TW200913115A - Transfer chamber with vacuum extension for shutter disks - Google Patents

Transfer chamber with vacuum extension for shutter disks Download PDF

Info

Publication number
TW200913115A
TW200913115A TW97117268A TW97117268A TW200913115A TW 200913115 A TW200913115 A TW 200913115A TW 97117268 A TW97117268 A TW 97117268A TW 97117268 A TW97117268 A TW 97117268A TW 200913115 A TW200913115 A TW 200913115A
Authority
TW
Taiwan
Prior art keywords
chamber
transfer
shutter
extension
transfer chamber
Prior art date
Application number
TW97117268A
Other languages
Chinese (zh)
Other versions
TWI474426B (en
Inventor
Jason Schaller
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200913115A publication Critical patent/TW200913115A/en
Application granted granted Critical
Publication of TWI474426B publication Critical patent/TWI474426B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices

Abstract

The present invention relates to a cluster tool for processing semiconductor substrates. One embodiment of the present invention provides a mainframe for a cluster tool comprising a transfer chamber having a substrate transferring robot disposed therein. The substrate transferring robot is configured to shuttle substrates among one or more processing chambers directly or indirectly connected to the transfer chamber. The mainframe further comprises a shutter disk shelf configured to store one or more shutter disks to be used by the one or more processing chambers, wherein the shutter disk shelf is accessible to the substrate transferring robot so that the substrate transferring robot can transfer the one or more shutter disks between the shutter disk shelf and the one or more processing chambers directly or indirectly connected to the transfer chamber.

Description

200913115 九、發明說明: 【發明所屬之技術領域】 本發明之實施例大體上是關於用來處理半導體基 整合式處理系統。更特別地,本發明是關於具主框架 集式工具(clustertool),該主框架包括傳輸室和用以 遮盤(shutter disk)之延伸室。 【先前技術】 形成半導體元件的製程常施行於多室處理系統( 集式工具),其可在受控之處理環境下處理基板(如半 晶圓)。典型的受控處理環境包括具主框架之系統,主 容納基板傳輸機械手(robot),以傳輸基板於負載鎖 與多個連接主框架的真空處理室之間。受控之處理環 多項優點,例如減少傳輸基板期間和完成各基板處理 時基板表面的污染。故在受控之處理環境下進行處理 少缺陷生成數量及提高元件產率。 群集式工具的主框架一般包括中央傳輸室,其内 機械手,用以來回移動一或多個基板。處理室和負載 室係裝設在中央傳輸室上。在進行處理時,中央傳輸 内部空間一般維持呈真空狀態而構成中間區域,以供 從一處理室移到另一處理室及/或位於群集式工具前 負載鎖定室。 部分如物理氣相沉積(P V D)室之處理室包含遮盤 係用以在調理(conditioning)操作時保護基板支樓件。 板的 之群 儲放200913115 IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION [0001] Embodiments of the present invention generally relate to processing semiconductor based integrated processing systems. More particularly, the present invention relates to a cluster tool having a transfer chamber and an extension chamber for a shutter disk. [Prior Art] The process of forming a semiconductor device is often carried out in a multi-chamber processing system (collective tool) which can process a substrate (e.g., a semi-wafer) in a controlled processing environment. A typical controlled processing environment includes a system having a main frame that houses a substrate transfer robot to transport the substrate between the load lock and a plurality of vacuum processing chambers that connect the main frame. Controlled Process Rings have several advantages, such as reduced contamination of the substrate surface during substrate transfer and during substrate processing. Therefore, it is processed in a controlled processing environment to reduce the number of defects generated and to improve the component yield. The main frame of the cluster tool typically includes a central transfer chamber with a robot within it for moving one or more substrates back and forth. The processing chamber and the load chamber are mounted on a central transfer chamber. During processing, the central transfer interior space is typically maintained in a vacuum to form an intermediate region for movement from one process chamber to another and/or to a cluster tool front load lock chamber. A processing chamber, such as a physical vapor deposition (P V D) chamber, includes a shutter to protect the substrate support during conditioning operations. Group of boards

如群 導體 框架 定室 境有 步驟 可減 容納 鎖定 室的 基板 端的 ,其 PVD 200913115 處理通常是在密封室進行’密封室具有用於將基板 其上的臺座。臺座一般包括基板支揮件,其中設有 以於處理時靜電托住基板使之抵著基板支撲件。把 含有待沉積至基板之材料,並支托在基板上方且一 於腔室頂端。諸如氬氣之氣體組成的電漿係供應在 靶材之間。靶材經偏壓而加速電漿中的離子移往乾 擊靶材的離子會逐出靶材材料。逐出的材料被吸引 板而沉積材料層於基板上。 諸如老化(burn-in)製程、黏貼(pasting)及/或清 等調理操作乃定期施行以確保P V D室的處理性能。 作期間’仿製基板(dummy substrate)或遮盤係設 座上’以防基板支撐件遭任一沉積物或微粒污染。習 至一般包括遮盤儲存空間,以於處理時儲放遮盤, 更包括機械臂’以將遮盤傳輸到遮盤儲存空間與基 件間以進行調理操作。沉積時,遮盤留在P V D室的 存空間内’並於調理操作時覆蓋基板支撐件。遮盤 間和用來傳輸遮盤的機械臂將增加PVD室的複雜 積。 第1 A圖繪示先前技術之PVD處理室1 〇。PVD 10包括腔室主體2和蓋組件6,其定義可排空的製与 腔室主體2 —般包括側壁和底面$ 4。側壁通常設有 穿孔’包括接取口 '泵送口和遮盤口 56(未繪示接 泉送口)。可密封之接取口供基板12進出PVD處理 泵送口搞接幫浦系統(亦未繪示),以排空及控制製 支撐於 電極, 材通常 般固定 基板與 材。衝 朝向基 潔操作 調理操 置在臺 知PVD PVD室 板支撐 遮盤儲 儲存空 度和體 處理室 呈容積。 複數個 取口與 室1 0。 程容積 200913115 的壓力。當遮盤14處於清除位置時,遮盤口 56容許至少 一部分的遮盤1 4通過。外殼1 6通常覆蓋遮盤口 5 6,以維 持製程容積的真空度。 主體2的蓋組件6 —般支撐由此懸掛的環狀護罩62, 以支撐遮蔽環5 8。遮蔽環5 8通常用來限制沉積物形成於 露出遮蔽環5 8中央的部分基板1 2。If the group conductor frame has a step to reduce the substrate end of the lock chamber, the PVD 200913115 process is usually performed in the sealed chamber. The seal chamber has a pedestal for the substrate. The pedestal generally includes a substrate support member, wherein the pedestal is provided to electrostatically support the substrate against the substrate splicing member during processing. The material to be deposited onto the substrate is placed and supported on the substrate and at the top of the chamber. A plasma composed of a gas such as argon is supplied between the targets. The ions that are biased to accelerate the ions in the plasma to the target will evict the target material. The ejected material is attracted to the plate and a layer of material is deposited on the substrate. Conditioning operations such as burn-in processes, pasting, and/or cleaning are performed periodically to ensure the processing performance of the P V D chamber. During the process, the dummy substrate or the shutter is placed on the substrate to prevent the substrate support from being contaminated by any deposit or particles. The utility model generally includes a shutter storage space for storing the shutter during processing, and further includes a robot arm to transfer the shutter to the shutter storage space and the substrate for conditioning operation. At the time of deposition, the shutter is left in the storage space of the P V D chamber and covers the substrate support during the conditioning operation. The gap between the shutter and the arm used to transport the shutter will increase the complexity of the PVD chamber. Figure 1A shows a prior art PVD processing chamber 1 〇. The PVD 10 includes a chamber body 2 and a lid assembly 6, which defines a ventable chamber body 2 that generally includes a side wall and a bottom surface $4. The side walls are typically provided with perforations 'including access ports' pumping ports and shutter openings 56 (not shown for the spring feed ports). The sealable access port allows the substrate 12 to enter and exit the PVD process. The pumping port is connected to the pump system (also not shown), and is supported by the venting and control system. The material is usually fixed to the substrate and the material. The rushing towards the cleaning operation is in the PVD PVD chamber plate support. The storage space and the volume of the body treatment chamber are volume. Multiple ports and chambers 10. The volume of the volume of 200913115. The shutter opening 56 allows at least a portion of the shutter 14 to pass when the shutter 14 is in the clear position. The outer casing 16 generally covers the shutter opening 5 6 to maintain the vacuum of the process volume. The cover assembly 6 of the body 2 generally supports the annular shroud 62 thus suspended to support the shadow ring 58. The shadow ring 58 is typically used to limit deposit formation to a portion of the substrate 12 that exposes the center of the shadow ring 58.

蓋組件6更包括靶材64和磁電管66。靶材64提供 P V D處理時待沉積至基板1 2上的材料,磁電管6 6則於處 理時提高靶材材料的消耗均勻度。功率源8 4係相對地偏壓 靶材64和基板支撐件4。氣源82供應氣體(如氬氣)至製 程容積60。氣體構成之電漿形成在基板12與靶材64間。 電漿中的離子加速移向靶材64,促使材料逐出靶材64。逐 出之靶材材料被吸引至基板1 2而沉積材料層於基板1 2上。 基板支撐件4 一般設在腔室主體2的底面54,以於處 理時支撐基板12。遮盤構件8通常設置鄰近基板支撐件4。 遮盤構件8 —般包括支撐遮盤14用的葉片18和由軸桿20 連接至葉片18的致動器26。葉片18 —般在第1A圖清除 位置以及遮盤14實質上與基板支撐件4同心放置之第二位 置間移動。處於第二位置時,在靶材老化和腔室黏貼處理 期間,遮盤14可傳輸到基板支撐件4 (利用舉升銷)。靶 材老化和腔室黏貼處理時,葉片1 8通常返回清除位置。致 動器26可為任一裝置,只要其能旋轉軸桿20,進而移動 葉片1 8於清除位置與第二位置之間。 第1B圖為PVD處理室的頂部截面圖。第1B圖繪示 7 200913115 對應遮盤14、葉片 1 8和基板支撐件4的外殼1 6。 故具有 内建遮盤儲存器與傳輪構件的習知 P VD處理 室不但複雜’ ft昱體積龐大。群集式工具的多個處理室通 常需使用遮盤來進行-或多個步驟。#,多個腔室裝設遮 盤儲存器與傳輸構件將大幅增加群集式工具的佔地面積 (footprint )和成本。The cover assembly 6 further includes a target 64 and a magnetron 66. The target 64 provides material to be deposited onto the substrate 12 during P V D processing, and the magnetron 66 improves the uniformity of consumption of the target material upon processing. Power source 84 is relatively biased toward target 64 and substrate support 4. Gas source 82 supplies a gas (e.g., argon) to process volume 60. A plasma composed of a gas is formed between the substrate 12 and the target 64. The ions in the plasma accelerate toward the target 64, causing the material to evict the target 64. The ejected target material is attracted to the substrate 12 and the material layer is deposited on the substrate 12. The substrate support 4 is generally disposed on the bottom surface 54 of the chamber body 2 to support the substrate 12 during processing. The shutter member 8 is typically disposed adjacent to the substrate support 4. The shutter member 8 generally includes a blade 18 for supporting the shutter 14 and an actuator 26 coupled to the blade 18 by the shaft 20. The vane 18 is generally moved between the clear position of the 1A drawing and the second position where the shutter 14 is substantially concentric with the substrate support 4. In the second position, the shutter 14 can be transferred to the substrate support 4 (using the lift pins) during target aging and chamber sticking. When the target is aged and the chamber is pasted, the blade 18 is typically returned to the purge position. The actuator 26 can be any device as long as it can rotate the shaft 20, thereby moving the blade 18 between the clear position and the second position. Figure 1B is a top cross-sectional view of the PVD processing chamber. Fig. 1B shows the outer casing 16 of the 2009 200915 corresponding to the shutter 14, the blade 18 and the substrate support 4. Therefore, the conventional P VD processing chamber with built-in shutter storage and transfer members is not only complicated, but also bulky. Multiple processing chambers of a clustered tool typically require a shutter to be used - or multiple steps. #, Multiple chambers with shutter storage and transfer components will significantly increase the footprint and cost of cluster tools.

因此,群集式工呈雪驻#古^ + 南裝*又同效率的遮盤儲存器與傳輸 構件。Therefore, the clustered workers are in the same way as the efficient storage of the shutter storage and transmission components.

【發明内 本發 方法。特 室的延伸 接至傳輸 本發 含:内設 配置以將 室的處理 處理室的 架,藉此 容】 明大體上提 別地,本發 室,其中延 室之處理室 明之一實施 有基板傳輸 基板來回移 室之間;以 一或多個遮 ,基板傳輸 架與一或多個直接或 本發明之另一實 室組件, 係配置以 包含:内設 連接複數個 出—種用於處理半導體基板的設名 明提出之群集式工具具有連接至< 伸至包含遮盤架,用以儲放待用方 中的遮盤。 例提出用於群集式工具之主框年 :械手的傳輸室’基板傳輪機械。 動於-或多個直接或間接連 及遮盤架,用^玫待用於 盤’其中基板傳輪機。 地ϋ 丁'J進入;^ 機械手得以傳輪-或多個遮盤^ 間接連接至傳輪室的處 ' 3 y 處理室之間。 施例提出一種用於群 有中央機械手的主腔二 具之^ 腔室,且中央機械手:二:主,或多個, 8 200913115 來回移動於連接主腔室的複數個腔室之間;以及 腔室的延伸室和置於延伸室中的遮盤架,其中遮 置以在其中支撐一或多個遮盤,且中央機械手可 架。 本發明之又一實施例提出一種配置以處理半 的群集式工具,包含:内設有第一中央機械手的 室;連接第一傳輸室的第一延伸室,第一延伸室 一遮盤架,其中第一遮盤架支撲一或多個遮盤, 央機械手可進入第一遮盤架;連接至第一傳輸室 個處理室;以及連接至第一延伸室的負載鎖定室 【實施方式】 本發明大體上提出利用多室處理系統處理基 和方法。本發明之實施例包括主框架,主框架包 板傳輸機械手的傳輸室和提供主框架低壓環境的 根據本發明實施例之延伸室還包含架,用以儲放 用於連接主框架之處理室的遮盤。 第2圖為根據本發明一實施例之群集式工具 面圖。群集式工具100包含耦接單一主框架的多, 群集式工具100包含前端環境1〇2(亦稱為工 FI),其選擇性連接負載鎖定室104。一或多個盒 接前端環境102。一或多個盒件(pod) 101用來 輸基板。工作介面機械手103設在前端環境102 面機械手103用來傳輸基板於盒件101與負載鎖 連接至主 盤架係配 進入遮盤 導體基板 第一傳輸 内設有第 且第一中 的一或多 板的設備 含主控基 延伸室。 及支撐待 1 00的平 ϋ處理室。 作介面或 件101耦 儲放及傳 。工作介 定室104 9 200913115 間。 負載鎖定室1 〇 4做為前端環境1 0 2與主框架1 1 真空介面。主框架110的内部區域一般維持呈真空 構成中間區域,供基板從一處理室移到另一處理室石 載鎖定室。 在一實施例中,主框架11 0分成兩部分以縮減 工具1 〇 0的佔地面積。在本發明之一實施例中,主框 包含傳輸室108和真空延伸室107。傳輸室108和 伸室107互相耦接連通,且在主框架110内構成内 處理時,主框架 11 0的内容積一般維持呈低壓或 態。負載鎖定室1 04分別透過狹缝閥(slit valve ) 106連接至前端環境102和真空延伸室107。 傳輸室1 〇 8用來容納中央機械手1 0 9且做為複 理室及/或通過室(passthrough chamber )的介面, 額外的主框架及擴張群集式工具1 〇 〇。在一實施例 輸室108為具複數個側壁、一底面與一蓋子的多 構。複數個側壁内設穿孔,並且連接處理室、真空 及/或通過室。第2圖傳輸室108的水平輪廓為方形 耦接處理室111、112、113和真空延伸室107。在 例中,傳輸室1 〇 8分別透過狹縫閥1 1 6、1 1 7、1 1 8 連接處理室 111、112、113。在一實施例中’中央 1 09固定在傳輸室1 08底部的機械埠上。 中央機械手109設在傳輸室108的内容積,且 水平定向來回移動基板Π4於處理室111、112、1] 0間的 狀態而 L /或負 群集式 架110 真空延 容積。 真空狀 105、 數個處 以連接 中,傳 邊形結 延伸室 ,其並 一實施 選擇性 機械手 以實質 ί 3之間 10 200913115 及經由真空延伸室107進出負載鎖定室104。適合的機械 手更詳述於:美國專利證書號5,469,035、名稱「二軸磁耦 合機械手(Two-axis magnetically coupled robot)」、西元 19 94年 8月 30曰申請之申請案;美國專利證書號 5,447,409' 名稱「機械手組件(Robot assembly)」、西元 1994 年4月11曰申請之申請案;和美國專利證書號6,3 79,095、 名稱「用於搬運半導體基板的機械手(Robot for handling semiconductor substrates)」、西元 2000 年 4 月 14 曰申請 之申請案,其一併引用於此供作參考。在一實施例中,中 央機械手109包含用來托住基板的二葉片,葉片各裝設在 獨立控制且耦接同一機械手基底的機械臂上。在另一實施 例中,中央機械手109用來控制葉片的垂直高度。 真空延伸室107做為真空系統與傳輸室1〇8的介面。 在一實施例中,真空延伸室107包含一底面、一蓋子與多 個側壁。調壓埠11 5設於真空延伸室1 0 7的底面,用以轉 接真空幫浦系統,例如低溫幫浦,其可用來維持傳輪室1 〇 8 的高真空度。若只需較小的真空幫浦,則可省略設置調壓 埠1 1 5。較小的真空幫浦可經由傳輸室1 0 8底面的較小埠 口耦接傳輪室108。 應注意真空延伸室1 0 7只需夠寬讓基板通過,故真空 延伸室1 0 7遠比傳輸室1 0 8小/窄。 開口可設於側壁,使真空延伸室1 0 7連通傳輸室1 0 8, 進而選擇性連接與之相連的腔室,例如負載鎖定室、通過 室及/或處理室。 11 200913115 在一實施例中,群集式工具100利[Inventive method. The extension of the special chamber is connected to the transmission: a rack having a processing chamber configured to dispose the chamber, thereby substantially recognizing, in the present invention, wherein the processing chamber of the extension chamber is provided with a substrate The transfer substrate is moved back and forth between the chambers; the substrate transport rack and the one or more direct or another real room components of the present invention are configured to include: a plurality of interconnects for processing The clustered tool of the semiconductor substrate has a connection to < extends to include a shutter holder for storing the shutter in the standby. For example, the main frame year for cluster tools: the transfer chamber of the robot' substrate transfer machine. Moving on - or a plurality of direct or indirect connection and occlusion frame, use the slab to be used for the disk'. The mantle D'J enters; ^ The manipulator is able to pass the wheel - or multiple cover plates ^ indirectly connected to the transfer chamber ' 3 y between the processing chambers. The embodiment proposes a chamber for a main cavity of a group of central robots, and the central robot: two: main, or multiple, 8 200913115 moves back and forth between a plurality of chambers connected to the main chamber And an extension chamber of the chamber and a shutter frame placed in the extension chamber, wherein the cover is shielded to support one or more shutters therein, and the central robot is mountable. Yet another embodiment of the present invention provides a cluster tool configured to process half, comprising: a chamber having a first central robot therein; a first extension chamber connecting the first transmission chamber, and a first extension chamber Wherein the first shutter frame supports one or more shutters, the central robot can enter the first shutter frame; is connected to the first transfer chamber processing chamber; and the load lock chamber connected to the first extension chamber Modes The present invention generally proposes the use of a multi-chamber processing system processing base and method. Embodiments of the present invention include a main frame, a transfer chamber of the main frame wrapper transfer robot, and an extension chamber according to an embodiment of the present invention that provides a low pressure environment for the main frame, further comprising a shelf for storing a processing chamber for connecting the main frame Cover. Figure 2 is a cross-sectional view of a cluster tool in accordance with an embodiment of the present invention. The cluster tool 100 includes a plurality of coupled single mainframes, and the cluster tool 100 includes a front end environment 1〇2 (also referred to as a worker FI) that is selectively coupled to the load lock chamber 104. One or more of the front end environments 102 are docked. One or more pods 101 are used to transport the substrate. The working interface robot 103 is disposed in the front end environment 102. The robot 103 is used to transport the substrate to the first piece and the first one of the first transmission of the box member 101 and the load lock to the main tray. Or multi-board equipment with a main control base extension chamber. And support the flat processing room to be 100 00. The interface or piece 101 is coupled to store and transmit. Working room 104 9 200913115. The load lock chamber 1 〇 4 serves as the front end environment 1 0 2 and the main frame 1 1 vacuum interface. The inner region of the main frame 110 is generally maintained in a vacuum to form an intermediate region for the substrate to be moved from one processing chamber to another. In one embodiment, the main frame 110 is divided into two sections to reduce the footprint of the tool 1 〇 0. In one embodiment of the invention, the main frame includes a transfer chamber 108 and a vacuum extension chamber 107. The transfer chamber 108 and the extension chamber 107 are coupled to each other, and when the internal processing is performed in the main frame 110, the internal volume of the main frame 110 is generally maintained at a low pressure or state. The load lock chambers 104 are connected to the front end environment 102 and the vacuum extension chamber 107 through slit valves 106, respectively. The transfer chamber 1 〇 8 is used to accommodate the central robot 1 0 9 and serves as a gateway for the replication chamber and/or passthrough chamber, an additional main frame and an expanded cluster tool 1 〇 〇. In one embodiment, the transfer chamber 108 is a multi-layer having a plurality of side walls, a bottom surface and a cover. A plurality of side walls are provided with perforations and are connected to the processing chamber, vacuum and/or passage chamber. The horizontal profile of the transfer chamber 108 of Fig. 2 is square coupled to the process chambers 111, 112, 113 and the vacuum extension chamber 107. In the example, the transfer chambers 1 〇 8 are connected to the process chambers 111, 112, 113 through slit valves 1 16 , 1 1 7 , 1 1 8 , respectively. In one embodiment, the center 1 09 is attached to the mechanical jaw at the bottom of the transfer chamber 108. The central robot 109 is disposed in the inner volume of the transfer chamber 108 and horizontally orients the state of the substrate Π4 between the processing chambers 111, 112, 1] 0 and the L/ or negative cluster 110 vacuum extension volume. The vacuum 105 is connected to the load-locking chamber 104 through a vacuum extension chamber 107 by a selective robot. Suitable robots are described in more detail in US Patent No. 5,469,035, the name "Two-axis magnetically coupled robot", and the application filed on August 30, 1994. U.S. Patent No. 5,447,409' Name "Robot assembly", application filed April 11, 1994, and US Patent No. 6,3,79,095, "Robot for handling semiconductor" The applications filed on April 14, 2000, are hereby incorporated by reference. In one embodiment, the central robot 109 includes two blades for holding the substrate, each of the blades being mounted on a robot arm that is independently controlled and coupled to the base of the same robot. In another embodiment, the central robot 109 is used to control the vertical height of the blade. The vacuum extension chamber 107 serves as an interface between the vacuum system and the transfer chamber 1〇8. In one embodiment, the vacuum extension chamber 107 includes a bottom surface, a cover and a plurality of side walls. A pressure regulating port 11 5 is provided on the bottom surface of the vacuum extension chamber 107 for switching to a vacuum pumping system, such as a low temperature pump, which can be used to maintain a high vacuum of the transfer chamber 1 〇 8. If a smaller vacuum pump is required, the setting pressure 埠1 1 5 can be omitted. The smaller vacuum pump can be coupled to the transfer chamber 108 via a smaller opening in the bottom surface of the transfer chamber 108. It should be noted that the vacuum extension chamber 107 only needs to be wide enough for the substrate to pass, so the vacuum extension chamber 107 is much smaller/narrower than the transmission chamber 108. The opening may be provided in the side wall such that the vacuum extension chamber 107 communicates with the transfer chamber 108, and in turn selectively connects the chamber to which it is connected, such as a load lock chamber, a passage chamber and/or a processing chamber. 11 200913115 In an embodiment, the cluster tool 100 benefits

Al ^物理瑕*相沉積 (PVD)製程來沉積膜層至半導體基板上。 PVD製程通常是在密封室進行,來科… ^ Λ 蚵至具有支撐基板 於其上的臺座。臺座一般包括基板支樓件, ’其設有電極, 以於處理時靜電托住基板使之抵著基板支 叉撐件。靶材通常 含有待沉積至基板之材料,並支托在基板 上万且一般固定 於腔室頂端。諸如氬氣之氣體組成的電漿 ^"成在基板與靶 材之間。靶材經偏壓而加速電漿中的離子移往靶材。衝擊 靶材的離子將逐出靶材材料。逐出材料被 人:Μ王|板而沉 積材料層於基板上。An Al ^ physical 瑕 * phase deposition (PVD) process is used to deposit the film onto the semiconductor substrate. The PVD process is usually carried out in a sealed chamber... ^ Λ 蚵 to the pedestal with the support substrate on it. The pedestal generally includes a substrate support member that is provided with electrodes to electrostatically hold the substrate against the substrate support during processing. The target typically contains the material to be deposited onto the substrate and is supported on the substrate and is typically attached to the top of the chamber. A plasma composed of a gas such as argon is formed between the substrate and the target. The target is biased to accelerate the ions in the plasma to the target. Ions that impact the target will drive out of the target material. The eviction material is layered on the substrate by the Μ王|board.

諸如老化製程、黏貼及/或清潔操作等調理操作乃定期 施行以確保PVD室的處理性能。調理操作期間,仿製基板 或遮盤係設置在臺座上’以防基板支撐件遭任一沉積物或 微粒污染。習知Ρ V D室一般包括一整個遮盤儲存空間,以 於PVD處理時儲放遮盤,及包括機械臂,以將遮盤傳輪到 遮盤健存空間與基板支撐件間進行調理操作。沉積時,遮 盤留在PVD室的遮盤儲存空間内’並於調理操作時覆蓋基 板支樓件。遮盤儲存空間和用來傳輸遮盤的機械臂將增加 PVD室的複雜度和體積。 在本發明之一實施例中,真空延伸室1〇7包含用來錯 放一或多個遮盤的遮盤架,其更描述於第3Α-Β圖。連接 傳輸室108的PVD室將其遮盤放在遮盤架’並利用中央機 械手109傳輸遮盤。亦當理解pvD室可共用一或多個遮 盤。在一實施例中,遮盤架用來儲放一遮盤,以供連接傳 12 200913115 輸室108的各處理室使用。 置於真空延伸室的遮盤架還可用來儲放、佇5 或容納其他用於系統的圓盤。此外,遮盤架可用來 協助快速接取任一基板類型之元件,例如可重複用 的3 00毫米(mm)圓盤。本發明之真空延伸室在處理 提供空間做為檢查站或冷卻/加熱站。 在一實施例中,遮盤架可做為充電站以1 (v i s i ο η )校準基板使用。視覺校準基板為可重複 元件,其上設有一或多個無線攝影機。視覺校準基 來測量、檢查及校準中央機械手可進入的群集式工 積,包括傳輸室、延伸室、負載鎖定室、通過室和處 視覺校準基板亦可用來校準中央機械手。視覺校準 細節可參見美國專利證書號7 , 〇 8 5,6 2 2、名稱為「視 (Vision system)」之申請案,其在此併入以供作參$ 視覺校準基板包含一或多個無線攝影機,其具 電源使攝影機得以在群集式工具内容積中無線運 前,無線攝影機的電源是在群集式工具外面充電 電。已充電之視覺校準基板一般從前端環境送入群 具,同時停止進行處理。完成任務或耗盡電源後, 集式工具的視覺校準基板。在本發明之一實施例中 觸點設於遮盤架的一或多個狹缝,以對視覺校準基 充電。一或多個視覺校準基板放在遮盤架,且備好 用。使用視覺校準基板進行測量較不會中斷群集式 處理製程。 丨卜及/ 儲放及 於系統 期間還 共視覺 使用的 板可用 具内容 理室。 基板的 覺系統 1 〇 可充電 作。目 及再充 集式工 取出群 ,電氣 板進行 隨時可 工具的 13 200913115 將遮盤放置在群集式工具之主框架内而消除配置處理 室中特定用於遮盤的區域和用來傳輸及/或監測遮盤的元 件,可簡化需使用遮盤的處理室及降低處理室成本。將遮 盤放置在群集式工具之主框架内尚可改善氣流和電性,進 而加強處理。另外,因處理室較小,群集式工具的整體體 積亦縮小,故所有成本費用較低。 在一實施例中,群集式工具1 00包含預清潔室、PVD 室和除氣室,其連接位於處理室111、112、113的傳輸室 108 ° 第3A圖為第2圖群集式工具100的截面側視圖。真 空延伸室107包含可移動的遮盤架122,該架122可用以 支撐至少一遮盤123。 在本發明之一實施例中,負載鎖定室1 04包含堆疊在 下負載鎖定室l〇4b上面的上負載鎖定室104a。上負載鎖 定室1 0 4 a和下負載鎖定室1 0 4 b可個別獨立操作,如此可 同時雙向傳輸基板於前端環境102與主框架110間。 負載鎖定室l〇4a' 104b分別透過狹缝閥105a、106a、 1 0 5 b、1 0 6 b做為前端環境1 0 2與主框架1 1 0間的第一真空 介面。在一實施例中,二負載鎖定室1 〇4a、1 04b藉由輪流 連通主框架1 1 0和前端環境1 0 2而增加產量。當一負載鎖 定室104a或104b連通主框架110時,另一負載鎖定室104a 或104b可連通前端環境102。 在一實施例中,負載鎖定室1 04a或1 04b可當作處理 室,例如除氣室、檢查站、預熱室、冷卻室或固化室。例 14 200913115 如’可使用固定性的阻擋件代替M & 八管狹縫閥105b, 鎖定室1 0 4 b只能打開主框架1丨η . 〇。在除氣前相 手1 09可利用狹縫閥1 06b來回移叙龙』 利丞板進出下 104b ° 參照第3 A圖’主框架1 1 〇的内 合積由真^ 的内容積11 9界定,内容積11 9則車 ' ⑴運接傳輸室 積120。開口 128設於傳輸室1〇8蛊 ’、具空延伸‘ 開口 128連通真空延伸室107和傳輪室108, 讓中央機械手109來回移動基板進 印貝戰鎖定 真空系統125耦接真空延伸室1〇7,並提^ 與内容積12〇兩者低壓環境。機械構件126 108。傳輸室log和真空 伸 1 ιλλ 柙具二I伸至Μ7經建構以滅 具1 0 0的佔地面積。 對群集式工且爽炸,告·宙 傳輸t 0 2 ”工’、統(如低溫 真”阜f度(通常為“空度)時,傳輸室 U傳輪室兼具適用機械傳輪構件的 :卜統的真空_。機械谭—般 真空埠則設在輔 傅輸至 甘獨助機械埠的衛星位置, 給機械傳輪槿杜立 留下 積和大内容積。山 士此’傳輪室具 在值齡 由於處理室'負載鎖定室及/或 在傳輪室周圍,因此傳輸室的大佔地面藉/ 式工具的總體…積。大佔地面積將太 言直ί發明之實施例提出將真空系統連接至谓 ο、工度’且不會大幅增加傳輸室和群集式工 使得下負载 ’中央機械 負載鎖定室 :延伸室107 10 8的内容 :1 0 7之間。 且大小足以 室 104 〇 :内容積1 1 9 耦接傳輸室 小群集式工 f浦)需保持 通常設有大 機械皡和用 中心附近, 足夠的空間 有大佔地面 通過室配置 巾昌增加群集 輸室以獲得 具的佔地面 15 200913115 積。藉由使分開的延伸室”外包(〇 u t s 〇 u r c i n g ) ’’調壓埠’ 可使傳輸室的尺寸最小化而成為可恰置入中央機械手的空 間大小。延伸室尺寸依所需的真空系統尺寸而定。僅具機 械埠之傳輸室和其具機械埠之延伸室的佔地面積總和遠比 習知具真空璋與機械埠的傳輸室小。當延伸室設在傳輸室 周圍的負載鎖定室内時,由於群集式工具配置在縮小的傳 輸室周圍,故群集式工具的佔地面積縮減更為顯著。 應注意延伸室尺寸通常遠小於傳輸室尺寸,此乃因延 伸室的大小只需讓基板通過即可,但傳輸室一般需容納中 央機械手。 此外,相較於習知傳輸室,本發明之傳輸室和延伸室 的内容積較小。如此可快速進行泵抽且只需利用較少的能 量及使用較小、較便宜的幫浦來維持真空度。 在一實施例中,指示器124耦接至可移動的遮盤架 122,並用以垂直移動遮盤架122。當中央機械手109經由 内容積119下部傳輸基板進出負載鎖定室104時,可移動 的遮盤架122可設置在真空延伸室107的内容積119上 部。指示器124可使遮盤架122降低移動至内容積119下 部,讓中央機械手109拾起可移動的遮盤架122上的遮盤 或放下遮盤到可移動的架1 2 2上。 第3 B圖為根據本發明一實施例之群集式工具1 0 0 a的 截面側視圖,其具有主框架ll〇a。主框架110a包含真空 延伸室133,其設有用來儲放一或多個遮盤的固定架135。 負載鎖定室1 3 0做為前端環境1 0 2與主框架1 1 0 a間的 16Conditioning operations such as aging processes, pasting and/or cleaning operations are performed periodically to ensure the processing performance of the PVD chamber. During the conditioning operation, the imitation substrate or shutter is placed on the pedestal to prevent the substrate support from being contaminated by any deposits or particles. The conventional V D chamber generally includes an entire shutter storage space for storing the shutter during PVD processing, and includes a robot arm for transferring the shutter to the shutter storage space and the substrate support for conditioning operation. During deposition, the shutter remains in the shutter storage space of the PVD chamber' and covers the substrate support during conditioning operations. The shutter storage space and the robotic arm used to transport the shutter will increase the complexity and volume of the PVD chamber. In one embodiment of the invention, the vacuum extension chamber 1 〇 7 includes a shutter frame for misaligning one or more shutters, which is further described in the third Β-Β. The PVD chamber connecting the transfer chamber 108 places its shutter on the shutter holder' and transmits the shutter with the central robot 109. It is also understood that the pvD chamber can share one or more shutters. In one embodiment, the shutter frame is used to store a shutter for use in the various processing chambers that are connected to the transmission chamber 108. The shutter holder placed in the vacuum extension chamber can also be used to store, 伫5 or accommodate other discs for the system. In addition, the shutter holder can be used to assist in quick access to components of any substrate type, such as reusable 300 mm (mm) discs. The vacuum extension chamber of the present invention provides space for processing as a checkpoint or cooling/heating station. In an embodiment, the shutter frame can be used as a charging station to calibrate the substrate with 1 (v i s i ο η ). The visual calibration substrate is a repeatable component on which one or more wireless cameras are located. The visual calibration base measures, inspects, and calibrates the clustered volume accessible to the central robot, including the transfer chamber, extension chamber, load lock chamber, pass chamber, and visual calibration substrate. It can also be used to calibrate the central robot. For details of the visual calibration, see U.S. Patent No. 7, 〇 8 5, 6 2 2. The application entitled "Vision System", which is hereby incorporated by reference for the purpose of A wireless camera that has power to allow the camera to be wirelessly transported in the clustered tool's internal volume. The wireless camera's power is charged outside the clustered tool. The charged visual calibration substrate is typically fed into the cluster from the front end environment while processing is stopped. After the task is completed or the power is exhausted, the vision tool of the collective tool is calibrated. In one embodiment of the invention, the contacts are disposed in one or more slits of the shutter frame to charge the visual calibration base. One or more vision calibration substrates are placed on the shutter holder and are ready for use. Measurements using a vision calibration substrate are less disruptive than cluster processing. Boards and/or storage and other boards that are also used visually during the system can be used with the content room. The substrate sensing system 1 〇 can be charged. The refilling group takes out the group, and the electric board is ready for use. 13 200913115 Place the shutter in the main frame of the cluster tool to eliminate the area specified in the processing chamber for the shutter and for transmission and / Or monitoring the components of the shutter to simplify the processing chamber where the shutter is needed and reduce the cost of the chamber. Placing the visor in the main frame of the cluster tool improves airflow and electrical power and enhances processing. In addition, because the processing chamber is small, the overall volume of the cluster tool is also reduced, so all costs are low. In one embodiment, the cluster tool 100 includes a pre-cleaning chamber, a PVD chamber, and a degassing chamber connected to the transfer chamber 108° of the processing chambers 111, 112, 113. FIG. 3A is a second diagram of the cluster tool 100 of FIG. Sectional side view. The vacuum extension chamber 107 includes a movable shutter frame 122 that can be used to support at least one shutter 123. In one embodiment of the invention, the load lock chamber 104 includes an upper load lock chamber 104a stacked above the lower load lock chamber 104b. The upper load lock chamber 1 0 4 a and the lower load lock chamber 1 0 4 b can be independently operated independently, so that the substrate can be simultaneously transferred between the front end environment 102 and the main frame 110 in both directions. The load lock chambers 10a' 104b pass through the slit valves 105a, 106a, 1 0 5 b, and 1 0 6 b as the first vacuum interface between the front end environment 1 0 2 and the main frame 110. In one embodiment, the two load lock chambers 1a, 4b, 104b increase throughput by alternately communicating the main frame 110 and the front end environment 102. When a load lock chamber 104a or 104b communicates with the main frame 110, another load lock chamber 104a or 104b can communicate with the front end environment 102. In an embodiment, the load lock chamber 104a or 104b can be used as a processing chamber, such as a degassing chamber, an inspection station, a preheating chamber, a cooling chamber, or a curing chamber. Example 14 200913115 If the fixed barrier can be used instead of the M & eight-tube slit valve 105b, the lock chamber 1 0 4 b can only open the main frame 1丨η. Before the degassing, the phase hand 1 09 can use the slit valve 106b to move back and forth to the dragon. The slab enters and exits 104b °. Refer to the 3A diagram. The inner total of the main frame 1 1 〇 is defined by the inner volume of the true ^ 11 9 The content of 11 9 cars ' (1) transport transmission room product 120. The opening 128 is disposed in the transmission chamber 1〇8蛊', and has an empty extension opening 128 communicating with the vacuum extension chamber 107 and the transfer chamber 108, allowing the central robot 109 to move the substrate back and forth to the seal. The lock vacuum system 125 is coupled to the vacuum extension chamber. 1〇7, and raise the low-pressure environment with the content of 12〇. Mechanical member 126 108. Transfer chamber log and vacuum extension 1 ιλλ The cookware II is extended to Μ7 to be constructed to extinguish the footprint of 100. For cluster-type work and cool bombing, when the transmission of t 0 2 "work", system (such as low temperature true) 阜 f degree (usually "emptiness", the transfer chamber U transfer wheel chamber has both mechanical transfer members The vacuum of the system is _. The mechanical Tan-like vacuum is set in the satellite position of the auxiliary Fu to the Ganduo mechanical gong, leaving the mechanical transmission 槿 Du Li to leave the product and the large content. The wheel chamber is at the age of the treatment chamber because of the load lock chamber and/or around the transfer chamber, so the transfer chamber has a large area of the ground borrowing/tool. The large footprint will be too straightforward. The example proposes to connect the vacuum system to the working degree and does not significantly increase the transfer chamber and the cluster work so that the lower load 'central mechanical load lock chamber: the extension chamber 107 10 8 content: between 10 7 and the size Sufficient room 104 〇: internal volume 1 1 9 coupled to the transmission chamber small cluster workers f need to maintain the usual large mechanical 皡 and use near the center, enough space to have a large occupied ground through the room configuration towel Chang increase the cluster transmission room To obtain a product with a floor covering 15 200913115. By making separate extensions Room "Outsourcing (square square u t s u r c i n g) '' regulator port 'can minimize the size of the transfer chamber and can be precisely placed in the space size of the center robot. The extension chamber size depends on the size of the vacuum system required. The total area of the transfer chamber with only the mechanical raft and the extension chamber with the mechanical raft is much smaller than that of the transfer chamber with vacuum 埠 and mechanical 埠. When the extension chamber is placed in the load lock chamber around the transfer chamber, the footprint of the cluster tool is more pronounced as the cluster tool is placed around the reduced transfer chamber. It should be noted that the extension chamber size is usually much smaller than the size of the transfer chamber. This is because the size of the extension chamber only needs to pass the substrate, but the transfer chamber generally needs to accommodate the central robot. Further, the internal volume of the transfer chamber and the extension chamber of the present invention is small compared to the conventional transfer chamber. This allows for rapid pumping and requires less energy and a smaller, less expensive pump to maintain vacuum. In one embodiment, the indicator 124 is coupled to the movable shutter frame 122 and is used to vertically move the shutter frame 122. When the center robot 109 moves in and out of the load lock chamber 104 via the lower portion of the inner volume 119, the movable shutter frame 122 can be disposed above the inner volume 119 of the vacuum extension chamber 107. The indicator 124 causes the shutter frame 122 to be lowered to the lower portion of the inner volume 119, allowing the central robot 109 to pick up the shutter on the movable shutter frame 122 or to lower the shutter to the movable frame 122. Figure 3B is a cross-sectional side view of a cluster tool 100a having a main frame 11a according to an embodiment of the present invention. The main frame 110a includes a vacuum extension chamber 133 provided with a holder 135 for storing one or more shutters. The load lock chamber 1 3 0 is used as the front end environment 1 0 2 and the main frame 1 1 0 a 16

C 200913115 第一真空介面。在_鲁说w丄 實施例中,負載鎖定 在負載鎖定室13〇肉认^甘, 的上基板支擇件1 3 I和Ί 132。上基板支撐件 干I3i和下基板支撐件132 板。在一實施例中,# 上基板支撐件131和下某 分別用來支撐進入與移出 土 興移出的基板。上基板支指 基板支撐件1 32包含如内建 門逐的加熱态或冷卻器 結構,以於傳輸時加熱或冷卻基板。 。 主框架110a的内容積由真空延伸室 界定,内容積i34則連接傳輸室1〇8的内容積 128a設置於傳輸室1〇8與真空延伸室之間 連通真空延伸室133和傳輸室1〇8,且大小足^ 械手109來回移動基板進出負載鎖定室13〇及 伸室1 3 3的固定架1 3 5。 在一實施例中,當中央機械手丨〇9經由内 部傳輸基板進出負載鎖定室13〇時,固定架i 空延伸室133的内容積134下部。 在一實施例中,固定架135包含自内容積 支枉延伸的支撐指狀物件》 應注意機械手109可懸掛在傳輸室的 明之實施例可包括能垂直移動或z方向移動的 回溯第3A圖,支撐腳丨27支撐群集式工 框架110。支撐腳127縱向及側向支撐主框架 主框架110相連的腔室。每一支撐腳127支相 至少一部分的重量,包括傳輸室108、真空延 3 〇包含堆疊 '基板支撐件 用來支撐基 之支撑件1 3 2 件1 3 1和下 之控溫特徵 ϊ内容積1 34 1 2 0。開口 。開口 128a 以讓中央機 接取真空延 容積134上 ;5可設在真 1 3 4對側之 頂壁。本發 機械手。 具100的主 1 1 0以及與 •主框架1 伸室107及 17 200913115 視情況包括與之相連的處理室。可垂直調整各支撐腳 127,以調整主框架110和其相連腔室的水平。支撐腳127 耦接主框架110及/或連接主框架110之腔室的側壁,藉以 側向支撐群集式工具1 〇 〇。 在一實施例中,每一支撐腳 127包含連接鋼管主體 127a的足部127b。鋼管主體127a耦接主框架1 10。足部 127b用來接觸地面且可相應鋼管主體127a加以調整。藉 由改變足部127b可調整支撐腳127的垂直尺寸,進而提供 支撐群集式工具1〇〇的容限。 在一實施例中,如第2圖及第3C-3D圖所示,主框架 1 1 0由四個個別裝設在主框架1 1 0對側的支撐腳1 2 7所支 撐。二支撐腳1 2 7個別固定於傳輸室1 0 8的側壁,二支撐 腳1 2 7則個別固定於真空延伸室1 0 7的側壁。在另一實施 例中,二支撐腳1 2 7設置靠近真空延伸室1 0 7與負載鎖定 室1 〇4的接合區域。在一實施例中,主框架1 1 0之側壁設 有凹口 ,用以嚙合支撐腳127。 螺栓可用來固定各支撐腳127至主框架110的對應位 置。第4E圖繪示之螺孔318、319設於腔室主體301,用 以將支撐腳固定於凹口 309。 第3C圖為第3A圖群集式工具100之一支撐腳實施例 的局部底部立體示意圖。如第3C圖所示,群集式工具100 由四個獨立的支撐腳127丨_4支撐。支撐腳127!_4各自獨立 裝設在群集式工具100上。第3C圖繪示一中央結構160, 包括傳輸室108與真空延伸室107、和一起耦接的負載鎖 18 200913115 定室 1 0 4。其他 自中央結構1 6 0 一同支撐群集式 1 〇 4與真空延伸 用來側向支撐内 室108,並且接 設的支撐腳1 2 7 可均衡支撐群集 中央結構1 6 0的 第3D圖為j 例的局部底部立 裝設在負載鎖定 相對於一般 集式工具支撐件 基底一般為一整 傳統基底要達到 外,傳統基底連 組裝。傳統基底 問題,以致曰常 用。 相較於傳統 成本。因支撑'腳 造成本。各支撐 或進行其他調整 諸如處理室、通過室和前端介面等部件 延伸。支撐腳127!_4耦接中央結構160 工具100。一對凹口 161設在負載鎖定 室107之接合區域附近的底壁。凹口 1 設的支撐腳127。一對凹口 162設於傳 合支撐腳1 2 7 3.4。凹口 1 6 2亦側向支撐 。凹口 161、162可設置而使支撐腳127 式工具100,包括中央結構160及/或連 腔室。 客3A圖群集式工具100之另一支撐腳實 體示意圖。在此實施例中,支撐腳1 2 7 室104或真空延伸室107的側壁上。 包括做為隆起支撐件之整體基底的傳統 ,獨立的支撐腳設計具有數個優點。傳 塊,且用來支撐群集式工具的多個部件 半導體製程要求的高精確度所費不貲。 接至群集式工具的多個部件,因此也很 通常會引起群集式工具之其他部件的清 使用或移開基底之腔室部件時無法連續 基底,本發明之獨立的支撐腳大大地降 可個別製造,故可降低高精確度結構的 腳通常耦接至一部件,如此更易調整水 。支撐腳不限定用於特定的群集式工具 可 而 室 6 1 Hi 内 1-4 接 施 群 統 Ο 另 難 除 利 低 製 平 構 19 200913115 造。當改變一或多個部件(如負載鎖定室)時,不需更換支 撐腳。再者,本發明之支撐腳更易運送。 第4 A圖為根據本發明一實施例之傳輸室3 00的分解 側視圖。傳輸室3 00可做為第2圖及第3 A-B圖的傳輸室 1 0 8。傳輸室3 0 0包含具一頂壁3 1 3、複數個側壁3 1 4和一 底壁315的腔室主體301。腔室主體301定義内容積312(第 4 C圖),以容納基板傳輸裝置,例如機械手。在一實施例 中,中央機械手設在傳輸室300底壁315上的機械埠304。 傳輸室300更包含室蓋302,用以密封腔室主體301 頂壁3 1 3上的開口 3 0 3。開口 3 0 3有助於安裝及/或維修基 板傳輸裝置。在一實施例中,室蓋3 02利用密封環3 1 7和 複數個螺栓307耦接至腔室主體301。室蓋302可設置一 組把手3 0 8。 在一實施例中,腔室主體301具有矩形剖面且包含四 個側壁3 1 4。每一側壁3 1 4設有開口 3 0 5。開口 3 0 5選擇性 連接内容積312和耦接傳輸室300的處理室、負載鎖定室 及/或真空延伸室。密封管306設在開口 305周圍,其容納 密封環(未繪示),以於内容積3 1 2周圍維持壓力阻障界線。 第4 A圖繪示根據本發明一實施例之處理室3 9 0,其利 用腔室埠組件3 7 0設於傳輸室3 0 0。腔室埠組件3 7 0做為 傳輸室300與處理室390的介面。在一實施例中,腔室埠 組件3 7 0遮蓋狹缝閥組件3 8 0,以打開及關閉貫穿處理室 390側壁391的基板開口 392。基板開口 392提供通道讓基 板進出處理室390。此外,腔室埠組件370容許傳輸室300 20 200913115 之開口 3 05 與處理室 390 之基板開口 3 92 不相配 (mismatch )。 腔室埠組件3 7 0包含主體3 7 1,具有朝主體3 7 1 —側 敞開的傳輸室開口 3 72。傳輸室開口 3 7 2係配置以覆蓋住 傳輸室300之開口 305。傳輸室開口 372連接主體371另 一側的腔室開口 3 7 3,以定義基板經過腔室埠組件3 7 0的 通道。腔室開口 373對準處理室390之基板開口 392。密 封管3 7 7設在基板開口 3 9 2外側,用以容納密封環(未繪示) 而防止腔室埠組件3 7 0和處理室3 9 0洩漏。 狹缝閥組件380 —般包含狹缝閥門382,其由啟動構 件3 8 1啟動,以將狹缝閥門3 8 2移到打開位置和關閉位置。 狹缝閥組件3 8 0的狹缝閥門3 8 2位於腔室開口 3 7 3内側, 並選擇性連接及脫離傳輸室開口 3 7 2和腔室開口 3 7 3,且 選擇性連接傳輸室300和處理室3 90。 在一實施例中,複數個螺栓3 74用來固定腔室埠組件 3 7 0與傳輸室3 0 0。在一實施例中,密封環3 7 8置於環繞傳 輪室300與腔室埠組件370間之開口 305的密封管306, 以流體地隔開腔室埠組件3 7 0的内部區域與傳輸室3 0 0的 外界環境。複數個螺栓3 7 3和密封環3 9 4用來裝設處理室 390與腔室埠組件370。 另外,傳輸室開口 372提供額外空間,當葉片沿水平 面轉動時,其容納傳輸室300内的機械手尖端(此將進一步 描述於第4 B圖)。腔室埠組件3 7 0的額外空間更能減小傳 輸室3 0 0尺寸,進而縮減系統佔地面積。在一實施例中, 21 200913115 腔室埠組件3 7 0包含一或多個感測器,用以偵測傳輸室開 口 372内的基板及/或機械零件。第4Α圖繪示光源376和 光接收器3 7 5,其當作感測器來偵測基板及/或機械零件。 應注意負載鎖定室可直接或透過類似腔室埠組件3 70 之腔室埠組件耦接至傳輸室3 0 0的側壁3 1 4。 在一實施例中,二凹口 3 0 9設在底壁3 1 5的轉角附近。 凹口 309用來容納支撐腳360。支撐腳360承受傳輸室300 和其架設元件至少一部分的重量。支撐腳3 6 0可由螺栓3 6 1 固定於傳輸室300。凹口 309提供二平面來側向托住支撐 腳 360 ° 第4Β圖為第4Α圖傳輸室3 00的平面圖。第4C圖為 第4 Α圖傳輸室3 0 0的截面側視圖。參照第4 C圖,腔室主 體301可由鑄鋁構成,並界定内容積312以供内設的中央 機械手移動。在一實施例中,内容積3 1 2的大小可最小化 成為恰符合置入機械手的移動空間。 第4E圖為第4A圖傳輸室300的立面圖,其具有旋轉 模式的中央機械手3 1 6。中央機械手3 1 6包含個別獨立傳 輸基板331的上葉片329和下葉片330。中央機械手316 可繞著z軸旋轉、沿著z軸移動及平行X - y平面轉移。傳 輸室300也可採用其他合適的機械手。中央機械手316亦 可對應其他結構變化而懸掛在傳輸室3 0 0的頂壁3 1 3。 處理時,中央機械手316伸出上葉片329或下葉片330 通過傳輸室3 0 0側壁3 1 4上的開口 3 0 5 ’以取回連接傳輸 室300之處理室/負載鎖定室内的基板、或連接傳輸室300 22 200913115 之真空延伸室内儲放的遮盤。中央機械手316可垂直移動 (即沿著z軸),使上葉片3 2 9或下葉片3 3 0對準目標基板 或遮盤。一旦拾起基板/遮盤,中央機械手316縮回上葉片 329或下葉片330到傳輸室300的内容積312,並在内容積 312内轉動上葉片329或下葉片330,使上葉片329或下葉 片330對準開口 305,藉以連接目標基板/遮盤的腔室。中 央機械手316接著延伸上葉片329或下葉片330進入目標 腔室及放下基板/遮盤。 係期望將傳輸室3 0 0的内容積3 1 2減至最小以縮減系 統佔地面積及減小控制環境體積。在一實施例中,傳輸室 300的内容積312定義與第4B及4C圖之圓圈324、325 界定的移動封套相配,以供中央機械手 3 1 6執行所需功 能。圓柱形移動封套包括大中央部(圓圈325之半徑範圍) 和較小的上部與下部(圓圈3 2 4之半徑範圍)。内容積3 1 2 和腔室埠組件3 7 0之額外空間與連接傳輸室3 0 0之真空延 伸室3 5 0的大中間部(虛線3 1 1標示半徑範圍)部分涵蓋移 動封套的大中央部。 在一實施例中,移動封套包括中央機械手316轉動及 垂直移動所需的空間。移動封套實質上為圓柱形,且具擴 大中間部(以圓圈325標示)供葉片329、330尖端在内部旋 轉。故内容積312實質上為圓柱形,其半徑範圍以虛線310 標示且具擴大中間部(半徑範圍以虛線3 1 1標示)。為進一 步縮小傳輸室3 0 0尺寸,一部分的擴大中間部(以圓圈3 2 5 標示)可置於傳輸室300外面,並且延伸到真空延伸室及/ 23 200913115 或連接傳輸室3 0 0的腔室埠組件3 7 0,例如腔室埠組件3 7 0 的傳輸室開口 372 。 在一實施例中,如第4C圖所示,内容積312與移動 封套之間的徑向空隙327為約0.25英吋,垂直空隙326、 3 2 8為約0.3 3 8英吋。 在一實施例中,軟體限制(software constraint)可用 於控制系統,以令中央機械手3 1 6留在移動封套内。 第4D圖為第4A圖傳輸室3 00的底部示意圖。一或多 個加熱器埠320設於底壁315來連接卡式加熱器,以於處 理時加熱腔室主體301。計錶埠321可設於底壁315。計錶 埠3 21用來轉接感測器,例如壓力感測器。非必要之調壓 埠322和排氣孔323亦可設於底壁315而連接合適的幫浦 裝置。計錶埠3 2 1、調壓埠3 2 2和排氣孔3 2 3不使用時, 可加以密閉。 第4 F圖繪示真空延伸室3 5 0之一實施例,其耦接傳 輸室3 0 0的側壁3 1 4。在一實施例中,真空延伸室3 5 0提 供傳輸室3 0 0額外的空間來連接真空系統,以於處理時維 持傳輸室3 0 0之内容積3 1 2的真空狀態,同時減小傳輸室 300的體積和主框架的整體内容積。真空延伸室350還供 傳輸室300内的機械手經由負載鎖定室進入工作介面、或 經由通過室進入另一傳輸室。 用來轉接真空幫浦(低溫幫浦)的調壓埠3 5 4設置於真 空延伸室3 5 0的底壁3 5 5。連接傳輸室3 0 0的開口 3 5 1設 於真空延伸室3 5 0的側壁3 5 3。當真空延伸室3 5 0裝設在 24 200913115 傳輸室3 0 0時,真空延伸室3 5 0的側壁3 5 3例如由複數個 螺栓3 5 2固定至傳輸室3 0 0的側壁3 1 4。開口 3 5 1對準開 口 305,以協助傳輸室300與真空延伸室350之間的流體 連通及/或基板通行。在一實施例中,密封環3 5 6置於環繞 開口 3 0 5的密封管3 0 6,以流體地隔開真空延伸室3 5 0的 内部區域與傳輸室3 0 0的外界環境。C 200913115 The first vacuum interface. In the embodiment, the load locks the upper substrate support members 1 3 I and Ί 132 in the load lock chamber 13 . Upper substrate support Dry I3i and lower substrate support 132 plates. In one embodiment, the #upper substrate support member 131 and the lower substrate are respectively used to support the substrate that is moved in and out of the soil. The upper substrate support substrate support 1 32 includes a heated state or cooler structure such as a built-in gate to heat or cool the substrate during transport. . The inner volume of the main frame 110a is defined by a vacuum extension chamber, and the inner volume 128a of the inner volume i34 connected to the transfer chamber 1〇8 is disposed between the transfer chamber 1〇8 and the vacuum extension chamber to communicate the vacuum extension chamber 133 and the transfer chamber 1〇8. And the size of the hand 109 moves the substrate back and forth into and out of the load lock chamber 13 and the holder 1 3 5 of the extension chamber 1 3 3 . In one embodiment, when the central robotic cassette 9 enters and exits the load lock chamber 13 via the internal transfer substrate, the inner space 134 of the holder i empty extension chamber 133 is lowered. In an embodiment, the mount 135 includes a support finger extending from the inner volume 》. Note that the embodiment in which the robot 109 can be suspended in the transfer chamber can include a retrograde 3A map that can be moved vertically or in the z direction. The support ankle 27 supports the cluster frame 110. The support legs 127 support the chambers in which the main frame 110 is connected longitudinally and laterally. The weight of at least a portion of each support leg 127 phase, including the transfer chamber 108, the vacuum extension 3 堆叠 includes a stack of substrate support members for supporting the support member 1 3 2 pieces 1 3 1 and the lower temperature control characteristics ϊ internal volume 1 34 1 2 0. Opening. The opening 128a is for the central machine to pick up the vacuum extension 134; 5 can be placed on the top wall of the opposite side of the true 1 3 4 . This is a robot. The main 1 1 0 with 100 and the main frame 1 extensions 107 and 17 200913115 optionally include a processing chamber connected thereto. Each support leg 127 can be adjusted vertically to adjust the level of the main frame 110 and its associated chamber. The support legs 127 are coupled to the main frame 110 and/or the side walls of the chambers that connect the main frames 110 to laterally support the cluster tool 1 〇 . In one embodiment, each support leg 127 includes a foot 127b that connects the tubular body 127a. The steel pipe main body 127a is coupled to the main frame 110. The foot 127b is used to contact the ground and can be adjusted by the corresponding steel tube body 127a. The vertical dimension of the support foot 127 can be adjusted by changing the foot 127b to provide a tolerance for supporting the cluster tool. In one embodiment, as shown in Figures 2 and 3C-3D, the main frame 110 is supported by four support legs 1 2 7 that are individually mounted on opposite sides of the main frame 110. The two supporting legs 1 2 7 are individually fixed to the side walls of the transmission chamber 108, and the two supporting legs 1 2 7 are individually fixed to the side walls of the vacuum extending chamber 107. In another embodiment, the two support legs 127 are disposed adjacent the junction area of the vacuum extension chamber 107 and the load lock chamber 1 〇4. In one embodiment, the side walls of the main frame 110 are provided with recesses for engaging the support legs 127. Bolts can be used to secure the respective support legs 127 to corresponding positions of the main frame 110. The screw holes 318, 319 shown in Fig. 4E are provided in the chamber body 301 for fixing the support legs to the recesses 309. Figure 3C is a partial bottom perspective view of one embodiment of the support foot of the cluster tool 100 of Figure 3A. As shown in Figure 3C, the cluster tool 100 is supported by four separate support legs 127丨_4. The support legs 127!_4 are each independently mounted on the cluster tool 100. FIG. 3C illustrates a central structure 160 including a transfer chamber 108 and a vacuum extension chamber 107, and a load lock 18 200913115 fixed chamber 104. Others from the central structure 1 60 support the cluster type 1 〇 4 and the vacuum extension is used to laterally support the inner chamber 108, and the connected support legs 1 2 7 can balance the support of the cluster central structure 160. The partial bottom of the example is vertically mounted on the load-locking relative to the general collection tool support base, which is generally a conventional base to be assembled, and the conventional base is assembled. Traditional base problems, so that they are often used. Compared to traditional costs. Because of the support 'foot' caused this. Each support or other adjustments such as the process chamber, the passage chamber, and the front end interface extend. The support foot 127!_4 is coupled to the central structure 160 tool 100. A pair of notches 161 are provided in the bottom wall near the joint area of the load lock chamber 107. The support leg 127 of the recess 1 is provided. A pair of notches 162 are provided in the transfer support legs 1 2 7 3.4. The notch 1 6 2 is also laterally supported. The recesses 161, 162 can be configured to support the foot 127 tool 100, including the central structure 160 and/or the chamber. Another solid foot diagram of the guest tool 3A cluster tool 100. In this embodiment, the foot 1 27 chamber 104 or the side wall of the vacuum extension chamber 107 is supported. Including the traditional base of the embossed support, the independent support foot design has several advantages. Bulking and supporting multiple components of a clustered tool The high precision required for semiconductor process is costly. Connecting to multiple components of the cluster tool, and therefore generally causing the clear use of other components of the cluster tool or the removal of the substrate components of the substrate, the independent support legs of the present invention are greatly reduced. Manufactured so that feet that reduce the high-precision structure are typically coupled to a component, making it easier to adjust the water. The support feet are not limited to a specific cluster tool. However, the room 6 1 Hi 1-4 is connected to the group Ο another difficult to remove the low structure 19 200913115 造. When changing one or more components (such as a load lock chamber), there is no need to change the support feet. Furthermore, the support legs of the present invention are easier to transport. Fig. 4A is an exploded side view of the transfer chamber 300 in accordance with an embodiment of the present invention. The transfer chamber 300 can be used as the transfer chamber 1 0 8 of the 2nd and 3rd A-B diagrams. The transfer chamber 300 includes a chamber body 301 having a top wall 313, a plurality of side walls 314, and a bottom wall 315. The chamber body 301 defines an internal volume 312 (Fig. 4C) to accommodate a substrate transport device, such as a robot. In one embodiment, the central robot is provided with a mechanical bore 304 on the bottom wall 315 of the transfer chamber 300. The transfer chamber 300 further includes a chamber cover 302 for sealing the opening 3 0 3 in the top wall 3 1 3 of the chamber body 301. The opening 3 0 3 facilitates the installation and/or maintenance of the substrate transport device. In one embodiment, the chamber cover 302 is coupled to the chamber body 301 by a seal ring 317 and a plurality of bolts 307. The chamber cover 302 can be provided with a set of handles 3 0 8 . In one embodiment, the chamber body 301 has a rectangular cross section and includes four side walls 314. Each side wall 31 is provided with an opening 305. The opening 305 selectively connects the inner volume 312 and the processing chamber, load lock chamber and/or vacuum extension chamber coupled to the transfer chamber 300. A seal tube 306 is disposed about the opening 305 that houses a seal ring (not shown) to maintain a pressure barrier boundary around the inner volume 312. Figure 4A illustrates a processing chamber 390 according to an embodiment of the invention, which is provided in the transfer chamber 300 by a chamber 埠 assembly 370. The chamber 埠 assembly 370 serves as an interface between the transfer chamber 300 and the processing chamber 390. In one embodiment, the chamber 3 assembly 370 covers the slit valve assembly 380 to open and close the substrate opening 392 through the sidewall 391 of the processing chamber 390. The substrate opening 392 provides access for the substrate to enter and exit the processing chamber 390. In addition, the chamber raft assembly 370 allows the openings 305 of the transfer chamber 30020 200913115 to be mismatched with the substrate openings 3 92 of the process chamber 390. The chamber jaw assembly 370 includes a body 371 with a transfer chamber opening 3 72 open toward the side of the body 371. The transfer chamber opening 3 7 2 is configured to cover the opening 305 of the transfer chamber 300. The transfer chamber opening 372 connects the chamber opening 373 on the other side of the body 371 to define the passage of the substrate through the chamber 埠 assembly 370. The chamber opening 373 is aligned with the substrate opening 392 of the processing chamber 390. A sealing tube 377 is disposed outside the substrate opening 392 to accommodate a seal ring (not shown) to prevent leakage of the chamber 埠 assembly 370 and the process chamber 390. The slit valve assembly 380 generally includes a slit valve 382 that is activated by the actuating member 381 to move the slit valve 382 to the open and closed positions. The slit valve assembly 382 of the slit valve assembly 380 is located inside the chamber opening 373 and selectively connects and detaches the transfer chamber opening 372 and the chamber opening 373, and selectively connects the transfer chamber 300. And processing chamber 3 90. In one embodiment, a plurality of bolts 3 74 are used to secure the chamber 埠 assembly 370 and the transfer chamber 300. In one embodiment, the seal ring 374 is placed in a sealing tube 306 that surrounds the opening 305 between the transfer chamber 300 and the chamber jaw assembly 370 to fluidly separate the interior region and transmission of the chamber chamber assembly 360. The external environment of the room 300. A plurality of bolts 373 and a seal ring 394 are used to mount the process chamber 390 and the chamber jaw assembly 370. In addition, the transfer chamber opening 372 provides additional space for receiving the robot tip within the transfer chamber 300 as the blade rotates horizontally (this will be further described in Figure 4B). The extra space of the chamber 埠 assembly 307 further reduces the size of the transfer chamber 300, thereby reducing the system footprint. In one embodiment, the 21 200913115 chamber 埠 assembly 370 includes one or more sensors for detecting substrates and/or mechanical components within the transfer chamber opening 372. Figure 4 illustrates a light source 376 and a light receiver 375 that acts as a sensor to detect substrates and/or mechanical parts. It should be noted that the load lock chamber can be coupled to the side wall 314 of the transfer chamber 300, either directly or through a chamber 埠 assembly of a similar chamber 3 assembly 370. In one embodiment, the two recesses 309 are disposed adjacent the corners of the bottom wall 315. Notch 309 is used to receive support foot 360. The support foot 360 receives the weight of the transfer chamber 300 and at least a portion of its erecting elements. The support leg 306 can be fixed to the transfer chamber 300 by a bolt 361. The notch 309 provides two planes to support the support leg 360° laterally. Fig. 4 is a plan view of the fourth transfer chamber 3 00. Figure 4C is a cross-sectional side view of the fourth transfer chamber 300. Referring to Figure 4C, the chamber body 301 can be constructed of cast aluminum and defines an internal volume 312 for movement by the built-in central robot. In one embodiment, the size of the inner volume 3 1 2 can be minimized to fit the movement space of the robot. Figure 4E is an elevational view of the transfer chamber 300 of Figure 4A with a central robot 3 16 in a rotational mode. The central robot 3 16 includes upper and lower blades 329 and 330 of the individual independent transfer substrates 331. The central robot 316 is rotatable about the z-axis, along the z-axis, and parallel to the X-y plane. Other suitable robots can also be used in the transfer chamber 300. The central robot 316 can also be suspended from the top wall 3 1 3 of the transfer chamber 300 in response to other structural changes. During processing, the central robot 316 extends from the upper blade 329 or the lower blade 330 through the opening 3 0 5 ' on the side wall 3 1 4 of the transfer chamber 300 to retrieve the substrate in the processing chamber/load lock chamber connecting the transfer chamber 300, Or a shutter that is stored in the vacuum extension chamber of the transmission chamber 300 22 200913115. The central robot 316 can be moved vertically (i.e., along the z-axis) to align the upper blade 3 29 or the lower blade 3 3 0 with the target substrate or shutter. Once the substrate/mask is picked up, the central robot 316 retracts the inner volume 312 of the upper blade 329 or the lower blade 330 to the transfer chamber 300 and rotates the upper blade 329 or the lower blade 330 within the inner volume 312 to cause the upper blade 329 or The lower blade 330 is aligned with the opening 305 to connect the chamber of the target substrate/cover. The central robot 316 then extends the upper blade 329 or the lower blade 330 into the target chamber and lowers the substrate/cover. It is desirable to minimize the internal volume 3 1 2 of the transfer chamber 300 to reduce system footprint and reduce control environment volume. In one embodiment, the inner volume 312 of the transfer chamber 300 is defined to match the moving envelope defined by the circles 324, 325 of Figures 4B and 4C for the central robot 3 16 to perform the desired function. The cylindrical moving envelope includes a large central portion (the radius of the circle 325) and a smaller upper and lower portion (the radius of the circle 3 24). The inner volume 3 1 2 and the additional space of the chamber 埠 assembly 370 and the large intermediate portion of the vacuum extension chamber 305 connecting the transfer chamber 300 (the dotted line 3 1 1 indicates the radius range) partially covers the large central portion of the moving envelope unit. In one embodiment, the moving envelope includes the space required for the central robot 316 to rotate and move vertically. The moving envelope is substantially cylindrical and has an enlarged intermediate portion (indicated by circle 325) for the tips of the blades 329, 330 to rotate internally. Thus, the inner volume 312 is substantially cylindrical, with a radius range indicated by the dashed line 310 and an enlarged intermediate portion (the radius is indicated by the dashed line 3 1 1). To further reduce the size of the transfer chamber 300, a portion of the enlarged intermediate portion (indicated by circle 3 2 5) can be placed outside of the transfer chamber 300 and extended into the vacuum extension chamber and / 23 200913115 or the chamber connecting the transfer chamber 300 The chamber assembly 370, such as the transfer chamber opening 372 of the chamber 埠 assembly 370. In one embodiment, as shown in Figure 4C, the radial clearance 327 between the inner volume 312 and the moving envelope is about 0.25 inches and the vertical voids 326, 3 2 8 are about 0.33 inches. In one embodiment, a software constraint can be used with the control system to leave the central robot 136 within the moving envelope. Fig. 4D is a bottom view of the transfer chamber 300 of Fig. 4A. One or more heater cartridges 320 are provided to the bottom wall 315 for connection to the card heater to heat the chamber body 301 during processing. The meter 321 can be disposed on the bottom wall 315. Meter 埠3 21 is used to transfer sensors, such as pressure sensors. An optional pressure regulating port 322 and a venting opening 323 may also be provided in the bottom wall 315 to connect a suitable pumping device. The meter 埠3 2 1 , the pressure regulation 埠 3 2 2 and the vent hole 3 2 3 can be sealed when not in use. Figure 4F illustrates an embodiment of a vacuum extension chamber 350 that is coupled to a side wall 314 of the transfer chamber 300. In one embodiment, the vacuum extension chamber 350 provides additional space for the transfer chamber 300 to connect the vacuum system to maintain the vacuum state of the internal volume of the transfer chamber 300 during processing while reducing transmission. The volume of the chamber 300 and the overall internal volume of the main frame. The vacuum extension chamber 350 also provides for the robot within the transfer chamber 300 to enter the working interface via the load lock chamber or to enter another transfer chamber via the passage chamber. The pressure regulation 埠 3 5 4 for transferring the vacuum pump (low temperature pump) is set to the bottom wall 3 5 5 of the vacuum extension chamber 350. The opening 3 5 1 connecting the transfer chamber 300 is provided on the side wall 3 5 3 of the vacuum extension chamber 350. When the vacuum extension chamber 350 is installed at the 24 200913115 transmission chamber 300, the side wall 3 5 3 of the vacuum extension chamber 350 is fixed to the side wall 3 1 of the transmission chamber 300 by, for example, a plurality of bolts 325. . The opening 3 5 1 is aligned with the opening 305 to assist in fluid communication and/or substrate passage between the transfer chamber 300 and the vacuum extension chamber 350. In one embodiment, the seal ring 356 is placed in a sealed tube 306 surrounding the opening 305 to fluidly separate the interior region of the vacuum extension chamber 350 from the external environment of the transfer chamber 300.

第5 Α圖為根據本發明一實施例之群集式工具4 0 0的 平面圖,其具有傳輸室。群集式工具400包含傳輸室401, 其類似第4A圖傳輸室300。傳輸室40 1連接真空延伸室 4 〇 8,其更利用狹缝閥組件4 0 9連接至負載鎖定室4 1 0。三 處理室4 0 6透過腔室埠組件4 0 7 (其類似第4 A圖腔室埠組 件3 70)連接傳輸室401。傳輸室401定義内容積402,且 於處理時,由耦接真空延伸室408的幫浦系統維持其真空 狀態。真空延伸室408可用來儲放待用於處理室406的一 或多個遮盤。 中央機械手403設在傳輸室401的内容積402。中央 機械手403用來傳輸基板及/或遮盤於處理室406、真空延 伸室408與負載鎖定室410之間。中央機械手403包含上 臂405和下臂404,其各具葉片來運載基板或遮盤411。如 第5A圖所示,上臂405和下臂404均位於傳輪室401。 第5B圖為第5A圖群集式工具400的平面圖,其中傳 輸室401内的中央機械手403從第5A圖顯示的中央機械 手403位置旋轉一角度。中央機械手403可在内容積402 内一起或個別轉動二臂404、405。 25 200913115 第5C圖為第5A圖群集式工具400的平面圖,其中中 央機械手403的下臂404接近連接傳輸室401的真空延伸 室 408。 第5D圖為第5A圖群集式工具400的平面圖,其中中 央機械手403的下臂404經過真空延伸室408進入連接傳 輸室401的負載鎖定室410。 第5E圖為第5A圖群集式工具400的平面圖,其中中 央機械手403的上臂405接近連接傳輸室401的處理室 406。 第 6A圖為根據本發明一實施例之真空延伸室組件 500的分解示意圖。真空延伸室組件500連接如第4A圖傳 輸室300之傳輸室,並做為傳輸室與負載鎖定室的介面, 且連通傳輸室和真空系統。 真空延伸室組件500包含界定内容積512(第6B圖)的 主體5 0 1、置於主體5 0 1頂壁5 2 7的頂板5 02、和設於頂板 502的架蓋504。 調壓埠5 1 4設在主體5 0 1的底壁5 2 8上。調壓埠5 1 4 連接真空幫浦508’以提供内容積512以及與内容積512 為流體相通之體積一個低壓環境。在一實施例中,開口 5 1 3 設於主體5 0 1的頂壁5 2 7。安裝及/或維修真空幫浦5 0 8時, 可從開口 513進入内容積512。 如第 6A圖所示,頂板502覆蓋頂壁 527上的開口 5 1 3。頂板5 0 2設有狭缝閥開口 5 1 9和架開口 5 2 0。狹縫閥 開口 5 19用來安裝狹缝閥506。架開口 520則使可移動的 26 200913115 架5 03放在内容積512内的預定高度。 在一實施例中’腔室開口 5 1 0設於側壁5 2 9 傳輸至’例如第4 A圖之傳輸室3 〇 〇。腔室開口 5 j 輸室’並提供通道讓傳輸室内之機械手的機械葉Figure 5 is a plan view of a cluster tool 400 in accordance with an embodiment of the present invention having a transfer chamber. The cluster tool 400 includes a transfer chamber 401 that is similar to the transfer chamber 300 of FIG. 4A. The transfer chamber 40 1 is connected to the vacuum extension chamber 4 〇 8, which is further connected to the load lock chamber 4 1 0 by means of a slit valve assembly 409. The three processing chambers 406 are coupled to the transfer chamber 401 through a chamber chamber assembly 407 (which is similar to the chamber 埠 assembly 3 70 of FIG. 4A). The transfer chamber 401 defines an internal volume 402, and during processing, the vacuum system is maintained by a pumping system coupled to the vacuum extension chamber 408. Vacuum extension chamber 408 can be used to store one or more shutters to be used in processing chamber 406. The central robot 403 is provided in the inner volume 402 of the transfer chamber 401. The central robot 403 is used to transport the substrate and/or the shutter between the processing chamber 406, the vacuum extension chamber 408 and the load lock chamber 410. The central robot 403 includes an upper arm 405 and a lower arm 404 each having a blade for carrying a substrate or a shutter 411. As shown in Fig. 5A, the upper arm 405 and the lower arm 404 are both located in the transfer chamber 401. Figure 5B is a plan view of the cluster tool 400 of Figure 5A with the central robot 403 in the transfer chamber 401 rotated an angle from the central robot 403 shown in Figure 5A. The central robot 403 can rotate the two arms 404, 405 together or individually within the inner volume 402. 25 200913115 Figure 5C is a plan view of the cluster tool 400 of Figure 5A with the lower arm 404 of the central robot 403 proximate to the vacuum extension chamber 408 that connects the transfer chamber 401. Figure 5D is a plan view of the cluster tool 400 of Figure 5A with the lower arm 404 of the central robot 403 passing through the vacuum extension chamber 408 into the load lock chamber 410 that connects the transfer chamber 401. Figure 5E is a plan view of the cluster tool 400 of Figure 5A with the upper arm 405 of the central robot 403 proximate to the processing chamber 406 that is coupled to the transfer chamber 401. Figure 6A is an exploded perspective view of a vacuum extension chamber assembly 500 in accordance with an embodiment of the present invention. The vacuum extension chamber assembly 500 is coupled to the transfer chamber of the transfer chamber 300 of Fig. 4A and serves as an interface between the transfer chamber and the load lock chamber, and communicates the transfer chamber and the vacuum system. The vacuum extension chamber assembly 500 includes a body 501 defining an inner volume 512 (Fig. 6B), a top plate 502 placed on the top wall 527 of the main body 501, and a frame cover 504 disposed on the top plate 502. The pressure regulation 埠 5 1 4 is provided on the bottom wall 5 2 8 of the main body 501. The pressure regulation 15 1 4 connects the vacuum pump 508' to provide an inner volume 512 and a low pressure environment in fluid communication with the inner volume 512. In one embodiment, the opening 5 1 3 is provided in the top wall 5 27 of the body 501. The inner volume 512 can be accessed from the opening 513 when the vacuum pump is installed and/or serviced. As shown in Fig. 6A, the top plate 502 covers the opening 5 1 3 of the top wall 527. The top plate 502 is provided with a slit valve opening 5 1 9 and a frame opening 5 2 0. The slit valve opening 5 19 is used to mount the slit valve 506. The shelf opening 520 places the movable 26 200913115 rack 503 in a predetermined height within the inner volume 512. In one embodiment, the chamber opening 5 10 is disposed in the side wall 520 to the transmission chamber 3 〇 例如 of the fourth drawing. Chamber opening 5 j to the chamber and providing access to the mechanical leaf of the robot in the transfer chamber

板及/或遮盤。故腔室開口 51〇的寬度通常略大於 具所處理的最大基板直徑。腔室開口 51〇的高度 片的移動範圍而定。 在一實施例中’負載鎖定室開口 5 1 1設在側 面的側壁5 3 0上。負載鎖定室開口 5 1 1選擇性連 5 1 2和一或多個耦接側壁5 2 9的負載鎖定室。在 中’一或多個狹缝閥選擇性密封負載鎖定室開口 第6A圖所不’狹縫閥開口 515設於底壁528上 閾507得以置入内容積512 ’並且選擇性密封負 開口 5 1 1。在—夸你山 ^ 貫^例中,二狹縫閥5 0 6、5 0 7分 载鎖定室開口511雄拽= Ml選擇性連通内容積512和二負jBoard and / or cover. Therefore, the width of the chamber opening 51〇 is usually slightly larger than the maximum substrate diameter to be processed. The height of the chamber opening 51〇 depends on the range of movement of the sheet. In one embodiment, the load lock chamber opening 51 is disposed on the side wall 530 of the side. The load lock chamber opening 5 1 1 selectively connects 5 1 2 and one or more load lock chambers that couple the side walls 5 2 9 . In the 'one or more slit valves, the selective seal load lock chamber opening is not shown in FIG. 6A. The slit valve opening 515 is provided on the bottom wall 528. The threshold 507 is placed in the inner volume 512' and the negative opening 5 is selectively sealed. 1 1. In the case of "Zhao Youshan", the two slit valves 5 0 6 , 5 0 7 load lock chamber opening 511 male = Ml selectively communicates the inner product 512 and the second negative j

在一實施例中,架蓋504置於頂板502上方 碣口 52〇。架蓋504提供連接内容積512的空間 移動的架5〇3。可移動的架5〇3係用來支撐一或多 遮盤可用於連接傳輪室的處理室,傳輸室則連接 室組件5 0 〇。在一普蚨Λ,山 在實施例中’可移動的架503包 支柱· 5 2 1,立夂η 上、a '、各’、一或夕個由此延伸的支撐指狀半 支撐指狀物件522支撐遮盤邊緣。 / 在一實施例中 不器505置於架蓋 ’可移動的架5 03連接指示器 504上方。轴桿532從指示器 上以搞接 〇連通傳 片傳輸基 群集式工 視機械葉 壁5 29對 接内容積 —實施例 5 1 1。如 ’使狹缝 载鎖定室 別利用負 乞鎖定室。 而密封架 來儲放可 個遮盤。 真空延伸 含二相對 3 件 522。 505 ° 指 5 0 5延伸 27 200913115 穿過架蓋504的孔洞557而連接可移動的架503。軸桿532 經垂直移動以垂直移動該可移動的架503,進而調整可移 動的架503之高度。 在一實施例中,凹口 533設在底壁528,以容納獨立 的支撐聊509。在一實施例中’視窗516、517設於主體501 的側壁5 3 1、5 3 4,用以觀察真空延伸室組件5 0 0的内部空 間。諸如石英等透明材料可用來密封視窗516、517。 ζ - 第6 Β圖為第6 Α圖真空延伸室組件5 0 0的裁面侧視 圖。局部繪示之傳輸室551連接真空延伸室組件500。傳 輸室5 5 1經由真空延伸室組件5 0 0的腔室開口 5 1 0和傳輸 室551的開口 554而與真空延伸室組件500的内容積512 為流體連通。負載鎖定室5 5 5、5 5 6連接傳輸室5 5 1對側的 真空延伸室組件5 0 0。負載鎖定室5 5 5、5 5 6分別利用狹缝 閥門525、526連接内容積512。傳輸室551内的機械葉片 552、553經由真空延伸室組件500的内容積512進入負載 鎖定室555、556。 1,/ 如第6B圖所示,可移動的架503縮回到内容積512 的上部,以清空通道讓機械葉片552、553延伸經過可移動 的架503而達負載鎖定室555、556。 第6 C圖為真空延伸室組件5 0 0的截面側視圖,其中 、 可移動的架503係位於下方位置。可移動的架503由位於 内容積512下部的指示器505定位,如此機械葉片552、 553可拾起及放下遮盤523至支撐指狀物件522。藉由垂直 移動該可移動的架503或機械葉片552、553至少其一,可 28 200913115 完成機械葉片552、5 5 3和可移動的架5〇3之傳遞動作。 主體501、頂板502、架蓋504和可移動的架5〇3可由 適當材料製作。在一實施例中,主體5〇1、頂板5〇2、架蓋 5 04和可移動的架5〇3由鑄鋁構成。 應注意指示器5〇5可設在真空延伸室組件500下部, 真空幫浦5 0 8則裝設於上部。 第7A圖為根據本發明一實施例之可移動的架5 03之 =視:。可移動的架503包含底盤“。和自底盤Μ。延 固柱521。二支柱521可設在底盤580對側。一或 ,支撑指狀物件522自支柱521延伸。從相對支柱⑶ 延:二組支稽指狀物件522用來支撑遮盤邊緣附近。在 實施例中’相鄰支撑指狀物件522的垂直間距可加以調 ,使機械葉片拾起或放下遮盤 522。架橋…設在支柱521之間。芊橋5=指狀物件 轉移可移動的架5。3。 …81麵接指示器以 5二:圖緣示根據本發明-實施例的支律指狀物件 第支撑指狀物_ 522a直接支標遮盤邊緣附近。 522b 圖繪示根據本發明一實施例的支撐指狀物件 接觸支私撐指狀物件52^的上表面設有二接觸支柱585。 微粒污染。在用:接觸遮盤及提供尖端支撐’…減少 . 實施例中,接觸支柱5 85(包括基板支撐滚 金屬材料構成,例如氮化矽(SiN)。 第 8 A 層I法』 600的立面圖二據二明一實施例之真空延…件 ,、,、有固疋架。真空延伸室組件6〇〇連接 29 200913115 如第4A圖傳輸室300之傳輸室,並做為傳輸室與負載鎖 定室的介面,且連通傳輸室和真空系統。 真空延伸室組件600包含界定内容積617(第8B圖)的 主體601和頂板602。調壓埠607設在主體601的底壁606。 調壓埠607連接真空系統612,以提供内容積617以及與 内容積6 1 7為流體連通之體積一個低壓環境。在一實施例 中,感測器6 1 3設在主體6 0 1外面的真空系統6 1 2,用以 監測真空系統612的狀態。在一實施例中,開口 614設於 主體6 0 1的頂壁。安裝及/或維修真空系統6 1 2時,可從開 口 614進入内容積617。頂板602用來密封開口 614。 在一實施例中,腔室開口 6 0 3設於真空延伸室組件6 0 0 之側壁6 1 5上以耦接傳輸室,例如第4 A圖之傳輸室3 0 0。 腔室開口 6 0 3係設置以提供與傳輸室之流體連通,並提供 通道讓機械手(一般設在傳輸室内)的機械葉片傳輸基板及 /或遮盤。故腔室開口 603的寬度通常略大於群集式工具所 處理的最大基板直徑。腔室開口 603的高度視機械手在架 與機械葉片間交換基板及/或遮盤的操作範圍而定。 在一實施例中,負載鎖定室開口 6 0 4設在側壁6 1 5對 面的側壁6 0 5上。負載鎖定室開口 6 0 4選擇性連接内容積 6 1 7和一或多個耦接側壁6 0 5的負載鎖定室。狹缝閥開口 608貫穿底壁606,以將狹缝閥609置入内容積617。狹縫 閥609選擇性密封負載鎖定室開口 604。 在一實施例中,遮盤架6 1 6設在真空延伸室組件6 0 0 的内容積617内。遮盤架616用來支撐一或多個遮盤。遮 30 200913115 盤可用於透過傳輸室連接真空延伸室組件600的處理室。 遮盤架6 1 6位於部分的内容積6 1 7中,如此腔室開口 6 0 3 與負載鎖定室開口 604間的通道能保持清空讓機械手進入 真空延伸室組件6 0 0。在一實施例中,如第8 B圖所示,遮 盤架616設於内容積617下部,而負載鎖定室開口 604對 應設在内容積617上部。腔室開口 603的高度足以供機械 葉片垂直移動而進入腔室開口 603和遮盤架616。 在一實施例中,遮盤架616包含二相對支柱618,其 各具一或多個由此延伸的支撐指狀物件 6 1 9。支撐指狀物 件6 1 9支撐遮盤邊緣附近。本實施例之支撐指狀物件6 1 9 類似第7B-C圖。在一實施例中,指狀物件619包括滚軸 接觸件,用以支撐遮盤。 在一實施例中,視窗 6 1 1設置穿過主體 6 01的側壁 6 2 0,用以觀察真空延伸室組件6 0 0的内部空間。諸如石英 等透明材料可用來密封視窗611。 主體601、頂板602和遮盤架616可以適當材料製作。 在一實施例中,主體601、頂板602和遮盤架616由鑄鋁 構成。 第8B圖為設有第8A圖真空延伸室組件600之主框架 的截面側視圖。傳輸室6 5 0連接真空延伸室組件6 0 0。傳 輸室650的内容積654係經由真空延伸室組件600的腔室 開口 603和傳輸室650的開口 655而與真空延伸室組件600 的内容積617為流體連通。負載鎖定室660連接傳輸室650 對側的真空延伸室組件6 0 0。負載鎖定室6 6 0包含基板支 31 200913115 撐件661,用以支撐一或多個基板。負載鎖定室660 狹缝閥門610而選擇性連接内容積617。中央機械手 設於傳輸室650的内容積654内。中央機械手651包 機械葉片6 5 2、6 5 3。中央機械手6 5 1經配置操作’使 葉片652、653經由真空延伸室組件600的内容積617 進入負載鎖定室660及接取位於真空延伸室組件600 容積617下部的遮盤架616。 如第8B圖所示,機械葉片652、653係經致動而 架616,並往負載鎖定室660移動而拾起基板622。狹 門6 1 0移到打開位置,讓機械葉片6 5 2、6 5 3進入負載 室 6 6 0。 第8C圖為第8B圖主框架的截面側視圖,其中, 機械手651將機械葉片652、653定位成下方位置,以 真空延伸室組件600之遮盤架616上的遮盤621。 第9圖為根據本發明一實施例之群集式工具200 面圖。第10圖為第9圖群集式工具200的截面側視圖 集式工具200包含多個處理室,其耦接含有二傳輸室 框架。 群集式工具200包含前端環境202,其選擇性連 載鎖定室204。一或多個盒件201耦接前端環境202。 多個盒件2 0 1用來儲放基板。工作介面機械手2 0 3設 端環境202。工作介面機械手203用來傳輸基板於盒科 與負載鎖定室204間。 負載鎖定室204做為前端環境202與第一傳輸室 利用 65 1 含二 機械 上部 之内 越過 缝閥 鎖定 中央 接取 的平 。群 的主 接負 一或 在前 :201 組件 32 200913115 2 1 0間的真空介面。第一傳輸室組件2 1 0的内容積一般維 持呈真空狀態而構成中間區域,供基板從一腔室移到另一 腔室及/或負載鎖定室。 在一實施例中,第一傳輸室組件2 1 0分成兩部分。在 本發明之一實施例中,第一傳輸室組件2 1 0包含傳輸室2 0 8 和真空延伸室207。傳輸室208和真空延伸室207互相耦 接連通。處理時,第一傳輸室組件2 1 0的内容積一般維持 呈低壓或真空狀態。負載鎖定室2 0 4分別透過狹缝閥2 0 5、 2 06連接至前端環境202和真空延伸室207。 在一實施例中,傳輸室2 0 8為具有複數個側壁、一底 面與一蓋子的多邊形結構。複數個側壁内設穿孔,並且連 接處理室、真空延伸室及/或通過室。第9圖之傳輸室208 呈方形或矩形,其並耦接處理室211、213、通過室231和 真空延伸室207。傳輸室208分別可透過狹缝閥216、218、 217選擇性連接處理室211、213和通過室231。 在一實施例中,中央機械手209設在傳輸室208底面 的機械埠上。中央機械手209設在傳輪室208的内容積 22 0,且來回移動基板214於處理室211、213、通過室231 和負載鎖定室204之間。在一實施例中,中央機械手209 包括用來托住基板的二葉片,葉片各裝設在爽立控制且耦 接同一機械手基底的機械臂上。在另一實施例中,中央機 械手209可垂直移動葉片。 真空延伸室2 0 7做為真空系統與第一傳輸室組件2 1 0 的介面。在一實施例中,真空延伸室207包含一底面、一 33 200913115 蓋子與多個側壁。調壓埠設於真空延伸室2 0 7的底面 以轉接真空幫浦系統。開口可設於側壁,使真空延伸室 連通傳輸室208,進而選擇性連接負載鎖定室204。 在一實施例中,群集式工具 200利用物理氣相 (PVD)製程來沉積膜層至半導體基板上。調理操作期 仿製基板或遮盤放在臺座上,以防基板支撐件遭沉積 染。 在本發明之一實施例中,真空延伸室207包含用 放一或多個遮盤223的遮盤架222(如第10圖所示)。 或間接連接傳輸室 208 的處理室將其遮盤放在遮 222,並利用中央機械手209傳輸遮盤。 群集式工具200更包含第二傳輸室組件230,其 通過室2 3 1連接第一傳輸室組件2 1 0。在一實施例中 過室2 3 1類似負載鎖定室而做為二製程環境的介面。 例子中,通過室2 3 1做為第一傳輸室組件2 1 0與第二 室組件2 3 0間的真空介面。 在一實施例中,第二傳輸室組件2 3 0分成兩部分 減群集式工具2 0 0的佔地面積。在本發明之一實施例 第二傳輸室組件230包含互相耦接連通的傳輸室233 空延伸室232。處理時,第二傳輸室組件230的内容 般維持呈低壓或真空狀態。通過室 2 3 1分別透過狹 217' 238連接至傳輸室208和真空延伸室232,以將 室208内的壓力保持成不同的真空度。 在一實施例中,傳輸室2 3 3為具複數個側壁、一 ,用 207 沉積 間, 物污 來儲 直接 盤架 經由 ,通 在此 傳輸 以縮 中, 和真 積一 縫閥 傳輸 底面 34 200913115 與一蓋子的多邊形結構。複數個側壁内設穿孔,並且連接 處理室、真空延伸室及/或通過室。第9圖之傳輸室233呈 方形或矩形,其並輕接處理室235、236、237和真空延伸 室232。傳輸室233分別可透過狹縫閥241、240、239選 擇性連接處理室235、236、237。 中央機械手234設在傳輸室233底面的機械埠上。中 央機械手234設在傳輸室233的内容積249,且來回移動 基板214於處理室235、236、237和通過室231之間。在 一實施例中’中央機械手234包括用來托住基板的二葉 片’葉片各裝設在獨立控制且耦接同一機械手基底的機械 臂上。在另一實施例中,中央機械手234可垂直移動葉片。 在一實施例中,真空延伸室2 3 2做為真空系統與第二 傳輸室組件2 3 0的介面。在一實施例中,真空延伸室2 3 2 包含一底面、一蓋子與多個側壁。調壓埠設於真空延伸室 2 3 2的底面’用以轉接真空系統。開口可設於側壁,使真 空延伸至232連通傳輸室233’進而選擇性連接通過室231。 在本發明之一實施例中,真空延伸室232包含用來儲 放一或多個遮盤223的遮盤架243(如第10圖所示)。直接 或間接連接傳輸室233的處理室將其遮盤放在遮盤架 243 ’並利用中央機械手234傳輸遮盤。 在一實施例中,群集式工具200用來施行PVD製程。 處理室2 1 1可為預清潔室,以於p v D處理前進行清潔製 程。處理室235、236、237可為PVD室,其利用物理氣相 沉積製程來沉積薄膜至基板上。處理室213可為除氣室’ 35 200913115 以於PVD室實施沉積製程後進行除氣及清潔基板。 在一實施例中,傳輸室2 0 8、2 3 3的設計類似第4 A - 4 F 圖。傳輸室208、233的配置可減小群集式工具200的佔地 面積,並個別透過獨立的真空延伸室連接真空系統。 真空延伸室 2 0 7、2 3 2的設計類似第 6 A - 6 C 圖及第 8A-8C圖的真空延伸室組件500、600。 如第10圖所示,負載鎖定室204包含堆疊在下負載鎖 定室204b上面的上負載鎖定室204a。上負載鎖定室204a 和下負載鎖定室2 0 4 b可個別獨立操作,如此可同時雙向傳 輸基板於前端環境202與第一傳輸室組件2 1 0間。 負載鎖定室204a、204b做為前端環境202與第一傳輸 室組件21 0間的第一真空介面。在一實施例中,二負載鎖 定室204a、204b藉由輪流連通第一傳輸室組件210和前端 環境202而增加產量。當一負載鎖定室204a或204b連通 第一傳輸室組件210時,另一負載鎖定室204a或204b可 連通前端環境202。 在一實施例中,負載鎖定室204a、204b為批式負載鎖 定室,其能自工作介面接收二或多個基板、於腔室密封時 留住基板、接著排放成夠低的真空度以傳輸基板至第一傳 輸室組件2 1 0。 第一傳輸室組件210的内容積由真空延伸室207的内 容積219界定,内容積219則連接傳輸室208的内容積 2 2 0。開口 2 2 8設於傳輸室2 0 8與真空延伸室2 0 7之間。開 口 228連通真空延伸室207和傳輸室208,且大小足以讓 36 Γ t. 200913115 中央機械手209來回移動基板進出負載鎖定室2〇4。 真空系統225耦接真空延伸室2〇7,並提供内容積2b 與内容積220 —個低磨環境。機械構件226耦接傳輪室 208。傳輸室208和真空延伸室2〇7經建構以減小群集式工 具200的佔地面積。 一方面,冑負載鎖定室可雙向同時傳輸基板而提高了 系統產量。另-方面1疊之負載鎖定室需要更大的垂直 接近空間。為使諸如中央機械手2〇9之機械手能進入負載 鎖定室2〇4a、20仆和遮盤架222,故將真空延伸室2〇7的 遮盤架222製作成能垂直移動的型 <。指示器224麵接遮 盤架222 ’ U將遮盤架222垂直移動到讓機械手無障礙地 移動通過真空延伸1 2〇7的位置。指示器以可降低遮盤 架222至内容積219下部,使連接遮盤架222的中央機械 手209拾起遮盤架222上的遮盤或放下遮盤到遮盤架222 如第10圖所示,通過室231做為第一傳輪室組件21〇 與第二傳輸室組件230的介面,{吏第_和第二傳輸室組件 210、230具有不同的真空度。在—實施例中,通過室231 包含控溫基板支撐件246、247’以準備好基板以供後續處 理步驟使用。在-實施例中,可加熱基板支樓彳W,同 時冷卻基板支樓件2 4 7。 第二傳輸室組件230的内容積由真空延伸室232的内 容積248界定’内容積248則連接傳輸室如的内容積 249。開口 244設於傳輸室2S3與真空延伸室之間。開 37 200913115 口 244提供真空延伸室2 通,且大小足以讓中央機械手;::室233之間的流體連 室231。 來回移動基板進出通過 真空系統242耦接真空延 内容積249 —個低墨環至’亚提供内容積248與 傳輸室⑴和真空延伸室機^構件24 5㈣接傳輸室— 200的佔妯而接,,, 經建構以減小群集式工具 2〇〇的佔地面積。倘若傳輪室 讦讳悴D姑田甘1 白保持在相同的真空度,則 可視it况只使用其中_個真空系統。 如第10圖所示,真空延 Λ ^ „ 至232的遮盤架243為固定 不動。遮盤架2^設在真空延 而中央機械手234經由内容藉^ 232的内容積248下部’ ρ川 内各積248上部來傳輸基板進出通 過至2 3 1。 應注意任一連接傳銓它 傅輪至的處理室可以通過室及/或延 伸室代替之,如此群隼式τ曰γ 果式工具可增設另一傳輸室。 如第10圖所示,支擔咖 叉撐腳227支撐群集式工具200。支 撑腳2 2 7縱向及側向支擔 ]叉撐主框架和群集式工具2〇〇的腔 室。各支撐腳227皆可锢敕+ 士一 + 。周整垂直尚度。支撐腳227耦接傳 輸室208、233、真空延伸 吁 甲至207、232、及/或負載鎖定室 2 0 4和通過室2 3 1的目,| ^4- 的側壁,错以側向支撐群集式工具200。 在一貫施例中,四斜λ 0 ΪΚη,Ο, 對支撐腳227用來支撐群集式工具 200。-對支撐腳227 _接傳輸室2()8、⑴的後端(遠離前 端環境202)。傳輸室2G8' 23 3的後端設有凹口,用以側 向托住支撐腳227。-對支撐腳227耦接靠近負載鎖定室 204與真空延伸室207的接合區域。另一對支撐腳耦 38 200913115 接靠近通過室23 1與真空 、彳曱至232的接合區域。 相較於支撑框架,土 1。。 ,, 、 發月之獨立的支樓腳不僅大幅降 低了成本其還提供了系統更大的彈性。本發明之群集式 工具尚可依需求和組裝的獨立支撐腳-起運送。 Α圖為第9圖群集式工具200的立體視圖,其設 有傳輸支架260來接合支擇腳227和運送工具(如叉狀泰升 件)’以運送整個或部分組裝的群集式工具。一或多個 Γ 傳輸支架260輕接雜鱼# , 、式工具2 0 0,以運送整個或部勿··且 裝的群集式工具2〇〇。在— 耦 牡 貫施例中,各傳輸支架2 6 〇秭 接一對獨立的支撐腳227。 :UB圖績示根據本發明一實施例的傳輸支架26〇。 傳輸支架260的細長主體 、 篮2 6 1由剛硬材料構成,例如鋼和 銘。為減輕重量,主辦In one embodiment, the cover 504 is placed over the top plate 502. The cover 504 provides a frame 5〇3 that moves the space of the internal volume 512. The movable frame 5〇3 is used to support one or more shutters for connecting to the processing chamber of the transfer chamber, and the transfer chamber is connected to the chamber assembly 50 〇. In a Pu'er, the mountain in the embodiment of the 'movable frame 503 pack pillars · 5 2 1, the vertical 夂 、, a ', each ', one or one eve of the support finger-shaped semi-supporting fingers Object 522 supports the edge of the shutter. / In one embodiment, the non-apparatus 505 is placed over the shelf cover ' movable shelf 503 connecting the indicator 504. The shaft 532 is spliced from the indicator to the splicing of the splicing base. The clustered working machine wall 5 29 is connected to the inner volume - embodiment 5 1 1. For example, 'use the slit load lock chamber to use the negative lock chamber. The sealing frame can store and cover the disk. The vacuum extension contains two relative 3 pieces 522. 505 ° refers to the 5 0 5 extension 27 200913115 The movable frame 503 is connected through the hole 557 of the frame cover 504. The shaft 532 is moved vertically to vertically move the movable frame 503, thereby adjusting the height of the movable frame 503. In one embodiment, a notch 533 is provided in the bottom wall 528 to accommodate a separate support 509. In one embodiment, the windows 516, 517 are provided on the side walls 531, 534 of the body 501 for viewing the interior space of the vacuum extension chamber assembly 500. A transparent material such as quartz can be used to seal the windows 516, 517. ζ - Figure 6 is a side view of the 6th cut vacuum extension chamber assembly 500. A partially illustrated transfer chamber 551 is coupled to the vacuum extension chamber assembly 500. The transfer chamber 515 is in fluid communication with the internal volume 512 of the vacuum extension chamber assembly 500 via the chamber opening 5 1 0 of the vacuum extension chamber assembly 500 and the opening 554 of the transfer chamber 551. The load lock chamber 5 5 5, 5 5 6 connects the vacuum extension chamber assembly 500 of the opposite side of the transfer chamber 5 5 1 . The load lock chambers 5 5 5, 5 5 6 are connected to the inner volume 512 by slit valves 525, 526, respectively. The mechanical blades 552, 553 in the transfer chamber 551 enter the load lock chambers 555, 556 via the internal volume 512 of the vacuum extension chamber assembly 500. 1, / As shown in Fig. 6B, the movable frame 503 is retracted to the upper portion of the inner volume 512 to empty the passage for the mechanical blades 552, 553 to extend past the movable frame 503 to the load lock chambers 555, 556. Figure 6C is a cross-sectional side view of the vacuum extension chamber assembly 500, wherein the movable frame 503 is in the lower position. The movable frame 503 is positioned by an indicator 505 located at the lower portion of the inner volume 512 such that the mechanical blades 552, 553 can pick up and lower the shutter 523 to the support finger 522. By vertically moving the movable frame 503 or at least one of the mechanical blades 552, 553, the transmission of the mechanical blades 552, 553 and the movable frame 5〇3 can be completed 28 200913115. The body 501, the top plate 502, the frame cover 504, and the movable frame 5〇3 may be made of a suitable material. In one embodiment, the body 5〇1, the top plate 5〇2, the frame cover 504, and the movable frame 5〇3 are constructed of cast aluminum. It should be noted that the indicator 5〇5 may be disposed at a lower portion of the vacuum extension chamber assembly 500, and the vacuum pump 508 may be disposed at an upper portion. Figure 7A is a view of the movable frame 5 03 according to an embodiment of the present invention. The movable frame 503 includes a chassis ". and a chassis Μ. an extension post 521. The two struts 521 can be disposed on opposite sides of the chassis 580. One or the support finger member 522 extends from the post 521. The extension from the opposite post (3): two The set of indexing members 522 are used to support the vicinity of the edge of the shutter. In the embodiment, the vertical spacing of the adjacent supporting finger members 522 can be adjusted so that the mechanical blades pick up or lower the shutter 522. The bridge is placed on the pillar Between 521. 芊 bridge 5 = finger-like transfer of the movable frame 5. 3. 81 face-to-face indicator 5: Figure 2 shows the support finger according to the invention - embodiment _ 522a directly supports the vicinity of the edge of the visor. 522b illustrates that the supporting finger member contacts the gusset member 52. The upper surface of the supporting finger member 52 is provided with two contact struts 585. Particle contamination. Contacting the shutter and providing the tip support '...reduced. In the embodiment, the contact post 5 85 (including the substrate supporting the rolled metal material, such as tantalum nitride (SiN). The 8A layer I method" 600 The vacuum extension of the embodiment of the present invention, and the solid frame The vacuum extension chamber assembly 6 〇〇 connection 29 200913115 is the transfer chamber of the transfer chamber 300 as shown in Fig. 4A, and serves as an interface between the transfer chamber and the load lock chamber, and communicates the transfer chamber and the vacuum system. The vacuum extension chamber assembly 600 includes a defined internal volume. The main body 601 and the top plate 602 of the 617 (Fig. 8B). The pressure regulating crucible 607 is disposed at the bottom wall 606 of the main body 601. The pressure regulating crucible 607 is connected to the vacuum system 612 to provide an inner volume 617 and is in fluid communication with the inner volume 61 7 The volume is a low pressure environment. In one embodiment, the sensor 613 is disposed in the vacuum system 612 outside the body 610 for monitoring the state of the vacuum system 612. In one embodiment, the opening 614 is provided. The top wall of the body 610. When the vacuum system 612 is installed and/or serviced, the inner volume 617 can be accessed from the opening 614. The top plate 602 is used to seal the opening 614. In one embodiment, the chamber opening 6 0 3 Provided on a side wall 615 of the vacuum extension chamber assembly 600 to couple a transfer chamber, such as transfer chamber 300 of Figure 4A. The chamber opening 603 is configured to provide fluid communication with the transfer chamber, And provide access to the robot (usually located in the transmission room) The mechanical blade transports the substrate and/or the shutter. The width of the chamber opening 603 is typically slightly larger than the maximum substrate diameter processed by the cluster tool. The height of the chamber opening 603 is such that the robot exchanges the substrate between the frame and the mechanical blade and/or Depending on the operating range of the shutter, in one embodiment, the load lock chamber opening 604 is disposed on the side wall 605 opposite the side wall 61. The load lock chamber opening 604 selectively connects the internal volume 6 1 7 And one or more load lock chambers coupled to the side walls 605. Slit valve opening 608 extends through bottom wall 606 to place slit valve 609 into internal volume 617. Slit valve 609 selectively seals load lock chamber opening 604. In one embodiment, the shutter frame 616 is disposed within the inner volume 617 of the vacuum extension chamber assembly 600. The shutter frame 616 is used to support one or more shutters. Cover 30 200913115 The disc can be used to connect the processing chamber of the vacuum extension chamber assembly 600 through the transfer chamber. The shutter frame 6 16 is located in a portion of the inner volume 161 such that the passage between the chamber opening 603 and the load lock chamber opening 604 can remain clear to allow the robot to enter the vacuum extension chamber assembly 600. In one embodiment, as shown in Fig. 8B, the shutter frame 616 is disposed at the lower portion of the inner volume 617, and the load lock chamber opening 604 is disposed at the upper portion of the inner volume 617. The chamber opening 603 is of a height sufficient for the mechanical blades to move vertically into the chamber opening 603 and the shutter frame 616. In one embodiment, the shutter frame 616 includes two opposing struts 618 each having one or more support finger members 6 1 9 extending therefrom. The support finger member 6 1 9 supports the vicinity of the edge of the shutter. The support finger member 6 1 9 of this embodiment is similar to the 7B-C diagram. In one embodiment, the finger member 619 includes a roller contact for supporting the shutter. In one embodiment, the window 6 1 1 is disposed through the side wall 260 of the body 610 for viewing the interior space of the vacuum extension chamber assembly 600. A transparent material such as quartz can be used to seal the window 611. The main body 601, the top plate 602, and the shutter frame 616 can be made of a suitable material. In one embodiment, body 601, top plate 602, and shutter frame 616 are constructed of cast aluminum. Figure 8B is a cross-sectional side view of the main frame of the vacuum extension chamber assembly 600 of Figure 8A. The transfer chamber 6550 is connected to the vacuum extension chamber assembly 600. The internal volume 654 of the transfer chamber 650 is in fluid communication with the internal volume 617 of the vacuum extension chamber assembly 600 via the chamber opening 603 of the vacuum extension chamber assembly 600 and the opening 655 of the transfer chamber 650. The load lock chamber 660 connects the vacuum extension chamber assembly 600 to the opposite side of the transfer chamber 650. The load lock chamber 660 includes a substrate support 31 200913115 struts 661 for supporting one or more substrates. The load lock chamber 660 slit valve 610 selectively connects the inner volume 617. The central robot is disposed within the internal volume 654 of the transfer chamber 650. Central Robot 651 Pack Mechanical Blades 6 5 2, 6 5 3. The central robot 615 is configured to operate the blades 652, 653 into the load lock chamber 660 via the internal volume 617 of the vacuum extension chamber assembly 600 and to receive the shutter frame 616 located below the volume 617 of the vacuum extension chamber assembly 600. As shown in Fig. 8B, the mechanical blades 652, 653 are actuated by the carriage 616 and moved toward the load lock chamber 660 to pick up the substrate 622. The narrow door 61 is moved to the open position to allow the mechanical blades 6 5 2, 6 5 3 to enter the load chamber 660. Figure 8C is a cross-sectional side view of the main frame of Figure 8B, wherein the robot 651 positions the mechanical blades 652, 653 in a lower position to vacuum the shutter 621 on the shutter frame 616 of the chamber assembly 600. Figure 9 is a plan view of a cluster tool 200 in accordance with an embodiment of the present invention. Figure 10 is a cross-sectional side view of the cluster tool 200 of Figure 9. The collective tool 200 includes a plurality of processing chambers coupled to a second transfer chamber frame. The cluster tool 200 includes a front end environment 202 that selectively couples the lock chamber 204. One or more boxes 201 are coupled to the front end environment 202. A plurality of cartridges 210 are used to store the substrates. The working interface robot 2 0 3 sets the environment 202. The working interface robot 203 is used to transfer the substrate between the cassette and the load lock chamber 204. The load lock chamber 204 serves as a front end environment 202 and a first transfer chamber that utilizes a flat upper portion of the upper portion of the mechanical upper portion of the upper portion of the upper portion of the upper portion of the upper portion. The group's main connection is negative or in front: 201 component 32 200913115 2 1 0 vacuum interface. The inner volume of the first transfer chamber assembly 210 is generally maintained in a vacuum to form an intermediate region for the substrate to be moved from one chamber to the other and/or to the load lock chamber. In an embodiment, the first transfer chamber assembly 210 is divided into two portions. In one embodiment of the invention, the first transfer chamber assembly 210 comprises a transfer chamber 208 and a vacuum extension chamber 207. The transfer chamber 208 and the vacuum extension chamber 207 are coupled to each other. During processing, the internal volume of the first transfer chamber assembly 210 is generally maintained in a low pressure or vacuum state. The load lock chambers 2 0 4 are connected to the front end environment 202 and the vacuum extension chamber 207 through slit valves 2 0 5, 068, respectively. In one embodiment, the transfer chamber 202 is a polygonal structure having a plurality of side walls, a bottom surface, and a cover. A plurality of side walls are provided with perforations and are connected to the processing chamber, the vacuum extension chamber, and/or the passage chamber. The transfer chamber 208 of Fig. 9 is square or rectangular and is coupled to the process chambers 211, 213, the passage chamber 231, and the vacuum extension chamber 207. The transfer chamber 208 is selectively connectable to the process chambers 211, 213 and the passage chamber 231 through slit valves 216, 218, 217, respectively. In one embodiment, the central robot 209 is disposed on a mechanical jaw on the underside of the transfer chamber 208. The central robot 209 is disposed in the inner volume 22 of the transfer chamber 208 and moves the substrate 214 back and forth between the processing chambers 211, 213, the passage chamber 231, and the load lock chamber 204. In one embodiment, the central robot 209 includes two blades for holding the substrate, the blades being each mounted on a robot arm that is controlled by the sink and coupled to the base of the same robot. In another embodiment, the central robot 209 can move the blades vertically. The vacuum extension chamber 2 0 7 serves as an interface between the vacuum system and the first transfer chamber assembly 2 1 0 . In one embodiment, the vacuum extension chamber 207 includes a bottom surface, a 33 200913115 cover and a plurality of side walls. The pressure regulator is disposed on the bottom surface of the vacuum extension chamber 207 to transfer the vacuum pump system. An opening may be provided in the side wall to allow the vacuum extension chamber to communicate with the transfer chamber 208 to selectively connect the load lock chamber 204. In one embodiment, the cluster tool 200 utilizes a physical vapor phase (PVD) process to deposit a film layer onto a semiconductor substrate. Conditioning operation The imitation substrate or the cover is placed on the pedestal to prevent the substrate support from being deposited. In one embodiment of the invention, the vacuum extension chamber 207 includes a shutter frame 222 (shown in Figure 10) with one or more shutters 223. The processing chamber, or indirectly connected to the transfer chamber 208, places its shutter on the cover 222 and transmits the shutter with the central robot 209. The cluster tool 200 further includes a second transfer chamber assembly 230 that connects the first transfer chamber assembly 210 through the chamber 231. In one embodiment, the chamber 2 31 is similar to the load lock chamber and serves as an interface for the two process environment. In the example, the chamber 2 3 1 serves as a vacuum interface between the first transfer chamber assembly 2 10 and the second chamber assembly 2 30 . In one embodiment, the second transfer chamber assembly 203 is divided into two portions of the footprint of the cluster tool 200. In one embodiment of the invention, the second transfer chamber assembly 230 includes a transfer chamber 233, an air extension chamber 232, coupled to each other. During processing, the contents of the second transfer chamber assembly 230 are maintained in a low pressure or vacuum state. The chambers 2 3 1 are connected to the transfer chamber 208 and the vacuum extension chamber 232 through the narrow 217' 238, respectively, to maintain the pressure in the chamber 208 at a different degree of vacuum. In one embodiment, the transfer chamber 233 has a plurality of side walls, one, with a 207 deposition chamber, the dirt is stored for direct storage through the tray, where it is transferred for retraction, and the true product is separated by a slit valve. 200913115 A polygonal structure with a cover. A plurality of side walls are provided with perforations and are connected to the processing chamber, the vacuum extension chamber, and/or the passage chamber. The transfer chamber 233 of Fig. 9 is square or rectangular and is lightly coupled to the process chambers 235, 236, 237 and the vacuum extension chamber 232. The transfer chamber 233 is selectively connectable to the processing chambers 235, 236, 237 through slit valves 241, 240, 239, respectively. The center robot 234 is disposed on the mechanical cymbal on the bottom surface of the transfer chamber 233. The central robot 234 is disposed in the inner volume 249 of the transfer chamber 233 and moves the substrate 214 back and forth between the processing chambers 235, 236, 237 and the passage chamber 231. In one embodiment, the central robot 234 includes two blades that are used to hold the substrate. The blades are each mounted on a robot arm that is independently controlled and coupled to the same robot base. In another embodiment, the central robot 234 can move the blades vertically. In one embodiment, the vacuum extension chamber 232 serves as the interface between the vacuum system and the second transfer chamber assembly 203. In one embodiment, the vacuum extension chamber 2 3 2 includes a bottom surface, a cover and a plurality of side walls. The pressure regulating crucible is disposed on the bottom surface of the vacuum extension chamber 2 3 2 to transfer the vacuum system. An opening may be provided in the side wall to extend the vacuum to the 232 communication transfer chamber 233' for selective connection to the passage chamber 231. In one embodiment of the invention, the vacuum extension chamber 232 includes a shutter frame 243 (shown in Figure 10) for storing one or more shutters 223. The processing chamber, which directly or indirectly connects the transfer chamber 233, places its shutter on the shutter holder 243' and transmits the shutter with the central robot 234. In one embodiment, the cluster tool 200 is used to perform a PVD process. The processing chamber 21 1 may be a pre-cleaning chamber to perform a cleaning process prior to the p v D treatment. The processing chambers 235, 236, 237 can be PVD chambers that utilize a physical vapor deposition process to deposit a film onto the substrate. The processing chamber 213 may be a degassing chamber '35 200913115 to degas and clean the substrate after the deposition process is performed in the PVD chamber. In one embodiment, the design of the transfer chambers 2 0 8 , 2 3 3 is similar to the 4A - 4 F map. The configuration of the transfer chambers 208, 233 can reduce the footprint of the cluster tool 200 and individually connect the vacuum system through a separate vacuum extension chamber. The design of the vacuum extension chambers 2 0 7 , 2 3 2 is similar to the vacuum extension chamber assemblies 500, 600 of Figures 6A - 6 C and 8A-8C. As shown in Fig. 10, the load lock chamber 204 includes an upper load lock chamber 204a stacked above the lower load lock chamber 204b. The upper load lock chamber 204a and the lower load lock chamber 205b can be independently operated independently so that the substrate can be transferred bidirectionally between the front end environment 202 and the first transfer chamber assembly 210. The load lock chambers 204a, 204b serve as a first vacuum interface between the front end environment 202 and the first transfer chamber assembly 210. In one embodiment, the two load lock chambers 204a, 204b increase throughput by alternately communicating the first transfer chamber assembly 210 with the front end environment 202. When a load lock chamber 204a or 204b communicates with the first transfer chamber assembly 210, another load lock chamber 204a or 204b can communicate with the front end environment 202. In one embodiment, the load lock chambers 204a, 204b are batch load lock chambers that are capable of receiving two or more substrates from the working interface, retaining the substrate while the chamber is sealed, and then discharging to a low vacuum for transmission The substrate is to the first transfer chamber assembly 2 1 0. The inner volume of the first transfer chamber assembly 210 is defined by the inner volume 219 of the vacuum extension chamber 207, and the inner volume 219 is coupled to the inner volume 220 of the transfer chamber 208. The opening 2 2 8 is provided between the transfer chamber 208 and the vacuum extension chamber 207. The opening 228 communicates with the vacuum extension chamber 207 and the transfer chamber 208 and is of sufficient size to allow the central robot 209 to move the substrate back and forth into and out of the load lock chamber 2〇4. The vacuum system 225 is coupled to the vacuum extension chamber 2〇7 and provides an inner volume 2b and an inner volume 220 as a low-grinding environment. Mechanical member 226 is coupled to transfer chamber 208. Transfer chamber 208 and vacuum extension chamber 2〇7 are constructed to reduce the footprint of cluster tool 200. On the one hand, the load lock chamber can transfer substrates simultaneously in both directions, increasing system throughput. The other-side stack of load lock chambers requires a larger vertical approach space. In order to enable a robot such as the central robot 2〇9 to enter the load lock chambers 2〇4a, 20 and the shutter frame 222, the shutter frame 222 of the vacuum extension chamber 2〇7 is made into a vertically movable type <; The indicator 224 is attached to the shutter frame 222' U to vertically move the shutter frame 222 to a position where the robot is unobstructed to move through the vacuum extension 1 2〇7. The indicator can lower the shutter frame 222 to the lower portion of the inner volume 219, so that the central robot 209 connecting the shutter frame 222 picks up the shutter on the shutter frame 222 or lowers the shutter to the shutter frame 222 as shown in FIG. It is shown that the chamber 231 serves as an interface between the first transfer chamber assembly 21 and the second transfer chamber assembly 230, and the [the first and second transfer chamber assemblies 210, 230 have different degrees of vacuum. In an embodiment, the temperature control substrate support 246, 247' is included through the chamber 231 to prepare the substrate for subsequent processing steps. In an embodiment, the substrate fulcrum W can be heated while cooling the substrate fulcrum member 247. The inner volume of the second transfer chamber assembly 230 is defined by the inner volume 248 of the vacuum extension chamber 232. The inner volume 248 is coupled to the inner volume 249 of the transfer chamber. The opening 244 is provided between the transfer chamber 2S3 and the vacuum extension chamber. Open 37 200913115 Port 244 provides a vacuum extension chamber 2 passage and is sized to allow the central robot to::: fluid chamber 231 between chambers 233. Moving the substrate back and forth through the vacuum system 242 couples the vacuum extension internal volume 249 - a low ink ring to the sub-provided internal volume 248 and the transfer chamber (1) and the vacuum extension chamber unit 24 5 (four) to the transfer chamber - 200 ,,, Constructed to reduce the footprint of the cluster tool 2〇〇. If the transfer chamber 讦讳悴D 姑田甘1 white is kept at the same vacuum, then only one of the vacuum systems can be used. As shown in Fig. 10, the vacuum tray Λ to 232 of the shutter frame 243 is fixed. The shutter frame 2 is placed in the vacuum extension and the central robot 234 is 248 via the content 232. The upper part of each product 248 is used to transport the substrate in and out to 2 3 1 . It should be noted that any processing chamber that passes through the connection can be replaced by a chamber and/or an extension chamber, so that the group 曰 曰 γ fruit tool can be Another transfer chamber is added. As shown in Fig. 10, the support fork 227 supports the cluster tool 200. The support legs 2 2 7 longitudinal and lateral support] the fork support main frame and the cluster tool 2 Each of the support legs 227 can be 锢敕+士一+. The circumference is vertical. The support legs 227 are coupled to the transfer chambers 208, 233, the vacuum extensions to the 207, 232, and/or the load lock chamber 2 0 4 and through the side of the chamber 2 3 1 , | ^ 4 , wrongly laterally supporting the cluster tool 200. In a consistent embodiment, the four oblique λ 0 ΪΚ η, Ο, for the support foot 227 is used to support the cluster Tool 200. - Pair of support legs 227 _ connected to the rear end of transfer chamber 2 () 8, (1) (away from front end environment 202). Transfer chamber 2G8' 23 3 The end is provided with a recess for supporting the support leg 227 laterally. The support leg 227 is coupled to the engagement area adjacent to the load lock chamber 204 and the vacuum extension chamber 207. The other pair of support foot couplings 38 200913115 are adjacent to the passage chamber 23 1 The joint area with vacuum and 彳曱 to 232. Compared with the support frame, the independent branch feet of the soil 1 not only greatly reduce the cost, but also provide greater flexibility of the system. The cluster tool can also be transported according to the requirements and assembled independent support feet. The figure is a perspective view of the cluster tool 200 of Figure 9, which is provided with a transport bracket 260 for engaging the support foot 227 and the transport tool (such as a fork). Shaped lifts) 'to transport all or part of the assembled cluster tool. One or more 传输 transport bracket 260 light pick up fish #, , tool 200, to transport the whole or part of the installed cluster In the embodiment of the coupling, each of the transfer brackets 26 is connected to a pair of independent support legs 227. The U-picture shows a transfer bracket 26 according to an embodiment of the present invention. The elongated body of the 260, the basket 261 is composed of a rigid material Such as steel and Ming. To reduce weight, hosting

體261可為矩形或方形管。二舉升開 口 262设在主體261兩端M 碼附近。舉升開口 262做為舉升工 具(如叉狀舉升件)的介面。值# 士士 1 ^得輸支架260的二舉升開口 262 間距適合舉升工具, 符δ又狀舉升件的分又間距。在 一實施例中,獨立的支撐 又得腳227栓進主體261之一或多個 接孔263而插入傳輪支牵 又架260 0接孔263可拉長以提供一 對支撐腳227之間距變化的容限。 回溯第1 1Α圖,一亦夕加描± 次夕個傳輸支架260耦接群集式工 具200的獨立支撐腳2 古 且问度實質上接近實質對準的舉 汗口 262。舉升工具可穿過二或多個傳輸支架% 升開口如,藉以括起及運送群集式工具綱。 傳輸時本發明之傳輸支架提供支標組件(如獨立支撑 39 200913115 腳)介面和堅固的結構。傳輸支架可輕易裝到群集式工具及 拆下供運送及處理之用。傳輸支架容許群集式工具使用獨 立的支撐腳,使群集式工具得以設置簡單、無障礙的支撐 組件和堅固的結構來進行運送。 雖然本發明是以P V D製程應用為例加以說明,但本發 明之群集式工具可用於其他適合製程。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述特徵更明顯易懂,可配合參考實施 例說明,其部分乃繪示如附圖式。須注意的是,雖然所附 圖式揭露本發明特定實施例,但其並非用以限定本發明之 精神與範圍,任何熟習此技藝者,當可作各種之更動與潤 飾而得等效實施例。 第1A圖為先前技術之PVD處理室的截面側視圖。 第1 B圖為先前技術之PVD處理室的上視圖。 第 2圖為根據本發明一實施例之群集式工具的平面 圖。 第3 A圖為根據本發明一實施例之群集式工具的截面 側視圖,其具有真空延伸室,其包括用來儲放遮盤的可移 動之架。 40 200913115 第3 B圖為根據本發明一實施例之群集式工具的截面 側視圖,具有真空延伸室,其包括用來儲放遮盤的固定架。 第3C圖為第3A圖群集式工具之一支撐腳實施例的局 部底部立體示意圖。 第3D圖為第3A圖群集式工具之另一支撐腳實施例的 局部底部立體示意圖。 第4A圖為根據本發明一實施例之傳輸室的底部立體 示意圖。 第4B圖為第4A圖傳輸室的上視圖。 第4C圖為第4A圖傳輸室的截面側視圖。 第4D圖為第4A圖傳輸室的底部示意圖。 第4E圖為第4A圖傳輸室的立面圖,其具有旋轉模式 的中央機械手。 第4F圖為第4A圖傳輸室的立面圖,其連接本發明之 真空延伸室。 第5A圖為根據本發明一實施例之群集式工具的平面 圖,其具有傳輸室。 第5B圖為第5A圖群集式工具的平面圖,其中傳輸室 内的中央機械手處於旋轉模式。 第5C圖為第5A圖群集式工具的平面圖,其中傳輸室 内的中央機械手接近連接傳輸室的延伸室。 第5D圖為第5A圖群集式工具的平面圖,其中傳輸室 内的中央機械手進入連接傳輸室的負載鎖定室。 第5E圖為第5A圖群集式工具的平面圖,其中傳輸室 41 200913115 内的中央機械手接近連接傳輸室的處理室。 第 6 A圖為根據本發明一實施例之真空延伸室的分解 示意圖,真空延伸室具有可移動的架。 第6 B圖為第6 A圖真空延伸室的截面側視圖。 第6C圖為第6A圖真空延伸室的截面側視圖,其可移 動的架位於下方位置。 第7A圖為第6A圖之可移動的架的立體視圖。 第7B圖繪示根據本發明一實施例的支撐指狀物件。 第7 C圖繪示根據本發明另一實施例的支撐指狀物件。 第8 A圖為根據本發明一實施例之真空延伸室的立面 圖,其具有固定架。 第8B圖為設有第8A圖真空延伸室之主框架的載面側 視圖。 第8C圖為第8B圖主框架的截面側視圖,其中機械手 接取真空延伸室的遮盤。 第9圖為根據本發明一實施例之群集式工具的平面 圖。 第10圖為第9圖群集式工具的截面側視圖。 第11A圖為第9圖群集式工具的立體視圖,設有傳輪 支架。 第1 1 B圖繪示根據本發明一實施例的傳輸支架。 為便於了解,圖式中相同的元件符號表示相仿的元 件。某一實施例採用的元件當不需特別詳述而可應用到其 他實施例。 42 200913115 【主要元件符號說明】 2 、 261 、 301 、 371 、 501 、 601 主體 4、131、132、246、247、661 支撐件 6 蓋組件 8 遮盤構件 10、 111、 112、 113、 211、 213、 235、 236、 237' 390、 406 處理室 12、114、214、331、622 基板 14、 123、 223、 411、 523、 621 遮盤 16 外殼 18、 329、 330、 552、 553、 652、 653 葉片 20、532 軸桿 26 致動器 314、353、391、529、530、531、534、605、615、620 側 壁 54 底面 56 遮盤口 58 遮蔽環Body 261 can be a rectangular or square tube. The second lift opening 262 is located near the M code at both ends of the main body 261. The lift opening 262 serves as an interface for lifting tools such as fork lifts. Value #士士 1 ^ The two-lift opening of the support bracket 260 262 The spacing is suitable for the lifting tool, and the δ is the distance between the lifting and the lifting. In one embodiment, the independent support has the foot 227 bolted into one or more of the holes 263 of the body 261 and inserted into the carrier. The frame 260 0 can be elongated to provide a distance between the pair of support legs 227. The tolerance of change. Referring back to the first and second figures, the second transmission bracket 260 is coupled to the independent support leg 2 of the cluster tool 200 and is substantially close to the substantially aligned sweating port 262. The lifting tool can pass through two or more transfer brackets to raise the opening, such as to enclose and transport the cluster tool. The transmission bracket of the present invention provides a connector assembly (e.g., independent support 39 200913115 foot) interface and a rugged structure during transmission. Transfer brackets can be easily attached to cluster tools and removed for shipping and handling. The transfer bracket allows the cluster tool to use a separate support foot, allowing the cluster tool to be easily transported with simple, unobstructed support components and a rugged construction. Although the invention has been described with respect to a P V D process application, the cluster tool of the present invention can be used in other suitable processes. While the present invention has been described above by way of a preferred embodiment, it is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above-described features of the present invention more apparent and easy to understand, reference may be made to the accompanying embodiments. It is to be understood that the specific embodiments of the invention are not to be construed as limiting the scope of the invention. . Figure 1A is a cross-sectional side view of a prior art PVD processing chamber. Figure 1 B is a top view of a prior art PVD processing chamber. Figure 2 is a plan view of a cluster tool in accordance with an embodiment of the present invention. Figure 3A is a cross-sectional side view of a cluster tool having a vacuum extension chamber including a movable shelf for storing a shutter, in accordance with an embodiment of the present invention. 40 200913115 Figure 3B is a cross-sectional side view of a cluster tool in accordance with an embodiment of the present invention having a vacuum extension chamber including a holder for storing a shutter. Figure 3C is a perspective view of the bottom portion of the embodiment of the support foot of one of the cluster tools of Figure 3A. Figure 3D is a partial bottom perspective view of another embodiment of the support foot of the cluster tool of Figure 3A. Figure 4A is a perspective view of the bottom of the transfer chamber in accordance with an embodiment of the present invention. Figure 4B is a top view of the transfer chamber of Figure 4A. Figure 4C is a cross-sectional side view of the transfer chamber of Figure 4A. Figure 4D is a bottom view of the transfer chamber of Figure 4A. Figure 4E is an elevational view of the transfer chamber of Figure 4A with a central robot in a rotating mode. Figure 4F is an elevational view of the transfer chamber of Figure 4A coupled to the vacuum extension chamber of the present invention. Figure 5A is a plan view of a cluster tool having a transfer chamber in accordance with an embodiment of the present invention. Figure 5B is a plan view of the cluster tool of Figure 5A with the central robot in the transfer chamber in a rotating mode. Figure 5C is a plan view of the cluster tool of Figure 5A with the central robot in the transfer chamber approaching the extension chamber connecting the transfer chamber. Figure 5D is a plan view of the cluster tool of Figure 5A with the central robot in the transfer chamber entering the load lock chamber that connects the transfer chamber. Figure 5E is a plan view of the cluster tool of Figure 5A with the central robot in the transfer chamber 41 200913115 approaching the processing chamber connected to the transfer chamber. Fig. 6A is an exploded perspective view of a vacuum extension chamber having a movable frame in accordance with an embodiment of the present invention. Figure 6B is a cross-sectional side view of the vacuum extension chamber of Figure 6A. Figure 6C is a cross-sectional side view of the vacuum extension chamber of Figure 6A with the movable frame in a lower position. Figure 7A is a perspective view of the movable frame of Figure 6A. Figure 7B illustrates a support finger member in accordance with an embodiment of the present invention. Figure 7C illustrates a support finger member in accordance with another embodiment of the present invention. Figure 8A is an elevational view of a vacuum extension chamber having a mounting bracket in accordance with an embodiment of the present invention. Fig. 8B is a side view of the carrier surface provided with the main frame of the vacuum extension chamber of Fig. 8A. Figure 8C is a cross-sectional side view of the main frame of Figure 8B with the robot picking up the shutter of the vacuum extension chamber. Figure 9 is a plan view of a cluster tool in accordance with an embodiment of the present invention. Figure 10 is a cross-sectional side view of the cluster tool of Figure 9. Figure 11A is a perspective view of the cluster tool of Figure 9, with a carriage bracket. FIG. 1 1 B illustrates a transfer bracket in accordance with an embodiment of the present invention. For ease of understanding, the same reference numerals in the drawings indicate similar elements. The components employed in one embodiment may be applied to other embodiments without particular detail. 42 200913115 [Description of main component symbols] 2, 261, 301, 371, 501, 601 main body 4, 131, 132, 246, 247, 661 support 6 cover assembly 8 shutter member 10, 111, 112, 113, 211, 213, 235, 236, 237' 390, 406 processing chambers 12, 114, 214, 331, 622 substrates 14, 123, 223, 411, 523, 621 shutter 16 housings 18, 329, 330, 552, 553, 652, 653 blade 20, 532 shaft 26 actuator 314, 353, 391, 529, 530, 531, 534, 605, 615, 620 side wall 54 bottom surface 56 shutter opening 58 shielding ring

60、119、120 ' 134、219' 220、248、249、312、402' 512 ' 617 > 654 容積 62 護罩 64 靶材 66 磁電管 8 2 氣源 84 功率源 100 、 100a、 200 ' 400 群集式工具 101 、 201 盒件 102 ' 202 前端 環境 103 、 109 、 203 、 209 、 234 ' 316 、 403 、 651 機械手 43 20091311560, 119, 120 ' 134, 219 ' 220, 248, 249, 312, 402 ' 512 ' 617 > 654 volume 62 shield 64 target 66 magnetron 8 2 gas source 84 power source 100, 100a, 200 ' 400 Cluster tool 101, 201 box 102' 202 front end environment 103, 109, 203, 209, 234 '316, 403, 651 robot 43 200913115

104、 104a、 104b '13 0' 204 · ' 204a 、204b、 4 10、 555 660 負載鎖定室 105、 106、 116、 117、 118 狹縫 105a 、105b 、106 a、 106b、 205、 206、 216、 2 17、 2 18 23 9 > 240 > 241、 506、 507、 609 狹縫閥 107 ' 133 > 207 ' 232、 3 50、 408 延伸室 108、 208、 23 3、 3 00、 401 ' 55卜 6 5 0 傳輸室 110' 110a 主框 架 115、 322 ' 3 54 ' 5 14、 607 調壓埠 122、 135 > 222 ' 243、 503、 616 架 124、 224 ' 505 指示器 125、 225 ' 242、 612 真空 系統 126 ' 226 ' 245 機械構件 127、 127,. 4 ' 227 ' 36C 丨、5 09 支. 撑腳 127a 鋼管 主體 127b 足部 128、 128a 、228 、244、 262 、303 、3 0 5、 351 ' 372 392、 .510、 511、 513、 515 > .519、 520 ' 554 、 603 608、 614、 655 開口 160 中央結構 161、 162 、 309 、 533 210、 230 傳輸 室組件 231 通過室 260 支架 263 接孔 302 室蓋 304 機械埠 306、 377 密封^ 管 307、 352、 361、 374、 393 螺栓 5 56、 23 8 ' 373 ' 604、 凹口 44 200913115 308 把手 313 ' 527 頂壁 317、 356 、 378 、 394 密封 318 ' 319 螺孔 321 計錶埠 324 ' 325 圓圈 3 70 > 407 腔室埠組件 376 光源 381 啟動構件 4〇4 、 405 臂 502、 602 頂板 508 幫浦 521、5 8 5 ' 61 8 支柱 522 、 522a 、 522b > 619 指 5 57 孔洞 581 架橋 310' 311 虛線 315、 355 ' 528 、 606 底壁 環 320 加熱器埠 3 23 排氣孔 326 、 327 、 328 空隙 3 75 光接收器 3 8 0 ' 409 狹缝閥組件 382 ' 525 > 526 > 610 Η 5 00 ' 600 延伸室組件 504 架蓋 516、 517、 611 視窗 狀物件 5 80 底盤 613 感測器 45104, 104a, 104b '13 0' 204 · '204a, 204b, 4 10, 555 660 load lock chambers 105, 106, 116, 117, 118 slits 105a, 105b, 106a, 106b, 205, 206, 216, 2 17, 2 18 23 9 > 240 > 241, 506, 507, 609 slit valve 107 ' 133 > 207 ' 232, 3 50, 408 extension chamber 108, 208, 23 3, 3 00, 401 ' 55卜 6 5 0 transfer chamber 110' 110a main frame 115, 322 ' 3 54 ' 5 14 , 607 pressure regulation 122 , 135 > 222 ' 243 , 503 , 616 rack 124 , 224 ' 505 indicator 125 , 225 ' 242 , 612 vacuum system 126 ' 226 ' 245 mechanical components 127, 127,. 4 ' 227 ' 36C 丨, 5 09 struts 127a steel pipe body 127b feet 128, 128a, 228, 244, 262, 303, 3 0 5 , 351 ' 372 392, .510, 511, 513, 515 > .519, 520 ' 554 , 603 608 , 614 , 655 opening 160 central structure 161 , 162 , 309 , 533 210 , 230 transmission chamber assembly 231 through chamber 260 Bracket 263 Hole 302 Room Cover 304 Mechanical 埠306, 377 seal ^ tube 307, 352, 361, 374, 393 bolt 5 56, 23 8 ' 373 ' 604, notch 44 200913115 308 handle 313 ' 527 top wall 317, 356, 378, 394 seal 318 ' 319 screw hole 321 Meter 324 '325 Circle 3 70 > 407 Chamber 埠 Assembly 376 Light source 381 Starting member 4〇4, 405 Arm 502, 602 Top plate 508 Pump 521, 5 8 5 ' 61 8 Pillars 522, 522a, 522b &gt 619 means 5 57 hole 581 bridge 310' 311 dotted line 315, 355 '528, 606 bottom wall ring 320 heater 埠 3 23 venting holes 326, 327, 328 clearance 3 75 light receiver 3 8 0 ' 409 slit valve Assembly 382 '525 > 526 > 610 Η 5 00 '600 Extension chamber assembly 504 Cover 516, 517, 611 Window member 5 80 Chassis 613 Sensor 45

Claims (1)

200913115 十、申請專利範圍: 1· 一種用於一群集式工具 (cluster tool ) 之 (mainframe),其至少包含: 一傳輸室,内設有一基板傳輸機械手(robot), 基板傳輸機械手係配置以將基板來回移動於直接或 接至該傳輸室的一或多個處理室之間;以及 一遮盤架,係配置以儲放待用於該一或多個處理 一或多個遮盤,其中該基板傳輸機械手可進入該遮 藉此,該基板傳輸機械手得以傳輸該一或多個遮盤 盤架以及直接或間接連接至該傳輸室的該一或多個 之間。 2. 如申請專利範圍第1項所述之主框架,其中該基 機械手係配置以在延伸越過該遮盤架的一移動範圍 移動該些基板。 3. 如申請專利範圍第1項所述之主框架,更包含一 該傳輸室之延伸室,其中該遮盤架係設置於該延伸 4. 如申請專利範圍第3項所述之主框架,更包含連 延伸室之一負載鎖定室或一通過室(pass chamber )其中之一者,其中該負載鎖定室或該通過 置以連接該傳輸室和一前端環境,且該延伸室的一 主框架 其中該 間接連 室中的 盤架, 於該遮 處理室 板傳輸 内來回 連接至 室中。 接至該 through 室係配 内容積 46 200913115 在該負載鎖定室或該通過室以及該傳輸室之間提供一機械 手通道給該基板傳輸機械手。 5 .如申請專利範圍第4項所述之主框架,其中該遮盤架位 於該延伸室的該内容積中且遠離該機械手通道。 6. 如申請專利範圍第4項所述之主框架,其中該遮盤架為 可移動地設置在該延伸室的該内容積中。 7. 如申請專利範圍第6項所述之主框架,更包含一耦I接至 該遮盤架之指示器(indexer),其中該指示器係配置以在 該延伸室之該内容積内垂直移動該遮盤架。 8 .如申請專利範圍第3項所述之主框架,其中該傳輸室與 該延伸室為流體連通,一真空幫浦係轉接至該延伸室之一 底面上的一調壓埠,藉以提供該傳輸室一低壓環境。 9.如申請專利範圍第1項所述之主框架,其中該遮盤架包 含: 一第一支柱; 一第二支柱,與該第一支柱為相對設置;以及 一或多對支撐指狀物件(finger ),係從各個該第一支柱 和該第二支柱延伸,其中該一或多對支撐指狀物件構成一 47 200913115 或多個狹缝,且每一狹缝係用來支撐住一遮盤。 1 0.如申請專利範圍第9項所述之主框架,其中該支撐指 狀物件包含二接觸球體,該些接觸球體係配置以接觸一遮 盤的一後側。 11. 一種用於一群集式工具之傳輸室組件,其至少包含: 一主腔室,内設有一中央機械手,其中該主腔室係配置 以連接至複數個腔室,且該中央機械手係配置以將一或多 個基板來回移動於連接至該主腔室的該些腔室之間; 一延伸室,連接至該主腔室;以及 一遮盤架,設置於該延伸室中,其中該遮盤架係配置以 在其中支撐一或多個遮盤,且該中央機械手可進入該遮盤 架。 1 2 ·如申請專利範圍第1 1項所述之傳輸室組件,其中該主 腔室和該延伸室構成一單一真空密封區。 1 3 ·如申請專利範圍第1 2項所述之傳輸室組件,其中該延 伸室之中形成有一低壓埠,用以連接一真空系統。 1 4.如申請專利範圍第11項所述之傳輸室組件,其中該遮 盤架係設置於該延伸室之一内容積的一第一部分中,且該 48 200913115 延伸室之該内容積的一第二部分係配置以提供該中央機械 手進入連接至該延伸室之一負載鎖定室或一通過室的一通 道 ° 1 5 .如申請專利範圍第1 4項所述之傳輸室組件,其中該遮 盤架係設置於該内容積的一下部。 1 6.如申請專利範圍第1 4項所述之傳輸室組件,其中該遮 盤架為可移動地設置在該延伸室的該内容積中。 1 7.如申請專利範圍第1 6項所述之傳輸室組件,更包含連 接至該遮盤架的一指示器,其中該指示器係配置以在該延 伸室内垂直移動該遮盤架,使得該中央機械手可進入該遮 盤架。 18. —種用於處理半導體基板的群集式工具,其至少包含: 一第一傳輸室,内設有一第一中央機械手; 一第一延伸室,連接至該第一傳輸室,該第一延伸室内 設有一第一遮盤架,其中該第一遮盤架係配置以在其上支 撐一或多個遮盤,且該第一中央機械手可進入該第一遮盤 架; 一或多個處理室,連接至該第一傳輸室;以及 一負載鎖定室,連接至該第一延伸室。 49 200913115 19_如申請專利範圍第18項所述之群集式工具,更包含: 一通過室,連接至該第一傳輸室; 一第二傳輸室,内設有一第二中央機械手,其中該第二 傳輸室與該通過室連接;以及 一或多個處理室,連接至該第二傳輪室。 20.如申請專利範圍第19項所述之群集式工具,更包含一 第二延伸室,該第二延伸室設置於該通過室與該第二傳輸 室之間,其中該第二延伸室包含設置在其中的一第二遮盤 架,且該第二中央機械手可進入該第二遮盤架。 21. 如申請專利範圍第18項所述之群集式工具,其中該第 一遮盤架為可移動地設置在該第一延伸室中。 22. 如申請專利範圍第18項所述之群集式工具,更包含一 幫浦系統,其連接至該第一延伸室,其中該幫浦系統係配 置以維持該第一延伸室和該第一傳輸室呈一低壓環境。 50200913115 X. Patent application scope: 1. A mainframe for a cluster tool, comprising at least: a transmission chamber, a substrate transmission robot, and a substrate transmission robot configuration Moving the substrate back and forth between one or more processing chambers directly or connected to the transfer chamber; and a shutter tray configured to store one or more shutters to be used for the one or more processes, Wherein the substrate transport robot can enter the mask, the substrate transport robot being capable of transporting the one or more shutter trays and directly or indirectly connected between the one or more of the transfer chambers. 2. The main frame of claim 1, wherein the base robot is configured to move the substrates over a range of movement extending across the shutter frame. 3. The main frame of claim 1, further comprising an extension chamber of the transmission chamber, wherein the shutter frame is disposed on the extension 4. The main frame as described in claim 3, Further comprising a load lock chamber or a pass chamber of one of the extension chambers, wherein the load lock chamber or the main frame of the extension chamber is connected to the transfer chamber and a front end environment The tray in the indirect connection chamber is connected back and forth to the chamber in the transmission of the shielding chamber. Connected to the through chamber, the internal volume 46 200913115 provides a robotic path between the load lock chamber or the passage chamber and the transfer chamber to the substrate transfer robot. 5. The main frame of claim 4, wherein the shutter frame is located in the inner volume of the extension chamber and away from the robot channel. 6. The main frame of claim 4, wherein the shutter frame is movably disposed in the inner volume of the extension chamber. 7. The main frame of claim 6, further comprising an indexer coupled to the shutter frame, wherein the indicator is configured to be vertically within the inner volume of the extension chamber Move the shutter holder. 8. The main frame of claim 3, wherein the transfer chamber is in fluid communication with the extension chamber, and a vacuum pump is transferred to a pressure regulation port on a bottom surface of the extension chamber to provide The transfer chamber has a low pressure environment. 9. The main frame of claim 1, wherein the shutter frame comprises: a first pillar; a second pillar disposed opposite the first pillar; and one or more pairs of supporting finger members (finger) extending from each of the first leg and the second leg, wherein the one or more pairs of supporting finger members form a 47 200913115 or a plurality of slits, and each slit is used to support a cover plate. The main frame of claim 9, wherein the supporting finger member comprises two contact balls configured to contact a rear side of a shutter. 11. A transfer chamber assembly for a cluster tool, comprising: a main chamber having a central robot therein, wherein the main chamber is configured to connect to a plurality of chambers, and the central robot Configuring to move one or more substrates back and forth between the chambers connected to the main chamber; an extension chamber connected to the main chamber; and a shutter frame disposed in the extension chamber Wherein the shutter frame is configured to support one or more shutters therein, and the central robot can enter the shutter frame. The transfer chamber assembly of claim 11, wherein the main chamber and the extension chamber form a single vacuum seal region. The transfer chamber assembly of claim 12, wherein a low pressure crucible is formed in the extension chamber for connection to a vacuum system. The transfer chamber assembly of claim 11, wherein the shutter frame is disposed in a first portion of an inner volume of the extension chamber, and the one of the internal contents of the 48 200913115 extension chamber The second portion is configured to provide a transfer chamber assembly of the central robot into a load lock chamber or a passage chamber of the extension chamber. The transfer chamber assembly of claim 14 wherein the The shutter frame is placed at the lower part of the inner volume. The transfer chamber assembly of claim 14, wherein the shutter frame is movably disposed in the inner volume of the extension chamber. 1. The transfer chamber assembly of claim 16, further comprising an indicator coupled to the shutter frame, wherein the indicator is configured to vertically move the shutter frame within the extension chamber such that The central robot can enter the shutter frame. 18. A cluster tool for processing a semiconductor substrate, comprising: a first transfer chamber having a first central robot therein; a first extension chamber coupled to the first transfer chamber, the first a first shutter frame is disposed in the extension chamber, wherein the first shutter frame is configured to support one or more shutters thereon, and the first central robot can enter the first shutter frame; one or more a processing chamber connected to the first transfer chamber; and a load lock chamber connected to the first extension chamber. 49. The method of claim 18, wherein the clustering tool of claim 18 further comprises: a passage chamber connected to the first transfer chamber; and a second transfer chamber having a second central robot therein, wherein a second transfer chamber is coupled to the pass chamber; and one or more processing chambers are coupled to the second transfer chamber. 20. The cluster tool of claim 19, further comprising a second extension chamber disposed between the passage chamber and the second transfer chamber, wherein the second extension chamber comprises A second shutter frame is disposed therein, and the second central robot can enter the second shutter frame. 21. The cluster tool of claim 18, wherein the first shutter frame is movably disposed in the first extension chamber. 22. The cluster tool of claim 18, further comprising a pump system coupled to the first extension chamber, wherein the pump system is configured to maintain the first extension chamber and the first The transfer chamber is in a low pressure environment. 50
TW97117268A 2007-05-09 2008-05-09 Transfer chamber with vacuum extension for shutter disks TWI474426B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US91692107P 2007-05-09 2007-05-09

Publications (2)

Publication Number Publication Date
TW200913115A true TW200913115A (en) 2009-03-16
TWI474426B TWI474426B (en) 2015-02-21

Family

ID=40002598

Family Applications (2)

Application Number Title Priority Date Filing Date
TW97117268A TWI474426B (en) 2007-05-09 2008-05-09 Transfer chamber with vacuum extension for shutter disks
TW104100785A TWI553769B (en) 2007-05-09 2008-05-09 Transfer chamber with vacuum extension for shutter disks

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW104100785A TWI553769B (en) 2007-05-09 2008-05-09 Transfer chamber with vacuum extension for shutter disks

Country Status (3)

Country Link
CN (1) CN101674893B (en)
TW (2) TWI474426B (en)
WO (1) WO2008141106A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724863B (en) * 2013-09-25 2021-04-11 美商應用材料股份有限公司 Gas apparatus, systems, and methods for chamber ports

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6937549B2 (en) * 2016-06-10 2021-09-22 株式会社ジャパンディスプレイ Light emitting element manufacturing equipment
CN107488832B (en) * 2016-06-12 2019-11-29 北京北方华创微电子装备有限公司 Depositing device and physical vapor deposition chamber
CN114908329B (en) * 2021-02-08 2024-03-08 台湾积体电路制造股份有限公司 Correction method and semiconductor manufacturing apparatus
CN113451188A (en) * 2021-06-25 2021-09-28 北京北方华创微电子装备有限公司 Reaction chamber, semiconductor processing equipment and semiconductor processing method
CN116695086B (en) * 2023-06-30 2024-04-16 北京北方华创微电子装备有限公司 Process chamber, semiconductor process equipment and thin film deposition method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951601A (en) * 1986-12-19 1990-08-28 Applied Materials, Inc. Multi-chamber integrated process system
JPH07245332A (en) * 1994-03-04 1995-09-19 Hitachi Ltd Apparatus and method for manufacturing semiconductor device and semiconductor device
TW359849B (en) * 1994-12-08 1999-06-01 Tokyo Electron Ltd Sputtering apparatus having an on board service module
KR100244041B1 (en) * 1995-08-05 2000-02-01 엔도 마코토 Substrate processing apparatus
KR100462237B1 (en) * 2000-02-28 2004-12-17 주성엔지니어링(주) Cluster tool for semiconductor device fabrication having a substrate cooling apparatus
JP4054159B2 (en) * 2000-03-08 2008-02-27 東京エレクトロン株式会社 Substrate processing method and apparatus
JP4821074B2 (en) * 2001-08-31 2011-11-24 東京エレクトロン株式会社 Processing system
US20060156979A1 (en) * 2004-11-22 2006-07-20 Applied Materials, Inc. Substrate processing apparatus using a batch processing chamber
TWI295816B (en) * 2005-07-19 2008-04-11 Applied Materials Inc Hybrid pvd-cvd system
US7432201B2 (en) * 2005-07-19 2008-10-07 Applied Materials, Inc. Hybrid PVD-CVD system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724863B (en) * 2013-09-25 2021-04-11 美商應用材料股份有限公司 Gas apparatus, systems, and methods for chamber ports

Also Published As

Publication number Publication date
TW201515141A (en) 2015-04-16
WO2008141106A1 (en) 2008-11-20
TWI474426B (en) 2015-02-21
CN101674893A (en) 2010-03-17
TWI553769B (en) 2016-10-11
CN101674893B (en) 2012-08-08

Similar Documents

Publication Publication Date Title
US8945308B2 (en) Transfer chamber with vacuum extension for shutter disks
JP6003011B2 (en) Substrate processing equipment
US10553454B2 (en) Wafer level packaging of microbolometer vacuum package assemblies
TW201712785A (en) Load lock apparatus and substrate processing system
JP4744328B2 (en) Semiconductor manufacturing apparatus provided with cooling stage and semiconductor manufacturing method using the same
TW200913115A (en) Transfer chamber with vacuum extension for shutter disks
JP2003068819A (en) Dual wafer load lock
TW200832592A (en) Substrate processing apparatus and manufacturing method for a semiconductor device
KR102267964B1 (en) Dodecagonal transfer chamber and processing system having same
JP2022002255A (en) Storage module, substrate processing system, and method for conveying consumable member
US6595370B2 (en) Apparatus and method for reducing contamination in a wafer transfer chamber
KR101004031B1 (en) Substrate processing apparatus and semiconductor device manufacturing method
CN117897801A (en) Apparatus for changing the temperature of a wafer
US20210020476A1 (en) Multi-object capable loadlock system
US11527426B2 (en) Substrate processing device
KR20070044725A (en) Transfer chamber having transparent lid
JP2003347393A (en) Wafer holding apparatus and vacuum treatment apparatus using the same
JP4167523B2 (en) Substrate processing equipment
KR101725894B1 (en) A loadlock chamber
WO2021016115A1 (en) Multi-object capable loadlock system
TW202329765A (en) Storage cassette for replaceable parts for plasma processing apparatus
JPH11195691A (en) Single wafer vacuum treatment device