TW200914814A - Method and apparatus for estimating the content of an analyte in a multi-layer medium - Google Patents

Method and apparatus for estimating the content of an analyte in a multi-layer medium Download PDF

Info

Publication number
TW200914814A
TW200914814A TW96135995A TW96135995A TW200914814A TW 200914814 A TW200914814 A TW 200914814A TW 96135995 A TW96135995 A TW 96135995A TW 96135995 A TW96135995 A TW 96135995A TW 200914814 A TW200914814 A TW 200914814A
Authority
TW
Taiwan
Prior art keywords
source
detector
analyte
content
medium
Prior art date
Application number
TW96135995A
Other languages
Chinese (zh)
Inventor
Run-Ze Wu
Gert T Hooft
Thomas Vollmer
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200914814A publication Critical patent/TW200914814A/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The invention relates to an apparatus for non-invasively estimating the content of an analyte in a multi-layer medium, based on spectral measurements. The apparatus comprises: a radiation source adapted to generate spectrums of electromagnetic radiation and to transmit the spectrums to the multi-layer medium; a detector adapted to detect spectrums of reflected radiation from the multi-layer medium and to generate detection signals representing the detected radiation; and a data processing means adapted to derive from the detected signals a plurality of quantities representing the effective attenuation coefficients of the multi-layer medium, and to estimate the content of the analyte from the plurality of quantities, based on a regression model.; As the estimation of the content of the analyte is based on a plurality of quantities representing the effective attenuation coefficients, which change with the incident wavelengths of the spectrum of the electromagnetic radiation and the source-detector distance between irradiation areas and detection areas, the invention improves the precision of the estimation of the analyte content in a multi-layer medium.

Description

200914814 九、發明說明: 【發明所屬之技術領域】 本發明係關於對介質中分析物之非侵入監視。確切言 之,本發明係關於一種用於在利用近紅外光能量照射多層 介質(諸如皮膚組織)的基礎上,非侵入地估計多層介質中 分析物含量的設備和方法。 【先前技術】 近紅外組織光譜學係一種有前途的非侵入技術,該技術 之量測基於利用在700-2500奈米波長範圍中之近紅外能量 來照射組織。能量在皮膚的區域上聚焦,並根據皮膚組織 之散射及吸收屬性而傳播。因而,偵測到反射或透射之能 量’並提供關於所遇到之組織容積的資訊。 先前技術文件WO 20070605 83公開了一種用於對有效衰 減係數為~(A)之渾濁介質中之至少一種分析物的濃度進 行非侵入量測之方法。根據W〇 2007060583,渾濁介質中 光的散射增加了有效光學路徑長度,導致有效衰減係數變 得比吸收係數大报多。在渾濁介質上之分光鏡透射或反射 量測中’所導出之衰減與成分之吸收係數總和不成比例。 因而’簡單的線性回歸分析變得無效。在W〇 2〇〇7〇6〇583 中之方法包括以下步驟:借助於數個輻射源、用電磁韓射 之光譜照射渾濁介質;借助於數個偵測器來偵測自渾濁介 質反射之該電磁輕射之反射光譜,以便在至少兩個不同 源-彳貞測器距離〜處偵測反射光譜,如此選擇該距離以使 知A,2 >> 1/~ ;判定代表與源-探測器距離(θ 2)相對應之反 125154.doc 200914814 射中之相對變化的第 ^ , ------- 量,並自該第一量中導出代表有效 =係數~_二量;以及根據該第二量判定該濃度。 斤提π義之方法有效地使得所量測之光譜在渾濁介質 *各種刀析物中呈線性,此允許簡單的線性回歸分 斤此藉由有效介質厚度之明智選擇,以及有效吸收係數 之可替換定義而實現。200914814 IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present invention relates to non-intrusive monitoring of analytes in a medium. Specifically, the present invention relates to an apparatus and method for non-invasively estimating the analyte content in a multilayer medium based on the use of near-infrared light energy to illuminate a multilayer medium, such as skin tissue. [Prior Art] Near-infrared tissue spectroscopy is a promising non-invasive technique based on measuring the near-infrared energy in the wavelength range of 700-2500 nm to illuminate tissue. Energy is focused on the area of the skin and propagates according to the scattering and absorption properties of the skin tissue. Thus, the energy of reflection or transmission is detected' and provides information about the volume of tissue encountered. The prior art document WO 20070605 83 discloses a method for non-invasive measurement of the concentration of at least one analyte in a turbid medium having an effective attenuation coefficient of ~(A). According to W〇 2007060583, the scattering of light in a turbid medium increases the effective optical path length, resulting in an effective attenuation coefficient that is greater than the absorption coefficient. The attenuation derived from the transmission or reflection measurements of the spectroscope on a turbid medium is not proportional to the sum of the absorption coefficients of the components. Thus 'simple linear regression analysis becomes ineffective. The method in W〇2〇〇7〇6〇583 includes the steps of: illuminating the turbid medium with a plurality of radiation sources, using a spectrum of electromagnetic radiance; detecting the turbid medium reflection by means of a plurality of detectors The reflected spectrum of the electromagnetic light is such that the reflectance spectrum is detected at at least two different source-detector distances, such that the distance is selected such that the A, 2 >>1/~; - Detector distance (θ 2) corresponds to the opposite of the 125154.doc 200914814 relative change in the number of ^, -------, and derives from the first amount represents the effective = coefficient ~ _ two And determining the concentration based on the second amount. The method of extracting π is effective to make the measured spectrum linear in various turbid media* various knives, which allows a simple linear regression to be arbitrarily selected by the effective medium thickness, and the effective absorption coefficient can be replaced. Implemented by definition.

上.、、、而,在WO 2007060583中公開之方法並未解決當使用 :方去來估什活體之多層介質中之分析物(例&,皮膚組 織中的水)時(其中情況非常複雜)的問題。首先,真皮厚度 並非常量。除了脫水料,對皮膚厚度有所貢獻之因素可 以包括年齡、月經等。皮下脂肪細胞包含的水比真皮少, 而脂肪層之厚度具有高度的個性特色。應該仔細考慮該等 複雜性;否則將在量測中引入顯著誤差。 【發明内容】The method disclosed in WO 2007060583 does not solve the problem when using: to estimate the analyte in the multi-layer medium of the living body (example & water in the skin tissue) (the situation is very complicated) )The problem. First, the thickness of the dermis is not constant. In addition to the dehydrated material, factors contributing to skin thickness may include age, menstruation, and the like. Subcutaneous fat cells contain less water than dermis, while the thickness of the fat layer has a high degree of personality. These complexities should be carefully considered; otherwise significant errors will be introduced in the measurements. [Summary of the Invention]

在眾多目的中 入估計多層介質 度。 ,本發明之一個目的係提供一種用於非侵 中分析物之含量的設備,其提高了量化精 為此,本發明提供—種用於基於光譜量測來非侵入地估 計多層介質中分析物之含量的設備,其包括: 輻射源’用於生成與複數個人射波長相對應之電磁輕射 光譜,並適用於向多層介質發射該光譜; 偵測器,用於偵測自該多層介質反射之光譜並生成表 示所補測韓射之偵測信號,#中’在該多層介質上配置有 該輻射源之照射區域及㈣測器之相區域,以便 125154.doc 200914814 複數個入射波長之各入射波長, , πο 生成與至少兩個不同源- 产— 〜之偵測仏旒,該源-偵測器距離定義為 在该照射區域與偵測區域 八您π各自的距離,而該各源-禎 測器距離遠遠大於該多層 層;丨買之有效哀減係數的倒數丨以 及 資料處理裝置,用於自偵測之信號中導出表示多層介質 有衰減係數的複數個量,並且用於基於回歸模型自複 數個量甲估計出分析物之含量。 由於基於表不有效衰減係、數之複數個量來估計分析物含 罝’其t該複數個量隨著電磁輻射光譜之人射波長而變 化’因而本發明提高了量化精度。 在本發明之一個實施方式中,源-偵測器距離可調整, 以使照射區域與偵測區域之間的輻射穿透深度到達多層介 質中之不同層。藉由考慮來自不同多層之貢獻,本發明進 一步提尚了對多層介質中分析物之估計精度。 本發明之另一目的係提供一種用於非侵入地估計多層介 質中分析物之含量的方法,該方法提高了量化精度。 為此’本發明提供一種用於基於光譜量測來非侵入地估 计多層介質中分析物之含量的方法,該方法包括以下步 驟: 用由輻射源產生之與複數個入射波長相對應之電磁輻射 光譜來照射該多層介質; 利用偵測器來偵測表示自該多層介質反射之光譜之對應 信號’以便針對該複數個入射波長中之各入射波長,基於 125154.doc 200914814 兩個不同源-偵測器距離對該反射光譜進行偵測,其中, 該源-偵測器距離選擇為遠遠大於該多層介質之有;^衰減 係數的倒數; 自所偵測之信號巾導出與複數個人射波長及源-谓測器 距離相對應且表示多層介質之有效衰減係數的複數個量; 以及 基於回歸模型來根據複數個量估計分析物之含量。 此外,本發明提供—種待由電腦裝置裝載之電腦程式產 品,其包括用於基於光譜量測來估計多層介質中分析物之 含罝的指彳’該電腦裝置包括處理單元及記憶體,電腦程 式產品在被裝載之後為該處理單元提供執行以下任務之能 力: 獲取表示與複數個入射波長相對應且自多層介質所反射 之輻射之光譜的彳貞測資料; 自偵測負料中導出表不與複數個入射波長及源_偵測器 距離相對應之多層介質之有效衰減係數的複數個量;以及 基於回歸模型,根據複數個量來估計分析物之含量。 可以由熟習此項技術者根據本描述來實現與該裝置之修 改及改變相對應的對正被描述之裝置、方法及電腦之修改 及改變。 【實施方式】 圖1示出根據本發明之非侵入生物學分析物監視器丨之示 意圖示。非侵入生物學分析物監視器丨包括: 台2,以及在後者邊界5上之多層介質4上定位之探測器控3制 125154.doc -10- 200914814 例如’在皮膚組織之脫水監視器的情況下,該多層介質4 為患者皮膚。皮膚組織4包括3層:表皮4-1、真皮4-2及皮 下組織4-3(脂肪等)。在探測器3與邊界$之間可以提供耦合 劑’例如高度分散之凝膠(未圖示)。 監視器控制台2包括光源(例如燈),燈6的光經由光學器 件7聚焦於波導光纖束8_1、8_2、8-3、8-4、8-5及8-6上(源 光纖束)’該等波導光纖束實質上延伸至多層介質4之邊 界。在光學器件7與波導光纖束8_丨、8_2、8-3、8-4、8-5 及8-6之激勵末端8c之間提供了遮蔽開關9,可以控制該遮 蔽開關9以便一次激勵8_丨、8_2、8_3、8_4、8_5及8_6中之 〜者對於脫水監視器’將在930至1750 nm之波長範 圍内執行光學操作。具有範圍以外之較短波長之光線可以 藉由配置在燈6與波導光纖束之激勵末端8c之間的路徑中 的由Si襯底(在圖中未圖示)形成之半導體濾波器濾掉。 在偵測路徑中,非侵入生物學分析物監視器1進一步包 括波導光纖束10(偵測光纖),其將第一末端及探測器”目 連且由此實質上延伸至多層介質4之邊界5。波導光纖束 1〇之^二末端與包括在監視器控制台2内部之單色器llit 接。早色器11可操作地與探測器陣列12連接,而後者進一 步與電子單心連接。電子單㈣進-步包括資料處理單 :i。5該貝料處料元15適用於對制器陣列12之輸出進 :、乍-另外,151視器控制台2可操作地連接到輸出裝置 (:如顯示器U)及輸入襄置16(例如CD_R〇M驅動器及網路 )該輸入裝置16適用於分別t賣取如之適當資料 125154.doc 200914814 載體;|質或來自電腦網路之資料流,用於向資料處理裝置 15提供具有可執行指令之電腦程式產品,此在下文中將變 得顯而易見。Multi-layer media is estimated for a number of purposes. It is an object of the present invention to provide an apparatus for non-invasive analyte content which enhances quantification. To this end, the present invention provides for non-invasive estimation of analytes in a multilayer medium based on spectrometry. a device comprising: a radiation source 'for generating an electromagnetic light spectrum corresponding to a plurality of individual wavelengths and adapted to emit the spectrum to the multilayer medium; a detector for detecting reflection from the multilayer medium The spectrum is generated to generate a detection signal indicating the compensated Korean shot, #中' is disposed on the multilayer medium with the irradiation area of the radiation source and the phase area of the detector, so as to be 125154.doc 200914814 The incident wavelength, πο is generated and detected by at least two different sources, the source-detector distance, which is defined as the distance between the illumination area and the detection area, and the respective sources - the distance of the detector is much larger than the multi-layer; the reciprocal of the effective mitigation coefficient of 丨 buy and the data processing device are used to derive the complex attenuation coefficient of the multilayer medium from the detected signal An amount, based on the regression model and the plurality of the complex from the estimated amount of content A analytes. The present invention improves the quantization accuracy by estimating the analyte 罝' based on a table of ineffective attenuation systems and a plurality of quantities, the t number of which varies with the wavelength of the human radiation of the electromagnetic radiation spectrum. In one embodiment of the invention, the source-detector distance is adjustable such that the depth of radiation penetration between the illuminated area and the detected area reaches a different layer in the multilayer medium. The present invention further provides an estimate of the accuracy of analytes in multilayer media by considering contributions from different layers. Another object of the present invention is to provide a method for non-invasively estimating the content of an analyte in a multilayer medium, which method improves the quantization accuracy. To this end, the present invention provides a method for non-invasively estimating the amount of an analyte in a multilayer medium based on spectrometry, the method comprising the steps of: using electromagnetic radiation generated by a radiation source corresponding to a plurality of incident wavelengths A spectrum is used to illuminate the multilayer medium; a detector is used to detect a corresponding signal representing a spectrum reflected from the multilayer medium' to target each of the plurality of incident wavelengths, based on 125154.doc 200914814 two different sources-detection The detector distance is detected by the distance of the detector, wherein the source-detector distance is selected to be much larger than the multi-layer medium; the reciprocal of the attenuation coefficient; the signal towel derived from the detected signal and the complex personal wavelength And a source-predator distance corresponding to and representing a plurality of quantities of the effective attenuation coefficient of the multilayer medium; and estimating the content of the analyte based on the plurality of quantities based on the regression model. Furthermore, the present invention provides a computer program product to be loaded by a computer device, comprising a fingerprint for estimating a flaw in an analyte based on a spectral measurement, the computer device comprising a processing unit and a memory, a computer The program product, after being loaded, provides the processing unit with the ability to perform the following tasks: Obtaining speculative data indicative of the spectrum of radiation reflected from the plurality of incident wavelengths and reflected from the multilayer medium; a plurality of quantities of effective attenuation coefficients of the multilayer medium that do not correspond to a plurality of incident wavelengths and source-detector distances; and based on the regression model, the analyte content is estimated based on the plurality of quantities. Modifications and alterations of the devices, methods, and computers that are described in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; [Embodiment] Fig. 1 shows a schematic illustration of a non-invasive biological analyte monitor according to the present invention. The non-invasive biological analyte monitor includes: a table 2, and a detector control positioned on the multilayer medium 4 on the boundary 5 of the latter. 125154.doc -10- 200914814 For example, in the case of a dehydration monitor for skin tissue Next, the multilayer medium 4 is the skin of the patient. The skin tissue 4 includes three layers: epidermis 4-1, dermis 4-2, and subcutaneous tissue 4-3 (fat, etc.). A coupling agent, such as a highly dispersed gel (not shown), may be provided between the detector 3 and the boundary $. The monitor console 2 includes a light source (e.g., a lamp), and the light of the lamp 6 is focused via the optical device 7 on the waveguide fiber bundles 8_1, 8_2, 8-3, 8-4, 8-5, and 8-6 (source fiber bundle). The waveguide fiber bundles extend substantially to the boundary of the multilayer dielectric 4. A shadow switch 9 is provided between the optical device 7 and the excitation ends 8c of the waveguide fiber bundles 8_丨, 8_2, 8-3, 8-4, 8-5 and 8-6, which can be controlled for one excitation The lighter of the 8_丨, 8_2, 8_3, 8_4, 8_5, and 8_6 will perform optical operations in the wavelength range of 930 to 1750 nm for the dehydration monitor. Light having a shorter wavelength outside the range may be filtered by a semiconductor filter formed of a Si substrate (not shown) disposed in a path between the lamp 6 and the excitation end 8c of the waveguide fiber bundle. In the detection path, the non-invasive biological analyte monitor 1 further includes a waveguide fiber bundle 10 (detection fiber) that views the first end and the detector and thereby extends substantially to the boundary of the multilayer medium 4 5. The waveguide fiber bundle 1 is connected to a monochromator 11it included in the monitor console 2. The pre-colorator 11 is operatively coupled to the detector array 12, which is further coupled to the electronic single core. The electronic single (four) advance step includes a data processing list: i. 5 the material at the bedding material is suitable for the output of the controller array 12: 乍 - In addition, the 151 visual device console 2 is operatively connected to the output device (: such as display U) and input device 16 (such as CD_R〇M driver and network). The input device 16 is suitable for respectively selling the appropriate information 125154.doc 200914814 carrier; quality or data from the computer network The stream is used to provide the data processing device 15 with a computer program product having executable instructions, as will become apparent hereinafter.

圖2不出在根據圖丨之非侵入生物學分析物監視器之探測 器3中之波導光纖之第-配置的示意圖示。在圖2中,示出 從下方觀察探測器3,,在圖2中,探測器3之側部面向多 層”貝4之邊界5。在所示實施方式中源光纖束8_丨、、 8 3、8-4、8-5及8-6同心地環繞中心偵測器光纖1〇而配 置,以便在源輻射區域與偵測區域A、A、A、八、八及 A之間各自之源-偵測器距離不同於在源束8_丨、82、8_3、 8-4、8-5及8-6與中心偵測器光纖1〇之間的距離。 偵测器光纖1 〇為具有核心直徑d之多模光纖。如此選擇 源光纖束8-1、8-2、8-3、8-4、8-5及8-6,以使得源-偵測 器距離遠遠大於多層介質之有效衰減係數~的倒數,例 如A »1/从#,尤其具有大約為1〇之倍數。此外,每個源光 纖束包括以該圓形樣式環繞中心偵測器光纖1〇而配置之複 數個多模光纖(未明確圖示)。環形半徑應該足夠大以便 A · 4 » 1 ’但又足夠小以盡可能多地取回信號。 在操作中,燈6用作輻射之主源,來根據遮蔽開關9之開 關狀態,經由波導光纖束8-丨、8_2、8_3、8_4、8_5及8_6來 照射多層介質4。此根據在多層介質4之邊界5上依次激化 之源束8-1、8-2、8-3、8_4、8-5及8-6之配置而創建了照射 區域。 即被吸收及散射,並 照射之光線在多層介質4中衰減 125154.doc -12- 200914814 且~不同方向從中反射。由多層介質所反射之部分光線由 光纖束1〇所採集’光纖束10連接到單色器η及制器陣列 12用於里測反射光譜雄),例如,來自多層介質*之反射輕 射之強度反射係數或反射比。㉟測器陣列12之輸出傳輪到 電子單元13,其將進行放大,借助於資料處理裝置。進行 信號處理,並經由顯示器14進行使用者顯示。為此,例如 藉由借助於輸入裝置16及介質17來提供用於由資料處理裝 置執行之適當程式代碼,資料處理裝置15適用於對偵測器 陣列12之輸出信號進行操作來導出表示多層介質之有效 減係數的/^量。 在參考!中描述了用於導出表示多層介質之有效衰減係 數的量的詳細方法。假設仏表示總吸收係數,〜表示降 低之散射係數,根據參考丨之推導,尤其結合 2__3中之等式7、等式u及等式12,量取咖定義 為: 5(Λ,ρ) = d\n{R(X,p)) dp 3ΜαμΙFigure 2 is a schematic illustration of the first configuration of the waveguide fiber in the detector 3 of the non-invasive biological analyte monitor according to the Figure. In Fig. 2, the detector 3 is shown viewed from below, in Fig. 2, the side of the detector 3 faces the boundary 5 of the multilayer "shell 4. In the illustrated embodiment the source bundle 8_丨, 8 3, 8-4, 8-5, and 8-6 are concentrically arranged around the center detector fiber 1 以便 so as to be between the source radiation area and the detection areas A, A, A, 八, 八, and A The source-detector distance is different from the distance between the source beams 8_丨, 82, 8_3, 8-4, 8-5, and 8-6 and the center detector fiber 1〇. a multimode fiber having a core diameter d. The source fiber bundles 8-1, 8-2, 8-3, 8-4, 8-5, and 8-6 are selected such that the source-detector distance is much larger than the multilayer The reciprocal of the effective attenuation coefficient of the medium, such as A » 1 / #, especially having a multiple of about 1 。. In addition, each source bundle includes a circular pattern surrounding the center detector fiber 1 〇 a plurality of multimode fibers (not explicitly shown). The radius of the ring should be large enough for A · 4 » 1 ' but small enough to retrieve as much of the signal as possible. In operation, lamp 6 is used as the primary source of radiation, According to the shadow In the switching state of the switch 9, the multilayer dielectric 4 is irradiated via the waveguide bundles 8-丨, 8_2, 8_3, 8_4, 8_5 and 8_6. This is based on the source beams 8-1, 8- which are sequentially excited on the boundary 5 of the multilayer dielectric 4. 2, 8-3, 8_4, 8-5, and 8-6 configurations create an illumination area. The light that is absorbed and scattered, and the illumination is attenuated in the multilayer medium 4 125154.doc -12- 200914814 and ~ different directions Reflected therefrom. Part of the light reflected by the multilayer medium is collected by the bundle 1 'the bundle 10 is connected to the monochromator η and the array 12 is used to measure the reflection spectrum. For example, the reflection from the multilayer medium* The intensity reflection coefficient or reflectance of the light shot. The output of the 35 detector array 12 is transmitted to the electronic unit 13, which will be amplified, processed by means of a data processing device, and displayed to the user via the display 14. For example, by providing the appropriate program code for execution by the data processing device by means of the input device 16 and the medium 17, the data processing device 15 is adapted to operate on the output signal of the detector array 12 to derive an effective representation of the multilayer medium. The amount of the subtraction factor. The detailed method for deriving the amount of effective attenuation coefficient representing the multilayer medium is described in Reference! Assume that 仏 denotes the total absorption coefficient and ~ denotes the reduced scattering coefficient, based on the derivation of the reference ,, especially Combining Equation 7, Equation u and Equation 12 in 2__3, the amount of coffee is defined as: 5(Λ,ρ) = d\n{R(X,p)) dp 3ΜαμΙ

(2) 其中散射(由降低《散射係數〆表#)相#於成分之吸收(由 吸收係數心表示)佔優勢,而源_偵測器距離p足夠大,例 如滿足p, »1/~。 為了計算伞,P),在第-照射區域及第二照射區域處照 射具有入射波長之兩個光譜,並且由單色器丨丨且之後由對 125154.doc -13- 200914814 應於兩個不同源-偵測器距離A及A(具有差值Λ)之偵測器 陣列12來量測在偵測區域中相對應的反射光譜。根據以下 等式實現ln(/?(;l))之推導: = ln(雄,))-in(雄)) dp ~—'~ (3) 相應地,可根據等式1及等式3來計算量外;1,,外)。 存在影響有效衰減係數~並由此影響量外人”)之許多因 素。一方面,吸收係數隨著入射波長變化,尤其在某些特 疋波長處出現吸收峰。另一方面,源-偵測器距離與影響 光谱吸收之光子滲透深度相關。源-偵測器越大,則光子 到達多層介質較深層之概率越高,且反之亦然。此外,在 活體中多介質之解剖學結構會對光子之行為施加影響。 以人類皮膚組織為例,在表皮、真皮以及皮下組織中之 水含罝不同。當對皮膚組織中之水含量進行估計時,重要 的疋仔細定義源-偵測器距離,從而調整在照射區域與偵 測區域之間的輻射滲透深度以便到達皮膚組織之不同層。 藉由定義及調整入射光譜之入射波長及源-偵測器距 離,可以獲得表示與每個入射光譜及源-偵測器距離相對 應之有效衰減係數的量外心巧)序列。 通常如此選擇入射波長,以便每個入射波長對應於自多 層介質反射輻射之光譜中之特徵譜線。為了到達人類皮膚 組織的三個層,可自93〇_1〇〇〇 nm、115〇_125〇 nm以及 14〇〇-15〇0 nm之範圍中選擇推薦入射波長44及岑可 選擇例如780 nm之參考波長Λ。用於參考。同時,源-偵測 125154.doc -14- 200914814 器距離丨P · D l f ( ^ 1 片,M及中之每兩者,例 如’母兩個相鄰光纖束可分別共同組成一組,以便用於生 成反射先幾信號對琳,‘,然後用於計算屯,p )。、 ,__〇5l}253 , . = u;; ,回f模型來估計水含量,&amp;表示為以下等式: (4) 其中心表示可根據校準調整及判定之回歸參數用於估計 之入射波長之數目為3’而用於量測之㈣測器對之數目 為W。表示用於參考之入射波長。將來自不同源他 路徑之吸收貢獻進行加權以調整水合狀態之估計。 應注意到,對人射波長之選擇係憑經驗進行的。為了使 回歸正確地進行’亦可以具有干擾分析物之波長。例如, 所關注分析物在人射波長v々及&amp;處具有♦值。干擾分 析物在{及乂4處具有吸收’則回歸係數在々處應為負,並 且因此應將其包括在激發光譜中。 由於在不同層、真皮及皮下脂肪組織中之散射係數不 同’當光子穿過多層組織之不同層之間的邊界時,預計出 現顯著變化。T以使用在邊界上之此種變化來定義校準中 之回歸係數。具體地’可以在具有不同等級之水含量之組 織、人體㈣(phantom)或標本上執行量測。可以使用濕式 化學分析設備、比例加權或其他分析工具來精確地量化該 等組織或標本之水含量。當準備人體模型時,可以指示該 人體模型之水含量。水含量將成為等式之參數。藉由 125154.doc -15- 200914814 向組織、人體模型或標本之邊界照射對應於不同入射波長 之光譜而由具有不同源-偵測器距離之债測器獲得之量測 給出Μ為心)的結果,從中可以得出等式4中的量5认心), 卜0,1,2,3 ’风2,3。在等式4中替代參數γ及量也户山則可(2) where scattering (by decreasing the "scattering coefficient 〆 table #) phase # is absorbed by the component (represented by the absorption coefficient of the heart), and the source_detector distance p is sufficiently large, for example, satisfying p, »1/~ . In order to calculate the umbrella, P), two spectra with incident wavelengths are illuminated at the first-irradiation region and the second illumination region, and are composed of a monochromator and then by 125154.doc -13- 200914814 in two different The source-detector distance detectors 12 from A and A (with a difference Λ) measure the corresponding reflection spectrum in the detection region. The derivation of ln(/?(;l)) is implemented according to the following equation: = ln(male,))-in(male)) dp ~—'~ (3) Correspondingly, according to Equation 1 and Equation 3 To calculate the amount; 1,, outside). There are many factors that affect the effective attenuation coefficient ~ and thus affect the amount of outsiders". On the one hand, the absorption coefficient varies with the incident wavelength, especially at some characteristic wavelengths. On the other hand, the source-detector The distance is related to the depth of photon penetration that affects the absorption of the spectrum. The larger the source-detector, the higher the probability that the photon will reach the deeper layer of the multilayer medium, and vice versa. In addition, the anatomical structure of the multi-media in the living body will be photons. The behavior of the human skin tissue, for example, in the epidermis, dermis and subcutaneous tissue, the water contains different sputum. When estimating the water content in the skin tissue, the important 疋 carefully define the source-detector distance, Thereby adjusting the depth of radiation penetration between the illumination area and the detection area to reach different layers of the skin tissue. By defining and adjusting the incident wavelength of the incident spectrum and the source-detector distance, the representation and each incident spectrum can be obtained. The source-detector distance corresponds to the amount of effective attenuation coefficient. The input wavelength is usually selected so that each incident wavelength corresponds. The characteristic line in the spectrum of the reflected radiation from the multilayer medium. In order to reach the three layers of human skin tissue, it can be from 93〇_1〇〇〇nm, 115〇_125〇nm and 14〇〇-15〇0 nm. Select the recommended incident wavelength 44 and 岑 select the reference wavelength Λ for example 780 nm for reference. At the same time, the source-detection 125154.doc -14- 200914814 distance 丨P · D lf ( ^ 1 piece, M and Each of the two, for example, 'parent two adjacent fiber bundles can be grouped together to generate a reflection of the first signal pair, ', and then used to calculate 屯, p)., , __〇5l }253 , . = u;; , return to the f model to estimate the water content, &amp; is expressed as the following equation: (4) The center indicates the number of incident wavelengths that can be estimated based on the calibration adjustment and determination of the regression parameters. 'The number of pairs of detectors used for measurement is W. Indicates the incident wavelength used for reference. The absorption contributions from different sources are weighted to adjust the hydration state. It should be noted that the wavelength of the human shot The choice is based on experience. In order to make the return correctly It may have a wavelength that interferes with the analyte. For example, the analyte of interest has a value of ♦ at the human wavelengths v々 and &amp; the interference analyte has absorption at {and 乂4' and the regression coefficient should be negative at 々. And therefore should be included in the excitation spectrum. Due to the different scattering coefficients in different layers, dermis and subcutaneous fat tissue, 'significant changes are expected when photons pass through the boundary between different layers of the multilayer structure. T is used This change in the boundary defines the regression coefficient in the calibration. Specifically, 'measurement can be performed on tissues, phantoms or specimens with different levels of water content. Wet chemical analysis equipment, ratio can be used Weighting or other analytical tools to accurately quantify the water content of such tissues or specimens. When the mannequin is prepared, the water content of the mannequin can be indicated. The water content will be a parameter of the equation. By 125154.doc -15- 200914814 illuminating the boundary of the tissue, mannequin, or specimen with spectra corresponding to different incident wavelengths and measuring by a detector with different source-detector distances gives the ambiguity as a heart) As a result, it can be concluded that the quantity 5 in the equation 4 is recognized, and the 0, 1, 2, 3 'wind 2, 3. In Equation 4, the substitution parameter γ and the amount are also

計算回歸參數%。 J 如上所述,當光子通過多層組織之不同層之間的邊界 時,由於不同層中之散射係數不同,自多層介質反射輻射 之光譜預計會出現顯著變化。該變化可以用於估計在可到 達渗透深度令介質之屛教1 ^ θ 例如’知肪層對於脂肪組織具 有較強譜線。不同層中之不均勻内容提供了估計層數之基 礎。此外,該變化及所估計之層數可以用以選擇所偵測之 信號及源侦測器距離以便估計分析物之内容,從而進一 步提高在多層介質中分析物含量之精確度。 圖3示出在根據本發明之非卢^ 邀、 灸Λ之非知入生物學分析物監視器中 之波導光纖之第二配置。在阁 ι直在圖3申,在6個同心圓配置中之 每兩個相鄰光纖走 # 士 Λ,Ρ/+1心成不同源-偵測器距離的5對光纖 束’其可特別為更多層介晳担 又夕層&quot;質k供更為詳細的資訊。較佳 地,各源-偵測器距離為相等的。Calculate the regression parameter %. J As mentioned above, when photons pass through the boundary between different layers of a multi-layered structure, the spectrum of the reflected radiation from the multilayered medium is expected to change significantly due to the different scattering coefficients in the different layers. This change can be used to estimate that the mediator's depth of penetration allows the media to have a strong spectral line for fat tissue. The uneven content in the different layers provides the basis for estimating the number of layers. In addition, the variation and the estimated number of layers can be used to select the detected signal and source detector distance to estimate the content of the analyte, thereby further increasing the accuracy of the analyte content in the multilayer medium. Fig. 3 shows a second configuration of a waveguide fiber in a non-incorporated biological analyte monitor according to the present invention. In the box, in Figure 3, each of the two adjacent fibers in the six concentric configurations is #士Λ, Ρ/+1 is a different source-detector distance of 5 pairs of fiber bundles' which can be special For more layers, the syllabus and the quality k are provided for more detailed information. Preferably, the source-detector distances are equal.

熟習此項技術者瘅理M A ^ 應理解,該兩個光纖束對可為不連續 的。當然,在實路庙田Λ μ ^以使用較多或較少的同心圓配 置。 ^ 熟習此項技術者應理解, 署孫可六搞,原先纖束及偵測器光纖束之配 置係了父換的。參考圖9男闻。 .^ +^ 罚2及圖3,源波導光纖可以配置在中 央£域中並可以環繞源φ、、 ’、“波^光纖配置波導光纖束環以 125154.doc • 16 - 200914814 便進订偵測。以此方式,藉由相應地調整遮蔽開關可以實 現類似的量測。 在本發明之另一實施方式中,輻射源及偵測器光纖分別 由半導體近紅外(NIR)光發射及感測元件替換。輻射源可 為LED、光電二極體或光電電晶體中之任意一者。如此定 義源-偵測器距離以便可以調整在照射區域與偵測區域之 間的輻射滲透深度以到達多層介質之不同層。 圖4示出基於光譜量測來估計多層介析 流程圖。在本方法之處理中,在步驟1〇中,首先,配= 數個輕射源以由具有至少兩個不同人射波長之電磁輕射光 5醤來照射多層介質。 在步驟20中,配置偵測器以偵測自多層介質反射之電磁 軲射之反射光譜(來厂))。對於每個預定入射波長,在兩 個不同源侧器距離處该測反射光譜。如此選擇源-探測 距離’以使得每個源伯、目|吳 從付母㈣ &lt;貞/ 則器距離遠S大於與複數個源· 二貞測器距離以及入射波長相對應之多層介質之有效衰減係 數的倒數,例如p»l/~。 在步驟30中,根據等式丄及等式3導出表示與複數個源_ 制器距離以及人射波長相對應之有效衰減係數的複數個 :’然後根據等式4自複數個量屯‘中估計分析物之含 利用上述校準方法進行校準期間判定等式4中之回 歸參數〜。可以藉由軟體來實現在步驟3〇中之資料處理。 應理解,上述實施方式為U性的而並非對本發明之限 制’並且熟習此項技術者能夠設計出可替換之實施方式而 125154.doc 200914814 並不背離所附申請專利葑 圍之觀疇。在申請專利範圍中, 置於括就之間的任何泉各 17參考輮唬不應解釋為限制請求 語”包括”並不排除屮祖+ μ丄 、° 、出現在M求項中或說明中未列出之元 或步驟。在元件之前的^1 J的珂一個&quot;或&quot;一,,並不排除 數個此類元件。本發明A ®現複 、 赞月可借助於包括數個不同元件之硬 體’並借助於程式化之電腦來實現。在列舉數個單元之系 統請求項中’料單元中之數個單元可以由同-項硬體或 軟體所體現。詞語第—、第- 一 第一以及第二之使用並不指示任 何排序。該等詞語應解釋為名稱。 【圖式簡單說明】 藉由結合附圖考慮以下詳細描述,本發明之上述及其他 目的及特徵將變得更加清晰,其中: 圖1係根據本發明之非侵入生物學分析物監視器之示青 圖示。 圖2係根據本發明在非侵入生物學分析物監視器中之波 導光纖之第一配置的示意圖示。 圖3係根據本發明在非侵入生物學分析物監視器中之波 導光纖之第二配置的示意圖示。 圖4係示出根據本發明之方法之示範性實施方式的流程 圖。 貫穿附圖’相同參考標號用以表示相同部分。 【主要元件符號說明】 1 非侵入生物學分析物監視器 2 監視器控制台 125154.doc -18- 200914814 3 探測器 4 多層介質/皮膚組織 4-1 表皮 4-2 真皮 4-3 皮下組織 5 邊界 6 燈 7 光學器件 8-1 波導光纖束/源光纖束/源束 8-2 波導光纖束/源光纖束/源束 8-3 波導光纖束/源光纖束/源束 8-4 波導光纖束/源光纖束/源束 8-5 波導光纖束/源光纖束/源束 8-6 波導光纖束/源光纖束/源束 8c 激勵末端 9 遮蔽開關 10 波導光纖束/中心偵測器光纖/光纖束/偵測器光纖 11 單色器 12 偵測器陣列/探測器陣列 13 電子單元 14 顯示器 15 資料處理單元/資料處理裝置 16 輸入裝置 17 介質 125154.doc •19-It is understood by those skilled in the art that the two fiber bundle pairs may be discontinuous. Of course, in the real road Temple field Λ μ ^ to use more or less concentric circle configuration. ^ Those who are familiar with this technology should understand that Sun Keliu, the original fiber bundle and detector fiber bundles, was replaced by the father. Refer to Figure 9 for males. .^ +^ Penalty 2 and Figure 3, the source waveguide fiber can be placed in the central £ domain and can be placed around the source φ,, ', and wave fiber configuration waveguide fiber bundle ring to 125154.doc • 16 - 200914814 In this way, a similar measurement can be achieved by adjusting the shadow switch accordingly. In another embodiment of the invention, the radiation source and the detector fiber are respectively emitted and sensed by semiconductor near-infrared (NIR) light. Component replacement. The radiation source can be any one of an LED, a photodiode or a phototransistor. The source-detector distance is defined such that the depth of radiation penetration between the illumination area and the detection area can be adjusted to reach multiple layers. Different layers of the medium. Figure 4 shows a multi-layer analysis flow chart based on spectral measurement. In the processing of the method, in step 1 ,, first, a plurality of light source sources are provided with at least two different The human-shot wavelength electromagnetic light is emitted to illuminate the multi-layer medium. In step 20, the detector is configured to detect the reflection spectrum of the electromagnetic radiation reflected from the multilayer medium (for factory). For each predetermined incident wavelength, In two no The distance of the homologous side is at the distance of the reflectance spectrum. So select the source-detection distance' so that each source, the head, the Wu, the slave, the fourth, the distance, the distance S, the distance S is greater than the number of sources, and the second source The reciprocal of the effective attenuation coefficient of the multi-layer medium corresponding to the incident distance and the incident wavelength, for example, p»l/~. In step 30, the distance between the representation source and the plurality of sources and the human shot are derived according to the equations 等 and Equation 3. The plural of the effective attenuation coefficient corresponding to the wavelength: 'There is then the estimated parameter in the complex quantity 屯 according to Equation 4, and the regression parameter in Equation 4 is determined during calibration using the above calibration method. The data processing in step 3 is implemented. It should be understood that the above embodiments are U-like and not limiting of the invention 'and that those skilled in the art can design alternative embodiments and 125154.doc 200914814 does not deviate from The scope of the attached patent application. In the scope of the patent application, any reference between the springs and the 17th reference should not be construed as limiting the request language "including" does not exclude the ancestors + μ丄, °A element or step that is not listed in the M-item or in the description. A &quot;&&quot; of the ^1 J before the component does not exclude several such components. The present invention A ® is now The praise month can be realized by means of a hardware comprising several different components and by means of a stylized computer. In the system request item enumerating several units, several units in the material unit can be made by the same-item hardware. Or the software. The use of the words -, - - first and second does not indicate any ordering. These words should be interpreted as names. [Simple description of the drawings] By considering the following detailed description in conjunction with the drawings, The above and other objects and features of the invention will become more apparent, in which: Figure 1 is a pictorial representation of a non-invasive biological analyte monitor in accordance with the present invention. Figure 2 is a schematic illustration of a first configuration of a waveguide fiber in a non-invasive biological analyte monitor in accordance with the present invention. Figure 3 is a schematic illustration of a second configuration of a waveguide fiber in a non-invasive biological analyte monitor in accordance with the present invention. Figure 4 is a flow diagram showing an exemplary embodiment of a method in accordance with the present invention. Throughout the drawings, the same reference numerals are used to refer to the same parts. [Main component symbol description] 1 Non-invasive biological analyte monitor 2 Monitor console 125154.doc -18- 200914814 3 Detector 4 Multi-layer medium/skin tissue 4-1 Epidermis 4-2 Dermis 4-3 Subcutaneous tissue 5 Boundary 6 Lamp 7 Optics 8-1 Waveguide Fiber Bundle / Source Fiber Bundle / Source Beam 8-2 Waveguide Fiber Bundle / Source Fiber Bundle / Source Beam 8-3 Waveguide Fiber Bundle / Source Fiber Bundle / Source Beam 8-4 Waveguide Fiber Beam/source fiber bundle/source beam 8-5 Waveguide fiber bundle/source fiber bundle/source beam 8-6 Waveguide fiber bundle/source fiber bundle/source beam 8c excitation end 9 shadow switch 10 waveguide fiber bundle/center detector fiber /Fiber Bundle / Detector Fiber 11 Monochromator 12 Detector Array / Detector Array 13 Electronic Unit 14 Display 15 Data Processing Unit / Data Processing Unit 16 Input Device 17 Medium 125154.doc • 19-

Claims (1)

200914814 十、申請專利範圍: 1. 一種用於基於光譜量測來非侵入地估計多層介質中分析 物之含量的設備,其包括: 幸田射源,用於生成與複數個入射波長相對應之電磁輻 射光譜,並用該光譜照射該多層介質; 偵測器,用於偵測自該多層介質反射之光譜,並生成 表示所偵測輻射之偵測信號,其中,在該多層介質上配 置有該輻射源之照射區域及該偵測器之偵測區域,以便 針對該複數個入射波長之各入射波長,生成與至少兩個 不同源-偵肖器距離相對應之偵測信5虎,該源-㈣器距 離定義為在該照射區域㈣測區域之間各自的距離,而 該各源-偵測器距離遠遠大於該多層介質之有效衰減係數 的倒數;以及200914814 X. Patent application scope: 1. A device for non-invasively estimating the content of an analyte in a multilayer medium based on spectral measurement, comprising: a Koda field source for generating electromagnetic waves corresponding to a plurality of incident wavelengths Radiating the spectrum and illuminating the multilayer medium with the spectrum; a detector for detecting a spectrum reflected from the multilayer medium and generating a detection signal indicative of the detected radiation, wherein the radiation is disposed on the multilayer medium An illumination area of the source and a detection area of the detector, to generate a detection signal corresponding to at least two different source-detector distances for each of the plurality of incident wavelengths of the incident wavelength, the source- (4) The device distance is defined as the respective distance between the measured regions of the illumination region (4), and the source-detector distance is much larger than the reciprocal of the effective attenuation coefficient of the multilayer medium; 資料處理裝置,用於自所债測之信號中導出表示該多 層介質之有效衰減係數的複數個量,並基於回歸模型, 利用該複數個量來估計該分析物之含量。 2·如請求们之設備…該源,測器距離之定義可調 整’以使得在該照射區域與❹擅域之間的該輕射渗透 深度到達該多層介質之不同層。 用於根據以下 3_如請求項2之設備,其中該資料處理裝置 專式來判定該複數個量: 5 j&gt;\ din[跑 J .dPj . 其&quot;W表示對應於一或複數個入射波長λ之強度反射 125154.doc 200914814 係數’ P;表示複數個源·偵測器 πω之自然對數,以及^^志之—,1啦ω]表示 dpj表不對應於源-偵測器距 離#_,)]之導數,^)表示與 測器距離Μ目對應之分析物含量。 長及原 4· 自之:Γ’其中該資料處理裳置亦用於根據以 下專式而自複數個量中估計出該分析物之含量: Y^ffaAnd a data processing device for deriving a plurality of quantities representing the effective attenuation coefficient of the multi-layer medium from the signal of the debt measurement, and using the plurality of quantities to estimate the content of the analyte based on the regression model. 2. The device of the requester ... the source, the definition of the distance of the detector is adjusted so that the depth of penetration of the light penetration between the illuminated area and the area of the ambiguity reaches a different layer of the multilayer medium. The apparatus for claim 3, wherein the data processing device specializes to determine the plurality of quantities: 5 j&gt;\ din[Run J.dPj. Its &quot;W represents one or more incidents Intensity reflection of wavelength λ 125154.doc 200914814 Coefficient 'P; indicates the natural logarithm of a plurality of source·detectors πω, and ^^志—, 1 ω] indicates that the dpj table does not correspond to the source-detector distance# The derivative of _,)], ^) indicates the analyte content corresponding to the distance from the detector. Long and original 4· From: Γ’ The data processing skirt is also used to estimate the content of the analyte from a plurality of quantities according to the following formula: Y^ffa 其中、表示基於校準可調整並且可判定之回歸參數, 财N分別表示用於量測之入射波長之數目以及源-制 裔距離之數目,Λ表示用於參考之入射波長,而Y表示 該分析物含量之估計。 π月求項4之β又備’其中複數個入射波長可選帛,以使 知各個β玄等入射波長與在自多層介質反射之光譜中之特 徵譜線相對應。 月求項4之5又備,其中基於自該介質反射之光譜變化 來^ °十°玄多層&quot;貝中之該等層的數目,而該層數目及該 光譜變化用於選擇該源·探測器距離及所偵測之信號,以 用於估計該分析物之含量。 7·如請求項1之設備,其中該多層介質為活體之皮膚組 織’而該分析物為該皮膚組織中的水。 8.如明求項1之設備,其中該輻射源包括至少三個同心圓 配置’該等同心κ配置分別具有複數個波導光纖,該等 波導光纖實質上延伸至該多層介質之邊界益且在該邊界 125154.doc 200914814 上環繞公用中心偵測區域設置,該偵測器包括至少一個 中心波導光纖’該中心波導光纖實質上延伸至該邊界上 之δ亥中心彳貞測區域,並且與該貨料處理裝置操作連接。 9. 如請求項1之設備,其中該輻射源包括具有至少一個中 心波導光纖之配置,該中心波導光纖實質上延伸至該多 層&quot;質之§亥邊界,而該偵測器包括至少三個同心圓配 置,該等同心圓配置分別具有複數個波導光纖,該等波 導光纖實質上延伸至該多層介質之該邊界,並且被配置 為環繞由該至少一個中心波導光纖所照射之公共中心照 射區域’且與該資料處理裝置操作連接。 10. 如請求項8之設備,其中該輻射源亦包括光源及開關裝 置,該光源借助於開關裝置而與該輻射源中之波導光纖 之D亥配置相耦合,該開關裝置適合於選擇性地激化波導 光纖配置中之任意一者。 11·如請求項8或9之言免備’其中該光源可進行調整以便生成 對應於複數個預定入射波長之電磁輻射之入射光譜。 12·如請求項8或9之設備,其中該巾心波導光纖之直徑可選 擇,以使得該直徑遠遠小於與該複數個入射波長及源-偵 測器距離相對應之該等有效衰減係數中之每者的倒數。 13_如响求項8或9之設備,其中該輻射源及偵測器分別為半 導體近紅外(NIR)光發射及感測元件。 14. -種用於基於光譜量測來非侵人地估計多層介質中之分 析物含量的方法,其包括以下步驟: 用由輕射源產生之盡; ,、複数個不同入射波長相對應之電 125154.doc 200914814 磁韓射光譜來照射該多層介質; 利用偵測器來偵測表示自該多層介質所反射之光譜之 對應信號,以便針對該複數個入射波長中之各入射波 長’基於兩個不同源-债須j器距離對反射光譜進行偵測, 其中該源-偵測器距離選擇為遠遠大於該多層介質之有效 衰減係數的倒數; 自所偵/則到的u虎巾導出對應於複數個入射波長及源·Wherein, representing a calibration-adjustable and determinable regression parameter, the financial value N represents the number of incident wavelengths used for measurement and the number of source-to-indian distances, Λ represents the incident wavelength for reference, and Y represents the analysis. Estimation of the content of the substance. The β of the π-month factor 4 is further prepared by selecting a plurality of incident wavelengths so that the incident wavelengths of the respective β-equivalents correspond to the characteristic lines in the spectrum reflected from the multilayer dielectric. The monthly claim 4 is further prepared, wherein the number of such layers is based on the spectral change from the reflection of the medium, and the number of layers and the spectral change are used to select the source. The detector distance and the detected signal are used to estimate the amount of the analyte. 7. The device of claim 1, wherein the multilayer medium is a living skin tissue&apos; and the analyte is water in the skin tissue. 8. The apparatus of claim 1, wherein the radiation source comprises at least three concentric circle configurations, the equivalent κ configuration respectively having a plurality of waveguide fibers extending substantially to the boundary of the multilayer medium and The boundary 125154.doc 200914814 surrounds the common center detection area, and the detector includes at least one center waveguide fiber. The center waveguide fiber extends substantially to the delta center measurement area on the boundary, and the goods The material processing device is operatively connected. 9. The device of claim 1, wherein the source of radiation comprises a configuration having at least one center waveguide fiber, the center waveguide fiber extending substantially to the multi-layer &quot;quality, and the detector comprising at least three a concentric arrangement having a plurality of waveguide fibers each extending substantially to the boundary of the multilayer dielectric and configured to surround a common central illumination region illuminated by the at least one central waveguide fiber 'And is operatively connected to the data processing device. 10. The device of claim 8, wherein the radiation source further comprises a light source and a switching device coupled to the DH configuration of the waveguide fiber in the radiation source by means of a switching device, the switching device being adapted to selectively Intensify any of the waveguide fiber configurations. 11) As claimed in claim 8 or 9, wherein the source is adjustable to generate an incident spectrum of electromagnetic radiation corresponding to a plurality of predetermined incident wavelengths. 12. The device of claim 8 or 9, wherein the diameter of the core waveguide fiber is selectable such that the diameter is substantially less than the effective attenuation coefficient corresponding to the plurality of incident wavelengths and source-detector distances The reciprocal of each of them. 13_ The device of claim 8 or 9, wherein the radiation source and detector are respectively semiconductor near-infrared (NIR) light emitting and sensing elements. 14. A method for non-invasively estimating an analyte content in a multilayer medium based on spectrometry, comprising the steps of: generating a plurality of different incident wavelengths by using a light source; Electrical 125154.doc 200914814 magnetic Han ray spectrum to illuminate the multilayer medium; detecting a corresponding signal representing the spectrum reflected from the multilayer medium using a detector to be based on two of the plurality of incident wavelengths The source-detector distance is selected to be far greater than the reciprocal of the effective attenuation coefficient of the multi-layer medium; the u-bucket is derived from the detected/received Corresponding to a plurality of incident wavelengths and sources 债測器距離之表示該多層介f之有效衰減係數的複數個 量;以及 基於回歸模型,根據該複數個量來估計該分析物之含 量。 15·如請求項14之方法,其中’該源·制器距離之定義可以 調整’以使得在該照射區域與該谓測區域之間的轄射滲 透深度到達該多層介質之不同層。 16.如請求項15之方法’其中根據以下等式來判定該複數個 量: ^〇,7&gt;1 其中雄,)表示對應於-或複數個人射波長λ,之強度反射 係數’ Ρ;表示複數個源-偵測器距離之_ 『 及以)之自然對數,而表干對庫 ,丁 dp.表不對應於源-偵測器距離 A之1桃)]之導數,也表示與該入射波長*及該源_ 侦測器距離相對應之該分析物的含量。 η.如請求項16之方法,其中根據以下等式自該複數個量中 125154.doc 200914814 估計出該分析物之含量: Y = yfa s{^,Pj) 其中,心表示基於校準可調整並且 β疋之回歸參數, Μ及Ν分別表示用於估計之 习j /叉瓦 &lt; 歎目以 測之源_偵測器距離之數目- ;置 数目,Λ表不用於參考之 長,而Υ表示該分析物含量之估計。 波 18· -種由電腦裝置裝載之電腦程 #碰暑制办具包括用於基於 先》日里测來估计多層介質中分析物 裝置包括處理單元及記㈠Μ 之4” ’該電腦 後為今處η 電腦程式產品在裝載之 後為該處理早讀供執行以下任務之能力. 與複數個入射波長相對應之自多層介 之先碏之偵測資料;以及 自該偵測資料中I + 出/、複數個入射波長及源-偵測器距 離相對應之表于#之a Λ 曰. 、&quot;多層&quot;質之有效衰減係數的複數個 篁,以及 基於回歸模型 根據複數個量來估計分析物之含量。 125154.docThe debt detector distance represents a complex quantity of the effective attenuation coefficient of the multi-layered f; and based on the regression model, the analyte content is estimated based on the complex quantity. 15. The method of claim 14, wherein the definition of the source controller distance is adjustable such that a depth of penetration between the illumination region and the pre-measured region reaches a different layer of the multilayer medium. 16. The method of claim 15, wherein the plurality of quantities are determined according to the following equation: ^〇,7&gt;1 wherein male,) represents an intensity reflection coefficient Ρ corresponding to the - or complex individual wavelength λ; The number of source-detector distances _ 『 and the natural logarithm of the _, and the dp. table does not correspond to the source-detector distance A of 1 peach)] derivative, also indicates The incident wavelength* is the content of the analyte corresponding to the source_detector distance. η. The method of claim 16, wherein the content of the analyte is estimated from the plurality of quantities 125154.doc 200914814 according to the following equation: Y = yfa s{^, Pj) wherein the heart representation is adjustable based on the calibration and The regression parameters of β疋, Μ and Ν respectively represent the number of gongs used in the estimation, and the number of detectors _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Indicates an estimate of the analyte content. Wave 18·-A computer program loaded by a computer device# The summer device includes a method for estimating an analyte device in a multi-layer medium including a processing unit and a memory (1) 基于 based on a first-day test. The η computer program product is capable of performing the following tasks for early processing after the loading. The detection data corresponding to the plurality of incident wavelengths from the multi-layered interface; and the I + output from the detection data , a plurality of incident wavelengths and source-detector distances corresponding to a Λ 曰 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The content of the substance. 125154.doc
TW96135995A 2007-09-20 2007-09-27 Method and apparatus for estimating the content of an analyte in a multi-layer medium TW200914814A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710016141 2007-09-20

Publications (1)

Publication Number Publication Date
TW200914814A true TW200914814A (en) 2009-04-01

Family

ID=44725534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96135995A TW200914814A (en) 2007-09-20 2007-09-27 Method and apparatus for estimating the content of an analyte in a multi-layer medium

Country Status (1)

Country Link
TW (1) TW200914814A (en)

Similar Documents

Publication Publication Date Title
TW570768B (en) Classification and characterization of tissue through features related to adipose tissue
JP5463545B2 (en) Concentration determination apparatus, concentration determination method and program
US7440659B2 (en) Depth-resolved reflectance instrument and method for its use
TW483745B (en) Classification system for sex determination and tissue characterization
JP5186044B2 (en) Blood glucose level estimation device
Keller et al. Monte Carlo model of spatially offset Raman spectroscopy for breast tumor margin analysis
US7818154B2 (en) Monte Carlo based model of fluorescence in turbid media and methods and systems for using same to determine intrinsic fluorescence of turbid media
US20160354015A1 (en) Non-invasive Measurement of Skin Thickness and Glucose Concentration with Raman Spectroscopy and Method of Calibration thereof
WO2001063251A1 (en) A non-invasive method of determining skin thickness and characterizing layers of skin tissue in vivo
JP2016138886A (en) Method of determining lipids and other interfering substances in body fluid samples
CN103460025B (en) For determining the method and system of the absorptance in turbid medium
JPH10513088A (en) Biological tissue spectroscopy
Amelink et al. Non-invasive measurement of the microvascular properties of non-dysplastic and dysplastic oral leukoplakias by use of optical spectroscopy
Fernandes et al. Diffuse reflectance and machine learning techniques to differentiate colorectal cancer ex vivo
Shu et al. Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy
Sowa et al. Precision of Raman depolarization and optical attenuation measurements of sound tooth enamel
Zhang et al. Physiological model using diffuse reflectance spectroscopy for nonmelanoma skin cancer diagnosis
JP3950243B2 (en) Method and apparatus for measuring internal information of scattering medium
Kurakina et al. Probing depth in diffuse reflectance spectroscopy of biotissues: a Monte Carlo study
WO1999003393A1 (en) Diagnosis of edema
WO2007060583A2 (en) Method and apparatus for determining concentrations of analytes in a turbid medium
WO2018151150A1 (en) Device and method for measuring scattered body concentration
JP4823064B2 (en) Method and apparatus for backscattering spectroscopy
WO2001050948A2 (en) Non-invasive method of determining skin thickness and characterizing skin tissue layers
CN101616627B (en) An optical device for assessing optical depth in a sample