TW200915432A - Metallization process - Google Patents

Metallization process Download PDF

Info

Publication number
TW200915432A
TW200915432A TW097114537A TW97114537A TW200915432A TW 200915432 A TW200915432 A TW 200915432A TW 097114537 A TW097114537 A TW 097114537A TW 97114537 A TW97114537 A TW 97114537A TW 200915432 A TW200915432 A TW 200915432A
Authority
TW
Taiwan
Prior art keywords
metallization process
semiconductor substrate
layer
heat treatment
conductive region
Prior art date
Application number
TW097114537A
Other languages
Chinese (zh)
Other versions
TWI393187B (en
Inventor
Tuung Luoh
Ling-Wu Yang
Chin-Ta Su
Ta-Hung Yang
Kuang-Chao Chen
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Publication of TW200915432A publication Critical patent/TW200915432A/en
Application granted granted Critical
Publication of TWI393187B publication Critical patent/TWI393187B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A metallization process is provided. First, a semiconductor base having at least a silicon-containing region is provided. Afterwards, an ions implantation for reducing an agglomeration phenomenon is provided to the silicon-containing region. Next, a first thermal process is performed on the semiconductor base for repairing the surface of the semiconductor base. Then, a metal layer is formed on the surface of the semiconductor base and the metal layer covers the silicon-containing conductive region. After that, a second thermal process is performed on the semiconductor base covered with the metal layer, so as to form a metal silicide layer on the silicon-containing conductive region.

Description

200915432 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種金屬化製程,且特別是有關於一 種可減少金屬矽化物的結塊現象之金屬化製程。 【先前技術】 隨著積體電路(Integrated Circuit, 1C)的元件尺寸縮 小,内連線或淺接面的對應阻抗也隨之增加’而使IC運 1 作速度無法有效提高。如最常被用來形成閘極與局部連線 的多晶石夕(poly silicon ),即使重度摻雜後仍帶有相當咼的 電阻率,這會造成元件功耗及訊號延遲(RC delay)的問 題。一般所使用的改善方式為進行金屬化製程’以自動對 準(self-alignment)形成金屬碎化物(salicide)於如電晶 體結構中的導電區域。然而,例如以鈷金屬與多晶矽閘極 在高溫下反應形成如CoSi2之金屬矽化物時,由於CoSU/Si 界面並不平整且有熱凹槽(thermal grooving),將導致所 £ " 謂的結塊現象(agglomeration ),而大幅影響金屬石夕化物的 熱穩定性及元件的運作性能。 【發明内容】 本發明係有關於一種金屬化製程,其係於沈積金屬層 之前,先將半導體基材進行熱處理,可得到較佳之沈積條 件,並且可減緩後方熱處理步驟中金屬矽化物之結塊現 象。 200915432 根據本發明,提出一種金屬化製程。首先,提供一半 ,體,材,此半導體基材具有至少一含矽導電區域。其 ^,提供一改善結塊現象之離子植入於含矽導電區域。接 著,對此半導體基材進行第一熱處理。而後,形成一金屬 2於此半導體基材表面,金屬層係覆蓋含矽導電區域。再 來,對覆蓋有金屬層之此半導體基材進行第二熱處理,以 形成一金屬矽化物層於含矽導電區域上。 根據本發明,另提出一種金屬化製程。首先,提供一 半導體基材,半導體基材具有至少一導電區域。其次了植 入氮離子至導電區域内。接著,對半導體基材進行:第一 熱處理,以修復半導體基材表面。而後,形成—金屬層於 半導體基材表面,金屬層覆蓋導電區域。再來,形二沪 散障礙層於金屬層上。然後,對覆蓋有金屬層之 =進行r第二熱處理’以於導電區域上形成—金屬石夕化i200915432 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a metallization process, and more particularly to a metallization process which can reduce the agglomeration of metal telluride. [Prior Art] As the element size of the integrated circuit (1C) is reduced, the corresponding impedance of the interconnect or shallow junction is also increased, and the speed of the IC operation cannot be effectively improved. For example, polysilicon, which is most commonly used to form gates and local interconnects, has a fairly high resistivity even after heavy doping, which causes component power dissipation and RC delay. problem. A general improvement is used to perform a metallization process to automatically form a self-alignment of a metal salicide in a conductive region such as an electromorphic structure. However, for example, when a cobalt metal and a polysilicon gate are reacted at a high temperature to form a metal telluride such as CoSi2, since the CoSU/Si interface is not flat and has thermal grooving, it will result in a knot. Block phenomenon (agglomeration), which greatly affects the thermal stability of the metallurgical compound and the operational performance of the component. SUMMARY OF THE INVENTION The present invention is directed to a metallization process for thermally treating a semiconductor substrate prior to depositing a metal layer to provide better deposition conditions and to slow agglomeration of metal telluride during the subsequent heat treatment step. phenomenon. 200915432 In accordance with the present invention, a metallization process is proposed. First, a half, body, and material are provided, and the semiconductor substrate has at least one germanium-containing conductive region. It provides an ion-implantation in the conductive region containing germanium. Next, the semiconductor substrate is subjected to a first heat treatment. Thereafter, a metal 2 is formed on the surface of the semiconductor substrate, and the metal layer covers the conductive region containing germanium. Further, the semiconductor substrate covered with the metal layer is subjected to a second heat treatment to form a metal halide layer on the germanium-containing conductive region. According to the invention, a metallization process is also proposed. First, a semiconductor substrate is provided having at least one electrically conductive region. Secondly, nitrogen ions are implanted into the conductive region. Next, the semiconductor substrate is subjected to a first heat treatment to repair the surface of the semiconductor substrate. Thereafter, a metal layer is formed on the surface of the semiconductor substrate, and the metal layer covers the conductive region. Then, the shape of the second Shanghai scattered barrier layer on the metal layer. Then, a second heat treatment is performed on the metal layer covered with the metal layer to form a metal layer on the conductive region.

二Γί後之半導體金屬層表面係減緩進行第二熱處理時 金屬化合層之結塊現象。 為讓本發明之上述目的、特徵、和優點 ^下了文特舉較佳實施例,並配合所_式,作詳細= 【實施方式】 請參照第1目,係依照本發明之金屬化 首先,於步驟110中’提供一半導體基材:此半= 土材具有至少一導電區域。然後,於步驟12”,對此半 200915432 導體基材進行第一熱處理。接著,於步驟13〇中,於此 導體基材表面形成一金屬層,金屬層係覆蓋導電區域。最 後’於步驟14G中’對覆蓋有金屬層之此半導體基材進行 第二熱處理’以形成一金屬化合層於導電區域上。 以下將以應用於一般場效電晶體為例進一步具體戈 明本發明之金屬化製程,其中半導體基材之導電區域係^ 一含矽導電區域為例做說明,且半導體基材進行第二熱處 理後係對應地形成一金屬矽化物層於含石夕導電區域上。= 於本發明所屬技術領域中具有通常知識者當可理解,本發 明可應用於任何積體電路中來改善内連線或元件特性,二 提升積體電路整體效能,也使得1C製程設計更具有彈性。 請依序參照第2A〜2E圖,係分別為依照本發明較佳 實施例之金屬化製程應用於電晶體元件時之製程剖面 圖。如第2A圖所示,係為步驟no中提供之半導體基材 200。半導體基材2〇〇包括基材210及承載於基材21〇上 的電晶體元件220。於本實施例中,基材210係使用P型 或N型之ί夕基材,但在其他實施例中,基材210可為矽覆 絕緣(Silicon-On-Insulator,SOI)基材。電晶體元件 220 例如為一般之金氧半(MOS)電晶體元件,並包括閘極G、 汲極D與源極S等含矽導電區域。形成於閘極氧化層221 上之閘極G為經沈積及圖案化之多晶矽層。汲極D及源極 S為與基材210電性相反之砷或硼等物質之摻雜區,間隙 壁222則可作為後續形成金屬矽化物時的遮罩。 然而,此時半導體基材200上可能留有一些無機或有 200915432 λ. < · ^ · wvr· λ m 機污染物,如製程環境中的雜質粒子或光阻、蝕刻及圖案 化過程中的殘餘物或副產品(如polymer ),甚或基材210 的原生氧化物等等。此外,半導體基材200之表面結構亦 可能留有前段製程中造成的不平整現象。而金屬化製程的 品質即相當取決於含矽導電區域的表面乾淨平滑與否。 如第2B圖所示,係於步驟120中,對半導體基材200 進行第一熱處理。於本實施例中,第一熱處理為一般使用 高溫爐火的退火處理(annealing),使半導體基材200在The surface of the semiconductor metal layer of the second layer is slowed down by the metallization layer during the second heat treatment. The above-mentioned objects, features, and advantages of the present invention will be described in detail with reference to the preferred embodiments of the present invention. Referring to the first aspect, the metallization according to the present invention is first. , in step 110, 'providing a semiconductor substrate: the half = soil material has at least one conductive region. Then, in step 12", the first heat treatment is performed on the semi-200915432 conductor substrate. Then, in step 13, a metal layer is formed on the surface of the conductor substrate, and the metal layer covers the conductive region. Finally, in step 14G The second semiconductor treatment is performed on the semiconductor substrate covered with the metal layer to form a metallization layer on the conductive region. The following will be applied to the general field effect transistor as an example to further specifically describe the metallization process of the present invention. The conductive region of the semiconductor substrate is exemplified by a conductive region, and the semiconductor substrate is subjected to the second heat treatment to form a metal telluride layer on the conductive region. It will be understood by those skilled in the art that the present invention can be applied to any integrated circuit to improve the characteristics of interconnects or components, and to improve the overall performance of the integrated circuit, and to make the 1C process design more flexible. Referring to Figures 2A to 2E, respectively, a cross-sectional view of a process for applying a metallization process to a transistor component in accordance with a preferred embodiment of the present invention. 2A is a semiconductor substrate 200 provided in step no. The semiconductor substrate 2 includes a substrate 210 and a transistor element 220 carried on the substrate 21A. In this embodiment, the substrate 210 The P-type or N-type substrate is used, but in other embodiments, the substrate 210 may be a Silicon-On-Insulator (SOI) substrate. The transistor element 220 is, for example, a general gold oxide. A half (MOS) transistor element, and includes a germanium-containing conductive region such as a gate G, a drain D, and a source S. The gate G formed on the gate oxide layer 221 is a deposited and patterned polysilicon layer. The pole D and the source S are doped regions of a substance such as arsenic or boron which are electrically opposite to the substrate 210, and the spacer 222 can serve as a mask for forming a metal halide later. However, at this time, the semiconductor substrate 200 is on the substrate. There may be some inorganic or have 200915432 λ. < · ^ · wvr· λ m machine contaminants, such as impurity particles or photoresist in the process environment, residues or by-products (such as polymer) during etching and patterning, Or even a native oxide of the substrate 210, etc. Further, the surface structure of the semiconductor substrate 200 The unevenness caused by the front-end process may be left behind. The quality of the metallization process depends on whether the surface of the conductive region containing the germanium is clean and smooth. As shown in Fig. 2B, in step 120, the semiconductor substrate is used. 200. Performing a first heat treatment. In the present embodiment, the first heat treatment is an annealing treatment generally using a high temperature furnace, so that the semiconductor substrate 200 is

产N 溫度450至700°C之間的氮氣環境(流量約1至10 slm, 壓力約1 atm)中進行約20分鐘至3小時左右的退火處理。 於其他實施例中,第一熱處理也能使用溫度設定較高的快 速退火處理(Rapid Thermal Processing,RTP)。藉由執行 第一熱處理,即能有效除去前述半導體基材200上對後續 金屬化製程不利之物質,同時修復半導體基材2〇〇的表面 結構,使電晶體元件220的含矽導電區域更乾淨平滑。 U 傳統金屬化製程在進行金屬沈積步驟前,僅以如使用 氟化氫等之預洗(pre-clean)步驟來使半導體基材表面儘 可Sb達到適當之沈積環境條件。然而,預洗步驟對於前述 的不利物質之清除作用相當有限,且無法對半導體基材 2〇〇的表面結構有所改善。因此,本發明係以—道熱^理 步=來達到更㈣沈積環境條件。#然,錢行步驟13〇 之如’也可再進行一次預洗步驟。 :第2C圖所示,於步驟13",由步驟⑽獲得適 田之次積環境條件後,能以賤鑛沈積方式形成所需之金屬 200915432 層310。於本實施例中,金屬層310係以包含钻(cobalt, Co ) 為例作說明。於其他實施例中,金屬層310也可使用如鈦 (titanium, Ti)、鎳(nickel,Ni)及銦(molybdenum, Mo) 等等。一般來說,可在金屬層310上再形成一吸收層320 及一擴散障礙層330 ( diffusion barrier) ’如第2C圖所示。 吸收層320例如使用鈦來幫助反應掉基材210的原生氧化 物,以減少後續形成金屬石夕化物的過程中的氧污染。擴散 障礙層330例如使用氮化鈦來減少金屬層31 〇在後續熱處 i 理中的擴散逸失。另外,值得一提的是,形成金屬層310 之前,也可以提供一離子佈植於所需之含矽導電區域,例 如氮離子(N )佈植,藉此改變後續熱處理中的金屬石夕 化物的晶粒大小(grain size)而改善結塊現象。 如第2D圖所示,於步驟140中,對覆蓋有金屬層310、 吸收層320及擴散障礙層330之半導體基材2〇〇進行第二 熱處理,如溫度400至550°C的退火處理。藉此,使包含 ❹鈷之金屬層31〇與閘極G、汲極D及源極§反應而形成為 錄單矽化物之金屬矽化物層311(1), 311(2)及311(3)。 “请參恥附圖1及附圖2,附圖1為未經過預先處理之 半導體基材形成金屬矽化物層後之電子顯微鏡照片;附圖 2為經過預先處理之半導體基材形成金屬矽化物層後之電 子顯微鏡照片。未經過包括第一熱處理及氮離子佈值之預 先處理的半導體基材,進行第二熱處理之退火步驟之後, ::於3妙?電區域(附圖1中淺色梯形區域)上形成不規 、且不連續之金屬矽化物層,即附圖1中淺色梯形區域上 200915432 端之深色不規靠域。㈣第—讀處職氮離子佈植之 預先處理时導㈣材,騎第二熱相之敎步驟之 後,係於含石夕導電區域(附圖2中淺色梯形區域)上形成 f教完整之金屬魏物層,即_ 2中淺色梯形區域上 端之深色區域。由附圖1及附圖2可知,對於半導體基材 進行第-熱處理及氮離子佈植之後,可以有效改善金屬石夕 化物層之結塊現象。 、睛繼續參照第2D圖,因為金屬矽化物層311(〗),311(2) 及311 (3)的阻值仍相當尚,因此以一般钱刻方式選擇性地 移除第2D圖中除金屬石夕化物層311⑴,1(2)及(3)外 之物貝後,一般會再進行一次溫度約7〇〇至9〇〇。匚的退火 处而彳于到如第2E圖所示之為二石夕化銘的金屬碎化物層 = 2(1),312(2)及312(3)(阻值約降至3〜8歐姆)。如此一 來,即完成本發明較佳實施例之金屬化製程。當然,於其 他實知例中’步驟14〇的第二熱處理亦可使用快速退火處 理來直接一次形成為二石夕化始的金屬石夕化物層。 如此一來,藉由步驟12〇中的第一熱處理而得到較佳 的沈積環境條件後,可有效降低後續一次或兩次的熱處理 中金屬矽化物的結塊現象而獲得均勻度較高之金屬矽化 物層。藉此,無須為了因應可能的結塊現象而增加金屬層 之沈積厚度’同時也避免漏電流的情形,而大幅提高金屬 矽化物的熱穩定性及電晶體元件的運作性能及產品良率。 本發明上述實施例所揭露之金屬化製程,係於沈積金 屬層之刚,對半導體基材進行一次熱處理以獲得較佳的沈 200915432 積環境條件,從而減少後續熱處理中金屬矽化物的結塊現 象。當然,如前述,本發明之金屬化製程可應用於任何積 體電路中來改善内連線或元件特性,以提升積體電路整體 效能,也使得製程範圍(process window)更有彈性。 綜上所述,雖然本發明已以較佳實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 D 利範圍所界定者為準。An annealing treatment is carried out in a nitrogen atmosphere (flow rate of about 1 to 10 slm, pressure of about 1 atm) at a temperature of 450 to 700 ° C for about 20 minutes to 3 hours. In other embodiments, the first heat treatment can also use a Rapid Thermal Processing (RTP) with a higher temperature setting. By performing the first heat treatment, the material on the semiconductor substrate 200 which is unfavorable to the subsequent metallization process can be effectively removed, and the surface structure of the semiconductor substrate 2〇〇 is repaired, so that the germanium-containing conductive region of the crystal element 220 is cleaner. smooth. U Conventional Metallization Process Prior to the metal deposition step, only the pre-clean steps, such as the use of hydrogen fluoride, are used to achieve the desired deposition environmental conditions on the surface of the semiconductor substrate. However, the pre-washing step has a rather limited effect on the removal of the aforementioned unfavorable substances and does not improve the surface structure of the semiconductor substrate. Thus, the present invention achieves (4) depositional environmental conditions by means of a heat treatment step. #然, Money step 13 〇 如 ' can also perform a pre-wash step. : In Fig. 2C, in step 13", after obtaining the secondary environmental conditions of the field by step (10), the desired metal 200915432 layer 310 can be formed by tantalum deposition. In the present embodiment, the metal layer 310 is illustrated by including a diamond (Co) as an example. In other embodiments, the metal layer 310 may also use, for example, titanium (ti), nickel (nickel), indium (molybdenum, Mo), or the like. Generally, an absorbing layer 320 and a diffusion barrier 330 may be formed on the metal layer 310 as shown in Fig. 2C. The absorbing layer 320, for example, uses titanium to help react the native oxide of the substrate 210 to reduce oxygen contamination during the subsequent formation of the metalloid. The diffusion barrier layer 330, for example, uses titanium nitride to reduce diffusion loss of the metal layer 31 后续 in subsequent thermal processes. In addition, it is worth mentioning that before the formation of the metal layer 310, an ion implantation may be provided on the desired ytterbium-containing conductive region, such as nitrogen ion (N) implantation, thereby changing the metal lithium in the subsequent heat treatment. The grain size improves the agglomeration. As shown in Fig. 2D, in step 140, the semiconductor substrate 2 covered with the metal layer 310, the absorbing layer 320, and the diffusion barrier layer 330 is subjected to a second heat treatment such as an annealing treatment at a temperature of 400 to 550 °C. Thereby, the metal layer 31〇 containing samarium cobalt is reacted with the gate G, the drain D and the source § to form a metal halide layer 311(1), 311(2) and 311(3) for recording a single telluride. ). "Please refer to Figure 1 and Figure 2, Figure 1 is an electron micrograph of a metal halide layer formed on a semiconductor substrate without pretreatment; Figure 2 is a metal halide formed on a pretreated semiconductor substrate. Electron micrograph of the layer after the layer. The semiconductor substrate including the first heat treatment and the nitrogen ion cloth value is not subjected to the annealing step of the second heat treatment, and the light-emitting region (Fig. 1) A rectangular and discontinuous metal telluride layer is formed on the trapezoidal region, that is, the dark color irregularity at the end of 200915432 on the light trapezoidal region in Fig. 1. (4) Pre-treatment of the nitrogen-ion implant at the first reading The time guide (four) material, after riding the second hot phase, is formed on the conductive area containing the stone (the light trapezoidal area in Fig. 2) to form a complete metal Wei layer, namely _ 2 light trapezoid The dark region at the upper end of the region. As can be seen from Fig. 1 and Fig. 2, after the first heat treatment and the nitrogen ion implantation of the semiconductor substrate, the agglomeration phenomenon of the metal lithium layer can be effectively improved. 2D map because of gold The resistance values of the germanide layers 311 ( 〗), 311 (2) and 311 (3) are still quite good, so the metal removal layer 311 (1), 1 (2) in the 2D image is selectively removed in a general manner. And (3) after the object, usually another temperature of about 7 〇〇 to 9 〇〇. The annealing of 匚 彳 到 到 如 如 如 如 如 如 如 金属 金属 金属 金属 金属 金属 金属 金属The chemical layer = 2 (1), 312 (2) and 312 (3) (the resistance is reduced to about 3 to 8 ohms). Thus, the metallization process of the preferred embodiment of the present invention is completed. Of course, other In the embodiment, the second heat treatment of the step 14 can also be directly formed into a metal-lithium layer of the first stone by using a rapid annealing treatment. Thus, by the first heat treatment in step 12 After obtaining better deposition environment conditions, the agglomeration of the metal telluride in the subsequent one or two heat treatments can be effectively reduced to obtain a metal halide layer with higher uniformity, thereby eliminating the need for possible agglomeration. Increasing the deposition thickness of the metal layer also avoids the leakage current, and greatly increases the heat of the metal telluride Qualitative and operating performance of the transistor component and product yield. The metallization process disclosed in the above embodiments of the present invention is performed on the semiconductor substrate immediately after the deposition of the metal layer to obtain a better environmental condition of the 200915432 product. , thereby reducing the agglomeration of the metal telluride in the subsequent heat treatment. Of course, as described above, the metallization process of the present invention can be applied to any integrated circuit to improve the characteristics of the interconnect or the component to improve the overall performance of the integrated circuit. The process window is also more flexible. In summary, although the invention has been disclosed above in the preferred embodiments, it is not intended to limit the invention. Various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention is defined by the scope defined in the appended claims.

11 200915432 【圖式簡單說明】 第1圖係依照本發明之金屬化製程之流程圖。 第2A〜2E圖係分別為依照本發明較佳實施例之金屬 化製程應用於電晶體元件時之製程剖面圖。 【主要元件符號說明】 200 :半導體基材 210 :基材 1 1 220 :電晶體元件 221 :閘極氧化層 222 :間隙壁 310 :金屬層 320 :吸收層 330 :擴散障礙層 311(1)、311(2)、311(3)、312(1)、312(2)、312(3):金 屬石夕化物層 I G:閘極 S :源極 D :汲極 1211 200915432 [Simple description of the drawings] Fig. 1 is a flow chart of a metallization process in accordance with the present invention. 2A to 2E are process cross-sectional views respectively showing a metallization process applied to a transistor element in accordance with a preferred embodiment of the present invention. [Description of main component symbols] 200: semiconductor substrate 210: substrate 1 1 220 : transistor element 221 : gate oxide layer 222 : spacer 310 : metal layer 320 : absorption layer 330 : diffusion barrier layer 311 (1), 311(2), 311(3), 312(1), 312(2), 312(3): metal lithium layer IG: gate S: source D: drain 12

Claims (1)

200915432 十、申請專利範圍: 1. 一種金屬化製程,包括: (a) 提供一半導體基材,該半導體基材具有至少一含矽 導電區域, (b) 提供一改善結塊現象(agglomeration phenomenon ) 之離子植入於該含矽導電區域; (c) 對該半導體基材進行一第一熱處理,以修復該半導 體基材表面; i (d)形成一金屬層於該半導體基材表面,該金屬層係覆 盖該含碎導電區域,以及 (e)對覆蓋有該金屬層之該半導體基材進行一第二熱 處理,以於該含石夕導電區域上形成一金屬石夕化物層。 2. 如申請專利範圍第1項所述之金屬化製程,其中於 該步驟(b)中,係提供一氮離子(N2+)植入於該含矽導電 區域。 3. 如申請專利範圍第1項所述之金屬化製程,其中於 4 : 1 該步驟(a)及該步驟(d)之間更包括: 對該半導體基材進行一預洗(pre-clean )步驟。 4. 如申請專利範圍第1項所述之金屬化製程,其中於 該步驟(c)中,該第一熱處理係為一退火處理(annealing) 或一快速退火處理(Rapid Thermal Processing, RTP )。 5. 如申請專利範圍第4項所述之金屬化製程,其中於 該步驟(c)中,該半導體基材係於壓力為實質上1 atm、溫 度為實質上450至700°C以及流速為實質上1至10 slm之 13 200915432 一氮氣環境中進行實質上20至80分鐘之退火處理。 6. 如申請專利範圍第1項所述之金屬化製程,其中於 該步驟(e)之後更包括: (f)對該半導體基材進行一第三熱處理,以形成電阻值 低於該金屬矽化物之另一金屬矽化物。 7. 如申凊專利範圍第6項所述之金屬化製程,其中該 第三熱處理係為實質上700至900〇C之一退火處理。 8. 如申請專利範圍第1項所述之金屬化製程,i 1 該步驟(e)之後更包括: 、 至少移除未與該含矽導電區域反應之部分之該金屬 層。 9. 如申請專利範圍第1項所述之金屬化製程,其中於 該步驟(d)及該步驟(e)之間更包括: 形成一擴散障礙層(diffusion barrier )於該金屬層上。 10. 如申請專利範圍第9項所述之金屬化製程,其中 該擴散障礙層包含氮化鈦(TiN)。 { I U.如申請專利範圍第1項所述之金屬化製程,其中 於該步驟(d)及該步驟(e)之間更包括: 形成一吸收層’以吸收該半導體基材表面之原生氧化 物。 12. 如申請專利範圍第11項所述之金屬化製程,其中 該吸收層包含鈦(Ti)。 13. 如申請專利範圍第1項所述之金屬化製程,其中 於該步驟(d)中,該金屬層係選自由鈷(c〇balt, c〇)、鈦 200915432 m’Ti)、鎳(nickei,Ni)及銦(m〇iybdenum,Mo) 所組成的族群。 _ 14.如申請專利範圍第丨項所述之金屬化製程,其中 於該步驟(a)中,該半導體基材更具有一絕緣層上矽 (silicon-〇n_wafer ’ s〇I)基材。 15.如申請專利範圍第丨項所述之金屬化製程,其中 於《亥步驟(e)中’該第二熱處理係為實質上4〇〇至55〇。〇之 广、退火處理或一快速退火處理。 I 16.—金屬化製程,包括: (a) 提供一半導體基材,該半導體基材具有至少一 區域; (b) 植入氮離子至該導電區域内; (c) 對δ亥半導體基材進行一第一熱處理,以修復該半 體基材表面; (d) 形成一金屬層於該半導體基材表面,該金屬層覆蓋 該導電區域; (e) 形成一擴散障礙層於該金屬層上;以及 ⑴對覆蓋有該金屬層之該半導體基材進行一第二熱 處理,以於該導電區域上形成一金屬化合層,修復後之該 半導體金屬層表面係用以減緩進行該第二熱處理時該金 屬化合層之結塊現象。 π.如申請專利範圍第16項所述之金屬化製程,其中 於該步驟(a)中,該導電區域包括一含矽導電區域。、 18.如申睛專利範圍第17項所述之金屬化製程,其中 15 200915432 ;v驟⑴中,该金屬化合層包括一金屬石夕化物層。 19.如申請專利範圍第16項所述之金屬化製程,其中 於該步驟(a)及該步驟(d)之間更包括: 對該半導體基材進行一預洗步驟。 > 20,如申請專利範圍第16項所述之金屬化製程,其中 於邊步驟(c)中,該第一熱處理係為一退火處理或一快速退 火處理。 21. 如申請專利範圍第20項所述之金屬化製程,其中 於該^驟(c)中,該半導體層係於壓力為實質上1 Mm、溫 度,貝夤上450至700。〇以及流速為實質上1至1〇 sim之 一氮氣環境中進行約20至80分鐘之退火。 22. 如申請專利範圍第16項所述之金屬化製程,其中 於該步驟(f)之後更包括: (g)對該半導體基材進行一第三熱處理,以形成電阻值 低於該金屬矽化物之另一金屬矽化物。 23. 如申請專利範圍第22項所述之金屬化製程,其中 遠第二熱處理係為實質上700至900°C之一退火處理。 24. 如申睛專利範圍第16項所述之金屬化製程,其中 於該步驟(f)之後更包括: 至少移除未與該含矽導電區域反應之部分之該金屬 層。 25. 如申請專利範圍第π項所述之金屬化製程,其中 於該步驟(d)及該步驟(e)之間更包括: 形成一吸收層,以吸收該半導體基材表面之原生氧化 200915432 物。 26.如申請專利範圍第16項所述之金屬化製程,其中 於該步驟⑴中,該第二熱處理係為實質上400至550°C之 一退火處理。 17200915432 X. Patent Application Range: 1. A metallization process comprising: (a) providing a semiconductor substrate having at least one germanium-containing conductive region, and (b) providing an agglomeration phenomenon Implanting ions into the germanium-containing conductive region; (c) performing a first heat treatment on the semiconductor substrate to repair the surface of the semiconductor substrate; i (d) forming a metal layer on the surface of the semiconductor substrate, the metal The layer covers the broken conductive region, and (e) performs a second heat treatment on the semiconductor substrate covered with the metal layer to form a metallization layer on the conductive region. 2. The metallization process of claim 1, wherein in the step (b), a nitrogen ion (N2+) is implanted in the germanium-containing conductive region. 3. The metallization process as claimed in claim 1, wherein the step (a) and the step (d) further comprises: pre-cleaning the semiconductor substrate (pre-clean) )step. 4. The metallization process of claim 1, wherein in the step (c), the first heat treatment is an annealing or a Rapid Thermal Processing (RTP). 5. The metallization process of claim 4, wherein in the step (c), the semiconductor substrate is at a pressure of substantially 1 atm, a temperature of substantially 450 to 700 ° C, and a flow rate of A substantially 1 to 10 slm of 13 200915432 is substantially annealed for 20 to 80 minutes in a nitrogen atmosphere. 6. The metallization process of claim 1, wherein after the step (e), further comprising: (f) performing a third heat treatment on the semiconductor substrate to form a resistance lower than the metalization Another metal halide of matter. 7. The metallization process of claim 6, wherein the third heat treatment is an annealing process substantially one of 700 to 900 〇C. 8. The metallization process as claimed in claim 1, wherein the step (e) further comprises: removing at least the metal layer that is not reactive with the germanium-containing conductive region. 9. The metallization process of claim 1, wherein the step (d) and the step (e) further comprise: forming a diffusion barrier on the metal layer. 10. The metallization process of claim 9, wherein the diffusion barrier layer comprises titanium nitride (TiN). {I U. The metallization process of claim 1, wherein between the step (d) and the step (e), the method further comprises: forming an absorbing layer to absorb the native surface of the semiconductor substrate Oxide. 12. The metallization process of claim 11, wherein the absorbing layer comprises titanium (Ti). 13. The metallization process of claim 1, wherein in the step (d), the metal layer is selected from the group consisting of cobalt (c〇balt, c〇), titanium 200915432 m'Ti), and nickel ( A group of nickei, Ni) and indium (m〇iybdenum, Mo). 14. The metallization process of claim 2, wherein in the step (a), the semiconductor substrate further comprises a silicon-on-wafer s(I) substrate. 15. The metallization process of claim 2, wherein the second heat treatment in the step (e) is substantially 4 to 55 Å. Wide, annealed or a fast annealing treatment. I 16. A metallization process comprising: (a) providing a semiconductor substrate having at least one region; (b) implanting nitrogen ions into the conductive region; (c) δ ray semiconductor substrate Performing a first heat treatment to repair the surface of the semiconductor substrate; (d) forming a metal layer on the surface of the semiconductor substrate, the metal layer covering the conductive region; (e) forming a diffusion barrier layer on the metal layer And (1) performing a second heat treatment on the semiconductor substrate covered with the metal layer to form a metal compound layer on the conductive region, and repairing the surface of the semiconductor metal layer to slow down the second heat treatment The agglomeration of the metal compound layer. π. The metallization process of claim 16, wherein in the step (a), the conductive region comprises a germanium-containing conductive region. 18. The metallization process of claim 17, wherein the metal compound layer comprises a metallization layer. 19. The metallization process of claim 16, wherein the step (a) and the step (d) further comprise: performing a pre-washing step on the semiconductor substrate. <20. The metallization process of claim 16, wherein in the step (c), the first heat treatment is an annealing treatment or a rapid annealing treatment. 21. The metallization process of claim 20, wherein in the step (c), the semiconductor layer is at a pressure of substantially 1 Mm, a temperature of 450 to 700 on the shellfish. Annealing is carried out for about 20 to 80 minutes in a nitrogen atmosphere at a flow rate of substantially 1 to 1 〇 sim. 22. The metallization process of claim 16, wherein after the step (f), further comprising: (g) performing a third heat treatment on the semiconductor substrate to form a resistance lower than the metal deuteration Another metal halide of matter. 23. The metallization process of claim 22, wherein the far second heat treatment is an annealing process substantially one of 700 to 900 °C. 24. The metallization process of claim 16, wherein after the step (f), the method further comprises: removing at least the metal layer that is not reactive with the germanium-containing conductive region. 25. The metallization process of claim π, wherein between step (d) and step (e), further comprising: forming an absorber layer to absorb native oxide on the surface of the semiconductor substrate 200915432 Things. 26. The metallization process of claim 16, wherein in the step (1), the second heat treatment is an annealing treatment of substantially 400 to 550 °C. 17
TW097114537A 2007-09-20 2008-04-21 Metallization process TWI393187B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/902,228 US20090081859A1 (en) 2007-09-20 2007-09-20 Metallization process

Publications (2)

Publication Number Publication Date
TW200915432A true TW200915432A (en) 2009-04-01
TWI393187B TWI393187B (en) 2013-04-11

Family

ID=40472121

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097114537A TWI393187B (en) 2007-09-20 2008-04-21 Metallization process

Country Status (3)

Country Link
US (1) US20090081859A1 (en)
CN (1) CN101393855B (en)
TW (1) TWI393187B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117744B (en) * 2010-01-05 2013-04-03 无锡华润上华半导体有限公司 Method for forming self-aligned metallic silicide
CN102142366B (en) * 2010-01-28 2013-04-03 无锡华润上华半导体有限公司 Method for forming self-aligned metallic silicide

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834800A (en) * 1995-04-10 1998-11-10 Lucent Technologies Inc. Heterojunction bipolar transistor having mono crystalline SiGe intrinsic base and polycrystalline SiGe and Si extrinsic base regions
KR100367740B1 (en) * 2000-08-16 2003-01-10 주식회사 하이닉스반도체 Method for fabricating gate oxide film
US6890854B2 (en) * 2000-11-29 2005-05-10 Chartered Semiconductor Manufacturing, Inc. Method and apparatus for performing nickel salicidation
US6514843B2 (en) * 2001-04-27 2003-02-04 International Business Machines Corporation Method of enhanced oxidation of MOS transistor gate corners
US7396697B2 (en) * 2003-04-28 2008-07-08 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and method for manufacturing the same
US7119012B2 (en) * 2004-05-04 2006-10-10 International Business Machines Corporation Stabilization of Ni monosilicide thin films in CMOS devices using implantation of ions before silicidation
US7544610B2 (en) * 2004-09-07 2009-06-09 International Business Machines Corporation Method and process for forming a self-aligned silicide contact
US7435651B2 (en) * 2005-09-12 2008-10-14 Texas Instruments Incorporated Method to obtain uniform nitrogen profile in gate dielectrics

Also Published As

Publication number Publication date
CN101393855A (en) 2009-03-25
CN101393855B (en) 2012-12-12
TWI393187B (en) 2013-04-11
US20090081859A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP2891092B2 (en) Method for manufacturing semiconductor device
US7629273B2 (en) Method for modulating stresses of a contact etch stop layer
US7829461B2 (en) Method for fabricating semiconductor device
US7015126B2 (en) Method of forming silicided gate structure
US7396767B2 (en) Semiconductor structure including silicide regions and method of making same
US8173540B2 (en) Methods of forming silicide regions and resulting MOS devices
US20070037373A1 (en) Salicide process utilizing a cluster ion implantation process
US7670885B2 (en) Thin-film semiconductor device and method for manufacturing the same
US20070264786A1 (en) Method of manufacturing metal oxide semiconductor transistor
KR100533891B1 (en) Method of forming a silicide layer using metallic impurities and pre-amorphization
US7795119B2 (en) Flash anneal for a PAI, NiSi process
WO2012071841A1 (en) Methods for chemical mechanical planarization and fabricating gate last
US8372750B2 (en) Method and system for improved nickel silicide
US6492264B2 (en) Semiconductor device having a silicide layer with silicon-rich region and method for making the same
US7785949B2 (en) Method for forming semiconductor device using multi-functional sacrificial dielectric layer
US7241674B2 (en) Method of forming silicided gate structure
TW200915432A (en) Metallization process
US6653227B1 (en) Method of cobalt silicidation using an oxide-Titanium interlayer
US7800226B2 (en) Integrated circuit with metal silicide regions
US6342440B1 (en) Method for forming low-leakage impurity regions by sequence of high-and low-temperature treatments
US6350677B1 (en) Method for forming a self-aligned silicide layer
KR100678318B1 (en) Method of fabricating fully silicided gate
JP3161379B2 (en) Semiconductor device and method of manufacturing semiconductor device
TWI222141B (en) Semiconductor devices having a metal silicide bi-layer and the method for fabricating the same
JPH09162396A (en) Semiconductor device manufacturing method