TW200910617A - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
TW200910617A
TW200910617A TW96131383A TW96131383A TW200910617A TW 200910617 A TW200910617 A TW 200910617A TW 96131383 A TW96131383 A TW 96131383A TW 96131383 A TW96131383 A TW 96131383A TW 200910617 A TW200910617 A TW 200910617A
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
cell module
type semiconductor
semiconductor layer
Prior art date
Application number
TW96131383A
Other languages
Chinese (zh)
Inventor
Ga-Lane Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96131383A priority Critical patent/TW200910617A/en
Publication of TW200910617A publication Critical patent/TW200910617A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The invention relates to a solar cell. The solar cell includes a flexible substrate. The flexible substrate includes two surfaces opposite to each other. An electric layer, a P-type semiconductor layer, a P-N junction layer, a N-type semiconductor layer, a transparent conduct layer, and a metal conduct layer are formed on one surface of the substrate, in the order written. A material of the substrate is Al-Mg alloy.

Description

200910617 - 九、發明說明: . 【發明所屬之技術領域】 本發明涉及太陽能電池組件,特別涉及一種可撓曲之 太陽能電池組件。 【先前技術】 太陽能電池主要應用光電轉換原理,其結構主要包括 基板以及設置於基板上之P型半導體材料層和N型半導體 材料層。 光電轉換係指太陽之輻射能光子通過半導體物質轉變 為電能之過程(請參見 “Grown junction GaAs solar cell” , Shen, C.C.; Pearson, G.L.; Proceedings of the IEEE, Volume 64, Issue 3, March 1976 Page(s):384-385)。當太陽光照射到 半導體上時,其中一部分被表面反射掉,其餘部分被半導 體吸收或透過。被吸收之光,當然有一些變成熱能,另一 些光子則同組成半導體之原子價電子碰撞,於是產生電子-空穴對。這樣,光能就以產生電子-空穴對之形式轉變為電 ' 能,並於P型和N型交界面兩邊形成勢壘電場,將電子驅 向N區,空穴驅向P區,從而使得N區有過剩之電子,P 區有過剩之空穴,於P -N結附近形成與勢壘電場方向相反 之光生電場。光生電場之一部分除抵銷勢壘電場外,還使 P型層帶正電,N型層帶負電,於N區與P區之間之薄層 產生所謂光生伏打電動勢。若分別於P型層和N型層焊上 金屬引線,接通負載,則外電路便有電流通過。如此形成 一個個的電池元件,把它們串聯、並聯起來,就能產生一 5 200910617 定之電壓和電流,輸出功率。 *近年來,太陽能電池已經廣泛應用於航天、製造、氣 象等領域’如何將太陽能電池應用於日常生活用品,以解 決能源短缺、環境污染等問題已成為—個熱點問題。這其 中,太陽能建築1夺太陽能電池與襲材料相、结合,使得 未來之大型建築或家庭房屋實現電力自給,係未來一大發 展方向,德國、美國等國家更提出光伏屋頂計劃。 、然而一般之太陽能電池之基板都採用單晶矽、多晶矽 或玻璃等材料,這些材料易碎且不易撓曲,難以固定於一 個彎曲之表面上’限制了太陽能電池面板之形狀及安裝位 置,尤其於希望把其應用於與建築材料結合之模件中時, 會受到許多限制。即使把這樣之太陽能電池佈置於不須絲 Μ曲之區域時’它也可能被其所在環境之風力或者震= 啤間施壓而發生破裂。此外,單㈣或多晶秒材料價格昂 貴很難實現大面積之應用,而玻璃雖然價格相對低廉: f相對較重,其應用之領域也受到一定之限制。 【發明内容】 有馨於此,提供-種價格低廉,輕f,且具有 曲性之太陽能電池組件實為必要。 心祝 一種太陽能電池組件’包括一個可撓曲基板。 ΐ有。::=:表面’其中一個表面上依次形成有;極 日+ 體層,P-N結層,N型半導體層,透明 及金屬導電層。該基板之材料為紹鎮合金。 、 相對於先前技術,本發明提供之太陽能電池組件具有 200910617 車乂好之&曲性,將其應用於建築領域時,更容易配合建築 物本身之形狀形成不同幾何形狀之太陽能電池組件,這樣 可吸收到不同時段太陽發出之光能。 可理解,本發明提供之太陽能電池組件不僅可應用於 ^築領域’由於其具有輕質、成本低、且易撓曲之特性,、 建可廣泛之應用於航天器,海上運輸工具,交通工具,以 及手機等3C產品上。 【實施方式】 、明參見圖1’本發明第一實施例提供一種可撓曲太陽能 電池組件10 ’該太陽能電池組件1G包括-基板11,該基 板11具有第一表面110及第二表面in’該基板11之第一 表面m上依次形成有第一電極層12,半導體結構層η, 及與第—電極層12極性相反之第二電極層14。 於本實施例中,該基板11係可撓曲之鋁鎂合金(A1_Mg ㈣,該基板之厚度大約於丄〇 /^至· # m之間。 上#該第一電極層12形成於該基板11之第一表面110上。 σ亥第-電極層12之材料可為銀(Ag)、銅㈣、或紹㈤)等 2,也可為紹銅合金(A1_CU alloy),銅翻合金(CU_M。alloy) 寺5金材料。該第—電極層之厚度大約於 =間。該第一電極層12可採用⑲射㈣廳㈣或者沈積 (depositing)之方法形成。 該半導體結構層13可為三層結構,其包括—p型半丢 曰31 N型半導體層133、以及位於p型半導體j 132與N型半導體層133之間之μ結層⑴。 200910617 該P型半導體層131之材料可為P型非晶矽(P type amorphous silicon,簡稱P-a-Si)材料,特另ιΐ係P型含氫非晶 石夕(P type amorphous silicon with hydrogen,簡稱 P-a-Si:H) 材料。當然,該p型半導體層之材料也可為m-v族化合物 或II-VI族化合物,特別係摻雜鋁(A1)、鉀(Ga)、銦(In)之半 導體材料,如氮化鋁鉀(AlGaN)或鋁砷化鎵(AlGaAs)。 優選之,該P型半導體層131之材料為P型非晶矽材料。 非晶矽材料對光之吸收性比結晶矽材料強約500倍,所以 於對光子吸收量要求相同之情況下,非晶矽材料製成之半 導體層之厚度遠小於結晶矽材料製成之半導體層之厚度。 且非晶矽材料對基板材質之要求更低。所以採用非晶矽材 料不僅可節省大量之材料,也使得製作大面積之太陽能電 池成為可能(結晶石夕太陽能電池之面積受限於石夕晶圓之尺 寸)。 該P-N結層132之材料可為結合性較好之III-V族化合 物或I -III-VI族化合物,如碲化鎘(CdTe)、銅銦硒(CuInSe2) 等材料。也可為銅銦鎵硒((:1111114〇&862,匚103)。該?-?^結 層132用於將光子轉換成電子-孔穴對並形成勢壘電場。該 P-N結層 132可通過化學氣相沈積法(Chemical Vapor Deposition,CVD),濺射法等方法形成於該P型半導體層131 上。 該N型半導體層133之材料可為N型非晶矽(N type amorphous silicon,簡稱N-a-Si)材料,特別係N型含氫非 晶石夕(N type amorphous silicon with hydrogen’ 簡稱 N-a-Si:H) 8 200910617 $料田然,該N型半導體層133之材料也可為ΠΙ_ν族化 —勿或II-VI知化合物,特別係摻雜氮(Ν)、鱗(?)、碎(as) 半V租材料’如氮化鉀(GaN)或罐化銦鎵(inGap)。 Z理解,該半導體結構層13也可為兩層結構,該兩層磊晶 :構由。P型半導體層131和- N型半導體層133組成。 該第二電極層14形成於N型半導體層133上,其包括一透 明導電層141及-與該透明導電層141電接觸之金屬導電 層 142。 *該透明導電層141形成於N型半導體層133上,其與 二型半導體層133形成歐姆接觸(ohmicc〇ntact)。該透明導 电層133之材料為透明之金屬氧化物或金屬接雜氧化物, 如銦錫氧化物(indiumTin 0xides,IT〇)、氧化鋅吻⑺、氧 錫(Sn〇2)、銦摻雜一氧化錫(Sn〇:In)、錫摻雜三氧化二鎵 Ga203:Sn)、錫摻雜銀銦氧化物(AgIn〇2:s (:,、辞接雜三氧化二轉n2〇— (Sn〇2:Sb)、或鋁摻雜氧化辞(Zn〇:A1)等。透明導電層i4i 之光吸收係數小,可讓更多之太陽光通過。可理解Y也可 於透明^電層141進—步形成—層增透膜來提高太陽光之 =率1透明導電層141可採用漉射、低屋化學氣相沈 積法或南壓化學氣相沈積法形成。 ^該金屬導電層142形成(例如沈積)於透明導電層i4i之 =N型半導體層133之—侧,其—般為梳狀結構。該金 導電層142通常係由非透光之金屬或金屬合金材料製成 200910617 相對於先前技術,本發明提供之太陽能電池組件ίο具 有較好之撓曲性,將其應用於建築領域時,更容易配合建 築物本身之形狀形成不同幾何形狀之太陽能電池組件,這 樣可吸收到不同時段太陽發出之光能。 請參閱圖2,本發明還提供一種製造上述太陽能電池組 件10之設備20。該設備20包括一個供給/收集部21及加 工處理部22。該供給/收集部21内設置有一個放料滾筒210 及一個收料滾筒211。加工處理部22内設置有複數滾筒 220。鋁鎂合金箔11之一端捲曲於放料滚筒210上,另一 端依次繞過加工處理部22之複數滾筒220捲曲於收料滚筒 211上。與該複數滚筒220相接觸之表面為該鋁鎂合金箔 11之第二表面111。該加工處理部22内設置有複數區域於 鋁鎂合金箔11之第一表面110上依次形成第一電極層12, P型半導體層131,P-N結層132,N型半導體層133,透明 導電層141,及金屬導電層142。 設置於加工處理部22内之複數滚筒220不僅可用來支 撐銘鎂合金箔11,進一步,該複數滾筒220内還可裝有冰 水或其他液體,這樣有利於對鋁鎂合金箔散熱,使其於整 個製程中始終保持相對較低之溫度。 於本實施例中,該加工處理部22從左至右依次包括第 一濺射區221,第一沈積區222,第二濺射區223,第二沈 積區224,第三濺射區225,及第三沈積區226。 該第一濺射區221通過濺射法於鋁鎂合金箔11之第一 表面110上形成第一電極層12。本實施例中,優選採用直 200910617 •流磁控滅射法(DC mag前on spuuedng)形成第一電極層 12。第-滅射區221與關合金鶴第一表面ιι〇相對之内 壁上π置有相應之靶材2210。該靶材221〇之材料可為銀、 銅、或銘等金屬’也可為紹銅合金,㈣目合金等合金材料。 該第一沈積區222通過化學氣相沈積法於第一電極層 12遠離㈣合金箱之—側形成Ρ型半導體層131,該Ρ型 半導體層131之材料可為第一實施例中所列舉之ρ型半導 ,體層131之材料。於本實施例中,優選採用等離子輔助化 學氣相沈積法(plasma Enhanced cVD,pECVD),當然根據 不同之材料也可選擇其他CVD方法。 該第二濺射區223於P型半導體層ι31遠離第一電極 層之一側形成p_N結層132。第二濺射區223與鋁鎂合金箔 第一表面相對之内壁上設置有相應之靶材2230。該靶材 2230之材料可為第一實施例中所列舉之p_N結層132之材 料’本實施例中優選為銅銦鎵硒。結層132之形成可採 、用直流磁控錢射法或交流錢射直控法(AC magnetic sputtering)等濺射法形成。 該第二沈積區224通過CVD法於p_N結層132遠離P 型半導體層131之一侧沈積N型半導體層133。該N型半 導體層133之材料可為第/實施例中所列舉之n型半導體 層133之材料。於本實施例中,優選pecvD法。 該第三濺射區225通過濺射法於N型半導體層133遠 離P-N結層132之一侧形成透明導電層133。第三濺射區 225與鋁鎂合金箔第一表面相對之内壁上設置有相應之靶 11 200910617 材2250。該靶材之材料可為第一實施例中所列舉之透明導 電層133之材料,優選採用ITO材料。 該第三沈積區226通過化學氣相沈積法於透明導電層 141遠離N型半導體層133之一侧形成金屬導電層142。 於本實施例中,放料滾筒210靠近第一濺射區221,收 料滚筒211靠近第三沈積區226。該鋁鎂合金箔11之一端 順時針之捲曲於放料滾筒210上,另一端逆時針之捲曲於 收料滾筒211上。該設備20還可進一步包括複數導向滾筒 23,該複數導向滾筒23設置於該供給/收集部21及加工處 理部22之間,主要用於引導鋁鎂合金箔11傳輸之方向。 當電機(圖未示)帶動收料滚筒211順時針轉動時,放料 滚筒210也跟著順時針轉動,而設置於加工處理部22内之 滚筒220進行逆時針轉動。鋁鎂合金箔11依次經過第一濺 射區221,第一沈積區222,第二濺射區223,第二沈積區 224,第三濺射區225,及第三沈積區226。這樣,鋁鎂合 金箔11之第一表面110上就依次形成有第一電極層12,P 型半導體層131,P-N結層132,N型半導體層133,透明 導電層141,及金屬導電層142,第一實施例中之太陽能電 池組件10便製成了。制好之太陽能電池組件10捲曲於收 料滾筒211上,便於進行後續之加工處理。 請參閱圖3,本發明還提供一種製造上述太陽能電池組 件10之設備30。該設備30與第二實施例提供之製造設備 之結構基本相同。該設備30包括一個供給/收集部31及加 工處理部32。該供給/收集部31内設置有一個放料滾筒310 12 200910617 • 及一個收料滾筒311。加工處理部32内設置有複數滾筒 - 320。鋁鎂合金箔11之一端捲曲於放料滾筒310上,另一 端依次繞過加工處理部32之複數滾筒320捲曲於收料滾筒 311上。與該複數滚筒320相接觸之表面為該鋁鎂合金箔 11之第二表面111。不同之處主要在於:該加工處理部32 從左至右依次包括第一沈積區321,第二沈積區322,第三 沈積區323,第四沈積區324,第五沈積區325,及第六沈 積區326,該六個沈積區主要使用CVD方法依次於鋁鎂合 金箔11之第一表面110上形成第一電極層12,P型半導體 層131,P-N結層132,N型半導體層133,透明導電層141, 及金屬導電層142。CVD方法包括大氣壓化學氣相沈積法 (Atmospheric Pressure CVD、APCVD),低壓化學氣相沈積 法(Low Pressure CVD、LPCVD),PECVD 等化學氣相沈積 法。於本實施例中,該鋁鎂合金箔11之一端逆時針之捲曲 於放料滾筒310上,另一端順時針之捲曲於收料滾筒311 上。當電機帶動收料滾筒311逆時針轉動時,放料滚筒310 也跟著逆時針轉動。 可理解,本領域之普通技術人員可根據太陽能電池組 件之不同結構層之材料,選擇本領域慣用之製程形成與第 一實施例之太陽能電池組件10基本結構相同之太陽能電池 組件。 可理解,本發明提供之太陽能電池組件不僅可應用於 建築領域,由於其具有輕質、成本低、且易撓曲之特性, 還可廣泛之應用於航天器,海上運輸工具,交通工具,以 13 200910617 及手機等3C產品上。 綜上所述’本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化,皆 應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本發明第一實施例之太陽能電池組件之結構示 意圖。 圖2係本發明第二實施例之製造設備之示意圖。 圖3係本發明第三實施例之製造設備之示意圖。 【主要元件符號說明】 太陽能電池組件 10 基板 11 第一電極層 12 半導體結構層 13 弟一電極層 14 第一表面 110 第二表面 111 p型半導體層 131 P-N結層 132 N型半導體層 133 透明導電層 141 金屬導電層 142 14 200910617 設備 20,30 供給/收集部 21,31 加工處理部 22,32 導向滾筒 23 放料滾筒 210 , 310 收料滚筒 211 , 311 滚筒 220 , 320 第一藏射區 221 第一沈積區 222 , 321 弟·一 :賤射區 223 弟-—沈積區 224 , 322 第三濺射區 225 弟二沈積區 226 , 323 弟四沈積區 324 弟五沈積區 325 弟六沈積區 326 靶材 2210 , 2230 15200910617 - IX. Description of the invention: 1. Field of the Invention The present invention relates to a solar cell module, and more particularly to a flexible solar cell module. [Prior Art] The solar cell mainly employs a photoelectric conversion principle, and its structure mainly includes a substrate and a P-type semiconductor material layer and an N-type semiconductor material layer which are disposed on the substrate. Photoelectric conversion refers to the process by which solar radiant energy photons are converted into electrical energy by semiconductor materials (see "Grown junction GaAs solar cell", Shen, CC; Pearson, GL; Proceedings of the IEEE, Volume 64, Issue 3, March 1976 Page (s): 384-385). When sunlight hits the semiconductor, some of it is reflected off the surface and the rest is absorbed or transmitted by the semiconductor. The absorbed light, of course, some become thermal energy, and the other photons collide with the valence electrons that make up the semiconductor, thus producing electron-hole pairs. In this way, the light energy is converted into electrical energy in the form of electron-hole pairs, and a barrier electric field is formed on both sides of the P-type and N-type interfaces, driving electrons to the N region and holes to the P region. There is an excess of electrons in the N region, and there are excess holes in the P region, and a photo-generated electric field opposite to the electric field of the barrier is formed in the vicinity of the P-N junction. In addition to offsetting the barrier electric field, part of the photo-generated electric field also causes the P-type layer to be positively charged, the N-type layer to be negatively charged, and the thin layer between the N-region and the P-region to produce a so-called photovoltaic electromotive force. If the metal leads are soldered to the P-type layer and the N-type layer respectively, and the load is turned on, current flows through the external circuit. Thus, the battery elements are formed in series, and they are connected in series and in parallel to generate a voltage and current of 5,106,106,17, and output power. *In recent years, solar cells have been widely used in aerospace, manufacturing, and gas fields. How to apply solar cells to daily necessities to solve energy shortages and environmental pollution has become a hot issue. Among them, solar energy buildings take the combination of solar cells and materials, which will enable self-sufficiency in the future of large-scale buildings or family houses. It is a major development direction in the future, and countries such as Germany and the United States have proposed photovoltaic roof plans. However, the substrates of general solar cells are made of single crystal germanium, polycrystalline germanium or glass. These materials are brittle and difficult to flex, and are difficult to fix on a curved surface, which limits the shape and mounting position of the solar cell panel. There are many limitations when it is desired to apply it to a module that is combined with building materials. Even when such a solar cell is placed in an area where it is not necessary to be twisted, it may be broken by the wind or vibration of the environment in which it is placed. In addition, the price of a single (four) or polycrystalline second material is difficult to achieve a large area, while the glass is relatively inexpensive: f is relatively heavy, and its application field is also limited. SUMMARY OF THE INVENTION It is necessary to provide a solar cell module which is inexpensive, light f, and has flexibility. A solar cell module 'includes a flexible substrate. No. ::=: Surface' is formed on one of the surfaces in sequence; pole + body layer, P-N junction layer, N-type semiconductor layer, transparent and metal conductive layer. The material of the substrate is Shaozhen alloy. Compared with the prior art, the solar cell module provided by the present invention has the 20091017 rut & curvature, and when it is applied to the construction field, it is easier to form the solar cell module of different geometric shapes in accordance with the shape of the building itself, so that It can absorb the light energy emitted by the sun at different times. It can be understood that the solar cell module provided by the invention can be applied not only to the field of construction, but also because of its light weight, low cost and flexibility, and can be widely applied to spacecraft, marine transportation vehicles, vehicles. , as well as mobile phones and other 3C products. [First Embodiment] A first embodiment of the present invention provides a flexible solar cell module 10'. The solar cell module 1G includes a substrate 11 having a first surface 110 and a second surface in A first electrode layer 12, a semiconductor structure layer η, and a second electrode layer 14 having a polarity opposite to that of the first electrode layer 12 are sequentially formed on the first surface m of the substrate 11. In the embodiment, the substrate 11 is a flexible aluminum-magnesium alloy (A1_Mg (4), and the thickness of the substrate is between about 丄〇/^ to · # m. The upper electrode layer 12 is formed on the substrate. The first surface 110 of the first surface 110. The material of the σhai-electrode layer 12 may be silver (Ag), copper (four), or sho (5)), etc. 2, or may be a copper alloy (A1_CU alloy), copper alloy (CU_M) .alloy) Temple 5 gold material. The thickness of the first electrode layer is approximately between =. The first electrode layer 12 can be formed by a method of 19 shots (four) chambers (4) or depositing. The semiconductor structure layer 13 may have a three-layer structure including a p-type semi-disappearing 31 N-type semiconductor layer 133, and a μ-junction layer (1) between the p-type semiconductor j 132 and the N-type semiconductor layer 133. 200910617 The material of the P-type semiconductor layer 131 may be a P-type amorphous silicon (Pa-Si) material, and a P-type amorphous silicon with hydrogen (P-type amorphous silicon with hydrogen). Pa-Si: H) Material. Of course, the material of the p-type semiconductor layer may also be a mv group compound or a group II-VI compound, especially a semiconductor material doped with aluminum (A1), potassium (Ga), or indium (In), such as aluminum aluminum nitride ( AlGaN) or aluminum gallium arsenide (AlGaAs). Preferably, the material of the P-type semiconductor layer 131 is a P-type amorphous germanium material. The amorphous germanium material is about 500 times stronger than the crystalline germanium material, so the thickness of the semiconductor layer made of amorphous germanium material is much smaller than that of the crystalline germanium material when the photon absorption amount is the same. The thickness of the layer. And the amorphous germanium material has lower requirements on the substrate material. Therefore, the use of amorphous tantalum materials not only saves a large amount of materials, but also makes it possible to produce large-area solar cells (the area of the crystal solar cells is limited by the size of the Shixi wafer). The material of the P-N junction layer 132 may be a combination of a better group III-V compound or a group I-III-VI compound such as cadmium telluride (CdTe) or copper indium selenide (CuInSe2). It can also be copper indium gallium selenide ((: 1111114〇 & 862, 匚 103). The ?-? junction layer 132 is used to convert photons into electron-hole pairs and form a barrier electric field. The PN junction layer 132 can The material is formed on the P-type semiconductor layer 131 by a chemical vapor deposition (CVD) method, a sputtering method, etc. The material of the N-type semiconductor layer 133 may be an N-type amorphous silicon (N type amorphous silicon, Abbreviated as Na-Si) material, especially N type amorphous silicon with hydrogen (Na-Si:H) 8 200910617 $ material Tianran, the material of the N-type semiconductor layer 133 can also be ΠΙ ν 族 — - do not or II-VI known compounds, especially doped nitrogen (Ν), scale (?), broken (as) semi-V rented materials such as potassium nitride (GaN) or canned indium gallium (inGap) It is understood that the semiconductor structure layer 13 can also be a two-layer structure consisting of a P-type semiconductor layer 131 and an -N-type semiconductor layer 133. The second electrode layer 14 is formed on the N-type semiconductor. The layer 133 includes a transparent conductive layer 141 and a metal conductive layer 142 in electrical contact with the transparent conductive layer 141. * The transparent guide The layer 141 is formed on the N-type semiconductor layer 133, which forms an ohmic contact with the di-type semiconductor layer 133. The material of the transparent conductive layer 133 is a transparent metal oxide or a metal-doped oxide such as indium. Tin oxide (indiumTin 0xides, IT〇), zinc oxide kiss (7), tin oxide (Sn〇2), indium doped tin oxide (Sn〇: In), tin-doped gallium dioxide Ga203:Sn), tin Doped with silver indium oxide (AgIn〇2: s (:, 辞 杂 三 三 转 n n n ( ( ( ( ( 、 、 、 、 、 、 、 、 、 、 、 、 、 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The light absorption coefficient of the layer i4i is small, which allows more sunlight to pass through. It can be understood that Y can also be formed in the transparent electro-electric layer 141 to form an anti-reflection film to increase the sunlight rate 1. The transparent conductive layer 141 can be Formed by sputtering, low-rise chemical vapor deposition or south pressure chemical vapor deposition. ^ The metal conductive layer 142 is formed (for example, deposited) on the side of the transparent conductive layer i4i = N-type semiconductor layer 133, which - Typically a comb-like structure. The gold conductive layer 142 is typically made of a non-transmissive metal or metal alloy material 200910617 relative to prior art The solar cell module provided by the invention has better flexibility, and when applied to the field of construction, it is easier to form a solar cell module of different geometric shapes in accordance with the shape of the building itself, so that the sun can be absorbed at different times. Light energy. Referring to Figure 2, the present invention also provides an apparatus 20 for fabricating the solar module 10 described above. The apparatus 20 includes a supply/collection unit 21 and a processing unit 22. A feed roller 210 and a receiving roller 211 are disposed in the supply/collection portion 21. A plurality of rollers 220 are provided in the processing unit 22. One end of the aluminum-magnesium alloy foil 11 is curled on the discharge drum 210, and the other end of the aluminum-rolled alloy foil 11 is wound around the processing drum 22 to be wound on the take-up drum 211. The surface in contact with the plurality of rolls 220 is the second surface 111 of the aluminum-magnesium alloy foil 11. The processing unit 22 is provided with a plurality of regions on the first surface 110 of the aluminum-magnesium alloy foil 11 to sequentially form the first electrode layer 12, the P-type semiconductor layer 131, the PN junction layer 132, the N-type semiconductor layer 133, and the transparent conductive layer. 141, and a metal conductive layer 142. The plurality of rollers 220 disposed in the processing portion 22 can be used not only to support the magnesium alloy foil 11, but further, the plurality of rollers 220 can be filled with ice water or other liquid, which is advantageous for dissipating heat from the aluminum-magnesium alloy foil. A relatively low temperature is maintained throughout the process. In the present embodiment, the processing unit 22 includes a first sputtering region 221, a first deposition region 222, a second sputtering region 223, a second deposition region 224, and a third sputtering region 225, from left to right. And a third deposition zone 226. The first sputtering region 221 forms a first electrode layer 12 on the first surface 110 of the aluminum-magnesium alloy foil 11 by sputtering. In the present embodiment, it is preferable to form the first electrode layer 12 by using a direct current 200910617 • flow magnetron killing method (DC mag front on spuuedng). The first-killing zone 221 is provided with a corresponding target 2210 on the inner wall opposite to the first surface of the alloyed crane. The material of the target 221 可 may be a metal such as silver, copper, or inlaid, or may be an alloy material such as a copper alloy or a (tetra) mesh alloy. The first deposition region 222 forms a Ρ-type semiconductor layer 131 on the side of the first electrode layer 12 away from the (four) alloy case by chemical vapor deposition, and the material of the Ρ-type semiconductor layer 131 may be listed in the first embodiment. Ρ-type semi-conductive material of bulk layer 131. In the present embodiment, plasma enhanced cVD (pECVD) is preferably employed, and other CVD methods may be selected depending on materials. The second sputtering region 223 forms a p_N junction layer 132 on a side of the P-type semiconductor layer ι31 away from the first electrode layer. The second sputtering zone 223 is provided with a corresponding target 2230 on the inner wall opposite to the first surface of the aluminum-magnesium alloy foil. The material of the target 2230 may be the material of the p_N junction layer 132 exemplified in the first embodiment. In the present embodiment, copper indium gallium selenide is preferred. The formation of the junction layer 132 can be formed by a sputtering method such as a DC magnetron or an AC magnetic sputtering method. The second deposition region 224 deposits the N-type semiconductor layer 133 on the side of the p-N junction layer 132 away from the P-type semiconductor layer 131 by a CVD method. The material of the N-type semiconductor layer 133 may be the material of the n-type semiconductor layer 133 exemplified in the above embodiment. In the present embodiment, the pecvD method is preferred. The third sputtering region 225 forms a transparent conductive layer 133 on the side of the N-type semiconductor layer 133 away from the P-N junction layer 132 by a sputtering method. The third sputtering zone 225 is provided with a corresponding target 11 200910617 material 2250 on the inner wall opposite to the first surface of the aluminum-magnesium alloy foil. The material of the target may be the material of the transparent conductive layer 133 exemplified in the first embodiment, and preferably an ITO material. The third deposition region 226 forms a metal conductive layer 142 on the side of the transparent conductive layer 141 away from the N-type semiconductor layer 133 by chemical vapor deposition. In the present embodiment, the discharge roller 210 is adjacent to the first sputtering zone 221, and the discharge roller 211 is adjacent to the third deposition zone 226. One end of the aluminum-magnesium alloy foil 11 is curled clockwise on the discharge drum 210, and the other end is curled counterclockwise on the take-up drum 211. The apparatus 20 may further include a plurality of guide rollers 23 disposed between the supply/collection portion 21 and the processing portion 22 for guiding the direction in which the aluminum-magnesium alloy foil 11 is transported. When the motor (not shown) drives the take-up reel 211 to rotate clockwise, the discharge roller 210 also rotates clockwise, and the drum 220 disposed in the processing unit 22 rotates counterclockwise. The aluminum-magnesium alloy foil 11 passes through the first sputtering zone 221, the first deposition zone 222, the second sputtering zone 223, the second deposition zone 224, the third sputtering zone 225, and the third deposition zone 226 in sequence. Thus, the first electrode layer 12, the P-type semiconductor layer 131, the PN junction layer 132, the N-type semiconductor layer 133, the transparent conductive layer 141, and the metal conductive layer 142 are sequentially formed on the first surface 110 of the aluminum-magnesium alloy foil 11. The solar cell module 10 of the first embodiment is fabricated. The fabricated solar cell module 10 is crimped onto the take-up reel 211 for subsequent processing. Referring to Figure 3, the present invention also provides an apparatus 30 for fabricating the solar module 10 described above. The apparatus 30 is basically identical in structure to the manufacturing apparatus provided in the second embodiment. The apparatus 30 includes a supply/collection unit 31 and a processing unit 32. A feed roller 310 12 200910617 • and a receiving roller 311 are disposed in the supply/collection portion 31. A plurality of rollers - 320 are provided in the processing unit 32. One end of the aluminum-magnesium alloy foil 11 is curled on the discharge drum 310, and the other end of the aluminum-magnesium alloy foil 11 is wound around the processing drum 32 to be wound on the take-up drum 311. The surface in contact with the plurality of rolls 320 is the second surface 111 of the aluminum-magnesium alloy foil 11. The difference mainly lies in that the processing unit 32 includes, in order from left to right, a first deposition area 321, a second deposition area 322, a third deposition area 323, a fourth deposition area 324, a fifth deposition area 325, and a sixth a deposition area 326 which is formed by sequentially forming a first electrode layer 12, a P-type semiconductor layer 131, a PN junction layer 132, and an N-type semiconductor layer 133 on the first surface 110 of the aluminum-magnesium alloy foil 11 by a CVD method. A transparent conductive layer 141, and a metal conductive layer 142. The CVD method includes atmospheric pressure chemical vapor deposition (APCVD), low pressure chemical vapor deposition (Low Pressure CVD, LPCVD), and chemical vapor deposition such as PECVD. In the present embodiment, one end of the aluminum-magnesium alloy foil 11 is curled counterclockwise on the discharge drum 310, and the other end is curled clockwise on the take-up drum 311. When the motor drives the receiving roller 311 to rotate counterclockwise, the discharge roller 310 also rotates counterclockwise. It will be understood that one of ordinary skill in the art can select a solar cell module having the same basic structure as that of the solar cell module 10 of the first embodiment according to the materials of the different structural layers of the solar cell module. It can be understood that the solar cell module provided by the invention can be applied not only to the construction field, but also to the spacecraft, the marine transportation vehicle, the vehicle, and the like because of its light weight, low cost and flexibility. 13 200910617 and 3C products such as mobile phones. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the present invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a solar cell module according to a first embodiment of the present invention. Figure 2 is a schematic illustration of a manufacturing apparatus in accordance with a second embodiment of the present invention. Figure 3 is a schematic illustration of a manufacturing apparatus in accordance with a third embodiment of the present invention. [Main component symbol description] Solar cell module 10 Substrate 11 First electrode layer 12 Semiconductor structure layer 13 First electrode layer 14 First surface 110 Second surface 111 p-type semiconductor layer 131 PN junction layer 132 N-type semiconductor layer 133 Transparent conductive Layer 141 Metal Conductive Layer 142 14 200910617 Apparatus 20, 30 Supply/Collection Section 21, 31 Processing Section 22, 32 Guide Roller 23 Discharge Roller 210, 310 Receipt Roller 211, 311 Roller 220, 320 First Storage Zone 221 The first deposition area 222, 321 brother · one: 贱 shot area 223 brother - deposition area 224, 322 third sputtering area 225 di two sedimentary area 226, 323 Di Si sedimentary area 324 Di five sedimentary area 325 Diliu sedimentary area 326 target 2210, 2230 15

Claims (1)

200910617 ,十、申請專利範圍·· 1. 一種太陽能電池組件 面上依次形成有電極層 導體層,透明導電層, 鎂合金。 匕括個可撓曲基板’該基板之表 ’ P型半導體層卞N結層,N型半 及金屬導電層,該基板之材料為紹 2.如申請專利範圍第i項所述之太 電極層之材料為金屬材料。 匕、、·’且件’其中’該 =請專利範圍第i項所述之太陽能電池組件,其令,該 私極層之材料為合金金屬材料。 ° 4·如申請專利範圍帛!項所述之太陽能電池組件,其令,談 p型半導體層之材料為非晶矽材料。 Λ 5·如申請專利範圍第1項所述之太陽能電池組件,其中,該 Ν型半導體層之材料為非晶矽材料。 / 6·如申請專利範圍第1項所述之太陽能電池組件,其中,兮 Ρ_Ν結層之材料為III-V族化合物或I -III-VI族化合物。 7. 如申請專利範圍第1項所述之太陽能電池組件,其中,該 Ρ-Ν結層之材料為銅銦鎵硒或銅銦硒。 8. 如申請專利範圍第1項所述之太陽能電池組件,其中,該 透明導電層之材料為透明之金屬氧化物或金屬摻雜氧化 物。 9·如申請專利範圍第8頊所述之太陽能電池組件,其中,該 透明導電層之材料為銦锡氧化物。200910617, X. Patent application scope · 1. A solar cell module is formed with an electrode layer conductor layer, a transparent conductive layer, and a magnesium alloy. Included is a flexible substrate 'the surface of the substrate' P-type semiconductor layer 卞N junction layer, N-type half and metal conductive layer, the material of the substrate is 2. The electrode as described in the scope of claim i The material of the layer is a metal material.匕,, 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 ° 4·If you apply for a patent scope帛! The solar cell module according to the item, wherein the material of the p-type semiconductor layer is an amorphous germanium material. The solar cell module according to claim 1, wherein the material of the germanium-type semiconductor layer is an amorphous germanium material. The solar cell module according to claim 1, wherein the material of the 兮 Ν Ν layer is a group III-V compound or a group I-III-VI compound. 7. The solar cell module of claim 1, wherein the material of the ruthenium-iridium layer is copper indium gallium selenide or copper indium selenium. 8. The solar cell module of claim 1, wherein the material of the transparent conductive layer is a transparent metal oxide or a metal doped oxide. 9. The solar cell module of claim 8, wherein the material of the transparent conductive layer is indium tin oxide.
TW96131383A 2007-08-24 2007-08-24 Solar cell TW200910617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96131383A TW200910617A (en) 2007-08-24 2007-08-24 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96131383A TW200910617A (en) 2007-08-24 2007-08-24 Solar cell

Publications (1)

Publication Number Publication Date
TW200910617A true TW200910617A (en) 2009-03-01

Family

ID=44724413

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96131383A TW200910617A (en) 2007-08-24 2007-08-24 Solar cell

Country Status (1)

Country Link
TW (1) TW200910617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108505A (en) * 2011-11-11 2013-05-15 鸿富锦精密工业(深圳)有限公司 Shell panel and electronic equipment using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108505A (en) * 2011-11-11 2013-05-15 鸿富锦精密工业(深圳)有限公司 Shell panel and electronic equipment using the same

Similar Documents

Publication Publication Date Title
Efaz et al. A review of primary technologies of thin-film solar cells
Sun et al. Toward efficiency limits of crystalline silicon solar cells: recent progress in high‐efficiency silicon heterojunction solar cells
Blakers et al. High efficiency silicon solar cells
US8907206B2 (en) Multi-junction solar cell devices
US7977568B2 (en) Multilayered film-nanowire composite, bifacial, and tandem solar cells
US8895350B2 (en) Methods for forming nanostructures and photovoltaic cells implementing same
US20090165839A1 (en) Photovoltaic Cell
CN113257940B (en) Laminated photovoltaic device and production method
Zeman Thin-film silicon PV technology
US7777127B2 (en) Flexible solar cell
Gabriel et al. Crystalline silicon on glass—interface passivation and absorber material quality
CN101836300A (en) Method for manufacturing solar cell
US20130112236A1 (en) Photovoltaic microstructure and photovoltaic device implementing same
KR101461602B1 (en) Quantum well structured solar cells and method for manufacturing same
CN101355110A (en) Solar battery as well as manufacturing equipment and method thereof
US20130112243A1 (en) Photovoltaic microstructure and photovoltaic device implementing same
TW200910617A (en) Solar cell
Pandey et al. Rear contact silicon solar cells with a-SiCX: H based front surface passivation for near-ultraviolet radiation stability
Myong Recent patent issues on intermediate reflectors for high efficiency thin-film silicon photovoltaic devices
Terukov et al. Investigation of the characteristics of heterojunction solar cells based on thin single-crystal silicon wafers
TWI407572B (en) Solar cell module
TWI396291B (en) Solar cell, apparatus and method for making same
JP6458591B2 (en) Solar cell device
JP5247748B2 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
TWI487131B (en) Apparatus and method for making solar cell