TW200912478A - Illumination assembly including wavelength converting material having spatially varying density - Google Patents

Illumination assembly including wavelength converting material having spatially varying density Download PDF

Info

Publication number
TW200912478A
TW200912478A TW97126257A TW97126257A TW200912478A TW 200912478 A TW200912478 A TW 200912478A TW 97126257 A TW97126257 A TW 97126257A TW 97126257 A TW97126257 A TW 97126257A TW 200912478 A TW200912478 A TW 200912478A
Authority
TW
Taiwan
Prior art keywords
light
wavelength
illumination
solid state
region
Prior art date
Application number
TW97126257A
Other languages
Chinese (zh)
Inventor
Michael Lim
David Doyle
Alexander L Pokrovskiy
Alexei A Erchak
Gianni Taraschi
Nikolay Nemchuk
Original Assignee
Luminus Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/831,306 external-priority patent/US20090034230A1/en
Priority claimed from US11/831,267 external-priority patent/US8585273B2/en
Application filed by Luminus Devices Inc filed Critical Luminus Devices Inc
Publication of TW200912478A publication Critical patent/TW200912478A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

Illumination assemblies, components, and related methods are described. An illumination assembly can include at least one solid state light-emitting device, and at least one light guide including a light homogenization region configured to receive light emitted by the solid state light-emitting device and including a light output boundary. The light homogenization region substantially uniformly distributes light outputted over the light output boundary. A wavelength converting material can be disposed within at least a portion of the light homogenization region. In some assemblies, a light extraction region can be configured to receive light from the light output boundary of the light homogenization region, and can have a length along which received light propagates and an emission surface through which light is emitted. The light extraction region can include a wavelength converting material disposed within at least a portion of the light extraction region.

Description

200912478 “ 九、發明說明: 【發明所屬之技術領域】 本發明係有關於照明系統,且更 人付別土士你 , 固態發光裝置的照明系統。 係有關於包括 【先前技術】 照明組合可提供光給各種應用, JZ. m m , 括—般的照明及電 子應用。例如,一背光組合可被用以 η _ 省如液晶顯示芎π rm200912478 " IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a lighting system, and is more suitable for the lighting system of a solid-state lighting device. It is related to the prior art. Light for a variety of applications, JZ. mm, including general lighting and electronic applications. For example, a backlight combination can be used for η _ province such as liquid crystal display 芎 π rm

的.4不器提供光。目前,此種背光組 D 4, ^ rrnv, x 口主要知用冷陰極螢 先燈官(CCFLS)光源。雖然這些螢光燈 赏 且g 口」捉供有效分西 照明,螢光燈管之嚴重的缺句 —' g <嚴置的缺點包括设雜的反相器電子、 慢的切換速度、及在螢光燈管内存 、 甘。t如水的危險材料。 【發明内容】 ’、、、月系統、組件、及與其相關的方法被提供。The .4 does not provide light. At present, such a backlight group D 4, ^ rrnv, x port mainly uses a cold cathode fluorescent lamp (CCFLS) light source. Although these fluorescent lights are used to capture the effective illumination of the West, the serious lack of fluorescent tubes - ' g < strict disadvantages include the inclusion of inverter electronics, slow switching speed, and In the fluorescent tube memory, Gan. t Hazardous materials such as water. SUMMARY OF THE INVENTION The ',,, month system, components, and methods related thereto are provided.

_在-個面向中,一照明組合’包括:至少—固態發光 裝置;一發射面,光係通過其被發射;及一波長轉換材料, 其轉換由固態發光裳置發射的至少某些光的波長,波長轉 換材料具有在第一位置之發射面的每單位面積的第一密度 及在第二位置之發射面的每單位面積的第二密度,其中, $ —密度只質上不同於第一密度,且其中,每單位面積的 密度係以Ixl cm2的平均面積被定義。 士在另一個面向中,一種照明組合,包括:一固態發光 衣置’一光導’被配置以接收由固態發光裝置發射的光,In a face-to-face, a lighting combination includes: at least a solid state light emitting device; an emitting surface through which the light system is emitted; and a wavelength converting material that converts at least some of the light emitted by the solid state light emitting device The wavelength, the wavelength converting material has a first density per unit area of the emitting surface at the first location and a second density per unit area of the emitting surface at the second location, wherein the density is qualitatively different from the first Density, and wherein the density per unit area is defined by the average area of Ixl cm2. In another aspect, a lighting combination includes: a solid state lighting device 'a light guide' configured to receive light emitted by the solid state lighting device,

1024-9835-PF 5 200912478 光導具有接收的光沿著其傳播的一長度及大體上平行於光 導的長度且光通過其被發射的發射面;及一波長轉換材 料,具有發射面的每單位面積的一密度,其大體上沿著光 導的長度增加。 在一個面向中,一種顯示器,包括:至少一固態發光 裝置;一發射面’光通過其被發射;一波長轉換材料,其 轉換由固恶發光裝置發射的至少某些光的波長,波長轉換 材料具有在第一位置之發射面的每單位面積的第—密度及 在第二位置之發射面的每單位面積的第二密度,其中,第 二密度實質上不同於第一密度,且其中,每單位面積的密 度係以1 X1 cm2的平均面積被定義;及一液晶層,被排列 以接收由波長轉換材料發射的至少某些波長被轉換的光。 在一個面向中,一種顯示器,包括:至少一固態發光 裝置;一第一波長轉換材料區域,其將由固態發光裝置發 射的至少某些光的波長轉換至第一波長譜;一第二波長轉 換材料區域,其將由固態發光裝置發射的至少某些光的波 長轉換至與第一波長譜不同的第二波長譜;一液晶層,包 括一第一像素光閥,被排列以接收由第一波長轉換材料發 射的至少某些波長被轉換的光’及一第二像素光閥,被排 列以接收由第二波長轉換材料發射的至少某些波長被轉換 的光。 、 在一個面向中,一種製造照明組合的方法,包括:提 供至少一固態發光裝置,·及提供一波長轉換材料,其轉換 由固態發光裝置發射的至少某些光的波長,波長轉換材料 1024-9835-PF 6 200912478 具有在第-位置之發射面的每單位面積的第一密度及在第 一位置之發射面的每單位面積的第二密度,其中,第二密 度實質上不同於第一密度,且其中,每單位面積的密度係 以lxl cm2的平均面積被定義。 在個面向中,一種照明組合,包括:至少一固態發 光裝置,及至少一光導,包括一光均質化區域,被配置以 接收由固態發光裝置發射的光並且包括一光輸出邊界。光 均質化區域大體上均勻地分配被輸出在光輸出邊界上的 光。一波長轉換材料被設置在光均質化區域的至少一部分 内。 在另一個面向中,一種照明組合,包括:至少一固態 發光裝置,及至少一光導。光導包括一光均質化區域及一 光心員取區域。光均質化區域被配置以接收由固態發光裝置 發射的光並且包括一光輸出邊界,其中,光均質化區域大 體上均勻地分配被輸出在光輸出邊界上的光。光擷取區域 被配置以從光均質化區域的光輸出邊界接收光。光擷取區 域包括一波長轉換材料,其被配置在光擷取區域的至少一 部分内,且光擷取區域具有接收的光沿著其傳播的一長度 及光通過其被發射的發射面。 在一個面向中,一種液晶顯示系統,包括:一液晶顯 示面板具有—照明區域;至少一固態發光裝置,與液晶 顯不面板相結合,使得由固態發光裝置發射的光照明液晶 顯不面板;及一波長轉換材料,被設置以遠離至少一固態 發光裝置,其中,照明區域的每個m2之固態發光裝置的數1024-9835-PF 5 200912478 The light guide has a length along which the received light propagates and an emission surface that is substantially parallel to the length of the light guide and through which the light is emitted; and a wavelength converting material having a plane of emission per unit area A density that increases substantially along the length of the light guide. In one aspect, a display includes: at least one solid state light emitting device; an emitting surface 'light is emitted therethrough; a wavelength converting material that converts wavelengths of at least some of the light emitted by the solid light emitting device, the wavelength converting material a first density per unit area of the emitting surface at the first location and a second density per unit area of the emitting surface at the second location, wherein the second density is substantially different from the first density, and wherein each The density per unit area is defined by an average area of 1 X1 cm2; and a liquid crystal layer arranged to receive light converted by at least some of the wavelengths emitted by the wavelength converting material. In one aspect, a display includes: at least one solid state light emitting device; a first wavelength converting material region that converts a wavelength of at least some of the light emitted by the solid state light emitting device to a first wavelength spectrum; a second wavelength converting material a region that converts a wavelength of at least some of the light emitted by the solid state light emitting device to a second wavelength spectrum that is different from the first wavelength spectrum; a liquid crystal layer comprising a first pixel light valve arranged to receive the first wavelength conversion At least some of the wavelength converted light emitted by the material and a second pixel light valve are arranged to receive at least some of the wavelength converted light emitted by the second wavelength converting material. In one aspect, a method of fabricating a lighting assembly, comprising: providing at least one solid state light emitting device, and providing a wavelength converting material that converts a wavelength of at least some of the light emitted by the solid state light emitting device, the wavelength converting material 1024- 9835-PF 6 200912478 having a first density per unit area of the emission surface at the first position and a second density per unit area of the emission surface at the first position, wherein the second density is substantially different from the first density And wherein the density per unit area is defined by an average area of lxl cm2. In one aspect, a lighting assembly includes: at least one solid state light emitting device, and at least one light guide comprising a light homogenizing region configured to receive light emitted by the solid state lighting device and including a light output boundary. The light homogenization region distributes light that is output on the boundary of the light output substantially uniformly. A wavelength converting material is disposed within at least a portion of the light homogenizing region. In another aspect, a lighting combination includes: at least one solid state light emitting device, and at least one light guide. The light guide includes a light homogenization area and a light core take-up area. The light homogenizing region is configured to receive light emitted by the solid state lighting device and includes a light output boundary, wherein the light homogenizing region substantially uniformly distributes light output on the light output boundary. The light extraction region is configured to receive light from a light output boundary of the light homogenization region. The light extraction region includes a wavelength converting material disposed in at least a portion of the light extraction region, and the light extraction region has a length along which the received light propagates and an emission surface through which the light is emitted. In one aspect, a liquid crystal display system includes: a liquid crystal display panel having an illumination area; at least one solid state light emitting device coupled with the liquid crystal display panel such that the light emitted by the solid state light emitting device illuminates the liquid crystal display panel; a wavelength converting material disposed to be remote from at least one solid state light emitting device, wherein the number of solid state light emitting devices of each m2 of the illumination region

1024-9835-PF 7 200912478 目係小於100。 在一個面向中,一種照明組合,包括:至少一固態發 光裝置;一光導,被配置以接收由固態發光裝置發射的光, 光導具有接收的光沿著其傳播的一長度及光通過其被發射 的發射面;一波長轉換材料,被設置在固態發光裝置及光 導的發射面之間的光學路徑中;及一波長濾光器’被設置 在固悲發光裝置及波長轉換材料之間的光學路徑中。 在一個面向中,一種製造照明組合的方法,該方法包 括··提供至少一固態發光裝置;及提供至少一光導,包括 一光均質化區域,被配置以接收由固態發光裝置發射的光 並且包括一光輸出邊界,其中,光均質化區域大體上均勻 地分配被輸出在光輪出邊界上的光,且其中,光均質化區 域包括-波長轉換材料,其被配置在光均質化區域的至少 一部分内。1024-9835-PF 7 200912478 The target system is less than 100. In one aspect, a lighting combination includes: at least one solid state light emitting device; a light guide configured to receive light emitted by the solid state light emitting device, the light guide having a length along which the received light propagates and light being emitted therethrough An emitting surface; a wavelength converting material disposed in an optical path between the solid state light emitting device and the emitting surface of the light guide; and a wavelength filter disposed at an optical path between the solid light emitting device and the wavelength converting material in. In one aspect, a method of fabricating a lighting assembly, the method comprising: providing at least one solid state light emitting device; and providing at least one light guide comprising a light homogenizing region configured to receive light emitted by the solid state light emitting device and comprising a light output boundary, wherein the light homogenization region substantially uniformly distributes light output on the light wheel exit boundary, and wherein the light homogenization region includes a wavelength conversion material disposed at least a portion of the light homogenization region Inside.

參閱附目’由T面本發明之詳細說明,本發明之其他 面向、貫施例及特點將變得明瞭。附圖係用以說明而非按 比例緣製。在不同的圖式中緣示的各個相同或大體相似的 組件係由單一的數字或標誌標示。 為了清楚,非每一個組件均被標示於每一個圖式中。 對於使熟知此技藝者瞭解本發明所不需要的說明,本發明 2個實施例的每個組件未被顯示。在此被供做參考的所 …利申請案及專利被完整地供做參考。若有衝突,以本 說明書及其所包括的定義為主。Other aspects, embodiments, and features of the present invention will become apparent from the Detailed Description of the invention. The drawings are intended to be illustrative rather than to scale. Individual identical or substantially similar components are indicated by a single numeral or symbol in the different figures. For the sake of clarity, not every component is labeled in every figure. Each component of the two embodiments of the present invention is not shown for the description that is not required by those skilled in the art to understand the present invention. The application and patents hereby are hereby incorporated by reference in their entirety. In the event of a conflict, this specification and the definitions it contains are the main ones.

1024-9835-PF 8 200912478 【實施方式】 f 在此描述的照明組合可包括一或多個固態發光裝置, 諸如發光二極體及/或雷射二極體。這些固態發光敦置可做 為用於各種應用的高亮度小型光源。因為固態發光裝置通 常係小型光源’對於要求分配式照明的應用,由固態發光 裝置發射的光可被併入照明組合中,其可經由擴大的光發 射面,其具有實質上大於發光裝置的發射面(例如,大於= 100倍、大於約500倍、大於約1 0 0 0倍、大於約2〇〇〇倍) 之表面面積’以改變方向並發射光。在此提出的一些實施 例可完成來自一或多個固態發光装置的光之重新定向及發 射並且可經由擴大的光發射面提供分配式照明。在某些實 施例十,在光重新定向及/或發射的程序期間,一些或全部 之來自發光裝置的光可被波長轉換#或全部的光之波 長轉換可使得來自照明組合的光之光重新定向及/或發射 變得容易。 在此提出的一些貫施例包括照明組合,其具有:一戋 多個固態發光裝置’其可發射具有第—波長譜的主要光 (primary llght);及一波長轉換材料(例如,磷及/或量子 點),其可將主要光轉換成具有不同波長譜的次要光 (secondary llght)(例如,將主要光下轉換(d_—議…⑴ 至較低的能量)。如同在此使用者’波長轉換材料指—種材 料’其可吸收一些或大體上全部之具有第一波長譜的主要 光(例如,藍光、評光)並且發射具有第二不同之波長諍的 人要光(例如’白光、黃光、紅光、、綠光、及/或藍光)。波1024-9835-PF 8 200912478 [Embodiment] f The lighting combination described herein may include one or more solid state lighting devices, such as light emitting diodes and/or laser diodes. These solid-state lighting fixtures can be used as high-brightness small light sources for a variety of applications. Because solid state lighting devices are typically small light sources 'for applications requiring distributed illumination, light emitted by solid state lighting devices can be incorporated into the lighting combination, which can be via an enlarged light emitting surface that has substantially greater emission than the lighting device The surface area of the face (eg, greater than = 100 times, greater than about 500 times, greater than about 1 000 times, greater than about 2 times) is used to redirect direction and emit light. Some embodiments presented herein may accomplish reorientation and emission of light from one or more solid state lighting devices and may provide distributed illumination via an enlarged light emitting surface. In certain embodiments, some or all of the light from the illumination device may be wavelength converted # or all of the wavelength of light during the light reorientation and/or emission process may cause the light from the illumination combination to be re-lighted. Orientation and/or launching becomes easy. Some embodiments presented herein include a lighting combination having: a plurality of solid state lighting devices that emit primary light having a first wavelength spectrum; and a wavelength converting material (eg, phosphorus and/or Or a quantum dot) that converts the primary light into a secondary llght with a different wavelength spectrum (eg, downconverts the primary light (d_-...(1) to lower energy). As in this user 'Wavelength converting material refers to a material that absorbs some or substantially all of the primary light having a first wavelength spectrum (eg, blue light, grading) and emits light having a second different wavelength 诤 (eg, ' White light, yellow light, red light, green light, and/or blue light).

1024-9835-PF 9 200912478 長轉換材料可將光從較短的波長(較高的能量)下轉換至^ 長的波長(較低的能量)。磷係通常的波長轉換材料的2 子,其可採取读粒子的形式。量子點也可做為波長轉 料。 'w 在此提出的一些實施例中,波長轉換材料可具有在 同的位置不同的密度。每單位面積的波長轉換材料的密声 係被設置在^的平均面積的上面及下面之每平均= 積的波長轉換材料的數量。例如,在某些實施例中,平均 面積可位於照明組合的發射面上’且在此種情況中,密度 被稱為發射面的每單位面積之波長轉換材料的密度。此一 平=面積不包括在固態發光裳置之封裝層級的波長轉換材 料遗、度的變動,例如,在發光 材料密度的變動。在1先!、置的封裝層内之波長轉換 圓心會示根據一實施例之包括一或多個固態發光裝 置的照明組合。昭明έ人 ,,π # …、‘,σ 00a可包括—固態發光裝置 可包括-或多個發光二極體及/或雷射二極體。雖 ::中繪示的照明組合係由-或多個固態發光裝置 態發光裝置ί 一照明組合可由一或多個固 2面發光。在某些實施例中,複數個照明組合, 類似於照明纟且人η η η 或二維平鍤;、 可被排列彼此鄰接(例如,沿著- 如一平面U形成具有結合的光發射面(例如,可平鋪諸 明έ且人^表面之鄰接的光發射面)之結合的照明組合。照 月止δ C或結合的 (例如,士 \ σ )的先發射面面積可大於約 於或等於約0_05m2、大於或等於約〇 lm2、1024-9835-PF 9 200912478 Long conversion materials convert light from a shorter wavelength (higher energy) to a longer wavelength (lower energy). Phosphorus is a 2-part of the usual wavelength converting material, which can take the form of read particles. Quantum dots can also be used as wavelength conversions. In some embodiments presented herein, the wavelength converting material can have a different density at the same location. The dense sound of the wavelength conversion material per unit area is set to the number of wavelength conversion materials per averaging = product above and below the average area of ^. For example, in some embodiments, the average area may be on the emitting face of the illumination combination' and in this case the density is referred to as the density of the wavelength converting material per unit area of the emitting face. This flat = area does not include variations in the wavelength conversion material of the package level of the solid state light emitting device, for example, variations in the density of the luminescent material. At 1 first! The wavelength conversion center within the encapsulation layer will show a combination of illumination comprising one or more solid state illumination devices in accordance with an embodiment.昭# ..., ', σ 00a may include - the solid state lighting device may include - or a plurality of light emitting diodes and / or a laser diode. Although the illumination combination illustrated in the following is illuminated by one or more solid-state illumination devices, the illumination combination can be illuminated by one or more solid-state illumination devices. In some embodiments, a plurality of illumination combinations, similar to illumination 纟 and human η η η or two-dimensional 锸; can be arranged adjacent to each other (eg, along a side, such as a plane U, to form a combined light-emitting surface ( For example, a combination of illumination that can illuminate the combination of the adjacent light emitting surfaces of the surface and the surface of the human surface. The first emitting surface area of the combined δ C or combined (eg, ± σ ) may be greater than about or Equal to about 0_05m2, greater than or equal to about 〇lm2

1024-9835-PF 10 200912478 大於或等於約0.16m2、大於或等於約。.5π]2、大於或等於約 h)。在某些實施例中,照明組合的光發射面面積的範圍 係位於約0.01m2及約0.05^之間、約〇〇5π]2及約〇 ^之 間、約O.im2及約0.5W之間、或約〇5m2及約lm2之間。 由發光裝置150發射的光152(稱為主要光)可被轉合 至光均質化區域112中,其可空間地分配光,使得經由光 輪出邊界113(例如光輸出面)發射的光在光輸出邊界ιΐ3 的不同位置上具有實質上均勻的強度。光均質化區域⑴ 可為-區域,在該區域中光未沿著均f化區域ιΐ2的全長 被大幅地擷取。 一光均質化區域112可包括一光導,其具有比周圍介質 =折射率。《導可包括一邊緣,被配置以接收由固態發 、置15G發射的光。例如,柄f化區域ιΐ2可包括由 透明塑膠(例如腿、壓克力)及/或破璃的光學透明 ::成的光導之部分或全部。光導可具有任何適合的形 t在某些實施财,光導具有平板形(例如,矩形平板、 =平板、梯形平板)、圓枉形(例如,具有圓形或橢圓 的子)、及/或其他適合的光導形狀。均質化區域 一則出邊界的形狀可能與光導的形狀有_,例如,包括 二:=域的矩形光導可能使得光輸出邊界為矩形光導 7矩元截面,如圖1A所示。1024-9835-PF 10 200912478 is greater than or equal to about 0.16 m2, greater than or equal to about. .5π]2, greater than or equal to about h). In some embodiments, the light emitting surface area of the illumination combination ranges between about 0.01 m2 and about 0.05, between about 5π]2 and about 、^, about O.im2 and about 0.5W. Between, or about 5m2 and about lm2. Light 152 (referred to as primary light) emitted by illumination device 150 can be transduced into light homogenization region 112, which can spatially distribute light such that light emitted through light exit boundary 113 (eg, light output surface) is in light The output boundary ιΐ3 has a substantially uniform intensity at different locations. The light homogenization region (1) may be a region in which light is not substantially captured along the entire length of the uniformized region ι2. A light homogenizing region 112 can include a light guide having a refractive index greater than the surrounding medium. The guide may include an edge configured to receive light emitted by the solid state, 15G. For example, the shank area ι2 may comprise some or all of the optically transparent:-made light guide made of a transparent plastic (e.g., leg, acryl) and/or glass. The light guide can have any suitable shape. In some implementations, the light guide has a flat shape (eg, a rectangular flat plate, a flat plate, a trapezoidal flat plate), a circular dome shape (eg, a child having a circular or elliptical shape), and/or the like. Suitable light guide shape. Homogenization Region The shape of an out boundary may be _ with the shape of the light guide. For example, a rectangular light guide comprising a two: = domain may cause the light output boundary to be a rectangular light guide 7 matrix cross section, as shown in Figure 1A.

::均質峨112輸出的光153可被輕合至光掏取 光—「’在该處光係沿著光擷取區域114被大幅地擷取。 區域1U可包括一光發射面⑵,光102係通過其 1024-983 5-PF 200912478 被發射。光擷取區域的發射面可竇拼 巧J囬J貫貝上垂直於被輸入至井 擷取區域114中的光153之一如古a , 板万向。光揭取區域1 1 4可 包括光散射特徵’其可經由光發射面12〇將光散射出去。 在某些實施例中’光操取區。14可被配置及排列以使得 從發射面120的光發射穿過發射面12〇具有大體上均勾(例 如,小於約20%的變化、小於約π 、、7 的變化、小於約10%的 變化)的光強度。 光擷取區域114可向^The light 153 output from the homogenization 112 can be lightly coupled to the light extraction - "'where the light system is substantially captured along the light extraction region 114. The region 1U can include a light emitting surface (2), light The 102 series is launched by its 1024-983 5-PF 200912478. The emitting surface of the light extraction region can be entangled on one of the light 153 that is input into the well extraction region 114 as the ancient a The plate lifter region 1 1 4 may include a light scattering feature 'which may scatter light out through the light emitting face 12 。. In some embodiments the 'light operation zone' 14 may be configured and arranged to Light emission from the emitting surface 120 is caused to have a light intensity that is substantially uniform (eg, less than about 20% variation, less than about π, 7, and less than about 10% change) through the emitting surface 12 . Capture area 114 can be to ^

」°括先導。光散射特徵可位於另 導體積中及/或光導的上表面及/或下表面上。散射偷 數目可沿著光導的長度改變’以便麵經由光發射面的夫 發射沿著光導的長度大體上係均勻的。如冑ia所示,光發 射面12G可大體上平行於光導的長度。在某些實施例中' 沿著光導的長度發射的光之強度變化係小於約2〇%(例如, 小於約15%、小於約10%、小於約5%)。在某些實施例中, 光擷取區域114可包括由諸如玻璃或塑膠材料(例如壓克 力、PMMA)的光學透明材料形成的光導之部分或全部。 在某些實施例中,一間隔i 04可能出現在均質化區域 112的光輸出邊界113及光擷取區域114之間。由於全反 射(例如,在缺乏散射特徵及/或光導錐形時),間隔ι〇4可 確保被耦合至光擷取區域114中的任何光仍被侷限在光擷 取區域中。或者,均質化區域112及擷取區域114可彼此 接觸。例如,均質化區域〗〗2及擷取區域^ 4可均為單一 光導的一部分。 照明組合1 〇〇a可包括在一或多個位置的波長轉換材"Including the pilot. The light scattering features can be located in the conductive volume and/or on the upper and/or lower surface of the light guide. The number of scattering steals can vary along the length of the light guide so that the surface emission through the light emitting surface is substantially uniform along the length of the light guide. As shown by 胄ia, the light emitting surface 12G can be substantially parallel to the length of the light guide. In certain embodiments, the change in intensity of light emitted along the length of the light guide is less than about 2% (eg, less than about 15%, less than about 10%, less than about 5%). In some embodiments, the light extraction region 114 can comprise a portion or all of a light guide formed from an optically transparent material such as a glass or plastic material (e.g., acrylic, PMMA). In some embodiments, an interval i 04 may occur between the light output boundary 113 of the homogenization region 112 and the light extraction region 114. Due to total reflection (e.g., in the absence of scattering features and/or light guide taper), the spacing ι4 ensures that any light coupled into the light extraction region 114 is still confined in the light extraction region. Alternatively, the homogenization zone 112 and the extraction zone 114 may be in contact with each other. For example, the homogenization zone 〗 2 and the capture zone ^ 4 may all be part of a single light guide. Lighting combination 1 〇〇a may include wavelength conversion materials in one or more locations

1024-9835-PF 12 200912478 料,諸如一或多個磷及/或— 或夕種量子點。波長轉換材料 可吸收並轉換具有第一波長摄 、 , 仗°曰的主要光至具有不同於第一 波長5普之弟二波長譜的次要伞 曰幻人要先。在某些實施例中,波長轉 換材料可將具有較高能量(你丨 里(例如,較短波長)的光下轉換成 具有較低能量(例如,較長浊具、 食及長)的光。例如,波長轉換材 料可將藍及/或紫外光下韓榼士、^ E丄 兀1 Γ得換成較長波長的光,諸如紅、 、彔汽、或藍光’或其組合。白光可用多種光的組合被產 r 生’諸如藍光及黃光、或藍光、、綠光及紅光。使用波長轉 換材料形成白光的一種方法可包括將一些藍色的主要光下 轉換成黃光並且以次要的黃光及未被轉換之主要的藍光形 成白光。另一種形成白光的方法包括將一些主要的藍光下 轉換成紅光及綠光’例如,使用二或多個不同的波長轉換 材料(例如,一紅色發光及一綠色發光的波長轉換材料)。 另一種形成白光的方法包括將紫外光下轉換成紅光、綠光 及藍光,例如,使用二或多個不同的波長轉換材料(例如, ,、工色發光、一綠色發光、及一藍色發光的波長轉換材料)。 在某些實施例中,波長轉換材料係被設置在均質化區 域112内。選擇地或附加地,波長轉換材料可被設置在操 取區域114内。照明組合中出現波長轉換材料可使得來自 知、明組合的光之均質化及/或擷取(例如,經由光發射面1 2 〇) 的程序變得容易。 波長轉換材料可被放置在均質化區域11 2的部分或全 部中’使得來自發光裝置1 50的一些或全部的主要光可在 均質化區域112中被波長轉換。因為基於發光裝置15〇的 1024-9835-PF 13 200912478 排列在一給定方向上行 吸收且-欠要丼>々主要光152可被波長轉換材料 ::::: 的機率在任何其他方向上被再發1024-9835-PF 12 200912478 Materials, such as one or more phosphorus and / or - or quantum dots. The wavelength converting material can absorb and convert the primary light having the first wavelength, 仗°曰 to the secondary umbrella having a different wavelength than the first wavelength. In certain embodiments, the wavelength converting material can downconvert light having a higher energy (in your case (eg, shorter wavelength) to light having a lower energy (eg, longer turbidity, food, and length) For example, the wavelength converting material can be replaced with blue and/or ultraviolet light under the light of a longer wavelength, such as red, red, or blue light, or a combination thereof. The combination is produced by 'such as blue light and yellow light, or blue light, green light, and red light. One method of forming white light using a wavelength converting material may include down converting some of the blue main light into yellow light and secondary The yellow light and the unconverted primary blue light form white light. Another method of forming white light involves downconverting some of the dominant blue light into red and green light 'eg, using two or more different wavelength converting materials (eg, a red-emitting and a green-emitting wavelength converting material.) Another method of forming white light includes down-converting ultraviolet light into red, green, and blue light, for example, using two or more different wavelength converting materials. (eg, , work color illumination, a green illumination, and a blue illumination wavelength conversion material). In some embodiments, the wavelength conversion material is disposed within the homogenization region 112. Alternatively or additionally, The wavelength converting material can be disposed within the manipulation region 114. The presence of a wavelength converting material in the illumination combination can cause homogenization and/or extraction of light from the combined combination (eg, via the light emitting surface 1 2 〇) It becomes easy. The wavelength converting material can be placed in part or all of the homogenizing region 11 2 'so that some or all of the main light from the light emitting device 150 can be wavelength converted in the homogenizing region 112. 15〇 1024-9835-PF 13 200912478 Arranges upward absorption in a given direction and - 欠 丼 々 々 main light 152 can be retransmitted in any other direction by the probability of wavelength conversion material :::::

射波長轉換的過程.可# + M 耸法小^使侍先均質化變得容易。這也可容 被用以在光輸出邊界U3提供大體上均勾的光強产 之均質化區域的長度。波 先強度 ,, 皮長轉換材料在均質化區域11 2中 的配置可提供來自均質化 中 次要及主要光的結合。4112的:人要光之輸出,或是 在某些實施例中,波县M丄丨 V. # ^ 長轉換材料可被均勻地分配在整 個先均質化區域】丨2上。 在其他的霄施例中,波長轉換材 =? f化區域112的至少二位置具有變化的密 :皮長轉換材料的密度在光輸出邊界1! 3可為最 iT 波長轉換材料的密度在光輸出邊界113可為最 的距離且可㈣與光輸出邊界 (或者專效地,做為與光源的距離之函數)而 改,交(例如’減少或增加)。 7或多個不同的波長轉換材料可被包括在照明組合 料。贫某些實施例中’波長轉換材料包括第-波長轉換材 材料1發射具有第一主波長的次要光,及第二波長轉換 类士、可發射具有不同於第一主波長之第二主波長的次 、、光。弟—波長轉換材料可被設置在固態發光裝置及第二 波長轉換材料之間的光學路徑中。第-主波長可大於第_ 主波長。在其他實施例中,第-主波長可小於第 =長遽光器可被設置在第一及第二;皮長轉之間的 學路徑中,且被配置以反射由第二波長轉換材料發射的The process of wavelength conversion. ## M The small method of the tower makes it easy to homogenize the waiter. This can also be used to provide a length of the homogenized region of the substantially uniform light intensity at the light output boundary U3. The wave front intensity, the configuration of the skin length conversion material in the homogenization zone 112 can provide a combination of secondary and primary light from homogenization. 4112: The output of the person to light, or in some embodiments, the Bo County M丄丨 V. #^ long conversion material can be evenly distributed over the entire first homogenization area 丨2. In other embodiments, the wavelength conversion material = at least two positions of the f-region 112 have varying density: the density of the skin length conversion material at the light output boundary 1! 3 can be the density of the most iT wavelength conversion material in the light The output boundary 113 can be the most distance and can be changed (eg, reduced or increased) from the light output boundary (or exclusively as a function of distance from the light source). Seven or more different wavelength converting materials can be included in the lighting composition. In some embodiments, the wavelength conversion material includes a first wavelength conversion material 1 that emits secondary light having a first dominant wavelength, and a second wavelength conversion class that emits a second primary having a different wavelength than the first dominant wavelength. The wavelength of the second, light. The wavelength converting material can be disposed in an optical path between the solid state lighting device and the second wavelength converting material. The first dominant wavelength may be greater than the first dominant wavelength. In other embodiments, the first dominant wavelength may be less than the first long crowmer may be disposed in the learning path between the first and second; skin length turns, and configured to reflect emission by the second wavelength converting material of

1024-9835-PF 14 200912478 光JL且透射由第_波長轉換材料及固態發光裝置發射的 光。 、V擇地,或附加地.,波長轉換材料可被放置在光操取 區域114的。p分中或整個上。從而,在光操取區域114中 行進的主要光可被波長轉換且次要光可被產生並經由發射 面120被掏取。行進通過光操取區域ιΐ4的主要光也會被 光擷取區域114中的波長轉換材料散射,從而,某些主要 光可透過此種機構經由發射面12。被擷取。由照明組合輸 出的光可包括一些主要光及次要光。或者,由照明組合輸 出的光可包括次要光而沒有主要光。在某些實施例中’由 照明組合輸出的光係白光,其可由結合主要光(例如,藍光) 及次要光(例如,黃光)而形成。或者,由照明組合輸出的 光係白光,其包括次要光且未包括任何顯著數量的主要光 (例如,U V光)。 圖1B係根據一實施例之包括錐形擷取區域的照明 組合1_的剖面圖。錐形可由楔形光導提供。光導可包括 ―邊緣,被配置以接收由固態發光裝置發射的光。錐形操 取區域m可經由在光導中之全反射的受抑而使光掘取變 wn機構可被單獨使用’或是結合散射特徵(例 如,諸如棱鏡及/或透鏡的表面特徵、諸如具有與周圍光導 材料不同的折射率之區域的體積特徵),以提供經由光發射 面12 0的光擷取。 應瞭解照明組合可包括一式 J已枯或多個反射器。一背側反射1024-9835-PF 14 200912478 Light JL transmits light emitted by the first wavelength converting material and the solid state light emitting device. The V-switching material, or additionally, the wavelength converting material can be placed in the optical operating region 114. p is in the middle or the whole. Thus, the primary light traveling in the optical manipulation region 114 can be wavelength converted and secondary light can be generated and captured via the emission surface 120. The primary light traveling through the optical manipulation region ι 4 is also scattered by the wavelength converting material in the light extraction region 114 such that some of the primary light can pass through the emitting surface 12 through such a mechanism. Was taken. The light output by the illumination combination may include some primary light and secondary light. Alternatively, the light output by the illumination combination can include secondary light without primary light. In some embodiments, the light output by the illumination combination is white light, which may be formed by combining primary light (e.g., blue light) and secondary light (e.g., yellow light). Alternatively, the light output by the illumination combination is white light that includes secondary light and does not include any significant amount of primary light (e.g., U V light). Figure 1B is a cross-sectional view of an illumination assembly 1_ including a tapered extraction region, in accordance with an embodiment. The taper can be provided by a wedge shaped light guide. The light guide can include an "edge" configured to receive light emitted by the solid state lighting device. The tapered operating region m may be such that the light blasting mechanism can be used alone or via a combination of scattering features (eg, surface features such as prisms and/or lenses, such as having a suppression of total reflection in the light guide) A volume characteristic of a region of refractive index different from the surrounding photoconductive material) to provide light extraction through the light emitting surface 120. It should be understood that the lighting combination can include a type of J or a plurality of reflectors. Back side reflection

器可被設置在光摘取區域的背面(例如,相對於光發射面 1024-9835-PF 15 200912478 120)之下並可將被散射向下(例如,經由光擷取特徵 何光反射回來。被反射的光可經由光發射面12〇被擷取The device can be disposed on the back side of the light extraction region (eg, relative to the light emitting surface 1024-9835-PF 15 200912478 120) and can be scattered downward (eg, reflected back through the light extraction feature). The reflected light can be captured via the light emitting surface 12

在某些實施例中,照明組合可做為諸如㈣之顯4 的背光單元。此一實施例被說明於圖lc的剖面圖中。顯= 器100c的一或多層190可被照明組合照明。層19〇可包= 位於光發射面12G上的液晶光閥層(對應於顯示器的=晶 光閥像素)。從而,照明組合可做為液晶顯示層的背光组I 且來自照明組合的光102可照射至液晶顯示層。 、。 在LCD中通常被使用的其他層,諸如擴散層、增亮膜 (BEF)、及/或彩色濾光器,可被放置在照明組合的光發射 面上。除了顯示器背光外,照明組合可被用於照明,包括 但不限定於招牌背%、室外照明、室内照明、汽車照明、 及其他照明應用。對於一般的照明組合,照明組合可按原 狀被使用或者可具有被設置在組合的發射面上之其他層, 例如,一或多層可被放置在组合上以改變發光特性。例如, 有織紋的或圖案化的層或光學鏡片(例如,一聚合物及/或 玻璃組件)可被放在組合上。 在某些實施例中’液晶顯示系統可包括小數目的高光 輸出功率發光裝置’其提供大顯示面積的照明。此一液晶 顯不Is可包括具有照明區域的液晶顯示面板及與液晶顯示 面板結合的至少一固態發光裝置,使得從固態發光裝置發 射的光照明液晶顯示面板。顯示器可包括遠離固態發光裝 置(例如在光均質化區域丨12及/或光擷取區域114中)被設 置的波長轉換材料。在某些實施例中,照明區域的每個m2In some embodiments, the lighting combination can be used as a backlight unit such as (4). This embodiment is illustrated in the cross-sectional view of Figure lc. One or more of the layers 190 of the display 100c can be illuminated by the illumination combination. Layer 19 can be packaged = a liquid crystal light valve layer on the light emitting surface 12G (corresponding to the = photogate pixel of the display). Thus, the illumination combination can be used as the backlight group I of the liquid crystal display layer and the light 102 from the illumination combination can be illuminated to the liquid crystal display layer. ,. Other layers commonly used in LCDs, such as diffusion layers, brightness enhancing films (BEF), and/or color filters, can be placed on the light emitting surface of the illumination combination. In addition to display backlighting, lighting combinations can be used for illumination, including but not limited to signage percent, outdoor lighting, interior lighting, automotive lighting, and other lighting applications. For a typical illumination combination, the illumination combination can be used as is or can have other layers disposed on the combined emission surface, for example, one or more layers can be placed on the combination to change the illumination characteristics. For example, a textured or patterned layer or optical lens (e.g., a polymer and/or glass component) can be placed in combination. In some embodiments, a liquid crystal display system can include a small number of high light output power illumination devices that provide illumination for a large display area. The liquid crystal display may include a liquid crystal display panel having an illumination area and at least one solid state light emitting device combined with the liquid crystal display panel such that light emitted from the solid state light emitting device illuminates the liquid crystal display panel. The display can include a wavelength converting material disposed away from the solid state lighting device (e.g., in the light homogenizing region 丨12 and/or the light capturing region 114). In some embodiments, each m2 of the illumination area

1024-9835-PF 16 200912478 之固4發《置的數目係小於⑽,如下面進— 在某些實施例中,小數的古 少的时論。 j数目的回先輪出功率 被用以照明照明組合(例如,叫光組合)之:,置可 域。在某'些實施例中,照明組合之發射面的每單位::區 發光裝置的數目係小於或等於每“ 早=之 於每“ 、小於㈣於每“⑽、小=戈等 約50、小於或等於每2 A羊於母m2 m約25、小於或等於每m2約 如,照明組合之發射而M — 2 2)。例 么射面的每m之發光裝置的數目可八认 至100之間、介於25至 致目了;丨於5 —时 υ〇之間、或介於50至100夕„ 母早位面積之小數目的 之間。 貫現,其可被設計以經由 先凌置破 .2丄 人的日日粒表面面積(例如,大趴认 4_、大於約1〇_2、 大於約 .^ ^ „ 約30酬、大於約100_2)發舢甘 產生的光之顯著的數量 x 里如下面進一步討論。 母個照明組合之發光裝置的數 如,少於或等i於次專於12… 箄於㈧少甘 於次專於6、少於或等於4、少於式 專於2)。在某些實施例中,單_發 / 明組合。 ’,、、儿 整個照 某些照明組合的發# 計數,下面各, 、置〜數已在上面被提供。為 ..^ 被田作—個發光裝置:一發光曰# 二或多個結合的發氺θ 尤日日杻、 ]贫先日日粒、部分被封裝 全被封裝的發光曰# ,, 了忒的毛先日日粒、或完 J知尤日日粒。例如,一 綠色發光晶粒並結合纟Μ置了包括結合〜 Λ t , 1色么光晶粒的一紅色發光晶粒。 #壯罢,, 忐裝置係發射單一顏色的光之放 先裊置。例如,發光裝 巴^尤之發 直了為一紅色、綠色、藍色、黃色、The number of sets of 1024-9835-PF 16 200912478 is less than (10), as follows - in some embodiments, the age of the decimals is small. The number of j-first rounds of power is used to illuminate the lighting combination (for example, the combination of lights): In some embodiments, the number of units per unit::area of the illumination surface of the illumination combination is less than or equal to about 50 per "early", less than (four) per "(10), small = ge, etc." Less than or equal to every 2 A sheep at the mother m2 m about 25, less than or equal to about m2, such as the emission of the illumination combination and M-2 2). For example, the number of illuminators per m of the face can be recognized to 100. Between, between 25 and the eye; between 5 and υ〇, or between 50 and 100 „ between the small number of maternal areas. Throughout, it can be designed to break through the surface area of the day's granules (for example, 趴 趴 4_, greater than about 1 〇 2, greater than about . ^ ^ „ about 30 rewards, greater than about 100_2) The significant amount x of light produced by the hairpin is discussed further below. The number of light-emitting devices of the parent lighting combination is, for example, less than or equal to i. The second is dedicated to 12... 箄 (8) less willing to secondary to 6 , less than or equal to 4, less than the formula is specific to 2). In some embodiments, single _ hair / Ming combination. ',,, the whole according to the lighting of some lighting combinations #count, the following, ~ number has been provided above. For ..^ by Tian made - a light-emitting device: a luminous 曰 # two or more combined hair 氺 θ 日 杻, ] poor first day granules, partially packaged all packaged The illuminating 曰# , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Red illuminating grain. #壮止,, 忐装置 is a device that emits a single color of light. For example, the illuminating bag is especially straightforward. Green, blue, yellow,

1024-9S35-PF 17 200912478 及/或青綠色發光裝置。在1 ”他Λ把例中,發光妒 具有波長譜的光之多色發光 ^置係發射 紅-綠-藍色發光裝置。在其 哀置可為一 紅-綠-藍-黃色發光裝置。 、為一 ,/、貫施'例中,發光裝置可Λ 一紅•綠-藍-青綠色發弁梦罢 J ^ 巴1光放置。在其他實施例中, 可為一紅-綠-藍-軎终廿么^ 展置 藍月、·、彔-頁色發光裝置。照明組合 諸如上述的發光裝置類型每 』°括 ^ 口 田然,不同顏色的癸# 叙置也可被使用在實施例中。 x先 諸如在此說明者的照明袓入 ^ , n σ 了被用以執行光均質化及 或光擷取。圖2“系根據一實施例綠示用以同時將光均質 化及波長轉換的方法之流程圖2QQa。此方法可由—昭明电 合執行’其可在光均質化區域中包括—波長轉換㈣,諸 如圖1A - C中緣示的昭明έ日人 lL ,丄 丁幻…、明組合。此方法可由產生主要光( 作202a)開始。主要光可由 m At ax 尤了由一固恶發光裝置產生,諸如— 或多個發光二極體及/或雷射二極體。 主要光可被空間地均質化且一些或大體上全部的主要 光可被波長轉換為次要光(動作2Q4a)。波長轉換可被波長 轉換材料執行’諸如一或多個磷及/或一或多種類型的量子 點。因為波長轉換的過程可包括由波長轉換材料吸收主要 光及在任何發射方向具有相等的機率發射次要光(例如,下 轉換至較低的能量),空間均f化可使用未使用波長轉換材 料之k短的均貝化長度而被完成。此方法可繼續操取次要 光並且可選擇地擷取—些或全部未被轉換的主要光(動作 2〇6a)。光擷取可經由照明組合的光擷取區域的一光發射面1024-9S35-PF 17 200912478 and / or cyan lighting device. In the example of 1 Λ , , , , , , , 妒 妒 妒 妒 妒 妒 妒 妒 妒 妒 妒 妒 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射 发射In the case of one, /, and permeation, the illuminating device can be placed in a red, green, blue, and blue-green hair, and in other embodiments, it can be a red-green-blue - 軎 廿 ^ 展 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝 蓝The first illumination, such as the one described herein, is used to perform light homogenization and or optical extraction. Figure 2 is a green display for simultaneously homogenizing light and wavelengths according to an embodiment. Flowchart 2QQa of the conversion method. This method can be performed by - Zhaoming Electron, which can include - wavelength conversion (4) in the light homogenization region, as shown in Figs. 1A - C, which is shown in Fig. 1A - C. This method can begin by generating primary light (202a). The primary light can be produced by m At ax, in particular by a solid-state illuminating device, such as - or a plurality of light-emitting diodes and/or laser diodes. The primary light can be spatially homogenized and some or substantially all of the primary light can be wavelength converted to secondary light (action 2Q4a). Wavelength conversion can be performed by a wavelength converting material such as one or more phosphors and/or one or more types of quantum dots. Because the process of wavelength conversion can include the absorption of primary light by the wavelength converting material and the equal emission of secondary light in any direction of emission (eg, down conversion to lower energy), the space can be used to use unused wavelength converting materials. The k-short uniformization length is completed. This method can continue to take secondary light and optionally capture some or all of the primary light that has not been converted (action 2〇6a). Light-harvesting a light-emitting surface of a light extraction region that can be combined via illumination

1024-9835-PF 18 200912478 發生。光發射面可為光導的一表面,諸如平板型光導的頂 面,如前所述。在某些實施例中,波長轉換僅發生於均質 化區域中而未發生於光操取區域中。 圖2B係根據一實施例系會示用以同時將光波長轉換及 擷取的方法之流程圖200b。此方法可由一照明組合執行, 其可在操取區域中包括—波長轉換材料,諸如圖U — C中緣 示的照明組合。此方法可由產生主要光(動作2〇叫開始: f 主要光可由-固態發光裝置產生,諸如一或多個發光二極 體及/或雷射二極體。然後’主要光可被空間地均質化(動 作 204b)。 :方法可繼續同時地將至少一些主要光波長轉換為次 要光並且#|取次要光及可搜埋n & & Η及Ί選擇地#|取任何未被轉換的主要 光::些或全部。波長轉換可被波長轉換材料執行,諸如 二或夕:碌及/或一或多種類型的量子點。在某些實施例 例如,粒子及/或量烟可吸收照射 丄 、—要先及/或散射照射於其上的一些光(例 σ,主要或次要光)。波長轉換 料吸收主要光及在任何發方 ^ ^ ;皮長轉換材 光(例如,下轉換至較低的能量)=相相機率發射次要 域内的波長轉換材料上的射於光擷取區 取。因此,、法县趙她^ 要先可被放射,從而被擷 法可繼相取一!二?行波長轉換及光散射。此方 未被_…的一1024-9835-PF 18 200912478 Occurred. The light emitting surface can be a surface of the light guide, such as the top surface of a flat light guide, as previously described. In some embodiments, wavelength conversion occurs only in the homogenization region and not in the optical manipulation region. 2B is a flow chart 200b showing a method for simultaneously converting and capturing light wavelengths, in accordance with an embodiment. This method can be performed by a combination of illuminations that can include - a wavelength converting material in the region of operation, such as the illumination combination shown in Figures U-C. This method can generate primary light (action 2 squeak start: f primary light can be generated by - solid state light emitting device, such as one or more light emitting diodes and/or laser diodes. Then 'the main light can be spatially homogeneous (Action 204b): The method can continue to simultaneously convert at least some of the main light wavelengths into secondary light and #| take the secondary light and the buryable n && amp and Ί select the ground #| take any unconverted Primary light: some or all. Wavelength conversion can be performed by wavelength converting materials, such as two or one or more types of quantum dots. In some embodiments, for example, particles and/or smoke can be absorbed. Irradiation 丄,—Stop and/or scatter some of the light (eg, σ, primary or secondary light) that is incident on it. The wavelength conversion material absorbs the primary light and converts the light at any of the hairs (for example, Down conversion to lower energy) = phase camera rate emission on the wavelength conversion material in the secondary domain is taken from the light extraction area. Therefore, the law county Zhao she ^ must be irradiated first, so that it can be followed by Phase one! Two wavelength conversion and light scattering. This side is not _ …one of

1024-9835-PF 19 200912478 為光導的-表面,諸如平板型光導的頂面。在某些實施例 令,波長轉換僅發生於光擷取區域中而未發生於均質化區 域中。: 、°° 圖3A係根據一實施例之對於至少二位置具有波長轉 換材料的不同密度之照明組合3〇〇的剖面圖。經由以在不 同位置不同的密度排列波長轉換材料,在不同的位置被波 長轉換為次要光之主要光的百分比可為不肖。在不同位置 、皮波長轉換之主要光的百分比的空間變化可被用以在光發 射面120的不同位置輸出具有要求強度的光。例如,波長 轉換材料密度在主要光強度較低的位置可較高(與具有較 高的主要光強度的位置相比)。此一結構可被用以沿著光擷 取區域114補彳貝主要光強度的空間變化,使得沿著光發射 面120在不同位置被產生及輸出的次要光的數量大體上均 勻。再者,波長轉換材料可做為光散射特徵,其可經由發 :面120將主要光散射出去’因此,波長轉換材料密度的 空間變化也可使得從光發射面120被輸出的主要光在整個 表面上大體上均勻。 光毛射面12 〇之每個單位面積的波長轉換材料的密度 在不同的位置可大幅地變化(例如,至少3 0 %的變化、至少 60%的變化、至少刪的變化)。例如,光發射面之每個單 位面積的波長轉換材料的密度可變化如同與固態發光裝置 1 50的距離之函數。波長轉換材料的密度可在光操取區域 、户、。同位置變化。選擇地,或附加地,波長轉換材料 的4度可在光均質化區域112的不同位置變化。例如,圖1024-9835-PF 19 200912478 is the surface of the light guide, such as the top surface of a flat light guide. In some embodiments, wavelength conversion occurs only in the light extraction region and not in the homogenization region. Fig. 3A is a cross-sectional view of a lighting combination 3〇〇 having different densities of wavelength conversion materials for at least two locations, according to an embodiment. By arranging the wavelength converting material at different densities at different positions, the percentage of the main light that is converted to the secondary light at different positions can be unacceptable. Spatial variations in the percentage of primary light converted at different locations and skin wavelengths can be used to output light of the desired intensity at different locations on the light emitting surface 120. For example, the wavelength conversion material density can be higher at locations where the primary light intensity is lower (compared to locations with higher primary light intensities). This configuration can be used to compensate for the spatial variation of the primary light intensity of the mussels along the light extraction region 114 such that the amount of secondary light generated and output at different locations along the light emitting surface 120 is substantially uniform. Furthermore, the wavelength converting material can be used as a light scattering feature that can scatter the primary light out through the face 120. Thus, spatial variations in the density of the wavelength converting material can also cause the primary light to be output from the light emitting surface 120 throughout The surface is substantially uniform. The density of the wavelength converting material per unit area of the light-emitting surface 12 can vary greatly at different locations (e.g., at least a 30% change, at least a 60% change, at least a cut change). For example, the density of the wavelength converting material per unit area of the light emitting surface can be varied as a function of the distance from the solid state lighting device 150. The density of the wavelength converting material can be in the optical operation area, household, and. Same position change. Alternatively, or in addition, 4 degrees of the wavelength converting material may vary at different locations of the light homogenizing region 112. For example, the figure

1024-9835-PF 20 200912478 3Α的位置172及174表示光擷取 ,^ ^ Λ 114的二相對末端, 在該處之母單位發射面積的波長轉換材料密度可相里。 在某些實施例中,波長轉換材料的密度可進一步遠離 諸如固態發光裝置150的固態光源(例如,單調地)而大幅 地增加。在某些實施射,波長轉換材料的密度係使得在 進-步遠離固態發光…5〇的位置,密度係大幅地大於 ί 較接近固態發光裝置150的位置者(例如,比約3⑽大、比 約60%大、比約1〇〇%大)。 圖3Β係根據一實施例之波長轉換材料的密度對與光 源的距離之圖表。曲線1()1將波長轉換材料密度(例如,每 個早位體積、面積、或長度)表示為與光源的距離之函數, 在繪示的圖表中,波長轉換材料密度隨著與固態發光裝置 1 5 0的距離而增加。 對於繪示的例子,波長轉換材料密度的變化可依據沿 著光操取區$ 114的距離被表示。例如,曲線j i的最左 I,邊的部分可與在光擷取區域114的位置172之密度相結合 且曲線1 01的最右邊的部分可與在光擷取區域丨丨4的位置 1 74之密度相結合。在某些實施例中,波長轉換材料密度 在以來自固態發光裝置150的光(例如,主要光)之較高強 度照射的位置比在以來自固態發光裝置〗5〇的光(例如,主 要光)之較低強度照射的位置低。對於具有複數固態發光裝 置的明組合,波長轉換材料在以來自複數固態發光裝置 的光(例如,主要光)之較高強度照射的位置比在以來自複 數固悲發光裝置的光(例如,主要光)之較低強度照射的位1024-9835-PF 20 200912478 The position 172 and 174 of the 3Α indicate the two opposite ends of the light extraction, ^^ Λ 114, where the wavelength of the wavelength conversion material of the mother unit emission area can be in phase. In some embodiments, the density of the wavelength converting material can be substantially increased further away from solid state light sources such as solid state lighting device 150 (e.g., monotonically). In some implementations, the density of the wavelength converting material is such that the density is substantially greater than the position closer to the solid state lighting device 150 (e.g., greater than about 3 (10), at a position that is further away from the solid state illumination ... 5 进. About 60% larger, about 1% larger). Figure 3 is a graph of the density of a wavelength converting material versus the distance from a light source, in accordance with an embodiment. Curve 1()1 represents the wavelength conversion material density (eg, each early volume, area, or length) as a function of distance from the source, in the illustrated graph, the wavelength conversion material density is associated with the solid state light emitting device Increase by 1 50 distance. For the illustrated example, the change in density of the wavelength converting material can be expressed in terms of the distance along the optical operating region of $114. For example, the leftmost I of the curve ji, the portion of the edge may be combined with the density of the position 172 at the light extraction region 114 and the rightmost portion of the curve 101 may be at the position 1 74 of the light extraction region 丨丨4. The density is combined. In some embodiments, the wavelength conversion material density is at a location that is illuminated at a higher intensity from light from the solid state light emitting device 150 (eg, primary light) than at a light from a solid state light emitting device (eg, primary light) The position of the lower intensity illumination is low. For a bright combination having a plurality of solid state light emitting devices, the wavelength converting material is illuminated at a higher intensity with light from a plurality of solid state light emitting devices (eg, primary light) than at a light from a complex solid light emitting device (eg, primarily Light) the lower intensity of the illuminated position

1024-9835-PF 21 200912478 置可具有較低的密度。 在某些實施例中,波長轉換材料的密度之空間變化可 被用以使得穿過光擷取區域114的光發射面12〇之空間均 勻的光發射變得容易。由波長轉換材料發射及/或散射的次 要光及/或主要光的強度可穿過光擷取區域ιΐ4變化小於 約順例如,小於約15%、小於約·小於約5%)。例如、, 在穿過光操取區域之光強度的變化小於約1〇%的情況中, 在光擷取區域114的第一位置之第—密度及在光摘取區域 114的第二位置之第二密度可為使得來自第一位置的波長 轉換光強度(例如,次要光強度)係來自第二位置的波長轉 換光強度(例如,次要光強度)的至少約9〇%且不大於來自 第二位置的波長轉換光強度的約11〇%。在某些實施例中, 密度會根據在沿著光擷取區域114的不同位置之主要光強 度反向地變化。例如,第二強度可大於或等於約2倍(例 如,大於或等於約3倍、大於或等於約4倍)的第一強度, 其可補償主要光大約50%的降低,以在沿著光擷取區域i Μ 之第一及第二位置產生大體上相等強度的次要光。如同應 知道的,第一及第二位置可為光擷取區域丨14的相對端(例 如,位置1 72及1 74),不過,實施例並未限定於此點。 圖4係根據一實施例之對於至少二位置具有由波長轉 換材料之不同的微觀密度造成的波長轉換材料(例如,在發 射面120上的ixicm2的平均面積上之每單位面積)的不同 密度之照明組合400的剖面圖。第一位置172可具有波長 轉換材料11 7的第一密度且第二位置丨74可具有波長轉換1024-9835-PF 21 200912478 can have a lower density. In some embodiments, the spatial variation in density of the wavelength converting material can be used to facilitate uniform spatial light emission through the light emitting face 12 of the light extraction region 114. The intensity of the secondary light and/or primary light emitted and/or scattered by the wavelength converting material may vary through the light extraction region ι 4 by less than about 15%, less than about 5%, and less than about 5%. For example, in the case where the change in light intensity through the light manipulation region is less than about 1%, the first density at the first position of the light extraction region 114 and the second position at the light extraction region 114 The second density may be such that the wavelength converted light intensity (eg, secondary light intensity) from the first location is at least about 9% and not greater than the wavelength converted light intensity (eg, secondary light intensity) from the second location. The intensity of the wavelength converted light from the second location is about 11%. In some embodiments, the density will vary inversely depending on the dominant light intensity at different locations along the light extraction region 114. For example, the second intensity can be greater than or equal to about 2 times (eg, greater than or equal to about 3 times, greater than or equal to about 4 times) of the first intensity, which can compensate for a reduction of about 50% of the primary light to The first and second locations of the capture region i 产生 produce secondary light of substantially equal intensity. As should be appreciated, the first and second positions may be opposite ends of the light extraction region 丨 14 (e.g., positions 1 72 and 1 74), although the embodiments are not limited thereto. 4 is a graph showing different densities of wavelength converting materials (eg, per unit area over the average area of ixicm2 on the emitting surface 120) caused by different microscopic densities of wavelength converting materials for at least two locations, in accordance with an embodiment. A cross-sectional view of the lighting assembly 400. The first location 172 can have a first density of the wavelength converting material 117 and the second location 丨 74 can have a wavelength conversion

1024-9835-PF 22 200912478 材料m的第二密度。i少部分由於在第—及第二位置的 波長轉換材料之不同的微觀密度,第二密度可大大地不同 於第-密度。如在此說明’波長轉換材料可包括一或多個 續及/或量子點’且微觀密度可為在遠小於被用以計算密度 的平均長度(例如,遠小於ixlcm2的平均面積)之一長度上 的每單位體積的磷分子及/或量子點的數目。如圖4所:, 波長轉換材料117可被散佈於整個光擷取區域ιΐ4或部分 的光擷取區域114。在某些實施例中’波長轉換材料⑴ 的微觀密度可沿著光擷取區域114的長度變化(例如,單調 地增加、單調地減少)。 圖5係根據-實施例之對於至少二位置具有由波長轉 換材料之不同的厚度造成的波長轉換材料(例如,在發射面 120上的1XW的平均面積上之每單位面積)的不同密度之 照明組合的剖面圖。波長轉換材料區士或"6可包括一波長 轉換材料層’其可在—主體材料(例如,聚合物、玻璃 包括波長轉換材料(例如,磷及/或量子點粒子)。至少部分 由於在第-位置Π2及第二位置m之波長轉換材料區域 116的不同厚度,在第H 172的光發射s 12()之每個 單位面積的波長轉換材料的密度可大幅地不同於在第二位 置的密度。在某些實施例中,波長轉換材料區幻Μ(例如, 層)可為部分的光擷取區域114。當光操取區域ιΐ4包括光 導11〇時,波長轉換材料區域116(例如,層)可被設置在 整個光導11G上(例如’在光導110的光發射Φ 121上)、 被設置在光導110之下(例如,在相對於光導光發射1024-9835-PF 22 200912478 The second density of material m. The second density may be substantially different from the first density due to the different microscopic densities of the wavelength converting materials at the first and second locations. As described herein, 'the wavelength converting material can include one or more continuation and/or quantum dots' and the microdensity can be one length that is much less than the average length used to calculate the density (eg, an area much smaller than ixlcm2) The number of phosphorus molecules and/or quantum dots per unit volume. As shown in Fig. 4, the wavelength converting material 117 may be interspersed throughout the light extraction region ι 4 or a portion of the light extraction region 114. In some embodiments, the microdensity of the wavelength converting material (1) can vary along the length of the light extraction region 114 (e.g., monotonically increase, monotonically decrease). 5 is an illumination of different densities of wavelength converting materials (eg, per unit area over an average area of 1 XW on the emitting surface 120) caused by different thicknesses of wavelength converting materials for at least two locations, according to an embodiment. A combined profile view. The wavelength converting material zone or "6 may comprise a layer of wavelength converting material 'which may be in the host material (eg, polymer, glass including wavelength converting materials (eg, phosphorus and/or quantum dot particles). At least in part due to The different thicknesses of the wavelength conversion material regions 116 of the first position Π2 and the second position m, the density of the wavelength conversion material per unit area of the light emission s 12() of the Hth 172 may be substantially different from the second position Density. In some embodiments, the wavelength conversion material zone illusion (eg, layer) can be a portion of the light extraction region 114. When the light manipulation region ι 4 includes a light guide 11 ,, the wavelength conversion material region 116 (eg, , the layer) can be disposed over the entire light guide 11G (eg, 'on the light emission Φ 121 of the light guide 110), disposed below the light guide 110 (eg, in relation to light emission relative to the light guide)

1024-9835-PF 23 200912478 面i21之背面上)、及/或被埋入於光導110中。 變化波長轉換材料(例如,在發射面120上的lxlcm2 的平均面積上之每單位面積)的密度之其他方法是可能 的例如,在某些實施例中,至少部分由於複數波長轉換 材料區域之不同的空間排列及/或尺寸,波長轉換材料可為 部t之複數波長轉換材料區域(例如’各區域具有小於約 50 U米、小於約1〇〇微米、或小於約5⑽微米的尺寸)且 波長轉換材料的密度(例如,在發射© 12。上的lxlcm、 平均:積上之每單位面積)可從一位置至另一位置變化。在 某二貝施例中,波長轉換材料區域包括點、正方形、矩形、 三角形、六角形、條紋形、及/或任何其他形狀,其可包括 波長轉換材料(例如,散佈在主體材料中及/或上)。 、圖6係根據一實施例之對於至少二位置具有由複數個 波長轉換材料區域116之不同的空間排列造成的波長轉換 =料(例如,在發射面12〇上的lxlcm2的平均面積上之每 單位面積)的不同密度之照明組纟6〇〇的上視圖。波 材料區域116可在主體材料取入仏 、 體材利'(例如,聚合物、玻璃)中包括 波長轉換材料(例如,磷及/或量子點粒子)。 在被照亮的照明組合600中,波長轉換材料區域ιΐ6 可為點、正方形、條紋形、及/或任何其他適合的形狀。複 數波長轉換材料區幻16可具有大體上相似的形狀。波長 轉換材料區域116可被空間地排列,以具有跟沿著光擷: ,域114的位置之函數—樣的不同的最鄰近距離。在某些 貫施例中,波長轉換材料區幻16可被排列成周期或非周1024-9835-PF 23 200912478 On the back side of face i21), and/or buried in light guide 110. Other methods of varying the density of the wavelength converting material (e.g., per unit area over the average area of 1 x 1 cm2 on the emitting surface 120) are possible, for example, in some embodiments, at least in part due to differences in the area of the complex wavelength converting material. Spatial arrangement and/or size, the wavelength converting material can be a plurality of wavelength converting material regions of portion t (eg, 'each region having a size less than about 50 U meters, less than about 1 〇〇 micron, or less than about 5 (10) microns) and wavelength The density of the conversion material (eg, lxlcm on the emission © 12, average: per unit area on the product) can vary from one location to another. In a second embodiment, the wavelength converting material region comprises dots, squares, rectangles, triangles, hexagons, stripes, and/or any other shape, which may include a wavelength converting material (eg, interspersed in the host material and/or Or on). Figure 6 is a diagram showing wavelength conversion of a different spatial arrangement of a plurality of wavelength converting material regions 116 for at least two locations according to an embodiment (e.g., an average area of lxlcm2 on the emitting surface 12A). The upper view of the lighting group 纟6〇〇 of different density per unit area). The wave material region 116 may include a wavelength converting material (e.g., phosphorus and/or quantum dot particles) in the host material enthalpy, body material (e.g., polymer, glass). In the illuminated illumination assembly 600, the wavelength converting material region ι6 can be point, square, stripe, and/or any other suitable shape. The complex wavelength converting material region 16 can have a substantially similar shape. The wavelength converting material regions 116 can be spatially arranged to have different nearest neighbor distances as a function of the position of the aperture:, the domain 114. In some embodiments, the wavelength conversion material region 16 can be arranged in a periodic or non-circumferential manner.

1024-9835-PF 24 200912478 期圖案。此種圖案的例子在下面被進一步詳細說明。 圖7係根據—實施例之對於至少二位置具有由複數個 皮長轉換材料區域1 1 β之不同的大小造成的波長轉換材料 的不同密:度之照明組合700的上視圖。如圖示’波長轉換 材料區域1 1 6的尺寸可根據沿著光擷取區域丨丨4的位置(例 如,做為與發光裝置15〇的距離的函數)變化,且波長轉換 材料區域11 6的(中心的)空間排列可對於所有的位置均相 同。應知由於一或多個上述理由及/或其他理由,波長轉換 材料(例如,在發射面120上的lxlcra2的平均面積上之每 單位面積)的密度可在不同的位置上不同。 圖8A-B分別係根據一實施例之包括被設置在光導!】〇 的光發射面121上的波長轉換材料之照明組合8〇〇的剖面 圖及上視圖。光導110可被配置以接收由固態發光裝置15〇 發射的光1521導110可包括一邊、緣,其被配置以接收 由固態發光裝置150發射的光152。光導11〇可包括一長 度,被接收的光沿著其傳播.如前所述,來自發光裝置i5X〇 的光可在光均質化區域丨〗2中被空間地均質化。被均質化 的光可被輕合至光擷取區域1 1 4中。1024-9835-PF 24 200912478 period pattern. Examples of such patterns are described in further detail below. Figure 7 is a top plan view of a different density: degree illumination combination 700 of wavelength converting material resulting from at least two locations having different sizes of a plurality of skin length transition material regions 1 1 β, according to an embodiment. As shown, the size of the wavelength converting material region 161 may vary depending on the position along the light capturing region 丨丨4 (eg, as a function of the distance from the light emitting device 15A), and the wavelength converting material region 116 The (central) spatial arrangement can be the same for all locations. It will be appreciated that the density of the wavelength converting material (e.g., per unit area over the average area of lxlcra2 on the emitting surface 120) may differ at different locations for one or more of the above reasons and/or other reasons. 8A-B are each included in a light guide according to an embodiment! 】 The cross-sectional view and top view of the illumination combination of the wavelength conversion material on the light-emitting surface 121 of 〇. The light guide 110 can be configured to receive light 1521 emitted by the solid state light emitting device 15A. The lead 110 can include a side edge that is configured to receive light 152 emitted by the solid state light emitting device 150. The light guide 11 can include a length along which the received light propagates. As previously described, light from the illumination device i5X can be spatially homogenized in the light homogenization region 22. The homogenized light can be lightly coupled to the light extraction region 1 1 4 .

光導11 0可包括一光發射面1 21。在某些實施例中 波長轉換材料區域u 6可被設置在光導丨丨〇的光發射面^ 上應知因為波長轉換材料區域丨丨6可發射次要光(例如 波長轉換光)且可能散射照射在波長轉換材料特徵^ 的主要光,波長轉換材料區域U6及光導u〇可被視為用 明組合800的光擷取區们14的一部分。因此,照明組音 1024-9835-PF 25 200912478 800的光發射面可包括波長轉換材料特徵116的暴露面及 光導11 0的暴露面。 由於光導110 .的表面之全反射,被耦合至擷取區域114 中的光可部分或完.全地行進並維持侷限在光導1〗0中。選 擇地,或附加地,在光導11〇内的光侷限可為由被設置接 觸至少-部分的光f 110表面之反射區域所導致。例如, 反射層126可被設置在相對於光輪入邊緣122之光導ιι〇 的邊緣上。一反射器124可被設置在光導11〇的背面之下。 反射層可直接接觸光導或可經由一間隔與光導分開。反射 層可由任何合適的材料形成,包括但非限定於—反射材料 (例如,銘、銀、及/或其組合),且可為鏡面及/或擴散反 由於全反射的受抑’其可能係由於由光散射特徵 例如,凸透鏡、凹透鏡、凸面稜鏡、凹面稜鏡、折射 率變化)導致的光散射、沿著光導(未顯示)長度之光導厚声 的錐形化、由於與區域116中的波長轉換材料之交互作用 導致的主要或次要光的散射、及/或經由在區域116中的波 長轉換材料之波長轉換光(例如’次要光)的發射,在擷取 …14内行進的光可被發射。在某些實施例巾, 的散射可僅由於與波長轉換材料的交互作用且不需存在光 = 在某些實施例t,散射㈣ιΐ8可出現在 先v的#面及/或發射面ι21。 二某些實施例巾’波長轉換材料可沿著光導的長度1 又射面的每單位面積之變化的密度。在某些實施例中,The light guide 110 may include a light emitting surface 121. In some embodiments, the wavelength converting material region u 6 can be disposed on the light emitting surface of the light guiding device. It is known that the wavelength converting material region 丨丨6 can emit secondary light (for example, wavelength converted light) and may scatter. The main light that illuminates the wavelength conversion material feature ^, the wavelength conversion material region U6 and the light guide u can be considered as part of the light extraction regions 14 of the combination 800. Thus, the light emitting surface of the illumination group tone 1024-9835-PF 25 200912478 800 can include the exposed face of the wavelength conversion material feature 116 and the exposed face of the light guide 110. Due to the total reflection of the surface of the light guide 110, the light coupled into the capture region 114 may partially or completely travel throughout and remain confined to the light guide 1&0. Alternatively, or in addition, the optical confinement within the light guide 11 can be caused by a reflective area of the surface of the light f 110 that is placed in contact with at least a portion. For example, the reflective layer 126 can be disposed on the edge of the light guide ι relative to the light entry edge 122. A reflector 124 can be disposed below the back of the light guide 11A. The reflective layer can be in direct contact with the light guide or can be separated from the light guide via a spacer. The reflective layer can be formed of any suitable material, including but not limited to, a reflective material (eg, inscriptions, silver, and/or combinations thereof), and can be specular and/or diffuse, due to the suppression of total reflection, which may be Light scattering due to light scattering features such as convex, concave, convex, concave, refractive index changes, thickening of the light guide along the length of the light guide (not shown), due to the area 116 The interaction of the wavelength conversion material results in scattering of primary or secondary light, and/or through the emission of wavelength converted light (eg, 'secondary light') of the wavelength converting material in region 116, traveling within . The light can be emitted. In some embodiments, the scattering may be due only to interaction with the wavelength converting material and no need to be present. In some embodiments t, the scattering (tetra) ι ΐ 8 may appear on the #面面面面面面面面面面#. 2. In some embodiments, the wavelength conversion material can vary along the length of the light guide 1 and the density per unit area of the surface. In some embodiments,

1024-9835-PF 26 200912478 波長轉換材料具有發射面的每單位面積之密度,其沿著光 導的長度大幅地增加。從而,密度通常可沿著光導的長度 增加’不過,關於丄甬奮 、k㊉牦加的岔度之傾向,可能存在有較 4、的變化。 , 波長轉換材料特徵116可具有任何要求的形狀(例 如’條紋形、點形、正方形)且可對應沿著光導110的長度 之變化的最鄰近距離被排列。在圖8A—B所示之被照亮的照 明組合中,波長轉換區域i J 6採用條紋的形式且可被間隔 以彼此更加罪近並且遠離發光裝置丨50。波長轉換材料區 域116可包括一層,其至少部分地或完全地被設置在光導 11 0的發射面上。波長轉換材料區域丨i 6可被部分地(或完 全地)設置以接觸光導110的光發射面121。選擇地,或附 加地,波長轉換材料可被設置在光導内及/或光導之下。 發射面之每單位面積的波長轉換材料的密度可對應沿 著光導的長度之距離(例如,有關於與發光裝置的距離)單 調地變化。如前所述,至少部分由於波長轉換材料之變化 的逸度複數波長轉換材料區域11 6之變化的厚度、變化 的空間排列及/或尺寸,發射面之每單位面積的波長轉換材 料的密度會變化。在圖8Α_β之被照明的組合中,由於在波 長轉換材料區域11 6間之變化的距離(例如,在包括波長轉 換材料的條紋間的距離),密度沿著光導的長度變化。 照明組合800可包括一或多個波長濾光器。波長濾光 盗可為反射式濾光器,其可反射在某波長範圍中的光並且 透射具有該範圍外之波長的光,及/或波長濾光器可為吸收1024-9835-PF 26 200912478 The wavelength converting material has a density per unit area of the emitting surface which increases substantially along the length of the light guide. Thus, the density generally increases along the length of the light guide. However, there may be a change in the tendency of the intensity of hyper and k. The wavelength converting material features 116 can have any desired shape (e.g., 'stripe, dot, square) and can be aligned corresponding to the nearest neighboring distance along the length of the light guide 110. In the illuminated illumination combination shown in Figures 8A-B, the wavelength conversion regions i J 6 are in the form of stripes and may be spaced closer to each other and away from the illumination device 50. The wavelength converting material region 116 can include a layer that is disposed at least partially or completely on the emitting surface of the light guide 110. The wavelength converting material region 丨i 6 may be partially (or completely) disposed to contact the light emitting face 121 of the light guide 110. Alternatively, or in addition, the wavelength converting material can be disposed within and/or under the light guide. The density of the wavelength converting material per unit area of the emitting surface may vary monotonically corresponding to the distance along the length of the light guide (e.g., with respect to the distance from the light emitting device). As previously mentioned, at least in part due to the varying thickness of the wavelength converting material, the thickness of the complex wavelength converting material region 116, the spatial arrangement of the variations, and/or the size, the density of the wavelength converting material per unit area of the emitting surface Variety. In the illuminated combination of Fig. 8Α_β, the density varies along the length of the light guide due to the varying distance between the wavelength converting material regions 116 (e.g., the distance between the stripes including the wavelength converting material). Lighting assembly 800 can include one or more wavelength filters. Wavelength filter can be a reflective filter that reflects light in a certain wavelength range and transmits light having a wavelength outside the range, and/or the wavelength filter can absorb

】024-9835-PF 27 200912478 光器’其可吸收在某波長範圍中的光並且透射具有該 範圍外之波長的光。波長濾光器可包括短通、長通濾光器、 或是其組合。 在某些貫施例中,波長濾光器可被設置在固態發光裝 置及波長轉換材料之間的光學路徑中。此濾光器可防止任 何波長轉換光進入發光裝置或是經由光輸入邊緣的暴露區 域漏出。例如’照明组合8。◦可包括一波長濾光器129, 其被排列在光^ 110的輸入邊缘122上。波長滤光器129 可被配置以使得由發光裝置150發射的主要光(例如,藍及 /或uv光)可被透射,並且反射由在區域116中的波長轉換 材料發射的次要光(例如,被下轉換的光)。從而,波長濾 光器129可防止次要光經由邊緣122從光導11〇漏出。 在某些實施例中,一波長濾光器可被設置在波長轉換 材料及照明組合的輸出之前的光學路徑中。此濾光器可防 止任何主要光從照明組合漏出並且在主要光為uv光時特 別有用。照明組合80"包括此一波長濾光器128,其可 被設置在光擷取區域11 4的發射面上。 在某些實施例中,由照明組合8〇〇發射的光i 〇2可包 括次要及主要光的混合。在其他實施例中,由照明組合 發射的光1 02大體上可僅包括次要光。例如,若沒有波長 濾光态1 2 8,由照明組合發射的光丨〇 2可包括主要及次要 光的組合(例如,由不同波長的組合形成的白光,諸如藍光 及黃光、或是藍光 '綠光及紅光)。 圖9係根據一實施例之包括被設置在光導丨丨〇的背面024-9835-PF 27 200912478 An optical device that absorbs light in a certain wavelength range and transmits light having a wavelength outside the range. The wavelength filter can include a short pass, a long pass filter, or a combination thereof. In some embodiments, the wavelength filter can be disposed in an optical path between the solid state light emitting device and the wavelength converting material. This filter prevents any wavelength converted light from entering the illuminator or leaking through exposed areas of the light input edge. For example 'Lighting combination 8. The ◦ may include a wavelength filter 129 that is arranged on the input edge 122 of the light 110. The wavelength filter 129 can be configured such that primary light (eg, blue and/or uv light) emitted by the illumination device 150 can be transmitted and reflect secondary light emitted by the wavelength converting material in the region 116 (eg, , the light that was down converted). Thus, the wavelength filter 129 prevents secondary light from leaking out of the light guide 11 via the edge 122. In some embodiments, a wavelength filter can be placed in the optical path prior to the output of the wavelength converting material and illumination combination. This filter prevents any major light from leaking out of the lighting combination and is especially useful when the primary light is uv light. The illumination assembly 80" includes such a wavelength filter 128 that can be disposed on the emitting surface of the light extraction region 114. In some embodiments, the light i 〇 2 emitted by the illumination combination 8 可 can include a mixture of secondary and primary light. In other embodiments, the light 102 emitted by the illumination combination may substantially only include secondary light. For example, if there is no wavelength filter state 128, the pupil 2 emitted by the illumination combination can include a combination of primary and secondary light (eg, white light formed by a combination of different wavelengths, such as blue and yellow light, or Blu-ray 'green light and red light'. Figure 9 is a view including a back surface of a light guide 根据 according to an embodiment

1024-9835-PF 28 200912478 下的波長轉換材料之照明組合9〇〇的剖面圖。在被照亮的 照明組合_ t ’可沒有光#|取特徵。光導iiq可包括相 對於光導no的光發射面121之—“,且波長轉換材料 區域11 6可部分地(或完全地)被設置在背面之下。波長轉 換材料區$ 116可部分地(或完全地)被設置以接觸:導 11 的$面。選擇地,或附加地,波長轉換材料可被設置 在光導110内。波長轉換材料區域116可被設置以接 侧反射器124,其有助於擷取由波長轉換材料產生的任何 熱。背側反射器124可被熱耦合至一散熱器以提供散熱。 圖1 〇係根據一實施例之包括被設置在光導丨丨〇的光發 射面121上之波長轉換材料的照明組合1〇〇〇的剖面圖。波 長濾光器132可被設置在光導11〇的光發射面121與波長 轉換材料區域116之間皮長濾光器132 T被配置以透射 要光並且反射由波長轉換材料發射的次要光。從而,波 長濾光器1 32可反射由在區域i丨6中的波長轉換材料發射 的次要光,以防止次要光進入光導1 1 〇 Ο 圖UA係根據一實施例之包括複數個波長轉換材料區 域11 6的照明組合i丨〇〇a的上視圖。波長轉換材料區域丄Η 可對應在沿著光導i i ο的不同位置之變化的最鄰近距離被 排列,從而提供沿著光擷取區域114之波長轉換材料的變 的也度。波長轉換材料區域1 1 6可具有任何形狀,例如, 區域可包括點,如圖1 1 Α續示。附加地或選擇地,波長 轉換材料區域!丨6的厚度及/或尺寸可在光擷取區域11 4的 不同位置中變化。例如,區域丨1 6較接近發光裝置15 〇可1024-9835-PF 28 200912478 Cross-sectional view of the illumination combination of the wavelength conversion material 9〇〇. In the illuminated lighting combination _t' there may be no light #| taking features. The light guide iiq may include a light emitting surface 121 with respect to the light guide no - ", and the wavelength converting material region 116 may be partially (or completely) disposed under the back surface. The wavelength converting material region $116 may be partially (or Completely) to contact: $ face of the lead 11. Alternatively, or in addition, a wavelength converting material can be disposed within the light guide 110. The wavelength converting material region 116 can be configured to flank the reflector 124, which aids Any heat generated by the wavelength converting material is extracted. The backside reflector 124 can be thermally coupled to a heat sink to provide heat dissipation. Figure 1 is a light emitting surface disposed on a light guide according to an embodiment. A cross-sectional view of the illumination combination of the wavelength conversion material on 121. The wavelength filter 132 can be disposed between the light emitting surface 121 of the light guide 11A and the wavelength conversion material region 116. The skin length filter 132 T is Configuring to transmit the desired light and reflect the secondary light emitted by the wavelength converting material. Thus, the wavelength filter 1 32 can reflect the secondary light emitted by the wavelength converting material in the region i 丨 6 to prevent secondary light from entering Light guide 1 1 〇 Ο Figure UA is a top view of an illumination combination i 丨〇〇 a comprising a plurality of wavelength converting material regions 116 according to an embodiment. The wavelength converting material region 丄Η may correspond to a change in different locations along the light guide ii ο The nearest neighbors are arranged to provide varying degrees of wavelength conversion material along the light extraction region 114. The wavelength converting material region 116 may have any shape, for example, the region may include dots, as shown in Figure 1 Additionally or alternatively, the thickness and/or size of the wavelength converting material region 丨6 may vary in different locations of the light extraction region 114. For example, the region 丨16 is closer to the illuminating device 15

1024-9835-PF 29 200912478 較厚。 圖11B係根據-實施例 < 包括一波長轉換材料的昭明 組合的上視圖。照、明組合1麵可包括複數波長轉 ,區域(例如’點116a_c),其可被排列以便被對準並 又置在(液a曰層的)複數顯示像素光閥上,以個別地照明像 素光閥。例如’顯示像素光閥可為被放置在照明組合11〇〇b 的發射面121上之液晶層(為了清楚而未顯示)的—部分, 如先剛在® 1C中繪示及說明。各波長轉換材料區域(例 如,點116a-c)的尺寸可大約為顯示像素光間的尺寸。1024-9835-PF 29 200912478 Thicker. Figure 11B is a top view of a combination of a wavelength conversion material according to an embodiment. The combination of illumination and illumination may include a plurality of wavelength-turned regions (eg, 'points 116a-c) that may be arranged to be aligned and placed on a plurality of display pixel light valves (in liquid layer) for individual illumination Pixel light valve. For example, the 'display pixel light valve' may be a portion of the liquid crystal layer (not shown for clarity) placed on the emitting surface 121 of the illumination assembly 11〇〇b, as shown and described in the ® 1C. The size of each wavelength converting material region (e.g., points 116a-c) may be approximately the size between the display pixel lights.

V 不同的波長轉換材料(例如,紅色發光磷、綠色發光 碟、藍色發光们可被放置在不同的波長轉換材料區域(例 如,點11 6a-c) ’使得不同的像素光閥可用不同顏色的光 照明。此種組合可照明在LCD巾的彩色瀘器,從而可改 善LCD系統的效率。在某些此種組合中,發光裝置可發射 肝主要光,其可被在不同區域(例如,點)中的不同波長轉 換材料轉換。在某些此種組合中,發光裝置可發射藍色主 要光。當使用藍色主要光時,紅色發光及綠色發光波長轉 換材料可分別被用以照明紅色及綠色像素光閥,而藍色像 素光閥可被主要光照明(例如,其可使用與藍色像素光閥對 準的光導110之光散射特徵被局部地擷取)。 圖1 2A-B分別係根據一實施例之包括具有空間變化的 密度(例如,在組合的發射面上的lxlcm2的平均面積上之 每單位面積)之波長轉換材料的照明組合12〇〇的剖面圖及 上視圖。複數發光裝置1 50可被排列以將光發射進入光導V Different wavelength conversion materials (for example, red luminescent phosphors, green luminescent discs, blue illuminators can be placed in different wavelength converting material regions (eg, point 11 6a-c) 'making different pixel light valves available in different colors Light illumination. This combination illuminates the color filter of the LCD towel to improve the efficiency of the LCD system. In some such combinations, the illumination device can emit primary light from the liver, which can be in different regions (eg, Different wavelength conversion material conversions in point). In some such combinations, the illumination device can emit blue primary light. When blue main light is used, the red and green emission wavelength conversion materials can be used to illuminate red, respectively. And a green pixel light valve, and the blue pixel light valve can be illuminated by primary light (eg, it can be locally captured using the light scattering features of the light guide 110 aligned with the blue pixel light valve). Figure 1 2A-B An illumination group comprising wavelength converting materials having spatially varying densities (eg, per unit area over an average area of 1 x 1 cm 2 on a combined emitting surface), respectively, according to an embodiment. And a cross-sectional view of FIG 12〇〇 The plural light emitting device 150 may be arranged to emit light into the light guide

1024-9835-PF 30 200912478 110的一或多個邊緣。波長轉換材料密度(例如,在組合的 發射面上的Ixlcm2的平均面積上之每單位面積)可在二或 一維上變化。圖12B繪示一個實施例,其中,每單位面= 的波長轉換材料密度的空間變化可在定義發射面12丨= 維中變化。 ’ 每單位面積的波長轉換材料的密度可被配置以在主要 光強度較低的光導11G的部分較高。例如,當主要光強度 在光導110的中心部分181及角落部分182中較低時,: 長轉換材料在光導110的那些部分中可具有較高的密度 (如同由圖1 2B中之上視圖的較黑的陰影部分繪示此一 反向關係可容許對沿著光導11。減少的主要光強度補償, 使得由照明組合發射的光1〇2大體上可在整個發射面 上空間均勻。 圖1 3係根據一實施例之包括具有空間變化密度(例 如,在發射面上的lxlcm2的平均面積上之每單位面積)的 波長轉換材料之照明組合丨3〇〇的上視圖。除了複數發光裝 置1 50可將光發射進入光導的角落部分之外,照明組合 1 3 0 0類似照明組合1 2 0 〇。與圖1 2的組合12 0 0相比,此一 排列可使得光導11 〇内的主要光強度空間上更加均勻。反 過來,對於要求從照明組合發射空間上均勻的光的情況, 母單位面積的波長轉換材料密度僅須在光導的甲心部分 181具有較高的值。在某些實施例中,光導的邊緣的一部 分或全部(未從發光裝置耦合光)可被鍍上反射材料(例 如,諸如鋁及/或銀的金屬),以便防止任何光(例如,主要1024-9835-PF 30 200912478 One or more edges of 110. The wavelength conversion material density (e.g., per unit area over the average area of Ixlcm2 on the combined emitting surface) can vary in two or one dimensions. Figure 12B illustrates an embodiment in which the spatial variation of the density of the wavelength converting material per unit area = can vary in the defined emitting surface 12 丨 = dimension. The density of the wavelength converting material per unit area can be configured to be higher in the portion of the light guide 11G having a lower main light intensity. For example, when the primary light intensity is lower in the central portion 181 and the corner portion 182 of the light guide 110, the long transition material may have a higher density in those portions of the light guide 110 (as seen from the top view in FIG. The darker shaded portion shows that this inverse relationship allows for a reduction in the primary light intensity compensation along the light guide 11, such that the light 1 〇 2 emitted by the illumination combination is substantially uniform over the entire emission surface. 3 is a top view of an illumination assembly comprising a wavelength conversion material having a spatially varying density (eg, per unit area over an average area of 1 x 1 cm2 on the emission surface) in accordance with an embodiment. In addition to the complex illumination device 1 50 can emit light into the corner portion of the light guide, and the illumination combination 1300 is similar to the illumination combination 1 2 0 〇. Compared with the combination 1200 of Figure 12, this arrangement can make the main light within the light guide 11 The light intensity is more spatially uniform. Conversely, in the case where it is required to emit spatially uniform light from the illumination combination, the density of the wavelength conversion material per square unit area only has to be in the core portion 181 of the light guide. High values. In some embodiments, some or all of the edges of the light guide (not coupled to light from the illumination device) may be plated with a reflective material (eg, a metal such as aluminum and/or silver) to prevent any light ( For example, the main

1024-9835-PF 31 200912478 及/或次要光)從光導漏出。 圖1 4A-B分別係根據一實施例之包括波長轉換材料及 一或多個波長濾光器的照明組合丨40〇的剖面圖及上視圖。 照明組合14 0 〇可包括一或多個固態發光裝置1 5 〇。光 導11 0可被配置以接收由固態發光裝置1 5〇發射的主要光 152’其中,光導110可具有光沿著其傳播的一長度及光通 過其被發射的一發射面1 21。可產生次要光1 5 3的一波長 轉換材料可被设置在固態發光裝置丨5 〇及光導的發射面 1 21之間的光學路徑中。 一或多個波長濾光器(例如,濾光器129)可被設置在 固態發光裝置15 0及波長轉換材料之間的光學路徑中。波 長濾光器1 29可被配置以透射由發光裝置1 5〇發射的主要 光並且反射次要光(例如,波長轉換光)。從而,波長濾光 器12 9可包括t通波長濾'光器’其被(直接地)設置在光 均質化區域的光輸人側122丨,其中,短通波長濾、光器被1024-9835-PF 31 200912478 and/or secondary light) leaks from the light guide. 1AA-B are cross-sectional and top views, respectively, of a lighting assembly 丨40〇 including a wavelength converting material and one or more wavelength filters, in accordance with an embodiment. The illumination combination 140 can include one or more solid state lighting devices 15 〇. The light guide 110 can be configured to receive primary light 152' emitted by the solid state light emitting device 105, wherein the light guide 110 can have a length along which light propagates and an emitting surface 121 through which light is emitted. A wavelength converting material that produces secondary light 1 5 3 can be disposed in the optical path between the solid state light emitting device 丨5 〇 and the emitting surface 126 of the light guide. One or more wavelength filters (e.g., filter 129) can be disposed in the optical path between the solid state light emitting device 150 and the wavelength converting material. The wavelength filter 1 29 can be configured to transmit the primary light emitted by the illumination device 15 5 and reflect the secondary light (e.g., wavelength converted light). Thus, the wavelength filter 129 may include a t-pass wavelength filter 'optical' that is (directly) disposed on the light input side 122 of the light homogenization region, wherein the short pass wavelength filter and the optical device are

配置以透射來自固態發光裝i 15Q的光並且反射來自波長 轉換材料的波長轉換光。從而’波長濾光器' 129可防止被 向後發射或向後散射的波長轉換光從均質化區域112漏 出。 照明組合 1400可包括光均質化 固悲發光裝置150及光導ho的發射 徑中。波長轉換材料可被設置在光均 同在此使用,名詞”設置於其中,’立 域的内側而未放置在均質化區域的輪 區域11 2,其被設置在 面121之間的光學路 質化區域11 2内。如 指被放置在均質化區 入或輸出邊緣。It is configured to transmit light from the solid state lighting device i 15Q and reflect wavelength converted light from the wavelength converting material. Thus, the 'wavelength filter' 129 prevents wavelength-converted light that is emitted backward or backscattered from leaking from the homogenization region 112. The illumination assembly 1400 can include a light homogenization of the solid light illumination device 150 and the emission path of the light guide ho. The wavelength converting material may be disposed in the same manner as the light, and the optical path quality is provided in the wheel region 11 2 of the homogenized region, which is disposed inside the vertical domain, which is disposed between the faces 121 Within the region 11 2, if placed at the edge of the homogenization zone into or out of the output.

1024-9835-PF 32 200912478 波長轉換材料可被設置在均質化區域ιΐ2的至 在整個.均質化區域112上。選擇地,或附加二 :、轉換材料可被放置在光均質化區域的—或多 =:,在均質化區域的光輸入邊緣122及/或光輸出邊 在某些實施例_,波長轉換材料的密度可 =區域112巾的不同位置變化。例如,波長轉換材料的 饴度進一步遠離光輸入邊緣1 22可較高。1024-9835-PF 32 200912478 The wavelength converting material can be disposed in the homogenized region ι2 to the entire homogenizing region 112. Alternatively, or in addition to two: the conversion material can be placed in the light homogenization region - or more =: in the homogenization region of the light input edge 122 and / or light output edge in some embodiments _, wavelength conversion material The density can vary from location to area 112. For example, the twist of the wavelength converting material may be further away from the light input edge 1 22 .

在某些實施例中,照明組合14〇〇可在光均質化區域 112的光輸出側上包括波長濾光器128(例如,—長通波長 濾光器)。波長濾光器128可被配置以透射 料的波長轉換光(例如,次要光)並且反射由固態發= 1 5 0發射的主要光。 多重波長濾光器可被排列成串聯的結構,其中,一波 長濾光器的光輸出可做為另一波長濾光器的光輸入。波長 轉換材料可被設置在一波長濾光器的光輸出側及另一波長 (濾光器的光輸入側之間的光學路徑中。波長轉換材料在不 同的區域可為不同(例如,波長轉換不同的波長範圍及/或 產生不同波長的次要光)。例如,不同的波長轉換材料可在 光學路徑中被串聯。在某些實施例中,較低能量(例如,較 長波長)的光可由較接近發光裝置15〇的波長轉換材料產 生且較高能量的光(例如,較短波長)可被在其後連續排列 的一或多個不同的波長轉換材料成功地產生。在其他實施 例中’高能量(例如’較短波長)的光可由較接近發光裝置 1 5 0的波長轉換材料產生且較低能量的光(例如,較長波長)In some embodiments, illumination assembly 14A can include a wavelength filter 128 (e.g., a long pass wavelength filter) on the light output side of light homogenization region 112. The wavelength filter 128 can be configured to transmit wavelength converted light (e.g., secondary light) and reflect the primary light emitted by the solid state = 150. The multiple wavelength filters can be arranged in a series configuration in which the light output of one wavelength filter can be used as the light input of another wavelength filter. The wavelength converting material can be disposed in the optical path between the light output side of the wavelength filter and the other wavelength (the light input side of the filter. The wavelength converting material can be different in different regions (eg, wavelength conversion) Different wavelength ranges and/or secondary light of different wavelengths. For example, different wavelength converting materials can be connected in series in the optical path. In some embodiments, lower energy (eg, longer wavelength) light Light that can be generated by a wavelength converting material that is closer to the light emitting device 15 turns and that is of higher energy (eg, shorter wavelength) can be successfully produced by one or more different wavelength converting materials that are successively aligned thereafter. In other embodiments Medium 'high energy (eg, 'short wavelength') light may be produced by a wavelength conversion material that is closer to the light emitting device 150 and has lower energy (eg, longer wavelength)

1024-9835-PF 33 200912478 可被在其後連續排列的-或多個不同的波長轉換材料成功 地產生。 不同的波長轉換材料可由—或多個波長渡光器被彼此 隔離。波長濾光器可被配置以防止來自給定的波長轉換材 料之次要光進入被放置以更靠近發光裝置)5〇之不同的波 長轉換材料。例如’照明組合14⑽可包括第二短通波長滤 光器(除了波長遽光器129之外)及不同於第一波長 料的第二波長轉換材料。第二短通濾光器可被設置在波長 轉換材料及第二波長轉換材料之間的光學路徑中,且第二 短通波長攄光器可被配置以透射來自固態發光裝置的光7 透射來自波長轉換材料的波長轉換光、並且反射來自第二 波長轉換材料的波長轉換光。 在某些實施例中,照明組合1 400可在光均質化區域 114的一或多個表面及’或邊緣包括一或多個反射面125。 反射面125可防止光(例如,主要及/或次要光)經由均質化 (區域112的邊緣及/或表面漏出。從而,在此一實施例中, 光基本上可僅從光均質化區域的光輸出邊緣113而未經由 光均貝化區域112的其他邊緣或表面被輸出。1024-9835-PF 33 200912478 can be successfully produced by successively arranging - or a plurality of different wavelength converting materials. Different wavelength converting materials may be isolated from each other by - or a plurality of wavelength multiplexers. The wavelength filter can be configured to prevent secondary light from a given wavelength converting material from entering a different wavelength converting material that is placed closer to the light emitting device. For example, the illumination assembly 14(10) can include a second short pass wavelength filter (other than the wavelength chopper 129) and a second wavelength conversion material different from the first wavelength material. A second short pass filter can be disposed in the optical path between the wavelength converting material and the second wavelength converting material, and the second short pass wavelength chopper can be configured to transmit light 7 from the solid state lighting device to transmit The wavelength of the wavelength converting material converts light and reflects wavelength converted light from the second wavelength converting material. In some embodiments, illumination assembly 1 400 can include one or more reflective surfaces 125 at one or more surfaces and/or edges of light homogenization region 114. The reflective surface 125 prevents light (eg, primary and/or secondary light) from being homogenized (the edges and/or surfaces of the region 112 are leaking out. Thus, in this embodiment, the light can be substantially only from the light homogenized region The light output edge 113 is not output via other edges or surfaces of the light uniformized area 112.

圖15A-B分別係根據一實施例之包括背光波長轉換區域 11 6的,,、' 明組合丨5〇〇的刮面圖及上視圖。照明組合1 可包括或多個發光裝置15〇,其包括光發射面抑。波長 轉換材料11 6可被設置在固態發光裝置i 5〇的光發射面 上。攸而’以此種排列,發光裝i 1 50可直接以由發光裝 置15〇發射的主要光1 52提供波長轉換材料11 6背光照明。 1024-9835-PF 34 200912478 -或多個固態發光裝置150可被放置在第一平面上。 二-:實施例中,固態發光裝置15◦係由一熱管理系統支 ^施可包括—導熱平面159(例如,—金屬平面層)。波 :換材料116可被設置在發光裝置15〇的發射面上,且 在某些例子中,可被排列在大體上平行於第一平面的第二 +面上,發光装置15〇可被排列在第一平面上。 &quot;在—個實施例中’波長轉換材料Π6可具有在不同位 例如’在第二平面之不同位置)不.同之每單位面積的密 度。例如,波長轉換材料116的第—及第二位置可位於平 订弟:平面的第二平面之不同位置,發光裳£ 15〇可被設 第平面上。第一位置可被設置在發光裝置的光 射面38上且第—位置可被設置在發光裝置㈣的光發射 面38令間的區域上。在第一區域中的波長轉換材料的密度 可=於在第—區域中的波長轉換材料的密度。此種排列可 補償在發光裝置150中間的區域(例如,非直接在發光裝置 〇的务射區域38之上)之較低的主要光強度,以便在整 個照明組合的發射面(例如,第二平面)上提供大體上相似 、要光強度。通常’在某些實施例中,波長轉換材料11 6 在以較向強度的主要光照明的位置可具有比在以較低強度 的主要光照明的位置低之每單位面積的密度。 某些實施例t,照明組合1 500可包括一或多個波長 濾光器。波長濾光器129可被設置在發光裝置150及波長 轉換材料11 6之間。波長濾光器〗29可包括一短通濾光器, 其被配置以透射來自發光裝置的主要光並且反射由區域15A-B are respectively a plan view and a top view of a combination of a backlight wavelength conversion region 116, according to an embodiment. The lighting combination 1 may include or include a plurality of light emitting devices 15A including a light emitting surface. The wavelength converting material 116 can be disposed on the light emitting surface of the solid state light emitting device i 5 . In this arrangement, the illumination package i 1 50 can provide backlighting illumination of the wavelength conversion material 116 directly with the primary light 152 emitted by the illumination device 15A. 1024-9835-PF 34 200912478 - or a plurality of solid state lighting devices 150 can be placed on a first plane. Two-: In an embodiment, the solid state lighting device 15 is comprised of a thermal management system that can include a thermally conductive plane 159 (e.g., a metal planar layer). Waves: The exchange material 116 can be disposed on the emitting surface of the light emitting device 15A, and in some examples, can be arranged on a second + surface that is substantially parallel to the first plane, and the light emitting devices 15 can be arranged On the first plane. &quot;In one embodiment&apos; the wavelength converting material Π6 may have a density in different bits, e.g., at different locations in the second plane, as well as per unit area. For example, the first and second positions of the wavelength converting material 116 may be located at different positions in the second plane of the plane: the plane, and the illuminating surface may be set on the first plane. The first position can be disposed on the light-emitting surface 38 of the light-emitting device and the first position can be disposed on the area between the light-emitting surfaces 38 of the light-emitting device (4). The density of the wavelength converting material in the first region can be = the density of the wavelength converting material in the first region. Such an arrangement can compensate for the lower primary light intensity in the region intermediate the illumination device 150 (eg, not directly above the dilation region 38 of the illumination device) for the entire illumination combination's emission surface (eg, second) The plane is provided with a substantially similar, desired light intensity. Generally, in some embodiments, the wavelength converting material 116 may have a density per unit area that is lower than the position illuminated at the main light of the lower intensity at a position illuminated by the primary light of the relatively strong intensity. In some embodiments t, illumination combination 1500 can include one or more wavelength filters. A wavelength filter 129 can be disposed between the light emitting device 150 and the wavelength converting material 116. The wavelength filter </ RTI> 29 can include a short pass filter configured to transmit primary light from the illuminating device and reflect by the region

1024-9835-PF 35 200912478 11 6中的波長轉換材料產生的次要光。在某些實施例中, 波長濾光器128可被設置在波長轉換材料116的發射面 上。波長濾光器1 28可包括一長通濾光器,其被配置以透 射由區域116中的波長轉換材料產生的次要光並且反射由 發光裝置1 50發射的主要光。當主要光為紫外光且次要光 為可見光時,此種排列可為有利的。在這些排列中,可能 希望僅輸出次要的可見光(例如,光丨〇2)並且將紫外光的 主要光(例如,使用濾、光器128)反射回去以不使照明組合 的觀看者暴露於紫外光。選擇地,光m卩包括主要及次 要光的混合,例如,藍色主要光及諸如黃色、紅色、及/ 或綠色光的次要光之混合。此種排列可被用以產生白光。 …不㈤的方法可被用以製造在此說明的照明、组合。有關 形成波長轉換材料區域’諸如印刷、製模(例如,射出成 型)、鑛膜、喷佈、及/或壓製的方法可被使用。例如,一 印刷過程(例如,喷墨印刷過程)可被用以產生具有 ==…繼合的發射面之每單位面積)之波長 =+。印表機墨水,可包括一種溶液,其包括波長轉 =軸如,❹/或量子點)。然後,可經由在不同位置 ::長的印刷步驟產生不同厚度的波長轉換材料 ;二:附加地,具有小, 可用小於100微米)的小特徵(例如,點、條紋) 具鐘:最鄰近距離被印刷。在其他實施例中,、法 烯酸樹::::Γ被包括在製模材料中(例如,諸如_或丙 ’便在4如製模光導的製模組件之不1024-9835-PF 35 200912478 11 The secondary light produced by the wavelength converting material. In some embodiments, the wavelength filter 128 can be disposed on the emitting surface of the wavelength converting material 116. The wavelength filter 1 28 can include a long pass filter configured to transmit secondary light generated by the wavelength converting material in the region 116 and to reflect primary light emitted by the light emitting device 150. This arrangement may be advantageous when the primary light is ultraviolet light and the secondary light is visible light. In these arrangements, it may be desirable to output only secondary visible light (eg, stop 2) and reflect the primary light of the ultraviolet light (eg, using filter, lighter 128) back without exposing the viewer of the illumination combination to Ultraviolet light. Optionally, the light m卩 comprises a mixture of primary and secondary light, for example, a mixture of blue primary light and secondary light such as yellow, red, and/or green light. This arrangement can be used to produce white light. ...the method of (5) can be used to make the illumination, combination described herein. A method of forming a wavelength converting material region such as printing, molding (e.g., injection molding), mineral film, spray coating, and/or pressing can be used. For example, a printing process (e.g., an inkjet printing process) can be used to generate a wavelength = + for each unit area of the emitting surface having a ==... succession. The printer ink can include a solution that includes a wavelength conversion axis such as ❹/or quantum dots. The wavelength-converting material of different thicknesses can then be produced via different printing steps: different lengths; two: additionally, small features (less than 100 micrometers) can be used (eg, dots, stripes) with a clock: nearest distance Printed. In other embodiments, the arylate tree:::: Γ is included in the molding material (for example, such as _ or C ′ is in the mold assembly of the mold light guide 4

1024-9835-PF 36 200912478 同位置具有變化的密度。 在某些實施例中,一照明組合可包括一熱管理系統, 其可散逸由發光裝置產生的熱。在某些實施例中,熱管理 系統可被設置在照明組合的背側上(例如,光發射面之相對 側)。當發光裝置係產生顯著數量的熱之高功率發光裝置 時’其可為當很少數的發光裝置被用以照明各個方格時的1024-9835-PF 36 200912478 The same position has a varying density. In some embodiments, a lighting combination can include a thermal management system that dissipates heat generated by the illumination device. In some embodiments, the thermal management system can be disposed on the back side of the illumination assembly (e.g., on the opposite side of the light emitting surface). When the illuminating device produces a significant amount of hot high power illuminating device, it may be when a small number of illuminating devices are used to illuminate the individual squares.

情況’此種特徵可為希望的。顯示器的熱管理系統及照明 系統的例子被提供在2〇〇6年四月28曰申請的美國專利申 請案序號1 1 /431,968中,名稱為,’ LCD Thermal Management Methods and Systems” ,其在此被完整地一 併供做參考。通常,一熱管理系統可包括一適合的系統, 其可傳導及散逸可由照明組合的裝置及組件產生的熱。在 某些貝施例中,一熱管理系統可被一熱傳導率特徵化,或 是可包括一或多個組件’其係被一熱傳導率特徵化,該熱 傳導率係大於5000 W/mK、大於1 00 00 W/mK、及/或大於 20 0 0 0 W/mK。在某些實施例中,熱傳導率位於1 0 0 00 w/mK 及 50000 W/mK 之間(例如,1〇〇〇〇 w/mK 及 2〇〇〇〇 w/社之 間、2000(^/1111(及3〇0 0 0 1/1^之間、3〇〇〇〇|/毗及4〇〇〇〇 W/mK之間、40000 W/mK及5000 0 W/mK之間)的範圍中。 在某些實施例中,一熱管理系統可包括被動及/或主動 熱交換機構。被動熱管理系統可包括由—或多種材料;、 的結構,其由於結構中的溫差快速地導熱。 二形成 &amp;理糸餘★ 可包括-或多個突出,其可增加與周圍的表面接觸面積, 因此使得與周圍的熱交換變得容易。在某此 、 二T她例中,一Situation 'This feature may be desirable. An example of a thermal management system and a lighting system for a display is provided in U.S. Patent Application Serial No. 1 1/431,968, the entire disclosure of which is incorporated herein by reference. It is incorporated by reference in its entirety. Generally, a thermal management system can include a suitable system that conducts and dissipates heat that can be generated by the combined devices and components of the illumination. In some embodiments, a thermal management system Can be characterized by a thermal conductivity, or can include one or more components that are characterized by a thermal conductivity greater than 5000 W/mK, greater than 100 00 W/mK, and/or greater than 20 0 0 0 W/mK. In some embodiments, the thermal conductivity is between 1 000 00 w/mK and 50000 W/mK (eg, 1 〇〇〇〇 w/mK and 2 〇〇〇〇 w/ Between the clubs, 2000 (^/1111 (and between 3〇0 0 0 1/1^, 3〇〇〇〇|/between 4〇〇〇〇W/mK, 40000 W/mK and 5000 0) In the range between W/mK). In some embodiments, a thermal management system may include passive and/or active heat exchange mechanisms. Passive thermal management system A structure comprising - or a plurality of materials; can be rapidly thermally conducted due to a temperature difference in the structure. The second formation &amp; It is easy to exchange heat with the surroundings. In one case, two T, she

1024-9835-PF 37 200912478 突出可包括一細微結構,其可具有大的表面面積。在再一 只她例中 熱管理系統可包括管道,其中可流動流體(例 如,液體及/或氣體),以便有助於熱交換及傳播。例如, 熱官理系統可包括一或多個熱管,以使得熱移除變得容 易。各種熱官對於熟知此技藝者係已知的,且應瞭解在此 提出的實施例並非僅限定於此等熱管的例子。熱管可被設 計以具有任何適合的形狀,且不必僅限定於圓柱形。其他 的熱管形狀可包括矩形,其可具有任何要求的大小。在某 些實施例中,-或多個熱管可被排列’使得熱管的第一端 係位於被暴露在高溫的照明組合的區域中,諸如鄰近一或 夕個i光衣置。熱官的第二端(亦即,冷卻端)可被暴露於 周圍。熱管可與突出熱接觸以經由提供增加的表面面積幫 助與周圍的熱交換。因為熱管可具有-熱傳導帛,其為數 倍大於(例如’ 5倍大於、i。倍大於)許多金屬(例如,⑷ 的熱傳導率,經由將熱管結合至照明系統中,可改善熱 傳導。 、' 主動熱理系統可包括一或多個適合的裝置,其可進 一步幫助熱的擷取及傳#。此_主動熱管理系統可包括機 械、電、化學及/或任何其他適合的裝置,以使得熱的交換 變得容易。在一個實施例中’主動熱管理系統可包括—風 扇,被用以循環空氣並且提供冷卻。在另—個實施例中, 一幫浦可被用以在熱管理系統中的管道内循環流體(例 如液體、氣體)。在另外的實施例中,熱管理系統可包括 一熱電冷卻器,其可進一步使熱擷取變得容易。1024-9835-PF 37 200912478 The protrusion may include a fine structure that may have a large surface area. In yet another example, the thermal management system can include a conduit in which a fluid (e.g., liquid and/or gas) can flow to facilitate heat exchange and propagation. For example, the thermal management system can include one or more heat pipes to facilitate heat removal. Various heats are known to those skilled in the art, and it should be understood that the embodiments presented herein are not limited to the examples of such heat pipes. The heat pipe can be designed to have any suitable shape and need not be limited to only a cylindrical shape. Other heat pipe shapes can include a rectangle that can have any desired size. In some embodiments, - or a plurality of heat pipes may be arranged such that the first end of the heat pipe is located in an area of the illumination combination that is exposed to high temperatures, such as adjacent one or the next. The second end of the heat officer (i.e., the cooling end) can be exposed to the surroundings. The heat pipe can be in thermal contact with the protrusion to help exchange heat with the surroundings by providing an increased surface area. Because the heat pipe can have a heat transfer enthalpy that is several times greater than (for example, '5 times greater than, i. times greater than) many metals (eg, (4) thermal conductivity, by incorporating a heat pipe into the illumination system, heat transfer can be improved. The thermal system may include one or more suitable devices that may further assist in the extraction and transfer of heat. The active thermal management system may include mechanical, electrical, chemical, and/or any other suitable device to enable heat. The exchange becomes easier. In one embodiment, the 'active thermal management system can include a fan that is used to circulate air and provide cooling. In another embodiment, a pump can be used in the thermal management system. The conduits circulate fluid (e.g., liquid, gas). In other embodiments, the thermal management system can include a thermoelectric cooler that can further facilitate thermal extraction.

1024-9835-PF 38 200912478 在某些實施例中,在此提 裝置可包括發光-極體R 1R 月組合中的固態發光 光梦6隸據—實施麟示可為發 /置的-例之發光二極體(led)。應 貫施例也可適用於其他的發光裝i,諸如雷射二極體; 具有不同結構的LED(諸如有機LED,也稱為隨 中所示的陶_包括一多層堆疊31,其可被設置J 支據結構上(未顯示)。多層堆疊31可包括-作用區34, 其被形成“摻雜層35及P摻雜層33之間。堆疊也可包 括‘電層32 ’其可做為p側接觸’其也可做為光反射層。 η側接觸襯塾36可被設置在層35上。導電指(未顯示)曰可 從接觸襯墊36起沿著表面38延伸,從而使得電流均勻注 入至LCD結構中。 應知LED並未限定於圖16所示的結構,例如,n摻雜 及P摻雜側可被互換,以便形成一 LED ’其具有與接觸襯 墊36接觸的p摻雜區域及與層32接觸的n摻雜區域。如 (:下面進一步§兒明,電位可被施加於接觸襯塾,其可導致在 作用區34内產生光並且發射(由箭號152表示)至少一些通 過發射面38產生的光。如下面進一步說明,孔39可被界 定在發射面中’以形成可影響諸如光擷取及/或光準直的光 發射特徵的一圖案。應瞭解可對提出的LED結構進行其他 的修正,且該等實施例並未限定於此方面。 LED的作用區可包括一或多個由阻障層圍繞的量子 井。量子井結構可被一半導體材料層(例如,在單一量子井 中)、或是多於一的半導體材料層(例如,在多重量子井中) 1024-9835-PF 39 200912478 定義,帶有比阻障層小的電子能隙。適合量子井結構的半 導體材料層可包括InGaN、AlGaN、GaN、及這些層的組合(例 如’交替的InGaN/GaN層,其中’ GaN層係做為阻障層)。 通常,LED可包括一作用區,其包括一或多種半導體材料, 其包括 Π I-V 族半導體(例如 ’ GaAs、AlGaAs、AlGaP、GaP、 GaAsP、 InGaAs、 InAs、 Inp、GaN、 InGaN、 InGaAlP、 A1GaN、 以及其組合與合金)、n—VI族半導體(例如,ZnSe、、1024-9835-PF 38 200912478 In some embodiments, the device may include a solid-state illuminating light in the illuminating-polar body R 1R month combination - the implementation of the lining may be a hair / set - for example Light-emitting diode (led). Embodiments are also applicable to other illuminating devices, such as laser diodes; LEDs having different structures, such as organic LEDs, also referred to as ceramics as shown therein, include a multilayer stack 31, which may The J-branch structure is provided (not shown). The multi-layer stack 31 can include an active region 34 that is formed between the doped layer 35 and the P-doped layer 33. The stack can also include an 'electric layer 32' which can As a p-side contact, it can also be used as a light reflecting layer. The n-side contact pad 36 can be disposed on the layer 35. A conductive finger (not shown) can extend from the contact pad 36 along the surface 38, thereby The current is uniformly injected into the LCD structure. It should be understood that the LED is not limited to the structure shown in FIG. 16, for example, the n-doped and P-doped sides may be interchanged to form an LED 'which has contact with the contact pad 36. a p-doped region and an n-doped region in contact with layer 32. As (further, hereinafter, a potential can be applied to the contact liner, which can result in light being generated within the active region 34 and emitted (by the arrow 152 denotes at least some of the light generated by the emitting surface 38. As further explained below, the aperture 39 can be defined In the emitting surface 'to form a pattern that can affect light emission characteristics such as light extraction and/or light collimation. It should be understood that other modifications can be made to the proposed LED structure, and the embodiments are not limited thereto. The active area of the LED may include one or more quantum wells surrounded by a barrier layer. The quantum well structure may be a layer of semiconductor material (eg, in a single quantum well), or more than one layer of semiconductor material (eg, , in a multiple quantum well) 1024-9835-PF 39 200912478 Definition, with a smaller electron energy gap than the barrier layer. Semiconductor material layers suitable for quantum well structures may include InGaN, AlGaN, GaN, and combinations of these layers (eg 'Alternating InGaN/GaN layers, where the 'GaN layer acts as a barrier layer.') Typically, the LED can include an active region that includes one or more semiconductor materials, including Π IV semiconductors (eg, 'GaAs, AlGaAs, AlGaP, GaP, GaAsP, InGaAs, InAs, Inp, GaN, InGaN, InGaAlP, A1GaN, and combinations and alloys thereof, n-VI semiconductors (for example, ZnSe,

ZnCdSe ' ZnTe、ZnTeSe、ZnS、ZnSSe、以及其組合與合金)、 及/或其他半導體。其他的發光材料也是可能的,諸如量子 點或有機發光層。 以雜層35可包括石夕摻雜GaN層(例如,具有約__ 的厚度)及/或p摻雜層33包括鎂摻雜GaN層(例如,具 導電層32可為-銀層(例如,具有叫 U度)’其也可做為一反射層(例如,向上反射由 =產生的任何向下傳播的光)。再者,雖然未顯示,盆他 被包括在LED中;例如,一川㈣層可被設置^作 -4及Ρ摻雜層33之間。應瞭解與在此說 成分也可適用於LED的層。 冋的 由於孔39,LED可具有—介電函數,其根據 空間地變化。通常的孔尺 圖案而 ㈣·、小於約5〇_、… 微米(例如’小於約 %5U〇nm、小於約 25〇nm)且 鄰近距離可小於約一微米(例如, 之間的最 、小於約250nm)。再 、:750⑽、小於約 ^ 戈口圖所不,多丨q q π 心的。 札可為非同ZnCdSe 'ZnTe, ZnTeSe, ZnS, ZnSSe, and combinations and alloys thereof, and/or other semiconductors. Other luminescent materials are also possible, such as quantum dots or organic light-emitting layers. The impurity layer 35 may include a daylight doped GaN layer (eg, having a thickness of about __) and/or the p-doped layer 33 includes a magnesium doped GaN layer (eg, the conductive layer 32 may be a silver layer (eg, , having a U degree) 'which can also be used as a reflective layer (eg, upward reflection of any downward propagating light generated by =). Again, although not shown, the pot is included in the LED; for example, one The Sichuan (four) layer can be disposed between -4 and the erbium doped layer 33. It should be understood that the composition is also applicable to the layer of the LED. 由于 Because of the hole 39, the LED can have a dielectric function, which is based on Spatially varying. The usual hole rule pattern is (4), less than about 5 〇 _, ... micron (eg 'less than about 5 U 〇 nm, less than about 25 〇 nm) and the proximity distance can be less than about one micron (for example, between The most, less than about 250nm). Again, 750 (10), less than about ^ Gekou map does not, more than qq π heart. Zha can be different

1024-9835-PF 40 200912478 根據一圖案而空間地變化的介電函數會 、的先之擷取效率及/或準直 :曰LED發 -層可具有一介電函數咖的 介電函數之變化不必然是起因於孔成=知在界面處的 案的介電函數中產生變化 、於在根據-圖 由改變…/或發 的(例如,具有簡單彡成°圖案可為周期 格)、或是非或是具有複雜重覆的超胞 f,r在以周期方式重覆的各個單元胞格中具有—個以上 為:徵。複雜周期圖案的例子包括蜂巢狀圖案、以蜂巢狀 =礎的《1(2χ2)為基礎的圖案、環狀 米德圖案。在箪此杏β n i 次Π巷 的某些孔及較孔複雜周期圖案可具有-直徑 如同在此提及,非周期圖 :係-圖案’其在一單元胞格上沒有平移的對稱性,該單 n |度’其至少係由一或多個發光部分產生的 光之峰值波長的50倍。如同在此被使用者,峰值波長意指1024-9835-PF 40 200912478 The spatially varying dielectric function according to a pattern, the first extraction efficiency and / or collimation: 曰 LED hair-layer can have a change in the dielectric function of a dielectric function It is not necessarily caused by a change in the dielectric function of the case at the interface, or a change in the basis of the image (for example, a pattern having a simple 彡° can be a periodic lattice), or Yes or no, super-cells f with complex repetitions, r has more than one in each cell cell repeated in a periodic manner: sign. Examples of complex periodic patterns include a honeycomb pattern, a "1 (2 χ 2) based pattern based on a honeycomb shape, and a ring-shaped Meade pattern. In some of the apricot beta ni times, certain holes and more complex periodic patterns may have a diameter as mentioned here, a non-periodic diagram: a pattern-pattern that has no translational symmetry on a unit cell, The single n degree 'is at least 50 times the peak wavelength of the light produced by the one or more light emitting portions. As the user is here, the peak wavelength means

例如當使用光譜㈣儀測量時之具有最大值光強度的波 長。非周期圖案的例子包括非周期的圖案、準晶態圖案(例 ”有8重對稱性的準晶態圖案)、魯賓遜(R〇bins〇n) 圖案、及安曼(A_an)圖案。非周期圖案也可包括去諧 (detUned)圖案(如在Erchak et al.的美國專利第6831 302 號中者,其在此一併完整供做參考)。在某些實施例 中 装置可包括粗糙表面。例如,表面粗糙度可具有一 1024-9835-PF 41 200912478 均方根(rms)粗糙度,其大約等於可與發射的光之波長有關 的一平均特徵尺寸。 在某些實施例中,發光裝置的界面係以可形成光子晶 才《的孔被圖案化。具有空間地變化(例如,光子晶格)的介 電函數之適合的LED已被說明於例如2003年十一月26日 申請的美國專利6831 302 B2中,名稱為” Light emitting devices with improved extraction efficiency” ,其在 此一併完整供做參考。LED之高擷取效率意味著高功率的 發射光,由此可得到高亮度,其可能在不同的光學系統中 疋被希望的。 應瞭解其他圖案也是可能的,包括一圖案,其符合根 據數孚函數的先驅圖案(precursor pattern)的變形,包 括但非限定於角位移變%。圖案也可包括變形圖案的一部 分,包括但非限定於符合角位移變形的圖案。圖案也可包 括具有經由旋轉彼此相關的圖案之區域。各種此等圖案被For example, the wavelength with the maximum light intensity when measured using a spectrometer (4). Examples of aperiodic patterns include aperiodic patterns, quasi-crystalline patterns (for example, quasi-crystalline patterns with 8 symmetry), Robinson (R〇bins〇n) patterns, and Amman (A_an) patterns. The periodic pattern may also include a detUned pattern (as in U.S. Patent No. 6,831, 292, issued to Erchak et al. For example, the surface roughness can have a 1024-9835-PF 41 200912478 root mean square (rms) roughness that is approximately equal to an average feature size that can be related to the wavelength of the emitted light. In some embodiments, the illumination The interface of the device is patterned with holes that form photonic crystals. Suitable LEDs with dielectric functions that vary spatially (eg, photonic lattices) have been described, for example, on November 26, 2003. In US Pat. No. 6,831,302 B2, the name is "Light emitting devices with improved extraction efficiency", which is hereby incorporated by reference in its entirety. The high extraction efficiency of LEDs means high-powered emitted light, thereby obtaining high brightness. It may be desirable in different optical systems. It is to be understood that other patterns are also possible, including a pattern that conforms to the deformation of the precursor pattern according to the number of functions, including but not limited to angular displacement. The pattern may also include a portion of the morphing pattern, including but not limited to a pattern that conforms to angular displacement deformation. The pattern may also include regions having patterns that are related to one another via rotation. Various such patterns are

說明在2006年三月7日申請的美國專利刊物第 20070085098 Patterned devices and related methods” ,其在此一併完整供做參考。 光可由LED產生如下。相對於n側接觸概塾,p側接 觸層可被保持於正電位,其使得電流净皮注入纟led中。當 電流通過作用區時,來自_雜層的電子可在作用區與來 自P摻雜層的電洞結合’其可使得作用區產生&amp;。作用區US Patent Publication No. 20070085098, Patterned devices and related methods, filed March 7, 2006, which is hereby incorporated by reference in its entirety. The light can be produced by LEDs as follows: p-side contact layer relative to the n-side contact profile Can be maintained at a positive potential, which causes the current to be injected into the 纟led. When current flows through the active region, electrons from the _heterogeneous layer can be combined with the hole from the P-doped layer in the active region, which can make the active region Generate &amp; action area

可包含許多點偶極輻射源、,其產生具有形成㈣區的㈣ 之波長特徵譜(Spectrum of wavelength characteristi 1024-983 5-PF 42 200912478 的光。對於InGaN/GaN量子井,由光產生區域產生的光之 波長譜可具有約45奈米(nm)的峰值波長及約3q腿的半高 全'寬(FWHM)’其由人眼感知為藍光。纟LO發射的光可能 被光通‘過的任何圖案.化表面导:鄉 _ ^ 〜a ’圖案可藉以排列以影響 光擷取及/或準直。 在其他實施例中’作用區可產生具有一峰值波長的 光’其對應於紫外光(例如,具有約37卜39{)nm的峰值波 長)、紫光(例如,具有約3 Q 0 - 4 9 η n u々 U 430nm的峰值波長)、藍光(例 如’具有約430-48〇nm的峰值波長)' #綠光(例如,且有 約權-500nra的奪值波長)、綠光(例如,具有約5〇〇 —55〇腳 的蜂值波長)、黃綠光(例如,具有約55〇_575·的峰值波 長)、黃光(例如,具有約575 —595nm的峰值波長)' 黃褐光 (例如,具有約595-605㈣的峰值波長)' 橘光(例如,且有 約6〇5-620nm的擊值波長)' 紅光(例如,具有約㈣一7〇〇隨 的峰值波長)、及/或紅外光(例如,具有、約7〇〇_12〇〇_的 峰值波長)。 在某些實施例中,LED可發射具有高的光輸出功率的 光。如前說明,發射光的高功率可為影響LED的光掘取效 率之圖案的結果,如,由LED發射的光可具有一總功率, 其大於0.5瓦(例如,大於!瓦、大於5瓦、大於1〇瓦)。 在—些實施例中’雖'然不應被解釋為所有實施例的限制, 2的光具有小於⑽瓦的總功率。自LED發射的光之總 工可使用裝備有例如Sphere 〇pUcs ub的 之光請儀的積分球加以測量。要求的功率部分地取A plurality of point dipole radiation sources can be included which produce a wavelength spectrum of (4) forming a (four) region (Spectrum of wavelength characteristi 1024-983 5-PF 42 200912478. For InGaN/GaN quantum wells, generated by a light generating region The wavelength spectrum of light may have a peak wavelength of about 45 nanometers (nm) and a half-height full width (FWHM) of about 3q legs, which is perceived by the human eye as blue light. The light emitted by 纟LO may be passed through by light. Any pattern of the surface guide: the township _ ^ ~ a 'pattern can be arranged to affect the light extraction and / or collimation. In other embodiments 'acting region can produce light with a peak wavelength' which corresponds to ultraviolet Light (eg, having a peak wavelength of about 37 Bra 39{) nm), violet light (eg, having a peak wavelength of about 3 Q 0 - 4 9 η nu 々 U 430 nm), blue light (eg, having about 430-48 〇 nm) Peak wavelength) '#green light (for example, and has a weighted wavelength of -500nra), green light (for example, a bee-value wavelength of about 5〇〇-55 feet), yellow-green light (for example, having about 55峰值_575· peak wavelength), yellow light (for example, having about 575-5 A peak wavelength of 95 nm) 'yellow light (for example, having a peak wavelength of about 595-605 (four)) 'orange light (for example, and having an attack wavelength of about 6 〇 5-620 nm) 'red light (for example, having about (four) one 7 〇〇 peak wavelength), and / or infrared light (for example, having a peak wavelength of about 7 〇〇 _12 〇〇 _). In some embodiments, the LED can emit light having a high light output power. As previously explained, the high power of the emitted light can be a result of a pattern that affects the efficiency of the light-harvesting of the LED. For example, the light emitted by the LED can have a total power greater than 0.5 watts (eg, greater than! watts, greater than 5 watts). , greater than 1 watt). In some embodiments, 'though' should not be construed as limiting the scope of all embodiments, the light of 2 has a total power of less than (10) watts. The total light emitted from the LED can be measured using an integrating sphere equipped with a light meter such as the Sphere 〇pUcs ub. Partially required power

1024-9835-PF 43 200912478 決於LED被使用於其中的光學系統。例如,一顯示系統(例 如’ LCD系統)可受益於結合高亮度LED,其可減少被用以 照明顯示系統的LED的總數。 由LED產生的光也可具有高的總功率通量。如在此使 用者,名詞’’總功率通量”意指除以發射面積的總光功 率。在一些實施例中’總功率通量係大於〇. 〇3 Watts/mm2、 大於 0.05 Watts/mm2、大於 〇,1 Watts/mm2、大於 〇 2 (.Wans/mm2。不過,應瞭解被使用於系統中的LED及在此提 出的方法並未被限定於上述功率及功率通量值。 在一些貫施例中,LED可與一或多個波長轉換區域結 合。波長轉換區域可包括一或多個磷及/或量子點。波長轉 換區域可吸收由LED的光產生區域發射的光並且發射具有 與被吸收者不同的波長的光。以此方式,LED可發射無法 輕易由未包括波長轉換區域的LED獲得的波長(從而顏色) 的光。在一些實施例中,一或多個波長轉換區域可被(直接 (地)設置在發光裝置的發射面(例如,表面38)上。 如在此使用者,LED可為一 LED晶粒、一部分封裝的 LED晶粒、或是一完全封裝的LE])晶粒。應瞭解led可包 括彼此結合的二或多個LED晶粒,例如,一紅色發光[肋 曰曰粒、一綠色發光LED晶粒、一藍色發光LED晶粒、一青 綠色發光LED晶粒、或一黃色發&amp; LE])晶粒。例如,二或 多個結合的LED晶粒可被固定在共同的封裝上。二或多個 LED晶粒可被結合,使得它們各自發射的光可被結合以產 生要求的光譜發射。二或多個LED晶粒也可彼此被電氣地1024-9835-PF 43 200912478 Depends on the optical system in which the LED is used. For example, a display system (e.g., an 'LCD system) can benefit from combining high brightness LEDs, which can reduce the total number of LEDs used to illuminate the display system. Light produced by the LEDs can also have a high total power flux. As used herein, the term ''total power flux') means the total optical power divided by the area of the emission. In some embodiments, the total power flux is greater than 〇. 〇3 Watts/mm2, greater than 0.05 Watts/mm2 , greater than 〇, 1 Watts/mm2, greater than 〇 2 (.Wans/mm2. However, it should be understood that the LEDs used in the system and the methods proposed herein are not limited to the above power and power flux values. In one embodiment, the LED can be combined with one or more wavelength conversion regions. The wavelength conversion region can include one or more phosphorous and/or quantum dots. The wavelength conversion region can absorb light emitted by the light generating region of the LED and emit Light of a different wavelength than the absorbed person. In this way, the LED can emit light that cannot be easily obtained by the wavelength (and thus color) of the LED that does not include the wavelength conversion region. In some embodiments, one or more wavelength conversion regions It can be placed (directly) on the emitting surface of the illuminating device (eg, surface 38). For example, the LED can be an LED die, a partially packaged LED die, or a fully packaged LE. ]) grain. should understand l Ed may include two or more LED dies that are combined with each other, for example, a red illuminating [rib 曰曰 grain, a green illuminating LED dies, a blue illuminating LED dies, a cyan illuminating LED dies, or a yellow </ RTI> &lt; LE]) dies. For example, two or more combined LED dies can be mounted on a common package. Two or more LED dies can be combined such that their respective emitted light can be combined Producing the required spectral emission. Two or more LED dies can also be electrically connected to each other

1024-9835-PF 44 200912478 結合(例如,被連接至共同的地)。 如在此使用者’當一結構(例如,層、區域)被說是’, 在另一結構上”或是”被另一結構支撐”時,其可為直接 在結構上,或是也可存在中間的結構(例如,層、區域)。 一結構’’直接在另一結構上”或是,’接觸另一結構,,意指 未存在中間的結構。 士此D兒明本發明之至少一實施例的數個面向,應知對 於=知此技藝者可輕易地進行不同的變化、修改、及改善。 此寺變化、修改、及改善係本說明書的一部分,且係位於 本發明的精神愈p * -軏嚀内。因此,如面的說明及圖式僅係用 於例示。 【圖式簡單說明】 料的照明組 圖1A係柄姑 . , 艮據一貫施例之包括波長轉換材 合的立體圖; 圖 1B係;4本 區域的照明組 、根據一實施例之包括錐形擷取 合的剖面圖; 圖1C儀;jp祕 。很據—實施例之包括做為背光單元的照明組 &amp;之顯不裔的剖面圖; 圖2A-B係^ 的方法之流r 、根據一實施例之波長轉換及空間均質化光 圖, 圖3A係舻械 化密 x據—實施例之具有波長轉換材料的空間變 又’、?'明級合的剖面圖; 圖3B係; X康一實施例之波長轉換材料的密度對與光1024-9835-PF 44 200912478 Combined (eg, connected to a common ground). As the user's structure (eg, layer, region) is said to be 'on another structure' or "supported by another structure", it may be directly on the structure, or There are intermediate structures (eg, layers, regions). One structure 'directly on another structure' or 'contact another structure' means that there is no intermediate structure. In view of the several aspects of at least one embodiment of the present invention, it will be apparent that various changes, modifications, and improvements can be readily made by those skilled in the art. This temple change, modification, and improvement is part of this specification and is within the spirit of the present invention. Therefore, the description and drawings are merely illustrative. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a perspective view of a conventional embodiment including a wavelength conversion material; FIG. 1B is a diagram; 4 illumination group of the region, including a cone according to an embodiment. Take a cross-sectional view; Figure 1C; jp secret. It is evident that the embodiment includes a cross-sectional view of the illumination group &amp; as a backlight unit; FIG. 2A-B is a flow of method r, a wavelength conversion according to an embodiment, and a spatially homogenized light pattern, 3A is a cross-sectional view of a spatially-converted, </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt;

1024-9835-PF 45 200912478 源的距離之圖表; 圖4係根據一實施例之具有由波長轉換材料之不同的 微觀密度造成的波長轉換材料的空間變化密度之照明組合 的剖面圖, 圖5係根據一實施例之具有由波長轉換材料之不同的 厚度造成的波長轉換材料的空間變化密度之照明組合的刹 面圖; 圖6係根據一實施例之具有由複數個波長轉換材料區 域之不同的空間排列造成的波長轉換材料的空間變化密度 之照明組合的上視圖; 圖7係根據-實施例之具有由複數個波長轉換材料區 域之不同的大小造成的波長轉換材料的空間變化密度之照 明組合的上視圖; --w -Γ «ν 7L· w m ύ 包括波長轉換材料之照明組合的剖面圖及上視圖. 圖9係根據一實施例之在光導的背面之下包括波^ 換材料的照明組合的剖面圖; 圖10得、根據_實施例之在%導的光發射面上包參 長轉換材料的照明組合的剖面圖; 圖11A係根據—實施例之包括複數個 域的照明組合的上視圖; 得換材+ 圖11B係根據—實施例之包括複數個波 域的照明組; 換材+ 圖HB分別係根據一實施例之包括波長轉換材半1024-9835-PF 45 200912478 Source distance chart; FIG. 4 is a cross-sectional view of a lighting combination having a spatially varying density of wavelength converting material caused by different microscopic densities of wavelength converting materials, according to an embodiment, FIG. A side view of an illumination combination having a spatially varying density of wavelength converting material caused by different thicknesses of wavelength converting material, according to an embodiment; FIG. 6 is a graph having a plurality of regions of a plurality of wavelength converting materials according to an embodiment. A top view of the illumination combination of the spatially varying density of the wavelength converting material caused by the spatial arrangement; FIG. 7 is an illumination combination having a spatially varying density of the wavelength converting material caused by different sizes of the plurality of wavelength converting material regions according to the embodiment. Top view; --w -Γ «ν 7L· wm 剖面 Cross-sectional view and top view of the illumination combination including the wavelength conversion material. Figure 9 is an illumination comprising a wave-switching material under the back side of the light guide, according to an embodiment. A cross-sectional view of the combination; FIG. 10 is a cross-sectional view of the illumination combination of the ginseng conversion material on the %-guided light-emitting surface according to the embodiment. Figure 11A is a top view of a lighting combination comprising a plurality of domains according to an embodiment; a replacement material + Figure 11B is an illumination group comprising a plurality of wave domains according to an embodiment; a material change + a chart HB According to an embodiment, a wavelength conversion material half is included

1024-9835-PF 46 200912478 照明組合的剖面圖及上視圖; @域的照 圖13係根據一實施例之包括波長轉換材料 明組合的上視圖; , 、圖14A-B分別係根據一實施例之包括波長轉換材料及 一或多個波長濾光器的照明組合的剖面圖及上視圖; 圖UA-B分別係根據一實施例之包括波長轉換材料的 照明組合的剖面圖及上視圖;及 圖16係根據一實施例之固態發光裝置的立體圖。 【主要元件符號說明】 31 ·多層堆疊; 32 :導電層; 3 3 : p摻雜層; 34 :作用區; 3 5 : η摻雜層; 36 :接觸襯墊; 38、121 :光發射面; 39 :孔; l〇〇a、10 0b、300、400、600、700、800、900、1〇〇〇、 1100a、1100b、1 20 0、1 300、1 400、1 500 :照明組合; 100c :顯示器; 101 :曲線; 102 、 153 :光; 104 :間隔; 1024-9835-PF 47 200912478 110 :光導; 11 2 :光均質化區域; 11 3 :光輸出邊界; 11 4.:光擷取區域; ' 11 6 :波長轉換材料區域, 11 6 a - c :點; 11 7 :波長轉換材料; 11 8 :光散射特徵; 120、121 :光發射面; 122:光輸入邊緣; 124 :反射器; 1 2 5 :反射面; 1 2 6 :反射層; 128、129、132 :波長濾光器; 1 5 0 :固態發光裝置; 152 :主要光; 1 5 3 :次要光; 159 :導熱平面; 172 :第一位置; 174 :第二位置; 1 81 :中心部分; 182 :角落部分; 190 :層; 1600 : LED 。 481024-9835-PF 46 200912478 A cross-sectional view and a top view of the illumination combination; FIG. 13 of the @ domain is a top view including a combination of wavelength conversion materials according to an embodiment; and FIGS. 14A-B are respectively according to an embodiment A cross-sectional view and a top view of a combination of illumination comprising a wavelength converting material and one or more wavelength filters; FIGS. UA-B are respectively a cross-sectional view and a top view of a lighting combination including a wavelength converting material according to an embodiment; Figure 16 is a perspective view of a solid state lighting device in accordance with an embodiment. [Description of main component symbols] 31 · Multi-layer stacking; 32: Conductive layer; 3 3 : p-doped layer; 34: active region; 3 5 : n-doped layer; 36: contact pad; 38, 121: light-emitting surface 39: hole; l〇〇a, 10 0b, 300, 400, 600, 700, 800, 900, 1〇〇〇, 1100a, 1100b, 1 20 0, 1 300, 1 400, 1 500: lighting combination; 100c: display; 101: curve; 102, 153: light; 104: interval; 1024-9835-PF 47 200912478 110: light guide; 11 2: light homogenization area; 11 3: light output boundary; Take the region; ' 11 6 : wavelength conversion material region, 11 6 a - c : point; 11 7 : wavelength conversion material; 11 8 : light scattering characteristics; 120, 121: light emitting surface; 122: light input edge; Reflector; 1 2 5 : reflective surface; 1 2 6 : reflective layer; 128, 129, 132: wavelength filter; 1 50: solid state light-emitting device; 152: primary light; 1 5 3: secondary light; : heat conducting plane; 172: first position; 174: second position; 1 81: center portion; 182: corner portion; 190: layer; 1600: LED. 48

1024-9835-PF1024-9835-PF

Claims (1)

200912478 十、申請專利範圍: 1 · 一種照明組合,包括: 至少一固態發光裝置; 一發射面’光係通過其被發射;及 一波長轉換材料,其轉換由固態發光裴置發射的至少 f些光的波長’波長轉換材料具有在第一位置之發射面二 每單位面積的第-密度及在第二位置之發射面的每單位面 積的第二密度,其中,第0母早位面 〇丁 罘一在厪貫貝上不同於第一密度, 且其中’每單位面積的密度係以lxl cm2的平均面積_ 義。 2.如申請專利範圍第丨項的照明組合,1中,至小苦 ^由於,長轉換材料在第—位置及第二位置之不同的= 饴度’第二密度實質上不同於第一密度。 3·如申請專利範圍第丨項的照明組合’其中,至少部 分由於波長轉換材料在第—位置及第二位置之不同= 度,第二密度實質上不同於第一密度。 予 4·如申請專利範圍第1項的照明組合,更包括複數個 波長轉換材料區域,其包括波長轉換材料,且其中,至小 部分由於複數個波長轉換材料區域在第—位置及第二位1 之不同的空間排列,第二密度實質上不同於第—密度。 5.如申請專利範圍第4項的照明組合,其/,複數個 波長轉換材料區域具有大體上類似的形狀。 6·如申請專利範圍第i項的照明組合,更包括複數個 波長轉換材料區域’其包括波長轉換材料…中… 1024-9835-PF 49 200912478 部分由於複數個波長轉換材料區域在第一位置及第二位置 之不同的大小’第二密度實質上不同於第一密度。 ^7.如申請專利範圍第丨項的照明組合’其中,第二位 置係比第一位置更加遠離固態發光裝置且第二密度實質上 係大於第一密度。 卜8·如申請專利範圍第1項的照明組合,其中,第一及 第-始、度係使得來自第-位置的波長轉換光強度係來自第 二位置的波長轉換光強度之至少9〇%且不大於來自第二位 置的波長轉換光強度之U 〇%。 9·如申請專利範圍帛i項的照明組合,其中,第二密 度係大於第ϋ或等於第一密度的兩倍。 10.如申請專利範圍第i項的照明組合,其中 轉換材料包括磷。 、 u·如申請專利範圍第!項的照明組合,其中,波長 轉換材料具有一密度’其遠離固態發光裝置而進一步增加。 如申請專利範圍第!項的照明組合,其中 組合更包括: 〜 ^ 光V,被配置以接收由固態發光裝置發射的光, 導具有接收的光沿著其傳播的一長度,且 /、中波長轉換材料具有沿著光導的長度改變之發 面的每單位面積的密度。 I “ I3.如申請專利範圍第12項的照明组合,其中,沪 發射面的每單位面積之波長轉換材料的二 係心者4者光導的長度的距離單調地改變。 1024-9835-PF 50 200912478 14·如申請專利範圍第12項的照明組合,其中,光導 包括—邊緣,被配置以接收由固態發光裝置發射的光。 1 5.如申請專利範圍第.1 2項的照明組合,其中,波長 轉換材料至少部分地被設置在光導内。 1 6.如申請專利範圍第i2項的照明組合,其中,波長 轉換材料至少部分地被設置在光導的光發射面上。 1 7·如申請專利範圍第i 2項的照明組合,其中,波長 r轉換材料至少部分地被設置以與光導的光發射面接觸。 % 1 8.如申請專利範圍第12項的照明組合,其中,光導 匕括月面’其相對於光導的光發射面,且其中,波長轉 換材料至少部分地被設置在背面之下。 i9·如申請專利範圍第18項的照明組合,其中,波長 轉換材料至少部分地被設置以與光導的背面接觸。 20.如申請專利範圍第12項的照明組合,其中,波長 轉換材料在以來自固態發光裝置之較高強度的光照明的: (置/、有t匕在以纟自固恕發光裝置之較低強度白勺《照明的位 置低的密度。 21·如申請專利範圍第1項的照明組合,其中,波長 轉換材料包括ί粦。 照明組合,其中,固態 ’波長轉換材料被設置 22.如申請專利範圍第!項的 發光裝置包括一光發射面,且其中 在固態發光裝置的光發射面上。 23. 如申請專利範圍第22項的照明組合,其中,至少 固悲發光裝置包括複數個固態發光裝置,其位於第一平 1024-9835-PF 51 200912478 —平面平行的 面上,且其中,第一及第- 久乐一位置係位於與第 苐—平面之不同位置。 24.如申請專利範圍第23項的照明組合, 轉換材料在以來自複數個固態發光裝置之較高強度的光照 明的位置具有比在以來自複數個固態發光裝置之較低強度 的光照明的位置低的密度。 25. —種照明組合,包括: 一固態發光裝置; -光導’被配置以接收由固態發光裝置發射的光,光 導具有接收的光沿著其傳播的一長度及大體上平行於光導 的長度且光通過其被發射的發射面;及 一波長轉換材料,具有發射面的每單位面積的一密 度’其大體上沿著光導的長度增加。 26. 一種顯示器,包括: 至少一固態發光裝置; 一發射面,光通過其被發射; 一波長轉換材料,其轉換由固態發光裝置發射的至少 某些光的波長,波長轉換材料具有在第一位置之發射面的 每單位面積的第一密度及在第二位置之發射面的每單位面 積的第二密度,其中,第二密度實質上不同於第一密度, 且其中,每單位面積的密度係以lxl cm2的平均面積被定 義;及 一液晶層,被排列以接收由波長轉換材料發射的至少 某些波長被轉換的光。 1024-9835-PF 52 200912478 2 7. 一種顯示器,包括: 至少一固態發光裝置; 一第一波長轉換材料區域’其將由固態發光裝置發射 的至少某些光的波長轉換至第一波長譜; 一第二波長轉換材料區域’其將由固態發光裝置發射 的至少某些光的波長轉換至與第一波長譜不同的第二波長 譜; &amp; 一液晶層,包括 C 一第一像素光閥,被排列以接收由第一波長轉換材料 發射的至少某些波長被轉換的光’及 一第二像素光閥’被排列以接收由第二波長轉換材料 發射的至少某些波長被轉換的光。 28· 一種製造照明組合的方法,包括: 提供至少一固態發光裝置;及 提供一波長轉換材料,其轉換由固態發光裝置發射的 I至V某些光的波長,波長轉換材料具有在第一位置之發射 面的每單位面積的第一密度及在第=位置之㈣面的每單 位面積的第-岔度’其中,第二密度實質上不同於第一密 八中母單位面積的密度係以1 X1 cm2的平均面積 被定義。 29·—種照明組合,包括: 至少—固態發光裝置;及 至少—光導’包括 光岣質化區域’被配置以接收由固態發光裝置發射 '1024-9835-PF 53 200912478 光均質化區域大體上均勻地 光’光均質化區域包括一波 的光並且包括一光輸出邊界, 分配被輸出在光輸出邊界上的 長轉換材料,其被設置在光均質化區域的至少一部分内。 30.如申請‘專利範圍第29項的照明組合,其中,至少 -先導更包括一光擷取區域,被配置以從光均質化區域接 收光,光絲區域具有接收的光沿著其傳播的—長度及光 通過其被發射的發射面。 X 31.如申請專利範圍第29項的照明組合,其中,波長 轉換材料被設置遍佈光均質化區域。 32_如申請專利範圍第 轉換材料對於光均質化區域 度。 29項的照明組合,其中,波長 中的至少二位置具有變化的密 波長 33.如申請專利範圍第32項的照明組合,其中 轉換材料的密度在光輸出邊界上最高。 波長 34·如申請專利範圍第32項的照明組合,豆中 轉換材料的密度在光輸出邊界上最低。 〃 波長 35.如申請專利範圍第29項的照明組合,其中 轉換材料包括第—Ώ ^ , r E 及第一波長轉換材料,且其中,第一波 長轉換材料被配置以發射第— 波長弟二波長轉換材料 被配置以發射與第一主波長不同的第二主坡長,且立中, ==換材料被設置在固態發光裝置及第二波長轉換 材枓之間的光學路徑中。 36·如申請專利範圍第35項的照明組合,其中, 主波長係大於第二主波長。 1024-9835-PF 54 200912478 37·如申請專利範圍第35項的照明組合,其中,第— 主波長係小於第二主波長。 38. 如申請專利範圍第35項的照明組合,更包括一波 長濾光器,被設置在第一及第二波長轉換材料之間的光學 路祆中,且被配置以反射由第二波長轉換材料發射的光並 且透射由第一波長材料及固態發光裝置發射的光。 39. 如申請專利範圍第29項的照明組合,其中,至少 f ' 一光導包括一矩形波導且光輸出邊界係矩形波導的矩形截 、 面。 40_如申請專利範圍第29項的照明組合,其中,波長 轉換材料包括鱗。 41. 一種照明組合,包括: 至少一固態發光裝置;及 至少一光導,包括 一光均質化區域,被配置以接收由固態發光裝置發射 的光並且包括一光輸出邊界,光均質化區域大體上均勻地 分配被輸出在光輸出邊界上的光,及 一光擷取區域,被配置以從光均質化區域的光輸出邊 界接收光,光擷取區域包括一波長轉換材料,其被配置在 光擷取區域的至少一部分内,光擷取區域具有接收的光沿 著其傳播的一長度及光通過其被發射的發射面。 4 2 _ —種液晶顯不系統,包括: 一液晶顯示面板,具有一照明區域; 至少一固悲發光裝置,與液晶顯示面板相結合,使得 1024-9835-PF 55 200912478 由固態發光裝置發射的光照明液晶顯示面板;及 一波長轉換材料,被設置以遠離至少一固態發光裝置, 其中,照明區域的每個in2之固態發光裝置的數目係小 於 100 〇 4 3. —種照明組合,包括: 至少一固態發光裝置; 一光導,被配置以接收由固態發光裝置發射的光,光 導具有接收的光沿著其傳播的一長度及光通過其被發射的 發射面; 波長轉換材料,被設置在固態發光裝置及光導的發 射面之間的光學路徑中;及 波長慮光器’被設置在固態發光裝置及波長轉換材 料之間的光學路徑中。 44.如申請專利範圍第43項的照明組合,更包括一光200912478 X. Patent application scope: 1 · A lighting combination comprising: at least one solid state light emitting device; an emitting surface through which a light system is emitted; and a wavelength converting material that converts at least some of the light emitted by the solid state light emitting device The wavelength of the light 'wavelength converting material has a first density per unit area of the emitting surface at the first position and a second density per unit area of the emitting surface at the second position, wherein the 0th mother is in the early position The first one differs from the first density in the stalk, and the density per unit area is the average area of lxl cm2. 2. For the illumination combination of the scope of the patent application, in the case of 1, the small bitter, the long conversion material in the first position and the second position = the second density is substantially different from the first density . 3. The illumination assembly of claim </RTI> wherein the second density is substantially different from the first density due to at least a portion of the wavelength conversion material being different at the first position and the second position. 4. The illumination assembly of claim 1, further comprising a plurality of wavelength conversion material regions including a wavelength conversion material, and wherein a portion of the plurality of wavelength conversion material regions are at the first position and the second portion The different spatial arrangements of 1 are substantially different from the first density. 5. The illumination assembly of claim 4, wherein the plurality of wavelength converting material regions have substantially similar shapes. 6. The illumination combination of claim i of the patent scope further includes a plurality of wavelength conversion material regions 'including wavelength conversion materials... 1024-9835-PF 49 200912478 partly due to the plurality of wavelength conversion material regions being in the first position and The different sizes of the second locations 'the second density are substantially different from the first density. [7] The illumination assembly of claim </RTI> wherein the second location is further from the solid state illumination device than the first location and the second density is substantially greater than the first density. 8. The illumination combination of claim 1, wherein the first and first wavelengths cause the wavelength converted light intensity from the first position to be at least 9% of the wavelength converted light intensity from the second position. And not greater than U 〇 % of the wavelength converted light intensity from the second position. 9. The illumination combination of claim ii, wherein the second density is greater than or equal to twice the first density. 10. The lighting assembly of claim i, wherein the conversion material comprises phosphorus. , u · such as the scope of patent application! A lighting combination of items wherein the wavelength converting material has a density & which is further increased away from the solid state lighting device. Such as the scope of patent application! The illumination combination of items, wherein the combination further comprises: ~ ^ Light V, configured to receive light emitted by the solid state lighting device, having a length along which the received light propagates, and /, the medium wavelength converting material having along The length of the light guide changes the density per unit area of the hair surface. I "I3. The illumination combination of claim 12, wherein the distance of the length of the light guide of the two-centered wavelength-converting material per unit area of the Shanghai emitting surface monotonously changes. 1024-9835-PF 50 The illumination assembly of claim 12, wherein the light guide comprises an edge configured to receive light emitted by the solid state light emitting device. 1 5. A lighting combination as claimed in claim 126, wherein The wavelength conversion material is at least partially disposed within the light guide. 1 6. The illumination assembly of claim i, wherein the wavelength conversion material is at least partially disposed on a light emitting surface of the light guide. The illumination combination of clause i2, wherein the wavelength r-conversion material is at least partially disposed to be in contact with the light-emitting surface of the light guide. % 1 8. The illumination assembly of claim 12, wherein the light guide includes The lunar surface 'its light emitting surface relative to the light guide, and wherein the wavelength converting material is at least partially disposed under the back surface. i9 · Illumination combination as claimed in claim 18 Wherein the wavelength converting material is at least partially disposed to contact the back side of the light guide. 20. The lighting combination of claim 12, wherein the wavelength converting material is illuminated with light of higher intensity from the solid state lighting device: (Setting /, there is a lower density of illumination in the lower intensity of the illuminating device.) The illumination combination of the first item of the patent application, wherein the wavelength conversion material includes 粦A lighting combination in which a solid state 'wavelength converting material is provided. 22. The light emitting device of claim 2 includes a light emitting surface, and wherein the light emitting surface of the solid state light emitting device. The lighting combination of item 22, wherein at least the solid-state light-emitting device comprises a plurality of solid-state light-emitting devices, which are located on a first plane 1024-9835-PF 51 200912478-plane parallel plane, and wherein the first and the first - a long music The position is located at a different position from the 苐-plane. 24. As in the illumination combination of claim 23, the conversion material is in a plurality of solid state The higher intensity light illumination position of the optical device has a lower density than the position illuminated by the lower intensity light from the plurality of solid state illumination devices. 25. A lighting combination comprising: a solid state illumination device; - a light guide 'configured to receive light emitted by the solid state light emitting device, the light guide having a length along which the received light propagates and an emission surface substantially parallel to the length of the light guide and through which the light is emitted; and a wavelength converting material having A density per unit area of the emitting surface 'which increases substantially along the length of the light guide. 26. A display comprising: at least one solid state light emitting device; an emitting surface through which light is emitted; a wavelength converting material that converts a wavelength of at least some of the light emitted by the solid state light emitting device, the wavelength converting material having a first density per unit area of the emitting surface at the first location and a second density per unit area of the emitting surface at the second location, wherein The second density is substantially different from the first density, and wherein the density per unit area is determined by an average area of lxl cm 2 And a liquid crystal layer arranged to receive light converted by at least some of the wavelengths emitted by the wavelength converting material. 1024-9835-PF 52 200912478 2 7. A display comprising: at least one solid state light emitting device; a first wavelength converting material region 'which converts a wavelength of at least some of the light emitted by the solid state light emitting device to a first wavelength spectrum; a second wavelength converting material region 'which converts a wavelength of at least some of the light emitted by the solid state light emitting device to a second wavelength spectrum different from the first wavelength spectrum; &amp; a liquid crystal layer comprising a first pixel light valve Light 'and a second pixel light valve' arranged to receive at least some of the wavelengths emitted by the first wavelength converting material are arranged to receive light converted by at least some of the wavelengths emitted by the second wavelength converting material. 28. A method of making a lighting assembly, comprising: providing at least one solid state lighting device; and providing a wavelength converting material that converts wavelengths of certain light from I to V emitted by the solid state lighting device, the wavelength converting material having a first position a first density per unit area of the emitting surface and a first-thickness per unit area of the (four) plane at the = position, wherein the second density is substantially different from the density of the unit area of the first octave The average area of 1 X1 cm2 is defined. 29. A lighting combination comprising: at least - a solid state light emitting device; and at least - a light guide 'comprising a lighted region' configured to receive a '1024-9835-PF 53 200912478 light homogenized region emitted by the solid state light emitting device The uniform light 'light homogenization region includes a wave of light and includes a light output boundary that distributes a long transition material that is output on the light output boundary, which is disposed within at least a portion of the light homogenization region. 30. The illumination assembly of claim 29, wherein the at least - the pilot further comprises a light extraction region configured to receive light from the light homogenization region, the filament region having the received light propagating therethrough - the length and the emitting surface through which the light is emitted. X. The illumination combination of claim 29, wherein the wavelength converting material is disposed throughout the light homogenizing region. 32_ as in the scope of application for the conversion material for the area of light homogenization. The lighting combination of item 29, wherein at least two of the wavelengths have a varying dense wavelength. 33. The illumination combination of claim 32, wherein the density of the conversion material is highest at a light output boundary. Wavelength 34. As in the illumination combination of claim 32, the density of the conversion material in the bean is lowest at the light output boundary. 。 wavelength 35. The illumination assembly of claim 29, wherein the conversion material comprises a first Ώ ^ , r E and a first wavelength conversion material, and wherein the first wavelength conversion material is configured to emit a first wavelength The wavelength converting material is configured to emit a second main slope length that is different from the first dominant wavelength, and the centering, == changing material is disposed in the optical path between the solid state lighting device and the second wavelength converting material. 36. The illumination assembly of claim 35, wherein the dominant wavelength is greater than the second dominant wavelength. 1024-9835-PF 54 200912478 37. The illumination combination of claim 35, wherein the first dominant wavelength is less than the second dominant wavelength. 38. The illumination assembly of claim 35, further comprising a wavelength filter disposed in the optical path between the first and second wavelength converting materials and configured to reflect the second wavelength conversion The light emitted by the material transmits and transmits light emitted by the first wavelength material and the solid state light emitting device. 39. The illumination assembly of claim 29, wherein at least f' a light guide comprises a rectangular waveguide and the light output boundary is a rectangular section of the rectangular waveguide. 40. The illumination assembly of claim 29, wherein the wavelength conversion material comprises scales. 41. A lighting combination comprising: at least one solid state light emitting device; and at least one light guide comprising a light homogenizing region configured to receive light emitted by the solid state light emitting device and comprising a light output boundary, the light homogenizing region being substantially Evenly distributing the light outputted on the light output boundary, and a light extraction region configured to receive light from a light output boundary of the light homogenization region, the light extraction region comprising a wavelength conversion material disposed in the light Within at least a portion of the capture region, the light extraction region has a length along which the received light propagates and an emission surface through which the light is emitted. 4 2 _ - a liquid crystal display system, comprising: a liquid crystal display panel having an illumination area; at least one solid illumination device combined with the liquid crystal display panel such that 1024-9835-PF 55 200912478 is emitted by the solid state light emitting device The light illuminating liquid crystal display panel; and a wavelength converting material disposed to be away from the at least one solid state light emitting device, wherein the number of the solid state light emitting devices of each in2 of the illumination region is less than 100 〇 4 3. The lighting combination comprises: At least one solid state light emitting device; a light guide configured to receive light emitted by the solid state light emitting device, the light guide having a length along which the received light propagates and an emitting surface through which the light is emitted; a wavelength converting material disposed at The optical path between the solid state light emitting device and the emitting surface of the light guide; and the wavelength filter 'are disposed in the optical path between the solid state light emitting device and the wavelength converting material. 44. The lighting combination of claim 43 of the patent application includes a light 均質化區域,被設置在固態發光裝置及光導的發射面之間 的光學路徑中。 45.如申睛專利範圍第44項的照明組合,其中,波長 轉換材料係被設置在光均質化區域内。 46.如申請專利範圍第 轉換材料係被設置在光均質 輸出側上。 44項的照明組合,《中,波長 化區域的-或多個光輪入或光 7.如申請專利範圍第44項的照明組合,甘 遽光器包括在光的哲/μ广上 中’波長 勻λ化區域的一光輸入側上# 光器,其中,第—y &lt;弟—短波濾 弟短波濾光器被配置以透射來 夂目固態發光 1024-9835-PF 56 200912478 裝置的光並且反射來自波長轉換材料之波長被轉換的光。 48. 如申請專利範圍第47項的照明組合,更包括在光 句貝&gt; 化區域的一光輪出側上之一長波,濾光器,#中,長波 濾光器被配置以透射來自波長轉換材料之波長被轉換的光 並且反射來自固態發光裝置的光。 ( 49. 如申請專利範圍第〇項的照明組合,更包括—第 二短波濾、光器及與第—波長轉換材料不同的一第二波長轉 換材料中’第二短波濾光器被設置在波長轉換材料及 第二波長轉換材料之間的光學路徑中,且其中,第二短波 慮光器被配置以透射來自固態發光裝置的&amp;、透射來自波 長轉換材料之波長被轉換的光、並且反射來自第二波長轉 換材料之波長被轉換的光。 如申請專利範圍帛44項的照明組合’更包括 均質化區域的-或多個表面上之-或多個反射面。 •如申响專利範圍第43項的照明組合 轉換材料包括磷。 友長 種製造照明組合的方法,該方法包括: 提供至少一固態發光裴置;及 提供至少一光導,包括 光均質化區城,姑 被配置以接收由固態發光裂置發射 的尤並且包括—夯齡44、息田 分配被輸出在光於屮t 光均質化區域大體上均勾地 …: 邊界上的光,光均質化區域包括-波 長轉換材料,甘,姑❿f厂 /、破配置在光均質化區域的至少—部分内。 1024-9835-PF 57The homogenized region is disposed in the optical path between the solid state light emitting device and the emitting surface of the light guide. 45. The illumination assembly of claim 44, wherein the wavelength converting material is disposed within the light homogenizing region. 46. If the patent application scope conversion material is disposed on the light homogenization output side. The lighting combination of 44 items, "in the wavelength region - or multiple light in or light 7. As in the lighting combination of the 44th patent application, the gannon light device is included in the light of the zh a light-input side of the uniformized region, wherein the first-yth-thin-short-wave filter short-wave filter is configured to transmit light to the solid-state light-emitting 1024-9835-PF 56 200912478 device and Light that is converted from the wavelength of the wavelength converting material is reflected. 48. The illumination combination of claim 47, further comprising a long wave on the light exit side of the optical sentence &gt; region, the filter, #, the long wave filter is configured to transmit from the wavelength The wavelength of the converted material is converted light and reflects light from the solid state light emitting device. (49. The illumination combination according to the scope of the patent application, further comprising - the second short-wave filter, the optical device and a second wavelength conversion material different from the first-wavelength conversion material, wherein the second short-wave filter is disposed at In an optical path between the wavelength converting material and the second wavelength converting material, and wherein the second short wave optocoupler is configured to transmit &amp; from the solid state lighting device, transmit light converted from the wavelength of the wavelength converting material, and Reflecting light converted from the wavelength of the second wavelength converting material. The lighting combination as described in claim 44 includes more than - or a plurality of reflecting surfaces on the surface of the homogenized region. The illumination combination conversion material of the 43rd item includes phosphorus. The method for manufacturing a lighting combination, the method comprising: providing at least one solid state light emitting device; and providing at least one light guide, including a light homogenization zone, configured to The receiving is emitted by the solid-state light-emitting splicing, and includes - the age of 44, the interest field distribution is outputted in the light 屮t light homogenization area substantially uniformly... Light, the light on the boundary region homogenized comprising - a wavelength converting material, Gan, regardless ❿f plant /, breaking the light arranged in the region of at least homogenization - inner portion 1024-9835-PF 57
TW97126257A 2007-07-31 2008-07-11 Illumination assembly including wavelength converting material having spatially varying density TW200912478A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/831,306 US20090034230A1 (en) 2007-07-31 2007-07-31 Illumination assembly including wavelength converting material having spatially varying density
US11/831,267 US8585273B2 (en) 2007-07-31 2007-07-31 Illumination assembly including wavelength converting material

Publications (1)

Publication Number Publication Date
TW200912478A true TW200912478A (en) 2009-03-16

Family

ID=40304681

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97126257A TW200912478A (en) 2007-07-31 2008-07-11 Illumination assembly including wavelength converting material having spatially varying density

Country Status (2)

Country Link
TW (1) TW200912478A (en)
WO (1) WO2009017794A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901046A (en) * 2011-07-27 2013-01-30 欧司朗股份有限公司 Luminescent device used for pump light conversion
CN104067164A (en) * 2011-11-23 2014-09-24 Lg伊诺特有限公司 Display device
TWI493159B (en) * 2013-07-29 2015-07-21 精微超科技公司 Systems and methods for measuring high-intensity light beams
TWI504979B (en) * 2011-07-27 2015-10-21 Lg伊諾特股份有限公司 Optical member, display device and light emitting device having the same
CN106324745A (en) * 2015-07-01 2017-01-11 Lg电子株式会社 Light guide plate and planar light source device having the same
CN107407834A (en) * 2015-03-16 2017-11-28 夏普株式会社 Lighting device, display device and radiovisor
CN108932910A (en) * 2017-05-26 2018-12-04 行家光电股份有限公司 Luminescence generated by light LED display and its manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8104907B2 (en) 2009-04-29 2012-01-31 Koninklijke Philips Electronics N.V. Remote wavelength converting material configuration for lighting
WO2012127389A1 (en) * 2011-03-18 2012-09-27 Koninklijke Philips Electronics N.V. Light guide material, optical device and method
WO2013184385A1 (en) * 2012-06-04 2013-12-12 3M Innovative Properties Company Variable index light extraction layer with microreplicated posts and methods of making the same
EP3663843B1 (en) 2014-12-03 2022-02-23 Samsung Electronics Co., Ltd. White light emitting device and display device using the same
CN107450218B (en) * 2016-05-30 2020-11-03 行家光电股份有限公司 Photoluminescent display device and method of manufacturing the same
US10620478B2 (en) * 2016-05-30 2020-04-14 Maven Optronics Co., Ltd. Photoluminescent display device and method for manufacturing the same
WO2019072938A1 (en) 2017-10-10 2019-04-18 Katholieke Universiteit Leuven Lightguide plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7182498B2 (en) * 2004-06-30 2007-02-27 3M Innovative Properties Company Phosphor based illumination system having a plurality of light guides and an interference reflector
US20070045640A1 (en) * 2005-08-23 2007-03-01 Erchak Alexei A Light emitting devices for liquid crystal displays
TWI308314B (en) * 2005-12-02 2009-04-01 Chi Mei Optoelectronics Corp Liquid crystal display and driving method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901046A (en) * 2011-07-27 2013-01-30 欧司朗股份有限公司 Luminescent device used for pump light conversion
TWI504979B (en) * 2011-07-27 2015-10-21 Lg伊諾特股份有限公司 Optical member, display device and light emitting device having the same
US9574744B2 (en) 2011-07-27 2017-02-21 Lg Innotek Co., Ltd. Optical member, display device and light emitting device having the same
CN104067164A (en) * 2011-11-23 2014-09-24 Lg伊诺特有限公司 Display device
US9529138B2 (en) 2011-11-23 2016-12-27 Lg Innotek Co., Ltd. Display device
CN104067164B (en) * 2011-11-23 2017-06-27 Lg伊诺特有限公司 Display
TWI493159B (en) * 2013-07-29 2015-07-21 精微超科技公司 Systems and methods for measuring high-intensity light beams
CN107407834A (en) * 2015-03-16 2017-11-28 夏普株式会社 Lighting device, display device and radiovisor
CN106324745A (en) * 2015-07-01 2017-01-11 Lg电子株式会社 Light guide plate and planar light source device having the same
CN108932910A (en) * 2017-05-26 2018-12-04 行家光电股份有限公司 Luminescence generated by light LED display and its manufacturing method

Also Published As

Publication number Publication date
WO2009017794A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
TW200912478A (en) Illumination assembly including wavelength converting material having spatially varying density
US8585273B2 (en) Illumination assembly including wavelength converting material
US8436388B2 (en) Illumination assembly including wavelength converting material having spatially varying density
US8162526B2 (en) Light-emitting devices for liquid crystal displays
US7667238B2 (en) Light emitting devices for liquid crystal displays
US8092064B2 (en) Tiled illumination assembly and related methods
TWI235807B (en) Light guiding board, and lighting device, plane light source device and display device using the light guiding board
CN105374918B (en) Light-emitting device and the display device using the light-emitting device
CN105340094B (en) Luminaire
US7105861B2 (en) Electronic device contact structures
US8251520B2 (en) Optical display systems and methods
US20060220055A1 (en) Light emitting diode systems
US20030071564A1 (en) Light-emitting device and a display apparatus having a light-emitting device
TW201040598A (en) Light guides
TWI375080B (en) Light emitting devices for liquid crystal displays
US20110194306A1 (en) Light emitting device
TW201142436A (en) Backlight device and liquid crystal display device
Pelka et al. An overview of LED applications for general illumination
JP2009529716A (en) Liquid crystal display system including LED
CN101346818A (en) Wavelength-converting light-emitting devices
TW201411808A (en) Efficient lighting system with wide color range
CN105374919A (en) Light-emitting device and display device with use of light-emitting device
JP2006134975A (en) Lighting device and indicating device using the same
US20130033164A1 (en) Planar remote phosphor illumination apparatus
JP2016092271A (en) Phosphor sheet and lighting system