TW200911998A - Method for producing glyceric acid - Google Patents
Method for producing glyceric acid Download PDFInfo
- Publication number
- TW200911998A TW200911998A TW97117360A TW97117360A TW200911998A TW 200911998 A TW200911998 A TW 200911998A TW 97117360 A TW97117360 A TW 97117360A TW 97117360 A TW97117360 A TW 97117360A TW 200911998 A TW200911998 A TW 200911998A
- Authority
- TW
- Taiwan
- Prior art keywords
- streptomyces
- strain
- nbrc
- genus
- glycerol
- Prior art date
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
200911998 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種使用微生物從甘油製造甘油酸之方 法。 【先前技術】 生物柴油燃料(BDF)為一種碳中性的輕油替代燃料,且 目前作爲一種助於解決環境問題(例如能源枯竭、全球暖 化及空氣污染)的燃料已逐漸受到關注。 ζ% 生物柴油燃料係從植物油、動物脂肪、廢油及類似物中 製造。如今,包含甘油的廢液作爲一種副產物被製造。對 於該廢油沒有特定的用途,如今只能丟棄。 至於利用生物柴油廢液之方法,日本未審查專利公開號 2006-180782揭示一種藉由腸桿菌屬細菌從廢液的甘油製 造氫氣及乙醇之方法。200911998 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing glyceric acid from glycerol using microorganisms. [Prior Art] Biodiesel fuel (BDF) is a carbon-neutral light oil alternative fuel and is currently receiving attention as a fuel to help solve environmental problems such as energy depletion, global warming and air pollution. ζ% Biodiesel fuels are manufactured from vegetable oils, animal fats, waste oils, and the like. Today, waste liquids containing glycerin are manufactured as a by-product. There is no specific use for this waste oil and it can only be discarded today. As for the method of using the biodiesel waste liquid, Japanese Unexamined Patent Publication No. Hei No. 2006-180782 discloses a method of producing hydrogen and ethanol from waste liquid glycerol by Enterobacter bacteria.
關於有機酸之製造,日本未審查專利公開號2003-235592揭示一種藉由需氧細菌(尤其棒桿細菌)從作爲碳源 G 的葡萄糖製造有機酸之方法。PCT國際公開案WO 02/00846 Α1揭示一種從葡萄糖製造多種有機酸的菌株(曼 海姆菌屬(Mannheimia Sp.)55E)。 但是,可從甘油製造甘油酸的細菌迄今仍未知。 【發明内容】 欲有效利用資源,希望從生物柴油廢液中製造有用的物 質。 本發明之目的係提供一種以簡易方式從甘油製造甘油酸 131377.doc 200911998Regarding the production of an organic acid, Japanese Unexamined Patent Publication No. 2003-235592 discloses a method of producing an organic acid from glucose as a carbon source G by an aerobic bacterium (especially a rod-shaped bacterium). PCT International Publication WO 02/00846 揭示1 discloses a strain (Mannheimia Sp. 55E) which produces a variety of organic acids from glucose. However, bacteria which can produce glyceric acid from glycerol have not been known to date. SUMMARY OF THE INVENTION In order to utilize resources efficiently, it is desirable to produce useful materials from biodiesel waste liquid. The object of the present invention is to provide a glycerol acid from glycerol in a simple manner. 131377.doc 200911998
之方法,係在包含甘油的培養基中培養選自由甲基桿菌屬 (Methylobacterium)、節桿菌屬(Arthrobacter)及假語卡氏 菌屬(Pseudonocardia)組成之菌屬群中之菌屬細菌;或選自 由球孢鏈黴菌球孢變種(Streptomyces globisporus subsp. globisporus)、白酒紅鏈黴菌(Streptomyces albovinaceus)、 異硫鍵黴菌(Streptomyces althioticus)、沙場鏈黴菌 (Streptomyces arenae)、erythrogriseus鏈黴菌、煙燦鏈黴菌 (Streptomyces fumanus)、加得那鏈黴菌(Streptomyces gardenri)、球形鏈黴菌(Streptomyces globosus)、長孢紅色 鍵黴菌(Streptomyces longispororuber)、moderatus鍵黴菌 (Streptomyces moderatus)、核顆粒鍵黴菌(Streptomyces sclerogranulatus)、赛米禪鏈黴菌(Streptomyces senoensis)、田無鏈黴菌頭黴素變種(Streptomyces tanashiensis subsp. cephalomyceticus)、保護鍵黴菌 (Streptomyces tuirus)、枯草芽抱桿菌(Bacillus subtilis)、 butanicum短桿菌(Brevibacterium butanicum)、假單孢菌屬 菌種(Pseudomonas sp.)及小球諾卡氏菌(Nocardia globerula)組成之菌種群之菌種的細菌(以下,該等細菌統 稱為"用於本發明之製造甘油酸的細菌",或簡稱為"製造 甘油酸的細菌··)’特別係在需氧條件下培養該細菌,或係 將該細菌細胞、該細菌之經加工細胞或其經固定產物與甘 油接觸。 即,本發明係提供以下内容: 1. 一種從甘油製造甘油酸之方法,該方法包含: 131377.doc 200911998 在包含甘油的培養基中培養具有從甘油製造甘油酸之能 力且屬於選自由曱基桿菌屬、節桿菌屬及假諾卡氏菌屬組 成之菌屬群中之菌屬的細菌;或 將該細菌細胞、該細菌之經加工細胞或其經固定產物與 甘油接觸; 2_如上述1之方法,其中屬於選自由曱基桿菌屬、節桿 菌屬及假諾卡氏菌屬組成之菌屬群中之菌屬的該細菌為外 鍵甲基桿菌(Methylobacterium extorquens)、rhodesianum 甲基桿菌(Methylobacterium rhodesianum)、zatmani 甲基桿 菌(Methylobacterium zatmani) 、roseoparaffinus 節桿菌 (Arthrobacter roseoparaffinus)、石瑕節桿菌(Arthrobacter paraffineus)、節桿菌屬菌種(Arthrobacter sp.)、球形節桿 菌(Arthrobacter globiformis)或自養假諾卡氏菌 (Pseudonocardia autotrophyica)的細菌; 3. 如上述2之方法,其中屬於選自由曱基桿菌屬、節桿 菌屬及假諾卡氏菌屬組成之菌屬群之菌屬的該細菌為外鏈 甲基桿菌JCM 2802菌株、rhodesianum曱基桿菌JCM 2810 菌株、zatmani 甲基桿菌 JCM 2819 菌株、roseoparaffinus 節 桿菌ATCC 15584菌株、石蠟節桿菌ATCC 21535菌株、節 桿菌屬菌種ATCC 21908菌株、球形節桿菌NBRC 12137菌 株或自養假諾卡氏菌NBRC 12743菌株; 4. 一種從甘油製造甘油酸之方法,該方法包含: 在包含甘油的培養基中培養具有從甘油製造甘油酸之能 力且屬於選自由球孢鏈黴菌球孢變種、白酒紅鏈黴菌、異 131377.doc 200911998 硫鏈黴菌、沙場鏈黴菌、erythrogriseus鏈黴菌、煙燦鏈黴 菌、加得那鏈黴菌、球形鏈黴菌、長孢紅色鏈黴菌、 moderatus鏈黴菌、核顆粒鏈黴菌、赛米蟬鏈黴菌、田無鏈 黴菌頭黴素變種、保護鏈黴菌、枯草芽孢桿菌、 butanicum短桿菌、假單孢菌屬菌種及小球諾卡氏菌組成 - 之菌種群之菌種的細菌;或 將該細菌細胞、該細菌之經加工細胞或其經固定產物與 甘油接觸; Γ 5.如上述4之方法,其中屬於選自由球孢鏈黴菌球孢變 種、白酒紅鏈黴菌、異硫鏈黴菌、沙場鏈黴菌、 erythrogriseus鏈黴菌、煙燻鏈黴菌、加得那鏈黴菌、球形 鏈黴菌、長孢紅色鏈黴菌、moderatus鏈黴菌、核顆粒鏈黴 菌、赛米蟬鏈黴菌、田無鏈黴菌頭黴素變種、保護鏈黴 菌、枯草芽孢桿菌、butanicum短桿菌、假單孢菌屬菌種 及小球諾卡氏菌組成之菌種群中之菌種的該細菌為球孢鏈 黴菌球孢變種ATCC 21903菌株、白酒紅鏈黴菌NBRC 12739菌株、異硫鏈黴菌NBRC 15956菌株、沙場鏈黴菌 NBRC 13016 菌株、erythrogriseus鏈黴菌 NBRC 14601 菌 株、煙燻鏈黴菌NBRC 13042菌株、加得那鏈黴菌NBRC 12865菌株、球形鏈黴菌NBRC 15874菌株、長孢紅色鏈黴 菌 NBRC 13488 菌株、moderatus鏈黴菌 NBRC 13432菌株、 核顆粒鏈黴菌NBRC 14301菌株、賽米蟬鏈黴菌NBRC 13 843菌株、田無鏈黴菌頭黴素變種NBRC 13929菌株、保 護鏈黴菌NBRC 15617菌株、枯草芽孢桿菌NBRC 3026菌 131377.doc 200911998 株、butanicum短椁菌ATCc 21196菌株、假單孢菌屬菌種 ATCC 53617菌株或小球諾卡氏菌ATCc 15076菌株; 6 ·如上述1至5中任一項之方法,其中該細菌係在需氧條 件下培養; 7. 如上述1至6中任一項之方法,其進一步包含從培養所 得之培養物中回收甘油酸;及 8. 如上述1至7中任一項之方法,其中甘油係來自於生物 柴油廢液。 (' 【實施方式】 用於本發明之製造甘油酸的細菌之實例為上述1至5中所 述的菌屬、菌種及菌株。在該等製造甘油酸的細菌中,較 佳細菌為能以更高收率從甘油中製造甘油酸者。該等細菌 之實例包含小球諾卡氏菌ATCC 15076菌株、外鏈曱基桿 菌]^]^ 2802菌株、1>11〇(^341111111甲基桿菌1(::]^2810菌株、 roseoparaffinus節桿菌ATCc 15584菌株、石蠟節桿菌 ATCC 21535菌株、節桿菌菌種atcC 21908菌株' 球形節 桿菌NBRC 12137菌株、自養假諾卡氏菌NBRC 12743菌 株、球抱鏈黴菌球孢變種ATCC 21903菌株、沙場鏈黴菌 NBRC 13016 鹵株、erythrogriseus 鏈徽菌 NBRC 14601 菌 株、煙壎鏈黴菌NBRC 13042菌株、加得那鏈黴菌NBRC 12865菌株、球形鏈黴菌NBRC 15874菌株、長孢紅色鏈黴 菌 NBRC 13488菌株、moderatus鏈黴菌 NBRC 13432菌株、 核顆粒鏈黴菌NBRC 14301菌株、賽米蟬鏈黴菌NBRC 13 843菌株、田無鏈黴菌頭黴素變種NBrc 13929菌株、保 131377.doc 200911998 護鏈黴菌NBRC 15617菌株、枯草芽孢桿菌NBRC 3026菌 株、butanicum短桿菌ATCC 21196菌株、白酒紅鏈黴菌 NBRC 12739菌株、異硫鍵徽菌NBRC 15956菌株、zatmani 甲基桿菌JCM 2819菌株及假單孢菌屬ATCC 53617菌株, 但不限於此。rhodesianum甲基桿菌JCM 2810菌株、 2&恤31^甲基桿菌1〇^2819菌株、節桿菌屬八7'(^ 21908菌 株、異硫鏈黴菌NBRC 15956菌株、白酒紅鏈黴菌NBRC 12739菌株及假單孢菌屬菌種ATCC 53617菌株較佳, zatmani甲基桿菌JCM 2819菌株、白酒紅鏈黴菌NBRC 12739菌株及假單孢菌屬ATCC 53617菌株更佳。 文中,以”更高收率"製造甘油酸表示在培養基中以約0.1 g/L或更高之收率從甘油中累積甘油酸。一般,收率越高 越好。例如,在培養基中以約0.5 g/L或更高,較佳為約1 g/L或更高之收率累積甘油酸。 外鍵甲基桿菌JCM 2802菌株、rhodesianum甲基桿菌 J CM 28 1 0菌株及zatmani甲基桿菌JCM 2819菌株購自曰 本,Saitama 351-0198,Wako,2-1 Hirosawa,RIKEN生物 資源中心’日本微生物寄存中心/微生物部門。小球諾卡 氏菌 ATCC 15076菌株、roseoparaffinus節桿菌 ATCC 15584 菌株、石蠟節桿菌屬ATCC 21535菌株、節桿菌屬菌種 ATCC 21908菌株、球孢鏈黴菌球孢變種ATCC 21903菌 株、butanicum短桿菌ATCC 211%菌株及假單孢菌屬菌種 ATCC 53617 菌株購自 VA 20108 USA ,Manassas ,P.O. BOX 1549,美國菌種寄存中心。球形節桿菌NBRC 12137 131377.doc 10· 200911998 菌株、自養假諾卡氏菌NBRC 12743菌株、白酒紅鏈黴菌 NBRC 12739菌株、異硫鏈黴菌NBRC 15956菌株、沙場鏈 黴菌 NBRC 13016菌株、erythrogriseus鏈黴菌 NBRC 14601 菌株、煙燻鏈黴菌NBRC 13042菌株、加得那鏈黴菌NBRC 12865菌株、球形鏈黴菌NBRC 15874菌株、長孢紅色鏈黴 菌 NBRC 13488菌株 ' moderatus鏈黴菌 NBRC 13432菌株、 核顆粒鏈黴菌NBRC 14301菌株、赛米蟬鏈黴菌nBRC 13843菌株、田無鏈黴菌頭黴素變種NBRC 13929菌株、保a method of cultivating a bacterium belonging to a genus of bacteria belonging to the genus of Methylobacterium, Arthrobacter, and Pseudonocardia in a medium containing glycerin; or Streptomyces globisporus subsp. globisporus, Streptomyces albovinaceus, Streptomyces althioticus, Streptomyces arenae, Streptomyces erythrogriseus, Streptomyces fumigatus (Streptomyces fumanus), Streptomyces gardenri, Streptomyces globosus, Streptomyces longispororuber, Streptomyces moderatus, Streptomyces sclerogranulatus, Streptomyces senoensis, Streptomyces tanashiensis subsp. cephalomyceticus, Streptomyces tuirus, Bacillus subtilis, Brevibacterium buta Bacteria of the species of the bacterium, a group of bacteria of the genus Pseudomonas sp. and Nocardia globerula (hereinafter, these bacteria are collectively referred to as "for the present invention The glycerin-producing bacteria " or simply the "bacteria producing glyceric acid" is particularly cultivating the bacterium under aerobic conditions, or the bacterial cell, the processed cell of the bacterium or the bacterium thereof The immobilized product is contacted with glycerin. That is, the present invention provides the following: 1. A method for producing glyceric acid from glycerol, the method comprising: 131377.doc 200911998 cultivating a glycerol-containing medium having the ability to produce glyceric acid from glycerol and belonging to a bacterium selected from the group consisting of a bacterium of the genus Bacillus belonging to the genus, Arthrobacter, and Pseudonocardia; or contacting the bacterial cell, the processed cell of the bacterium, or the immobilized product thereof with glycerin; 2_1 The method wherein the bacterium belonging to the genus of bacteria belonging to the genus Bacteroides, Arthrobacter, and Pseudonocardia is Methylobacterium extorquens, Rhodesianum methyl bacilli ( Methylobacterium rhodesianum), Methylobacterium zatmani, Roseroparaffinus Arthrobacter roseoparaffinus, Arthrobacter paraffineus, Arthrobacter sp., Arthrobacter globiformis or self a bacterium of Pseudonocardia autotrophyica; 3. the method of 2 above, The bacterium belonging to the genus of the genus of the genus Bacillus, Arthrobacter, and Pseudonocardia is M. exoskeletus JCM 2802 strain, Rhodesianum faecalis JCM 2810 strain, zatmani methyl Bacillus JCM 2819 strain, roseoparaffinus, Arthrobacter sp. ATCC 15584 strain, Arthrobacter sphaeroides ATCC 21535 strain, Arthrobacter sp. ATCC 21908 strain, Arthrobacter sp. NBRC 12137 strain or Nocardia donovani NBRC 12743 strain; A method for producing glyceric acid from glycerol, the method comprising: cultivating a glycerol-containing medium having the ability to produce glyceric acid from glycerol and belonging to a bacterium selected from the group consisting of the genus Coccidella sp., the genus Streptomyces erythraea, the genus 131377.doc 200911998 Streptomyces, Streptomyces cerevisiae, Streptomyces erythrogriseus, Streptomyces faecalis, Streptomyces faecalis, Streptomyces styrofolia, Streptomyces erythraea, Streptomyces moderatus, Streptomyces granulosus, Streptomyces cerevisiae, Streptomyces vaginalis Streptomycin, Streptomyces, Bacillus subtilis, Bacterium butanicum, Pseudomonas and Nocardia - a bacterium of the bacterium of the bacterium population; or contacting the bacterial cell, the processed cell of the bacterium, or the immobilized product thereof with glycerin; Γ 5. The method according to the above 4, wherein the bacterium is selected from the bacterium of the genus Cocci Spores, Streptomyces erythraea, Streptomyces faecalis, Streptomyces faecalis, Streptomyces erythrogriseus, Streptomyces fumigatus, Streptomyces faecalis, Streptomyces styrofolia, Streptomyces faecalis, Streptomyces moderatus, Streptomyces granulosus a strain of a bacterium of the genus Streptomyces cerevisiae, Streptomyces cerevisiae, Streptomyces faecalis, Bacillus subtilis, Brevibacterium butanicum, Pseudomonas spp., and Nocardia The bacterium is Streptomyces cocci, ATCC 21903 strain, Streptomyces erythropolis NBRC 12739 strain, Streptomyces facilis NBRC 15956 strain, Streptomyces cerevisiae NBRC 13016 strain, Streptomyces erythrocriseus NBRC 14601 strain, Streptomyces fumigatus NBRC 13042 strain, Streptomyces natto strain NBRC 12865, Streptomyces cerevisiae NBRC 15874 strain, Streptomyces cerevisiae NBRC 13488 strain, Streptomyces cerevisiae NBRC 13432 Strains, Streptomyces granulosus NBRC 14301 strain, Streptomyces cerevisiae NBRC 13 843 strain, Streptomyces solani sp. NBRC 13929 strain, Streptomyces sp. NBRC 15617 strain, Bacillus subtilis NBRC 3026 strain 131377.doc 200911998 strain, Butanecum sinensis ATCc 21196 strain, Pseudomonas sp. ATCC 53617 strain or Nocardia sphaeroides ATCc 15076 strain; 6. The method according to any one of the above 1 to 5, wherein the bacterium is aerobic The method of any one of the above 1 to 6, further comprising recovering glyceric acid from the culture obtained by the culture; and 8. The method according to any one of the above 1 to 7, wherein the glycerin is From biodiesel waste. ('Embodiment> Examples of the bacterium for producing glyceric acid used in the present invention are the genus, strains and strains described in the above 1 to 5. Among the bacteria producing glyceric acid, preferred bacteria are capable of Glyceric acid is produced from glycerol in a higher yield. Examples of such bacteria include Nocardia globosa ATCC 15076 strain, Bacillus exobacillus] 2] 2802 strain, 1 > 11 〇 (^ 341111111 methyl Bacillus 1 (::) 2810 strain, Artobacter rosette ATCc 15584 strain, Arthrobacter sphaeroides ATCC 21535 strain, Arthrobacter species atcC 21908 strain 'Bacillus cerevisiae NBRC 12137 strain, Nocardia donovani NBRC 12743 strain, Streptomyces sp. sp. variant ATCC 21903 strain, Streptomyces cerevisiae NBRC 13016 halobacterium, erythrogriseus strain NBRC 14601 strain, Streptomyces faecalis NBRC 13042 strain, Streptomyces NBRC 12865 strain, Streptomyces cerevisiae NBRC 15874 strain , Streptomyces cerevisiae NBRC 13488 strain, Streptomyces cerevisiae NBRC 13432 strain, Streptomyces granulosus NBRC 14301 strain, Streptomyces cerevisiae NBRC 13 843 strain, Streptomyces sp. Rc 13929 strain, Paul 131377.doc 200911998 Streptomyces sp. NBRC 15617 strain, Bacillus subtilis NBRC 3026 strain, Brevibacterium butanicum ATCC 21196 strain, Streptomyces erythropolis NBRC 12739 strain, S. isothiocyanum NBRC 15956 strain, zatmani methyl Bacillus strain JCM 2819 and Pseudomonas ATCC 53617 strain, but not limited thereto. Rhodesianum methyl bacillus JCM 2810 strain, 2 & 31 Methyl bacillus 1〇^2819 strain, Arthrobacter VIII 7' (^ 21908 Strains, Streptomyces isothiorum NBRC 15956 strain, Streptomyces erythropolis NBRC 12739 strain and Pseudomonas sp. ATCC 53617 strain, zatmani methyl bacillus JCM 2819 strain, Streptomyces erythropolis NBRC 12739 strain and pseudomonas The strain ATCC 53617 is more preferred. Herein, the production of glyceric acid in "higher yield" means that glyceric acid is accumulated from glycerol in a medium at a yield of about 0.1 g/L or higher. In general, the higher the yield The better, for example, the accumulation of glyceric acid in the medium at a yield of about 0.5 g/L or higher, preferably about 1 g/L or higher. Methyl bacillus JCM 2802 strain, Rhodesianum methyl bacillus J CM 28 1 0 strain zatmani methyl Bacillus strain JCM 2819 available from said present, Saitama 351-0198, Wako, 2-1 Hirosawa, RIKEN BioResource Center "Japan Collection of Microorganisms Depositary / sector microorganisms. Nocardia sphaeroides ATCC 15076 strain, Artobacterium roseoparaffinus ATCC 15584 strain, Arthrobacter sphaeroides ATCC 21535 strain, Arthrobacter sp. ATCC 21908 strain, Streptomyces cocci, ATSC 21903 strain, Brevibacterium butanicum ATCC 211 The % strain and the Pseudomonas sp. ATCC 53617 strain were purchased from VA 20108 USA, Manassas, PO BOX 1549, American Type Culture Center. Arthrobacter globulin NBRC 12137 131377.doc 10· 200911998 strain, Nocardia donovani NBRC 12743 strain, Streptomyces erythraea NBRC 12739 strain, Streptomyces isothiorum NBRC 15956 strain, Streptomyces cerevisiae NBRC 13016 strain, Streptomyces erythrogriseus NBRC 14601 strain, Streptomyces facilis NBRC 13042 strain, Streptomyces nitrite NBRC 12865 strain, Streptomyces cerevisiae NBRC 15874 strain, Streptomyces cerevisiae NBRC 13488 strain 'moderatus Streptomyces NBRC 13432 strain, Streptomyces nucleatum NBRC 14301 Strain, Streptomyces cerevisiae nBRC 13843 strain, Streptomyces acuminata variant NBRC 13929 strain, Bao
護鏈黴菌NBRC15617菌株及枯草芽孢桿菌NBRC 3026 菌 株購自 Chiba 292-0818 日本,Kisarazu-shi,2-5-8Streptomyces NBRC15617 strain and Bacillus subtilis NBRC 3026 strain were purchased from Chiba 292-0818 Japan, Kisarazu-shi, 2-5-8
Kazusakamatari,國家技術與評價學院的合併管理機構, 生物技術部門,生物資源中心。 用於本發明之製造甘油酸的細菌不僅可為野生型菌株, 亦為任意給定的天然產生或人工突變株,包含經乂射線輻 射、紫外線輻射或化學誘變劑(例如N -甲基_N,_硝基_N_亞 硝基胍)處理得到者,或經基因工程技術(例如細胞融合及 基因重組)得到的重組體。重組體的宿主可屬於任意菌 屬,只要其為可轉形的微生物。但是,宿主較佳屬於與產 生標的基因之親株㈣的㈣。宜選擇—種具有從甘油轉 化成甘油酸之改良能力的製造甘油酸之細菌。 ^甘油的培養基可為—種藉加人純甘油或含甘油的混合 物得到之培養基。在含甘 ^ 3甘油的混合物中,除甘油以外之組 为或其含量較佳對用於本發 、 有害仙。含甘油线合物的來酸的Μ不具有 的果,原不特別限制,但是為有 131377.doc 200911998 效利用資源’較佳使用生物柴油廢液。 製造生物柴油燃料之方法之一為藉由使用鹼催化劑醇解 甘油三醋製造脂肪酸甲酯(FAME)。在該方法中,含甘油 的廢液係以副產物(稱爲生物柴油廢液)產生。該廢液一般 受催化劑、未轉化的脂肪酸(其隨所使用的油而不同)及類 似物的污染。例如’下述實例中使用的生物柴油廢液的組 成爲甘油· 51 %、曱醇:11 %、氫氧化鉀:8%、水:4%, 其他例如甘油酯:26%。亦可使用含有不定組成的生物柴Kazusakamatari, the merger management agency of the National Institute of Technology and Evaluation, the Biotechnology Division, and the Bioresources Center. The glycerol-producing bacteria used in the present invention may be not only wild-type strains, but also any given naturally occurring or artificial mutant strains, including xenon radiation, ultraviolet radiation or chemical mutagens (for example, N-methyl _ N, _nitro-N_nitrosoguanidine) is a recombinant, or a recombinant obtained by genetic engineering techniques such as cell fusion and genetic recombination. The host of the recombinant may belong to any genus as long as it is a transformable microorganism. However, the host preferably belongs to (4) of the parental strain (4) of the gene in which the target is produced. It is preferred to select a bacterium which produces glyceric acid having an improved ability to convert from glycerol to glyceric acid. The medium of glycerol may be a medium obtained by adding human pure glycerin or a mixture containing glycerin. In the mixture containing glycerol, the group other than glycerin or its content is preferably used in the present invention. The fruit of the glycerin-containing linear acid-containing hydrazine is not particularly limited, but it is preferably used as a bio-diesel waste liquid. One of the methods for producing biodiesel fuel is to produce fatty acid methyl ester (FAME) by alcoholysis of triacetin using a base catalyst. In this method, the glycerin-containing waste liquid is produced as a by-product (referred to as biodiesel waste liquid). The waste liquid is generally contaminated by catalysts, unconverted fatty acids which vary with the oil used, and the like. For example, the group of biodiesel waste liquid used in the following examples is glycerol·51%, decyl alcohol: 11%, potassium hydroxide: 8%, water: 4%, and other glycerides: 26%. It is also possible to use bio-wood with an indefinite composition
油廢液,例如在s· Papanik〇la〇u等人,於生物資源技術 (2002)82:43-49中描述之甘油:65%、鉀/鈉鹽:4至5%、 甲醇:1%、水:28%,及在 M Gonzalez Pajuel〇 等人,;Oil waste liquid, for example, as described in s. Papanik〇la〇u et al., Bio-Resource Technology (2002) 82: 43-49: 65%, potassium/sodium salt: 4 to 5%, methanol: 1% Water: 28%, and in M Gonzalez Pajuel〇 et al.;
IndMicrobiol Biotechnol (2004)31:442-446 中描述之甘油 65%、鈉鹽:5。/。或更少。 當生物柴油廢液添加於本發明方法之培養基中時,可以 與加入純甘油情況下相同或更高等級之收率及轉化率製造 甘油酸。 用於本發明方法的培養基可為任意種類,只要其包含培 養細菌所必需的-般組分,且不限於特定培養基。在本發 明:,甚至在具有含碳源、氮源及無機鹽的簡單組合物的 培養基中仍可得到甘油酸。 心本發明方法的培養基包含作爲碳源的H 含量可在對細菌生長及甘油酸製造無副 ^ 至二選^ 1但疋’ Γ般為約o.1至500 g/L,且較佳為約1 中甘二人農廢液作爲甘油源使用時,根據廢液 ,由所3遭度而定,可稀釋廢液或添加甘油於其中直至 131377.doc 200911998 培養基中甘油含量落入上述範圍内。 培養基可包含除作爲碳源的甘油以外的物質,但其人量 應限制在不影響由甘油製造甘油酸之程度。用於:發二的 碳源實例為葡萄糖、果糖、澱粉、乳糖、阿拉伯糖、木 糖、糊精、糖漿及麥芽提取物,但不限於此。其他碳源含 量較佳為甘油的約10重量%或更少,且更佳為約!重量%或 更少。培養基最佳含有甘油作爲單一碳源。Glycerol 65%, sodium salt: 5 as described in Ind Microbiol Biotechnol (2004) 31:442-446. /. Or less. When biodiesel waste liquid is added to the medium of the method of the present invention, glyceric acid can be produced in the same or higher yield and conversion rate as in the case of adding pure glycerin. The medium used in the method of the present invention may be of any kind as long as it contains the usual components necessary for cultivating bacteria, and is not limited to a specific medium. In the present invention, glyceric acid is obtained even in a medium having a simple composition containing a carbon source, a nitrogen source, and an inorganic salt. The medium of the method of the present invention contains the H content as a carbon source in the range of about 0.1 to 500 g/L, and preferably from about 0.2 to 500 g/L, for the growth of bacteria and the production of glyceric acid. When the medicinal waste liquid of the medicinal medicinal liquor is used as a glycerin source, depending on the effluent, depending on the degree of aging, the effluent or glycerin may be diluted therein until 131377.doc 200911998 The glycerin content in the medium falls within the above range . The medium may contain substances other than glycerin as a carbon source, but the amount thereof should be limited to such an extent that it does not affect the production of glyceric acid from glycerin. Examples of the carbon source used for the hairpin are glucose, fructose, starch, lactose, arabinose, xylose, dextrin, syrup and malt extract, but are not limited thereto. The other carbon source content is preferably about 10% by weight or less of glycerin, and more preferably about! % by weight or less. The medium preferably contains glycerol as a single carbon source.
氮源實例包含無機氮化合物例如氨、硫酸銨、氯化銨及 石肖酸録、尿素及類似物。亦可於培養基中加人有機氮源例 如,縠朊粉、棉籽粉、大豆粉、玉米漿、乾酵母、酵母提 取物、蛋白脒、肉提取物及酪蛋白胺基酸。 組合使用碳源及氮源較有利。因包含微量生長因子及大 量無機營養物的低純度來源亦適用,所以無需以純態使用 該等。 若需要,可使用無機鹽,例如填酸二氫奸 '璘酸氫二 鉀、氯化鈉、硫酸鎂、硫酸錳、碳酸鈣、氣化鈣、碘化 鈉、碘化鉀、及氣化鈷。根據需要,亦可加入消泡劑,例 如液體石蠟、尚級醇、植物油、礦物油及矽酮,特別在培 養基顯著發泡時。 其他組分例如多種維生素可根據需要加入培養基中。 氮源、無機鹽及其他組分爲熟悉該技術者所知。 在本發明中’可在厭氧條件下培養製造甘油酸的細菌, 但是在需氧條件下進行較佳。需氧條件指在分子氧存在下 培養。可進行通氣、攪拌及振盪以提供氧氣。可使用培養 131377.doc -13- 200911998 :生物的任意常用裝置。在需氧條件τ進行培養之 =方法可不使用產生厭氧條件所必需的任意裝二 易方式培養細菌及製造甘油酸。 0 麵氧條件下培養細菌可藉由引人二氧化碳或惰性氣體 (乳载、氩氣等)或無需通氣進行。Examples of the nitrogen source include inorganic nitrogen compounds such as ammonia, ammonium sulfate, ammonium chloride, and succinic acid, urea, and the like. Organic nitrogen sources such as tantalum powder, cottonseed meal, soy flour, corn syrup, dry yeast, yeast extract, peptone, meat extract and casein amino acid may also be added to the culture medium. It is advantageous to use a combination of a carbon source and a nitrogen source. Since low-purity sources containing trace growth factors and large amounts of inorganic nutrients are also suitable, it is not necessary to use them in a pure state. If necessary, inorganic salts such as dihydrogen hydride "dipotassium hydrogen hydride, sodium chloride, magnesium sulfate, manganese sulfate, calcium carbonate, calcium carbonate, sodium iodide, potassium iodide, and cobaltated cobalt may be used. Defoaming agents such as liquid paraffin, decyl alcohol, vegetable oil, mineral oil and anthrone can also be added as needed, especially when the medium is significantly foamed. Other components such as multivitamins may be added to the medium as needed. Nitrogen sources, inorganic salts and other components are known to those skilled in the art. In the present invention, bacteria producing glyceric acid can be cultured under anaerobic conditions, but it is preferably carried out under aerobic conditions. Aerobic conditions refer to culture in the presence of molecular oxygen. Ventilation, agitation and shaking can be performed to provide oxygen. Culture can be used 131377.doc -13- 200911998: any common device for living organisms. The method of culturing under aerobic conditions τ can be used to culture bacteria and produce glyceric acid in any convenient manner necessary to produce anaerobic conditions. 0 Bacteria culture under surface oxygen conditions can be carried out by introducing carbon dioxide or an inert gas (milk, argon, etc.) or without aeration.
甘油酸的大量製造較佳在液體淹沒培養條件下進行一 =大槽中繁殖時,較佳在生長期將該等細菌接種至二 &槽中’以避免在製造甘油酸方法期間延遲繁殖。即,, 等細菌較佳先接種至相對少量的培養基中,且在生長期培 :以製造菌種’然後以無菌方式將該等菌種轉移至大槽 培養溶液的㈣及通氣可以多種方式進行。㈣可藉由 螺旋樂或類似於螺旋樂的機械性攪拌裝置、發酵槽的旋轉 或振盈、或泵裝置進行。通氣可使經滅菌空氣通人培養溶 液中而進订<在操作巾,通氣操作亦可產线拌效果。 在液體淹沒培養基中培養的情況下,可適當選擇及使用 培養方法例如分批培養、床分批培養及連續培養。 培養條件練其適於培翻於本發明之製造 甘油酸的細菌。例如,培養溫度為約4至赋,較佳為約 20至抓。培養基pH為約5至9,且較佳為約6至8。當培養 基PH隨甘油酸的製造下降時’可根據需要,加入鹼(例如 氨水溶液、碳酸鈣、氫氧化鈉及氫氧化鉀)至培養系統 中’以調整pH使其落入以上範圍内。 培養基組成及其他培養條件可由熟悉該技術者適當調 131377.doc -14- 200911998 整。亦將考慮調整條件以進一步提高甘油酸收率。 用於本發明方法的細菌可採用細菌細胞、加工之細菌細 胞或其經固定產物。文中,加工之細菌細胞表示經破裂的 細菌、、’田胞或從經培養的物質(包含細菌細胞及培養上層液) 中提取的酶。加工之細菌細胞實例包含經有機酸(例如丙 及乙醇)、冷凍乾燥處理或鹼處理經培養的細菌細胞而 得到者、經物理或酶化學破裂細菌細胞得到者、或從中分 離或提取的粗製酶。具體言之,經培養的細g經離心: 理,且欲收集的細胞經物理磨碎方法(例如超聲波、Dyno_ mill及French壓縮處理)或使用表面活性劑或分解酶(例如溶 菌酶)的化學破裂方法破裂。所得溶液經離心或膜過據以 去除不溶物,且所得的無細胞提取物進行分離/純化方 法’例如陽離子交換層析法、陰離子交換層析法、疏水性 層析法 '凝膠過濾層析法及金屬鏊合層析法,以分餾及純 化該酶。 用於層析法的載體實例包含不溶性聚合物載體例如引入 政甲基_、二乙胺基乙基(DEAE)、苯基或丁基的纖維 素、糊精及環月旨糖。亦可使用市售的填有載體的管柱。細 菌細胞的破裂及酶的提取可藉由熟悉該技術者所知之方法 及上述方法進行。 / 將細菌細胞、加卫的細菌細胞或其經固定產物與甘油接 觸之實例如下。 使用細菌細胞或經加工之細菌細胞從甘油製造甘油酸之 方法實例為在含甘油的受質溶液中懸浮並細菌細胞並反應 131377.doc 200911998 之方法。細菌細胞藉培養製造甘油酸的細菌,隨後離心而 製備又質'谷液中甘油濃度較佳為約〇.〇 1至50重量%。反 應溫度一般為約4至4〇。〇,且較佳為約2〇至37。〇。反應溶 液pH—般為約5至9,且較佳為約6至8。當培養基pH隨甘 油I的產生而下降時,可根據需要,加入鹼(例如氨水溶 液炭酸每、氫氧化納及氫氧化卸)至培養系統中,以調 整其pH落入以上範圍内。 使用經固定之細菌細胞或經固定之加工細菌細胞從甘油 製造甘油酸之方法為例如將該經固定細菌細胞或經固定的 加工細菌細胞填入管柱中,且使含甘油的受質溶液通過該 管柱之方法。細菌細胞或加工細菌細胞係藉培養製造甘油 酸的細菌,然後離心而得到。固定細菌細胞的方法為例如 使用凝膠的廣泛固定法、及藉擔持離子交換材料的固定 法。可使用的凝膠實例包含鹿角菜膠、瓊脂、甘露聚糖、 PVA及聚丙烯醯胺凝膠。凝膠的適宜粒度以直徑計為約尤 至10 mm,但其大小隨凝膠種類變化。離子交換材料的實 例包含以纖維素爲主的材料、以苯乙烯二乙烯基苯爲主的 材料及以苯盼甲醒·爲主的離子交換材料。受質溶液中甘油 浪度較佳為約0.01至50重量%。亦可加入SH化合物(例如巯 基乙醇、半胱胺酸及穀胱甘肽)、還原劑(例如亞硫酸鹽)、 及酶活化劑(例如鎂離子及錳離子)^該溶液通過管柱的速 度隨管柱大小及經固定物質量而變化。作爲處理溶液的速 度指標,較好為空間速度(ml/ml樹脂.hr)自〇.〇5至1 〇。 甘油酸的分離及純化係依據傳統已知方法進行。例如, 131377.doc -16 - 200911998 在培養結束後,該培養液經過濾或分離以得到上層液。從 該上層液中,例如,甘油酸可例如藉由濃縮結晶分離,但 甘油酸的分離及純化不限於此。具體言之,甘油酸可藉由 例如溶劑提取的方法從上層液中分離,或藉由例如離子交 換層析的方法經分離及純化(在該方法中,甘油酸吸附在 離子交換樹脂後經溶離及分離),經形成金屬鹽例如鈣離 子而分離’經不溶性處理之分級沉澱,經結晶之分級結 晶、經逆滲透膜之膜分離、及濃縮結晶法。具體言之,例 如,可根據日本未審查專利公開(案)號平i_168292中描述 的方法分離及純化甘油酸。 本發明經以下實例進一步闡述。應理解本發明不限於該 等實例,可在本發明範圍内作多種修改。 實例 實例1 rhodesianum甲基桿菌JCM 281〇菌株塗佈於瓊脂培養基a 上,該培養基用於平板培養(組成:3 g磷酸二氫鉀、6 §磷 酸氫二鈉、0.5 g氯化鈉、! 8氯化銨、492 mg七水合硫酸 鎂、147 mg二水合氣化鈣、1〇〇 mg酵母提取物、丨〇呂甘 油、20 g瓊脂及1 l蒸餾水(最終pH為7.4)),並使其在3(rc 下靜置4天。在上述平板上生長的菌株藉由鉑環接種至3 mL培養基B中,該培養基B係用於試管培養(組成:與瓊脂 培養基A相同的組成,但不含氣化鈣、酵母提取物及瓊 脂)’在30 C下以200 rpm振盪培養(預培養)24小時。30 μί 上述生長的菌株培養液轉移至3 mL培養基Β中,該培養基 131377.doc •17- 200911998 B用於試管培養,並在30°C下以200 rpm振盪培養(主培 養)。開始反應4天後,消耗〇·4 g甘油且每1升累積〇_l g甘 油酸。 實例2 2汪1;111311丨曱基桿菌<1€1^2819菌株以如實例1的相同方式反 應。結果,消耗0.3 g甘油且每1升累積0.3 g甘油酸。 實例3 1'11〇(163131111111曱基桿菌>^1^2810菌株塗佈於瓊脂培養基八 上’該培養基用於平板培養(組成:3 g磷酸二氫鉀、6 g磷 酸風一納、0.5 g氣化納、1 g氣化錢、492 mg七水合硫酸 鎮、147 mg二水合氣化妈、1〇〇 mg酵母提取物、1〇层甘 油、20 g瓊脂及1 L蒸餾水(最終pH為7.4)),並使其在3〇ac 下靜置4天。在上述平板上生長的菌株藉由錄環接種至3 mL培養基C中,該培養基c用於試管培養(組成:與瓊脂培 養基A相同的組成,但不含瓊脂),且在3〇t下以2〇()卬瓜 振盪培養(預培養)24小時。30吣上述生長的菌株培養液轉 移至3 mL培養基C中,該培養基c用於試管培養,且在 30t下以200 rpm振盪培養(主培養)。開始反應4天後,消 耗0_9 g甘油且每1升累積〇 9 g甘油酸。 實例4 zatmani甲基桿菌jCM 2819菌株以如實例3的相同方式反 應’但預培養期間從24小時改爲6天,且主培養期間從4天 改爲6天。結果’消耗Ug甘油且每1升累積1.3g甘油酸。 實例5 131377.doc -18- 200911998 外鏈曱基桿菌JCM 2802菌株以如實例3的相同方式反 應,但預培養期間從24小時改爲6天,且主培養期間從4天 改爲6天。結果,消耗i.4g甘油且每1升累積〇 4g甘油酸。 實例6 小球諾卡氏菌ATCC 15076菌株以如實例3的相同方式反 應。結果,消耗5.8 g甘油且每1升累積〇_2 g甘油酸。 實例7 球抱鏈黴菌球孢變種ATCC 21903菌株以如實例3的相同 方式反應。結果,消耗7.3 g甘油且每1升累積〇 j呂甘油 酸。 實例8 白酒紅鏈黴菌NBRC 12739菌株以如實例3的相同方式反 應。結果’消耗10.3 g甘油且每1升累積丨.1 g甘油酸。 實例9 異硫鏈黴菌屬NBRC 15956菌株以如實例3的相同方式反 應。結果,消耗2.2 g甘油且每1升累積〇 5 g甘油酸。 實例10 roseoparaffinus節桿菌ATCC 15584菌株以如實例!的相 同方式反應。結果,消耗〇. 6 g甘油且每i井g 呼1开系積0.2 g甘油 酸。 實例11 自養假諾卡氏菌NBRC 12743菌株以如實例3的相同方式 反應。結果,消耗3.7 g甘油且每1升累積〇1 §甘油酸。 實例12 131377.doc -19- 200911998 石蠘節MATCC 21535菌株以如實例3的相同方式反 應,但預培養期間從24小時改爲6天,且主培養期間從4天 改爲6天。結果,消耗4.3g甘油且每!升累積〇 &甘油酸。 實例13 節桿菌屬菌種ATCC 2测菌株以如實例3的相同方式反 應。結果,消耗5.7 g甘油且每丨升累積〇7g甘油酸。 實例14The mass production of glyceric acid is preferably carried out under liquid submerged culture conditions. When breeding in a large tank, it is preferred to inoculate the bacteria into the second & tank during the growing period to avoid delayed propagation during the process of producing glyceric acid. That is, the bacteria are preferably first inoculated into a relatively small amount of medium, and cultured in the growing season: to produce the strain 'and then aseptically transfer the strains to the large tank culture solution (4) and the aeration can be carried out in various ways. . (d) It can be carried out by means of a spiral or a mechanical agitation device similar to a spiral, a rotation or vibration of the fermentation tank, or a pumping device. Ventilation allows the sterilized air to be passed through the culture solution and is dispensed <in the operating towel, the aeration operation can also produce a mixing effect. In the case of culturing in a liquid submerged medium, a culture method such as batch culture, bed batch culture, and continuous culture can be appropriately selected and used. The culture conditions are suitable for cultivating the glycerol producing bacteria of the present invention. For example, the culture temperature is from about 4 to about 15, preferably from about 20 to about. The pH of the medium is from about 5 to 9, and preferably from about 6 to 8. When the pH of the culture medium decreases with the production of glyceric acid, a base (e.g., aqueous ammonia solution, calcium carbonate, sodium hydroxide, and potassium hydroxide) may be added to the culture system as needed to adjust the pH so as to fall within the above range. The composition of the medium and other culture conditions can be appropriately adjusted by those skilled in the art. 131377.doc -14- 200911998. Adjustment conditions will also be considered to further increase the yield of glyceric acid. The bacteria used in the method of the present invention may be bacterial cells, processed bacterial cells or immobilized products thereof. Herein, the processed bacterial cells represent ruptured bacteria, 'field cells' or enzymes extracted from cultured substances (including bacterial cells and culture supernatant). Examples of the processed bacterial cells include those obtained by culturing bacterial cells with an organic acid (for example, C and ethanol), lyophilization or alkali treatment, those obtained by physical or enzymatic chemical disruption of bacterial cells, or crude enzymes isolated or extracted therefrom. . Specifically, the cultured fine g is centrifuged, and the cells to be collected are subjected to physical grinding methods (for example, ultrasonic, Dyno_mill and French compression treatment) or chemistry using a surfactant or a decomposing enzyme (for example, lysozyme). The rupture method is broken. The resulting solution is centrifuged or membraned to remove insolubles, and the resulting cell-free extract is subjected to separation/purification methods such as cation exchange chromatography, anion exchange chromatography, hydrophobic chromatography, gel filtration chromatography. Method and metal chelate chromatography to fractionate and purify the enzyme. Examples of the carrier used in the chromatography include an insoluble polymer carrier such as cellulose, dextroethylidene (DEAE), phenyl or butyl, dextrin and cyclosporin. Commercially available columns filled with a carrier can also be used. The disruption of the bacterial cells and the extraction of the enzyme can be carried out by a method known to those skilled in the art and the above methods. / Examples of contacting bacterial cells, incubated bacterial cells or their immobilized products with glycerol are as follows. An example of a method for producing glyceric acid from glycerol using bacterial cells or processed bacterial cells is a method of suspending and culturing bacterial cells in a glycerol-containing substrate solution and reacting 131377.doc 200911998. Bacterial cells are cultured to produce glyceric acid bacteria, followed by centrifugation to prepare a gluten-free glycerin concentration of about 〇1 to 50% by weight. The reaction temperature is generally about 4 to 4 Torr. Oh, and preferably from about 2 to 37. Hey. The pH of the reaction solution is generally from about 5 to 9, and preferably from about 6 to 8. When the pH of the medium is lowered as the production of the glycerol I, a base (e.g., ammonia aqueous solution of carbonic acid, sodium hydroxide, and hydroxide) can be added to the culture system as needed to adjust the pH to fall within the above range. The method for producing glyceric acid from glycerol using immobilized bacterial cells or immobilized processed bacterial cells is, for example, filling the fixed bacterial cells or immobilized processed bacterial cells into a column, and passing the glycerol-containing receiving solution The method of the column. Bacterial cells or processed bacterial cell lines are obtained by culturing bacteria producing glyceric acid and then centrifuging. The method of immobilizing bacterial cells is, for example, a method of extensively immobilizing a gel, and a method of immobilizing an ion exchange material. Examples of gels that can be used include carrageenan, agar, mannan, PVA, and polypropylene guanamine gel. The suitable particle size of the gel is about 10 mm in diameter, but the size varies with the type of gel. Examples of the ion exchange material include a cellulose-based material, a styrene-divinylbenzene-based material, and an ion exchange material mainly composed of benzophenone. The glycerin wave in the substrate is preferably from about 0.01 to 50% by weight. SH compounds (such as mercaptoethanol, cysteine, and glutathione), reducing agents (such as sulfites), and enzyme activators (such as magnesium ions and manganese ions) may also be added. It varies with the size of the column and the quality of the fixture. As the speed index of the treatment solution, it is preferred that the space velocity (ml/ml resin.hr) is from 〇5 to 1 〇. The separation and purification of glyceric acid is carried out according to a conventionally known method. For example, 131377.doc -16 - 200911998 After the completion of the culture, the culture solution is filtered or separated to obtain an upper layer liquid. From the supernatant liquid, for example, glyceric acid can be isolated, for example, by concentrated crystallization, but the separation and purification of glyceric acid are not limited thereto. Specifically, glyceric acid may be isolated from the supernatant by, for example, solvent extraction, or may be isolated and purified by, for example, ion exchange chromatography (in which glycerate is adsorbed and dissolved after ion exchange resin). And separation), separation of 'insoluble treatment by fractional precipitation, fractional crystallization by crystallization, membrane separation by reverse osmosis membrane, and concentrated crystallization by separation of metal salts such as calcium ions. Specifically, for example, glyceric acid can be isolated and purified according to the method described in Japanese Unexamined Patent Publication No. Hei. The invention is further illustrated by the following examples. It is to be understood that the invention is not limited to the examples, and various modifications may be made within the scope of the invention. EXAMPLES Example 1 The rhodesianum methylbacterium JCM 281 strain was coated on agar medium a for plate culture (composition: 3 g potassium dihydrogen phosphate, 6 § disodium hydrogen phosphate, 0.5 g sodium chloride, 8 Ammonium chloride, 492 mg of magnesium sulfate heptahydrate, 147 mg of calcium carbonate dihydrate, 1 mg of yeast extract, lyoglycerol, 20 g of agar and 1 l of distilled water (final pH 7.4) and The cells were allowed to stand at 3 (rc for 4 days). The strain grown on the above plate was inoculated into 3 mL of medium B by a platinum loop, which was used for tube culture (composition: the same composition as agar medium A, but not Containing calcium carbonate, yeast extract and agar) 'Culturing (pre-culture) with shaking at 200 rpm for 24 hours at 30 C. 30 μί The above-mentioned grown strain culture medium was transferred to 3 mL of medium, 131377.doc • 17- 200911998 B was used for tube culture and cultured at 30 rpm with shaking at 200 rpm (main culture). After 4 days from the start of the reaction, 〇·4 g of glycerol was consumed and 〇lg of glycerol was accumulated per liter. 2 Wang 1; 111311 Thiobacillus <1 € 1 ^ 2819 strain is the same as in Example 1 The reaction was carried out. As a result, 0.3 g of glycerol was consumed and 0.3 g of glyceric acid was accumulated per 1 liter. Example 3 1'11〇(163131111111) Bacillus licheniformis>^1^2810 strain was applied to agar medium VIII. Culture (composition: 3 g potassium dihydrogen phosphate, 6 g phosphoric acid sodium, 0.5 g gasification sodium, 1 g gasification money, 492 mg sulfuric acid sulfate, 147 mg dihydrate gasification mother, 1 mg mg yeast Extract, 1 layer of glycerin, 20 g of agar and 1 L of distilled water (final pH 7.4)), and allowed to stand at 3 〇 ac for 4 days. The strain grown on the above plate was inoculated to 3 by recording ring. In the medium C, the medium c was used for test tube culture (composition: the same composition as agar medium A, but no agar), and shake culture (preculture) with 2 〇 () 卬 melon at 3 〇t for 24 hours. The culture medium of the above-mentioned growth strain was transferred to 3 mL of medium C, which was used for test tube culture, and cultured at 200 rpm with shaking at 30 rpm (main culture). After starting the reaction for 4 days, 0_9 g of glycerol was consumed. 9 g of glycerol was accumulated per 1 liter. Example 4 zatmani methyl bacillus jCM 2819 strain was as in Example 3 Mode reaction 'but the pre-culture period was changed from 24 hours to 6 days, and the main culture period was changed from 4 days to 6 days. Results 'Ug glycerol was consumed and 1.3 g of glyceric acid was accumulated per liter. Example 5 131377.doc -18- 200911998 The B. mobilis strain JCM 2802 was reacted in the same manner as in Example 3, but the period from pre-culture was changed from 24 hours to 6 days, and the period from main culture to 4 days was changed to 6 days. As a result, i.4 g of glycerin was consumed and 4 g of glyceric acid was accumulated per 1 liter. Example 6 Nocardia sphaeroides ATCC 15076 strain was reacted in the same manner as in Example 3. As a result, 5.8 g of glycerin was consumed and 〇 2 g of glyceric acid was accumulated per 1 liter. Example 7 Streptomyces coelis sp. variant ATCC 21903 strain was reacted in the same manner as in Example 3. As a result, 7.3 g of glycerin was consumed and accumulated per liter of glycerol. Example 8 S. erythraea NBRC 12739 strain was reacted in the same manner as in Example 3. As a result, 10.3 g of glycerol was consumed and 丨.1 g of glyceric acid was accumulated per liter. Example 9 The strain Streptomyces isothiocyanum NBRC 15956 was reacted in the same manner as in Example 3. As a result, 2.2 g of glycerin was consumed and 5 g of glyceric acid was accumulated per 1 liter. Example 10 Roseoparaffinus Arthrobacter ATCC 15584 strain as in the example! The same way of reacting. As a result, g 6 g of glycerin was consumed and 0.2 g of glycerol was per 1 well. Example 11 Nocardia pseudobacteria NBRC 12743 strain was reacted in the same manner as in Example 3. As a result, 3.7 g of glycerin was consumed and 1 § of glyceric acid was accumulated per 1 liter. Example 12 131377.doc -19- 200911998 Dendrobium MATCC 21535 strain was reacted in the same manner as in Example 3, but the pre-culture period was changed from 24 hours to 6 days, and the main culture period was changed from 4 days to 6 days. As a result, 4.3 g of glycerin is consumed and each! Literated 〇 & glyceric acid. Example 13 Abacillus sp. ATCC 2 strain was reacted in the same manner as in Example 3. As a result, 5.7 g of glycerin was consumed and 7 g of glyceric acid was accumulated per liter. Example 14
butanicum短桿菌ATCC 2丨i 96菌株以如實例丨的相同方式 反應。結果,消耗〇·5 g甘油且每丨升累積〇 2 g甘油酸。 實例15 沙場鏈黴菌NBRC 13016菌株以如實例3的相同方式反 應。結果,消耗4.8 g甘油且每丨升累積〇2 g甘油酸。 實例16The butanicum bacillus ATCC 2丨i 96 strain was reacted in the same manner as in the case of hydrazine. As a result, 〇·5 g of glycerin was consumed and 2 g of glyceric acid was accumulated per liter. Example 15 S. cerevisiae NBRC 13016 strain was reacted in the same manner as in Example 3. As a result, 4.8 g of glycerin was consumed and 2 g of glyceric acid was accumulated per liter. Example 16
Whrogriseus鍵黴菌NBRC 146〇1菌株以如實例3的相同 方式反應,但預培養期間從24小時改爲6天且主培養期The Whrogriseus sclerotium NBRC 146〇1 strain was reacted in the same manner as in Example 3, but the pre-culture period was changed from 24 hours to 6 days and the main culture period.
間從4天改爲6天。結果,消耗3 7 g甘油且^升累積 甘油酸。 S 實例1 7 煙燻鏈黴菌NBRC 13042菌株以如實例3的相同方式反 應’但預培養期間從24小時改爲6天,且主培養期間從4天 改爲6天°結果,消耗8.7§甘油且每1升累積〇.2g甘油酸。 實例1 8 加得那鏈黴菌NBRC 12865菌株以如實例3的相同方式反 應’但預培養期間從24小時改爲6天,且主培養期間從\天 131377.doc •20- 200911998 改爲6天。結果,消耗3 3 g甘油且每1升累積〇i g甘油酸。 實例19 球形鏈黴菌NBRC 15874菌株以如實例3的相同方式反 應,但預培養期間從24小時改爲6天,且主培養期間從4天 改爲6天。結果,消耗4 ! g甘油且每丨升累積〇丨g甘油酸。 實例20 長孢紅色鏈黴菌NBRC 13488菌株塗佈於瓊脂培養基A 上,該培養基用於平板培養(組成:3 g磷酸二氫鉀、6 §磷 酸氫二鈉、0.5 g氯化鈉、1 g氣化銨、492 mg七水合硫酸 鎂、147 mg一水合氣化妈、1〇〇 mg酵母提取物、层甘 油、20 g瓊脂及1 L蒸顧水(最終pH為7.4)),並使其在3〇°C 下靜置4天。在上述平板上生長的菌株藉由鉑環接種至3 mL培養基C中,該培養基C用於試管培養(組成:與瓊脂培 養基A相同的組合物,但不含瓊脂),在3〇〇c下以2〇〇 rpm 振盪·培養(預培養)6天。30 pL上述生長的菌株培養液轉移 至3 mL培養基D中,該培養基D用於試管培養(組成:與用 於試管培養的上述培養基C相同的組成,但代替10 g甘油 含有19.6 g之於製造生物柴油燃料的副產物的甘油餾分(甘 油· 51 %、甲酵:11 %、氫氧化斜:8%、水:4%、及其他 包含甘油酯:26%)) ’並在3〇。〇下以200 rpm振盪培養(主培 養)。反應6天’消耗11 g甘油且每丨升累積〇 3 g甘油酸。 實例21 moderatus鏈黴菌NBRC 13432菌株以如實例3的相同方式 反應’但預培養期間從2 4小時改爲6天’且主培養期間從4 131377.doc 21 200911998 升累積0.2 g甘 油 天改爲6天。結果,消耗5.3 g甘油且每! 酸。 實例22 moderatus鏈黴菌NBRC 13432菌株以如會 實例20的相同方 式反應。結果,消耗6.3 g甘油且每1升累藉Λ】 1尔躓0.1 g甘油酸。 實例23 枯草芽孢桿菌NBRC 3〇26菌株以如實彻q从二 具例3的相同方式反 Γ 〇 應。結果,消耗1.0 g甘油且每1升累積〇1 g甘油酸。 實例24 假單抱菌屬菌種ATCC 53617菌株以如實例i的相同方式 反應。結果,消耗5.! g甘油且每〗升累積丨〇 §甘油 實例25 假單孢菌屬菌種ATCC 53617菌株以如實例3的相同方式 反應。結果,消耗5.8 g甘油且每丨升累積〇 6 g甘油酸。 實例26 核顆粒鏈黴菌NBRC 143〇lg株以如實例2()的相同方式 反應。結果’消耗5.sg甘油且每1升累積〇ig甘油酸。工 實例27 赛米禪鏈黴gNBRC 13843 g株以如實例糊相同 反應。結果,消耗9.2g甘*且每1升累積〇.2g甘油酸。工 實例28 田無鏈黴菌屬頭黴素變種NBRC 13929菌株以如實例3的 相同方式反應,但預培養期間從24小時改爲6天且主拉 養期間從4天改爲6天 '结果,消耗74 g甘油且每【升累積 131377.doc •22· 200911998 ο.1 g甘油酸。 實例29 鏈黴菌屬NBRc 15617菌株 應,作預拉甚《 如貫例3的相同方式反 預培養期間從24小時改爲6天, 改爲δ天。蛀專且主培養期間從4天 實例3〇 母升累積〇.4g甘油酸。 球形節桿菌屬NBRC m37菌株以如實例丄的相同方式反 應。結果,消耗4.5 g甘油且每1升累積〇·2 §甘油酸。 Ο 工業應用 根據本發明,甘油酸藉由微生物以簡易方式從甘油(生 物柴油廢液)中製造。甘油酸作爲添加劑或樹脂中間物或 潤滑劑,及類似物使用。因此,本發明用於從廢物料中製 造有用的物質。 131377.doc •23·The time was changed from 4 days to 6 days. As a result, 3 7 g of glycerol was consumed and ^ liter accumulated glyceric acid. S Example 1 7 Streptomyces facilis NBRC 13042 strain reacted in the same manner as in Example 3 'but the period from pre-culture was changed from 24 hours to 6 days, and during the main culture period from 4 days to 6 days. Results 8.7 § glycerol was consumed And accumulated 2 g of glyceric acid per liter. Example 1 8 Streptomyces NBRC 12865 strain was reacted in the same manner as in Example 3 'but the period from pre-culture was changed from 24 hours to 6 days, and during the main culture period from \ days 131377.doc •20- 200911998 to 6 days . As a result, 3 3 g of glycerin was consumed and 〇i g of glyceric acid was accumulated per 1 liter. Example 19 S. sphaeroides NBRC 15874 strain was reacted in the same manner as in Example 3, except that the pre-culture period was changed from 24 hours to 6 days, and the main culture period was changed from 4 days to 6 days. As a result, 4 g g glycerol was consumed and 〇丨g glyceric acid was accumulated per liter. Example 20 S. chrysogenum NBRC 13488 strain was spread on agar medium A for plate culture (composition: 3 g potassium dihydrogen phosphate, 6 § disodium hydrogen phosphate, 0.5 g sodium chloride, 1 g gas) Ammonium, 492 mg magnesium sulfate heptahydrate, 147 mg monohydrate gasification mom, 1 mg mg yeast extract, layer glycerin, 20 g agar and 1 L steamed water (final pH 7.4)) Allow to stand for 4 days at 3 °C. The strain grown on the above plate was inoculated into 3 mL of medium C by a platinum ring, which was used for test tube culture (composition: same composition as agar medium A, but no agar), at 3 °c The cells were shaken and cultured (precultured) at 2 rpm for 6 days. 30 pL of the above-mentioned grown strain culture medium was transferred to 3 mL of medium D for use in test tube culture (composition: the same composition as the above-mentioned medium C for test tube culture, but instead of 10 g of glycerol containing 19.6 g for manufacture) The glycerin fraction of the by-product of the biodiesel fuel (glycerol·51%, methylation: 11%, oxidative osmolarity: 8%, water: 4%, and others containing glycerides: 26%)) was at 3 〇. The armpit was shaken at 200 rpm (main culture). The reaction took 6 days to consume 11 g of glycerol and accumulated 3 g of glyceric acid per liter. Example 21 The moderatus Streptomyces NBRC 13432 strain reacted in the same manner as in Example 3 'but changed from 24 hours to 6 days during pre-culture period' and during the main culture period from 4 131377.doc 21 200911998 liters accumulated 0.2 g glycerol days to 6 day. As a result, 5.3 g of glycerin is consumed and each! acid. Example 22 The moderatus Streptomyces NBRC 13432 strain was reacted in the same manner as in Example 20. As a result, 6.3 g of glycerin was consumed and 1 liter per liter of glycerol was used. Example 23 Bacillus subtilis NBRC 3〇26 strain was reversed from the same manner as in Example 3. As a result, 1.0 g of glycerin was consumed and 1 g of glyceric acid was accumulated per 1 liter. Example 24 Pseudomonas sp. ATCC 53617 strain was reacted in the same manner as in Example i. As a result, 5. g g glycerol was consumed and accumulated per liter of glycerol. Example 25 Pseudomonas sp. ATCC 53617 strain was reacted in the same manner as in Example 3. As a result, 5.8 g of glycerin was consumed and 6 g of glyceric acid was accumulated per liter. Example 26 Streptomyces nucleatum NBRC 143 〇 lg strain was reacted in the same manner as in Example 2 (). As a result, 5. sg of glycerol was consumed and 〇ig glyceric acid was accumulated per liter. Example 27 S. cerevisiae gNBRC 13843 g strain was reacted in the same manner as the example paste. As a result, 9.2 g of glycine* was consumed and 2. 2 g of glyceric acid was accumulated per 1 liter. Example 28 Field Streptomyces sp. No. NBRC 13929 strain was reacted in the same manner as in Example 3, but changed from 24 hours to 6 days during pre-culture and from 4 days to 6 days during the main pull-up period. 74 g of glycerol and accumulate 131377.doc •22·200911998 ο.1 g of glyceric acid per liter. Example 29 Streptomyces NBRc 15617 strain should be pre-stretched as in the same manner as in Example 3, from 24 hours to 6 days, to δ days.蛀Special and main culture period from 4 days Example 3 母 Mother liter accumulated 〇.4g glyceric acid. The S. globosa NBRC m37 strain was reacted in the same manner as in the Example 丄. As a result, 4.5 g of glycerin was consumed and 〇·2 § glyceric acid was accumulated per liter. Ο Industrial Applicability According to the present invention, glyceric acid is produced from glycerol (biodiesel waste liquid) in a simple manner by microorganisms. Glyceric acid is used as an additive or a resin intermediate or lubricant, and the like. Accordingly, the present invention is used to make useful materials from waste materials. 131377.doc •23·
Claims (1)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007127252 | 2007-05-11 | ||
JP2007140289 | 2007-05-28 | ||
JP2007201812 | 2007-08-02 | ||
JP2007275765A JP2009050250A (en) | 2007-05-11 | 2007-10-23 | Method for producing glyceric acid |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200911998A true TW200911998A (en) | 2009-03-16 |
Family
ID=40501919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97117360A TW200911998A (en) | 2007-05-11 | 2008-05-09 | Method for producing glyceric acid |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2009050250A (en) |
TW (1) | TW200911998A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5158775B2 (en) * | 2007-12-28 | 2013-03-06 | 独立行政法人産業技術総合研究所 | Method for producing D-glyceric acid from glycerol |
JP5158776B2 (en) * | 2007-12-28 | 2013-03-06 | 独立行政法人産業技術総合研究所 | Method for producing D-glyceric acid from glycerol |
JP5311398B2 (en) * | 2009-05-28 | 2013-10-09 | 独立行政法人産業技術総合研究所 | Method for producing glycerin derivative |
-
2007
- 2007-10-23 JP JP2007275765A patent/JP2009050250A/en active Pending
-
2008
- 2008-05-09 TW TW97117360A patent/TW200911998A/en unknown
Also Published As
Publication number | Publication date |
---|---|
JP2009050250A (en) | 2009-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5922657B2 (en) | Novel bacteria and method for using the same | |
JP2009538118A (en) | Enzymatic production of 2-hydroxy-2-methylcarboxylic acid | |
JP2009142256A (en) | Method for producing d-lactic acid | |
Jamali et al. | Particle size variations of activated carbon on biofilm formation in thermophilic biohydrogen production from palm oil mill effluent | |
KR101714967B1 (en) | Novel Methylomonas species strain and use thereof | |
JP6521243B2 (en) | Method for aerobically producing 3-hydroxybutyric acid or a salt thereof | |
JP4665157B2 (en) | Process for producing hydrogen and ethanol from biodiesel wastewater | |
TW200911998A (en) | Method for producing glyceric acid | |
WO2008126669A2 (en) | Method for producing pyruvic acid | |
JP4742610B2 (en) | Process for producing fumaric acid | |
KR20170087361A (en) | A method for production of acetone from propane using methanotroph | |
TW200914620A (en) | Method for producing malic acid | |
WO2008140127A1 (en) | Process for producing optically active 2-alkyl-1,1,3-trialkoxycarbonylpropane | |
TW201525139A (en) | Method for producing 2,3-butanediol | |
WO2008143146A2 (en) | Method for producing glyceric acid | |
Gullapalli et al. | Bioproduction of D-psicose from allitol with Enterobacter aerogenes IK7: a new frontier in rare ketose production | |
WO2012137771A1 (en) | Process for producing adipic acid | |
TW200904987A (en) | Method for producing pyruvic acid | |
JP2012191956A (en) | Method for producing lactic acid | |
WO2008143147A1 (en) | Method for producing malic acid | |
JP2009291132A (en) | D-lactic acid-producing microorganism and production method | |
JP2000166584A (en) | Reactor for producing alkanol | |
JP2009148212A (en) | Method for fermentatively producing mannitol and microorganism used for performance thereof | |
JPS5816692A (en) | Preparation of l-tryptophan by enzyme | |
Yu et al. | Efficient biocatalytic production of D-4-hydroxyphenylglycine by whole cells of recombinant Ralstonia pickettii |