the carbon nanotube film structure 16 or are filled in the lumen of the nano-carbon tube of the nano-tube membrane structure structure. It can effectively exert the advantages of the south discharge capacity of tin oxide 18 and the low discharge potential of the carbon nanotubes, and at the same time, the limitation of the carbon nanotubes also relieves the tin oxide 18 in the cavity of the carbon nanotubes. The structural strain during the lithium insertion/desorption process is beneficial to the ring-closing properties. Referring to FIG. 3, the method for preparing the negative electrode of the sub-battery of the embodiment (4) mainly includes the following steps: Step-: providing a carbon nanotube array, preferably, a tandem carbon nanotube array. In the present embodiment, the method for preparing a super-shunned carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing - flattening the substrate, the substrate may be selected from a P-type or an N-type stone.夕底' or 12:151515, which is formed with 匕::, the fourth (4) is selected to use a 4 inch (four) substrate; (1) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe) cobalt. One of the alloys of (c〇), nickel (official) or any combination thereof; (c) the substrate on which the catalyst layer is formed is anneal at 7 〇 (rc 〜 9 〇 (arc in air of rc about 30 knives | Dmin; (d) The treated substrate is placed in a reaction furnace, heated to 500t~74CTC in a protective gas atmosphere, and then reacted with a carbon source gas for about 5 minutes to 30 minutes to grow super-sequential nanocarbon. The tube array has a degree of from 200 micrometers to 400 micrometers. The super-sequential carbon nanotube array is a pure nano carbon g array formed by a plurality of carbon nanotubes parallel to each other and perpendicular to the substrate growth. Condition, the super-sequential carbon nanotube array does not substantially contain Qualitative, such as amorphous carbon or residual catalyst metal particles, etc. The carbon nanotubes in the carbon nanotube array are in contact with each other by van der Waals force to form an array. In this embodiment, the carbon source gas may be selected from acetylene, ethylene, methane. The preferred carbon source gas of the present embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas of the present embodiment is argon. It is understood that the present embodiment provides The nano tube array is not limited to the above preparation method. The carbon nanotube array provided in this embodiment is one of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. Two: a carbon nanotube film structure 16 is obtained by pulling from a carbon nanotube array using a stretching tool. The carbon nanotube film structure 16 comprises at least two layers of carbon nanotube films which are overlapped and disposed at the same time. The preparation of the carbon nanotube film specifically includes the following 13 200915644. Steps: (a) selecting a plurality of nanometer carbon nanotube segments of a certain width from the above carbon nanotube array, the embodiment preferably adopting a tape of a certain width contacting the nanocarbon array to select a plurality of carbon nanotube bundles of a certain width; (b) stretching a plurality of the nanotube bundles at a constant speed in a direction substantially perpendicular to the growth direction of the carbon nanotube array, Forming a continuous carbon nanotube film. In the above stretching process, the plurality of carbon nanotube bundles are gradually separated from the substrate under the action of the tensile force, and the selected one is more due to the van der Waals force. The carbon nanotube bundles are successively pulled out together with the other carbon nanotube bundles to form a carbon nanotube film. The carbon nanotube film has a plurality of end-to-end aligned carbon nanotube bundles. The adjacent carbon nanotube bundles are connected by van der Waals force. The arrangement of the carbon nanotubes in the carbon nanotube film is substantially parallel to the stretching direction of the nano 0 film. In addition, the carbon nanotube film structure 16& prepared in the second step is further treated with an organic solvent. Specifically, the surface of the organic solvent droplet structure 16 can be infiltrated through the test tube through the entire nano & membrane anti-s / insult membrane, . The organic solvent is a mixture of acetone, dichloroethane or chloroform. In the present embodiment, it is preferred to use the 婉古她一卞, 兮Β上和不石石反官膜膜结构 16 ^ , 隹谭土性有机Under the action of the surface tension of the agent, the carbon nanotube film structure 16 t adjacent to the 隹 隹 n n n 仃 仃 仃 奈 奈 奈 奈 奈 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成 集成This is not the stone anti-burst film structure 16 Jane: = two no dryness, and has good mechanical strength and diligence, the organic ^ treated carbon tube film structure 16 can easily be used 14 200915644 . In the macro field. In addition, the treated carbon nanotube film structure μ. the medium carbon nanotubes are gathered into a bundle, so that the parallel carbon nanotube bundles in the carbon nanotube film structure 16 are substantially spaced apart from each other, and the carbon nanotubes are arranged. The carbon nanotube bundles in the film structure Z are arranged in a cross to form a microporous structure. It will be understood by those skilled in the art that the microporous structure in the carbon nanotube film structure 16 treated with the organic solvent in this embodiment is related to the number of layers of the carbon nanotube film, and the more the number of layers, the formed The smaller the micropore structure control. In this embodiment, the width of the carbon nanotube film structure 16 is related to the size of the substrate on which the carbon nanotube array is grown. The length of the carbon nanotube film structure 不限 is not limited and can be obtained according to actual needs. In this example, a 4-inch substrate grown super-sequential carbon nanotube array was used. In addition, the present embodiment can also utilize the carbon nanotube film structure partially overlapped and cross-shaped to form the Nylon carbon nanotube film structure 16 having the width and length of the tone, which is not directly from the carbon nanotube array in the second step of the embodiment. The width of the drawn carbon nanotube film is limited. Step 3: compounding the nano-sized tin oxide particles 18 in the carbon nanotube film structure 16 to form a nano-carboniferous composite film 14, thereby obtaining the negative electrode of the lithium ion battery of the present embodiment. The tin oxide particles 18 are attached to the carbon nanotube film: = 6 towels on the wall of the official & or filled in the carbon nanotube lumen of the nano-carboniferous film structure 16. The method for preparing the nanometer-sized tin oxide particles in the nano-barrier film: the method for preparing the carbon nanotube composite film 14 in the structure 16 includes 15 200915644 (1) Functionalized carbon nanotube film structure 16 . The carbon nanotube film structure 16 was placed in a container containing a mineral acid at 9 Torr. 〇~14 (4 hours to 6 hours under TC. Using the corrosion function of inorganic acid, the end of the carbon nanotube tube in the carbon nanotube film structure 16 is open, and the outer surface of the carbon nanotube and the tube The inner surface of the cavity is partially modified. In this embodiment, the carbon nanotube film structure 16 is preferably placed in a nitric acid-filled autoclave and kept at 12 ° C for 5 hours to obtain a functionalized nanometer. Carbon tube film structure 16. (1) Carbon nanotube film structure functionalized by polymer coating 16. The functionalized carbon nanotube film structure 16 is immersed in a polymer solution for 5 hours to 7 hours. The polymer is coated on the carbon nanotube film structure 16 and the treated carbon nanotube film structure w is repeatedly washed with deionized water to remove the unstable coated polymer. The human yoke is preferably dissolved. Immersed in a mixture of polyvinylpyrrolidone in ethanol/acetone for 6 hours to obtain a polymer-coated carbon nanotube thinner. I attached tin ions to the polymer-coated carbon nanotube film. . The polymer-coated carbon nanotube film structure 16 was placed in a container containing a tin solution for 9 generations. Mouth < stay for 2 hours. The tin ions are attached to the polymer. After the 2 s structure 16 to which the tin ions are attached is naturally cooled, the excess tin salt is removed from the organic solvent containing the tin-containing solution. The tin-containing pure k:3 inorganic salt containing tin or organotin is used as a raw material, and is obtained by dissolving an organic solvent such as water, alcohol or hydrazine. The tin containing tin solution: 16 200915644 is 3 mol / liter ~ ι 〇 mol / liter. In this embodiment, the polymer-coated carbon nanotube film structure 16 is preferably placed in an autoclave containing a SnC 12.2H2 ruthenium solution and held at 1 Torr for 3 hours. The natural cold portion of the carbon nanotube film structure to which the tin ions are attached is taken out from the high pressure dad containing the SnCl2.2H20 solution and the excess tin salt is removed by the propylene hydride to obtain a carbon nanotube film to which the tin ions are attached. Structure 16 四 (4) The carbon nanotube thin crucible structure 16 to which the tin ions are attached is immersed in water: and hydrolyzed to form a thin film of a carbon nanotube film to which tin oxide is adhered. The tin ion can be hydrolyzed at room temperature. Tin oxide 18 is formed. The step __ may further comprise hydrolyzing the carbon nanotube film structure to which the tin ions are attached in a heated environment to promote the rapid growth of the tin oxide #18 or the carbon nanotube film structure to which the tin ions are attached. The addition of concentrated can also promote the rapid formation of tin oxide 18. In this embodiment, the water of the carbon nanotube film structure NH:: i〇C to which tin ions are attached is preferably hydrolyzed, and the - quantitative concentrated 3 Η 0' (four) is attached to the nano-sized tin oxide particles. The membrane structure 16 is attached. (5) Decomposing the structure of the carbon nanotube film structure to which the tin oxide is adhered = the polymer coated on the nano carbon" film structure 16 to obtain a medium, too = carbon tube composite film 14. The m-carbon f film junction (four) structure = grade of tin oxide particles 18 directly attached to the carbon nanotube film stone ...: in the protective gas environment, the nano-[four] structure 16 with tin oxide attached is heated to 3 〇叱 权 right. After c and keep 2 〜 minutes ~ 4 〇 17 200915644 minutes, the polymer coated on the carbon nanotube film structure 16 is decomposed.

樣就可得到奈米碳管複合薄膜14。所述保護氣 U 惰性氣體。 孔$ 一本實施例優選在氬氣的環境下,將水解後的奈米碳管 薄膜結構16升溫至35(TC後並保持30分鐘,得二二二‘ 有奈米級的錫氧化物顆粒18的奈米碳管複合薄膜Μ。該 奈米碳管複合薄膜14可直接用作鋰離子電池負極ι〇。μ 所述鋰離子電池負極10的製備方法進一步還可以包 括將該奈米碳管複合薄膜14粘附於一集電體12上。所述 集電體12為金屬基板,本實施例優選的集電體以銅箱。 可以理解’本實施例也可將奈米碳管薄膜結構16粘附 於-集電體12上,再將上述形成有奈米碳管薄膜結構16 的集電體12整個浸入盛有有機溶劑的容器中浸潤,接著在 奈米碳管薄膜結構16中複合奈米級錫氧化物顆粒18形成 鐘離子電池負極10。 由於本實施例步驟一中提供的超順排奈米碳管陣列中 的奈米碳管非常純淨,且由於奈米碳管本身的比表面積非 常大,故該奈米碳管薄膜結構16本身具有較強的粘性。故 本貫施例可不需要粘結劑直接將奈米碳管複合薄膜或 者奈米奴管薄臈結構16直接枯附於集電體表面j 2上。 可以理解’本實施例中該奈米碳管複合薄膜14可根據 實際需要使用鐳射在空氣中切割成任意形狀或尺寸,以利 於組裝成微型的鋰離子電池,擴大其應用範圍。進一步地, 還可將上述具有任意形狀或尺寸的奈米碳管複合薄膜14 18 200915644 得到一鋰離子電池負極 ·*直接/钻附於一集電體表面12上 10。 士採用上述製備方法製備的鋰離子電池負極10在應用 時可直接組裝餘離子電池。將轉子電池負極1G裁剪為 直徑10奈米〜15奈米厚度G_G5奈米〜Q 2奈米的圓片,採 用鋰^屬、LiNi〇2、LiCo〇2、LiMn2〇4等作為正極材料。 =碳酸乙烯S旨和碳酸二乙§旨的混合溶劑、碳酸乙稀醋和 反酉夂一甲g日的合溶劑、碳酸乙烯酯和二乙基碳酸酯的混 合溶劑、碳酸乙烯酯和碳酸二曱酯以及碳酸曱乙酯的混合 溶劑等作為電解液。採用高氯酸鋰、六氟磷酸鋰、四氟硼 酸經等鐘鹽作$電解質。才采用聚丙稀多空膜作為隔膜。鐘 離子電池裝配在嚴格控制水份的手套箱中操作。電池循環 測試電壓在0.1伏到0.3伏之間。 由所述鋰離子電池負極1〇組裝的鋰離子電池在1庫電 流下首次放電容量在6〇〇mAh/g以上,首次充放電效率大 於65%,30次以上循環後,容量與第二次可逆容量相差少 於3%。面速充放電性能好,5庫時的比容量為οι庫時的 比容量的80%以上。 本實施例中,優選地,為方便測量,採用將200層奈 来峻管複合薄膜14彼此垂直地交叉重疊設置作為鋰離子 電池負極10。該200層奈米碳管複合薄膜14為50微克(其 中錫氧化物的含量為23微克,奈米碳管的含量為27微 克)。採用扣式電池(2032 )作測試電池。將鋰離子電池負 極1〇裁剪為直徑13奈米厚度0.1奈米的圓片,正極材料 19 200915644 ‘選為鋰金屬,電解液選為溶於碳酸乙烯酯(Ethylene Carbonate ’ EC )和二乙基碳酸醋(Diethyl Carbonate,DEC ) (體積比為1:1)的混合溶劑,電解質選為濃度為1摩爾/ 升的六氟磷酸鋰(LiPF6),隔膜選為聚丙烯多空膜。電池 裝配在嚴格控制水份的手套箱中操作。電池循環測試電壓 為0.2伏。請參閱下表,該鋰離子電池負極10組裝成電池 後進行充放電測試表明:本實施例鋰離子電池負極10具有 充放電效率和比容量高,且循環充放電性能良好的優點。 表1 鋰離子電池負極(50微克)充放電循環性能 循環次 充電 放電 數 (mAh) (mAh) 效率 1 0 0.0507 0 2 0.0327 0.0335 102.3 3 0.0314 0.0327 104 4 0.0312 0.0319 102.4 5 0.0312 0.0322 103.3 6 0.0316 0.0328 103.6 7 0.0317 0.0325 102.3 8 0.0317 0.0328 103.5 9 0.0321 0.0327 101.9 10 0.0316 0.0326 103.3 11 0.032 0.033 103 12 0.0323 0.033 102.4 20 200915644 13 0.0319 0.0329 103.1 14 0.0324 0.0332 102.4 15 0.032 0.0325 101.4 16 0.0317 0.0327 103.2 17 0.0317 0.0322 101.4 18 0.0314 0.0323 102.6 19 0.0317 0.0323 102 20 0.0318 0.0327 102.8 21 0.0314 0.032 101.8 22 0.0315 0.0321 101.9 23 0.0312 0.0056 18 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 21 200915644 【圖式簡單說明】 圖1為本技術方案實施㈣離子電池負極的結構示貪 圖。 立圖2為本技術方案實施例奈米碳管複合薄膜的結 思圖。 、 圖3為本技術方案實施例鋰離子電池負極的製備方法 的丨L私·圖。 圖4為本技術方案實施例奈米碳管複合薄膜的掃描啦 鏡照片。 a 圖5為本技術方案實施例奈米碳管複合薄膜的透射電 鏡照片。 、 、 【主要元件符號說明】 鐘離子電池負極 1〇 集電體 12 奈米碳管複合薄膜 14 奈米碳管薄膜結構 16 奈米級锡氧化物顆粒 丄8 22The carbon nanotube composite film 14 can be obtained. The shielding gas U inert gas. Hole $ One embodiment preferably raises the hydrolyzed carbon nanotube film structure 16 to 35 (after TC and holds for 30 minutes in an argon atmosphere to obtain a 222' nanometer-sized tin oxide particle. 18 carbon nanotube composite film Μ. The carbon nanotube composite film 14 can be directly used as a lithium ion battery anode 〇. μ The lithium ion battery anode 10 preparation method may further include the carbon nanotube The composite film 14 is adhered to a current collector 12. The current collector 12 is a metal substrate, and the current collector of the present embodiment is a copper box. It can be understood that the carbon nanotube film structure can also be used in this embodiment. 16 is adhered to the current collector 12, and the current collector 12 having the carbon nanotube film structure 16 formed thereon is entirely immersed in a container containing an organic solvent, followed by infiltration in the carbon nanotube film structure 16. The nano-sized tin oxide particles 18 form the negative electrode 10 of the ion battery. Since the carbon nanotubes in the super-sequential carbon nanotube array provided in the first step of the embodiment are very pure, and because of the ratio of the carbon nanotubes themselves The surface area is very large, so the carbon nanotube film structure is 16 It has strong viscosity. Therefore, the present embodiment can directly adhere the carbon nanotube composite film or the nanotube thin crucible structure 16 directly to the surface j 2 of the current collector without using a binder. In the example, the carbon nanotube composite film 14 can be cut into any shape or size in the air according to actual needs, so as to facilitate assembly into a miniature lithium ion battery, and expand the application range. Further, the above may be arbitrarily Shape or size of carbon nanotube composite film 14 18 200915644 Obtain a lithium ion battery anode · * directly / drilled on a collector surface 12 10 . The lithium ion battery anode 10 prepared by the above preparation method in application The residual ion battery can be directly assembled. The negative electrode 1G of the rotor battery is cut into a disk having a diameter of 10 nm to 15 nm and a thickness of G_G5 nm to Q 2 nm, using lithium, LiNi 2 , LiCo 2 , LiMn 2 〇 4, etc. as a positive electrode material. = a mixed solvent of ethylene carbonate S and a solvent of ethylene carbonate, a mixed solvent of ethylene carbonate and ruthenium, a mixed solvent of ethylene carbonate and diethyl carbonate, carbon A mixed solvent of acid vinyl ester, dinonyl carbonate and cesium carbonate, etc. is used as the electrolyte solution. Lithium perchlorate, lithium hexafluorophosphate, and tetrafluoroboric acid are used as the electrolyte. The ion battery assembly is operated in a glove box that strictly controls the water. The battery cycle test voltage is between 0.1 volts and 0.3 volts. The lithium ion battery assembled from the negative electrode of the lithium ion battery has a first discharge capacity at a current of 1 liter. Above 6〇〇mAh/g, the first charge and discharge efficiency is greater than 65%. After 30 cycles or more, the difference between the capacity and the second reversible capacity is less than 3%. The surface speed charge and discharge performance is good, and the specific capacity at 5 hours is In the present embodiment, preferably, for convenience of measurement, 200 layers of the Nerepress composite film 14 are vertically overlapped with each other as the lithium ion battery negative electrode 10. The 200-layer carbon nanotube composite film 14 was 50 μg (the content of tin oxide was 23 μg, and the content of the carbon nanotubes was 27 μg). A button battery (2032) was used as the test battery. The negative electrode of the lithium ion battery was cut into a disk having a diameter of 13 nm and a thickness of 0.1 nm. The positive electrode material 19 200915644 ' was selected as lithium metal, and the electrolyte was selected to be dissolved in ethylene carbonate (Ethylene Carbonate ' EC ) and diethyl ether. A mixed solvent of Diethyl Carbonate (DEC) (1:1 by volume), an electrolyte selected as lithium hexafluorophosphate (LiPF6) at a concentration of 1 mol/liter, and a separator selected as a polypropylene long-air film. The battery is assembled in a glove box that is tightly controlled for moisture. The battery cycle test voltage is 0.2 volts. Referring to the table below, the charge and discharge test of the lithium ion battery negative electrode 10 after assembly into a battery shows that the lithium ion battery negative electrode 10 of the present embodiment has the advantages of high charge and discharge efficiency and specific capacity, and good cycle charge and discharge performance. Table 1 Lithium-ion battery anode (50 micrograms) charge and discharge cycle performance cycle charge discharge number (mAh) (mAh) efficiency 1 0 0.0507 0 2 0.0327 0.0335 102.3 3 0.0314 0.0327 104 4 0.0312 0.0319 102.4 5 0.0312 0.0322 103.3 6 0.0316 0.0328 103.6 7 0.0317 0.0325 102.3 8 0.0317 0.0328 103.5 9 0.0321 0.0327 101.9 10 0.0316 0.0326 103.3 11 0.032 0.033 103 12 0.0323 0.033 102.4 20 200915644 13 0.0319 0.0329 103.1 14 0.0324 0.0332 102.4 15 0.032 0.0325 101.4 16 0.0317 0.0327 103.2 17 0.0317 0.0322 101.4 18 0.0314 0.0323 102.6 19 0.0317 0.0323 102 20 0.0318 0.0327 102.8 21 0.0314 0.032 101.8 22 0.0315 0.0321 101.9 23 0.0312 0.0056 18 In summary, the present invention has indeed met the requirements of the invention patent and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. 21 200915644 [Simple description of the diagram] Fig. 1 shows the structure of the negative electrode of the ion battery in the implementation of the technical scheme (4). Figure 2 is a schematic view of a carbon nanotube composite film of the embodiment of the present technical solution. FIG. 3 is a diagram showing a method for preparing a negative electrode of a lithium ion battery according to an embodiment of the present invention. Fig. 4 is a scanning mirror photograph of a carbon nanotube composite film according to an embodiment of the present invention. a Figure 5 is a transmission electron micrograph of a carbon nanotube composite film of the embodiment of the present invention. , [Main component symbol description] Clock ion battery anode 1〇 Collector 12 Nano carbon tube composite film 14 Carbon tube film structure 16 Nano-tin oxide particles 丄8 22

Claims (1)

200915644 十、申請專利範圍 1. 種鐘離子電池負極,包括—太# 泠_卢; 不未石屄官银合薄膜,其 改良在于,所述奈米碳管 ^ ^ M^, 專膜包括一奈米碳管薄 膜、纟。構和多個奈米級錫氧化 么士構中 孔化物顆粒附耆在該奈米碳管 極,其 且交又 2·如申請專利範圍第工項所述的鋰離子電池負 中斤述不米碳官薄膜結構包括至少兩層重疊 設置的奈米碳管薄膜。 且 ^如申請專利㈣第2項所述的輯子f池負極,盆 ’:=奈米碳管薄臈包括多個首位相連且擇優取向 =不米碳管束,相鄰的奈米碳管束之間通過凡德 瓦爾力連接。 4. 如申μ專利辄圍第2項所述的鐘離子電池負極,其 中,所述奈米碳管薄膜的寬度為i厘米〜1〇厘米,所 述奈米碳管薄膜的厚度為0.01微米〜1〇〇微米。 5. 如申請專利範圍帛!項所述㈣離子電池負極,其 中:所述奈米碳管薄膜結構包括多個微孔,且該微孔 孔輕分佈均勻。 6. 如申請專利範圍帛5項所述的鐘離子電池負極,其 中’所述微孔孔徑小於100奈米。 7·如申請專利範圍帛i項所述的經離子電池負極,其 中,所述奈米級錫氧化物顆粒附著在奈米碳管薄膜結 構中的奈求碳管管壁上或者填充在奈米碳管薄膜結構 中的奈米碳管管腔内。 23 200915644 8.如申請專利範圍第1項所述的鐘離子電池負極,其 中,所述奈米級錫氧化物顆粒的粒徑大小為3奈米〜1〇 奈米。 9.如申請專利範圍第1項所述的鋰離子電池負極,其 中,所述負極進一步包括一集電體,奈米碳管複合薄 膜設置在該集電體上。 σ/ 10. 如申請專利範圍第9項所述的鐘離子電池負極,其 中’所述集電體為金屬基板。 一 11. 一種鋰離子電池負極的製備方法,其包括以下步驟: 提供一奈来碳管陣列; ' 採用一拉伸工具從奈米碳管陣列中拉取獲得一太 碳管薄膜結構;及 不〃 在奈米石炭管薄膜結構中複合奈来級錫氧化物顆粒 一奈米碳管複合薄膜,從而得到一鋰離子電池負極。 12·如申請專利範圍第U項所述的鐘離子電池負極的製 法’其中’上述從奈米碳管陣列拉取獲得奈米石户 管薄膜結構的方法包括以下步驟· A 疋寬度的多個奈米碳 仅·上述奈米碳管陣列中選定 管片斷; Μ — 疋速度基本垂直于奈米碳管陣列生長方 =個奈米碳管片斷,以形成一連續的奈米碳管薄 ;至!:層奈米碳管薄膜重叠且交叉地放置形成一 奈米故管薄膜結構。 24 200915644 13 如申請專利範圍第 備方法,其中,進一 米碳管薄膜結構。 U項所述的鋰離子電池負極的製 步包括使用有機溶劑處理上述奈 I4·如申請專利範圍第13 借太本甘士 述的鐘離子電池負極的製 氯乙烷或氯仿。 #甲知、丙酮、二 八 上述使用有機溶劑處理奈米碳管薄膜 勹的方法為通過試管將有機溶劑滴落在奈米碳管 溥膜結構表面浸潤整個奈米碳管薄膜結構。 16.如申明專利範圍帛u $所述的鐘離子電池負極的製 ^ 、 Z、中所述在奈米碳管薄膜中複合奈米級錫 氧化物顆粒的過程包括以下步驟: 功能化奈米碳管薄膜結構; 以聚合物包覆功能化的奈米碳管薄膜結構; 附著錫離子于被聚合物包覆的奈米碳管薄膜結構上; 水解附著有錫離子的奈米碳管薄膜結構,得到一附著 有錫氧化物的奈米碳管薄膜結構;及 加熱附著有錫氧化物的奈米碳管薄膜結構,得到一奈 米碳管複合薄膜。 17·如申請專利範圍第16項所述的鋰離子電池負極的製 備方法’其中,所述功能化奈米碳管薄膜結構的方法 包括採用無機酸處理奈米竣管薄膜。 18.如申請專利範圍第16項所述的链離子電池負極的製 200915644 Π::,所述附著錫離子于被聚合物包覆的奈 ^ 結構上的方法係將被聚合物包覆的奈米 :…膜結構放入一裝有含錫溶液的容器中,在9十〇 f:UlC下保持2小時〜4小時’將附著有錫離子的奈 :二=構自然冷卻後’從裝有含锡溶液的容器 19. 20. 21. 22. 23. 24. 取出用有機溶劑除去多餘的錫鹽。 專利範圍第18項所述的輯子電池負極的製 =錫所述含錫溶液為以含有錫的無機鹽或 者有機錫作為原料,溶解在水、醇或酮中得到的。 ^申請專利範圍第18項所述的輯子電池負極 ::法升,其中’所述含錫溶液的錫濃度為3摩爾/升〜1〇 如申請專·圍第16項所述的轉子電池負極的製 —法,其中,所述加熱附著有錫氧化物的夺米舻二 ==方法係在保護氣體的環境下,將喝: 分鐘,得到―附著有奈米級的錫氧化 物顆粒的奈米碳管複合薄膜。 如申請專利範圍第21項所述的鋰 備方法,其中,所述的保護氣二二 如申請專利範圍第旧員所述㈣離子電池負極 中’進一步包括將奈米碳管複合薄膜切割 成預疋形狀和尺寸’形成—鋰離子電池負極。 如申請專利範圍第^項所述的鐘離子電池負極的製 26 200915644 備方法,其中,進一步包括將奈米碳管複合薄膜切割 成預定形狀和尺寸,然後粘附固定於一集電體上形成 * 一鋰離子電池負極。 27200915644 X. Patent application scope 1. The negative electrode of the bell ion battery, including -Tai #泠_卢; not the 银石屄官银膜, the improvement is that the carbon nanotube ^ ^ M ^, the film includes a Nano carbon tube film, enamel. The structure and the plurality of nano-sized tin oxide oxidizers are in the middle of the carbon nanotubes, and the cross-linking of the lithium-ion battery is as described in the application of the patent scope. The carbon carbon film structure comprises at least two layers of carbon nanotube films arranged in an overlapping manner. And ^ as claimed in the patent (4) item 2 of the series of the negative electrode of the pool, the basin ': = nano carbon tube thin 臈 includes a plurality of first position connected and preferred orientation = not carbon nanotube bundle, adjacent carbon nanotube bundle Connected by Van der Valli. 4. The negative electrode of the ion battery according to the second aspect of the invention, wherein the carbon nanotube film has a width of from 1 cm to 1 cm, and the carbon nanotube film has a thickness of 0.01 μm. ~1〇〇 micron. 5. If you apply for a patent range! And (4) the negative electrode of the ion battery, wherein: the carbon nanotube film structure comprises a plurality of micropores, and the micropores are lightly distributed uniformly. 6. The negative electrode of the ion battery according to claim 5, wherein the micropore diameter is less than 100 nm. 7. The ion battery negative electrode according to claim 1, wherein the nano tin oxide particles are attached to a carbon nanotube wall in a carbon nanotube film structure or filled in a nanometer. The carbon nanotube film structure is in the lumen of the carbon nanotube tube. The anode of the ion battery of the first aspect of the invention, wherein the nano-sized tin oxide particles have a particle size of from 3 nm to 1 Å. 9. The lithium ion battery negative electrode according to claim 1, wherein the negative electrode further comprises a current collector, and the carbon nanotube composite film is disposed on the current collector. The plasmon ion battery negative electrode according to claim 9, wherein the current collector is a metal substrate. A method for preparing a negative electrode of a lithium ion battery, comprising the steps of: providing a carbon nanotube array; 'using a stretching tool to obtain a carbon nanotube film structure from the carbon nanotube array; and复合 A nano-carbon nanotube composite film is composited in a nano-carbon nanotube thin film structure to obtain a negative electrode of a lithium ion battery. 12. The method for preparing a negative electrode of a clock ion battery as described in the U.S. Patent Application No. U, wherein the method for extracting the nano-stone structure from the carbon nanotube array comprises the following steps: Nano carbon only · selected tube segments in the above carbon nanotube array; Μ - 疋 speed is substantially perpendicular to the growth of the carbon nanotube array = a carbon nanotube segment to form a continuous thin carbon nanotube; ! : The layer of carbon nanotube films are overlapped and placed in a crosswise manner to form a nanotube film structure. 24 200915644 13 The method for preparing the patent scope, in which a carbon nanotube film structure is introduced. The preparation of the negative electrode of the lithium ion battery according to the item U includes the treatment of the above-mentioned naphthalene or chloroform of the negative electrode of the ion battery of the present invention by the use of an organic solvent. #甲知,酮,二八 The above method of treating the carbon nanotube film with an organic solvent is carried out by injecting an organic solvent onto a surface of a carbon nanotube membrane structure through a test tube to infiltrate the entire carbon nanotube film structure. 16. The process of compounding nano-sized tin oxide particles in a carbon nanotube film as described in the specification of the negative electrode of the ion-exchange battery according to the patent scope 帛u $, comprising the following steps: Functionalized nanometer Carbon tube film structure; functionalized carbon nanotube film structure coated with polymer; attached tin ion on polymer coated carbon nanotube film structure; hydrolysis of carbon nanotube film structure with tin ions attached A carbon nanotube film structure to which tin oxide is attached is obtained; and a carbon nanotube film structure to which tin oxide is adhered is heated to obtain a carbon nanotube composite film. 17. The method of preparing a negative electrode of a lithium ion battery according to claim 16, wherein the method of functionalizing the carbon nanotube film comprises treating the nanotube film with a mineral acid. 18. The method for producing a negative electrode of a chain ion battery according to claim 16 of the invention, wherein the method of attaching tin ions to the polymer-coated structure is a polymer-coated nai. M: The film structure is placed in a container containing a tin-containing solution, and kept at 9 〇f:UlC for 2 hours to 4 hours 'Nye that will adhere to tin ions: two = natural cooling after cooling' Container containing tin solution 19. 20. 21. 22. 23. 24. Remove the excess tin salt with an organic solvent. The preparation of the negative electrode of the series battery according to Item 18 of the patent range = tin The tin-containing solution is obtained by dissolving in an inorganic salt containing tin or an organic tin as a raw material, and dissolving in water, an alcohol or a ketone. ^Applicable to the negative electrode of the series battery according to item 18 of the patent scope:: liter, wherein the tin concentration of the tin-containing solution is 3 mol/liter~1, such as the rotor battery described in claim 16 The method for producing a negative electrode, wherein the method of heating the tin oxide containing the tin oxide is a method of protecting the gas, and drinking: for a minute, to obtain a nanometer-sized tin oxide particle. Nano carbon tube composite film. The lithium preparation method according to claim 21, wherein the protective gas is as described in the fourth of the patent application, and the fourth embodiment further comprises cutting the carbon nanotube composite film into a pre-form.疋 Shape and size 'formed—Lithium-ion battery negative. The method of preparing a negative electrode for a battery ion battery according to the invention of claim 4, wherein the method further comprises cutting the carbon nanotube composite film into a predetermined shape and size, and then adhering and fixing the same to a current collector. * A lithium ion battery negative. 27
TW096136380A 2007-09-28 2007-09-28 Cathode of lithium-ion battery and method for making same TWI414100B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096136380A TWI414100B (en) 2007-09-28 2007-09-28 Cathode of lithium-ion battery and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096136380A TWI414100B (en) 2007-09-28 2007-09-28 Cathode of lithium-ion battery and method for making same

Publications (2)

Publication Number Publication Date
TW200915644A true TW200915644A (en) 2009-04-01
TWI414100B TWI414100B (en) 2013-11-01

Family

ID=44725790

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096136380A TWI414100B (en) 2007-09-28 2007-09-28 Cathode of lithium-ion battery and method for making same

Country Status (1)

Country Link
TW (1) TWI414100B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9919807D0 (en) * 1999-08-21 1999-10-27 Aea Technology Plc Anode for rechargeable lithium cell
CZ2004928A3 (en) * 2002-02-07 2004-12-15 Noboru Oyama Redox active reversible electrode and novel battery cell containing such electrode
TWI330546B (en) * 2005-05-27 2010-09-21 Hon Hai Prec Ind Co Ltd Method of synthesizing nano-particles
TWI272245B (en) * 2005-12-02 2007-02-01 Hon Hai Prec Ind Co Ltd A method for making carbon nanotube device

Also Published As

Publication number Publication date
TWI414100B (en) 2013-11-01

Similar Documents

Publication Publication Date Title
Pathak et al. Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries
CN101388447B (en) Negative pole for lithium ionic cell and preparing method thereof
Sehrawat et al. Carbon nanotubes in Li-ion batteries: A review
TWI625885B (en) Combined electrochemical and chemical etching processes for generation of porous silicon particulates
US20200235392A1 (en) Graphene-carbon hybrid foam-protected anode active material coating for lithium-ion batteries
TWI558860B (en) Anode battery materials and methods of making the same
US9774033B2 (en) Process for producing silicon nanowires directly from silicon particles
Wu et al. Applications of carbon nanotubes in high performance lithium ion batteries
Wang et al. A facile synthesis of controlled Mn3O4 hollow polyhedron for high-performance lithium-ion battery anodes
US20140234722A1 (en) Si/C COMPOSITE MATERIAL, METHOD FOR MANUFACTURING THE SAME, AND ELECTRODE
TWI532237B (en) Cathode of lithium-ion battery
CN110366792A (en) The metal fluoride and metal chloride active material of cathode that grapheme foam for lithium battery is protected
US10011488B2 (en) Method for making carbon fiber film
JP6556923B2 (en) Battery electrode manufacturing method
TW202125889A (en) Advanced lithium (li) ion and lithium sulfur (li s) batteries
CN108306009A (en) A kind of silicon-carbon oxide composite negative pole material, preparation method and lithium ion battery
CN108493432A (en) A kind of preparation method and application of multi-walled carbon nanotube/silicon and silica/carbon composite nano-material
Guo et al. Thermal burst synthesis of high-performance Si nanotube sheets for lithium-ion batteries
Li et al. Progress in application of CNTs in lithium‐ion batteries
US20200295356A1 (en) Process for producing semiconductor nanowires and carbon/semiconductor nanowire hybrid materials
TW202222427A (en) Carbon-based composite material, preparation method therefor, and application thereof
CN111945252B (en) Method for preparing hollow antimony-based binary alloy composite nanofiber material based on electrostatic spinning and potassium storage application thereof
WO2020154258A1 (en) Graphene-carbon hybrid foam-protected anode active material coating for lithium-ion batteries
US20200235393A1 (en) Method of producing graphene-carbon hybrid foam-protected anode active material coating for lithium-ion batteries
CN117480119A (en) Graphene nanoribbons as electrode materials in energy storage devices