TW200913764A - Light emitting diode (LED) driving device - Google Patents

Light emitting diode (LED) driving device Download PDF

Info

Publication number
TW200913764A
TW200913764A TW096133036A TW96133036A TW200913764A TW 200913764 A TW200913764 A TW 200913764A TW 096133036 A TW096133036 A TW 096133036A TW 96133036 A TW96133036 A TW 96133036A TW 200913764 A TW200913764 A TW 200913764A
Authority
TW
Taiwan
Prior art keywords
circuit
light
emitting diode
signal
transformer
Prior art date
Application number
TW096133036A
Other languages
Chinese (zh)
Other versions
TWI377864B (en
Inventor
Yi-Shan Chu
Hsing-Kuo Chao
Original Assignee
Leadtrend Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leadtrend Tech Corp filed Critical Leadtrend Tech Corp
Priority to TW096133036A priority Critical patent/TWI377864B/en
Publication of TW200913764A publication Critical patent/TW200913764A/en
Application granted granted Critical
Publication of TWI377864B publication Critical patent/TWI377864B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A light emitting diode (LED) driving device includes a power factor correction (PEC) circuit, a bridge switch circuit, a resonance circuit, a transformer and a feedback circuit. The PEC circuit adjusts output signal thereof based on a feedback signal. The bridge switch circuit transforms the output signal of the PEC circuit into a pulse signal. The resonance circuit resonates and outputs a sinusoidal signal to primary winding of the transformer based on the pulse signal. The feedback circuit outputs the feedback signal to the PEC circuit in response to primary winding current of the transformer. Therefore, output current of the LED driving device is adjusted through modulating the feedback circuit.

Description

200913764 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種發光二極體驅動裝置,特別是一種發光二 極體驅動裝置,適用於高功率輸出,以驅動至少一發光二極體模 組。 - 【先前技術】 發光二極體(LED)係由半導體材料所製程之發光元件,不 同於傳統照明’其係>1冷發光,具有高亮度、高發光效率、驅動 電路簡單、耗電量低、反應速度快等多項優點,目前已逐漸取代 傳統照明。 於發光二極體驅動電路的設計上,—般為了安全考量會採取 一、二次側隔離設計。參照「第丨圖」,輸入電壓vin經由橋式整 机電路no整流後產生一次側電壓vi。於此,一次侧電壓約 為輪入電壓Vin的νϊ倍;舉例來說,當輸入電壓vin約為丨丨〇v(伏 特)之交流電壓,經橋式整流電路11〇整流後,產生之一次側電 壓VI約為156V之直流電壓,脈寬調變(pwM)控制器12〇透過 輪出脈寬調變信號vg控制功率開關Q1的切換,致使變壓器13〇 的-人側電壓VI轉換至變壓器130的二次側,而產生輸出電壓 vo,以點亮串接於輸出端上的發光二極體LED。以返馳式架構 (Flyback Topology)為例,當功率開關φ導通(〇n)時,能量 儲存於變壓器130 一次側的激磁電感Lp,此時二次側不導通;而 當功率開關Q1截止(off)時,儲存於變壓器13〇 一次側之激磁 電感LP内的能量釋放至二次側,進而產生輸出電壓v〇。於此, 200913764 輪出電壓Vo係為直流(DC)電壓。 流經發光二極體LED的電流訊號ILED,可透過線性穩壓器tl 和光耦合器(photo coupler) 140,決定脈寬調變控制器12〇的補 償接腳COMP的電壓準位。脈寬調變控制器12〇根據補償接腳 COMP的電塵準位來調整脈寬調變信號Vg,即調整功率開關切 的責任週期(duty cycle )大小。換句話說,將依據線性穩壓器TL -的準位電壓(财)及電阻(Rled)穩定電流訊號〗,即BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode driving device, and more particularly to a light emitting diode driving device suitable for high power output to drive at least one light emitting diode mold. group. - [Prior Art] A light-emitting diode (LED) is a light-emitting element made of a semiconductor material. Unlike conventional illumination, it has a high brightness, high luminous efficiency, simple driving circuit, and low power consumption. Low-speed, fast response, and many other advantages have gradually replaced traditional lighting. In the design of the LED driving circuit, the first and second side isolation design is generally adopted for safety considerations. Referring to the "figure map", the input voltage vin is rectified via the bridge system circuit no to generate the primary side voltage vi. Here, the primary side voltage is about νϊ times the turn-in voltage Vin; for example, when the input voltage vin is about 丨丨〇v (volts) of the AC voltage, it is rectified by the bridge rectifier circuit 11〇, once generated. The side voltage VI is about 156V DC voltage, and the pulse width modulation (pwM) controller 12〇 controls the switching of the power switch Q1 through the wheel-out pulse width modulation signal vg, so that the transformer-side human-side voltage VI is converted to the transformer. The secondary side of 130 generates an output voltage vo to illuminate the LEDs connected in series to the output LEDs. Taking the Flyback Topology as an example, when the power switch φ is turned on (〇n), the energy is stored in the magnetizing inductance Lp on the primary side of the transformer 130, and the secondary side is not turned on; and when the power switch Q1 is turned off ( When off), the energy stored in the magnetizing inductance LP of the primary side of the transformer 13 is released to the secondary side, thereby generating an output voltage v〇. Here, the 200913764 turn-on voltage Vo is a direct current (DC) voltage. The current signal ILED flowing through the LED of the LED can pass through the linear regulator tl and the photo coupler 140 to determine the voltage level of the compensation pin COMP of the pulse width modulation controller 12A. The pulse width modulation controller 12 adjusts the pulse width modulation signal Vg according to the electric dust level of the compensation pin COMP, that is, adjusts the duty cycle of the power switch. In other words, it will stabilize the current signal according to the level voltage (voltage) and resistance (Rled) of the linear regulator TL -

Vref/RLED。因此,當輪出端上之發光二極體led越多顆時,輸出 功率越大,則控制功率開關Q1之脈寬調變信號¥§的責任週期會 越大;反之亦然。 當應用於高功率輸出(即,輸出端連接非常多個發光二極體 LED)時,為了滿足電流諧波規範,一般會於前級加入功率因數 修正電路(powerfact〇rc〇rrecti〇n (pEC)咖此)15〇,如「第 2 所示。 」 请茶照「第2圖」,交流之輸入電壓他經由橋式整流電路⑽ 签流和功率因數修正電路15〇調整後,產生直流之一次側電壓 V2。舉例來說’若輸入電壓Vin約為ll〇v (交流),產生之一次 側電1 V2約為200V (直流);而若輸入電塵Vin約為22〇v (交 流),產生之一次侧電壓V2則約為4〇〇v (直流)。 於功率因數修正電路15〇内部會有兩組迴授路徑。一為電流 回杈路徑152,用以使輸人電流Ιώ #波形能夠追隨輸人電屡. :波形^與輸入電壓Vin同相位,以提高功率因素進而滿足電流 白波規範$ I電壓回授路徑154,係透過—次側電壓%回授 200913764 «周王輪入電wlin大小,進而穩佐—次側電壓ν:。 _此二驅動電路的設計必須使用線性穩壓器及光搞合器 做、—人側隔離。再者,於高功率輸出(一般大於1賀)的應 用%、撼配適用大尺寸的變壓器,因而導致成本增加,且佔空 間,並且不易解決伴隨而來的散熱問題。此外,為配合高功率輸 '出的應用1槪_電路必需使用到兩顆獨立的控制1C (積體電 本也控制益和PWM控制器,不僅線路設計較為複雜,成 本也較為昂貴。 【發明内容】 於以上㈣題,本發_主要 體驅動裝置,藉以解決先前枯論六—ά私、種發先一極 問題。 解决先則技衡所存在線路設計複雜且高成本的 本發明所揭露之發光二極體 (啦)電路、橋_電路動裝\包括.功率因數修正 ,振電路、龍器和回授電路。 功率因數修正電路會根據1授訊 開關電路連接功率因數修正電路的輪㈣/、輪出訊號。橋式 電路的輸出訊號切換成-脈波訊號。諧振電路I將功率因數修正 的輪出端,其可根祕波訊觀行録以接橋式開關電路 器-次侧之第—端連接難電路,以接收:=波訊號。歷 接至變塵器一次侧之第二端,其相應’趙器的Γ授電路連 回授訊號至功率因數修正電路的回授端。、-人侧電流而輸出 關· 橋式關電路可為—半橋式關電路,其 k件。此對開關元件連接於功率因數修正=括—對串聯之開 电之輪出端和接地 200913764 之間’且兩開關元件之間的串聯接點連接至譜振電路。 於此半橋式開關电路之兩開關元件的驅動控制訊號可為一 對互補之脈波喊,分別輸人縣橋式_電路之關關元件的 控制端。其中’此對互補式控制訊號可具有5〇%責任週期。 譜振電路可包括電容~_顺狀諧振槽。 回授電路可包括電阻和整流元件。回授電路的電阻連接於變 次侧的第二端和接地之間。其中,變壓器的—次側電流流 、左電阻而形成-交流跨壓於電阻上,且電簡此交流跨壓進 行整流以產生回授訊號。 常^ 包域波元件,以將回授訊號進行濾波,並將 滤波後之回授訊號提供給功率因數修正電路。 ’义―之二次側更_至少—發光二極體模組,且回授電路 中之電阻的阻值相應於發光二極_組的亮度。 於根據本案之發光二極體驅動裝置中,係、彻歷哭的 =絲粉賴㈣,不需錢過雜穩絲及雜合器 發=『的一次側和二次侧,以避免更換輸出發光二極體時 毛生觸電的危險,且可降低成本。再者,於根據本案之發光 =動裝置中,係透過調整回授電路的阻值,例如 =,來雛輸出電流(即,變壓器的二次側電流),進^ 土先-極體模組的發光亮度,相較於習知技術, 簡單。此外,根據本案之發光二極 式較為 僅使用到單-具有回授功能之控制器(即,細=^中): 10 200913764 其控制線路較為簡單且整體價格較為便宜。 【實施方式】 請參照「第3圖」,係顯示根據本發明一實施例之發光二極體 驅動裝置。根據本發明一實施例之發光二極體驅動裝置,包括: 橋式開關電路220、變壓器230、諧振電路240、功率因數修正(pFC ) 電路250和回授電路260。 功率因數修正電路250轉接於橋式整流電路21〇和橋式開關 電路220之間。諧振電路240輕接於橋式開關電路22〇和變壓器 230 —次侧的第一端之間。回授電路26〇耦接於變壓器23〇 一次側 的第二端和功率因數修正電路25〇的電壓回授端之間。 輸入電壓Vin '經橋式整流電路21〇整流後,輪入至功率因數 修正電路250。功率’紅f路,射兩組迴授路徑。電流回 授路徑252連接至橋式開關電路22〇,以使輸入電流Iin的波形能 夠追隨輸人電壓Vin的波形且與輸人電壓% _位。電壓回授 =254接收來自回授電路的回授訊號cs,並根據回授訊號 S周整輸入電流Iin的大小,據以調整功率因數修正電路⑽的 輸出訊號V3。施古少,丄$ _ cs調整其輸‘w "《丨_路25G可根據回授訊號 切換二、220可將功率因數修正電路250的輸出訊號、 麗哭230的^ Sa。脈波訊號Sa經由諧振電路240振i後,於, 、—次側產生一弦波訊號Sb,且變壓器、23〇的一次如 m亦為1波訊號。換言之,諧振電路可根據脈細 200913764Vref/RLED. Therefore, when there are more LEDs on the wheel end, the greater the output power, the greater the duty cycle of controlling the pulse width modulation signal of the power switch Q1, and vice versa. When applied to high power output (ie, when the output is connected to a very large number of LEDs), in order to meet the current harmonic specification, a power factor correction circuit (powerfact〇rc〇rrecti〇n (pEC) is generally added to the front stage. ))) 15〇, as shown in “2.” Please take a photo of the “Photo 2”. The input voltage of the AC is adjusted by the bridge rectifier circuit (10) and the power factor correction circuit 15〇 to generate DC. Primary side voltage V2. For example, if the input voltage Vin is about ll〇v (AC), the primary side power 1 V2 is about 200V (DC); and if the input power Vin is about 22〇v (AC), the primary side is generated. The voltage V2 is approximately 4 〇〇v (DC). There are two sets of feedback paths inside the power factor correction circuit 15A. One is the current return path 152, which is used to make the input current Ιώ# waveform can follow the input power. The waveform ^ is in phase with the input voltage Vin, so as to improve the power factor and then meet the current white wave specification $I voltage feedback path 154 , through the - secondary voltage % feedback 200913764 «Zhouwang wheel into the power wlin size, and then steady - secondary voltage ν:. _ The design of the two driver circuits must be done using a linear regulator and a light-coupler. Furthermore, the application of high power output (generally greater than 1 Hz) and the use of large-sized transformers result in increased cost and space, and it is difficult to solve the accompanying heat dissipation problem. In addition, in order to cooperate with the high-power output, the circuit must use two independent control 1C (the integrated power is also controlled by the control and PWM controller, not only the circuit design is more complicated, but also the cost is more expensive. Contents] In the above (4) questions, the main body _ main body drive device, in order to solve the previous problems of the six-private, seeding first pole. Solving the problem of the prior art, the circuit design is complex and high cost disclosed by the present invention The light-emitting diode circuit, the bridge circuit, the power factor correction, the vibration circuit, the dragon device and the feedback circuit. The power factor correction circuit connects the power factor correction circuit according to the 1 signal switch circuit. (4) /, turn out the signal. The output signal of the bridge circuit is switched to the pulse signal. The resonant circuit I will adjust the power factor correction wheel, which can be recorded by the bridge to switch the bridge circuit - times The first end of the side is connected to the hard circuit to receive: = wave signal. It is connected to the second end of the primary side of the dust filter, and the corresponding 'the feedback circuit of the scanner is connected to the feedback signal to the power factor correction circuit. End., - Human side electricity The output and off-bridge circuit can be a half-bridge circuit, which is a k-piece. The pair of switching elements are connected to the power factor correction=including the connection between the terminal of the series-connected power and the grounding 200913764' The series connection between the two switching elements is connected to the spectral circuit. The driving control signals of the two switching elements of the half bridge switching circuit can be a pair of complementary pulse waves, respectively inputting the county bridge type circuit The control terminal of the component, wherein the pair of complementary control signals can have a duty cycle of 5〇%. The spectral circuit can include a capacitor ~_sequence resonant tank. The feedback circuit can include a resistor and a rectifying component. Connected between the second end of the variable side and the ground, wherein the secondary current flow of the transformer, the left resistance is formed, the AC cross voltage is pressed against the resistor, and the AC cross voltage is rectified to generate the feedback signal. Normally, the domain wave component is used to filter the feedback signal, and the filtered feedback signal is supplied to the power factor correction circuit. The second side of the 'yiyi' is at least _at least the light emitting diode module, and Feedback resistor The resistance value corresponds to the brightness of the illuminating diode _ group. In the illuminating diode driving device according to the present case, the system is crying, and the silk powder lamming (four) does not require money to pass through the stabilizing wire and the hybrid device. "The primary side and the secondary side are used to avoid the risk of electric shock when replacing the output LED, and the cost can be reduced. Moreover, in the illumination device according to the present case, the resistance of the feedback circuit is adjusted. The value, for example, =, the output current of the chick (ie, the secondary current of the transformer), and the brightness of the first-pole module of the first-pole body is simpler than the conventional technique. In addition, according to the light-emitting diode of the present case The model only uses the controller with the feedback function (ie, fine = ^): 10 200913764 The control circuit is simple and the overall price is relatively cheap. [Embodiment] Please refer to "3" for display. A light emitting diode driving device according to an embodiment of the present invention. A light emitting diode driving apparatus according to an embodiment of the present invention includes: a bridge switching circuit 220, a transformer 230, a resonance circuit 240, a power factor correction (pFC) circuit 250, and a feedback circuit 260. The power factor correction circuit 250 is switched between the bridge rectifier circuit 21A and the bridge switch circuit 220. The resonant circuit 240 is lightly coupled between the bridge switch circuit 22A and the first end of the transformer 230. The feedback circuit 26 is coupled between the second end of the primary side of the transformer 23A and the voltage feedback end of the power factor correction circuit 25A. The input voltage Vin' is rectified by the bridge rectifier circuit 21, and is rotated into the power factor correction circuit 250. Power 'red f road, shooting two sets of feedback paths. The current feedback path 252 is coupled to the bridge switch circuit 22A such that the waveform of the input current Iin can follow the waveform of the input voltage Vin and the input voltage %_ bit. The voltage feedback = 254 receives the feedback signal cs from the feedback circuit, and adjusts the output signal I3 of the power factor correction circuit (10) according to the magnitude of the input current Iin according to the feedback signal S. Shi Gu Shao, 丄 $ _ cs adjust its loss ‘w " 丨 _ _ 25G can be switched according to the feedback signal 2, 220 can output the power factor correction circuit 250, Li cry 230 ^ Sa. After the pulse signal Sa is oscillated via the resonant circuit 240, a sine wave signal Sb is generated on the secondary side, and the transformer, 23 一次 once is also a 1-wave signal. In other words, the resonant circuit can be based on the pulse fine 200913764

Sa進行振盪以輪出〜 a。 230的-次側雷法T玄波訊號%。回授電路260則相應於變壓器 里φ ^ 而輸出回授訊號… /、中,橋式開關電 電路。以半橋式開 —,,、、王橋式開關電路或半橋式開關 之開關元件Q2r糊,橋她祕22g包括一對串聯 正電路250的輪出開關元件Q2、㈣接於功率因數修 串聯接點連接至言皆每if之間,且兩開關元件Q2、Q3之間的 邊電路⑽的輪入端。 於此,可藉由一對制 〇3的、·山 工说號Sc、Sc來控制兩開關元件Q2、 、。此_制峨Se、Se,較佳— 號。將此對互補式押制m 狀脈波訊 OBW C,分別輪入至開關元件氓、 致使兩開關元件㈣一^ 二:r Γ開關,以將功率因數修正電路250的輪出訊號‘ 切換成脈波訊號Sa。於此,可尨田主/ 訊號Sc、Sc,。、此了細貝任職為啊之互補式控制 此外,y於發光二極體驅動裝置内設置一訊號產生器溯,以 產生控制訊號來驅動橋式開關電路220。 諧振電路240可包括電容&和電感^。電容&的—端 至橋式開關電路220,另-端則連接至電感Lr。而電感^相對電 容cr的-端則連接至變壓器230 一次侧之第一端。換言之,譜振 電路240.可包括電容-電感組成之諧振槽。 ' 於一實施例中’電容〇·係連接於兩開關元件之間的 串接接點和電感Lr之間,以接收經由開關元件φ、印的切換而 12 200913764 產成之脈波訊號Sa。 回技電路260可包括電卩且Res和整流元件Des。電阻I搞接 於义U30次側的第二端和接地之間。整流元件as輕接於 電阻相對接地的一端和功率因數修正電路⑽之間。 < [☆ 23〇的-次侧電流Ipri流經電阻Rcs,會形成一交流跨 壓於電阻Res上,亚且此電阻Rcs較流跨壓經由整流元件— . 的整流後,產生回授訊號CS。 賊,回授電路260更可包括一遽波元件Ccs,因此電阻- 的父流跨壓經由整流元件Dcs整流及滤波元件〔a的遽波後,產 生回授訊號CS給功率因數修正電路25〇。 於此’祕益230可為順向式亦或返馳式。再者,於變愿哭 230的兩侧之電路中可採用不同的接地。 於發光二極體驅動裝置的輸出端,即變墨器23〇之二次側, 可雛至少—個由一個或多個發光二極體咖戶斤構成之發光二極 體模謂。並且,可透過調整回授電路26〇,即調整電阻⑽的 阻值,制之發光二㈣模組29〇的亮度。換言之,電阻^的 阻值係相應於發光二極體模組細的亮度。 於此’若調整電阻Rcs的阻值,相應地,回授訊號以的電壓 值Ves會隨者電阻Rcs的阻值改變。而功率因數修正電路,係 根據回授訊號CS而調整其輸出訊號V3,因此其輸出訊號^則 會相應回授訊號CS的改變而被改變,進而影響了脈波訊號^的 電壓峰值’並改變弦波訊號Sb的峰值。根據變壓器別的特 13 200913764 性,交壓斋230的二次側電流Isec係為一次側電流_乘上變壓 器230之一次側和二次侧的匝數比(Np/NS)。因此,改變變壓器 230的-次側電流Ipri等效上相當於改變變壓器23〇的二次側電流 isec。舉例來說,若增加電阻Rcs的阻值,回授訊號cs的電壓值 Vcs會隨之上升,致使功率因數修正電路25㈣輸出訊號%的電 壓值下降’進而導致變壓器230的一次側電流_下降,相應於 一次側電流Ipri的二次側電流Isec則會隨之下降。並且,因變壓 斋230的一次側電流ipri下降,回授訊號cs的電壓值則會隨 之下降,最後回授訊號CS的電壓值Vcs會穩定於一定值。於此, 電阻Rcs可採用可變電阻,以便於進行發光亮度的調整。 換句話說,可藉由改變回授電路26〇的電阻Rcs阻值來調控 發光二極體模組290的發光亮度。 此外,由於諧振電路240的諧振頻率是kHz以上的頻率,因 此對人眼來說’並不會感受到發光二極體模組29〇有閃爍的現象。 以返馳式架構為例,脈波訊號Sa、回授訊號cs、流經發光二 極體权组的電流號ILED、及變壓器230之一次側電流Ipri和二-欠 侧電流Isec的訊號波形如「第4圖」所示。 在另一實施例中,參照「第5圖」,於發光二極體驅動裝置的 輸出端’即變壓器230之二次側,可耦接至少一第一發光二極體 才果組292和至少一第二發光二極體模組294 13並且,第一發光二極 體模組292和第二發光二極體模組294反向並聯,即,第—發光 —極體模組292和第二發光二極體模組294反向鶴接於變壓器230 14 200913764 之二次側的兩端。於此,變壓器230會根據—次側電流ίρη,而於 其二次側提供-輸出電壓Vo ’以驅動第1光二極體模組292和 第二發光二極體模組294。此輸出電麗1係為—交流弦波,且於 輸出電壓V。的正半週可驅動第一發光二_模組观,負半週則 可驅動第二發光二極體模㈣4。換言之,變壓器23〇會根據—次 側電流Ipri交替驅動第-發光二_麵攻和第二發光二極體 模組294。並且,電阻Res_值係相應於兩發光二極齡且 (292、294)的亮度。 於根據本案之發光二極體驅練置中,由於__壓器的 —次侧電流來進行回授控制,變壓器的兩端―、二次側為互相隔 離,因此可節省雜穩壓器及光私器元件的縣以及整體空間 體積,也可避免更換發光二極體時發生觸電的危險。再者,於根 據本案之發光二極體驅動裝置中,僅需調整回授電路的阻值,例 如.调整電阻Res的電阻值,即可調整變壓器的二次側電流,進 光=體模組的發光亮度,相較於習知技術,控制方式 I為間早。此外’根據本案之發光二極體驅 輪出(例如:>200W)。1且於㈣士安、、用於间功率 中心 並且,於根據本案之發光二極體驅動裝置 ,,僅^用到單-具有回授功能之控制器(即,功率因數修正電 〃、控制線路較為簡單且整體價格較為便宜。 定本=本發明以前述之較佳實施綱露如上,然其並非用以限 内,戶㈣之2蝴目像技藝者,在不脫離本翻之精神和範園 ,‘,、更_潤飾,均屬本發明之專利保護範圍,因此本發 15 200913764 明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為 準。 【圖式簡單說明】 第1圖係為習知之發光二極體驅動裝置的示意圖; 第2圖係為另一習知之發光二極體驅動裝置的示意圖; 第3圖係為根據本發明一實施例之發光二極體驅動裝置的示 意圖; 第4圖係為「第3圖」中,各個訊號的波形圖;以及 第5圖係為根據本發明另一實施例之發光二極體驅動裝置的 示意圖。 【主要元件符號說明】 110 橋式整流電路 120 脈寬調變(PWM)控制器 130 變壓器 140 光耦合器 150 功率因數修正電路 152 電流回授路徑 154 電壓回授路徑 210 橋式整流電路 220 橋式開關電路 230 變壓器 240 諧振電路 16 200913764 250 功率因數修正電路 252 電流回授路徑 254 電壓回授路徑 260 回授電路 280 訊號產生器 290 發光二極體模組 292 第一發光二極體模組 294 第二發光二極體模組 VI 一次侧電壓 Vin 輸入電壓 Q1 功率開關 Vg 脈寬調變信號 Vo 輸出電壓 LP 變壓器一次侧激磁電感 NP 變壓器一次侧匝數 NS 變壓器二次侧匝數 Iled 電流訊號 TL 線性穩壓器 COMP 補償接腳 Vref 準位電壓 Rled 電阻 V2 一次側電壓 17 200913764Sa oscillates to turn out ~ a. 230 - the secondary side Rayfa T Xuan wave signal %. The feedback circuit 260 outputs a feedback signal ... /, medium, bridge switching circuit corresponding to φ ^ in the transformer. The switch element Q2r paste of the half bridge type open-, -,,, king bridge type switch circuit or half bridge type switch, the bridge key 22g includes a pair of series positive circuit 250 round-off switching elements Q2, (4) connected to the power factor repair The series contacts are connected to the wheel-in terminals of the side circuit (10) between each of the if and between the two switching elements Q2, Q3. Here, the two switching elements Q2 and ? can be controlled by the pair of 〇3, and the Yama No. Sc and Sc. This _ system Se, Se, preferably - number. The pair of complementary-type m-shaped pulse wave OBW C is respectively turned into the switching element 氓, causing the two switching elements (four) one ^ 2: r Γ switch to switch the turn-off signal of the power factor correction circuit 250 into Pulse signal Sa. Here, you can use the main field / signal Sc, Sc,. In addition, y is provided with a signal generator trace in the LED driver to generate a control signal to drive the bridge switch circuit 220. The resonant circuit 240 can include a capacitor & and an inductor. The capacitor & terminal is connected to the bridge switch circuit 220, and the other terminal is connected to the inductor Lr. The end of the inductor ^ relative to the capacitor cr is connected to the first end of the primary side of the transformer 230. In other words, the spectral oscillator circuit 240. can include a resonant tank of capacitance-inductance. In an embodiment, the capacitor 连接 is connected between the series contact between the two switching elements and the inductor Lr to receive the pulse signal Sa generated by the switching element φ, the switching of the printing and 12 200913764. The retrace circuit 260 can include an electric cymbal and Res and a rectifying element Des. The resistor I is connected between the second end of the U30 secondary side and the ground. The rectifying element as is lightly connected between the end of the resistor opposite to the ground and the power factor correction circuit (10). < [ ☆ 23 〇 - the secondary current Ipri flowing through the resistor Rcs, will form an alternating voltage across the resistor Res, and the resistor Rcs is rectified by the rectifying element after the rectification of the cross-voltage, generating a feedback signal CS. The thief, the feedback circuit 260 may further include a chopper component Ccs. Therefore, the parent-flow cross-voltage of the resistor-rectifier rectifies and filters the component via the rectifying component Dcs. After the chopping of the component, the feedback signal CS is generated to the power factor correction circuit 25〇. . Here, the secret 230 can be either a forward or a return. Furthermore, different groundings can be used in the circuits on both sides of the wishing crying 230. At the output end of the light-emitting diode driving device, that is, the secondary side of the ink-changing device 23, at least one light-emitting diode formed by one or more light-emitting diodes can be used. Moreover, the brightness of the light-emitting two (four) module 29 can be adjusted by adjusting the feedback circuit 26, that is, adjusting the resistance of the resistor (10). In other words, the resistance of the resistor ^ corresponds to the fine brightness of the LED module. Here, if the resistance of the resistor Rcs is adjusted, accordingly, the voltage value Ves of the feedback signal changes with the resistance of the resistor Rcs. The power factor correction circuit adjusts the output signal V3 according to the feedback signal CS, so that the output signal ^ is changed according to the change of the feedback signal CS, thereby affecting the voltage peak of the pulse signal ^ and changing The peak value of the sine wave signal Sb. According to the special characteristics of the transformer, the secondary side current Isec of the junction 230 is the primary side current_multiplied by the turns ratio (Np/NS) of the primary side and the secondary side of the transformer 230. Therefore, changing the secondary side current Ipri of the transformer 230 is equivalently equivalent to changing the secondary side current isec of the transformer 23A. For example, if the resistance of the resistor Rcs is increased, the voltage value Vcs of the feedback signal cs will rise accordingly, causing the voltage value of the output signal % of the power factor correction circuit 25 (4) to decrease, which in turn causes the primary current _ drop of the transformer 230 to decrease. The secondary side current Isec corresponding to the primary side current Ipri decreases. Further, since the primary side current ipri of the transformer 230 is lowered, the voltage value of the feedback signal cs is decreased, and the voltage value Vcs of the feedback signal CS is stabilized at a constant value. Here, the resistor Rcs may employ a variable resistor to facilitate adjustment of the luminance of the light. In other words, the luminance of the light-emitting diode module 290 can be adjusted by changing the resistance of the resistor Rcs of the feedback circuit 26A. Further, since the resonance frequency of the resonance circuit 240 is a frequency higher than kHz, the phenomenon that the light-emitting diode module 29 does not flicker is not felt to the human eye. Taking the flyback architecture as an example, the pulse signal Sa, the feedback signal cs, the current number ILED flowing through the light-emitting diode group, and the signal waveforms of the primary side Ipri and the second-side current Isec of the transformer 230 are as follows. "Figure 4" is shown. In another embodiment, referring to FIG. 5, at the output end of the LED driving device, that is, the secondary side of the transformer 230, at least one first LED group 292 and at least A second LED module 294 13 and the first LED module 292 and the second LED module 294 are connected in anti-parallel, that is, the first-light-emitting body module 292 and the second The LED module 294 is reversely connected to both ends of the secondary side of the transformer 230 14 200913764. Here, the transformer 230 supplies the -output voltage Vo' on the secondary side thereof to drive the first photodiode module 292 and the second LED module 294 according to the secondary current ίρη. This output battery 1 is an AC sine wave and is output voltage V. The positive half cycle can drive the first light emitting diode module view, and the negative half cycle can drive the second light emitting diode die (4) 4. In other words, the transformer 23 交替 alternately drives the first-emission two-plane attack and the second light-emitting diode module 294 according to the secondary side current Ipri. Also, the resistance Res_ value corresponds to the brightness of the two light-emitting diodes and (292, 294). In the light-emitting diode driving according to the present invention, the feedback control is performed due to the secondary current of the __voltage, and the two ends of the transformer are separated from each other, thereby saving the voltage regulator and The county of the light private component and the overall space volume can also avoid the risk of electric shock when replacing the LED. Furthermore, in the LED driving device according to the present invention, it is only necessary to adjust the resistance value of the feedback circuit, for example, adjusting the resistance value of the resistor Res, the secondary current of the transformer can be adjusted, and the light entering body module The brightness of the light is compared with the conventional technique, and the control mode I is early. In addition, the light-emitting diode according to the present invention is driven out (for example: > 200W). 1 and (4) Shi'an, for the inter-power center and, in the case of the LED driving device according to the present invention, only the controller with the feedback function (ie, power factor correction circuit, control) The line is relatively simple and the overall price is relatively cheap. The present invention is described above with reference to the preferred embodiment of the present invention, but it is not intended to be used within the limits, and the households of the household (four) are not in the spirit of the present and the garden. , ', _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The figure is a schematic diagram of a conventional light-emitting diode driving device; FIG. 2 is a schematic diagram of another conventional light-emitting diode driving device; FIG. 3 is a light-emitting diode driving device according to an embodiment of the invention 4 is a waveform diagram of each signal in "3rd picture"; and FIG. 5 is a schematic diagram of a light-emitting diode driving apparatus according to another embodiment of the present invention. Description] 110 bridge rectifier circuit 120 pulse width modulation (PWM) controller 130 transformer 140 optical coupler 150 power factor correction circuit 152 current feedback path 154 voltage feedback path 210 bridge rectifier circuit 220 bridge switch circuit 230 transformer 240 resonant circuit 16 200913764 250 power factor correction circuit 252 current feedback path 254 voltage feedback path 260 feedback circuit 280 signal generator 290 light emitting diode module 292 first light emitting diode module 294 second light emitting diode Body Module VI Primary Side Voltage Vin Input Voltage Q1 Power Switch Vg Pulse Width Modulation Signal Vo Output Voltage LP Transformer Primary Side Exciting Inductance NP Transformer Primary Side Turns NS Transformer Secondary Side Turns Iled Current Signal TL Linear Regulator COMP Compensation pin Vref level voltage Rled resistance V2 primary side voltage 17 200913764

Iin 輸入電流 CS 回授訊號 V3 PFC電路的輸出訊號 Sa 脈波訊號 Sb 弦波訊號 Ipri 一次侧電流 Isec 二次侧電流 Q2 開關元件 Q3 開關元件 Sc 控制訊號 Sc, 控制訊號 Cr 電容 Lr 電感 Res 電阻 Dcs 整流元件 Ccs 濾、波元件 Yes 回授訊號的電壓值 18Iin input current CS feedback signal V3 PFC circuit output signal Sa pulse signal Sb chord signal Ipri primary side current Isec secondary side current Q2 switching element Q3 switching element Sc control signal Sc, control signal Cr capacitance Lr inductance Res resistance Dcs Rectifier component Ccs filter, wave component Yes feedback signal voltage value 18

Claims (1)

200913764 十、申請專利範園·· 】.一種發光二極體驅動裝置,包括: 號;初數丨,正電路,如根據-回授訊號調整-輸出訊 因數連接該功率因數修正電路,以將該功率 路之該輸出訊號切換成—脈波訊號,· 波訊號:=波=橋式開關電路(22°),根據該脈 以接端連峨振電路, 回授電路,連接該變壓哭' 應嶋器之一次側電流側之第二端,以輪出相 二極 _ 裝置, 件’該對_元件連接於該功率_修正電路I 3 ΓΓί,且該對開關元件的串雜點連接至該諧_路接 •申⑼翻軸第2撕叙發光二極體 開關f件係以—對互補式控制訊號驅動。、置’其中該對 4.如申晴^_2撕概礙 開關連接該_—端,二 5·如申請專利範圍第4項所述之發光二極體驅 號產生器產生一對互補式控制訊號以控制該對開關元件中該訊 19 200913764 6. 如申請專利範圍第5項所述之料二極體驅崎置, 互補式控制訊號具有50%之責任週期。 、〇子 7, 如申請專利範圍第1項所述之發光二極體驅動裳置,更 心訊紐㈣細侧魏,卿該^開關 _ 8.如巾請專概圍第1顿狀發光二極體,轉 . 振電路包括: ㈣衣置其中該諧 -電容,該電容的—端連接至該橋相關電路, 脈波訊號;以及 接收該 一電感,連接於該電容的另—端和該變壓器之― 一端之間,以輪出該弦波訊號。 9.如申請專利範圍第i項所述之發光二極體驅動裝置, 授電路包括: /'πα 一電阻’該電阻連接於該變壓器之—次側之第二端和一接 地之間,其中該一次側電流流經該電阻而形成一交流 電阻上;以及 -整流7L件’以將該電_該交流跨壓進行整流據以產生 該回授訊號。 10. 如申請專利範圍第9項所述之發光二極體驅動裝置,其中該回 授電路更包括-遽波元件,以將該回授訊號進行滤波,遽波後 提供給該功率因數修正電路。 11. ^申睛專魏U第9項所述之發光二極體驅動裝置,其中該變 壓器之二次側更減-第—發光二極體模組,且該電阻的阻值 20 200913764 相應於該第一發光二極體模組的亮度。 12. 如申請專解哪^項所述之發光二錄轉裝置, 變壓器之二次側更趣接一第二發光二極體模組,該第二發光二 極體反向並聯該第一發光二極體模組,且該電阻的阻值相 應於該第二發光二極體模組的亮度。 13. 如α申請專利翻第丨項所述之發光二極體驅動裝置,其中該變 壓器之二次側更鱗—第一發光二極莫組,且該變壓器根據 該一次侧電流驅動該第一發光二極體模組。 14·如:請專利範圍第丨項所述之發光二極體驅動裝置,其中該變 壓益之二次側更雜—第二發光二極體模組,該第二發光二極 體模組反向·—發光二極體模組,且該根據該— 次側電流交替驅動該第―發光二極體模組和該第二發光 體模組。 一 21200913764 X. Patent application Fan Park·· 】. A light-emitting diode driving device, including: No.; initial number 正, positive circuit, such as according to - feedback signal adjustment - output signal connection the power factor correction circuit to The output signal of the power path is switched into a pulse signal, a wave signal: = wave = bridge switch circuit (22 °), according to the pulse, the connection is connected to the vibration circuit, the feedback circuit is connected, and the transformer is connected to cry. ' The second end of the current side of the primary side of the device is turned to the phase two poles _ device, the 'the pair' element is connected to the power_correction circuit I 3 ΓΓί, and the pair of switching elements are connected by a series of points To the harmonic _ road connection • Shen (9) rewinding the second torn light emitting diode switch f is driven by a complementary control signal. , where the pair of 4. such as Shen Qing ^ 2 tearing the switch to connect the _-end, two 5 · as claimed in the patent scope of the fourth item of the light-emitting diode drive generator to generate a pair of complementary control Signal to control the signal in the pair of switching elements 19 200913764 6. As described in claim 5, the complementary diode control has a 50% duty cycle. , Xunzi 7, such as the application of the scope of the patent range of the light-emitting diode drive skirt, more heart news New (four) fine side Wei, Qing the ^ switch _ 8. If the towel please cover the first 1st glow The diode circuit includes: (4) the device is provided with the harmonic-capacitor, the - terminal of the capacitor is connected to the bridge related circuit, the pulse signal; and the receiving the inductor is connected to the other end of the capacitor Between the one end of the transformer, the chord signal is rotated. 9. The illuminating diode driving device of claim i, wherein the circuit comprises: /'πα-resistor', the resistor is connected between the second end of the secondary side of the transformer and a ground, wherein The primary side current flows through the resistor to form an alternating current resistor; and the rectifier 7L is rectified to rectify the alternating current voltage to generate the feedback signal. 10. The LED driving device of claim 9, wherein the feedback circuit further comprises a chopper component for filtering the feedback signal and chopping the power factor correction circuit. . 11. The light-emitting diode driving device described in Item 9 of the U.S. Patent No. 9, wherein the secondary side of the transformer is further reduced to the first-light-emitting diode module, and the resistance of the resistor 20 200913764 corresponds to The brightness of the first LED module. 12. If the light-emitting two-recording device described in the above-mentioned item is applied, the secondary side of the transformer is more interesting to be connected to a second light-emitting diode module, and the second light-emitting diode is connected in reverse parallel to the first light-emitting diode. The diode module has a resistance corresponding to the brightness of the second LED module. 13. The illuminating diode driving device of claim 1, wherein the secondary side of the transformer is more scalar - the first illuminating diode, and the transformer drives the first according to the primary current Light-emitting diode module. 14. The light-emitting diode driving device according to the above aspect of the invention, wherein the second side of the variable-voltage benefit is more complicated - the second light-emitting diode module, the second light-emitting diode module Inverting the light-emitting diode module, and the first light-emitting diode module and the second light-emitting body module are alternately driven according to the current. One 21
TW096133036A 2007-09-05 2007-09-05 Light emitting diode (led) driving device TWI377864B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096133036A TWI377864B (en) 2007-09-05 2007-09-05 Light emitting diode (led) driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096133036A TWI377864B (en) 2007-09-05 2007-09-05 Light emitting diode (led) driving device

Publications (2)

Publication Number Publication Date
TW200913764A true TW200913764A (en) 2009-03-16
TWI377864B TWI377864B (en) 2012-11-21

Family

ID=44725237

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096133036A TWI377864B (en) 2007-09-05 2007-09-05 Light emitting diode (led) driving device

Country Status (1)

Country Link
TW (1) TWI377864B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407833B (en) * 2009-07-15 2013-09-01 Richtek Technology Corp Driver circuit and method for driving load circuit
US8547032B2 (en) 2010-05-06 2013-10-01 Novatek Microelectronics Corp. Method and device for driving light-emitting diode by alternating current input voltage
TWI426826B (en) * 2009-11-02 2014-02-11 Sunonwealth Electr Mach Ind Co Driving and control circuit for lamp
TWI760068B (en) * 2021-01-18 2022-04-01 龍華科技大學 A LED driver with multiplex current balance control

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407833B (en) * 2009-07-15 2013-09-01 Richtek Technology Corp Driver circuit and method for driving load circuit
TWI426826B (en) * 2009-11-02 2014-02-11 Sunonwealth Electr Mach Ind Co Driving and control circuit for lamp
US8547032B2 (en) 2010-05-06 2013-10-01 Novatek Microelectronics Corp. Method and device for driving light-emitting diode by alternating current input voltage
TWI513362B (en) * 2010-05-06 2015-12-11 Novatek Microelectronics Corp Method and device for driving light-emitting diode
TWI760068B (en) * 2021-01-18 2022-04-01 龍華科技大學 A LED driver with multiplex current balance control

Also Published As

Publication number Publication date
TWI377864B (en) 2012-11-21

Similar Documents

Publication Publication Date Title
US7772782B2 (en) Light emitting diode (LED) driving device
Chiu et al. LED backlight driving system for large-scale LCD panels
Lo et al. Design and implementation of RGB LED drivers for LCD backlight modules
TWI424788B (en) Driving apparatus for light emitting diodes
US8625310B2 (en) Method of supplying power, power supply apparatus for performing the method and display apparatus having the apparatus
TWI451807B (en) Driving circuit structure
TW201028039A (en) Improvements relating to lighting systems
CN105744678B (en) Electrochemical capacitor LED driver is gone based on PWM duty cycle control strategy
Chen et al. Study and implementation of high frequency pulse LED driver with self-oscillating circuit
TW201325065A (en) Piezoelectric resonant LED driving circuit
JP2006344919A (en) Lighting circuit for light-emitting diode
TW201123979A (en) Back light driving circuit for LCD panel
TWI466592B (en) Light-emitting element lamp circuit
Cheng et al. A novel high-power-factor AC/DC LED driver with dual flyback converters
TW200913764A (en) Light emitting diode (LED) driving device
CN102404908A (en) Stabilizing network for electronic transformer driven LED devices
Sabahi et al. A three-phase dimmable lighting system using a bidirectional power electronic transformer
CN101394699A (en) LED driving device
JPH10321914A (en) Light-emitting equipment and illumination equipment using same
JP2000003798A (en) Discharge lamp lighting device and lighting system
CN102149245B (en) Electronic ballast of efficient and light-adjustable gas discharge lamp
TW201243806A (en) Current-sharing backlight driving circuit for light-emitting diodes and method for operating the same
CN202103927U (en) Light-adjustable gas discharge lamp electronic ballast
TW200842785A (en) Backlight module and current providing circuit thereof
CN203368858U (en) SSL2108-based buck dimmable LED driving system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees