TW200915611A - Method of self-bonding epitaxy - Google Patents

Method of self-bonding epitaxy Download PDF

Info

Publication number
TW200915611A
TW200915611A TW96136499A TW96136499A TW200915611A TW 200915611 A TW200915611 A TW 200915611A TW 96136499 A TW96136499 A TW 96136499A TW 96136499 A TW96136499 A TW 96136499A TW 200915611 A TW200915611 A TW 200915611A
Authority
TW
Taiwan
Prior art keywords
self
joining
recesses
layer
substrate
Prior art date
Application number
TW96136499A
Other languages
Chinese (zh)
Other versions
TWI364854B (en
Inventor
yu-quan Liu
Hong-Cheng Lin
wen-jie Xu
Jia-Ming Li
zhen-hua Fu
Original Assignee
Tekcore Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tekcore Co Ltd filed Critical Tekcore Co Ltd
Priority to TW96136499A priority Critical patent/TW200915611A/en
Publication of TW200915611A publication Critical patent/TW200915611A/en
Application granted granted Critical
Publication of TWI364854B publication Critical patent/TWI364854B/zh

Links

Landscapes

  • Led Devices (AREA)

Abstract

A method of self-bonding epitaxy is disclosed, which is to form a passivation layer on the substrate surface of the semiconductor light-emitting device, and etch to form recesses and protrusions having the passivation layer on the top, then proceed the epitaxy on the bottom surface of the recesses. The epitaxial layer will fill up the recesses, then cover the protrusions and begin to self-bond upward epitaxially to complete the epitaxial layer structure. By the self-bonding epitaxial growth technology, the generation of voids caused by the error of epitaxial parameters can be avoided, thereby reducing the defect density, improving the quality of epitaxial layer, and further increasing the internal quantum efficiency.

Description

200915611 九、發明說明: 【發明所屬之技術領域】 、本發明係有關於一種半導體發光元件,尤指關於一種 自我接合蠢晶形成半導體發光元件之磊晶層的方法。 【先前技術】 傳統半導體發光元件的製作為標準的矩型外觀,因為 一般半導體材料與封裴材料的折射率相差甚多 ,使得全反 射角小’所以半導體發光元件所產生的光到達與空氣的界 面時’大於臨界角的光將產生全反射回到發光元件晶粒内 部。此外’矩形的四個截面互相平行,光子在交界面離開 半導體的機率變小,讓光子只能在内部全反射直到被吸收 殆盡’使光轉成熱的形式,造成發光效果不佳。 因此’改變光的反射是一個有效提升發光效率的方 法’因此現有的作法是在基板10的表面部分形成使發光 區域產生光散射或繞射的凹部11及凸部12的結構(如第 1圖所示)’進而使外部量子效率提高,形成高光取出率之 結構。 但是’該些凹部11及凸部12的結構卻也造成後續磊 晶製程的困難,一般需要適當控制磊晶條件,才可得到平 坦且無孔洞的半導體詹,來提局光取出率之目地’然而蟲 晶之參數例如溫度、壓力、氣流、五三族比、雜質掺雜等 皆會影響磊晶橫向及側向成長之速率改變。請參閱第2圖 所示,磊晶時磊晶層20會在該些凹部11的底面13及凸 部12上方的平面14開始磊晶’當磊晶層20在凸部12上 的侧向成長速率高於凹部11的侧向成長速率時,常常容 易因為相互擠壓,導致磊晶層20完成後有孔涧21的產生 200915611 (如第3圖所示)。該些孔洞21為半導體發光元件產生的光 在内部損失,内部量子效率降低,影響發光元件的發光效 率與使用壽命。 【發明内容】 於是為解決上述之缺失,本發明的目的在於提供一 種自我接合蠢晶的方法,在蠢晶成長時可以避免遙晶參 數誤差所導致孔洞產生,降低缺陷密度,提高磊晶層的 品質,進而提升内部量子效率。 本發明的另一目的在於提供自我接合磊晶的磊晶 層,將該磊晶層應用於發光元件,可避免磊晶參數誤差 所導致孔洞產生,達到高生產量率的目的,且可提高發 光元件的發光效率與使用壽命。 本發明的方法,係在半導體發光元件的一基板表面 形成複數個使光散射或繞射的凹部及凸部結構後的遙 晶方法’其包括:於該基板表面形成一純化層,該鈍化層 的材質包括'一氧化梦(Si〇2) ’並定義出形成該些凹部的姓 刻區域;然後對該基板進行蝕刻,於前述蝕刻區域敍刻出 複數個具有自然晶格的斜面與底面的凹部,及上方為平面 且具有該鈍化層的凸部;以及於前述凹部的底面開始蠢晶 一磊晶層,其中該磊晶層會先填滿該些凹部,然後再覆蓋 該些凸部且開始自我接合向上磊晶完成該磊晶層結構。 其中該基板係為藍寶石(Sapphire)、碳化;δ夕(Sic)、梦 (Si)、砷化鎵(GaAs)和氮化鋁(A1N)基板其中之一。該蟲晶 層的材質為氮化鎵(GaN)、氮化銦鎵(inGaN)、氮化|呂嫁 (AlGaN)、氮化銦鋁鎵(InAlGaN)與磷氮化鎵(GaNP)所組的 族群其中之一。 200915611 其中該些凹部形狀為四邊形、圓形、三角形、星形及 〇T =族群::之一。該些凹部與凸部的構成邊係 〇.〇1叫至1〇〇_,該些凹部的深度〇 〇1_至〗 本發明進-步在該钱刻製程可以延長姓刻時間,於前 这蚀刻區域似彳出複數個具有自然晶格斜面盥底面的凹 部,直到該些凸部的剖面為尖形,成為複數個尖形凸部, 且該純化層被除去;然:後於前述凹部的底面開始遙晶該遙 晶層’其中該蠢晶層會先填滿該些凹部’然後再覆蓋該些 尖形凸部且開始自我接合向上蠢晶完成該蟲晶層結構。 本發明的優點在於利用蝕刻基板的技術於基板上 形成具有自然晶格斜面圖案之凹部,再將半導體發光元 件的磊晶層選擇性成長於凹部的底面,形成一種自我接 合磊晶。本發明在磊晶成長時可以避免磊晶參數誤差所 導致孔洞產生,降低缺陷密度,提高磊晶層的品質,進 而提升内部量子效率,可提高發光元件的發光效率與使 用壽命。且本發明因為製程簡單,可降低生產成本,適 合產業大量生產。 【實施方式】 效有關本發明之詳細内容及技術說明,現以實施例 來作進一步說明’但應瞭解的是,該等實施例僅為例示 說明之用,而不應被解釋為本發明實施之限制。 本發明利用触刻基板的技術,於半導體發光元件的 基板上形成具有自然晶格斜面圖案之凹部,使發光區域 產生光散射或繞射的凹部及凸部的結構,使外部量子效 率提高,形成高光取出率之結構。 本發明的係在半導體發光元件的一基板1〇〇表面形成 200915611 複數個使光散射或繞射的凹部110及凸部120結構後的磊 晶方法’請參閱第4圖所示,本發明的方法是在於該基 板100表面形成一鈍化層2〇〇,並於該鈍化層200定義出 形成該些凹部u〇的蝕刻區域。其中該基板100為藍寶 石(Sapphire)、碳化矽(SiC)、矽(Si)、砷化鎵(GaAs)和氮 化銘(A1N)基板其中之一’該鈍化層2〇〇的材質包括二氧 252二2)/^^後_該基板1〇〇進行#刻,於前述餘刻區 "/ 固具有自然晶格的斜面150與底面130的凹 部110’及上方兔 12〇。其中料14G且具有該純化層2GG的凸部 星形及多㈣戶 =110形狀為四邊形、圓形、三角形、 部120的構成C中之一。該些凹,110與凸 ^ ^ ^ ^ n m 係〇.01Km至l〇〇pm ’且該些凹部110 〇‘〇1_至 1〇_。 近年來,濕彳Α 研究,所錄刻^刻藍寶石基板技術已經被廣為發展 本發明可利‘寶石/板已經不再是一項困難工作’ 格斜面圖案的凹:^藍寶石基板等基板成具有自然晶 A * A ^ 4 110。例如可使用濕式蝕刻溶液,硫 ’如熱至溫度約270°C’即可蝕刻藍寶石基 可以蚀刻出對之方向平行藍寶石基板之平邊時, 與底面⑽的Π複合接面,此複合接面上的斜面150 藍寶石基板的平=43°; #該鈍化層議的方向垂直 然晶格的斜面150: ’可以蝕刻出自然晶格斜面’此自 斜面的複合面,^底®13G的角度約32°,以及晶格 6〇0 〇 货合面的斜面150與底面130的角度約 請再參閱第 1與5-2圖所示,然後再於前述凹部 8 200915611 110的底面130開始蠢晶一蟲晶層300(如第5-1圖所示), 其中,該磊晶層的材質為氮化鎵(GaN)、氮化銦鎵 (InGaN)、lUblS 嫁(AlGaN)、 匕 I因在呂錄(InAlGaN)與 磷氮化鎵(GaNP)所組的族群其中之一。該磊晶層300只 會選擇性成長於凹部110的底面130,並不會成長於蝕 刻所形成的斜面150上,也不會成長於凸部120上方的 鈍化層200上方,所以該磊晶層300會先穩定成長填滿該 些凹部110(如第5_2圖所示),然後再覆蓋該些凸部ι2〇 且開始自我接合向上磊晶完成該磊晶層300結構(如第6 圖所示)。 本發明也可增加對該基板100進行蝕刻的時間,直 到該純化層200被除去。如第7圖所示,本發明進一步可 延長對基板1 〇〇的餘刻時間’於前述姓刻區域姓刻出複 數個具有自然晶格斜面150與底面130的凹部11〇,而該些 凸部120的剖面成為尖形,成為複數個尖形凸部〖21,直到 該鈍化層200被除去。然後再於前述凹部no的底面13〇開 始蠢晶一蠢晶層300(如第8-1圖所示),該蠢晶層3〇〇只會選 擇性成長於凹部110的底面130,並不會成長於蝕刻所形成 的斜面150上,也不會成長於該尖形凸部121的上方,所以 該磊晶層300會先穩定成長填滿該些凹部11〇(如第8_2圖所 示),然後再覆蓋該些尖形凸部121且開始自我接合向上磊 晶完成該磊晶層300結構(如第9圖所示)。 本發明的自我接合蟲晶技術,在遙晶成長時可以避免 磊晶參數誤差所導致孔洞產生,降低缺陷密度,提高磊晶 層的品質,進而提升内部量子效率,可提高發光元^的發 光效率與使用壽命。且本發明因為製程簡單,可降低生產 200915611 成本,適合產業大量生產。 , 惟上述僅為本發明之較佳實施例而已,並非用來限 定本發明實施之範圍。即凡依本發明申請專利範圍所做 的均等變化與修飾,皆為本發明專利範圍所涵蓋。 200915611 【圖式簡單說明】 第1圖’係傳統的基板表面形成凹部與凸部的結構示意 圖。 第2圖’係傳統的基板表面磊晶過程的示意圖。 第3圖’係傳統的基板表面蟲晶後的結構示意圖。 第4圖’係本發明的基板表面形成凹部及凸部的結構示 意圖。 〃 ^ 5 1與5-2圖,係第4圖的基板表面蠢晶過程的示意 f 6圖,係第4圖的基板表面磊晶後的結構示意圖。 第7圖,係本發明的基板表面形成尖形凸部的結構示竟 與8-2®,係第7圖的基板表面磊晶過程的示意 ^ 9圖’係第7圖的基板表面磊晶後的結構示意圖。 【主要元件符號說明】 <習 知> 10 :基板 11 凹部 12 凸部 13 底面 14 平面 20 蟲晶層 21 孔洞 <本發明> 100 :基板 11 200915611 110 :凹部 120 ·•凸部 121 :尖形凸部 130 :底面 140 :平面 150 :斜面 200 :鈍化層 300 ·蠢晶層200915611 IX. Description of the Invention: [Technical Field] The present invention relates to a semiconductor light-emitting element, and more particularly to a method of self-bonding an epitaxial layer to form an epitaxial layer of a semiconductor light-emitting element. [Prior Art] The fabrication of a conventional semiconductor light-emitting element is a standard rectangular appearance because the refractive index of the semiconductor material and the sealing material are generally different, so that the total reflection angle is small, so the light generated by the semiconductor light-emitting element reaches the air. At the interface, light greater than the critical angle will produce total reflection back into the interior of the luminescent element die. In addition, the four sections of the rectangle are parallel to each other, and the probability of photons leaving the semiconductor at the interface becomes small, so that the photons can only be totally reflected inside until they are absorbed, so that the light is converted into a hot form, resulting in poor illumination. Therefore, 'reversing the reflection of light is a method for effectively improving the luminous efficiency'. Therefore, it has been conventionally practiced to form a structure in which the concave portion 11 and the convex portion 12 which cause light scattering or diffraction of the light-emitting region are formed on the surface portion of the substrate 10 (Fig. 1). As shown in the figure, 'the external quantum efficiency is increased to form a structure with a high light extraction rate. However, the structures of the recesses 11 and the protrusions 12 also cause difficulties in the subsequent epitaxial process. Generally, it is necessary to appropriately control the epitaxial conditions to obtain a flat and non-porous semiconductor to improve the light extraction rate. However, parameters of insect crystals such as temperature, pressure, gas flow, ratio of five to three, impurity doping, etc. all affect the rate of lateral and lateral growth of the epitaxial growth. Referring to FIG. 2, the epitaxial layer 20 is epitaxially formed on the bottom surface 13 of the recesses 11 and the plane 14 above the protrusions 12 during epitaxial growth. When the epitaxial layer 20 grows laterally on the protrusions 12 When the rate is higher than the lateral growth rate of the concave portion 11, it is often easy to cause the generation of the apertures 21 after completion of the epitaxial layer 20 due to mutual extrusion (as shown in Fig. 3). The holes 21 are internally lost by the light generated by the semiconductor light-emitting element, and the internal quantum efficiency is lowered, which affects the luminous efficiency and the lifetime of the light-emitting element. SUMMARY OF THE INVENTION Therefore, in order to solve the above-mentioned shortcoming, the object of the present invention is to provide a self-joining method, which can avoid the occurrence of voids caused by errors in the telecrystal parameters, reduce the defect density, and improve the epitaxial layer during the growth of the stray crystal. Quality, which in turn increases internal quantum efficiency. Another object of the present invention is to provide an epitaxial layer which is self-joined and epitaxial, and the epitaxial layer is applied to a light-emitting element, thereby avoiding generation of holes caused by errors in epitaxial parameters, achieving high throughput rate, and improving the light-emitting element. Luminous efficiency and service life. The method of the present invention is a method for forming a plurality of concave and convex structures for scattering or diffracting light on a surface of a substrate of a semiconductor light-emitting device. The method comprises: forming a purification layer on the surface of the substrate, the passivation layer The material includes 'Oxidation Dream (Si〇2)' and defines a region of the surname forming the recesses; then etching the substrate, and engraving a plurality of slopes and bottom surfaces having a natural crystal lattice in the etching region a concave portion, and a convex portion having a flat surface and having the passivation layer; and starting a doped crystal epitaxial layer on the bottom surface of the concave portion, wherein the epitaxial layer fills the concave portions first, and then covers the convex portions and Begin self-joining and upward epitaxy to complete the epitaxial layer structure. The substrate is one of sapphire, carbonized, Sic, Si, gallium arsenide (GaAs) and aluminum nitride (A1N) substrates. The material of the insect layer is GaN, inGaN, GaN, AlGaN, InAlGaN, and Gallium Nitride (GaN). One of the ethnic groups. 200915611 wherein the recesses are in the shape of a quadrangle, a circle, a triangle, a star, and a 〇T = group:: one. The concave side and the convex part constitute a side system 〇.〇1 is called 1〇〇_, and the depths of the concave parts are 〇〇1_to 〗 The invention advances in the money engraving process to prolong the surname time, before The etched area is similar to a plurality of recesses having a bottom surface of the natural lattice bevel, until the cross-section of the protrusions is pointed, forming a plurality of pointed protrusions, and the purification layer is removed; The bottom surface begins to crystallize the telecrystal layer 'where the stray layer fills the recesses first' and then covers the pointed protrusions and begins to self-join upwardly to complete the layer structure. An advantage of the present invention is that a recess having a natural lattice bevel pattern is formed on the substrate by a technique of etching the substrate, and the epitaxial layer of the semiconductor light-emitting element is selectively grown on the bottom surface of the recess to form a self-aligned epitaxial. In the invention, the epitaxial growth can avoid the occurrence of voids caused by the error of the epitaxial parameter, reduce the defect density, improve the quality of the epitaxial layer, thereby improving the internal quantum efficiency, and improving the luminous efficiency and the service life of the light-emitting element. Moreover, the invention can reduce the production cost because of the simple process, and is suitable for mass production in the industry. The detailed description of the present invention and the technical description of the present invention will be further described by the embodiments. It should be understood that the embodiments are for illustrative purposes only and should not be construed as The limit. According to the present invention, a recessed portion having a natural lattice bevel pattern is formed on a substrate of a semiconductor light emitting element, and a concave portion and a convex portion are formed by light scattering or diffraction in the light emitting region, thereby improving external quantum efficiency. The structure of the high light extraction rate. In the present invention, an epitaxial method in which a plurality of recesses 110 and convex portions 120 for scattering or diffracting light are formed on the surface of a substrate 1 of a semiconductor light-emitting device is shown in FIG. 4, and the present invention is shown in FIG. The method is characterized in that a passivation layer 2 is formed on the surface of the substrate 100, and an etching region for forming the recesses u is defined in the passivation layer 200. The substrate 100 is one of a sapphire, a tantalum carbide (SiC), a bismuth (Si), a gallium arsenide (GaAs), and an nitriding (A1N) substrate. The material of the passivation layer 2 includes a dioxane. 252 2 2) / ^ ^ After the substrate 1 〇〇 # , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Among them, the material 14G and the convex portion of the purification layer 2GG and the multi-(four) households = 110 are in the form of a quadrilateral, a circle, a triangle, and a portion C of the portion 120. The recesses 110 and the convex ^ ^ ^ ^ n m are 〇.01Km to l〇〇pm ' and the recesses 110 〇 '〇1_ to 1〇_. In recent years, wet sputum research, recorded etched sapphire substrate technology has been widely developed. The invention is profitable. 'Gemstone/plate is no longer a difficult task'. The concave pattern of the slanted surface: ^ sapphire substrate and other substrates Has a natural crystal A * A ^ 4 110. For example, a wet etching solution can be used, and the sulfur can be etched by a temperature of about 270 ° C to etch the sapphire base to etch the flat side of the parallel sapphire substrate, and the ruthenium composite joint with the bottom surface (10). The slope of the face 150 is flat = 43° of the sapphire substrate; # The direction of the passivation layer is perpendicular to the slope of the lattice 150: 'The natural lattice bevel can be etched'. This self-slope composite surface, ^ bottom® 13G angle About 32°, and the angle between the inclined surface 150 of the lattice 6〇0 cargo surface and the bottom surface 130, please refer to the first and fifth diagrams again, and then start the stupid crystal on the bottom surface 130 of the recess 8 200915611 110. a worm layer 300 (as shown in Figure 5-1), wherein the material of the epitaxial layer is gallium nitride (GaN), indium gallium nitride (InGaN), lUblS (AlGaN), 匕I One of the groups of Lulu (InAlGaN) and gallium phosphorus nitride (GaNP). The epitaxial layer 300 is only selectively grown on the bottom surface 130 of the recess 110, does not grow on the slope 150 formed by etching, and does not grow above the passivation layer 200 above the protrusion 120, so the epitaxial layer 300 will first stably grow to fill the recesses 110 (as shown in FIG. 5_2), then cover the protrusions ι2〇 and start self-joining upward epitaxy to complete the epitaxial layer 300 structure (as shown in FIG. 6). ). The present invention can also increase the time for etching the substrate 100 until the purification layer 200 is removed. As shown in FIG. 7 , the present invention further extends the remaining time of the substrate 1 ' to create a plurality of concave portions 11 具有 having a natural lattice slope 150 and a bottom surface 130 in the last name region. The cross section of the portion 120 has a pointed shape and becomes a plurality of pointed convex portions 21 until the passivation layer 200 is removed. Then, the stray layer 300 (as shown in FIG. 8-1) is started on the bottom surface 13 of the recess no, and the stray layer 3 〇〇 only selectively grows on the bottom surface 130 of the recess 110. It will grow on the inclined surface 150 formed by the etching, and will not grow above the pointed convex portion 121. Therefore, the epitaxial layer 300 will first stably grow and fill the concave portions 11 (as shown in FIG. 8_2). Then, the pointed protrusions 121 are covered and self-bonding is started to be epitaxially completed to complete the structure of the epitaxial layer 300 (as shown in FIG. 9). The self-bonding insect crystal technology of the invention can avoid the generation of voids caused by the error of the epitaxial parameter during the growth of the remote crystal, reduce the defect density, improve the quality of the epitaxial layer, thereby improving the internal quantum efficiency, and improving the luminous efficiency of the luminous element. With the service life. Moreover, the invention has the advantages of simple process, can reduce the cost of production 200915611, and is suitable for mass production in the industry. The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention. That is, the equivalent changes and modifications made by the scope of the patent application of the present invention are covered by the scope of the invention. 200915611 [Simplified description of the drawings] Fig. 1 is a schematic view showing the structure of a concave portion and a convex portion formed on a conventional substrate surface. Figure 2 is a schematic view of a conventional substrate surface epitaxial process. Fig. 3 is a schematic view showing the structure of a conventional substrate surface. Fig. 4 is a view showing the structure in which the concave portion and the convex portion are formed on the surface of the substrate of the present invention. 〃 ^ 5 1 and 5-2 are the schematic diagrams of the surface process of the substrate surface in Fig. 4, which is a schematic diagram of the structure after the substrate is epitaxial in Fig. 4. Fig. 7 is a view showing the structure of forming a pointed convex portion on the surface of the substrate of the present invention and 8-2®, which is a schematic diagram of the surface epitaxial process of the substrate of Fig. 7; Schematic diagram of the structure. [Description of main component symbols] <Practical> 10: Substrate 11 Concave portion 12 Projection portion 13 Bottom surface 14 Plane 20 Insecticide layer 21 Hole <The present invention> 100: Substrate 11 200915611 110: Concave portion 120 • Convex portion 121 : pointed protrusion 130 : bottom surface 140 : plane 150 : slope 200 : passivation layer 300 · stupid layer

Claims (1)

200915611 十、申請專利範圍: 1. 了1自我接合遙晶的方法’係在半導體發光元件的一基 板表面形成魏個使光散射錢射的㈣及凸部的結 構後的蠢晶方法,其包括: ^該基板表面形成-純化層,並定義出形成該些凹部的 姓刻區域; 對該基板進行_,於前述钱刻區域_出複數個具有 自然晶格的斜面與底面的凹部’及上方為平面且具有該 純化層的凸部;以及 於前述凹部的底關始nm其中該蟲晶詹合 先填滿該些凹部,織再覆蓋馳凸部且開始自我接ς 向上蟲晶完成該遙晶層結構。 .如申请專利範圍第1項所述之自我接合磊晶的方法,其中 該基板係為藍寶石(Sapphire)、碳化石夕(Sic)、石夕(Si)、石申 化鎵(GaAs)和氮化鋁(A1N)基板其中之一。 3. 如申請專利範圍第1項所述之自我接合磊晶的方法,其中 該鈍化層的材質包括二氧化矽(Si02)。 4. 如申請專利範圍第丨項所述之自我接合磊晶的方法,其中 該些凹部形狀為四邊形、圓形、三角形、星形及多邊形 所組的族群其中之一。 5. 如申請專利範圍第丨項所述之自我接合磊晶的方法,其中 該些凹部與凸部的構成邊係0.01 μιη至1 ΟΟμιη。 6. 如申請專利範圍第1項所述之自我接合磊晶的方法,其中 該些凹部的深度為〇 〇 1 pm至1 〇〇pm。 7. 如申請專利範圍第1項所述之自我接合磊晶的方法,其中 該蠢晶層的材質為氮化鎵(GaN)、氮化銦鎵(InGaN)、氮 13 200915611 化鋁鎵(AlGaN)、氮化銦鋁鎵(InAlGaN)與磷氮化鎵 (GaNP)所組的族群其中之一。 8.如申請專利範圍第1項所述之自我接合磊晶的方法,其 中該蝕刻製程可以延長蝕刻時間,直到該些凸部的剖面 為尖形,成為複數個尖形凸部,且該鈍化層被除去。 14200915611 X. Patent application scope: 1. The method of self-joining the remote crystals is an amorphous method of forming a structure of a light-scattering (four) and convex portion on a substrate surface of a semiconductor light-emitting element, which includes : ^ the surface of the substrate is formed - a purification layer, and defines a region of the formation of the recesses; the substrate is _, in the aforementioned engraved region _ a plurality of recesses with a natural lattice and the bottom of the recess ' and above a convex portion having a flat surface and having the purification layer; and a bottom portion of the concave portion, wherein the worm crystal first fills the concave portions, and the woven fabric covers the convex portion and starts to self-contact the upward crystallized crystal to complete the crystal layer structure. The method of self-joining epitaxy according to claim 1, wherein the substrate is sapphire, Sic, Si, GaAs, and nitrogen. One of the aluminum (A1N) substrates. 3. The method of self-joining epitaxy according to claim 1, wherein the material of the passivation layer comprises cerium oxide (SiO 2 ). 4. The method of self-joining epitaxy as described in claim 2, wherein the recesses are one of a group of quadrilateral, circular, triangular, star, and polygonal groups. 5. The method of self-joining epitaxy according to the scope of the invention, wherein the concave portion and the convex portion are formed by a side of 0.01 μm to 1 μm. 6. The self-joining epitaxy method of claim 1, wherein the recesses have a depth of from 〇 1 pm to 1 〇〇 pm. 7. The method of self-joining epitaxy according to claim 1, wherein the material of the stray layer is gallium nitride (GaN), indium gallium nitride (InGaN), and nitrogen 13 200915611 aluminum gallium (AlGaN) ), one of the groups of indium aluminum gallium nitride (InAlGaN) and gallium phosphorus nitride (GaNP). 8. The method of self-joining epitaxy according to claim 1, wherein the etching process can extend the etching time until the sections of the protrusions are pointed, forming a plurality of pointed protrusions, and the passivation The layer is removed. 14
TW96136499A 2007-09-29 2007-09-29 Method of self-bonding epitaxy TW200915611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96136499A TW200915611A (en) 2007-09-29 2007-09-29 Method of self-bonding epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96136499A TW200915611A (en) 2007-09-29 2007-09-29 Method of self-bonding epitaxy

Publications (2)

Publication Number Publication Date
TW200915611A true TW200915611A (en) 2009-04-01
TWI364854B TWI364854B (en) 2012-05-21

Family

ID=44725784

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96136499A TW200915611A (en) 2007-09-29 2007-09-29 Method of self-bonding epitaxy

Country Status (1)

Country Link
TW (1) TW200915611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626767B (en) * 2017-07-17 2018-06-11 Crystalwise Tech Inc Ultraviolet light-emitting diode and its substrate and the substrate thereof law

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626767B (en) * 2017-07-17 2018-06-11 Crystalwise Tech Inc Ultraviolet light-emitting diode and its substrate and the substrate thereof law

Also Published As

Publication number Publication date
TWI364854B (en) 2012-05-21

Similar Documents

Publication Publication Date Title
KR100677683B1 (en) Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
JP5571503B2 (en) Substrate structure and manufacturing method thereof
KR101692410B1 (en) Light emitting device and method of manufacturing the same
KR100797180B1 (en) Semiconductor light Emitting device having improved luminance and method thereof
EP2743966B1 (en) Epitaxial layer wafer having void for separating growth substrate therefrom and semiconductor device fabricated using the same
CN101999178A (en) Nitride semiconductor light-emitting device and method for fabrication thereof
EP2389693B1 (en) Light emitting diode device and method for manufacturing the same
JP2007305999A (en) MANUFACTURING METHOD FOR VERTICAL-STRUCTURE GaN-BASED LED DEVICE
JP5916625B2 (en) Semiconductor light emitting device and method including light extraction structure
EP2555256A2 (en) Semiconductor template substrate, light-emitting element using a semiconductor template substrate, and a production method therefor
JP2014509781A (en) Semiconductor device and manufacturing method
JP4766071B2 (en) Semiconductor substrate and manufacturing method thereof
CN103390698A (en) Light-emitting diode and manufacturing method thereof
KR20050062832A (en) Preparation of nitride semiconductor template for light emitter
CN102280533A (en) Method for preparing gallium nitride substrate material
WO2017101520A1 (en) Nitride bottom layer and manufacturing method therefor
JP5174052B2 (en) Method for producing epitaxial structure with low defect density
TWI297959B (en)
TW200915611A (en) Method of self-bonding epitaxy
KR100868361B1 (en) Nitride semiconductor light emitting device and method of manufacturing the same
US20100184279A1 (en) Method of Making an Epitaxial Structure Having Low Defect Density
CN103247725B (en) A kind of semiconductor structure and forming method thereof
US20170012165A1 (en) Method of producing a semiconductor layer sequence and an optoelectronic semiconductor component
KR100834698B1 (en) Method of forming gan layer and gan substrate manufactured using the same
KR101189165B1 (en) Light emitting device and method of making semiconductor layer therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees