200915445 九、發明說明 【發明所屬之技術領域】 本發明係有關於積體電路封裝的領域。詳言之,本發 明係有關於電路板與積體電路晶粒上的接觸墊(contact pad )之間的線接合包封。 【先前技術】 製造於矽晶圓基材上的積體電路藉由線接合而被電連 接至印刷電路板上。線接合是非常薄的電線—直徑約2 5 至4 0微米一其由接觸墊沿著晶圓基材的側邊延伸至印刷 電路板(PCB )上的接點。爲了保護及強化線接合,線接 合被密封在一被稱爲包封劑的環氧樹脂珠滴(bead )內。 從接觸墊到P C B的電線被作成比所需要的更長用以適應介 於PCB與接觸墊之間的間隙因爲熱膨脹,構件的屈曲等等 所產生的改變。這些比所需要的還長的電線很自然地形成 接觸墊與PCB之間的一個弧。該電線弧的頂端通常是在接 觸墊之上約3 0 0微米,但有些線接合會延伸得更高。如其 名稱讓人聯想到的,包封劑必需將整個電線的長度包封起 來,所以包封劑珠滴將擴展至接觸墊之上500微米至600 微米。 製造於矽晶圓基材上的積體電路通常被稱爲一,晶粒 (die) ‘。爲了說明書的目的,晶粒一詞將被用來指稱一 使用光刻技術(通常用於半導體製造中之飩刻與沉積技 術)製造於晶圓基材上的積體電路。如果該晶粒純粹是一 -5- 200915445 電子的微處理器的話,就不太需要保持包封劑珠滴尺寸的 嚴密控制。然而,如果該晶粒是一具有有作用的上表面之 微機電系統(MEMS )裝置的話,則讓該晶粒的有作用的 表面與另一表面緊鄰就是有必要或是所想要的。此丨胃況適 用於噴墨列印頭。列印媒介對噴嘴陣列的接近程度會影響 列印品質。相同地,如果一清潔表面刮掃過噴嘴的話,則 包封劑的珠滴會妨礙該刮掃接觸。 另一個問題是因爲包封劑珠滴的側邊不是筆直的而發 生。一種通常用來沉積該包封劑的技術包含將包封劑從一 針頭直接擠到一排線接合上。包封劑的體積及在晶粒上的 放置並沒有很精確。該幫浦壓力的變化或該針頭的速度上 稍微不一致都會造成該珠滴之與該有作用的表面相接觸的 一側被相當地彎曲。該珠滴的該側邊不是筆直的時,它必 需與該有作用的表面上之任何有作用的部件適當低間隔 開,用以寬裕地容納擾亂(perturbation)。將電接點與該 有作用的表面的有作用的部分(例如,噴墨噴嘴)間隔開 來會耗盡有價値的晶圓資源並減少可從一片晶圓上製造出 來的晶粒數目。 有鑑於噴墨列印頭的廣泛使用,本發明將特別以在此 領域上的應用爲例來加以描述。然而,一般人將可瞭解的 是,這純粹者是舉例性的且本發明可同樣地應用到線接合 至一 PCB或其它支撐結構的積體電路上。 【發明內容】 -6 - 200915445 依據第一態樣,本發明提供一種微處理器裝置,其包 含: 一支撐結構,其具有一晶片安裝區及一導體安裝區; 一被支撐在該晶片安裝區上的晶粒,該晶粒具有一與 該晶片安裝區接觸的背面及一與該背面相反之有作用的表 面,該有作用的表面具有電接觸墊; 多個電導體至少部分地被支撐在該導體安裝區上;及 一系列的線接合,其由該等電接觸墊延伸至多個被支 撐在該導體安裝區上的電導體;其中 該晶片安裝區相對於該導體安裝區被升高。 藉由將該晶片安裝區相對於該PCB的其它部分,或至 少連接至該線接合的PCB端的導體,升高,由該層形成的 弧的頂端更靠近該晶粒之有作用的表面。這可讓包封劑的 珠滴具有一相對於該有作用的表面而言較低的剖面。藉此 低的包封劑珠滴,該有作用的表面可被帶引更加緊鄰另一 表面而不相接觸。例如,在一列印頭1C上的噴嘴陣列可 以離該紙張路徑3 00微米至400微米。 較佳地,該晶片安裝區相對於該導體安裝區被升高超 過1 00微米。較佳地,該支撐結構具有一級階介於該晶片 安裝區與該導體安裝區之間。 較佳地,該等多個導體被一排沿著最靠近該晶粒的邊 緣之接合墊倂入到該可撓曲的印刷電路板(撓性PCB ) 中,該等接合墊離晶粒上的接觸墊超過2公釐。 較佳地,該等線接合是用直徑小於40微米的電線形 -7- 200915445 成的並延伸於該晶粒之有作用的表面上方小於1 00微米 處。 較佳地,該等線接合被塑性地變形使得它們延伸於該 晶粒之有作用的表面上方小於5 0微米處。 較佳地,該有作用的表面具有功能性元件,其與該晶 粒上的接觸墊相距小於260微米。在一特佳的形式中,該 晶粒爲一噴墨列印頭1C且該等功能性元件爲噴嘴,墨水 經由噴嘴被噴出。在一些實施例中,該支撐結構爲一液晶 聚合物(LCP)模製物。 較佳地,該等線接合被覆蓋在一包封劑的珠滴中,該 包封劑的珠滴延伸於該晶粒之有作用的表面上方小於200 微米處。 較佳地,該等線接合被覆蓋在一包封劑的珠滴中,該 包封劑的珠滴具有一經過剖面化的表面,它是平的,平行 於該有作用的表面且與其相距小於1 〇〇微米。 較佳地,該等線接合被覆蓋在一包封劑的珠滴中,該 包封劑的珠滴具有一平的且相對於該有作用的表面傾斜之 經過剖面化的表面。 較佳地,該等線接合被覆蓋在一包封劑的珠滴中’該 包封劑是一環氧樹脂物質,其在未固化時是搖溶性的 (thixotropic)。 較佳地,該等線接合被覆蓋在一包封劑的珠滴中’該 包封劑是一環氧樹脂物質,其在未固化時具有大於700 cp 的黏度。 ' 8 - 200915445 在一特定的實施例中,該列印頭1C被安裝在一印表 機內使得在使用期間噴嘴離紙張路徑小於1 00微米。 依據第二態樣,本發明提供一種將介於一晶粒上的接 觸墊與一支撐結構上的導體之間的線接合剖面化作業的方 法,該方法包含的步驟爲: 用一線接合將晶粒上的接觸墊電連接至該支撐結構上 的導體,該線接合延伸成爲一從該接觸墊至該導體的弧; 推擠該線接合用以讓該弧塌陷並將該線接合塑性地變 形:及 釋放該線接合使得該塑性變形將該線接合保持在一較 平的剖面形狀。 該線接合的強度是相當小,在3至5克力的等級。然 而,申請人的硏究顯示該線接合結構堅固到足以承受來自 塑性變形之一定程度的加工硬化。該線接合的弧可在不犧 牲與PCB的電連接下被變形成爲一較平的剖面。 較佳地,該晶粒具有一有作用的表面其具有功能性元 件,接觸墊其被形成在該有作用的表面的一個邊緣上,該 線接合具有一小於4 0微米的直徑且該弧延伸在該晶粒之 有作用的表面上方大於100微米處。 較佳地,該等線接合被塑性地變形使得它們延伸於該 晶粒之有作用的表面上方小於5 0微米處。 較佳地,該線接合藉由與一刀片狀物嚙合而被推擠, 該刀片狀物具有一用來接觸該線接合之圓角化的邊緣區。 較佳地,該方法進一步包含的步驟爲: -9- 200915445 施用一包封劑的珠滴於該線接合上;及 移動一剖面化作業表面於該有作用的表面之上用以將 該包封劑的珠滴平坦化。 較佳地,該包封劑的珠滴具有一經過剖面化的表面, 它是平的,平行於該有作用的表面且與其相距小於100微 米。 較佳地,該包封劑的珠滴具有一平的且相對於該有作 用的表面傾斜之經過剖面化的表面。 較佳地,該包封劑是一環氧樹脂物質’其在未固化時 具有大於700 cp的黏度。在一較佳的實施例中,該包封 劑是一環氧樹脂物質,其在未固化時是搖溶性的 (thixotropic) 。 較佳地,該方法進一步包含的步驟爲: 將該剖面化作業表面放置成與該有作用的表面相鄰並 與其間隔開,用以界定一間隙;及 將包封劑的珠滴施用到該等接觸墊上,使得該珠滴的 一側接觸該剖面化作業表面且該珠滴的一部分延伸至該間 隙內並到達該有作用的表面。 較佳地,該有作用的表面具有功能性元件,其與該晶 粒上的接觸墊相距小於260微米。在一特佳的形式中,該 晶粒爲一噴墨列印頭1C且該等功能性元件爲噴嘴,墨水 經由噴嘴被噴出。在一些實施例中’該列印頭1C被安裝 在一印表機內使得在使用期間噴嘴離紙張路徑小於1 〇〇微 米。 -10- 200915445 較佳地,該支撐結構,其具有一晶片安裝區及一導體 ,安裝區,該晶粒被支撐在該晶片安裝區上,及多個電導體 至少部分地被支撐在該導體安裝區上,其中該晶片安裝區 相對於該導體安裝區被升高。 較佳地,該晶片安裝區相對於該導體安裝區被升高超 過1 00微米。較佳地,該支撐結構具有一級階介於該晶片 安裝區與該導體安裝區之間。在一些實施例中,該等多個 導體被一排沿著最靠近該晶粒的邊緣之接合墊倂入到該可 撓曲的印刷電路板(撓性P C B )中,該等接合墊離晶粒上 的接觸墊超過2公釐。 較佳地,該支撐結構爲一液晶聚合物(LCP )模製 物。 依據第三態樣,本發明提供一種將沿著安裝在一支撐 結構上的晶粒的邊緣延伸之包封劑的珠滴剖面化作業的方 法,該方法包含的步驟爲: 沿著該晶粒的邊緣將包封劑的珠滴沉積在線接合上; 將一剖面化作業表面放置在該晶粒之上離該晶粒一預 定間距處; 在該包封劑的珠滴固化之前將該剖面化作業表面移動 橫過該珠滴,用以重塑該珠滴的剖面:及 固化該包封劑的珠滴。 本發明發現,該包封劑可在不從線接合上剝除該包封 劑之下被被一剖面化作業表面有效地形塑。該包封劑珠滴 之正常的外凸形上表面可被該剖面化作業表面推向一側。 -11 - 200915445 藉由此低的包封劑珠滴,該有作用的表面可被帶引更加緊 鄰另一表面而不相接觸。例如,在一列印頭IC上的噴嘴 陣列可以離該紙張路徑3 00微米至400微米。藉由在施加 一包封劑並對其剖面化作業之前將線接合弧塌陷或平坦 化’在該列印頭I C上的噴嘴陣列可以離該紙張路徑不到 1 00微米。 較佳地’該等線接合延伸成一從該晶粒之各別的接觸 墊到該支撐結構上之對應的導體之弧且該方法包含的步驟 爲: 推擠該線接合用以將該線接合塑性地變形;及 釋放該線接合使得該塑性變形將該線接合保持在一較 平的剖面形狀。 較佳地,該晶粒具有一有作用的表面其具有功能性元 件,接觸墊其被形成在該有作用的表面的一個邊緣上,該 線接合具有一小於40微米的直徑且該弧延伸在該晶粒之 有作用的表面上方大於100微米處。 較佳地,該等線接合被塑性地變形使得它們延伸於該 晶粒之有作用的表面上方小於50微米處。 較佳地,該線接合藉由與一刀片狀物嚙合而被推擠, 該刀片狀物具有一用來接觸該線接合之圓角化的邊緣區。 較佳地,該包封劑的珠滴具有一經過剖面化的表面, 它是平的,平行於該有作用的表面且與其相距小於1 0 0微 米。 較佳地,該包封劑的珠滴具有一平的且相對於該有作 -12- 200915445 用的表面傾斜之經過剖面化的表面。 較佳地,該包封劑是一環氧樹脂物質,其在未固化時 具有大於700 cp的黏度。 較佳地,該包封劑是一環氧樹脂物質,其在未固化時 是搖溶性的(thixotropic)。 較佳地,該方法進一步包含的步驟爲: 將該剖面化作業表面放置成與該有作用的表面相鄰並 與其間隔開,用以界定一間隙;及 將包封劑的珠滴施用到該等接觸墊上,使得該珠滴的 一側接觸該剖面化作業表面且該珠滴的一部分延伸至該間 隙內並到達該有作用的表面。 較佳地,該有作用的表面具有功能性元件,其與該晶 粒上的接觸墊相距小於2 6 0微米。在一更佳的形式中,該 晶粒爲一噴墨列印頭1C且該等功能性元件爲噴嘴,墨水 經由噴嘴被噴出。在一些實施例中,該列印頭1C被安裝 在一印表機內使得在使用期間噴嘴離紙張路徑小於100微 米。 較佳地,該支撐結構,其具有一晶片安裝區及一導體 安裝區,該晶粒被支撐在該晶片安裝區上’及多個電導體 至少部分地被支撐在該導體安裝區上,其中該晶片安裝區 相對於該導體安裝區被升高。 較佳地,該晶片安裝區相對於該導體安裝區被升高超 過1 0 0微米。在一特佳的實施例中,該支撐結構具有一級 階介於該晶片安裝區與該導體安裝區之間。 -13- 200915445 較佳地’該等多個導體被一排沿著最靠近該晶 緣之接合墊倂入到一可撓曲的印刷電路板(撓性 中,該等接合墊離晶粒上的接觸墊超過2公釐。200915445 IX. Description of the Invention [Technical Field to Be Invented] The present invention relates to the field of integrated circuit packaging. In particular, the present invention relates to wire bond encapsulation between a circuit board and a contact pad on an integrated circuit die. [Prior Art] An integrated circuit fabricated on a germanium wafer substrate is electrically connected to a printed circuit board by wire bonding. Wire bonding is a very thin wire - about 25 to 40 microns in diameter - a contact that extends from the side of the wafer substrate along the sides of the wafer substrate to the printed circuit board (PCB). To protect and strengthen the wire bonds, the wire bonds are sealed in an epoxy bead called an encapsulant. The wires from the contact pads to the P C B are made longer than necessary to accommodate the change in the gap between the PCB and the contact pads due to thermal expansion, buckling of the members, and the like. These wires, which are longer than required, naturally form an arc between the contact pads and the PCB. The top end of the wire arc is typically about 300 microns above the contact pad, but some wire bonds will extend even higher. As its name is reminiscent of, the encapsulant must enclose the length of the entire wire, so the encapsulant beads will extend from 500 microns to 600 microns above the contact pad. An integrated circuit fabricated on a germanium wafer substrate is commonly referred to as a die. For the purposes of this specification, the term dies will be used to refer to an integrated circuit fabricated on a wafer substrate using photolithographic techniques (usually used in etching and deposition techniques in semiconductor fabrication). If the die is purely a microprocessor of -5 - 200915445, it is less desirable to maintain tight control of the size of the encapsulant bead. However, if the die is a microelectromechanical system (MEMS) device having a functional upper surface, it is necessary or desirable to have the active surface of the die in close proximity to the other surface. This gastrointestinal condition is suitable for ink jet print heads. The proximity of the print media to the nozzle array can affect print quality. Similarly, if a cleaning surface is swept across the nozzle, the beads of the encapsulant will interfere with the wiping contact. Another problem is that the sides of the encapsulant bead are not straight. One technique commonly used to deposit the encapsulant involves extruding the encapsulant directly from a needle to a row of wire bonds. The volume of the encapsulant and the placement on the grains are not very precise. A slight change in the pressure of the pump or the speed of the needle causes the side of the bead that is in contact with the active surface to be substantially curved. When the side of the bead is not straight, it must be suitably spaced low enough from any active component on the active surface to accommodate the perturbation generously. Intersecting electrical contacts from active portions of the active surface (e.g., inkjet nozzles) can deplete valuable wafer resources and reduce the number of dies that can be fabricated from a wafer. In view of the widespread use of ink jet print heads, the present invention will be described, inter alia, as an application in this field. However, it will be understood by those of ordinary skill that this is purely exemplary and that the invention is equally applicable to integrated circuits that are wire bonded to a PCB or other support structure. SUMMARY OF THE INVENTION -6 - 200915445 According to a first aspect, the present invention provides a microprocessor device comprising: a support structure having a wafer mounting area and a conductor mounting area; a supported in the wafer mounting area a die having a back surface in contact with the wafer mounting region and an active surface opposite the back surface, the active surface having an electrical contact pad; the plurality of electrical conductors being at least partially supported And a series of wire bonds extending from the electrical contact pads to a plurality of electrical conductors supported on the conductor mounting region; wherein the wafer mounting region is raised relative to the conductor mounting region. By raising the wafer mounting area relative to other portions of the PCB, or at least the conductors of the PCB-bonded PCB ends, the top end of the arc formed by the layer is closer to the active surface of the die. This allows the bead of the encapsulant to have a lower profile relative to the active surface. With this low encapsulant bead, the active surface can be brought closer to the other surface without contact. For example, the array of nozzles on a column of print heads 1C can be from 300 microns to 400 microns from the paper path. Preferably, the wafer mounting area is raised by more than 100 microns relative to the conductor mounting area. Preferably, the support structure has a first order between the wafer mounting area and the conductor mounting area. Preferably, the plurality of conductors are inserted into the flexible printed circuit board (flexible PCB) by a row of bonding pads closest to the edge of the die, the pads being separated from the die The contact pads are over 2 mm. Preferably, the wire bonds are formed from wire shapes -7-200915445 having a diameter of less than 40 microns and extending less than 100 microns above the active surface of the die. Preferably, the wire bonds are plastically deformed such that they extend less than 50 microns above the active surface of the die. Preferably, the active surface has a functional element that is less than 260 microns from the contact pads on the crystal. In a particularly preferred form, the die is an ink jet print head 1C and the functional elements are nozzles through which ink is ejected. In some embodiments, the support structure is a liquid crystal polymer (LCP) molding. Preferably, the wire bonds are covered in a bead of an encapsulant, the beads of the encapsulant extending less than 200 microns above the active surface of the die. Preferably, the wire bonds are covered in a bead of an encapsulant, the bead of the encapsulant having a profiled surface which is flat, parallel to and spaced from the active surface Less than 1 〇〇 micron. Preferably, the wire bonds are covered in a bead of an encapsulant having a flat, profiled surface that is inclined relative to the active surface. Preferably, the wire bonds are covered in a bead of an encapsulant. The encapsulant is an epoxy material which is thixotropic when uncured. Preferably, the wire bonds are covered in a bead of an encapsulant. The encapsulant is an epoxy material having a viscosity of greater than 700 cp when uncured. ' 8 - 200915445 In a particular embodiment, the print head 1C is mounted in a printer such that the nozzle is less than 100 microns from the paper path during use. According to a second aspect, the present invention provides a method of wire bonding profile work between a contact pad on a die and a conductor on a support structure, the method comprising the steps of: bonding the wire with a wire bond a contact pad on the granule electrically connected to the conductor on the support structure, the wire bond extending into an arc from the contact pad to the conductor; pushing the wire bond to collapse the arc and plastically deform the wire bond And releasing the wire bond such that the plastic deformation maintains the wire bond in a relatively flat cross-sectional shape. The strength of the wire joint is quite small, on the order of 3 to 5 grams force. However, Applicants' investigations have shown that the wire joint structure is strong enough to withstand a certain degree of work hardening from plastic deformation. The wire-engaging arc can be deformed into a flat profile without sacrificing electrical connection to the PCB. Preferably, the die has a functional surface having a functional element, the contact pad being formed on an edge of the active surface, the wire bond having a diameter of less than 40 microns and the arc extending Above the active surface of the die is greater than 100 microns. Preferably, the wire bonds are plastically deformed such that they extend less than 50 microns above the active surface of the die. Preferably, the wire bond is pushed by engagement with a blade having a filleted edge region for contacting the wire bond. Preferably, the method further comprises the steps of: -9-200915445 applying an encapsulating bead onto the wire bond; and moving a profiled work surface over the active surface for the package The beads of the sealant are flattened. Preferably, the beads of the encapsulant have a profiled surface which is flat, parallel to the active surface and less than 100 microns apart. Preferably, the beads of the encapsulant have a flat, profiled surface that is inclined relative to the active surface. Preferably, the encapsulant is an epoxy material' which has a viscosity of greater than 700 cp when uncured. In a preferred embodiment, the encapsulant is an epoxy material that is thixotropic when uncured. Preferably, the method further comprises the steps of: placing the profiled work surface adjacent to and spaced apart from the active surface to define a gap; and applying a bead of the encapsulant to the The contact pad is placed such that one side of the bead contacts the profiled working surface and a portion of the bead extends into the gap and reaches the active surface. Preferably, the active surface has a functional element that is less than 260 microns from the contact pads on the crystal. In a particularly preferred form, the die is an ink jet print head 1C and the functional elements are nozzles through which ink is ejected. In some embodiments, the printhead 1C is mounted in a printer such that the nozzle is less than 1 micrometer away from the paper path during use. -10-200915445 Preferably, the support structure has a wafer mounting region and a conductor, a mounting region, the die is supported on the wafer mounting region, and a plurality of electrical conductors are at least partially supported on the conductor On the mounting area, wherein the wafer mounting area is raised relative to the conductor mounting area. Preferably, the wafer mounting area is raised by more than 100 microns relative to the conductor mounting area. Preferably, the support structure has a first order between the wafer mounting area and the conductor mounting area. In some embodiments, the plurality of conductors are punctured into the flexible printed circuit board (flexible PCB) by a row of bond pads proximate the edge of the die, the bond pads being detached from the crystal The contact pads on the granules are more than 2 mm. Preferably, the support structure is a liquid crystal polymer (LCP) molding. According to a third aspect, the present invention provides a method of profile drawing of an encapsulant extending along an edge of a die mounted on a support structure, the method comprising the steps of: following the die The edge of the encapsulant is deposited on the wire bond; a profiled work surface is placed over the die at a predetermined spacing from the die; the profile is profiled prior to curing of the bead of the encapsulant The working surface moves across the bead to reshape the profile of the bead: and to cure the bead of the encapsulant. The present inventors have discovered that the encapsulant can be effectively formed by a profiled work surface without stripping the encapsulant from the wire bond. The normal convex upper surface of the encapsulant bead can be pushed to one side by the profiled work surface. -11 - 200915445 With this low encapsulant bead, the active surface can be brought closer to the other surface without contact. For example, the array of nozzles on a column of print head ICs can be from 300 microns to 400 microns from the paper path. The array of nozzles on the printhead I C can be less than 100 microns from the paper path by applying an encapsulant and flattening or flattening the wire bond before it is profiled. Preferably, the wire bonds extend into an arc from a respective contact pad of the die to a corresponding conductor on the support structure and the method includes the steps of: pushing the wire bond to bond the wire Plastically deforming; and releasing the wire bond such that the plastic deformation maintains the wire bond in a relatively flat cross-sectional shape. Preferably, the die has a functional surface having a functional element, the contact pad being formed on an edge of the active surface, the wire bond having a diameter of less than 40 microns and the arc extending Above the active surface of the die is greater than 100 microns. Preferably, the wire bonds are plastically deformed such that they extend less than 50 microns above the active surface of the die. Preferably, the wire bond is pushed by engagement with a blade having a filleted edge region for contacting the wire bond. Preferably, the bead of the encapsulant has a profiled surface which is flat, parallel to the active surface and spaced less than 100 microns apart. Preferably, the beads of the encapsulant have a flat, profiled surface that is inclined relative to the surface used for -12-200915445. Preferably, the encapsulant is an epoxy material having a viscosity greater than 700 cp when uncured. Preferably, the encapsulant is an epoxy material which is thixotropic when uncured. Preferably, the method further comprises the steps of: placing the profiled work surface adjacent to and spaced apart from the active surface to define a gap; and applying a bead of the encapsulant to the The contact pad is placed such that one side of the bead contacts the profiled working surface and a portion of the bead extends into the gap and reaches the active surface. Preferably, the active surface has a functional element that is less than 260 microns from the contact pads on the crystal. In a more preferred form, the die is an ink jet print head 1C and the functional elements are nozzles through which ink is ejected. In some embodiments, the printhead 1C is mounted in a printer such that the nozzles are less than 100 microns from the paper path during use. Preferably, the support structure has a wafer mounting area and a conductor mounting area, the die is supported on the wafer mounting area and a plurality of electrical conductors are at least partially supported on the conductor mounting area, wherein The wafer mounting area is raised relative to the conductor mounting area. Preferably, the wafer mounting area is raised by more than 100 microns relative to the conductor mounting area. In a particularly preferred embodiment, the support structure has a first order between the wafer mounting area and the conductor mounting area. -13- 200915445 Preferably, the plurality of conductors are inserted into a flexible printed circuit board (flexible by a row of bond pads closest to the edge of the crystal, the bond pads being separated from the die The contact pads are over 2 mm.
較佳地,該支撐結構爲一液晶聚合物(LCP 物。 依據第四態樣,本發明提供一種將包封劑施用 裝在一支撐基材上的晶粒上的方法,該方法包含 爲: 提供一安裝在一支撐基材上的晶粒,該晶粒具 該支撐結構接觸的背面及一與該背面相反之有作 面,該有作用的表面具有電接觸墊; 將一阻障物放置在鄰近該等電接觸墊處且與該 的表面間隔開用以界定一間隙及;及 沉積一珠滴的包封劑於該等電接觸墊上使得該 的一側接觸該阻障物且該珠滴的一部分延伸至該間 到達該有作用的表面上。 將一阻障物放置在該有作用的表面上使得它界 的間距讓該包封劑前端(介於該包封劑與該有作用 之間的接觸線)的形狀能夠被更嚴密地被控制。來 之包封劑的任何流速上的變化會造成在珠滴及/或 PCB側在高度上的壟起或凹陷。介於該阻障物與該 的表面之間的間隙所產生之流體阻力係指流入該間 到該有作用的表面上的的包封劑量幾乎是固定的。 流動變化讓該包封劑前端緊密地對應該阻障物的形 粒的邊 PCB ) )模製 於一安 的步驟 有一與 用的表 有作用 等珠滴 隙中並 定一窄 的表面 自針頭 珠滴的 有作用 隙及流 減小的 狀。更 -14 - 200915445 大的包封劑前端控制讓該晶粒之有作用的表面上的功能性 元件能夠更靠近接觸墊。 較佳地,該阻障物爲一剖面化作業表面且該方法進一 步包含的步驟爲: 將該剖面化作業表面移動於該有作用的表面上方,用 以將包封劑的珠滴平坦化。 較佳地,該方法進一步包含的步驟爲: 在沉積該包封劑的珠滴之前,用線接合將該晶粒上的 接觸墊電連接至該支撐基材上各別的導體,該等線接合每 一者都延伸一從該接觸墊到該導體的弧; 推擠該線接合用以讓該弧塌陷並將該線接合塑性地變 形;及 釋放該線接合使得該塑性變形將該線接合保持在一較 平的剖面形狀。 在一更佳的形式中,該有作用的表面其具有功能性元 件’接觸墊其被形成在該有作用的表面的一個邊緣上,該 線接合具有一小於4 0微米的直徑且該弧延伸在該晶粒之 有作用的表面上方大於100微米處。 較佳地’該線接合被塑性地變形使得它們延伸於該晶 粒之有作用的表面上方小於5 0微米處。在另一較佳的形 式中’該線接合藉由與一刀片狀物嚙合而被推擠,該刀片 狀物具有一用來接觸該線接合之圓角化的邊緣區。 較佳地’該包封劑的珠滴具有一經過剖面化的表面, 它是平的’平行於該有作用的表面且與其相距小於i 〇 〇微 -15- 200915445 米。 較佳地,該包封劑的珠滴具有一平的且相對於該有作 用的表面傾斜之經過剖面化的表面° 較佳地,該包封劑是一環氧樹脂物質’其在未固化時 具有大於700 cp的黏度。 較佳地,該包封劑是一環氧樹脂物質’其在未固化時 是搖溶性的(thixotropic)。 較佳地,該有作用的表面具有功能性元件,其與該晶 粒上的接觸墊相距小於260微米。在一特佳的形式中,該 晶粒爲一噴墨列印頭IC且該等功能性元件爲噴嘴,墨水 經由噴嘴被噴出。較佳地,該列印頭ic被安裝在一印表 機內使得在使用期間噴嘴離紙張路徑小於1 00微米。 較佳地,該支撐結構具有一晶片安裝區及一導體安裝 區,該晶粒被支撐在該晶片安裝區上,及多個電導體至少 部分地被支撐在該導體安裝區上,其中該晶片安裝區相對 於該導體安裝區被升高。在一特佳的形式中,該晶片安裝 區相對於該導體安裝區被升高超過100微米。在較佳的實 施例中,該支撐結構具有一級階介於該晶片安裝區與該導 體安裝區之間。在特佳的實施例中,該等多個導體被一排 沿著最靠近該晶粒的邊緣之接合墊倂入到一可撓曲的印刷 電路板(撓性PCB )中’該等接合墊離晶粒上的接觸墊超 過2公釐。 較佳地,該支撐結構爲一液晶聚合物(LCP)模製 物。 -16- 200915445 依據第五態樣,本發明提供一種施用包封劑至介於一 晶粒與一支撐基材上的導體之間的線接合上的方法,該方 法包含的步驟爲: 形成該包封劑的珠滴於一剖面化作業表面上; 放置該剖面化作業表面使得該珠滴接觸該晶粒;及 相對於該晶粒移動該剖面化作業表面,用以用該包封 劑覆蓋該等線接合。 用一剖面化作業表面將包封劑刮掃過該等線接合可提 供該包封劑前端的控制以及該包封劑相對於該晶粒的高度 的控制。該剖面化作業表面相對於該晶粒的運動可被嚴密 地控制用以將包封劑形塑成所想要的形事。使用一列印頭 晶粒的例子,該包封劑可被形塑用以呈現一從該噴嘴表面 升高該等線接合之上的一高點之傾斜面。這可被列印頭維 修所利用,藉以便於維持固定的接觸壓力於該刮掃機構 上。這藉由參照圖式在下文中進一步說明。然而,將可被 瞭解的是,該包封劑可藉由使用特定形狀的剖面化作業表 面及詳對於該晶粒的運動來形塑用以具有凸脊,邊溝,溝 槽等等。 較佳地,該方法進一步包含的步驟爲: 將該剖面化作業表面浸泡在該包封劑物質的容器內用 以形成一包封劑的珠滴於該剖面化作業表面上。 選擇上地’該剖面化作業表面爲一具有筆直邊緣的刀 片狀物且該方法進一步包含的步驟爲: 將該刀片狀物定向(orienting)使得該筆直的邊緣是 -17- 200915445 最低的邊緣及將該筆直的邊緣浸泡在該包封劑物質中用以 沿著該筆直的邊緣形成該包封劑的珠滴。 較佳地,該晶粒具有一帶有功能性元件之有作用的表 面及多個沿著一邊緣被形成的接觸墊用以與該等線接合接 觸,使得該等線接合延伸成爲一從該等接觸墊分別到達每 一導體的弧,該等線接合具有一小於40微米的直徑及該 弧延伸在該晶粒之有足用的表面上方高於100微米處。 較佳地,該方法進一步包含的步驟爲: 在包封之前,推擠該線接合用以讓該弧塌陷並將該線 接合塑性地變形;及 釋放該線接合使得該塑性變形將該線接合保持在一較 平的剖面形狀。 較佳地,該等線接合被塑性地變形使得它們延伸於該 晶粒之有作用的表面上方小於5 0微米處。較佳地,該線 接合藉由與一刀片狀物嚙合而被推擠,該刀片狀物具有一 用來接觸該線接合之圓角化的邊緣區。 較佳地,覆蓋該等線接合之包封劑具有一經過剖面化 的表面,它是平的,平行於該有作用的表面且與其相距小 於1 0 0微米。 較佳地,該包封劑的珠滴貝.有一平的且相對於該有作 用的表面傾斜之經過剖面化的表面。 較佳地,該包封劑是一環氧樹脂物質,其在未固化時 具有大於700 cp的黏度。 較佳地,該包封劑是一環氧樹脂物質’其在未固化時 -18- 200915445 是搖溶性的(thixotroPic )。較佳地’該等功能性元件與 該晶粒上的接觸墊相距小於2 6 0微米。在一更佳的形式 中,該晶粒爲一噴墨列印頭1C且該等功能性元件爲噴 嘴,墨水經由噴嘴被噴出。選擇上地’該列印頭I c被安 裝在一印表機內使得在使用期間噴嘴離紙張路徑小於1 00 微米。 較佳地,該支撐結構具有一晶片安裝區及一導體安裝 區,該晶粒被支撐在該晶片安裝區上,及多個電導體至少 部分地被支撐在該導體安裝區上,其中該晶片安裝區相對 於該導體安裝區被升高。在一特佳的形式中,該晶片安裝 區相對於該導體安裝區被升高超過100微米。在另一較佳 的形式中,該支撐結構具有一級階介於該晶片安裝區與該 導體安裝區之間。在一較佳的實施例中,該等多個導體被 一排沿著最靠近該晶粒的邊緣之接合墊倂入到一可撓曲的 印刷電路板(撓性PCB )中,該等接合墊離晶粒上的接觸 墊超過2公釐。較佳地’該支撐結構爲一液晶聚合物 (L C P )模製物。 【實施方式] 圖1顯示用來施用一包封劑珠滴至線接合上之一般的 技術。一晶粒4被安裝到一支撐結構6上鄰近一撓性 PCB8(可撓曲的印刷電路板)的邊緣處。該晶粒4具有一 排接觸墊1 〇沿著一個邊緣且該撓性P C B 8具有對應的接 合墊1 2。線接合丨6從接觸墊10延伸至接合墊1 2。電力 -19- 200915445 及資料經由該撓性P c B 8內的導電跡線1 4被傳送至晶粒 4。這是安裝在許多電子裝內之晶粒的簡化代表。安裝在 L C P (液晶聚合物)模製物上用來接受來自一鄰近的撓性 PCB,如美國專利申請案第…號(我們的文件編號 RRC001US )中所描述的,其藉由此參照被倂於本文中, 該列印頭IC晶粒爲此類晶粒安裝構造的一個例子。一般 的從業人員將可瞭解的是,該晶粒可以被直接安裝在一其 上形成有導線之硬式PCB上。 線接合1 6被覆蓋在一包封劑2的珠滴內用以保護並 補強該等線接合。該包封劑2從一排出針頭1 8直接施用 至線接合1 6上。通常該包封劑珠滴2是三個分開的珠 滴一兩個被稱爲’水壩(dam) ‘的包封劑20,及一個被稱 爲’裝塡物(fill ) ‘的包封劑22。水壩包封劑20的黏度高 於裝塡物包封劑22的黏度,且水壩包封劑20用來形成一 渠道用來容納該裝塡物包封劑珠滴。在該晶粒4上方的該 珠滴2的高度Η通常約500-600微米。在大多數的電子裝 置中,這並不會產生問題。然而,如果該晶粒具有一有作 用的表面其必需與另一表面以極接近的方式工作的化,此 珠滴將會是一個障礙。 將該晶粒相對於該撓性P CB升高 圖2顯示一級階式支撐結構6其將該晶片安裝區26 相對於該PCB安裝區24 (或至少是安裝PCB接合墊12的 區域)升高。藉著晶粒4在該升高的晶片安裝區26上, -20- 200915445 線接合1 6的弧相對於晶粒4之有作用的表面2 8較低 實上,線接合1 6之附著於接觸墊1 〇的端部可以是該 頂點(應記住的是該線接合弧是用來適應晶粒與PCB 些相對運動)。當線接合16被包封劑2覆蓋住時, 滴具有一在該晶粒4之有作用的表面2 8上方之減小 度H。如果該包封劑珠滴2使用兩個水壩包封劑20 個裝塡物包封劑2 2的話,則這些珠滴的位置,體積 度必需將該級階考慮進去。小於1 0 0微米的珠滴高度 輕易地達成,且藉由額外的手段,譬如像是線弧塌陷 滴剖面化作業(將於下文中討論),可達成小於5 0 的珠滴高度。 藉著晶粒4被升高至該撓性PCB 8之上410微米 接合16的高度在該晶粒之上約34微米。藉著該晶粒 高至該撓性PC B 8之上610微米,線接合約爲20微 進一步再升高該晶粒對於級階7 1 0微米的線接合高度 爲20微米)僅有微小或沒有進一步降低。 用一剖面作業刀片狀物來形塑該包封劑珠滴 圖3A至3C顯示該包封劑2被用一剖面作業刀片 3 0加以剖面作業。該支撐結構6再次被級階化用以減 接合1 6在該晶粒4之上的高度。在該環氧樹脂包詞 固化之前,該剖面作業刀片狀物30在一預定的路徑 動橫過該晶粒4與線接合。如圖3 B所示,刀片狀物 珠滴的頂部移至其撓曲PCB側用以形成一平坦的 。事 弧的 的某 該珠 的高 及一 及黏 是可 及珠 微米 ,線 被升 米。 (約 狀物 小線 .劑2 上移 30將 頂面 -21 - 200915445 3 2,其位在該晶粒4之上顯著減小的高度Η處。 該包封劑珠滴2如圖1及2所示地可以多個分開的珠 滴,或可以是一種物質的單一珠滴。然而,爲了要該經過 剖面作業化之包封劑的更嚴密的尺寸控制,所用之包封劑 應是搖溶性的(thixotropic ),當從該排出針頭被沉積之 後’或被該刀片狀物3 0剖面化之後,該物質不應因其本 身的重量而流動,而應維持其形狀直到它固化爲止。這需 要該環氧樹脂具有一大於約700 cp之未固化的黏度。一 適合的包封劑爲由Dymax公司所製造的DYMAX 9001-E-v3. 1晶片包封劑,其在未固化時具有約800 cp的黏度。 該刀片狀物30可以是陶瓷(玻璃)或金屬且較佳地約200 微米厚。 將可被瞭解的是,該刀片狀物與3 0與晶粒4的相對 運動可被精確地控制。這可讓該高度Η由線接合處理的公 差來決定。只要Η大於在該晶粒之上之線接合弧的標稱高 度加上最大公差’包封劑2將可覆蓋並保護線接合1 6。藉 此技術’高度Η可輕易地從5 0 0 - 6 0 0微米被減小至小於 3 00微米。如果線接合弧的高度亦被減小的話,該包封劑 珠滴的高度可小於1 00微米。本案申請人使用此技術來將 列印頭晶粒上的包封劑剖面化使其在低點的高度低至50 微米。如圖3 C所示,該最低點是位在該包封劑前端且該 刀片狀物3 0在珠滴2的頂部形成一傾斜面3 2。該傾斜面 可在從噴嘴面上清除掉紙張灰塵與乾掉的墨水時被列印頭 維修系統所利用。這顯示出此技術的能力不僅僅可減小該 -22- 200915445 包封劑珠滴的高度,還可以形成一實施包封線接合之外的 其它功能的表面。該刀片狀物的邊緣剖面及該刀片狀物相 對於該晶粒的路徑可被構建來形成一表面,其具有用於各 種目地的各式形狀。 線接合弧的塑性變形 圖4A至4C顯示用於降低線接合的剖面的另一種技 術。圖4A顯示透過線接合1 6連接至撓性PCB 8的晶粒 4。雖然該級階式支撐結構6已相較於平的支撐結構將線 接合弧的高度降低,但線接合仍具有一向上彎曲的自然傾 向,而不是向下朝向該級階的角落。線接合16的直徑典 型地約32微米且具有約3至5克力的拉力。該拉力爲破 弄斷與接觸墊10或接合墊12的連接所需的拉力負荷。由 於這些結構的脆弱性(其中的一個原因是施用包封劑), 所以傳統上的智慧是避免線接合弧與其它實心表面接觸。 如圖4B所示,線接合1 6的弧可被線推壓件34弄坍 塌。該線推壓件3 4推移線該接合1 6使其足以將該弧彈性 地及塑性地變形。本案申請人已展示與該線推壓件3 4接 觸會造成在該電線上之決部化的加工硬化,但只要該力量 沒有過大,它就不會斷裂。該線推壓件34的端部被圓角 化用以避免應力集中點。此線推壓件34可以是一用來與 單一線接合相接觸的尖筆(stylus )或是用來同時推壓多 個線接合的刀片狀物。 現參照圖4C,該線推壓件34被縮回且該電線朝向其 -23- 200915445 原來的形狀回彈用以解除該彈性變形。然而,該塑性變形 仍繼續存在且在該晶粒4之上的線接合高度被大幅地減 小。試驗顯示使用此技術可讓一最初爲2 00微米的線接合 環圈高度被減小至約4 5微米。試驗亦顯示被塑性變形的 電線的拉扯強度仍保持在約3至5克力。 線接合的塌陷是未被控制的且讓線接合有點被隨機地 變形。然而,將線接合推移更靠近該晶粒可提供被更一致 地形塑之坍蹋的線接合。本案申請人的硏究顯示對於該晶 粒而言接觸2 0 0至3 0 0微米的電線可提供最佳的結果。 如圖4D所示,晶粒4與撓性PCB 8被安裝在一平的 支撐結構6上。如上文中討論的,這表示該線接合弧的最 初環圈高度是高出許多的一約在該晶粒4之上約400微 米。因此,在該環圏被該線推壓件推壓坍榻時該電線具有 更多的塑性變形。即便如此,本案申請人的結果顯示,在 推壓之後之剩餘的環圈高度約爲20-5 0微米。 圖5A及5B顯示被一包封劑珠滴2所覆蓋之坍福的線 接合1 6。即使是在固化之前沒有珠滴剖面化作業,該珠滴 在該晶粒之上的高度Η仍遠小於該珠滴包封原始之未變形 的電線環圈所需的高度。 用剖面化作業刀片狀物施用包封劑 圖6Α,6Β及6C顯示使用該剖面化作業刀片狀物30 代替一排出針頭(參見圖1及2 )來施用包封劑珠滴。如 先前討論過的,來自該排出針頭的包封劑流速會改變且這 -24- 200915445 對於包封劑前端在晶粒4之有作用的表面上的位置會產生 大的變化。因此,在晶粒4之有作用的表面上的任何功能 性元件都必需與接觸墊1 0充分地間隔開用以容許緩慢而 曲折地前進的包封劑前端。 用剖面化作業刀片狀物施用包封劑可避免來自該棑出 針頭的流速波動所造成的問題。如圖6A所示,該包封劑 珠滴40可單純地藉由將該剖面化作業刀片狀物30浸泡至 一未固化的包封劑環氧樹脂的容器內而被形成在該剖面化 作業刀片狀物30上。當然,該珠滴40亦可藉由其它的傳 統方式,譬如將該排出針頭沿著該刀片狀物3 0的一端移 動,來形成。 圖6B顯示該刀片狀物30已被降低用以將該珠滴40 接觸到該晶粒4上。當該包封劑物質接觸該晶粒表面時, 它沿著該表面濕潤,同時保持被該刀片狀物的邊緣壓住。 該刀片狀物30被保持在該晶粒4之上一預定的高度且被 移動橫過該珠滴2用以將該珠滴平坦化及降低其剖面。被 該刀片狀物30從該珠滴的頂端移位的包封劑被散佈在該 珠滴2的PCB側上。該包封劑是否比所必要更散佈於該 PCB上是無關緊要的。只要線接合16與接合墊12被覆蓋 及可,仟何額外的包封劑在該P C B 8表面上都不會是有害 的。 在圖6C中,線接合16高度已藉由依據上述的技術將 該電線弧塌陷來加以降低。如之前討論過的,被該排出針 頭所放置的珠滴2不需要大到能夠覆蓋住該線接合1 6坍 -25- 200915445 塌時的大小。再者,當對該包封劑2實施剖面化作業時, 該刀片狀物3 0可更靠近該晶粒4而不與線接合1 6接觸。 因此’在圖6 C中的珠滴剖面比圖6 B中的珠滴剖面要來得 低。 包封劑前端控制 當該包封劑物質從該排出針頭被施用時,在流速上的 微小變化會造成珠滴在較大流量的位置點處壟起。因此, 該珠滴之與該晶粒之有作用的表面接觸的一側不是筆直 的’而是有顯著的擾亂(perturbation )。這些擾亂必需要 被容納在接觸墊與該有作用的表面上之任何功能性元件之 間。介於接觸墊與功能性元件之間的間距會使用掉有價値 的’晶片不動產(chip real estate) ’。本案申請人之前已 開發出在接觸墊與第一排噴嘴之間有200微米的間距的列 印頭晶粒。更佳的包封劑前端控制可減小接點與作業元件 之間的間距,以及晶粒的整體尺寸。因此,此設計可更加 精巧且從原始的晶圓片上可作出更多的晶片。 如圖7A及7B所示,該剖面化作業刀片狀物30被用 來控制包封劑珠滴2的前端3 6。該刀片狀物3 0被放置在 該晶粒4之上用以在其下緣與該有作用的表面2 8之間界 定一間隙42。當該排出針頭1 8排出出該包封劑物質44 時,其流動在該有作用的表面上,該刀片狀物的一側與該 物質帶(material fillet )延展通過該間隙42。由於該間 隙所產生之流動阻力的關係,所以流量變動對於流經該間 -26- 200915445 隙的物質帶的尺寸只有很小的影響。因此,該包封劑前端 3 6很接近地符合該刀片狀物3 0的下緣的線。 如圖7B所示,該剖面化作業刀片狀物30在該包封劑 珠滴2從該排出針頭被排出來時就已經在定位上要對該包 封劑珠滴實施剖面化作業。該刀片狀物3 0單純地只是在 一遠離噴嘴3 8的方向上移動於該晶粒4的上方。這可將 該包封劑前端3 6保持在定位並將線接合1 6上放之包封劑 珠滴2的剖面平坦化。 本發明已在本文中以舉例的方式加以描述。熟習此技 藝者將可輕易地認知到許多未偏離本發明之廣意的發明性 槪念的精神與範圍的變化與修改。 【圖式簡單說明】 本發明的實施例現將以舉例的方式參照附圖加以描 述,其中: 圖1爲用來施用一珠滴的封包劑於線接合上之一般先 前技藝技術的示意代表圖; 圖2爲安裝於一支撐結構上之晶粒的示意代表圖’該 支撐結構具有相對於該撓性PCB安裝區被升高的晶片安裝 區, 圖3A,3B及3C爲該包封劑珠滴藉由使用一活動的 刀片狀物而被剖面化成爲一所想要的形狀之示意代表圖; 圖4 A至4 D爲被塑性便形剖面化的線接合的示意代 表圖; -27- 200915445 圖5A及 度的減小; 圖6 A至 的刀片狀物ffi 圖7A及 珠滴的剖面化 【主要元件符 4 :晶粒 6 :支撐 8 :撓性 10 :接觸 1 2 :接合 14 :導電 1 6 :線接 1 8 :排出 2 :包封j 20 :水壩 22 :裝塡 24 : PCB 2 ό ·晶片 2 8 :有作 3 〇 :剖面 3 2 :平坦 5 Β顯示被塑性變形之線接合之包封劑珠滴高 6 C顯示該包封劑珠滴藉由使用該剖面化作業 '被施加至線接合:及 7Β顯示被用來控制該晶粒的表面上的包封劑 作業刀片狀物。 號說明】 洁構Preferably, the support structure is a liquid crystal polymer (LCP. According to a fourth aspect, the present invention provides a method of applying an encapsulant to a die on a support substrate, the method comprising: Providing a die mounted on a support substrate having a back surface in contact with the support structure and a face opposite the back face, the active surface having an electrical contact pad; placing a barrier Adjacent to and spaced apart from the electrical contact pads to define a gap; and depositing a bead of encapsulant on the electrical contact pads such that the side contacts the barrier and the bead A portion of the drop extends to the active surface. A barrier is placed over the active surface such that the spacing of the boundaries is such that the encapsulant is at the front end (between the encapsulant and the effect) The shape of the contact line between them can be more tightly controlled. Any change in the flow rate of the encapsulant will cause a ridge or depression in the height of the bead and/or the PCB side. a gap between the barrier and the surface The fluid resistance means that the encapsulation dose flowing into the active surface is almost fixed. The flow change causes the front end of the encapsulant to closely correspond to the edge of the shape of the barrier PCB)) The step of one amp has a function of the surface of the bead, and a narrow surface is defined by the action of the gap and the flow of the droplet from the needle. Further -14 - 200915445 The large encapsulant front end control allows the functional components on the active surface of the die to be closer to the contact pads. Preferably, the barrier is a profiled work surface and the method further comprises the step of: moving the profiled work surface over the active surface to planarize the beads of the encapsulant. Preferably, the method further comprises the steps of: electrically bonding the contact pads on the die to respective conductors on the support substrate by wire bonding prior to depositing the beads of the encapsulant, the wires Each of the joints extends an arc from the contact pad to the conductor; pushing the wire bond to collapse the arc and plastically deform the wire bond; and releasing the wire bond such that the plastic deformation joins the wire Maintain a flat cross-sectional shape. In a more preferred form, the active surface has a functional element 'contact pad formed on one edge of the active surface, the wire bond having a diameter less than 40 microns and the arc extending Above the active surface of the die is greater than 100 microns. Preferably, the wire bonds are plastically deformed such that they extend less than 50 microns above the active surface of the grain. In another preferred form, the wire bond is pushed by engagement with a blade having a filleted edge region for contacting the wire bond. Preferably, the bead of the encapsulant has a profiled surface that is flat 'parallel to the active surface and spaced less than i 〇 〇 micro -15-200915445 m. Preferably, the bead of the encapsulant has a flat, profiled surface that is inclined relative to the active surface. Preferably, the encapsulant is an epoxy material 'when uncured Has a viscosity greater than 700 cp. Preferably, the encapsulant is an epoxy material' which is thixotropic when uncured. Preferably, the active surface has a functional element that is less than 260 microns from the contact pads on the crystal. In a particularly preferred form, the die is an ink jet printhead IC and the functional components are nozzles through which ink is ejected. Preferably, the printhead ic is mounted in a printer such that the nozzle is less than 100 microns from the paper path during use. Preferably, the support structure has a wafer mounting area and a conductor mounting area, the die is supported on the wafer mounting area, and a plurality of electrical conductors are at least partially supported on the conductor mounting area, wherein the wafer The mounting area is raised relative to the conductor mounting area. In a particularly preferred form, the wafer mounting area is raised by more than 100 microns relative to the conductor mounting area. In a preferred embodiment, the support structure has a first order between the wafer mounting area and the conductor mounting area. In a particularly preferred embodiment, the plurality of conductors are slid into a flexible printed circuit board (flexible PCB) by a row of bond pads closest to the edge of the die. The contact pads on the die are more than 2 mm. Preferably, the support structure is a liquid crystal polymer (LCP) molding. -16- 200915445 According to a fifth aspect, the present invention provides a method of applying an encapsulant to a wire bond between a die and a conductor on a support substrate, the method comprising the steps of: forming the The bead of the encapsulant is applied to a profiled work surface; the profiled work surface is placed such that the bead contacts the die; and the profiled work surface is moved relative to the die for covering with the encapsulant These lines are joined. Sweeping the encapsulant through the wire bond with a profiled work surface provides control of the front end of the encapsulant and control of the height of the encapsulant relative to the die. The movement of the profiled work surface relative to the die can be tightly controlled to shape the encapsulant into the desired shape. Using an example of a row of die grains, the encapsulant can be shaped to present an inclined surface that raises a high point above the wire bond from the nozzle surface. This can be utilized by the print head maintenance to maintain a constant contact pressure on the sweeping mechanism. This is further explained below by reference to the drawings. However, it will be appreciated that the encapsulant can be shaped to have ridges, sipe, grooves, etc. by using a profiled work surface of a particular shape and detailed movement of the die. Preferably, the method further comprises the step of: immersing the profiled work surface in a container of the encapsulant material to form an encapsulant of beads onto the profiled work surface. Selecting the upper surface 'the profiled work surface is a blade having a straight edge and the method further comprises the step of orienting the blade such that the straight edge is the lowest edge of -17-200915445 and The straight edge is immersed in the encapsulant material to form beads of the encapsulant along the straight edge. Preferably, the die has a functional surface with a functional component and a plurality of contact pads formed along an edge for engaging the wire such that the wire bond extends into a The contact pads each reach an arc of each conductor having a diameter of less than 40 microns and the arc extending above 100 microns above the surface of the die. Preferably, the method further comprises the steps of: urging the wire bond to collapse the arc and plastically deforming the wire bond prior to encapsulation; and releasing the wire bond such that the plastic deformation joins the wire Maintain a flat cross-sectional shape. Preferably, the wire bonds are plastically deformed such that they extend less than 50 microns above the active surface of the die. Preferably, the wire bond is pushed by engagement with a blade having a filleted edge region for contacting the wire bond. Preferably, the encapsulating agent covering the wire bonds has a profiled surface which is flat, parallel to the active surface and spaced less than 100 microns from it. Preferably, the encapsulant of the encapsulant has a flat, profiled surface that is inclined relative to the active surface. Preferably, the encapsulant is an epoxy material having a viscosity greater than 700 cp when uncured. Preferably, the encapsulant is an epoxy material' which is thixotroPic when uncured -18-200915445. Preferably, the functional elements are less than 260 microns from the contact pads on the die. In a more preferred form, the die is an ink jet print head 1C and the functional elements are nozzles through which ink is ejected. The upper print head I c is mounted in a printer such that the nozzle is less than 100 microns from the paper path during use. Preferably, the support structure has a wafer mounting area and a conductor mounting area, the die is supported on the wafer mounting area, and a plurality of electrical conductors are at least partially supported on the conductor mounting area, wherein the wafer The mounting area is raised relative to the conductor mounting area. In a particularly preferred form, the wafer mounting area is raised by more than 100 microns relative to the conductor mounting area. In another preferred form, the support structure has a first order between the wafer mounting area and the conductor mounting area. In a preferred embodiment, the plurality of conductors are punctured into a flexible printed circuit board (flexible PCB) by a row of bond pads closest to the edge of the die. The pad is spaced apart from the die by more than 2 mm. Preferably, the support structure is a liquid crystal polymer (L C P ) molding. [Embodiment] Figure 1 shows a general technique for applying an encapsulant bead to a wire bond. A die 4 is mounted to a support structure 6 adjacent the edge of a flexible PCB 8 (flexible printed circuit board). The die 4 has a row of contact pads 1 along one edge and the flexible P C B 8 has a corresponding bond pad 112. The wire bond pad 6 extends from the contact pad 10 to the bond pad 12. Power -19-200915445 and data are transmitted to the die 4 via the conductive traces 14 in the flexible P c B 8 . This is a simplified representation of the die mounted in many electronic packages. Mounted on an LCP (Liquid Crystal Polymer) molding for receiving from a neighboring flexible PCB, as described in U.S. Patent Application Serial No. (US file number RRC001US), which is incorporated herein by reference. In this context, the printhead IC die is an example of such a die mounted construction. It will be appreciated by a general practitioner that the die can be mounted directly onto a rigid PCB on which the wires are formed. Wire bonds 16 are covered in the beads of an encapsulant 2 to protect and reinforce the wire bonds. The encapsulant 2 is applied directly from a discharge needle 18 to the wire bond 16. Typically the encapsulant bead 2 is three separate beads, one or two encapsulants 20 referred to as 'dams', and an encapsulant known as 'fill' twenty two. The dam encapsulant 20 has a higher viscosity than the encapsulant 22 and the dam encapsulant 20 is used to form a channel for containing the encapsulant beads. The height Η of the bead 2 above the die 4 is typically about 500-600 microns. This does not cause problems in most electronic devices. However, if the die has a working surface that must work in close proximity to the other surface, the bead will be an obstacle. Elevating the die relative to the flexible P CB Figure 2 shows a first step support structure 6 which raises the wafer mounting region 26 relative to the PCB mounting region 24 (or at least the region where the PCB bond pads 12 are mounted) . By the die 4 on the raised wafer mounting region 26, the arc of the -20-200915445 wire bond 16 is lower relative to the active surface 28 of the die 4, and the wire bond 16 is attached to The end of the contact pad 1 can be the apex (it should be remembered that the wire engagement arc is used to accommodate some relative movement of the die and the PCB). When the wire bond 16 is covered by the encapsulant 2, the drop has a degree of decrease H above the active surface 28 of the die 4. If the encapsulant bead 2 uses two dam encapsulants 20 pack encapsulants 2 2, then the position and volume of these bead drops must take this order into account. Droplet heights of less than 100 microns are easily achieved, and by additional means, such as line arc collapse droplet profile operations (discussed below), a bead height of less than 50 can be achieved. The height of the 410 micron junction 16 raised above the flexible PCB 8 by the die 4 is about 34 microns above the die. By the grain being as high as 610 microns above the flexible PC B 8 , the wire bond is about 20 micrometers and further raising the die to a height of 20 microns for a level of 7 10 microns.) No further reduction. The encapsulant bead is shaped by a cross-sectional working blade. Figures 3A through 3C show that the encapsulant 2 is profiled with a cross-sectional working blade 30. The support structure 6 is again graded to reduce the height of the junction 16 above the die 4. Prior to curing of the epoxy resin package, the profiled blade 30 is joined to the wire across the die 4 in a predetermined path. As shown in Figure 3B, the top of the blade bead drops to the side of its flex PCB to form a flat. The height and the adhesion of a certain bead of the arc is the reach of the bead micron and the line is raised. (about a small line. Agent 2 moves up 30 to the top surface - 21, 2009, 445, 3 2, which is located at a significantly reduced height above the die 4. The encapsulant bead 2 is shown in Figure 1 2 may be a plurality of separate beads, or may be a single drop of a substance. However, in order to control the tighter size of the cross-working encapsulant, the encapsulant used should be shaken. The substance is thixotropic, after being deposited from the discharge needle or after being profiled by the blade 30, the substance should not flow due to its own weight, but should maintain its shape until it solidifies. The epoxy resin is required to have an uncured viscosity of greater than about 700 cp. A suitable encapsulant is DYMAX 9001-E-v3.1 wafer encapsulant manufactured by Dymax Corporation, which has an uncured amount when uncured The viscosity of 800 cp. The blade 30 can be ceramic (glass) or metal and preferably about 200 microns thick. It will be appreciated that the relative motion of the blade with the die 3 and the die 4 can be Precise control. This allows the height to be determined by the tolerance of the wire bonding process. The enthalpy is greater than the nominal height of the wire bond arc above the die plus the maximum tolerance 'encapsulant 2' will cover and protect the wire bond 16. The technique 'height Η can easily be taken from 50,000 - The 60 micron is reduced to less than 300 microns. If the height of the wire bond arc is also reduced, the height of the encapsulant bead can be less than 100 microns. The applicant uses this technique to print the print head. The encapsulant on the die is profiled to a height as low as 50 microns at the low point. As shown in Figure 3C, the lowest point is at the front end of the encapsulant and the blade 30 is at the bead 2 The top portion forms an inclined surface 32. The inclined surface can be utilized by the printhead maintenance system when removing paper dust and dry ink from the nozzle face. This shows that the ability of the technology not only reduces this - 22- 200915445 The height of the encapsulant bead can also form a surface that performs other functions than the encapsulation of the wire. The edge profile of the blade and the path of the blade relative to the die can be constructed To form a surface having various shapes for various purposes. Plastic Deformation of the Arc Figures 4A to 4C show another technique for reducing the profile of the wire bond. Figure 4A shows the die 4 connected to the flexible PCB 8 through the wire bond 16. Although the stepped support structure 6 has been phased The height of the wire engagement arch is reduced compared to a flat support structure, but the wire bond still has a natural tendency to bend upwards rather than downward toward the corners of the step. The diameter of the wire bond 16 is typically about 32 microns and has about A tensile force of 3 to 5 gram force. This tensile force is the tensile load required to break the connection with the contact pad 10 or the bonding pad 12. Due to the fragility of these structures (one of which is the application of an encapsulant), the conventional The wisdom of the above is to avoid the wire engagement arc from contacting other solid surfaces. As shown in Fig. 4B, the arc of the wire joint 16 can be collapsed by the wire pusher 34. The wire pusher 34 pushes the wire 16 to make it elastically and plastically deformable. The applicant of the present application has shown that contact with the wire pushing member 34 causes work hardening on the wire, but as long as the force is not excessive, it does not break. The end of the wire pushing member 34 is rounded to avoid stress concentration points. The wire pusher 34 can be a stylus for contacting a single wire bond or a blade for simultaneously pushing a plurality of wire bonds. Referring now to Figure 4C, the wire pusher 34 is retracted and the wire springs back toward its original shape of -23-200915445 to relieve the elastic deformation. However, the plastic deformation continues to exist and the wire bonding height above the die 4 is greatly reduced. Tests have shown that using this technique allows a wire bond loop height of initially 200 microns to be reduced to about 45 microns. Tests have also shown that the tensile strength of the plastically deformed wire remains at about 3 to 5 grams of force. The collapse of the wire bond is uncontrolled and the wire bond is somewhat randomly deformed. However, moving the wire bond closer to the die provides wire bonding that is more consistently shaped. The study by the applicant of the present application showed that contacting the 200 to 300 micron wire for the crystal grain provided the best results. As shown in Fig. 4D, the die 4 and the flexible PCB 8 are mounted on a flat support structure 6. As discussed above, this means that the initial loop height of the wire bond arc is much higher than about 400 microns above the die 4. Therefore, the wire has more plastic deformation when the ring is pushed by the wire pushing member. Even so, the applicant's results show that the remaining loop height after pushing is about 20-5 microns. Figures 5A and 5B show the wire bonds 16 of the blister covered by an encapsulant bead 2 . Even if there is no bead profile profiling prior to curing, the bead height above the die is still much less than the height required for the bead to encapsulate the original undeformed wire loop. Applying Encapsulant with Profiled Work Blades Figures 6A, 6A and 6C show the use of the profiled work blade 30 instead of a discharge needle (see Figures 1 and 2) to apply the encapsulant beads. As previously discussed, the flow rate of the encapsulant from the discharge needle will vary and this -24-200915445 will produce a large change in the position of the front end of the encapsulant on the active surface of the die 4. Therefore, any functional component on the active surface of the die 4 must be sufficiently spaced apart from the contact pad 10 to allow for a slow and tortuous advancement of the encapsulant front end. Application of the encapsulant with a profiled working blade avoids the problems caused by fluctuations in the flow rate from the ejection needle. As shown in FIG. 6A, the encapsulant bead 40 can be formed in the profiled work simply by immersing the profiled working blade 30 in a container of an uncured encapsulant epoxy resin. On the blade 30. Of course, the bead 40 can also be formed by other conventional means, such as moving the discharge needle along one end of the blade 30. Figure 6B shows that the blade 30 has been lowered to contact the bead 40 onto the die 4. As the encapsulant material contacts the surface of the die, it wets along the surface while remaining pressed by the edge of the blade. The blade 30 is held a predetermined height above the die 4 and is moved across the bead 2 to planarize the bead and reduce its profile. An encapsulant displaced by the blade 30 from the tip end of the bead is spread on the PCB side of the bead 2. Whether or not the encapsulant is more dispersed on the PCB than necessary is irrelevant. As long as the wire bonds 16 and the bond pads 12 are covered and can be used, any additional encapsulant will not be detrimental on the surface of the P C B 8 . In Figure 6C, the wire bond 16 height has been lowered by collapsing the wire arc in accordance with the techniques described above. As previously discussed, the bead 2 placed by the discharge needle need not be large enough to cover the size of the wire joint 16 6 -25-200915445. Further, when the encapsulant 2 is subjected to a profile operation, the blade 30 may be closer to the die 4 without being in contact with the wire bond 16. Therefore, the bead profile in Fig. 6C is lower than the bead profile in Fig. 6B. Encapsulant Front End Control When the encapsulant material is applied from the discharge needle, a small change in flow rate causes the beads to ridge at a point where the flow is relatively high. Thus, the side of the bead that is in contact with the active surface of the die is not straight' but has significant perturbation. These disturbances must be accommodated between the contact pads and any functional components on the active surface. The spacing between the contact pads and the functional components uses the "chip real estate" of the price tag. The applicant of the present application has previously developed a printhead die having a 200 micron pitch between the contact pad and the first row of nozzles. Better encapsulant front end control reduces the spacing between the contacts and the working elements, as well as the overall size of the die. As a result, this design is more compact and allows more wafers to be made from the original wafer. As shown in Figures 7A and 7B, the profiled working blade 30 is used to control the front end 36 of the encapsulant bead 2. The blade 30 is placed over the die 4 to define a gap 42 between its lower edge and the active surface 28. When the discharge needle 18 discharges the encapsulant material 44, it flows on the active surface, and one side of the blade and the material fillet extend through the gap 42. Due to the flow resistance relationship created by the gap, the flow rate variation has only a small effect on the size of the material strip flowing through the gap between -26 and 200915445. Thus, the encapsulant front end 36 closely conforms to the line of the lower edge of the blade 30. As shown in Fig. 7B, the profiled working blade 30 is already positioned to profile the encapsulant bead when the encapsulant bead 2 is ejected from the discharge needle. The blade 30 simply moves over the die 4 in a direction away from the nozzle 38. This maintains the front end 36 of the encapsulant in position and flattens the cross-section of the encapsulant bead 2 placed on the wire bond 16. The invention has been described herein by way of example. A person skilled in the art will readily recognize many variations and modifications of the spirit and scope of the invention without departing from the invention. BRIEF DESCRIPTION OF THE DRAWINGS [0007] Embodiments of the invention will now be described by way of example with reference to the accompanying drawings, in which: FIG. 1 is a schematic representation of a general prior art technique for applying a bead drop of an encapsulant to a wire bond. Figure 2 is a schematic representation of a die mounted on a support structure having a wafer mounting area raised relative to the flexible PCB mounting area, Figures 3A, 3B and 3C being the encapsulant beads The drop is profiled into a desired shape by using a movable blade; Figures 4A through 4D are schematic representations of the wire bond profiled by the plastic profile; -27- 200915445 Figure 5A and degree reduction; Figure 6 A to blade ffi Figure 7A and bead profile [main component 4: die 6: support 8: flexibility 10: contact 1 2: junction 14: Conductive 1 6 : Wire connection 1 8 : Discharge 2 : Encapsulation j 20 : Dam 22 : Mounting 24 : PCB 2 ό · Wafer 2 8 : Available 3 〇: Section 3 2 : Flat 5 Β shows the line of plastic deformation The bonded encapsulant beads have a height of 6 C indicating that the encapsulant beads are applied by using the profiled operation Wire bonds: and 7Β encapsulant is used to control the display operation on the surface of the blade-like grains. No. Description]
PCB 塾 墊 跡線 合 針頭 l!f,珠滴 包封劑 包封劑 安裝區 安裝區 用的表面 化作業刀片狀物 的頂面,傾斜面 -28- 200915445 34 :線 40 :包 36 :包 42 :間 44 :包 38 :噴 推壓件 封劑珠滴 封劑前端 隙 封劑物質 嘴PCB 塾 pad trace needle l!f, bead drop encapsulant encapsulant mounting area for the top surface of the surfaced working blade, inclined surface -28- 200915445 34: line 40: package 36: package 42 :Between 44: package 38: spray pusher sealant bead sealant front-end gap sealant substance mouth