TW200909484A - Granular composites of inorganic particulates and redispersible latex powders and methods - Google Patents

Granular composites of inorganic particulates and redispersible latex powders and methods Download PDF

Info

Publication number
TW200909484A
TW200909484A TW97124857A TW97124857A TW200909484A TW 200909484 A TW200909484 A TW 200909484A TW 97124857 A TW97124857 A TW 97124857A TW 97124857 A TW97124857 A TW 97124857A TW 200909484 A TW200909484 A TW 200909484A
Authority
TW
Taiwan
Prior art keywords
composite
granular
water
polymer
sample
Prior art date
Application number
TW97124857A
Other languages
Chinese (zh)
Inventor
Young-Sam Kim
Shannon A Elliott
Luther E Stockton
Christopher J Voglewede
Mark E Westfall
Original Assignee
Dow Global Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Inc filed Critical Dow Global Technologies Inc
Publication of TW200909484A publication Critical patent/TW200909484A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • C08J2321/02Latex

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A granular composite comprising (a) an inorganic particulate, (b) a redispersible latex powder, and (c) one or more of a superabsorbent polymer (SAP), a porosity-enhancing agent, a water-soluble polymer, an odor control agent, or an oil-absorbing agent and the process of making the same.

Description

200909484 九、發明說明: 【發明所屬之技術領域3 發明領域 本發明與粒狀複合體以及粒狀複合體之製造方法有 5 關。 【先前技3 發明背景 對於供各種家用製品及消費性製品使用的多功能粒狀 複合體載體,對用於商用或工業的空氣濾器、水液吸附劑 10 或是油吸收粒子、濕氣吸附粒子,及氣味控制粒子,以及 其它的需求增加。發展成熟之複合體載體必需要有良好的 加工性能,高水液、濕氣與/或油吸收力,以及良好的惡臭 抑制及/或易揮發有機化合物(VOC)控制,以於先前曾提及 之應用中產生效用。 15 過去,曾投注精力以解決該問題,但是對用於具有諸 如更高的濕氣或是水液吸收性、油吸收性與在不同壓力下 的攔阻性,以及惡臭與VOC的抑制等改良性能之粒狀複合 體載體的有效結合劑仍存有需求。如此之載劑能提供有效 的手段來傳送活性成份係更為適合者。 20 【發明内容】 發明概要 於一實施例中,本發明提供粒狀複合體,其包含a) — 無機顆粒,b)—可再分散性乳膠粉末,以及c)一或多個超吸 收聚合物(SAP),一多孔性增進劑,一水溶性聚合物,一氣 200909484 味控制劑,或是油吸收劑。 於另一實施例中,本發明提供一製造粒狀複合體的方 法。該方法包括乾摻合黏土、可再分散性乳膠粉末,以及 其它複合體的成分以形成一混合物;以水或是水溶液濕化 5 該混合物;擠塑該潤濕混合物以形成粒狀複合體;乾燥該 經擠塑材料;並量度尺寸及篩選以形成複合體。該方法也 包含再濕潤並氣體除塵該複合體。 圖式簡要說明 第1圖為不同程度可再分散性乳膠粉末(陶氏乳膠粉 10 末,DLP)與合成尿液份量於凝塊重量上的效應的圖。 I:實施方式3 較佳實施例之詳細說明 於一實施例中,本發明提供粒狀複合體,其包含a) — 無機顆粒,b)—可再分散性乳膠粉末,以及c)一或多個 15 S AP,一多孔性增進劑,一水溶性聚合物,一氣味控制劑, 或是一油收劑。 於本發明中使用的無機顆粒為一經過微細地分割的自 然或是合成物質的固體化合物,經歷或未經歷與化學、物 理,及/或機械的表面改良。可採用不同型式的無機顆粒, 20 其包括有舉例來說:氫氧化鋁、氧化鋁、硫酸鋇、硼砂、 矽酸鈣、碳酸鈣、磷酸鈣、碳酸鎂鈣、硫酸鈣、氫氧化銅、 氧化銅、氫氧化鐵、氧化鐵、氫氧化鋰、硼酸鎂、碳酸鎂、 氧化鎂、攝酸鎂、氫氧化伽、沙、ί夕石、氣相二氧化石夕、 重碳酸鈉、碳酸鈉、滑石、二氧化鈦、合成及天然沸石、 200909484 赶霞石、不同型式黏土(例如膨潤土、高嶺土及海泡石)、 氧化鋅,及任何其水溶性鹼金屬或是驗土金屬鹽(諸如鐘的 氣化物、硫酸鹽、鱗酸鹽及硝酸鹽,鈉及鉀的氣化物、石肖 酸鹽、績酸鹽、過碳酸鹽、過氧化物、過硫酸鹽與磷酸鹽, 5及或其類似者,以更進-步地,鎂的氯化物及確酸鹽,詞 的氯化物、石肖酸鹽及或硫酸鹽,鎖的氯化物及石肖酸鹽,及 其類似者)。 無機顆粒較佳為含有-或多金屬原子及/或一或多氧 原子的金屬氧化物化合物。 1〇 於本發明的較佳實施例中,該無機顆粒是黏土。黏土 是許多沉積物、土壤或是岩石的微細尺寸顆粒的俗名,並 且個別顆粒直徑-般小於5微米。大多數黏土主要是由黏土 礦物組成’且s亥等泥土包含諸如:高嶺土、綠土、綠泥石 及伊利石。黏土大部份是由表面風化形成,例如,藉由岩 15石的〉谷解狀態,諸如石灰岩,以及藉岩石或是富含石夕酸鹽 的岩石礦物質之群組中任一者,諸如花岗岩與長石,之化 學分解作用。黏土是由不同的層狀矽酸鹽組成,已知有葉 矽酸鹽礦(其包含二氧化矽、氧化鋁,以及氫氧化物),其包 不同份量的結構水。例如,高嶺石,亦被稱為高嶺土,由 20互相連接的矽酸鹽與第二層狀團組之金屬原子,氧,以及 羥基結合形成一雙層礦物。高嶺石經常以類似板狀之六角 形的晶體形態存在。高嶺土則是供用於本發明的較佳黏土。 於本發明另一較佳實施例中,該無機顆粒是納膨潤土 黏土。膨潤土有各種同義詞,並且其包含鈉蒙脫石、鈣蒙 200909484 脫石、鎂膨潤石、漂白土、懷俄明納膨潤土、膨脹膨潤土, 以及其他。相較於天然的鈉膨潤土,鈣膨潤土通常有極低 膨脹度和液體限度的特徵。天然的納膨潤土包含鈉做為主 要的交換陽離子。納膨潤土亦以其膨脹的能力為人所知。 5 其於水中可吸收其重量五倍至八倍重的水。鈉活化膨潤土 是藉由以鈉離子取代妈離子製成。這樣的轉變可以藉由添 加可溶性鈉鹽至鈣膨潤土當中而達成。 本發明的粒狀複合體一般包含有至少1 w t. %的無機顆 粒。較佳地,該複合體包含有多於20wt.%的無機顆粒。更 10 佳地,該複合體包含有多於40wt.%的無機顆粒。並且,本 發明之複合體一般含有少於99wt.%的無機顆粒。較佳地, 該複合體包含有少於95wt.%的無機顆粒。更佳地,該複合 體包含有少於80wt.%的無機顆粒。 可再分散性乳膠粉末是由含有乳膠粉末的水分散系噴 15 霧乾燥製得的有機聚合物粉末。美國專利公開號第 20060116446號,於此完整被併入以為參考,其揭示用於製 造可再分散性乳膠粉末的典型的喷霧乾燥方法以及處理條 件。於該喷霧乾燥程序中,該主要顆粒尺寸為約0.5至2μηι 之可再分散性乳膠粉末會團聚為直徑約50至ΙΟΟμιη的尺 20 寸。該增加的顆粒尺寸改良了粉末的自由流動性並且避免 粉塵形成。與習用的乳膠粉不同,習用的乳膠粉有以不受 調控且不可逆的方式凝結的傾向,可再分散性乳膠粉末顆 粒當與水接觸時會崩散成為約0.5至2μηι的顆粒尺寸而分 解。使用於本發明中的可再分散性乳膠粉末包括陶氏乳膠 200909484 粉末(DLP,由陶氏化學公司所製造)。其包含有約75wt %的 乾燥乳膠粉末,約12wt.%的聚乙烯醇,以及約i3wt.%的不 膨脹黏土,例如高嶺土或是其它的抗凝塊劑。WO 9738042 以及美國專利公開號第20020120043號,於此被併入以為參 5考,也例示了可供用於本發明之可再分散性乳膠粉末的實 例。 本發明的複合體較佳含有至少〇. lwt.%之可再分散性 乳膠粉末。較佳地,該複合體包含有多於lwt.%之可再分散 性乳膠粉末。一般而言,該複合體包含少於25wt.%的可再 1〇 分散性乳膠粉末。較佳地,該複合體包含有少於15wt.%的 可再分散性乳膠粉末。 於本發明中使用的超吸收聚合物(SAP)顆粒是一種於 濕氣中,於水中,或是水液中,可以吸收多倍於其自身重 量的物質。SAP顆粒於其吸收液體時會膨脹。SAP供用於各 15 種應用中,包括尿布、建築工業中的水封阻應用,與食品 包裝系統中的液體吸收劑,以及衛生和醫療用途。SAP顆 粒可以為任何已知的親水性聚合物,其經交聯並可吸收大 量的水液,於某些例子中會使該顆粒膨脹至數倍於其乾燥 尺寸。此等聚合物在相關技藝中係廣為人知,且極易於商 20 業取得,諸如NorsocrylTM (Arkema Group)、HySorb™ (BASF AG)、Favor™ (Degussa AG)、DRYTECH™ (陶氏化學公 司)、K-SAM™ (Kolon Chemical Co· Ltd.)、Aqualic™ CA (Nippon Shokubai Ltd.) ' Sanwet™ (Sanyo Chemical Industries)以及 Aqua Keep™ (Sumitomo Seika Chemicals)。 9 200909484 大多數SAP係經交聯者,部份地經中和及/或表面處 理。較佳地’該交聯的程度是被擇定以提供所希望的針對 特定應用之膨脹特性。適合的SAP及用以製備SAP之程序 (包括膠化聚合作用程序)於美國專利第3,669,103、 5 3,670,731 ' 3,926,891 ' 3,935,099 ' 3,997,484 ' 4,076,663 ' 4,090,013、4,093,776、4,190,562、4,286,082、4,340,706、 4,446,261 ' 4,459,396 ' 4,654,039 ' 4,683,274 ' 4,708,997 ' 4,857,610、4,985,518,以及5,145,906當中揭露,上述全數 之教示内容於此被併入以為參考。 10 該等SAP可呈顆粒或是其它形式,例如纖維狀。該等 SAP亦可為可生物降解者。較佳地’該等8人卩係由一種多種 乙烯化不飽和含羧基單體所構成,並且可選擇地包含一或 多種可與含羧基單體共聚合的共聚單體。 本發明之較佳的SAP,以該等顆粒乾燥重量為基準, 15具有於0.9wt.% NaCl溶液中經由茶袋法量測所得之離心保 持能力(CRC)為少於70g/g ,較佳係少於6〇g/g,以及更佳係 少於50g/g。本發明中較佳的SAP以該等顆粒乾燥重量為基 準,具有於0,9wt.% NaCl溶液中經由茶袋法量測所得之CRC 為大於約7g/g,較佳係大於約1〇g/g,更佳係大於約i5g/g。 20 本發明之較佳SAP,以該等顆粒乾燥重量為基準,具 有於0_9wt·% NaCl溶液中以及〇·3磅/平方寸之壓力下量測 之於負載下的吸收力(AUL)為少於5〇g/g ’較佳係少於 4〇g/g,以及更佳是少於約3〇g/g ;其係大於巧^,較佳係大 於7 g/g,以及更佳是大於1〇g/g。 200909484 本發明之SAP具有以篩分析方法量測而得的乾燥-基礎 尺寸,其係小於1000微米,較佳少於800微米,以及更佳少 於500微米,並且其係大於0.1微米,較佳大於10微米,更 佳大於100微米,以及最佳大於150微米。 5 本發明的複合體較佳含有至少O.lwt.%之SAP。更佳 地,該複合體含有多於lwt.%之SAP。一般言之,該複合體 含有少於99wt.%之SAP。較佳地,該複合體包含有少於 50wt.%之SAP。 本發明之複合體具有可被設計以呈現更高度之多孔性 10 的粒狀結構,其有助於在與水、水溶液,以及於空氣流當 中的濕氣或是氣體接觸時,快速的吸收液體。該複合體粒 子之多孔性程度可以由多孔性增進劑的型態、形狀與份 量,以及於複合體粒子基質當中多孔性增進劑分布的同質 性來調控。 15 原則上,有不同種類的物質可以改良複合體結構的多 孔性。其包括不同型式的熱塑性與熱固性聚合物微球粒; 具有或是不具有内部孔隙的高度交聯的聚合物小珠;以及 奈米級、亞微米級或是微米級尺寸之水不可溶之有機或是 無機顆粒物質,如:玻璃小珠、玻璃微球粒、沉降性矽石、 20 二氧化矽、氣相二氧化矽、水矽鈉石與經改質水矽鈉石、 二氧化鈦、氧化is、二氧化镁、二氧化辞、滑石、碳酸I弓、 輾碎玉米、輾碎米、輾碎大麥、纖維質、澱粉、碳管、金 屬顆粒或金屬微球粒、聚合物纖維、天然物纖維,及其它。 有機或是無機性質的多孔性增進劑可呈現小板,不同 11 200909484 特性長度的管,譬如奈米碳管,圓柱體,多圓柱體,球粒, 及球,譬如富勒體型式,多面體,盤狀,針狀,多針狀, 立方體,不規則型,楕圓體,以及其他的型態。 該多孔性增進劑,以該複合體微粒的重量為基準,較 5 佳係使用少於40wt.%,並且更佳係使用少於20wt·%,而更 佳係少於10wt.%。使用之前,該多孔性增進劑可經過一些 處理,例如表面處理。 較佳的多孔性增進劑為聚合物微球粒與玻璃微球粒。 一般而言,較佳的聚合物多孔性增進劑是PERGOPAK®HP 10 (CAS No· : 9011-05-6,Albemarle Corporation的商標,Baton Rouge,Louisiana,USA)。PERGOPAK劑為聚甲基尿素樹 脂,包含有小量的自由、活性羥甲基基團(大約0.6%),其 於基質中附加地可助於更佳的交聯性。PERGOPAK劑一般 主要是由〇.1-〇.15卜111之直徑的顆粒所形成的直徑3.5-6.50111 15 的凝集體。 使用於本發明中之水溶性聚合物與共聚物意指各種不 同的巨分子,其包含有自然發生的聚合物,例如多醣,以 及生物聚合物,例如多肽與蛋白質,以及各種型式的合成 聚合物、共聚體以及嵌段共聚物(請參見“Water Soluble 20 Polymers,” Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc., Eds. Charles L. McCormick, Andrew B. Lowe, Neil Ayres) ° 較佳之天然發明水可溶聚合物包含,例如:多核苷酸 酸、多肽、蛋白質、酵素,以及多醣。商業上,多醣傳統 12 200909484 上是由植物和動物中可再生的資源獲取。此外,微生物來 源也產製了商業上有用的多醣,例如:聚葡萄糖與三仙膠。 水溶性多醣包括澱粉和澱粉衍生物,肝醣,聚葡萄糖,藻 酸,紅藻膠,果膠,植物膠,例如:阿拉伯膠、玻尿酸與 5 合成改質多醣。 更佳的水溶性聚合物是合成改質多聽。可藉由改質產 生電荷或極性官能賦與一些天然產生的多醣水溶性。傳統 上合成的改質多醣為纖維素衍生物,其包括羧基甲基纖維 素(CMC),或其單價金屬或是銨鹽,羥乙基纖維素(HEC) 10 以及羥丙基纖維素(HPC),甲基纖維素,羥丙基甲基纖維素 (HPMC),硫酸纖維素與磷酸纖維素,以及幾丁質衍生物與 聚葡萄胺糖。 較佳的合成改質以多醣為主成份的水溶性聚合物為 WALOCEL™ C以及WALOCEL™ CRT羧甲基纖維素, 15 CELLOSIZE™羥乙基纖維素,以及METHOCEL™纖維素醚 (可由陶氏化學公司商業取得)。最佳的水溶性聚合物是 METHOCEL™纖維素醚,其為水溶性曱基纖維素與羥丙基 曱基纖維素聚合物。 許多商業可取得之非離子性合成水溶性聚合物與共聚 20 物係可取得的,而其等包括,例如:聚丙烯醯胺,聚(氧化 乙烯)例如:POLYOX™ (可由陶氏化學公司商業取得),聚 (乙烯醇),聚(曱基乙烯基醚),與聚(N-乙烯基。比咯烷酮)。 其他較佳之水溶性聚合物為高分子電解質,其為具有 電荷官能基沿鏈附添之聚合物。此等聚合物通常依聚陰離 13 200909484 子與聚陽離子來分類。較佳的陰離子水溶性聚合物是聚(丙 烯酸)及其鹽類,聚(甲基丙烯酸)及其鹽類,聚(乙烯磺酸) 及其鹽類,聚(對苯乙烯磺酸)及其鹽類,聚(曱基丙烯酸2_ 乙石sfecSg) ’聚(甲基丙稀酸3-續基_2經丙基),以及聚(2_丙 5 烯醯胺基-2-甲基丙磺酸)。 可供應用於本發明中的較佳水溶性聚合物的實例包括 I陽離子水溶性聚合物’其係具有陽離子電荷密度的線型 高分子電解質。水溶性陽離子聚合物的實例為聚(曱基丙烯 酸-2-(二甲胺)乙酯),聚(甲基丙烯酸_2_二甲胺乙酯),聚(甲 10基丙烯酸N-[3-(二甲胺)丙酯),聚二甲基二烯丙基銨鹽氣化 物,聚乙烯吡啶,聚(4-乙烯苯胺),聚(乙烯亞胺),聚乙烯 胺,陽離子性羥乙基纖維素,(例如:UCARE JR-09、JR-400、 R-400以及R-30M可取自 Amerrchol Corporation, USA),以及 幾丁聚醣鐵α比洛烧酮叛酸(可由Amerchol Corporation以 15 KYTAMERPC商業取得,及其類似物。 較佳的水溶性聚合物的溶解性最好是在室溫及一大氣 壓下,至少0.05克,較佳為1克,更佳為至少2克的水溶性 聚合物可溶於100克的去離子水中。 具有廣範圍分子量之水溶性聚合物適合於本發明中使 20 用。較佳地,該水溶性聚合物具有一平均分子量為每莫耳 500至10,000,000克,更佳為每莫耳2,000至2,000,000克,而 最佳為每莫耳50,000至500,000克。用以測定水溶性聚合物 之重量平均分子量的方法於相關技藝中係廣為週知者。為 了本發明的目的,重量平均分子量是藉由凝膠滲透層析法 14 200909484 量測。 於較佳實施例中,該水溶性聚合物較佳係以粉末添 加。以乾燥混合物的總重量為基準,該水溶性聚合物較佳 是以0.01至25wt.%之份量使用,較佳是以0.5至10wt_°/〇之份 5 量使用,而更佳是以1至5wt·%之份量使用。可使用不同型 態的水溶性聚合物混合物。該水溶性聚合物可於無機顆 粒、可再分散性乳膠粉末、SAP、氣味控制劑及其它粉末 形式添加物摻合的同時、之前’或是之後添加。 油吸收聚合物為相關技藝中已知者。許多聚合物可以 10 吸收多倍於其原始體積的油或是有機液體。於此使用之用 語“油吸收聚合物,,意指具有實質不溶於,但可以吸收(藉此 膨脹)一種或是多種油或是有機液體’例如:天然油(得自菜 籽、蓖麻、玉米、棉籽、橄欖、油菜籽、黃豆、葵花籽’ 其它蔬菜及動物油與脂類),香料,汽油,柴油’潤滑油, 15 煤油,輕油,重油,芳香族溶劑(例如苯、曱苯及二甲苯), 以及不同的氣化溶劑(例如:氯仿、四氣化碳及其類似物), 單酸甘油酯,三酸甘油酯以及其類似物。各種組成物可供 用以製備如此之油吸收聚合物顆粒,並且不同的油吸收聚 合物顆粒被教示於美國專利第3,520,806、3,686,827、 20 3,750,688 ' 3,881,295 ' 3,958,590 ' 3,999,653 > 4,024,882 > 4,019,628 ' 4,130,400 ' 4,172,031 ' 4,529,656 ' 5,628,110 ' 5,677,407、5,712,358、5,777,054 ’ 以及5,834,577號案中。 該等教示於此被併入以為參考。 本發明中較佳的油吸收聚合物是包含有100至55 wt.% 15 200909484 之甲基丙烯酸異冰片酯與約0至45wt.%之可聚合乙烯基共 聚單體。如此之共聚單體的一個實例為烷基苯乙烯,或是 由C1至C 2 4之醇及丙烯酸或是甲基丙烯酸或是其混合物衍 生之烷基酯類。該烷基苯乙烯具有一含有4至20個碳,且較 5 佳為4至12個碳的烧基基團。如此之烧基苯乙烯包括三級烧 基苯乙烯,該三級烷基苯乙烯p-三級-丁基苯乙烯、p-三級-戊基苯乙烯、P-三級-己基苯乙烯、P-三級-辛基苯乙烯、p-三級-十二烷基苯乙烯、p-三級-十八烷基苯乙烯,以及p-三 級-二十烷基苯乙稀;η-烷基苯乙稀,其包括η-丁基苯乙烯、 10 η-十二烧基苯乙浠、η-十八烧基苯乙烯,以及η-二十烧基苯 乙烯;二級-烷基苯乙烯,其包括例如:二級-丁基苯乙烯、 二級-己基苯乙烯、二級-辛基苯乙烯、二級-十二烷基苯乙 烯、二級-十八烷基苯乙烯,以及二級-二十烷基苯乙烯;異 烷基苯乙烯,其包括例如:異丁基苯乙烯、異戊基苯乙烯、 15 異己基苯乙烯、異辛基苯乙烯、異十二烷基苯乙烯、異十 八烷基苯乙烯,以及異二十烷基苯乙烯;以及其等之共聚 物。該衍生自C1至C24醇類與丙烯酸及甲基丙烯酸之烷基 酯類包括丙烯酸己酯、甲基丙烯酸己酯、丙烯酸辛酯、甲 基丙稀酸辛酯、丙烯酸癸酯、甲基丙烯酸癸酯、甲基丙烯 20 酸十二烧基S旨、甲基丙烯酸月桂S旨、丙烯酸十二烧基S旨、 丙烯酸月桂酯、丙烯酸二十烷基酯、曱基丙烯酸二十烷基 醋,或是其等之混合物。較佳地,本發明之油吸收聚合物 顆粒為100百分至約55wt.%之甲基丙烯酸異冰片酯與0百分 至45wt·%之甲基丙烯酸月桂酯的交聯共聚物。 16 200909484 油吸收程度(膨脹能力)主要是取決於聚合物顆粒中交 聯百分比。所應用的交聯劑之份量應足以使該聚合物顆粒 當曝露於有機油狀液體時容許該聚合物顆粒吸收(膨脹),並 足以避免聚合物顆粒為該有機油狀液體所溶解。通常,如 5此之交聯劑以單體或是單體們之總重量為基準,以〇.5至約 2wt.%之範圍來應用。一般而言,該交聯劑的使用量少於! 百分’其容許該聚合物容易膨脹並吸收可觀份量的有機液 體。可供用以製備適合用於本發明中之聚合物的交聯劑包 括聚乙烯基不飽和化合物,例如:二乙烯基苯、二甘氧醯 10 二甲基丙烯酸酯,以及任何其它據悉可於聚合性乙烯基添 加組成物中供用做交聯劑的二-或是多-官能化合物。較佳的 交聯劑是二乙烯基苯。 油吸收的程度一般是使用乾燥的油吸收聚合物來量 測,於此該聚合物顆粒被浸泡於液體油中(例如:菜籽油) 15同時添加的油被一部份一部份地引入直到可以見到游移的 液態油’接下來該油之吸收可以如下述以每克乾燥油吸收 聚合物吸收克數來計算。油吸收量(g/g) = (以克計算之添加 油量/以克計算聚合物量)。 本發明中較佳的油吸收聚合物顆粒於菜籽油中有一油 20吸收篁(以油吸收聚合物的乾燥重量為基準)為少於4〇g/g, 較佳係少於3Gg/g ’且更佳係少於2Gg/g ;並且其係大於 lg/g,較佳係大於3g/g,且更佳大於5 g/g。 於一較佳實施例中,該油吸收聚合物較佳是以粉末添 加。以乾燥粒狀複合物的總重量為基準,該油吸收聚合物 17 200909484 較佳以0.01至5〇Wt·%的量被使用,更佳是以〇5至25就%的 量被使用,而最佳是以1至15wt.%的量被使用。可應用不同 型式的油吸收聚合物混合物。該油吸收聚合物以粉末在無 機顆粒、可再分散性乳勝粉末、SAP、氣味控制劑,以Z 5其它粉末添加物摻合的同時’之前,或是之後添加。 使用於本發明的氣味控制劑可包括一種或是多種活性 碳,例如製成粉末的、製成顆粒的,或是經擠塑的;環糊 精;多孔聚合物吸附劑;離子交換聚合物;重碳酸納;蝴 砂;過氧化物,諸如納、鉀或是銨之過氧碳g曼鹽、過氧化 10物、過氧二硫酸鹽及高锰酸鹽,例如鈉或是钟的高猛酸鹽; 生物殺滅劑;植物萃取物,諸如綠茶葉、撤揽葉、絲蘭、 蘆薈與石鹼木之萃取及/或乾粉;擰檬酸;螯合劑;天然及 ^成彿石;香水;各種金屬及金屬化合物,包括硫化銅、 酉曰酸銅、硫酸鋅、氣化辞、萬麻油酸鋅、各種形式之金屬 15及離子銀(例如膠質銀奈米顆粒、醋酸銀、俩銀,以及硫 、.1·醆銀複合物),具有銀、銅,及/或辞離子之離子交換沸 石粉末;聚葡萄胺糖,或是其混合物。 於—較佳實施例中,該粉末狀氣味控制劑較佳係以粉 20末添加,並且以該可溶性金屬鹽則是以水溶液形式添加。 粕束狀氣味控制劑,以乾燥粒狀複合體之總重量為基 胃争乂佳是以0·01至5〇wt·%之量使用,更佳是以〇.5至25糾% ,吏用,最佳是以1至l5wt.%之量使用。該可溶性金屬踏 ^氣未控制劑,例如螯合劑之鹼金屬鹽、硫酸銅、醋酿 鋼、碼妒处 义 文辛、鼠化鋅 '蓖麻油酸鋅、各種型式的金屬或離 18 200909484 子銀(例如:膠體奈米顆粒銀、醋酸銀、硝酸銀,或是硫代 硫酸鹽複合物)’以乾燥粒狀複合體的總重量為基準,較佳 是使用0.0001至15wt.〇/〇的份量,更佳是使用〇 〇〇25至1(^ 〇/0 的份量,最佳是使用〇.〇5至5 wt.〇/0的份量。可應用不同型式 5的氣味控制劑之混合物。粉末狀氣味控制劑以粉末在無機 顆粒、可再分散性乳膠粉末、SAP、油吸收劑,以及其它 粉末添加物摻合的同時,之前,或是之後添加。金屬鹽氣 味控制劑一般以水溶液於濕化該無機顆粒、可再分散性乳 膠粉末、SAP、油吸收劑,以及其它財添加物時添加。 0 纟發财、提供-如下述製造粒狀複合體的方法。 該方法涉及乾燥摻合該複合體的粉末狀成份以先形成 一此σ物。添加各種粉末成份,例如:無機顆粒、sAp、 油吸收聚合物, 以及多孔性增進劑至乾燥攪拌器中(具有水 平與垂直旋髓及可選擇地具㈣嘴與加熱^之機械撥動 15設備,例如Loedige攪拌器、Forberg攪拌器 、Hobat攪拌器,200909484 IX. Description of the Invention: [Technical Field 3 of the Invention] Field of the Invention The present invention has a relationship with a granular composite and a method for producing a granular composite. [Background of the Invention] Background of the Invention For a multi-functional granular composite carrier for use in various household products and consumer products, for air filters for commercial or industrial use, water-liquid adsorbent 10 or oil absorbing particles, moisture adsorbing particles , and odor control particles, as well as other increased demand. The development of a mature composite carrier must have good processing properties, high water, moisture and/or oil absorption, as well as good malodor inhibition and/or volatile organic compound (VOC) control, as previously mentioned The utility of the application. 15 In the past, there have been efforts to solve this problem, but for improved performance such as higher moisture or water absorption, oil absorption and resistance at different pressures, and inhibition of odor and VOC. There is still a need for an effective binder for the particulate composite carrier. Such carriers provide an effective means of delivering the active ingredients more suitable. 20 SUMMARY OF THE INVENTION In one embodiment, the present invention provides a particulate composite comprising a) - inorganic particles, b) - a redispersible latex powder, and c) one or more superabsorbent polymers (SAP), a porosity enhancer, a water soluble polymer, a gas 2000909484 control agent, or an oil absorbent. In another embodiment, the invention provides a method of making a granular composite. The method comprises dry blending clay, a redispersible latex powder, and other components of the composite to form a mixture; wetting the mixture with water or an aqueous solution; extruding the wetting mixture to form a granular composite; The extruded material is dried; and sized and screened to form a composite. The method also includes rewetting and gas dedusting the composite. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a graph showing the effect of varying degrees of redispersible latex powder (Dow of Dow powder, DLP) and synthetic urine content on the weight of the clot. I: Embodiment 3 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In one embodiment, the present invention provides a particulate composite comprising a) - inorganic particles, b) - a redispersible latex powder, and c) one or more 15 S AP, a porosity enhancer, a water soluble polymer, an odor control agent, or an oil collector. The inorganic particles used in the present invention are solid compounds which are finely divided natural or synthetic substances, with or without undergoing chemical, physical, and/or mechanical surface modification. Different types of inorganic particles may be used, 20 including, for example, aluminum hydroxide, aluminum oxide, barium sulfate, borax, calcium citrate, calcium carbonate, calcium phosphate, calcium magnesium carbonate, calcium sulfate, copper hydroxide, oxidation. Copper, ferric hydroxide, iron oxide, lithium hydroxide, magnesium borate, magnesium carbonate, magnesium oxide, magnesium oxylate, galvanic acid, sand, glutinous stone, gas phase dioxide, sodium bicarbonate, sodium carbonate, Talc, titanium dioxide, synthetic and natural zeolites, 200909484 rushing stones, different types of clay (such as bentonite, kaolin and sepiolite), zinc oxide, and any of its water-soluble alkali metals or soil-measuring metal salts (such as clock vapors) , sulphates, sulphates and nitrates, sodium and potassium sulphates, sulphate salts, acid salts, percarbonates, peroxides, persulfates and phosphates, 5 and the like, Further, stepwise, magnesium chlorides and acid salts, the word chloride, sulphate and or sulfate, locked chlorides and sulphate, and the like). The inorganic particles are preferably metal oxide compounds containing - or a plurality of metal atoms and / or one or more oxygen atoms. In a preferred embodiment of the invention, the inorganic particles are clay. Clay is a common name for fine-sized particles of many sediments, soils, or rocks, and individual particles are generally less than 5 microns in diameter. Most clays are mainly composed of clay minerals' and soils such as shai contain such things as kaolin, smectite, chlorite and illite. Most of the clay is formed by surface weathering, for example, by the rocky state of the rock, such as limestone, and by rock or a group of rock minerals rich in sulphuric acid, such as The chemical decomposition of granite and feldspar. Clay is composed of different layered phthalates, known as sulphate ore (which contains cerium oxide, aluminum oxide, and hydroxide), which contain varying amounts of structured water. For example, kaolinite, also known as kaolin, combines 20 interconnected niobates with metal atoms of the second lamellar group, oxygen, and hydroxyl groups to form a bilayer mineral. Kaolinite is often present in the form of a hexagonal crystal like a plate. Kaolin is a preferred clay for use in the present invention. In another preferred embodiment of the invention, the inorganic particles are nano-bentonite clay. Bentonite has various synonyms and includes sodium montmorillonite, calcium monoxide 200909484 decalcification, magnesium bentonite, fuller's earth, Wyoming bentonite, expanded bentonite, and others. Calcium bentonite is generally characterized by very low expansion and liquid limits compared to natural sodium bentonite. Natural nanobentonite contains sodium as the main exchange cation. Na-bentonite is also known for its ability to swell. 5 It absorbs five to eight times its weight in water. Sodium-activated bentonite is made by replacing the mother ion with sodium ions. Such a transformation can be achieved by adding soluble sodium salts to the calcium bentonite. The particulate composite of the present invention generally comprises at least 1 w t. % of inorganic particles. Preferably, the composite comprises more than 20 wt.% of inorganic particles. More preferably, the composite contains more than 40 wt.% of inorganic particles. Moreover, the composite of the present invention generally contains less than 99 wt.% of inorganic particles. Preferably, the composite comprises less than 95 wt.% of inorganic particles. More preferably, the composite contains less than 80 wt.% of inorganic particles. The redispersible latex powder is an organic polymer powder obtained by mist drying of an aqueous dispersion containing a latex powder. U.S. Patent Publication No. 20060116446, the entire disclosure of which is incorporated herein by reference in its entirety in its entirety in its entirety in the entire entire entire entire entire entire entire entire entire portion In the spray drying procedure, the redispersible latex powder having a primary particle size of from about 0.5 to 2 μm will agglomerate to a size of from about 50 to about 20 inches in diameter. This increased particle size improves the free flow of the powder and avoids dust formation. Unlike conventional latex powders, conventional latex powders have a tendency to coagulate in an unregulated and irreversible manner, and the redispersible latex powder particles disintegrate into a particle size of about 0.5 to 2 μm when in contact with water. The redispersible latex powder used in the present invention includes Dow Latex 200909484 powder (DLP, manufactured by The Dow Chemical Company). It comprises about 75 wt% dry latex powder, about 12 wt.% polyvinyl alcohol, and about i3 wt.% non-expanded clay, such as kaolin or other anti-clotting agents. WO 9738042 and U.S. Patent Publication No. 20020120043, hereby incorporated herein incorporated by reference by reference in its entirety in its entirety in the in the the the the the the the The composite of the present invention preferably contains at least l. lwt.% of a redispersible latex powder. Preferably, the composite comprises more than 1 wt.% of a redispersible latex powder. In general, the composite comprises less than 25 wt.% of a re-dispersible latex powder. Preferably, the composite comprises less than 15 wt.% of a redispersible latex powder. The superabsorbent polymer (SAP) particles used in the present invention are those which absorb more than twice their weight in moisture, in water, or in aqueous liquid. SAP particles swell as they absorb liquid. SAP is used in 15 applications including diapers, water-blocking applications in the construction industry, liquid absorbents in food packaging systems, and sanitary and medical applications. The SAP particles can be any known hydrophilic polymer that is crosslinked and can absorb a large amount of aqueous liquid, which in some instances will expand to several times its dry size. These polymers are well known in the art and are readily available from companies such as NorsocrylTM (Arkema Group), HySorbTM (BASF AG), FavorTM (Degussa AG), DRYTECHTM (Dow Chemical). K-SAMTM (Kolon Chemical Co. Ltd.), AqualicTM CA (Nippon Shokubai Ltd.) 'SanwetTM (Sanyo Chemical Industries) and Aqua KeepTM (Sumitomo Seika Chemicals). 9 200909484 Most SAP-based cross-linkers are partially neutralized and/or surface treated. Preferably, the degree of crosslinking is selected to provide the desired expansion characteristics for a particular application. Suitable SAP and procedures for preparing SAP (including gelation polymerization procedures) are disclosed in U.S. Patent Nos. 3,669,103, 5 3,670,731 ' 3,926,891 ' 3,935,099 ' 3,997,484 ' 4,076,663 ' 4,090,013, 4,093,776, 4,190,562, 4,286,082, 4,340,706, 4,446,261 4, 459, 396 ' 4, 654, 039 ' 4, 683, 274 ' 4, 708, 997 ' 4, 857, 610, 4, 985, 518, and 5, 145, 906, the entire disclosure of which is incorporated herein by reference. 10 The SAPs may be in the form of particles or other forms, such as fibrous. These SAPs may also be biodegradable. Preferably, the eight human lanthanides are comprised of a plurality of ethylenically unsaturated carboxyl-containing monomers, and optionally one or more comonomers copolymerizable with the carboxyl-containing monomer. The preferred SAP of the present invention has a centrifuge retention capacity (CRC) of less than 70 g/g as measured by a tea bag method in a 0.9 wt.% NaCl solution based on the dry weight of the particles. Less than 6 〇g/g, and more preferably less than 50 g/g. Preferably, the SAP of the present invention has a CRC of greater than about 7 g/g, preferably greater than about 1 g/g, measured by a tea bag method in a 0,9 wt.% NaCl solution based on the dry weight of the particles. g, more preferably greater than about i5 g/g. The preferred SAP of the present invention has a reduced absorption (AUL) under load based on the dry weight of the particles, measured in a 0-9 wt.% NaCl solution and a pressure of 磅3 psi. Preferably at 5〇g/g′ is less than 4〇g/g, and more preferably less than about 3〇g/g; the system is greater than 巧^, preferably greater than 7 g/g, and more preferably More than 1〇g/g. 200909484 The SAP of the present invention has a dry-base size measured by a sieve analysis method, which is less than 1000 microns, preferably less than 800 microns, and more preferably less than 500 microns, and is greater than 0.1 microns, preferably Greater than 10 microns, more preferably greater than 100 microns, and most preferably greater than 150 microns. 5 The composite of the present invention preferably contains at least 0.1 wt.% of SAP. More preferably, the composite contains more than 1 wt.% SAP. In general, the composite contains less than 99 wt.% SAP. Preferably, the composite comprises less than 50 wt.% SAP. The composite of the present invention has a granular structure that can be designed to exhibit a higher degree of porosity 10, which facilitates rapid absorption of liquid upon contact with water, aqueous solutions, and moisture or gas in the air stream. . The degree of porosity of the composite particles can be controlled by the type, shape and amount of the porosity enhancer, and the homogeneity of the distribution of the porosity enhancer in the matrix of the composite particles. 15 In principle, different types of substances can improve the porosity of the composite structure. It includes different types of thermoplastic and thermoset polymer microspheres; highly crosslinked polymer beads with or without internal pores; and water-insoluble organics of nano, submicron or micron size Or inorganic particulate matter, such as: glass beads, glass microspheres, sedimentary vermiculite, 20 cerium oxide, gas phase cerium oxide, water strontium soda and modified water soda shale, titanium dioxide, oxidation is , magnesium dioxide, dioxin, talc, carbonated I bow, mashed corn, mashed rice, chopped barley, fiber, starch, carbon tube, metal particles or metal microspheres, polymer fiber, natural fiber And others. Organic or inorganic porous improvers can be small plates, different 11 200909484 length of the tube, such as carbon nanotubes, cylinders, multi-cylinders, pellets, and spheres, such as fuller type, polyhedron, Disc, needle, multi-needle, cube, irregular, round, and other types. The porosity improving agent is used in an amount of less than 40% by weight based on the weight of the composite fine particles, and more preferably less than 20% by weight, and more preferably less than 10% by weight. Prior to use, the porosity enhancer may be subjected to some treatment, such as surface treatment. Preferred porosity enhancers are polymeric microspheres and glass microspheres. In general, a preferred polymer porosity enhancer is PERGOPAK® HP 10 (CAS No.: 9011-05-6, a trademark of Albemarle Corporation, Baton Rouge, Louisiana, USA). The PERGOPAK agent is a polymethyl urea resin containing a small amount of free, reactive methylol groups (about 0.6%) which additionally contributes to better crosslinkability in the matrix. The PERGOPAK agent is generally an aggregate of 3.5-6.50111 15 in diameter formed by particles of diameters of 〇.1-〇.15卜111. The water-soluble polymers and copolymers used in the present invention mean various macromolecules including naturally occurring polymers such as polysaccharides, and biopolymers such as polypeptides and proteins, and various types of synthetic polymers. , interpolymers and block copolymers (see "Water Soluble 20 Polymers," Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc., Eds. Charles L. McCormick, Andrew B. Lowe, Neil Ayres) ° Preferred natural invention water soluble polymers include, for example, polynucleotide acids, polypeptides, proteins, enzymes, and polysaccharides. Commercially, the polysaccharide tradition 12 200909484 is obtained from renewable resources in plants and animals. In addition, microbial sources produce commercially useful polysaccharides such as polydextrose and trisin. Water-soluble polysaccharides include starch and starch derivatives, glycogen, polydextrose, alginic acid, red algae, pectin, vegetable gums, for example: gum arabic, hyaluronic acid and 5 synthetic polysaccharides. More preferred water-soluble polymers are synthetically modified. Some naturally occurring polysaccharides can be rendered water soluble by modification to generate charge or polar functionality. Traditionally modified polysaccharides are cellulose derivatives including carboxymethyl cellulose (CMC), or monovalent metal or ammonium salts thereof, hydroxyethyl cellulose (HEC) 10 and hydroxypropyl cellulose (HPC) ), methyl cellulose, hydroxypropyl methylcellulose (HPMC), cellulose sulfate and cellulose phosphate, and chitin derivatives with polyglucosamine. Preferred synthetically modified water-soluble polymers based on polysaccharides are WALOCELTM C and WALOCELTM CRT carboxymethylcellulose, 15 CELLOSIZETM hydroxyethylcellulose, and METHOCELTM cellulose ether (by Dow Chemical Company business obtained). The most preferred water soluble polymer is METHOCELTM cellulose ether which is a water soluble sulfhydryl cellulose and a hydroxypropyl fluorenyl cellulose polymer. Many commercially available nonionic synthetic water soluble polymers are available with copolymerized 20 systems, and the like include, for example, polyacrylamide, poly(ethylene oxide) such as: POLYOXTM (available from The Dow Chemical Company) Obtained), poly(vinyl alcohol), poly(fluorenyl vinyl ether), and poly(N-vinyl. pyrrolidone). Other preferred water soluble polymers are polymeric electrolytes which are polymers having a charge functional group attached to the chain. These polymers are usually classified by polyanion 13 200909484 and polycations. Preferred anionic water-soluble polymers are poly(acrylic acid) and its salts, poly(methacrylic acid) and its salts, poly(ethylenesulfonic acid) and its salts, poly(p-styrenesulfonic acid) and its Salts, poly(mercaptoacrylic acid 2_ethene sfecSg) 'poly(methyl acrylic acid 3-contigyl 2 propyl), and poly(2_prop-5 allylamino-2-methylpropane sulfonate) acid). Examples of preferred water-soluble polymers which can be used in the present invention include a cationic water-soluble polymer which is a linear polymer electrolyte having a cationic charge density. Examples of water-soluble cationic polymers are poly(2-(dimethylamine)ethyl methacrylate), poly(2-dimethylaminoethyl methacrylate), poly(methyl 10-acrylic acid N-[3] -(dimethylamine)propyl), polydimethyldiallyl ammonium salt, polyvinylpyridine, poly(4-vinylaniline), poly(ethyleneimine), polyvinylamine, cationic hydroxyl Cellulose, (eg UCARE JR-09, JR-400, R-400 and R-30M available from Amerrchol Corporation, USA), and chitosan iron alpha pirone ketone (according to Amerchol Corporation) 15 KYTAMERPC is commercially available, and the like. The solubility of the preferred water-soluble polymer is preferably at least 0.05 g, preferably 1 g, more preferably at least 2 g, at room temperature and atmospheric pressure. The polymer is soluble in 100 grams of deionized water. A water soluble polymer having a wide range of molecular weights is suitable for use in the present invention. Preferably, the water soluble polymer has an average molecular weight of from 500 to 10,000,000 per mole.克, preferably 2,000 to 2,000,000 grams per mole, and optimally 50,000 to 500,000 per mole Methods for determining the weight average molecular weight of water soluble polymers are well known in the art. For the purposes of the present invention, the weight average molecular weight is measured by gel permeation chromatography 14 200909484. In a preferred embodiment, the water-soluble polymer is preferably added in a powder. The water-soluble polymer is preferably used in an amount of 0.01 to 25 wt.%, preferably 0.5 to 0.5% by weight based on the total mass of the dry mixture. 10wt_°/〇5 parts are used, and more preferably used in an amount of 1 to 5 wt.%. Different types of water-soluble polymer mixtures can be used. The water-soluble polymer can be used for inorganic particles, redispersibility. Latex powder, SAP, odour control agents, and other powder form additives are blended simultaneously, before or after. Oil absorbing polymers are known in the art. Many polymers can absorb 10 times their original volume. Oil or organic liquid. The term "oil-absorbing polymer" as used herein means a substance that is substantially insoluble but absorbs (by expanding) one or more oils or organic liquids. : natural oil (from rapeseed, ramie, corn, cottonseed, olive, rapeseed, soybean, sunflower seed 'other vegetables and animal oils and fats), spices, gasoline, diesel 'lubricating oil, 15 kerosene, light oil, Heavy oils, aromatic solvents (such as benzene, toluene and xylene), and different gasification solvents (eg chloroform, tetra-carbonized carbon and their analogues), monoglycerides, triglycerides and their analogues Various compositions are available for preparing such oil absorbing polymer particles, and different oil absorbing polymer particles are taught in U.S. Patent Nos. 3,520,806, 3,686,827, 20 3,750,688 ' 3,881,295 ' 3,958,590 ' 3,999,653 > 4,024,882 > 4,019,628 ' 4,130,400 ' 4,172,031 ' 4,529,656 ' 5,628,110 ' 5,677,407, 5,712,358, 5,777,054 ' and 5,834,577. The teachings are hereby incorporated by reference. Preferred oil absorbing polymers in the present invention are those comprising from 100 to 55 wt.% 15 200909484 of isobornyl methacrylate and from about 0 to 45 wt.% of a polymerizable vinyl comonomer. An example of such a comonomer is an alkyl styrene or an alkyl ester derived from an alcohol of C1 to C24 and acrylic acid or methacrylic acid or a mixture thereof. The alkylstyrene has a alkyl group having 4 to 20 carbons and more preferably 5 to 12 carbons. Such a pyrene styrene includes a tertiary styrene styrene, the tertiary alkyl styrene p-tertiary-butyl styrene, p-tris-pentyl styrene, P-tris-hexyl styrene, P-third-octyl styrene, p-triple-dodecylstyrene, p-tris-octadecylstyrene, and p-tris-icosylstyrene; η- Alkyl styrene comprising η-butyl styrene, 10 η-dodecyl phenethyl hydrazine, η-octadeca styrene styrene, and η-teledecyl styrene; secondary-alkyl Styrene, which includes, for example, secondary-butyl styrene, secondary-hexyl styrene, secondary-octyl styrene, secondary-dodecyl styrene, secondary-octadecyl styrene, And secondary-eicosylstyrene; isoalkylstyrene, including, for example, isobutylstyrene, isoamylstyrene, 15 isohexylstyrene, isooctylstyrene, isododecyl Styrene, isostearyl styrene, and isostearyl styrene; and copolymers thereof. The alkyl esters derived from C1 to C24 alcohols and acrylic acid and methacrylic acid include hexyl acrylate, hexyl methacrylate, octyl acrylate, octyl methacrylate, decyl acrylate, decyl methacrylate. , methacrylic acid 20 tauthyl group S, methacrylic acid laurel S, acrylic acid decyl S, acrylic lauryl ester, eicosyl acrylate, methacrylic acid eicos vinegar, or a mixture of such. Preferably, the oil absorbing polymer particles of the present invention are from 100% to about 55 wt.% of a crosslinked copolymer of isobornyl methacrylate and from 0 to 45 wt.% of lauryl methacrylate. 16 200909484 The degree of oil absorption (expansion capacity) is mainly determined by the percentage of cross-linking in the polymer particles. The amount of cross-linking agent applied should be sufficient to allow the polymer particles to absorb (expand) the polymer particles when exposed to an organic oily liquid, and to prevent the polymer particles from being dissolved by the organic oily liquid. Usually, the crosslinking agent is applied in a range of from 〇5 to about 2% by weight based on the total weight of the monomers or monomers. In general, the amount of the crosslinker used is less than! Percentage allows the polymer to readily swell and absorb appreciable amounts of organic liquid. Crosslinking agents which can be used to prepare polymers suitable for use in the present invention include polyvinyl unsaturated compounds such as divinylbenzene, diglyoxynium 10 dimethacrylate, and any other known to be polymerizable. A di- or poly-functional compound for use as a crosslinking agent in a vinyl addition composition. A preferred crosslinking agent is divinylbenzene. The degree of oil absorption is generally measured using a dry oil absorbing polymer, where the polymer particles are immersed in a liquid oil (eg, rapeseed oil) 15 while the added oil is partially introduced in part. Until the migratory liquid oil can be seen' then the absorption of the oil can be calculated as follows, per gram of dry oil absorbed polymer absorbed grams. Oil absorption (g/g) = (added oil in grams / calculated polymer in grams). Preferably, the oil absorbing polymer particles of the present invention have an oil 20 absorption enthalpy (based on the dry weight of the oil absorbing polymer) in the rapeseed oil of less than 4 g/g, preferably less than 3 Gg/g. More preferably, it is less than 2 Gg/g; and its system is greater than lg/g, preferably greater than 3 g/g, and more preferably greater than 5 g/g. In a preferred embodiment, the oil absorbing polymer is preferably added as a powder. The oil absorbing polymer 17 200909484 is preferably used in an amount of 0.01 to 5 〇 Wt·% based on the total weight of the dry granulated composite, more preferably 5% to 25 % by weight, and It is preferably used in an amount of 1 to 15 wt.%. Different types of oil absorbing polymer mixtures can be applied. The oil absorbing polymer is added before or after the powder is mixed with the inorganic granules, the redispersible emulsifiable powder, the SAP, the odor control agent, and the Z 5 other powder additives. The odour controlling agent for use in the present invention may comprise one or more activated carbons, such as powdered, granulated or extruded; cyclodextrin; porous polymeric adsorbent; ion exchange polymer; Bicarbonate; butterfly; peroxide, such as sodium, potassium or ammonium peroxycarbon g salt, peroxidation 10, peroxodisulfate and permanganate, such as sodium or bell Acid salt; biocide; plant extracts, such as green tea leaves, leaves, yucca, aloe and stone alkali wood extract and / or dry powder; citric acid; chelating agent; natural and ^ into Buddha stone; perfume Various metals and metal compounds, including copper sulfide, copper ruthenate, zinc sulfate, gasification, zinc linoleate, various forms of metal 15 and ionic silver (such as colloidal silver nanoparticles, silver acetate, two silver, And sulfur, .1·anthracene silver complex), ion exchanged zeolite powder with silver, copper, and/or ion, polyglucosamine, or a mixture thereof. In the preferred embodiment, the powdered odour controlling agent is preferably added as a powder, and the soluble metal salt is added as an aqueous solution. The bundled odor control agent is preferably used in an amount of from 0. 01 to 5 〇 wt·%, based on the total weight of the dry granulated composite, more preferably 〇.5 to 25 %%, 吏It is preferably used in an amount of from 1 to 15 wt.%. The soluble metal stepping gas uncontrolled agent, such as an alkali metal salt of a chelating agent, copper sulfate, vinegar-brewed steel, yam yum yin, zinc zinc ricinoleic acid, various types of metal or from 18 200909484 Silver (for example, colloidal nanoparticle silver, silver acetate, silver nitrate, or thiosulfate complex) is preferably used in an amount of 0.0001 to 15 wt. 〇/〇 based on the total weight of the dry granular composite. More preferably, it is used in the amount of 〇〇〇25 to 1 (^ 〇/0, preferably in the amount of 〇.〇5 to 5 wt.〇/0. A mixture of different types of odor controlling agents can be applied. Powder The odor control agent is added before, after or after the powder is blended with the inorganic granules, the redispersible latex powder, the SAP, the oil absorbent, and other powder additives. The metal salt odor control agent is generally wetted with an aqueous solution. Addition of the inorganic particles, redispersible latex powder, SAP, oil absorbent, and other additives. 0 纟 财 , , 提供 提供 - - - - - - - - - - - - - - - - Powder form of complex The sigma is formed by adding various powder components, such as inorganic particles, sAp, oil absorbing polymer, and a porosity enhancer to the dry mixer (having horizontal and vertical medullary and optionally (4) mouths. With mechanical heating 15 equipment, such as Loedige mixer, Forberg mixer, Hobat mixer,

自由流動的粉末成份可以於該方法中於Free flowing powder components can be used in this method

該等粉末成份被同質地揽拌。 在該等粉末成份經同質攪拌之後,藉 ’藉由水或是水溶液The powder components are mixed homogeneously. After the powder components are homogenically stirred, by water or aqueous solution

膨潤土型式黏土、部份膨脹的SAp, ’及/或部份水合的水溶 19 200909484 性聚合物顆粒’及/或油吸收聚合物顆粒,及/或本發明之其 它成份。較佳地’該經濕化混合物包含5至500百分之水(以 該經濕化混合物在高於100t乾燥歷時至少1小時之後損失 的重量決定)。該經濕化混合物於濕化步驟中在授拌器内較 佳變化為一凝結微粒形狀,以加速該摻合材料與水的同質 混合。該經濕化材料的顆粒尺寸範圍較佳是由〇〇1至 10 15 20 10cm。更佳地,該經濕化材料的顆粒尺寸範圍是由〇 〇5至 5cm,並且最佳地是由〇.1至2.5cm。在擠塑之前,該經濕化 材料顆粒的水份含量可藉由乾燥及/或微波來調整,或是藉 由相關技藝中已知的方法移除經濕化材料中的水份。 經濕化材料的擠塑步驟是於一擠塑裝置中執行,該擠 塑裝置包含有-模與-心軸,藉由迫使該濕化材料經過掩 塑裝置並離開孔口成為-擠塑製品。較佳的擠塑機是媒卡 低壓藍擠塑機,Shugi減藍擠_,單螺桿擠塑機或是雙 螺桿擠塑機形式。該模孔直徑較佳為2em或更少,更佳為 _或更少。較佳地,賴具妓咖喊是更大的直經,: 及更佳地具有0.lem歧更大的直徑。賴孔相有各種形 狀,諸如:圓形、擴圓形、方形、三角形等等。擠塑發生 時的溫度可被調整以將液體(包括水)於合理的時間⑽間 移除,以充份地降低後續的朗時間或是統更進一步地 乾燥該被擠塑的濕化材料。較佳地,於擠__濕材料 的溫度是80 C或是更少,較佳是。 。…… 佳疋5〇C或更少,而最佳是10 或疋以上。為了擠塑該經濕化複合物材料,可使用具有 任何尺寸孔㈣模。於擠_間可以粉末妓溶液形錢 20 200909484 用額外的潤滑油,諸如聚乙職化物型式聚合物,例如. P〇LY〇X™(可以陶氏化學公司商業地取得),或是表面活性 劑,以乾燥材料總量為基準,份量範圍為0.01wt.%至 5wt·。/。。該經擠塑濕材料呈現類似天使髮麵之—致性並且可 為任何長度。較佳地,該經擠塑濕麵有丨⑽或是更長的長 度’較佳地有5〇η或是更長的長度。於_般條件下,該經擠 塑濕麵特性長度,亦即腿糊材長輯直徑(或是厚度)的比 是1〇或是更大,較佳是50或是更大,而更佳是1〇〇或是更大。 10 15 20 在擠塑之後’該濕複合體糊材經過乾燥環境以移除或 是降低水份。-般而言,_乾燥複合㈣水份含量介於 零與20wt.%之間’較佳地介於5與_ %之間。該乾燥程序 發生的溫度是高得足以令水於—合_間區段内被移除, 但不會高到致令於粒狀複合體齡巾㈣合性成份降解的 溫度。較佳地,該樹脂顆粒於乾燥期間的溫度是2耽或更 少,更佳是mrc或更少。較為合意地,於乾燥期間的溫度 是贼或更多,較佳為8Gt或❹,而更佳為⑽。c或更 多。該乾餘時間應該足以移除實質上所有的水以及 的潤滑劑溶劑。較佳地,該乾燦時間的分鐘戈 更多,15分鐘或是更多係為較佳者 = «是24小時或是更少,更佳地是 更 佳地是3小時或是更少。於—較佳實施例中更二:最 乾燥器中發生,於此乾燥的空氣 X乙乂王於 或是覆層於該經擠塑濕材料(擠_ ^ 4體被吹送經過 包含流體床乾職、_乾 I 一乾燥方法 …、H烤相、盤式乾燥機, 21 200909484 或是桶式乾燥機。較佳之乾燥機為流體床或是帶式乾燥機。 粒狀複合物的最終尺寸是在量度大小並過篩之後獲 得。較佳地,藉由使用習知的微粒尺寸減降方法,諸如: 輾磨、剁碎,及/或切割,執行微粒尺寸之減降。目標是將 5該等顆粒的微粒尺寸減少到可供最後使用的顆粒尺寸。於 一較佳實施例中,該複合物微粒經刴碎後被輾磨。最終微 粒尺寸較佳為2cm或是更少,而更佳為lcm或是更少。較佳 地,該微粒尺寸為0.01cm或是更大,而更佳為〇〇3cm或是 更大。於一般條件下,该最終微粒尺寸的特性長度,亦即 10長對直徑(或是厚度)的比是50或更少,較佳是2〇或是更少, 以及敢佳是5或疋更少。最佳地,最終微粒的特性長度是丄 或是更大。 在量度大小之後,該等複合物微粒可能會因為靜電的 緣故而難以處理。重濕潤該等微粒以降低或是消除靜電的 15效應是令人合意的。於一較佳的模式中,該乾燥微粒與足 夠分量但不會多到致令該等微粒凝聚的水蒸氣相接觸以降 低或是消除靜電的效應。於此一程序中,該乾燥顆粒以水 之重量的0.5wt.%或更多的份量被濕潤,並且較佳是以水之 重量的1百分或是更多的份量被濕潤。較佳地,該等乾燥微 2〇粒以10wt·%或更少的水潤濕,更佳地係使用7wt.%或更少的 水。可選擇地,可添加凝集防免添加物(抗凝塊劑)至複合物 微粒當中。如此的抗凝塊添加物在相關技藝中是廣為人知 的’並且包含有表面活性劑與惰性無機顆粒,例如妙石。 在如上述的量度大小程序中,可能會產生粉塵(其特徵 22 200909484 在於極小的顆粒尺寸),例如微粒尺寸少於或是等於ίο微 米。粉塵產生的量會依產製步驟不同而有差別。為了於複 合體材料處理期間降低未聯結的粉塵的數量與抑制末聯結 粉塵的產生,該經乾燥的粒狀微粒可與有效量的粉塵控制 5 劑相接觸。該粉塵控制劑(去粉塵劑)供用以黏附該粉塵在一 起成為一較大的簇聚物,黏附至較大的粒狀複合體顆粒 上,或是黏附至該混合器孤或是容器的壁面上,於此該複 合物顆粒於處理期間被保持,以上所有均會改變以降低結 果聚合物產物在不同的處理步驟中的未聯結粉塵量。此 10 外,對粒狀複合體微粒使用粉塵控制劑不會以不利的方式 影響該複合體微粒的表現或是性質。 較佳的粉塵控制劑可為厭水性材料或是親水性材料之 一者。示例的厭水性粉塵控制劑可能包括脂族厭水性油, 例如:礦物油,具有約7及18個碳原子的烷烴及烯烴,天然 15 油(例如:玉米、橄欖、油菜籽、黃豆、葵花子,其它蔬菜 及動物油),以及石夕氧烧油。以上化合物可以溶液、混合物 或是乳劑應用。通常,以聚合物顆粒的重量為基準,其份 量為至少100,較佳為至少200,更佳為至少300ppm。以聚 合物微粒的重量為基準,其份量少於6000,較佳少於3000, 20 而更佳少於lOOOppm。 示例性的親水性粉塵控制劑可包括水溶性聚合物,例 如:丙氧基化多元醇(可以由陶氏化學公司以商品名 VORANOL取得)。較佳之粉塵控制劑的實例亦可為聚陽離 子水溶性聚合物,例如:聚二甲基二烯丙基氣化銨,陽離 23 200909484 子羥乙基纖維素,例如:UCARE JR-09、JR-400、LR-400、 JR-30M以及KYTAMER PC (Amerchol Corporation, USA)及 其類似物。該聚陽離子性水溶性聚合物以該乾燥複合體小 粒的重量為基礎’使用的份量約為500至2,500ppm。該丙氧 5基化多元醇於水中的濃度範圍是由範圍0.1至10wt.%,以及 更佳是由1至5wt.%。 典型地,本發明的複合物含有至少0.1 wt.%之SAP、多 孔性增進劑、水溶性聚合物、氣味控制劑,或是油吸收劑 中之一或多種。較佳地,本發明的複合物含有多於〇· 1但少 10於99wt.%之SAP、多孔性增進劑、水溶性聚合物、氣味控 制劑’或是油吸收劑中之一或多種。更佳地,本發明之複 合物含有多於1但是少於50wt.%之SAP、多孔性增進劑、水 各}'生t合物、氣味控制劑,或是油吸收劑中之一或多種。 於—較佳實施例中,本發明提供一種粒狀複合體,其 匕έ黏土與可再分散性乳膠粉末,其中以黏土與可再分散 眭乳膠粉末之結合重量為基準,該複合物包含有多於15 WtV°之黏土。依據特定的應用,本發明之複合物可能進一 步包含芳香劑、表面活性劑、色料、染劑、濕氣反應指示 劑PH值指示劑,或是其混合物。 20 於別—實施例中’本發明提供一種粒狀複合體,其包 3a) 1至99wt_%之黏土,b) 0.1至25.0wt.%之可再分散性乳 务末 ’ c) 〇.i_99wt·% SAP ’ d) 0.1-25wt·%水溶性聚合物, e)0·01·25”·%多孔性增進劑;f)〇.〇l-25wt_%氣味控制劑; 乂及g) 〇.〇l-25wt·%水。 24 200909484 可選擇且依不同的應用之不同需求而定,該複合物亦 可以包括0.01 %至25wt.%之一種或是多種低揮發性有機濕 潤劑,例如:甘油、丙二醇、山梨糖醇、木糖醇及麥芽糖 醇、葡萄糖、檸檬酸、乳酸或是尿素;由0.01%至5wt.%之 5 一種或多種添加香料;由0.01%至5wt·%之一或多種陰離 子、陽離子,及/或非離子及/或兩性表面活性劑,例如:鹼 金屬烧基硫酸鹽,烧基醚硫酸鹽,烧基芳基橫酸鹽,烧石黃 酸鹽,脂肪酸,或是四銨化合物,咪唑淋,嗎福琳,或是 線型/分枝的烧氧化醇類,炫氧化烧基酌,烧氧化的醣苦, 10 或是烷基丙基胺基烷基甜菜鹼;由0.001%至5wt.%之一或多 種染劑;由〇·〇〇1至5wt.%之一或多種色料;由0.01至5wt.% 之一或多種濕氣反應指示劑,例如含有一或多種金屬離子 如:Cr3+、Fe2+、Co2+、Ni2+,或是Cu2+之無水過渡金屬鹽; 由0.001至5wt.%之一種或多種酵素或是包埋酵素;及/或由 15 0.01至2wt.%之一或多種pH指示劑。 本發明之粒狀複合體意指多官能性粒狀複合體並且可 被使用於許多不同的用途中。以下是使用本發明粒狀複合 體之一些非侷限性的實例。 本發明的粒狀組成物可於空氣過濾產品中作為氣味控 20 制劑,用於傳統的家用、學校、辦公室、商業建築、公共 浴室、餐廳、醫院、輔助起居及護理之家,以及例如客擒 内空氣對於VOC之過濾/清新的商業用途,客艙内係如:汽 車、飛機、火車、卡車、RV、船艦及舟船。 本發明之粒狀複合體微粒可被用於許多應用中,於其 25 200909484 中要求水液吸收性(例如水、尿液以及★)或是 氣味的撺發性有機 N或有 有機化合物(voc)及/或油性物質吸收。 心、貓砂,及 本發明之粒狀複合體亦可被用做吸收核 以及女性照護用品之個人照 於嬰兒尿布、成人失禁產品, 護應用 途_ 複合體亦可於各種健康及衛生相關之 血塾塊’外科面罩,傷口敷料以及床塾等;'… 10 明之粒狀複合體亦可用做屍袋及動物攔栅,以及 ;肉叩'水果,以及禽肉之食品包裝的應用。亦可被用 於自然礦物或合成絕緣毛料、《、錢及混凝土中。 本發明之粒狀複合體亦可使用於庭園用途,於濕氣控 制及濕氣活動觸發釋放,肥料,殺蟲劑,殺草劑,殺真菌 劑’以及殺生物劑中。 15 纟發明之粒狀複合體亦可使用於農藝或園藝用途(例 如於家畜氣味之遏制),以及於消費性惡臭產品用途,例如 浴室氣味之惡臭、寵物氣味、煮食氣味、冰箱氣味、家具 及櫥櫃除臭劑,地毯除臭劑,蔚房垃圾袋,婦,汗味, 於衣物’尿布桶’待洗衣物,廢棄物容器,煙灰缸,運動 20服,请防人員服裝,肉品及魚肉托盤,以及地毯背膠。 本發明之粒狀複合體可使用於工業用途,例如:催化 劑,食品加工,廢棄物處理,垃圾掩埋,水過濾,火災控 制,以及紙與紙漿之製造。 無需進一步苦心經營,相信熟悉相關技術領域之人士 26 200909484 可使用以上的描述利用本發明至其最廣的範圍。 以下佳較實施例僅係用以例示說明,無論如何,並非 以任何方法限制該等揭示内容之其他内容。 實例 5 以下實例僅供用以解釋說明而非用以限制本發明之範 圍。 用於粒狀複合體樣品之製備的程序 A.摻和材料 納系膨潤土(CAS編號:1302-78-9)係得自Black Hills 10 Bentonite, LLC (Mills,WY),並以其所取得的狀態被使用。 於此項研究工作中所使用的納系膨潤土黏土通常輾磨至 75-80%可通過200目篩網(<〇.〇74mm或是74微米)。 可再分散性乳膠粉末-不同形式之陶氏可再分散性乳 膠聚合物粉末(Dow Latex Powder,之後以“DLP”稱之)係可 15 商業取得者。於此一實例中,DLP 220,其係一乙酸乙烯酯 /乙烯共聚物’具有-2。(:之玻璃轉換溫度(Tg)以及(TC之薄膜 形成溫度(MFFT),於本實驗中全程使用。該DLP粉末的含 量以整體乾燥材料的重量為基礎,由0至2.5至5wt.%改變。 超吸收聚合物(SAP)材料·微細尺寸SAP材料 2〇 (DRYTECH™ ST10微細型,之後以“微細型”稱之)是由 DRYTECH Midland SAP工廠取得,並於本實驗中全程使 用。於本實驗中所使用的微細材料的典型顆粒尺寸小於300 微米。於又一實驗中,使用具有介於約100與850微米之全 截流尺寸碎片。 27 200909484 消光助劑PERGOPAK™M之添加-PERGOPAK™ Μ (係 Albemarle Corporation,Baton Rouge, LA的商標)以5wt.%· 的含量被加到膨潤土中。PERGOPAK M是一種聚曱基尿素 樹脂(尿素-曱醛-縮合物製品)其内含小量的游離羥甲基基 5團(0·6%)並以所獲得的狀能被使用(CAS編號:9011-05-6)。 Β.摻合 將所有材料置於一個大的密封塑膠袋中並手搖約3至5 分鐘直到整個材料被明顯地外觀一致地組合在一起。 C·濕化用於擠塑之材料 10 份量2kg重的材料被放入一個16 X 24”塑膠盤中以令材 料均勻分配至深約%"。以先經稱量的去離子室溫水加入該 材料中至至重量比為1:1。水是藉由裝配有8〇〇4型扇形霧錐 喷嘴之壓縮空氣喷霧器於25磅/平方寸施用。該表面被均勻 的喷灑直到一致濕化的程度’不容許肉眼可見的水窪產 15生。該材料接下來於盤中以手混合以攙合該濕潤的材料與 下方的乾燥層。重覆該等噴霧/以手混合的步驟直到整個水 量均被攙合入乾燥材料。該完成的產物成為一個團塊狀, 豌豆大小(或是更小)的材料。若是該材料被過度混合或是過 度處理會產生一更為黏稠且較大的團塊,而無法平順地 20擠塑。將該材料以塑料布覆蓋靜置約30分鐘以於擠塑前處 於平衡狀態。 D.擠塑 該濕潤材料使用妮卡低壓力籃擠塑機(Nica E14〇 extruder, Aeromatic-Fielder. Ltd” Eastleigh, Hants, UK)與 28 200909484 1.2 m尺寸的篩被擠塑。材料全部被—次加入籃中。該材料 令人滿意地被擠塑’ 一如長的天使髮細麵。將該材料收集 起來並小心地置於覆蓋有尼龍篩網’深約丨,,之不绩鋼托盤 上,其接下來被置於一乾燥爐中。輕輕地按壓所擠塑的顆 5粒以確定其已適切地乾燥。除非另外指定,本實驗中全程 使用該擠塑物。 E. 乾燥 該經擠塑材料被輕輕地置於乾燥托盤上以確保其平均 地乾燥,並且接下來將該托盤送入55它之烤爐中隔夜。該 1〇製品接下被小心地抖鬆以輔助並加速乾燥。完全乾燥的時 間約24小時。平均濕度約7wt.%(於105°c烤爐乾燥歷時丨2小 時)。 F. 過篩 β亥乾燥的材料接來被擊碎並置入裝配有2mm鯡魚骨形 5篩板的葛樂特篩(G1att sieve)中,並收置於一塑膠袋中。於 過程中,該材料被適切地擊碎且有極細小的粉塵被觀察 到。該材料此後被稱為“A型”粒狀複合體,並具有約lmm的 直徑與約lmm至約15mm的長度。 G. 輾磨 2 0 .. 於某些情况中,在分別尺寸與過_步驟後該粒狀複合 體顆粒會以豕用咖啡磨豆機進一步地輾磨。實行該複合物 顆粒輾磨的程序以降低顆粒的長度,產生具有相同直徑但 疋車乂短的顆粒。在輾磨之後,將可通過篩網(100目篩網或 疋150微米)的小尺寸碎片捨棄,將所得到的較大顆粒留存 29 200909484 並稱量且供給以獲有一具有平均值與中數分別為1090μηι 與1066μιη之窄顆粒尺寸分佈。該材料此後被稱作“Β型,,粒 狀複合體。第1表顯示複合物顆粒在輾磨之後,以1〇〇目篩 網過篩’使用LS顆粒尺寸分析儀(Beckman Coulter LS 13 5 320)量測後之顆粒尺寸與分佈。 第1表:經研磨之粒狀複合體(B型)的顆粒尺寸 碎片百分比 <10% <25% <50% <75% <90% 顆粒尺寸 743.4 μιη 898.5 μιη 1066 μιη 1269 μηι 1495 μιη 樣品性質之測試步驟 座收測試:離心保持能力(CRC)步驟 10 份量300mg之粒狀複合體(A型)被置於熱封合茶袋中。 該茶袋為 59mm 乘 75mm (Grade 7291,自 Ahlstrom Fiber Composites,Chirnside,Dunes Berwickshire,Scotland 取 得)。使用一熨斗熱封合該邊緣以令茶袋被完全地封合。藉 由垂直地持握並溫和地輕敲該茶袋,令該粒狀複合體顆粒 15被平均地分散於整個袋中。將0.9%之鹽溶液倒入約3〇cm χ 19cm x 5cm的玻璃盤當中。該茶包被浸入鹽溶液中歷時^厂 時。該茶包接下來由溶液中取出並在16〇〇rpm下離心歷時3 分鐘。接下來,將該茶包稱重。藉由具有乾燥丸粒的茶包 的原始重量與在離心之後的濕茶包與濕丸粒的重量的差 2〇別,量測被吸收的鹽溶液的重量。該被吸收的鹽溶液對該 乾燥複合體微粒的重量的重量比為離心保持能力(CRc),並 且其以每克乾燥粒狀複合體微粒之溶液克數來記錄(g/g)。 30 200909484 蓋佐試.誇:於負荷下吸收性(AUL)步驟 份量400mg之粒狀複合體樣品被平均地舖在“AUL小 室”的底部。其為一中空塑膠圓柱體,塑膠外緣直徑31mni 内部直徑25mm。該小室高33mm。該小室的底部覆有纖細 5的尼龍篩網。在添加了複合體顆粒之後,放置一塑膠活塞 於該等丸粒上,記錄具有丸粒與活塞的小室重量。接下來, l〇〇g的重量被置於該小室中活塞上。該1〇〇g的重量與該活 塞合計重量為l〇9.4g,提供2.1kPa (0.3磅/平方寸)的負載於 。亥等顆粒上。使用一分析盤(24cm x 24cm X 2.5cm),其具有 l〇 6個孔鑽在蓋上。該等孔有一直徑31咖且為周向。該六個 孔是限定於一直徑124mm的圓内。該蓋被移除並且一玻璃 弗鉍(直徑124mm,高12mm)被放入該托盤中,並且位於該 等位於托盤蓋之6個孔的下方。將〇.9%之鹽溶液加入該托盤 中直到等於該弗兹之頂端但不會將之覆蓋。將一張直徑 15 124mm之遽紙置於該弗兹之上。若是操作正破,該鹽溶液 會通經該弗兹而濕化該渡紙。該托盤蓋接下來被放在該托 盤的上方。該AUL小室接下來被放置穿越該鑽孔,以使其 位於該弗茲之上方的濾紙的上方。該等小室接下來一次加 入兩個並置於彼此相對側。該等丸粒被供予兩個小時以吸 20收,谷液。在1小時之後,該小室由托盤被移除。該100g重量 接下來由該小室移除,並且稱量該小室。該小室的濕重與 乾重的差提供了由該複合物顆粒所吸收之溶液質量。該數 值以雜狀複合體顆粒的原始質量除得到單位為之 AUL。 31 200909484 凝塊吸收性測試步驟 將一個2·5 X 2吋之塑膠六角形稱量船碟標記。將約2〇 克之複合體粒狀材料置入對應的稱量船碟中。給予各個粒 狀樣品2mL(約2克)的合成尿液(以2.1mL以28%氨水溶液, 5 50_4g的尿素’ 4.3g的CaCl2*2H20,以及5〇〇mL之水製成)。 提供1小時的等待時間以使尿液被吸收形成凝塊。於等待時 間過後,將各個樣品置於實驗室天平中,並且該天平被歸 零。使用一抹刀將該凝塊輕輕移出。記錄天平上減少的重 量做為凝塊重量。最後,以毫米記錄各個凝塊的長、寬及 10 深。以上述試驗為基礎,可如下述計算出每克乾燥粒狀複 合體顆粒之合成尿溶液克數凝塊吸收性。凝塊吸收性(g/g) =2g/(凝塊重量-2) g。凝塊吸收性為粒狀複合體顆粒於短暫 接觸液體時所吸收液體的量度方法。較低的凝塊重量(g)造 成較高的凝塊吸收性(g/g)。為簡化起見,於本發明中全部 15 使用使用凝塊重量(g)。 A味控制#能.消丨Μ 使用兩種不同的方法評估氣味控制效能··嗅聞測試與 氣相色層分析法(GC)。 嗅聞測就 20 將份量為30g的複合體粒加入l〇〇mL玻璃燒瓶中。測試 溶液藉由加入800ppm的三曱胺(TMA)至合成尿液中來製 備。每一公升的樣品加入2mL尿液/TMA溶液。於特定間隔 時間在室溫下使用下述記分進行嗅聞測試。 〇=無惡臭;1 =輕微惡臭;2 =惡臭;3 =強烈惡臭 32 200909484 氣相色層分析法(GC)測量 於某些例子中,使用TMA,二曱基二硫化物(DMDS), 甲醛,苯乙烯單體,以及鄰笨二甲酸二甲酯(DMp)來量測 該粒狀複合體控制惡臭與揮發性有機化合物(v〇c)之效能。 5 用以製備+瓶之一般步驟 藉由稱量〇· 1 g的粒狀複合體顆粒至22mL頂部空間的小 瓶中製備小瓶。於GC試驗中全部使用a型粒狀複合體。接 下來,一個2mL小瓶被沉入頂部空間小瓶中。在此之後, 一般地lpL溶液被加入2mL小瓶中。接下來,將該頂部空間 10小瓶加蓋。此一步驟避免於溶液與粒狀複合體顆粒之間任 何液體接觸。任何的交互作用僅能得自蒸發的氣體。於取 樣之前,該小瓶處於室溫下歷時數小時。於頂部空間中的 待分析物以GC藉由質譜分析(MS)或是火焰離子化檢測法 (FID)之任一者進行檢測。 15 與各個化合物使用之溶液組成於第2表中提供。 33 200909484 第2表:各化合物之詳目 化合物 溶液组成物 三甲胺(TMA) 2_1% TMA溶於水中。最初試驗使用ι〇μ[溶液而第 二組試驗使用bL溶液 v 二甲基二硫化物(DMDS) 250pg/mL DMDS於水中内含 1 % DMF 甲醛 最初試驗使用37%甲搭,12%甲醇溶於水中。第二 組試驗使用3.9%甲醛,1 %甲醇溶於水中 苯乙烯 〇_ lmL容積之〇. 1 %苯乙烯溶於水中内含丨%DMF 鄰苯二甲酸二甲酯(DMP) 未稀釋 各供用於四種化合物之條件提供如下。 第3表:供用於TMA,甲醛及DMP之儀器條件 樣品 LEAP/CTC CombiPal 烤爐 室溫(未加熱,22T) 注射溫度 TMA及甲醛為80°C,DMP為50°C 射出體積 TMA及曱醛為500μΙ^,DMP為2000μί 於TMA溶液之間使用存於50°C以水稀釋至1:4之濃氨水注射沖洗頂部空間小瓶。 氣相色層分析儀 Agilent 6890 管柱 甲醛與DM^ : J&WSciDB-5 30mx0.25mm,Ιμιη薄膜 TMA ' Varian CP-7447 Volamine 30m x 0.32mm 入口 200°C,分流,DMP 20:1分流,甲醛50:1分流,TMA 10:1分流 管柱流 He,穩定流動 DMP及曱醛:1.0mL/min,TMA : 1.9mL/min 烤爐 DMP : 200°C,10°C/min至250°C 甲醛:35°C,5min,10°C/min至 100°C TMA : 60°C,4min 維持,KTC/min至 110°C DMP及酿:Mass Spec Agilent 5973 DMP :選自 Ion Monitoring 具有 163 及 194 之 m/z 曱醛:20-50之掃描m/z,以選定之30之m/z定量 TMA FID 250°C, 40.0mL/min H2, 400mL/min air, 45mL/min N2之穩定流動 34 200909484 第4表:DMDS及苯乙烯之儀器條件 取樣機 PerkinElmer TurboMatrix 40 烤爐 關上(28-29T) 針頭 80°C 轉移線 Restek 0.25mm Siltek ? 90°C 注射時間 0.07min 管柱壓力 30psig 氣相色層分析儀 Agilent 6890 管柱 Restek Rtx-35 30m x 0.25mm,Ιμηι 薄膜 烤爐 DMDS : 40°C,l(TC/min200°C Styrene : 5(TC,l.Omin維持,15°C/min至20(TC 管柱壓力 He,20 psig,恆壓 入口 200°C,分流,於GC比例設定至1.0 火焰離子化檢測儀(FID) 250°C,40.0mL/min H2,400mL/min 空氣,40mL/min 穩定N2流動,範圍=〇 大容量惡臭測試 使用一個一加侖圓柱塑膠容器(高9¾",直徑53Λ”)做為 5 測試裝備。裝設一銘配件(三維尺度:環-外直徑1 1/8", 内直徑W ;配件-外直徑1 1/8,,,線直徑ι/2”,外管連接直 徑5/16” ;内直徑!/4",高1 %”,線高1/2")於對應的蓋上,該 蓋具有W孔洞切割於該蓋中。以手指擰緊該配件。接下來, 將一個長4 之TYGONTM (Saint-Gobain Corporation之商標) 10管材(外直徑(0D) : 3/8吋,内直徑(ID) : 1/4吋,以及壁厚 1/1611寸)附加至該配件的外側部分。 放置一塑膠夾於該管材的中央並收緊以將之關閉。將5 克的粒狀複合體(或是其它的材料)加入該容器中以使該粒 35 200909484 狀複合體於谷器底部均質的分佈。將小瓶放入大& 並且某些份量及型式的惡臭被加入小瓶中。盗中, 右'未特別·^ 5 明’使用含有l2〇0PPm之氨(以溶液重量為基準: 1200PPm TMA之體積600微升的〇·9%鹽溶液做為控制組: 臭溶液。該容器立刻以併有一鋁配件之配將之封人〜 TYGON管材的末端賴至位於蓋的上方_配件。使^ 管切割器破開適當的Draeger短期氣體檢測管的兩個尖端。 該末端被插入至Tygon管材所以流動指示劑指向離開該測 試設備。 10 於適當時間之後,氣體檢測管的外侧末端被插入手動 泵中,並且該位於管材上的爽被鬆開。該手動泵被完全壓 下(於此點’在泵的上方的計數器的數字一個一個增加)而後 鬆開’並且容許空氣流經該管。每一循環有一百立方公分 的氣流通過該管。當位位泵上的指示器變成白色時結束該 15 循環。於管中的材料會改變顏色以指示氣體檢測結果。記 錄得自管側之梯度ppm位準。氨管(部件編號CH20507,範 圍5-70ppm,顏色由黃色變化為藍色)與TEA管(檢測TMA ; 部件編號67184〇1,範圍5-6〇口0111,顏色由黄色變化為藍色) 量測ppm等級之數量。手動泵壓下與顯示惡臭程度重覆四次 2〇 或是更多次,在每個循環(擊)之後記錄,並且造成總量 500cm3之空氣泵經該氣體檢測管。 營線内過渡測Μ舟_ 將一個鋁配件置於1-加侖塑膠容器(大容器)的帽蓋 上,該容器之蓋中央切割有一孔洞,接下來牢固地以手指 36 200909484 擰緊該配件。接下來,長4”之Tygon™管材(外直徑(〇d): 3/8吋’内直徑(ID) : 1/4吋,以及壁厚 l/l64)(Saint_G〇bain Corporation之商標)被附接至該配件的外側部分。將一塑膠 夾置於該管材中央並向内收緊以將之關閉。將小瓶放入大 5容器中,並且某些份量及型式的惡臭被加入該小瓶中。若 未特別註明,使用含有1200ppm之氨(以溶液重量為基準) 或是1200Ppm TMA之體積6〇〇微升的〇.9%鹽溶液做為控制 組惡臭溶液。該容器立刻以併有一鋁配件之蓋將之封合。 將過濾材料加入管線内濾器以使其與金屬環的上端齊平。 10記錄該重量。管線内濾器組件之三維尺度係如下述: 外側配件:〇D = i 1/2”;大1〇 = i 1/4” ;小1〇 = 3/4” ;高= 5/8" 内側配件:〇D = i 1/2”;線之〇D =丨1/4„ ; ID = %” ;高 5/8, 15Bentonite type clay, partially expanded SAp, and/or partially hydrated water soluble 19 200909484 polymer particles' and/or oil absorbing polymer particles, and/or other components of the invention. Preferably, the humidified mixture comprises from 5 to 500 percent water (determined by the weight lost by the wetted mixture after at least one hour of drying over 100 tons). The humidified mixture is preferably changed to a coagulated particulate shape in the agitator during the wetting step to accelerate homogenous mixing of the admixture with water. The wetted material preferably has a particle size ranging from 〇〇1 to 10 15 20 10 cm. More preferably, the wetted material has a particle size ranging from 〇 5 to 5 cm, and most preferably from 〇.1 to 2.5 cm. The moisture content of the wetted material particles may be adjusted by drying and/or microwave prior to extrusion, or the moisture in the wetted material may be removed by methods known in the art. The step of extruding the wetted material is performed in an extrusion apparatus comprising a die-and-mandrel, by forcing the wetted material through the masking device and exiting the orifice to become an extruded product . The preferred extruders are media card low pressure blue extruders, Shugi blue crushers, single screw extruders or twin screw extruders. The die hole diameter is preferably 2 em or less, more preferably _ or less. Preferably, the singer is a larger straight, and more preferably has a larger diameter of 0. lem. The Lai Kong phase has various shapes such as a circle, an expanded circle, a square, a triangle, and the like. The temperature at which the extrusion occurs can be adjusted to remove the liquid (including water) for a reasonable period of time (10) to substantially reduce the subsequent radiant time or to further dry the extruded wetted material. Preferably, the temperature of the extruded material is 80 C or less, preferably. . ...... 5疋C or less, and the best is 10 or more. In order to extrude the wetted composite material, a hole (four) mold having any size can be used. In the case of squeezing _ can be powdered 妓 solution shaped money 20 200909484 with additional lubricants, such as poly-type polymer type polymers, such as. P〇LY〇XTM (commercially available from The Dow Chemical Company), or surface active The agent is based on the total amount of the dry material, and the amount ranges from 0.01 wt.% to 5 wt. /. . The extruded wet material exhibits an angel-like finish and can be of any length. Preferably, the extruded wet side has a crepe (10) or a longer length & is preferably 5 〇 or longer. Under the general condition, the length of the extruded wet surface characteristic, that is, the length of the leg paste material (or thickness) is 1 〇 or more, preferably 50 or more, and more preferably It is 1〇〇 or bigger. 10 15 20 After extrusion, the wet composite paste is passed through a dry environment to remove or reduce moisture. In general, the dry composite (iv) moisture content is between zero and 20 wt.%, preferably between 5 and _%. The drying process occurs at a temperature high enough to allow the water to be removed in the inter-segmental zone, but not so high as to degrade the compositive component of the granular composite. Preferably, the temperature of the resin particles during drying is 2 Torr or less, more preferably mrc or less. More desirably, the temperature during drying is thief or more, preferably 8 Gt or ❹, and more preferably (10). c or more. This dry time should be sufficient to remove substantially all of the water and lubricant solvent. Preferably, the minute time of the dry time is more, 15 minutes or more is preferred = « is 24 hours or less, more preferably 3 hours or less. In the preferred embodiment, the second: occurs in the driers, where the dried air is either coated or coated on the extruded wet material (the extruded body is blown through the fluid containing bed) Job, _ dry I a drying method..., H-baked phase, tray dryer, 21 200909484 or a barrel dryer. The preferred dryer is a fluid bed or a belt dryer. The final size of the granular composite is It is obtained after measuring and sieving. Preferably, the particle size reduction is performed by using a conventional particle size reduction method such as: honing, mashing, and/or cutting. The particle size of the particles is reduced to the size of the particles that are available for final use. In a preferred embodiment, the composite particles are honed and honed. The final particle size is preferably 2 cm or less, and more preferably. Preferably, the particle size is 0.01 cm or more, and more preferably 〇〇3 cm or more. Under normal conditions, the characteristic length of the final particle size, that is, 10 The ratio of long to diameter (or thickness) is 50 or less, preferably 2 〇 or Less, and the daring is 5 or less. Optimally, the characteristic length of the final particles is 丄 or greater. After measuring the size, the composite particles may be difficult to handle due to static electricity. It is desirable that the particles have a 15 effect to reduce or eliminate static electricity. In a preferred mode, the dry particles are in contact with water vapor of a sufficient amount but not so much that the particles are agglomerated to reduce Or to eliminate the effect of static electricity. In this procedure, the dry granules are wetted by 0.5 wt.% or more by weight of water, and preferably 1 or more by weight of water. The portion is wetted. Preferably, the dry micro-twisted particles are wetted with 10 wt.% or less of water, more preferably 7 wt.% or less of water. Alternatively, agglutination prevention may be added. Additives (anti-clotting agents) to the composite microparticles. Such anti-clotting additives are well known in the art and contain surfactants and inert inorganic particles, such as fine stones. Dust may be generated in the program (Feature 22 200909484 is based on very small particle sizes), for example, the particle size is less than or equal to ίομm. The amount of dust generated will vary depending on the manufacturing process. To reduce unbonded dust during processing of the composite material The amount and the suppression of the end of the connection dust generation, the dried granular particles can be contacted with an effective amount of dust control agent 5. The dust control agent (dedusting agent) is used to adhere the dust together to become a larger cluster. a polymer that adheres to the larger granular composite particles or adheres to the wall of the mixer or to the container where the composite particles are retained during processing, all of which change to reduce the result The amount of unbonded dust of the polymer product in different processing steps. In addition, the use of a dust control agent for the particulate composite microparticles does not adversely affect the performance or properties of the composite microparticles. A preferred dust control agent can be one of a hydrophobic material or a hydrophilic material. Exemplary hydrophobic water control agents may include aliphatic hydrophobic oils such as mineral oils, alkanes and alkenes having about 7 and 18 carbon atoms, natural 15 oils (eg, corn, olives, rapeseed, soybeans, sunflower seeds, Other vegetable and animal oils), as well as Shixi oxygen burning oil. The above compounds can be used in solution, mixture or emulsion. Generally, the amount is at least 100, preferably at least 200, more preferably at least 300 ppm, based on the weight of the polymer particles. The amount is less than 6,000, preferably less than 3,000, and more preferably less than 1,000 ppm based on the weight of the polymer microparticles. Exemplary hydrophilic dust control agents can include water soluble polymers such as propoxylated polyols (available from the Dow Chemical Company under the trade name VORANOL). An example of a preferred dust control agent may also be a polycationic water-soluble polymer, for example, polydimethyldiallyl ammonium hydride, cation 23 200909484 hydroxyethyl cellulose, for example: UCARE JR-09, JR -400, LR-400, JR-30M and KYTAMER PC (Amerchol Corporation, USA) and the like. The polycationic water-soluble polymer is used in an amount of about 500 to 2,500 ppm based on the weight of the dry composite granule. The concentration of the propoxylated polyol in water ranges from 0.1 to 10 wt.%, and more preferably from 1 to 5 wt.%. Typically, the composite of the present invention contains at least 0.1 wt.% of SAP, a microporous improver, a water soluble polymer, an odour control agent, or one or more of an oil absorbent. Preferably, the composite of the present invention contains one or more of SAP, a porosity improving agent, a water-soluble polymer, an odor controlling agent' or an oil absorbent, which is more than 〇·1 but less than 10% by weight. More preferably, the composite of the present invention contains more than one but less than 50 wt.% of SAP, a porosity enhancer, a water extract, an odor control agent, or one or more of an oil absorbent. . In a preferred embodiment, the present invention provides a granular composite comprising a clay and a redispersible latex powder, wherein the composite comprises a weight based on a combined weight of the clay and the redispersible silicone powder. More than 15 WtV° clay. Depending on the particular application, the composite of the present invention may further comprise a fragrance, a surfactant, a colorant, a dye, a moisture indicator, a pH indicator, or a mixture thereof. 20 In other embodiments, the present invention provides a granular composite comprising 3a) 1 to 99 wt% clay, b) 0.1 to 25.0 wt.% redispersible emulsion c' ).i_99wt ·% SAP 'd) 0.1-25wt·% water-soluble polymer, e) 0·01·25”·% porosity improver; f) 〇.〇l-25wt_% odor control agent; 乂 and g) 〇. 〇l-25wt·% water. 24 200909484 Depending on the needs of different applications, the composite may also comprise from 0.01% to 25wt.% of one or more low volatility organic humectants, eg glycerol , propylene glycol, sorbitol, xylitol and maltitol, glucose, citric acid, lactic acid or urea; from 0.01% to 5wt.% of 5 one or more added fragrances; from 0.01% to 5wt% or one or more Anionic, cationic, and/or nonionic and/or amphoteric surfactants, for example: alkali metal alkyl sulfate, alkyl ether sulfate, alkyl aryl salt, sulphate, fatty acid, or Tetraammonium compound, imidazoline, ifolin, or linear/branched oxidized alcohols, oxidative oxidizing base, burning oxidized sugar bitter, 1 0 or alkylpropylaminoalkyl betaines; from 0.001% to 5wt.% of one or more dyes; from 〇·〇〇1 to 5wt.% one or more colorants; from 0.01 to 5wt. % one or more moisture reaction indicators, such as anhydrous transition metal salts containing one or more metal ions such as: Cr3+, Fe2+, Co2+, Ni2+, or Cu2+; from 0.001 to 5 wt.% of one or more enzymes or Encapsulating the enzyme; and/or from 15 0.01 to 2 wt.% of one or more pH indicators. The granular composite of the present invention means a polyfunctional granular composite and can be used in many different applications. It is an example of some non-limiting uses of the granular composite of the present invention. The granular composition of the present invention can be used as an odor control 20 preparation in air filtration products for use in conventional household, school, office, commercial buildings, public baths. , restaurants, hospitals, assisted living and nursing homes, and, for example, the filtration/fresh commercial use of VOC in the interior of a passenger compartment, such as: cars, airplanes, trains, trucks, RVs, ships, and boats. Granular composite particles can be used In many applications, it is required in 25 200909484 to absorb water (such as water, urine and ★) or odor of bursting organic N or organic compounds (voc) and / or oily substances. Heart, cat litter And the granular composite of the present invention can also be used as an absorbent core and a female care product for personal baby diapers, adult incontinence products, and protective applications _ complexes can also be used in various health and hygiene related blood clots' Surgical masks, wound dressings, and mattresses; '... 10 The granular composites can also be used as corpses and animal barriers; and; meat 叩 'fruit, and poultry food packaging applications. It can also be used in natural mineral or synthetic insulating wool, ", money and concrete. The granular composite of the present invention can also be used in garden applications, in the release of moisture control and moisture activity, fertilizers, insecticides, herbicides, fungicides, and biocides. 15 粒Invented granular composites can also be used for agronomic or horticultural purposes (eg in the containment of livestock odors), as well as for consumer malodorous products such as the smell of bathroom smells, pet odors, cooking odors, refrigerator smells, furniture And cabinet deodorant, carpet deodorant, Weifang garbage bag, woman, sweat smell, clothing 'diaper bucket' laundry, waste container, ashtray, sports 20 clothes, anti-personnel clothing, meat and Fish trays, as well as carpet backing. The granular composite of the present invention can be used for industrial applications such as catalysts, food processing, waste disposal, landfill, water filtration, fire control, and paper and pulp manufacturing. Without further painstaking efforts, it is believed that those skilled in the relevant art will be able to use the invention to its broadest scope. The following examples are merely illustrative and are not intended to limit the scope of the disclosure in any way. EXAMPLE 5 The following examples are for illustrative purposes only and are not intended to limit the scope of the invention. Procedure for the preparation of granular composite samples A. Admixture material Nai bentonite (CAS No. 1302-78-9) was obtained from Black Hills 10 Bentonite, LLC (Mills, WY) and obtained therefrom. The status is used. The nano bentonite clay used in this research work is usually honed to 75-80% and passed through a 200 mesh screen (<〇.〇74mm or 74 microns). Redispersible Latex Powder - Different forms of Dow Latex Powder (hereinafter referred to as "DLP") are commercially available. In this example, DLP 220, which is a monovinyl acetate/ethylene copolymer', has a -2. (: glass transition temperature (Tg) and (TC film formation temperature (MFFT), used throughout the experiment. The content of the DLP powder is changed from 0 to 2.5 to 5 wt.% based on the weight of the overall dry material. Superabsorbent polymer (SAP) material · Micronized SAP material 2〇 (DRYTECHTM ST10 micro-type, then referred to as “micro-type”) was obtained from DRYTECH Midland SAP factory and used throughout the experiment. The typical particle size of the fine materials used in the experiments was less than 300 microns. In yet another experiment, fragments with full cut-off dimensions of between about 100 and 850 microns were used. 27 200909484 Addition of phornish PERGOPAKTMM - PERGOPAKTM Μ (trademark of Albemarle Corporation, Baton Rouge, LA) is added to bentonite at a content of 5 wt.%·. PERGOPAK M is a polyfluorenyl urea resin (urea-furfural-condensate product) containing a small amount of Free methylol group 5 (0.66%) and can be used in the obtained form (CAS No.: 9011-05-6). 掺 Blend all materials in a large sealed plastic bag and Hand crank for about 3 to 5 minutes until the whole The materials were clearly combined in appearance and consistency. C. Wetting of the material used for extrusion 10 parts of 2 kg of material were placed in a 16 X 24" plastic tray to evenly distribute the material to a depth of about %". The previously weighed deionized room temperature water was added to the material to a weight ratio of 1:1. The water was compressed at 25 psi by a compressed air atomizer equipped with a 8〇〇4 fan-shaped mist cone nozzle. The surface is evenly sprayed until the degree of consistent wetting is 'not allowed to be visible to the naked eye. The material is then hand mixed in the pan to blend the wetted material with the underlying dry layer. Repeat the spray/hand mixing steps until the entire amount of water is kneaded into the dry material. The finished product becomes a mass, pea size (or smaller) material. If the material is over-mixed or Excessive treatment results in a more viscous and larger mass that cannot be smoothly extruded. The material is placed in a plastic cloth for about 30 minutes to be in equilibrium before extrusion. Wet material extruded using Nika low pressure basket (Nica E14〇extruder, Aeromatic-Fielder. Ltd.) Eastleigh, Hants, UK) and 28 200909484 1.2 m size sieve was extruded. The material was all added to the basket - the material was satisfactorily extruded ' If the long angel has a fine surface, the material is collected and carefully placed on a stainless steel tray covered with a nylon screen, which is then placed in a drying oven. Gently press the extruded 5 pellets to make sure they have dried properly. The extrusion was used throughout the experiment unless otherwise specified. E. Drying The extruded material was gently placed on a drying tray to ensure it dried on average, and the tray was then fed into 55 ovens overnight. The 1 〇 product is then carefully shaken to aid and accelerate drying. The time to completely dry is about 24 hours. The average humidity is about 7 wt.% (the oven is dried at 105 °c for 2 hours). F. Screening The β-dry material was then crushed and placed in a G1att sieve equipped with a 2 mm salmon bone 5 sieve and placed in a plastic bag. During the process, the material was properly crushed and very fine dust was observed. This material is hereinafter referred to as a "A-type" granular composite and has a diameter of about 1 mm and a length of from about 1 mm to about 15 mm. G. Honing 2 0 .. In some cases, the granular composite particles will be further honed with a coffee grinder after the respective size and over-steps. The procedure of the granule honing of the composite is carried out to reduce the length of the granules to produce granules having the same diameter but short rutting. After honing, the small size fragments that can pass through the screen (100 mesh screen or 疋 150 microns) are discarded, and the larger particles obtained are retained in 29 200909484 and weighed and supplied to obtain an average and medium number. They are narrow particle size distributions of 1090 μm and 1066 μm, respectively. This material is hereinafter referred to as "Β-type, granular composite. Table 1 shows that the composite particles are sieved with a 1 mesh screen after honing" using an LS particle size analyzer (Beckman Coulter LS 13 5 320) Particle size and distribution after measurement. Table 1: Percentage of particle size fragments of the ground granular composite (Type B) <10% <25% <50% <75% <90 % Particle size 743.4 μηη 898.5 μιη 1066 μιη 1269 μηι 1495 μιη Test procedure for sample properties Acceptance test: Centrifuge retention capacity (CRC) step 10 parts of a 300 mg granular composite (Type A) were placed in a heat-sealed tea bag. The tea bag is 59 mm by 75 mm (Grade 7291, available from Ahlstrom Fiber Composites, Chirnside, Dunes Berwickshire, Scotland). The edge is heat sealed with an iron to allow the tea bag to be completely sealed. By holding it vertically and gently The tea bag was tapped so that the granular composite particles 15 were evenly dispersed throughout the bag. 0.9% of the salt solution was poured into a glass dish of about 3 〇cm χ 19 cm x 5 cm. The tea bag was immersed in a salt solution. In the middle of the time ^ factory time. The tea The bag was then removed from the solution and centrifuged at 16 rpm for 3 minutes. Next, the tea bag was weighed. The original weight of the tea bag with dried pellets and the wet tea bag after centrifugation The weight difference of the wet pellets is 2, and the weight of the absorbed salt solution is measured. The weight ratio of the absorbed salt solution to the weight of the dry composite microparticles is the centrifugal retention capacity (CRc), and it is per The number of grams of dry granular composite particles is recorded (g/g). 30 200909484 Cover test. Exaggeration: Absorbent under load (AUL) step 400 mg of granular composite sample is evenly spread on "AUL" The bottom of the chamber is a hollow plastic cylinder with a plastic outer diameter of 31 mni and an inner diameter of 25 mm. The chamber is 33 mm high. The bottom of the chamber is covered with a slim nylon mesh. After the addition of the composite particles, a A plastic piston is placed on the pellets to record the weight of the chamber with the pellets and the piston. Next, the weight of l〇〇g is placed on the piston in the chamber. The weight of the 1 〇〇g and the total weight of the piston are l 〇 9.4g, providing 2.1kPa (0.3 lb / The load is loaded on the particles, etc. An analysis disk (24 cm x 24 cm X 2.5 cm) is used, which has 16 holes drilled into the cover. The holes have a diameter of 31 coffee and are circumferential. The holes are defined in a circle having a diameter of 124 mm. The cover is removed and a glass scorpion (124 mm in diameter, 12 mm high) is placed in the tray and located below the six holes in the tray cover. 〇.9% of the salt solution was added to the tray until it was equal to the top of the Foz but would not be covered. Place a 15 124 mm diameter crepe paper over the Foz. If the operation is broken, the salt solution will humidify the paper through the Foz. The tray cover is then placed over the tray. The AUL chamber is then placed across the bore so that it is above the filter paper above the Foz. The cells are added two times at the next time and placed on opposite sides of each other. The pellets were given for two hours to absorb 20 grams of gluten. After 1 hour, the chamber was removed from the tray. The 100 g weight is then removed from the chamber and the chamber is weighed. The difference in wet weight to dry weight of the chamber provides the quality of the solution absorbed by the composite particles. This value is divided by the original mass of the hetero-complex particles to give the unit AUL. 31 200909484 Clot Absorbency Test Procedure Mark a 2·5 X 2吋 plastic hexagonal weighing disc. Approximately 2 grams of composite particulate material is placed in the corresponding weighing vessel. Each granulated sample was administered 2 mL (about 2 g) of synthetic urine (made with 2.1 mL of 28% aqueous ammonia solution, 5 50_4 g of urea '4.3 g of CaCl 2 * 2H20, and 5 mL of water). A one hour waiting time is provided to allow the urine to be absorbed to form a clot. After the waiting time has elapsed, each sample is placed in a laboratory balance and the balance is reset to zero. Use a spatula to gently remove the clot. Record the reduced weight on the balance as the weight of the clot. Finally, the length, width and depth of each clot are recorded in millimeters. Based on the above test, the clot absorbency of the synthetic urine solution per gram of the dry granular composite particles can be calculated as follows. Clot absorptivity (g/g) = 2 g / (clot weight - 2) g. Clot absorptivity is a measure of the amount of liquid absorbed by a granular composite particle upon brief contact with a liquid. A lower clot weight (g) results in higher clot absorbency (g/g). For the sake of simplicity, the clot weight (g) is used in all of the present invention. A-flavor control #能.消丨Μ Two different methods were used to evaluate odour control performance·smell test and gas chromatography (GC). Olfactory test 20 A 30 g portion of the composite granules was placed in a 10 mL glass flask. The test solution was prepared by adding 800 ppm of tridecylamine (TMA) to synthetic urine. Add 2 mL of urine/TMA solution to each liter of sample. The sniffing test was performed at room temperature using the following scores at room temperature. 〇 = no malodor; 1 = slight malodor; 2 = malodor; 3 = strong malodor 32 200909484 Gas chromatographic analysis (GC) measured in some examples, using TMA, dimercapto disulfide (DMDS), formaldehyde , styrene monomer, and dimethyl phthalate (DMp) to measure the effectiveness of the granular composite to control malodor and volatile organic compounds (v〇c). 5 General procedure for preparing + bottles Vials were prepared by weighing 〇·1 g of granular composite granules into a vial of 22 mL headspace. The a-type granular composite was used in all of the GC tests. Next, a 2 mL vial was submerged into the headspace vial. After this, the lpL solution is typically added to a 2 mL vial. Next, cover the top 10 vials. This step avoids any liquid contact between the solution and the particulate composite particles. Any interaction can only be obtained from vaporized gases. The vial was left at room temperature for several hours prior to sampling. The analyte in the headspace is detected by GC by either mass spectrometry (MS) or flame ionization detection (FID). 15 The composition of the solution used with each compound is provided in Table 2. 33 200909484 Table 2: Details of each compound Compound Solution composition Trimethylamine (TMA) 2_1% TMA is soluble in water. The initial test used ι〇μ [solution and the second test used bL solution v dimethyl disulfide (DMDS) 250pg/mL DMDS in water containing 1% DMF formaldehyde. Initial test using 37% meth, 12% methanol In the water. The second set of experiments used 3.9% formaldehyde, 1% methanol dissolved in water styrene 〇 _ lmL volume 〇. 1% styrene dissolved in water containing 丨% DMF dimethyl phthalate (DMP) undiluted for each supply The conditions for the four compounds are provided below. Table 3: Instrumental conditions for TMA, formaldehyde and DMP LEAP/CTC CombiPal oven at room temperature (unheated, 22T) Injection temperature TMA and formaldehyde are 80 ° C, DMP is 50 ° C Injection volume TMA and furfural For 500 μΙ^, DMP is 2000 μί. Between the TMA solutions, rinse the headspace vial with a concentrated ammonia solution diluted to 1:4 with water at 50 °C. Gas chromatograph analyzer Agilent 6890 tube column formaldehyde and DM^: J&WSciDB-5 30mx0.25mm, Ιμιη film TMA 'Varian CP-7447 Volamine 30m x 0.32mm inlet 200°C, split, DMP 20:1 split, Formaldehyde 50:1 split, TMA 10:1 shunt column flow He, stable flow DMP and furfural: 1.0mL/min, TMA: 1.9mL/min oven DMP: 200°C, 10°C/min to 250° C Formaldehyde: 35°C, 5min, 10°C/min to 100°C TMA: 60°C, 4min maintenance, KTC/min to 110°C DMP and brewing: Mass Spec Agilent 5973 DMP: selected from Ion Monitoring with 163 And 194 m/z furfural: 20-50 scan m/z, quantify TMA FID 250 °C, 40.0 mL/min H2, 400 mL/min air, 45 mL/min N2 stable at 30 m/z selected Flow 34 200909484 Table 4: Instrument Conditioner for DMDS and Styrene PerkinElmer TurboMatrix 40 Oven Close (28-29T) Needle 80°C Transfer Line Restek 0.25mm Siltek ? 90°C Injection Time 0.07min Column Pressure 30psig Gas Phase Layer Analyzer Agilent 6890 Columns Restek Rtx-35 30m x 0.25mm, Ιμηι Film Oven DMDS : 40°C, l(TC/min200°C Styrene : 5(TC,l .Omin maintenance, 15 ° C / min to 20 (TC column pressure He, 20 psig, constant pressure inlet 200 ° C, split, set the GC ratio to 1.0 flame ionization detector (FID) 250 ° C, 40.0mL /min H2,400mL/min air, 40mL/min Stable N2 flow, range=〇Large capacity odor test Use a one gallon cylindrical plastic container (high 93⁄4", diameter 53Λ) as the 5 test equipment. Install a name accessory (3D dimensions: ring-outer diameter 1 1/8", inner diameter W; fittings - outer diameter 1 1/8,,, wire diameter ι/2", outer tube connection diameter 5/16"; inner diameter!/4&quot ;, 1% higher, line height 1/2") on the corresponding cover, the cover has a W hole cut in the cover. Tighten the accessory with your fingers. Next, a 4 long TYGONTM (trademark of Saint-Gobain Corporation) 10 pipe (outer diameter (0D): 3/8 inch, inner diameter (ID): 1/4 inch, and wall thickness 1/1611 inch) Attached to the outside part of the accessory. A plastic clip is placed in the center of the tube and tightened to close it. A 5 gram granular composite (or other material) was added to the vessel to homogenize the granules of the 2009 2009 484 complex at the bottom of the granulator. The vials were placed in large & and some servings and types of malodor were added to the vials. In the Pirates, the right 'not special · ^ 5 Ming' uses ammonia containing l2 〇 0PPm (based on the weight of the solution: 1200PPm TMA volume 600 liters of 〇 · 9% salt solution as a control group: odor solution. The container Immediately and with an aluminum fitting, the end of the TYGON tubing is located above the lid. The tube cutter is used to break the two tips of the appropriate Draeger short-term gas detector tube. The end is inserted into Tygon tubing so the flow indicator is pointing away from the test equipment. 10 After the appropriate time, the outer end of the gas detection tube is inserted into the hand pump and the cooling on the tubing is released. The hand pump is fully depressed (in At this point 'the number of counters above the pump is increased one by one and then released' and allows air to flow through the tube. Each cycle has a flow of one hundred cubic centimeters through the tube. When the indicator on the position pump becomes The white cycle ends when the white cycle ends. The material in the tube changes color to indicate the gas detection result. The gradient from the tube side is recorded in ppm. Ammonia tube (part number CH20507, range 5-70ppm, color Yellow change to blue) and TEA tube (test TMA; part number 67184〇1, range 5-6 mouth 0111, color change from yellow to blue) Measure the amount of ppm level. Manual pump pressure and display odor level Repeat four times 2 times or more, record after each cycle (hit), and cause a total of 500cm3 of air pump to pass through the gas detection tube. In-line transition test boat _ placed an aluminum fitting On the cap of a 1-gallon plastic container (large container), a hole is cut in the center of the lid of the container, and then the fitting is firmly tightened with fingers 36 200909484. Next, the 4" long TygonTM tubing (outer diameter (〇 d): 3/8吋' inner diameter (ID): 1/4 inch, and wall thickness l/l64) (trademark of Saint_G〇bain Corporation) is attached to the outer part of the fitting. Place a plastic clip The tube is centered and tightened inwardly to close it. The vial is placed in a large 5 container, and some portions and types of malodor are added to the vial. If not specified, use 1200 ppm ammonia (by solution weight) For the benchmark) or 1200Ppm TMA volume 6 〇〇 microliters 〇.9 The % salt solution is used as the control group malodorous solution. The container is immediately sealed with a lid of an aluminum fitting. The filter material is added to the in-line filter so that it is flush with the upper end of the metal ring. 10 Record the weight. The three-dimensional dimensions of the filter assembly are as follows: Outer fitting: 〇D = i 1/2"; Large 1〇 = i 1/4"; Small 1〇 = 3/4"; High = 5/8" Inner fitting: 〇 D = i 1/2"; line 〇 D = 丨 1/4 „ ; ID = %” ; height 5/8, 15

20 連、。件.〇D —略少於W ; D管=略少於及略多於ι/4"; 高=7/8" 金屬環:od = 7/8” ; ID = 3/4” ;高1/4,, 〇-環:OD=iy4,, ;id=13/16” 1¾ 屏· 〇D = 1 正個過慮益被組裳並且接下來被附接到位於蓋之上端 的外118材的末端。使用一管切割器破開適當的Draeger 的兩個尖端。該末端被插人至Tygon管材所 以流動指示難向__試設備。於適當的日相之後(一 般為3小時,若是+姓 将別述明)’該氣體檢測管的外側末端 37 200909484 被插入手動泵中,並且將位於管材上的夾鬆開。該手動泵 被完全壓下(於此時,位於栗的上端的計數器的數目一個一 個地增加)然後放開,並容許空氣流經該管。每一循環有一 百立方公分的空氣流經該管。當位於泵上端之指示器變成 5白色時循環結束。於管中的材料會改變顏色以指示氣體檢 測結果。記錄得自管側之梯度ppm位準。氨管(部件編號 CH20507,範圍5-70PPm,顏色由黃色變化為藍色)與TEA 管(檢測TMA;部件編號67184(Π,範圍5_6〇ppm,顏色由黃 色變化為藍色)量測ppm等級之數量。手動泵壓下與顯示惡 10臭程度重覆四次或是更多二欠,在每個㈣(擊)之後記錄,並 且造成總量500cm3之空氣泵經該氣體檢測管。 實例i :使用KITC腦AID™授拌器之粒狀複合體樣品之 擠塑 15 20 使用微細尺寸SAP材料(“微細型,,)與正常SAp依第 所示製備不同的乾造摻合㈣。DLp的量被保持於MW 並且微細顯正常SAP為25wt·%。轉合婦合物(參見 表)使用KitehenAid立式游器以”輔助物被擠塑。^ 慢速馬達’並緩緩加入200g(2倍於乾燥植份的重量)㈣ 子水錢拌ϋ當巾。藉由養水與乾㈣份形成凝聚纪 團和化生大小的材料。當完全混合時,將馬達關閉,^ 該濕材料藉由位於該勝器上的食物輾磨附屬物,使用 盤與一較大的孔(直徑約6_擠出。所得到的材料在 於105 C之下乾燥歷時丨小時。 a 38 200909484 第5表:使用KITCHENAID™型式擠塑機製備之粒狀複合體樣品20 consecutive,. Pieces. 〇D - slightly less than W; D tube = slightly less and slightly more than ι/4"; high = 7/8" metal ring: od = 7/8"; ID = 3/4"; /4,, 〇-ring: OD=iy4,, ;id=13/16” 13⁄4 screen · 〇D = 1 The positive care is grouped and then attached to the outer 118 of the top of the cover. End. Use a tube cutter to break open the two tips of the appropriate Draeger. The end is inserted into the Tygon tubing so the flow indicates difficulty to the __ test equipment. After the appropriate phase (usually 3 hours, if + surname It will be noted that the outer end 37 of the gas detection tube, 200909484, is inserted into the hand pump, and the clamp on the pipe is released. The hand pump is completely depressed (at this time, the counter at the upper end of the pump) The number is increased one by one and then released, and air is allowed to flow through the tube. One hundred cubic centimeters of air per cycle flows through the tube. The cycle ends when the indicator at the upper end of the pump becomes 5 white. The material will change color to indicate the gas detection result. Record the gradient ppm level from the tube side. Ammonia tube (part number CH20 507, range 5-70PPm, color changes from yellow to blue) and TEA tube (detection TMA; part number 67184 (Π, range 5_6〇ppm, color changes from yellow to blue) measures the number of ppm levels. Manual pump Pressing and displaying the level of odor 10 is repeated four times or more, owing after each (four) (hit), and causing a total of 500 cm3 of air pump to pass through the gas detection tube. Example i: Using KITC Brain AID Extrusion of the granular composite sample of the TM agitator 15 20 The fine-sized SAP material ("fine type") was prepared differently from the normal SAp according to the description (4). The amount of DLp was maintained at MW. And the fine SAP is 25wt·%. The blended compound (see table) uses the KitehenAid vertical swimmer to “extend the auxiliary. ^ Slow motor” and slowly add 200g (2 times the dry plant) (4) The sub-water money is mixed with the towel. The water is mixed with the dry (four) parts to form a condensate and metaplastic material. When fully mixed, the motor is turned off, ^ the wet material is located at the win The food on the honing appendage, using the disc with a larger hole (about 6 mm in diameter. The material was dried at 105 C for several hours. a 38 200909484 Table 5: Granular composite samples prepared using the KITCHENAIDTM type extruder

樣品 納系膨潤土 DLP 220 SAP 正常SAP 72.5g 2.5g 25g正常SAP 微細型SAP ---- 72.5g 2_5g 25g微細型SAP 使用正常S AP的混合物與含有微細型S AP之混合物相 較,比較分離且比較難以擠塑。使用SAP微細型之製作法 是均勻的且易於操作。得自KitchenAid擠塑設備之粒狀複合 體樣品的凝塊吸收試驗使用合成尿溶液進行,並且結果顯 示第第6表中。 第6表:粒狀複合體樣品的凝塊吸收試驗 樣品 凝塊重(g) 長度(mm) 寬度(mm) 深度(mm) 正常SAP 6.321 17 22 14 微細型SAP 5.656 20 25 16至5 顯示於第6表中的結果指出含有DLP之納系膨潤土黏 土複合體有可能具有極高的吸收功能。得自KitchenAid試驗 之結果組成物亦顯示該複合物小粒與合成尿溶液有良好的 凝塊形成性。 實例2 :使用妮卡低壓籃擠塑機之粒狀複合體的擠塑 製備兩個樣品’以乾燥摻合材料總重為基準,但使用 不同的Pergopak Μ份量(〇或5Wt·%)。Pergopak Μ在以水 (2.〇kg)濕化之前,添加至摻合材料(2.〇kg)中。在兩案例中, DLP均維持為2.5wt.%。 39 200909484 第7表:使用妮卡低壓籃擠塑機之粒狀複合體樣品(A型)的擠塑 樣品 納系膨潤土 DLP 220 SAP微細型 Pergopak M 〇wt.% Pergopak Μ 72.5wt.% 2.5wt.% 25 wt.% Owt·% 5wt·% Pergopak Μ 67.5wt.% 2.5wt.% 25 wt.% 5wt.% 實例3 :複合體小粒之離心保持能力(CRC)與負荷下吸收力 量測得自實例2的粒狀複合體樣品(A型)的吸收性。於 5 含有0.9%之鹽與去離子水的溶液當中實行CRC量測,並且 結果示於第8表中。該等貧料呈現重覆量測的平均質。aul 係使用〇.9%NaCl溶液量測。 第8表:複合體小粒的吸收性結果 樣品 CRC (g/g) 於H20中 CRC (g/g)於 0.9% NaCl 中 AUL (g/g)於 0.9% NaCl t Owt.% Pergopak M 84.3 8.9 5.8 5wt.% Pergopak M 68.3 7.7 6.1 1〇 雖然於複合體小粒中SAP的分量(亦即25wt%)很小,該 複合體小粒顯雜高的吸收性。於第8表中顯示鹽濃度於吸 收性上的效應,例如.水相對於鹽水。該複合體小粒似乎 不太文到壓力存在的負面影響。以5wt %存在的㈣喊 M,其係—不膨脹性材料,似乎降低了含Pergopak Μ樣品 15的吸收性(稀釋效應)。預期該純納系膨潤土於水中的自由膨 服約為7.5-8.0g/g。供用於純膨潤土之未控制的crc及aul 資料是可以取得的。然而’膨潤土於鹽水巾對應的CRC與 40 200909484 AUL數值被預期遠小於膨潤土於水中的自由膨脹能力。兩 種複合體小粒的吸收資料間接表明該於複合體小粒中的超 吸收性並未受到損害。 實例4 : PERGOPAKTM Μ之凝集吸收性測試與效應 5 於第9表中,顯示不含pergopak Μ與含Pergopak Μ之複 合體樣品(Α型)之的凝集吸收性與效應。數值係五個獨立試 驗的平均值,並且於括號中者為五個獨立試驗的標準差。 得自複合體小粒(A型)之凝塊如第9表中指出的三維尺寸略 呈圓柱形。含有Pergopak Μ的樣品吸收快速的多,因為該 10 凝塊比較淺。含有Pergopak Μ的複合體小粒似乎比不含有 Pergopak Μ的樣品的小粒更為合用,因其顯示較低的凝塊 重量。 第9表:Pergopak Μ於凝集吸收性之效應 樣品 凝塊重量(g) 長(mm) 寬(mm) 深(mm) 0 wt.% Pergopak Μ 7.533 (0.266) 32.8(1.3) 26.4 P.9) 21.0(1.4) 5 wt.% Pergopak M 6.107 (0.086) 27.2 (3.0) 22.6 (2.8) 25.2 (3.0) 15 實例5 : Pergopak Μ於吸收速度之效應Sample Naphthene Bentonite DLP 220 SAP Normal SAP 72.5g 2.5g 25g Normal SAP Micro-SAP ---- 72.5g 2_5g 25g Fine SAP Compared with a mixture containing fine S AP, the mixture of normal S AP is separated and More difficult to squeeze. The use of SAP microfabrication is uniform and easy to operate. The clot absorption test of the granular composite sample from the Kitchen Aid extrusion apparatus was carried out using a synthetic urine solution, and the results are shown in Table 6. Table 6: Clot absorption test of granular composite sample Clot weight (g) Length (mm) Width (mm) Depth (mm) Normal SAP 6.321 17 22 14 Micro SAP 5.656 20 25 16 to 5 The results in Table 6 indicate that the nano-bentonite clay composite containing DLP is likely to have an extremely high absorption function. The resulting composition from the KitchenAid test also showed good clot formation of the composite granules with the synthetic urine solution. Example 2: Extrusion of a granular composite using a Nika low pressure basket extruder Two samples were prepared' based on the total weight of the dry blend, but using different amounts of Pergopak (〇 or 5 Wt·%). Pergopak® was added to the blend (2.〇kg) before being wetted with water (2.〇kg). In both cases, DLP was maintained at 2.5 wt.%. 39 200909484 Table 7: Extrusion sample of granular composite sample (type A) using Nica low pressure basket extruder Nano-bentonite DLP 220 SAP Fine Pergopak M 〇wt.% Pergopak Μ 72.5wt.% 2.5wt .% 25 wt.% Owt·% 5wt·% Pergopak Μ 67.5wt.% 2.5wt.% 25 wt.% 5wt.% Example 3: Centrifugal retention capacity (CRC) of composite granules and absorption force under load Absorbency of the granular composite sample (type A) of Example 2. CRC measurements were carried out in a solution containing 0.9% salt and deionized water, and the results are shown in Table 8. These poor materials exhibit an average quality of repeated measurements. Aul was measured using a 9%.9% NaCl solution. Table 8: Absorbance results of composite granules Sample CRC (g/g) CRC (g/g) in H20 in 0.9% NaCl AUL (g/g) at 0.9% NaCl t Owt.% Pergopak M 84.3 8.9 5.8 5wt.% Pergopak M 68.3 7.7 6.1 1〇 Although the fraction of SAP (ie, 25 wt%) in the composite granules is small, the composite granules exhibit high absorption. The effect of salt concentration on absorbency is shown in Table 8, for example, water versus saline. The composite granules do not appear to be too negative for the negative effects of stress. The presence of (4) at 5 wt%, M, which is a non-expandable material, appears to reduce the absorbency (dilution effect) of the sample containing Pergopak®. The free expansion of the pure nano bentonite in water is expected to be about 7.5-8.0 g/g. Uncontrolled clc and aul data for pure bentonite are available. However, the CRC and 40 200909484 AUL values for bentonite in salt water towels are expected to be much smaller than the free expansion capacity of bentonite in water. The absorption data of the two composite granules indirectly indicate that the superabsorbency in the granules of the composite is not impaired. Example 4: Agglutination Absorption Test and Effect of PERGOPAKTM 5 5 In Table 9, shows the agglutination absorbance and effect of a composite sample (Α type) containing no pergopak® and Pergopak®. The values are the average of five independent tests and the parentheses are the standard deviation of five independent tests. The clot obtained from the composite granules (type A) has a slightly cylindrical shape as indicated in Table 9. Samples containing Pergopak® absorb much more quickly because the 10 clots are shallower. Composite pellets containing Pergopak® appear to be more useful than pellets of samples that do not contain Pergopak® because they exhibit a lower clot weight. Table 9: Pergopak effect on agglutination absorption Sample clot weight (g) Length (mm) Width (mm) Depth (mm) 0 wt.% Pergopak Μ 7.533 (0.266) 32.8(1.3) 26.4 P.9) 21.0(1.4) 5 wt.% Pergopak M 6.107 (0.086) 27.2 (3.0) 22.6 (2.8) 25.2 (3.0) 15 Example 5: Effect of Pergopak on absorption rate

於第9表中的發現似乎指出因於表面上較佳的多孔性 產生快速的吸收。該發現亦指出對於不含Perg〇pak Μ的樣 品而言液體前緣的穿透性比得自實例2之含PergGpak _ 樣品(A型)來得長(參見第7表)。為了檢查此一效應,進行如 20下試驗。添加約70mL之複合體顆粒至二個8〇此之燒杯中至 深約80mm(—個有PergopakM,另—個沒有),並加入2mL 41 200909484 合,尿液至各個燒杯中。在—小時後,將凝塊移出,稱重 並量測。結果概述於第10表中。 第10表:PergopakM於吸收速度之效The findings in Table 9 seem to indicate a rapid absorption due to the preferred porosity on the surface. This finding also indicates that the permeability of the liquid leading edge is longer than that of the PergGpak®-containing sample (Type A) obtained from Example 2 for samples without Perg〇pak® (see Table 7). In order to check this effect, a test such as 20 was carried out. Approximately 70 mL of the composite granules were added to two 8 烧 beakers to a depth of about 80 mm (one with Pergopak M, the other without), and 2 mL of 41 200909484 was added and the urine was added to each beaker. After -hour, the clot was removed, weighed and measured. The results are summarized in Table 10. Table 10: Effect of PergopakM on absorption speed

5 以液體前緣(深)的穿透為基礎’比起含有Perg〇PakM的 樣品,液體前緣較為自由地穿透不含Perg〇pak M的顆粒樣 品。 實例6 : DLP之擠塑試驗與效應 於弟11表十所示试驗,DLP的量由〇變化至5wt·%。於 所有的例子中’以乾燥換合材料總重為基準,perg〇pak μ 維持於5wt·%。在第12表中’顯示不同的複合物小粒(a型) ’疑集試驗的結果。數值是五個獨立試驗的平均值。 第11表:以不同量DLP使用妮卡低壓力籃擠塑機擠塑試驗 樣品 納系膨潤土 DLP 220 SAP微細型 Pergopak M 捧合物0 70 wt.% 0 wt.% 25 wt.% 5 wt.% 摻合物2.5 67.5 wt.% 2.5 wt.% 25 wt.% 5 wt.% 捧合物5 65 wt.% 5.0 wt.% 25 wt.% 5 wt.% 42 15 200909484 第12表:以合成尿液加添加至複合體小粒中的凝集吸收測試 樣品 凝塊重量(g) 長(mm) 寬(mm) 深(mm) 摻合物0 8.564 35.4 28.2 23.0 摻合物2.5 7.370 29.0 25.0 24.2 摻合物5 6.441 28.4 25.0 23.6 Scoop Away 7.466 27.4 25.8 由17到5變化 第12表顯示之試驗中,Scoop Away™猫砂(Clorox Company)被用做控制組。於第12表中含有DLP之粒狀複合 5 體樣品,例如摻合物2.5與摻合物5於凝集吸收性方面勝過 Scoop Away樣品。Scoop Away貓砂凝塊係製成半球狀,中 央較深,邊緣上較淺薄》由於其等並非圓柱體,該等數值 同時於中央與邊緣量測。 實例7:不同份量之液體的效應 10 於另一試驗中,具有不同量之DLP的該等小粒樣品(如 第11表中所示)被添加以範圍為1至5mL的合成人工尿液以 進行凝集吸收性測試。結果概述於第13表中。 43 200909484 第13表:於不同份量之合成尿液下的凝集吸收性測試結果 ----" 樣品 添加合成尿液(mL) 凝塊重量(g) 摻合物〇 1 4.804 摻合物〇 2 9.273 摻合物〇 3 13.454 摻合物〇 5 22.308 摻合物2.5 1 3.937 摻合物2_5 2 7.534 摻合物2.5 3 11.121 摻合物2.5 5 18.988 摻合物5 1 3.346 摻合物5 2 6.681 摻合物5 3 10.244 摻合物5 5 16.728 第1圖中的趨勢在凝塊重量與添加合成尿液的量之間 顯現一個良好的相關(R方塊)。於第13表與第1圖當中的結 5 果顯示隨著DLP量增加,複合物小粒產生較少的凝塊重 量,因而,粒狀複合體具有較高的凝集吸收性。 實例8 :氣味控制效應 於第11表中所顯示之複合物的氣味控制效應以800 ppm之TMA濃度進行檢測(以合成尿液溶液的重量為基 10 準)。該氣味控制效應接下來與Scoop Away (“Fresh Scent, Maximum Odor Control”)進行比較,其為Clorox Company 之商用貓砂製品。 44 200909484 不同複合體樣品(A型)的氣味控制效應的結果概述於 苐14表。 第14表:於800ppm之TMA數量下氣味控制複合物小粒(A裂) 的結果 樣品 時間0 1小時 3小時 5小時 7小時] 16小時 2曰 7曰 換合物0 2 0 0 0 0 0 0 0 摻合物2.5 2 0 0 0 0 0 0 0 摻合物5 2 0 0 0 0 0 0 0 Scoop Away 2 2 1.5 1.5 1.5 1.5 1.5 1.5 5 整體的結果指出本發明之粒狀複合體於不同應用領域 的惡臭控制潛力,包括使用於空氣照護,例如,於空氣過 濾領域。於貓砂應用中,氣味控制是重要的,本發明之粒 狀複合體顯現了超過Scoop Away的氣味控制效應。 10實例9 :使用妮卡低壓力籃擠塑機的試驗與多孔性聚合物吸 附劑與Methocel™的效應 4. 多孔性聚合物吸附劑Dow Optipore™ V503 (以下稱 V503)’得自陶氏化學公司,而MethocelTMA4M以粉末形 式’分別以5wt.%及2.5wt.%的份量用於複合體小粒中,供 15用做為一特別的添加劑。該擠塑試驗顯示於第15表中。 45 200909484 第15表:使用妮卡低壓力籃擠塑機之複合體(A型)樣品之擠塑 樣品 添加劑 納系 膨潤土 DLP 220 CAP 微細型 Pergopak M 粒狀複合體 無 65 wt.% 5 wt.% 25 wt.% 5 wt·% 聚合物吸附劑 V503 5 wt.% V503a) 60 wt.% 5 wt.% 25 wt.% 5 wt.% Methocel A4M 2.5wt.% Methocel 4AMb) 62.5 wt.% 5 wt.% 25 wt.% 5 wt.% a) 以經輾磨<250微米之型式使用, b) 以所取得之粉末使用 5 含有聚合物吸附劑V503與Methocel之複合體樣品提供 比粒狀複合體樣品稍不粘黏的經擠塑股束。多孔性聚合物 吸附劑V503與Methocel之添加,顯示其於擠塑加工性能上 沒有變化。含有聚合物吸附劑與Methocel之樣品的凝塊重 量與粒狀複合體樣品係可相匹敵者。 10 實例10 :用於TMA之GC試驗 量測TMA與複合體樣品(A型粒狀複合體,參見第丨5表) 之交互作用的結果概述於以下之第16表。於括號中的數值 是相對於控制組(TMA小瓶)的百分TMA降低量。若是GC 試驗以每小瓶Ιμί之2_1〇/〇 TMA/水溶液的量在平衡時間隔 15夜完成’ ΤΜΑ結果顯示來自相同試驗於控制注射(ΤΜΑ存 在,無粒狀複合體)的平均峰面積為187876。在空白小瓶(沒 有ΤΜΑ,有吸附劑)中沒有檢測到ΤΜΑ,而所有的三個樣品 小瓶中(ΤΜΑ與複合體顆粒)與第15表中的添加物形式無 關。該GC試驗以增加的ΤΜΑ/水溶液份量重覆進行。做為 20最後的量測’該步驟是相同的,除了每小瓶中2.1% ΤΜΑ/ 46 200909484 水溶液的量由Ιμί增加至10μί。並且,該平衡時間以3至4 小時取代隔夜。 第16表:用於ΤΜΑ之GC試驗的結果 樣品 TMA峰面積 控制組(TM A小瓶) 2501768 (0百分) 粒狀複合體 27454 (98.9百分) 聚合物吸附劑V503 11435 (99.5百分) Methocel A4M NDa)(l〇〇 百分) a)無可測得者 5 第16表的結果顯示所有的粒狀複合體樣品在頂部空間 顯著地降低了 TMA濃度。例如,該溶液控制的頂部空間惡 臭TMA濃度藉由粒狀複合體之存在減少了 98至1〇〇百分。含 有Methocel A4M之樣品的效應似乎稍佳於含有聚合物吸附 10劑V503的粒狀袓合體樣品或是本發明之粒狀複合體樣品。 實例11 ·•用於DMDS之GC試驗 於DMDS於一複合體樣品(參見第15表)的交互作用的 研究中峰面積提供於第17表中。於括號中的數值是相對於 控制組(DMDS小瓶)之百分DMDS減少量。數值係得自重複 15 試驗的平均值。 47 200909484 第17表:用於DMDS之GC試驗結果 樣品 DMDS峰面積 控制組(DMDS小瓶) 3358 (0百分)a) 粒狀複合體 ---— 3450 (+2.7百分) 聚合物吸附劑V503 --- 227 (93.2百分) Methocel A4M 3393 (+1·0百分) a) —次量測 對於粒狀複合體與Methocel A4M樣品並沒有檢測到吸 5收性。然而,溶液控制組之頂部區域惡臭DMDS濃度明顯 地因為含有聚合物吸附劑V503的粒狀複合體而減少,例 如,減少93百分。 實例12:用於甲醛之GC試驗 於複合體(A型)之樣品(參見第15表)存在下的甲醛峰面 10 積於以下第18表中提供。該數值係由一次量測獲得。 第18表:用於曱醛之GC試驗之結果 樣品 峰面積 控制溶液(3.9%曱醛小瓶) 731339(0百分) 粒狀複合體/3.9%曱醛 NDa)(100 百分) 聚合物吸附劑V503Α/3.9%甲醛 275123 (62.4百分) Methocel Α4Μ/3.9% 甲醒· 303351 (58. 5百分) 控制溶液(37%曱醛小瓶) 5807503 (0百分) 粒狀複合體/37%曱醛 1742701 (70百分) 聚合物吸附劑V503A/37%曱醛 2582106 (55.5百分) Methocel A4M/37% 曱醒· 1983864 (65.8百分) a)無法測得 48 200909484 該資料顯示所有三種複合體樣品於頂部空間中減少了 甲醛濃度,與甲醛濃度無關。當使用3 9%曱醛溶液時,粒 狀複合體勝過其它含有Methocel A4M或是聚合物吸附劑 V503之複合體。當使用37%甲醛溶液時,粒狀複合體呈現 5稍優於其它含有Meth〇cel A4M或是聚合物吸附劑乂5〇3之 複合體。 實例13:用於笨乙烯單體之Gc試驗 苯乙烯單體與複合體樣品(參見第15表)的交互作用的 量測結果於以下概述於第B表中。該等結果由重覆試驗獲 10得。於括號中的數值為相對於控制組(苯乙烯單體)百分笨乙 稀減少量。 第19表:用於苯乙烯單體之〇(:試驗 樣品 苯乙烯峰面積 控制組(苯乙烯小瓶) 202101 (0百分)~~~^ 粒狀複合體 110811 (41.7 百分) 聚合物吸附劑V503 939 (99.5 百分) Methocel A4M 112399 (44.4百分) ------- 所有的組成物均進一步地於頂部空間減少苯乙烯單體 15的濃度。例如,該控制組溶液的頂部空間苯乙烯濃度因為 粒狀複合體之存在減少44至99.5百分。該聚合物吸附劑 V503複合體的效應顯著地增強了粒狀複合體或是厘^11〇(^1 Α4Μ樣品的表現。 實例14:用於DMP之GC試驗 49 200909484 DMP與複合體樣品(參見第15表)的交互作用的量測結 果於以下概述於第20表中。該等結果由重覆試驗獲得。於 括號中的數值為相對於控制組(DMP)百分DMP減少量。 第20表:用於鄰苯二甲酸二甲酯(DMP)之GC試驗 控制組(DMP小瓶) 2137042(0 百分)a) 粒狀複合體 847155 (60.4百分) 聚合物吸附劑V503 705346 (67.0百分) Methocel A4M 1067728 (50.0百分) 5 a)結果係得自三次重覆試驗 所有的複合體樣品都顯著地降低了頂部空間中DMP的 濃度。例如,控制組的頂部空間DMP濃度因為粒狀複合體 樣品的存在減少了 50至67百分。聚合物吸附劑V503與粒狀 10 複合體樣品的效應顯示一梢優於具有Methocel之複合體樣 品的表現。 實例15 :使用妮卡低壓力籃擠塑機的試驗與檸檬酸與玻璃 小珠的效應 粉末形式檸檬酸(CAS# 77-92-9, ACS reagent, Aldrich) 15 以25 wt.%之量被使用做為特別添加劑。取自波特工業 (Westlake, OH 44145)之玻璃小珠(CAS#: 65997-17-3, P0040; 尺寸:〇· 1 mm或是更細)分別以5 wt·%及10 wt·%之量被使用 做為複合體小粒之特別添加劑。該擠塑試驗顯示於第21表 中。 50 20 200909484 第21表:使用妮可低壓力籃擠塑機之複合體樣品之擠塑 樣品 添加物 納系 膨潤土 DLP 220 SAP 微細型 Pergopak M 5%玻璃 小珠 5wt.%玻璃小珠 P0040 65wt.% 5wt.% 25 wt.% Owt.% 10%玻璃 小珠 10wt.%玻璃小珠 P0040 60wt.% 5wt·% 25wt·% Owt.% 檸檬酸 25wt.%檸檬酸 65wt.°/〇 5wt.% Owt.% 5wt.% 該含有玻璃小珠的複合體提供正常的經擠塑股束,而 含有檸檬酸的複合體提供比粒狀複合體樣品稍黏的股束。 5 檸檬酸與玻璃小珠之添加於擠塑的加工性能上並沒有差 別。經乾燥的複合體材料被輾磨,而後在使用前以150-以 及1200-微米的篩網過篩(參見第22表)。 實例16 :大容器頂部空間氨濃度(ppm)氣體檢測試驗與擰檬 酸及玻璃小珠之效應 10 下述之第22表提供了於大容器頂部空間之氨於複合體 樣品(參見第21表)的交互作用研究中濃度檢測。於第22表中 的數值是每百萬份中之份數(ppm)。含有1200ppm氨的0.9% 鹽溶液(600微升)被用做控制組惡臭溶液。 51 200909484 第22表:大容器頂部空間氨濃度(ppm)氣體檢測試驗結果5 Based on the penetration of the liquid leading edge (deep)' The liquid leading edge penetrates freely through the pellet sample without Perg〇pak M compared to the sample containing Perg〇PakM. Example 6: Extrusion Test and Effect of DLP In the test shown in Table 11, the amount of DLP was varied from 〇 to 5 wt.%. In all the examples, perg〇pak μ was maintained at 5 wt.% based on the total weight of the dry-fit material. In the 12th table, 'the results of the different complex granules (type a)' suspect test were shown. Values are the average of five independent experiments. Table 11: Extrusion test sample Nana bentonite DLP 220 with different amounts of DLP using Nika low pressure basket extruder. SAP Fine Pergopak M Hand compound 0 70 wt.% 0 wt.% 25 wt.% 5 wt. % Blend 2.5 67.5 wt.% 2.5 wt.% 25 wt.% 5 wt.% Hand compound 5 65 wt.% 5.0 wt.% 25 wt.% 5 wt.% 42 15 200909484 Table 12: Synthesis Urine plus agglutination absorption test sample added to the composite granules Clot weight (g) Length (mm) Width (mm) Depth (mm) Blend 0 8.564 35.4 28.2 23.0 Blend 2.5 7.370 29.0 25.0 24.2 Blending Item 5 6.441 28.4 25.0 23.6 Scoop Away 7.466 27.4 25.8 Change from 17 to 5 In the test shown in Table 12, Scoop AwayTM Clorox Company was used as the control group. A granular composite 5 sample containing DLP in Table 12, such as Blend 2.5 and Blend 5, outperformed the Scoop Away sample in terms of agglutination absorbability. The Scoop Away cat litter is made in a hemispherical shape with a deeper center and a shallower edge. Because it is not a cylinder, these values are measured at both the center and the edge. Example 7: Effect of different amounts of liquid 10 In another test, the small sample with different amounts of DLP (as shown in Table 11) was added to a synthetic artificial urine ranging from 1 to 5 mL for Agglutination absorbency test. The results are summarized in Table 13. 43 200909484 Table 13: Agglutination Absorption Test Results in Synthetic Urine of Different Servings----" Sample Addition Synthetic Urine (mL) Clot Weight (g) Blend 〇1 4.804 Blend 〇 2 9.273 Blend 〇3 13.454 Blend 〇5 22.308 Blend 2.5 1 3.937 Blend 2_5 2 7.534 Blend 2.5 3 11.121 Blend 2.5 5 18.988 Blend 5 1 3.346 Blend 5 2 6.681 Blend 5 3 10.244 Blend 5 5 16.728 The trend in Figure 1 shows a good correlation between the weight of the clot and the amount of synthetic urine added (R squares). The results in Table 13 and Figure 1 show that as the amount of DLP increases, the composite granules produce less clot weight and, therefore, the granulated complex has a higher agglutination absorbency. Example 8: Odour Control Effect The odor control effect of the complex shown in Table 11 was tested at a TMA concentration of 800 ppm based on the weight of the synthetic urine solution. This odour control effect is next compared to Scoop Away ("Fresh Scent, Maximum Odor Control"), which is a commercial cat litter product from Clorox Company. 44 200909484 The results of the odour control effects of different composite samples (type A) are summarized in Table 14. Table 14: Results of odour control complex granules (A crack) at 800 ppm TMA. Sample time 0 1 hour 3 hours 5 hours 7 hours] 16 hours 2 曰 7 曰 exchange compound 0 2 0 0 0 0 0 0 0 Blend 2.5 2 0 0 0 0 0 0 0 Blend 5 2 0 0 0 0 0 0 0 Scoop Away 2 2 1.5 1.5 1.5 1.5 1.5 1.5 5 Overall results indicate that the granular composite of the present invention is used in different applications The stench control potential of the field, including use in air care, for example, in the field of air filtration. Odour control is important in cat litter applications, and the granular composite of the present invention exhibits an odor control effect that exceeds Scoop Away. 10 Example 9: Test using a Nika low pressure basket extruder with the effect of a porous polymer adsorbent and MethocelTM 4. Porous polymer adsorbent Dow OptiporeTM V503 (hereinafter V503) was obtained from Dow Chemical The company, while MethocelTM A4M is used in powder form '5wt.% and 2.5wt.%, respectively, in the composite granules for 15 as a special additive. The extrusion test is shown in Table 15. 45 200909484 Table 15: Extrusion sample additive using the Nika low pressure basket extruder (Type A) sample Additive Bentonite DLP 220 CAP Micro-Pergopak M Granular composite without 65 wt.% 5 wt. % 25 wt.% 5 wt·% Polymer adsorbent V503 5 wt.% V503a) 60 wt.% 5 wt.% 25 wt.% 5 wt.% Methocel A4M 2.5wt.% Methocel 4AMb) 62.5 wt.% 5 Wt.% 25 wt.% 5 wt.% a) used in honed <250 micron format, b) used in powder obtained 5 composite sample containing polymer adsorbent V503 and Methocel provides granularity The composite sample is a slightly non-stick extruded strand. The addition of the porous polymer adsorbent V503 and Methocel showed no change in extrusion processing properties. The clot weight of the sample containing the polymer adsorbent and Methocel is comparable to that of the granular composite sample system. 10 Example 10: GC test for TMA The results of the interaction between the TMA and the composite sample (Type A granular composite, see Table 5) are summarized in Table 16 below. The values in parentheses are the percent TMA reduction relative to the control group (TMA vial). In the case of the GC test, the amount of 2_1〇/〇TMA/water solution per vial of Ιμί is completed at intervals of 15 nights at equilibrium} The results show that the average peak area from the same test to control injection (ΤΜΑ exists, no granular composite) is 187876 . No defects were detected in the blank vials (no sputum, sorbent), and all three sample vials (ΤΜΑ and composite granules) were not related to the form of the additive in Table 15. The GC test was repeated with an increased amount of hydrazine/water solution. As the last measurement of 20' this step is the same except that the amount of 2.1% ΤΜΑ/46 200909484 aqueous solution per vial is increased from Ιμί to 10μί. Also, the balance time is replaced by 3 to 4 hours overnight. Table 16: Results of GC test for sputum Sample TMA Peak Area Control Group (TM A vial) 2501768 (0%) Granular Complex 27454 (98.9 Percent) Polymer Adsorbent V503 11435 (99.5 Percent) Methocel A4M NDa) (1%) A) No measurable 5 The results of Table 16 show that all of the granular composite samples significantly reduced the TMA concentration in the headspace. For example, the solution controlled headspace malodor TMA concentration is reduced by 98 to 1% by the presence of the granular composite. The effect of the sample containing Methocel A4M appeared to be slightly better than the granular chelating sample containing the polymer adsorbing 10 doses of V503 or the granular composite sample of the present invention. Example 11 • GC test for DMDS The peak area is provided in Table 17 for the study of the interaction of DMDS in a composite sample (see Table 15). The values in parentheses are the percent reduction in DMDS relative to the control group (DMDS vials). The values are derived from the average of the repeated 15 tests. 47 200909484 Table 17: GC test results for DMDS Sample DMDS peak area control group (DMDS vial) 3358 (0%) a) Granular composite---- 3450 (+2.7%) Polymer adsorbent V503 --- 227 (93.2 percent) Methocel A4M 3393 (+1·0 percent) a) The second measurement did not detect the absorption of the granular composite and the Methocel A4M sample. However, the malodorous DMDS concentration in the top region of the solution control group was significantly reduced by the granular composite containing the polymeric adsorbent V503, for example, by 93%. Example 12: GC test for formaldehyde The formaldehyde peak in the presence of a sample of the composite (type A) (see Table 15) 10 is provided in Table 18 below. This value is obtained by one measurement. Table 18: Results of GC test for furfural Sample peak area control solution (3.9% furfural vial) 731339 (0%) Granular composite / 3.9% furfural NDA) (100%) Polymer adsorption Agent V503Α/3.9% Formaldehyde 275123 (62.4%) Methocel Α4Μ/3.9% Awakening · 303351 (58. 5 percentage) Control solution (37% furfural vial) 5807503 (0%) Granular complex / 37% Furfural 1742701 (70%) Polymer adsorbent V503A/37% furfural 2582106 (55.55%) Methocel A4M/37% Awake 1983864 (65.88%) a) Undetectable 48 200909484 This data shows all three The composite sample reduced the formaldehyde concentration in the headspace, independent of the formaldehyde concentration. When a 3 9% furfural solution is used, the granular composite outperforms other complexes containing Methocel A4M or polymeric adsorbent V503. When a 37% formaldehyde solution is used, the granular composite exhibits a slightly better composite than other compositions containing Meth〇cel A4M or a polymeric adsorbent 乂5〇3. Example 13: Gc test for stupid ethylene monomer The results of the interaction of styrene monomer with a composite sample (see Table 15) are summarized below in Table B. These results were obtained from repeated tests. The values in parentheses are the stupid reductions relative to the control group (styrene monomer). Table 19: 〇 for styrene monomer (: test sample styrene peak area control group (styrene vial) 202101 (0%) ~~~^ granular composite 110811 (41.7 percent) polymer adsorption Agent V503 939 (99.5 percent) Methocel A4M 112399 (44.4%) ------- All compositions further reduce the concentration of styrene monomer 15 in the headspace. For example, the top of the control group solution The spatial styrene concentration was reduced by 44 to 99.5 percent due to the presence of the particulate composite. The effect of the polymer adsorbent V503 complex significantly enhanced the performance of the granular composite or the 厘1〇(^1Α4Μ sample). Example 14: GC test for DMP 49 200909484 The results of the interaction of DMP with complex samples (see Table 15) are summarized below in Table 20. These results were obtained by repeated experiments. The value is the DMP reduction relative to the control group (DMP). Table 20: GC test control group (DMP vial) for dimethyl phthalate (DMP) 2137042 (0%) a) Shape composite 847155 (60.4%) polymer adsorbent V503 705346 (67. 0%) Methocel A4M 1067728 (50.0%) 5 a) Results from three repeated tests All composite samples significantly reduced the concentration of DMP in the headspace. For example, the headspace DMP concentration of the control group is reduced by 50 to 67 percent due to the presence of the particulate composite sample. The effect of the polymer adsorbent V503 and the granular 10 composite sample showed a better performance than the composite sample with Methocel. Example 15: Test using Nika low pressure basket extruder with effect of citric acid and glass beads Powder form citric acid (CAS # 77-92-9, ACS reagent, Aldrich) 15 was 25 wt.% Used as a special additive. Glass beads (CAS#: 65997-17-3, P0040; size: 〇·1 mm or finer) from Porter Industries (Westlake, OH 44145) at 5 wt·% and 10 wt·%, respectively The amount is used as a special additive for the composite granules. The extrusion test is shown in Table 21. 50 20 200909484 Table 21: Extrusion sample of the composite sample using Nicole low pressure basket extruder Additive bentonite DLP 220 SAP Fine Pergopak M 5% glass beads 5wt.% glass beads P0040 65wt.% 5wt.% 25 wt.% Owt.% 10% glass beads 10wt.% glass beads P0040 60wt.% 5wt·% 25wt·% Owt.% Citric acid 25wt.% citric acid 65wt.°/〇5wt.% Owt .% 5wt.% The composite containing glass beads provides a normal extruded strand, while the citric acid-containing composite provides a strand that is slightly more viscous than the granular composite sample. 5 There is no difference in the processing properties of citric acid and glass beads added to the extrusion. The dried composite material is honed and then sieved through a 150- and 1200-micron screen prior to use (see Table 22). Example 16: Ammonia Concentration (ppm) gas detection test for large containers at the headspace and the effect of citric acid and glass beads 10 Table 22 below provides ammonia to composite samples in the headspace of large vessels (see Table 21). ) Interaction studies in concentration testing. The values in Table 22 are the parts per million (ppm). A 0.9% salt solution (600 microliters) containing 1200 ppm ammonia was used as the control group malodorous solution. 51 200909484 Table 22: Results of gas detection test for ammonia concentration (ppm) in the headspace of large vessels

數據顯示控制惡臭溶液於頂部空間中 加氨濃度,而鱼時門卜 «加的數繫增 ”守間不相關m農度在約3至6小時之後 52 5 200909484 到達峰值。該控制組惡臭溶液數據也顯示在頂部空間中氨 濃度會稍微自然減少,這似乎是因為該氨氣體分子為大容 器的壁所吸收。這在隔夜的情況下可見,通常於一 16小時 的時間區段。所有粒狀複合體樣品減少於頂部空間氨濃 5度’無關乎時間。隨著時間的增加,發現高效能的惡臭控 制劑。兩種含玻璃小珠的粒狀複合體呈現稍優於粒狀複合 體的效能。10%玻璃小珠複合體的效能似乎強化了其表 現’而勝過粒狀複合體與5%玻璃小珠複合體。含擰檬酸的 粒狀複合體顯著地降低更多於頂部空間中的氨濃度。含檸 10 檬酸的粒狀複合體的效能似乎勝過粒狀複合體或是含玻璃 小珠之粒狀複合體的表現。 實例17:使用富士商社高壓擠塑機之試驗與氫氧化鉀之效應 細微碎片形式之氫氧化鉀碎片(CAS# 1310-58-3,專業 級,JT Baker)以10wt·%之數量被用作複合體小粒之特殊添 15加物。該濕化材料使用富士商社高壓擠塑機(型式:EXD-60, 富士商社,大阪,曰本)。該擠塑試驗表示於第23表中。 第23表:使用富士商社高壓擠塑機之複合物樣品之擠塑 樣品 添加物 納系 膨潤土 DLP 220 cap 微細型 Pergopak M KOH 有SAP 10wt%KOH 微細碎片 60wt.% 5wt.% 25wt.% Owt.% KOH 沒有SAP 10wt.%KOH 微細碎片 80wt.% 5wt.% Owt.% 5wt.% 含氫氧化鉀之樣品提供一正常的擠塑股束。擠塑時間 20相當快速,約5分鐘,並且該擠塑製品被正常地乾燥。添加 53 200909484 氫氧化钾顯示不會改變擠塑的加工性能。該乾燥的複合體 材料經輾磨並於使用前以150-以及1200-微米之篩網過篩 (參見第24表)。 實例18 :大容器頂部空間氨濃度(ppm)氣體檢測試驗與氫氧 5 化鉀及擰檬酸之效能 測試不同的粒狀複合體樣品,包括氨惡臭溶液,粒狀 複合體,含有氫氧化鉀之粒狀複合體樣品(有或是沒有 SAP),以及含檸檬酸粒狀複合體樣品(參見第21表),於不 同時間,例如:由1至16小時(隔夜)的氨惡臭效能。含有 10 1200ppm之氨的0.9%鹽溶液(600微升)被用做控制組惡臭溶 液。該結果顯示於第24表。 54 200909484 第24表:大容器頂部空間氨濃度(ppm)氣體檢測試驗結果 樣品 時間 100cm3 空氣 200cm3 空氣 300cm3 空氣 400cm3 空氣 500cm3 空氣 控制組惡臭 溶液 1小時 6 12 17 21 24 3小時 11 21 30 37 44 6小時 11 22 32 39 45 隔夜 7 14 21 26 31 粒狀複合體 1小時 1.5 2.5 3.5 4.5 5 3小時 1 2 3 4 5 6小時 0.5 1 1.5 2 2.5 隔夜 0 0.5 1 1.5 2 KOH粒狀複^ 合體有SAP% 1小時 4 7 11 15 19 3小時 10 19 27 33 40 6小時 11 21 27 33 39 隔夜 7 14 20 25 30 ΚΌΗ粒狀| 合體無SAP% 1小時 3 7 10 13 15 3小時 7 14 20 25 30 6小時 7 14 20 27 33 隔夜 5 10 14 19 23 #檬酸粒狀 複合體a),b) 1小時 0.5 1 1.5 2.5 3 3小時 0 0 0.5 0.5 1 6小時 0 0 0 0 0.5 隔夜 0 0 0 0 0 a) 顆粒粒級介於150微米與1200微米之間。 b) 取自第21表之樣品。獨立量測。 於第24表中的數據顯示該控制組惡臭溶液於頂部空間 中以增加的擊數增加氨濃度,而與時間不相關聯。氨濃度 55 200909484 在約3至6小時之後到達峰值。該控制惡臭溶液數據也顯示 在頂部空間中氨濃度會稍微自然減少,這是因為該氨氣體 分子為大容器的壁所吸收。這在隔夜的情況下可見,通常 於一16小時的時間區段。再者,隨著時間增加,較高的惡 5 臭控制效能被發現。 含有檸檬酸的粒狀複合體進一步顯著地減少於頂部空 間中氨的濃度。該含有檸檬酸的粒狀複合體的效能似乎勝 過粒狀複合體,其與第22表中所示的結果相符。含氫氧化 鉀的粒狀複合體,與SAP存在與否無關,呈現比粒狀複合 10 體及含檸檬酸的粒狀複合體差的基本惡臭(例如於測試中 使用的氨)效應。 實例19 :使用柑橘精油表面塗覆之粒狀複合體於氣味控制 之效能 使用掛橘精油(CAS#:8008-57-9,冷壓,California, Aldrich)以2 wt % (以粒狀複合體之乾燥重量為基礎)之量為 特別添加物。該具有介於150微米及1200微米顆粒粒級之乾 、燥极狀複合體材料(1〇〇克)被放入5〇〇mLPE瓶中,添加數滴 松橘精油至其表面上,並且蓋上該瓶手搖3至5分鐘。該步 驟被重覆至用完所有的柑橘精油。該塗覆步驟造成一自由 L助’不凝結的小粒,並於此後被稱為芳香粒狀複合體。 實例20 :大容器頂部空間氨濃度(ppm)氣體檢測試驗與柑橘 精油香料之效能 以兩個不同的時間測試該經柑橘精油處理之芳香粒狀 複&體’例如:1小時與3小時。含有1200ppm氨的0.9%鹽 56 200909484 溶液(600微升)被用做控制組惡臭溶液。結果顯示於第25表 中,並且與由得自粒狀複合體於相同條件下實行者相比較。 第25表:大容器頂部空間氨濃度(ppm)氣體檢測試驗與柑橘 精油香料之效能 樣品 時間 100cm3 空氣 200cm3 空氣 300cm3 空氣 400cm3 空氣 500cm3 空氣 控制惡臭 溶液 1小時 7 13 19 25 30 3小時 7 13 19 25 30 芳香粒狀 複合體a) 1小時 1.5 3 4.5 5.5 7 3小時 0 0.5 0.5 1 1 5 a)顆粒粒級介於150微米與1200微米之間。 數據顯示該控制惡臭溶液於該頂部空間中以增加的擊 數增加氨濃度。該控制組惡臭溶液在3小時之後檢測到較預 期稍低的氨濃度。然而,該芳香粒狀複合體樣品降低了於 10頂部空間中的氨濃度,無關乎時間。此外,隨著時間增加, 發現更高的惡臭控制效能。 實例21 :大容器頂部空間TMA濃度(ppm)氣體檢測試驗 與柑橘精油香料之效能 以兩個不同的時間,例如:1小時與3小時,測試經柑 15 橘精油處理之芳香粒狀複合體的TMA效能。結果顯示於第 26表中’並且與由得自粒狀複合體於相同條件下實行者相 比較。含有1200ppm之TMA的0.9%鹽溶液(6〇〇微升)被用做 控制組惡臭溶液。 57 200909484 第26表:大容器頂部空間TMA濃度(ppm)氣體檢測試驗 樣品 時間 100cm3 空氣 200cm3 空氣 300cm3 空氣 400cm3 空氣 500cm3 空氣 控制惡臭 溶液 1小時 7 13 20 η 33 3小時 13 26 38 47 56 芳香粒狀 複合體a) 1小時 2 4 6 8 10 3小時 2 4 5.5 7 8 a)顆粒粒級介於150微米與1200微米之間。 數據顯示該控制組惡臭溶液於該頂部空間中增加TM A 5 濃度,無關乎時間。該控制組惡臭溶液在3小時之後增加至 較高的濃度。該芳香粒狀複合體樣品降低了於頂部空間中 的TMA濃度,無關乎時間。隨著時間增加,發現芳香粒狀 複合體更南的惡臭控制效能。 實例22 :芳香氣味控制顆粒以及與貓砂之比較 1〇 複合體樣品與芳香複合體樣品的氣味控制效能於 1200ppm(以合成尿液溶液的重量為基準)的TMA濃度下進 行檢測。該氣味控制效能接下來與Scoop Away™ (“Fresh Scent, Maximum Odor Control”)比較,其係Clorox Company 之商用貓砂產品,且其結果顯示於第27表。 58 200909484 第27表:粒狀複合體及芳香粒狀複合體於i2〇〇ppm之ΤΜΑ _ 程度的結果 處理 時間0 15分鐘 1小時 3小時 5小時 7小時 16小時 Scoop Away3) 3 2 2 1.5 1.5 1.5 1.5 粒狀複合體b) 2 1.5 0.5 0.5 0.5 0.5 0 芳香粒狀複合體^ — 2 1.5 ---- 0 0 0 0 0 a) 依取得形式使用。 b) 顆粒粒級介於150微米與1200微米之間。 於第27表中所示結果指出該芳香粒狀複合體與惡臭控 制顯示一協同效應。該結果亦指出於不同的空氣照護應用 領域,例如空氣清新劑,於此釋放香氣是有必要的,有潛 力的惡臭控制劑。就貓砂之應用,本發明之粒狀複合體與 10芳香粒狀複合體均顯示顯著地勝過Scoop Away之氣味控制 效能。 實例23 :大容器頂部空間氨濃度(ppm)氣體檢測試驗與小蘇 打之效能 於複合體樣品與ARM&HAMMER™小蘇打,其係 15 Church&Dwight Co_的商業除臭產品之交互作用的研究 中’大容器頂部空間測得之氨遭度示於第28表中。於第28 表中的數值為每百萬份中的份數(ppm)。使用含有1200ppm 氨的0·9%鹽溶液(600微升)做為控制組惡臭溶液。 59 200909484 第28表:大容器頂部空間氨濃度(ppm)氣體檢測試驗之結果 樣品 時間 100cm3 空氣 200cm3 空氣 300cm3 空氣 400cm3 空氣 500cm3 空氣 控制組氣味溶液 3小時 5 10 12 15 20 3曰 3 5 6 6 8 小蘇打a) 3小時 5 10 15 18 21 3 a 3 5 6 7 8 粒狀複合體b) 3小時 0 0 0.5 1 2 3曰 0 0 0 0 0 a) 依取得形式使用。 b) 顆粒尺寸部分介於150微米與I200微米之間。 於第28表中的數據顯示控制組惡臭溶液以增加的擊數 5 增加頂部空間中的氨濃度’無關乎時間。超過三日之時間 的控制組惡臭溶液數據似顯示於頂部空間中氨濃度強烈地 自然減少,此係由於在大容器之壁上的氨氣體分子被吸 收。該微細的小蘇打粉末樣品並沒有降低於頂部空間中的 氨濃度,無關乎時間。於頂部空間中的氨濃度被發現幾乎 1〇 於惡臭組控制溶液完全相同。該粒狀複合體樣品減少了於 頂部空間中的氨濃度,無關乎時間。再者,隨時間增加, 展現惡臭控制的更高效能。 實例24 :使用妮可低壓力籃擠塑機的試驗與活性碳PAC200 之效用 15 以粉末形式,於20 wt·%.之數量使用活性碳PAC200 (CAS#: 7440-44-0; Norit Americas Inc., Τχ 75670, USA)作 為複合體小粒的特殊添加物。該活性碳粉末依取得形式使 用。該擠塑試驗顯示於第29表中。 60 200909484 第29表:使用妮可低壓力籃擠塑機複合體樣品擠塑 樣品 添加物 納系 膨潤土 DLP 220 SAP 微細型 Pergopak Μ 20% PAC200 20wt·%活性碳 PAC 200 45wt.% 5wt.% 25wt.% 5wt.% 該含活性碳複合體樣品提供正常的擠塑股束。添加擰 檬酸與玻璃小珠不會改變擠塑加工性能。該經乾燥的複合 5體材料經輾磨並於使用前使用150-與1200-微米之篩網過筛 (參見第30表)。 實例25 :大容器頂部空間氨濃度(ppm)氣體檢測試驗與活性 碳之效能 以1200ppm的氨濃度,於範圍為1小時至5天之不同的 10時間,檢測含有活性碳之複合體樣品之氣味控制效能。該 氣味控制效能與純活性碳粉末PAC200比較,並且其結果顯 示於第30表中。該處之數據呈現重覆試驗之平均值。具有 1200ppm氨濃度之3.6就的0.9%鹽濃液被使用作控制組惡 臭溶液。 15 61 200909484 第30表:大容器頂部空間氨濃度(ppm)氣體試驗結果 樣品 時間 100cm3 空氣 200cm3 空氣 300cm3 空氣 400cm3 空氣 500cm3 空氣 控制組惡臭 溶液 1小時 11 21 28 37 47 3小時 25 46 65 >70 a) >70 a) 3曰 14 28 42 54 65 5曰 9 18 23 28 34 粒狀複合體b) 1小時 2 4 5 6 7 3小時 4 6 8 10 11 3曰 0 0 0 0 0 5曰 0 0 0 0 0 純活性_ PAC200cJ 1小時 1 2 3 4 4 3小時 2 4 6 7 8 3曰 5 8 13 16 20 5曰 3 4 5 6 7 20%PAC200 粒狀複合體b) 1小時 2 4 5 6 7 3小時 3 4 5 6 6 3曰 0 0 1 1 2 5曰 0 0 1 2 2 a) 稍微超過Draeger管範圍Oppm至70ppm。 b) 顆粒粒級介於150微米與1200微米之間。 c) 依所取得形成使用。極微細粉末,小於45微米(min. 50%),小於75 5 微米(88%)並且小於150微米(96%);碘值(mg/g) = 900分鐘。 該等數據指出該控制組惡臭溶液以增加的擊數於頂部 空間中增加氨濃度,無關乎時間。氨氣體濃度顯示於3小時 至3天的時間之後的高氨濃度。並且該控制組惡臭溶液數據 10 於一延長的時間區段(例如5日)似乎顯示了氨濃度實質上自 62 200909484 然減少,因位於大容器壁上之氨氣體分子之吸收的緣故。 該粒狀複合體樣品減少了於頂部空間中的氨濃度。隨著時 間的增加’發現較高的惡臭控制效能,並且於例如3日及5 曰的時間沒有氨被檢測到。 5 純活性碳PAC200樣本於開始的數小時内,例如丨及3小 時,顯著地減少於頂部空間的氨濃度。純活性碳粉末樣品 PAC 200的效能,在達3小時前基於其相較於粒狀複合體較 高的表面面積’似乎稍稍勝過粒狀複合體的表現。然而, 純活性碳粉末樣品PA C 200的效能似乎隨著時間降低,並且 10在3日或之後效能變得比粒狀複合體差。引人興趣的是在3 曰時辰度強烈的增加’其接下來於5日時稍許變少,部份 原因可能在於自然消減效應,但是仍然是比粒狀複合體來 得高。更引人興趣的是該含活性碳複合體樣品(以粒狀複合 體樣品之乾燥重量為基礎,20wt%之活性碳)之氣味控制效 15 能於開始數小時介於兩種樣品之間(純活性碳粉末PAC200 及粒狀複合體)。該20% PAC 200粒狀複合體樣品似乎不如 粒狀複合體般有效,但是其似乎於3日或之後勝過該純活性 碳粉末PAC樣品。 實例26 :各種活性碳粒狀複合體樣品之管線内過慮測試 20 以12〇〇Ppm之氨濃度,藉由管線内過濾測試,檢驗不 同形式之活性破樣品及彿石樣品(Abscents 3000,得自 UOP Company,顆粒直徑約為3微米;CAS#: 76774-74-8) 該測試活性碳樣品包括純活性碳粉末PAC200, Norit RBAA1經擠塑丸粒與Norit RO 〇·8經擠塑丸粒。份量為 63 200909484 5.4mL之含有1200ppm氨濃度之0.9%鹽溶液被用做控制組 惡臭溶液。測試時間保持在3小時。結果顯示於第31表中。 使用於管線内過濾試驗的各個材料之重量亦顯示於第31表 中。 5 第31表:氨濃度(ppm)之管線内過濾試驗結果 樣品 100cm3 空氣 200cm3 空氣 300cm3 空氣 400cm3 空氣 500cm3 空氣 控制組惡臭溶液 10 21 32 43 54 檸檬酸粒狀複合體a) (0.796 克) 1.5 3 4.5 6 7 檸檬酸粒狀複合體 微細型R (0.591 克) 0 0 0 0 0 純活性碳PAC200c) (0.278 克) 4 8 12 16 21 Norit RBAA1 d) (0.531 克) 5 11 18 25 32 Norit RO 0.8 e) (0_306 克) 9 19 28 38 48 Abscents 3000 ^ (0.355 克) 0 0 1 3 5 a) 顆粒粒級介於150微米及1200微米。 b) <150微米 c) 極微細粉末,少於45微米(min. 50%),少於75微米(88%)以及少於150微米 (96%);蛾值(mg/g) = 900 min。 10 d)經擠塑丸粒;表觀密度=〇.53g/cm3 e) 經擠塑丸粒;表觀密度=〇.4〇g/cm3;BET= 1300m2/g f) 顆粒直徑為約3微米之極微細粉末 在通過管線内過濾之後,不同的活性碳樣品顯示了相 15對高的氨濃度,無關乎活性碳的形式。在同樣使用相對粗 顆粒尺寸,例如介於15〇微乎及1200微粒之間時,純沸石 Abscents 3000的效用似可匹配或是稍稍勝過含檸檬酸粒狀 64 200909484 複合體。然而,微細尺寸的含檸檬酸粒狀複合體的效能似 乎更有效,以致於沒有檢測到任何的氨。 貫例27 .各種含有預渡器活性碳的管線内過濾測驗 以1200ppm之氨濃度,藉由管線内過濾測試,檢驗供 5用做空氣清淨劑之含活性碳濾器之氣味控制效能。該測試 樣品包含Hamilton Beach TmeAir Air Cleaner pre-filter。含 活性奴預遽器被切成5/8"的圓形並放入管線内過遽。份量為 600微升之含有1200ppm氨濃度之〇.9〇/。鹽溶液被用做控制 組惡臭溶液。測試時間保持在3小時。結果顯示於第32表中。 10第32表:於頂部空間中氨濃度(ppm)管線内過濾頂部空間氣 體檢測試驗結果 樣品 100cm3 空氣 200cm3 空氣 300cm3 空氣 400cm3 空氣 500cm3 空氣 控制組惡臭溶液 6 11 15 20 24 粒狀複合體Finesa) (〇.466grams) 0 0 0 0 0 Hmnilton Beach TrueAir Air Cleaner Pre-filter b) 5 10 14 19 22 a) <150微米 b) 内含活性碳空氣清淨劑取代預濾器,自L〇wes零售市場購得 5亥内含活性碳預渡器,Hamilton Beach True Air Pre-filter ’當於管線内過濾中使用做為過濾媒材時顯示了相 對高的氨濃度。粒狀複合體微細型(顆粒尺寸小於150微米) 之效能顯示於第32表中。該微細尺寸粒狀複合體看來可為 一有效之過濾媒材, 可瞭解本發明並不限於在此特定地示例的實施例。本 65 200909484 發明的不同改良對熟悉相關技藝的人士而言非常顯明易 懂。進行如此之改變與改良並不會逸脫如隨附之申請專利 範圍。 此外,各個被提及之範圍包括了範圍的組合與次組 5 合,以及其中所含括的特定數字。此外,於本項文件中所 引述或提及之各專利、專利申請案,以及專利公開案於此 以其整體被併入以為參考。 【圖式簡單說明3 第1圖為不同程度可再分散性乳膠粉末(陶氏乳膠粉 10 末,DLP)與合成尿液份量於凝塊重量上的效應的圖。 【主要元件符號說明】 (無) 66The data showed that the malodorous solution was added to the ammonia concentration in the headspace, while the fish time threshold was increased. The m-degree of agriculture was about 3 to 6 hours after the arrival of 52 5 200909484. The control group malodorous solution The data also shows that the ammonia concentration in the headspace will decrease slightly, which seems to be because the ammonia gas molecules are absorbed by the walls of the large vessel. This is visible overnight, usually in a 16 hour time zone. The sample of the complex is reduced to 5 degrees of ammonia in the headspace. It is irrelevant to time. With the increase of time, a high-performance malodor control agent was found. The two granular composites containing glass beads showed slightly better than the granular composite. The efficacy of the 10% glass bead complex seems to enhance its performance' over the granular composite and the 5% glass bead complex. The granulated complex containing citric acid is significantly lower than the top. Ammonia concentration in space. The efficiency of a granular composite containing lime 10 citric acid seems to outweigh the performance of a granular composite or a granular composite containing glass beads. Example 17: Using a Fujitsu high pressure extruder Potassium Hydroxide Debris Form (CAS# 1310-58-3, Professional Grade, JT Baker) in the form of micro-debris in effect with potassium hydroxide was used as a special additive for the composite granules in an amount of 10 wt.%. The wetted material used was a high-pressure extruder of Fuji Business Co., Ltd. (type: EXD-60, Fujisho, Osaka, Sakamoto). The extrusion test is shown in Table 23. Table 23: Composite using a high-pressure extruder of Fuji Business Co., Ltd. Extrusion sample add-on sample bentonite DLP 220 cap Micro-type Pergopak M KOH with SAP 10wt% KOH fine flakes 60wt.% 5wt.% 25wt.% Owt.% KOH No SAP 10wt.% KOH Fine flakes 80wt.% 5wt .% Owt.% 5wt.% The sample containing potassium hydroxide provides a normal extruded strand. The extrusion time 20 is quite fast, about 5 minutes, and the extruded product is normally dried. Add 53 200909484 Potassium Hydroxide The process does not alter the processing properties of the extrusion. The dried composite material is honed and sieved through a 150- and 1200-micron screen prior to use (see Table 24). Example 18: Large container headspace ammonia Concentration (ppm) gas detection test with hydrogen and oxygen 5 potassium and lemon Acid performance test different granular composite samples, including ammonia malodorous solution, granular composite, granular composite sample containing potassium hydroxide (with or without SAP), and citric acid granular composite sample ( See Table 21), at different times, for example: 1 to 16 hours (overnight) of ammonia malodor efficiency. 0.9% salt solution (600 μl) containing 10 1200 ppm of ammonia was used as the control group malodorous solution. Shown in the 24th table. 54 200909484 Table 24: Ammonia concentration (ppm) in the headspace of large containers Gas test results Sample time 100cm3 Air 200cm3 Air 300cm3 Air 400cm3 Air 500cm3 Air control group malodorous solution 1 hour 6 12 17 21 24 3 hours 11 21 30 37 44 6 Hours 11 22 32 39 45 Overnight 7 14 21 26 31 Granular composite 1 hour 1.5 2.5 3.5 4.5 5 3 hours 1 2 3 4 5 6 hours 0.5 1 1.5 2 2.5 Overnight 0 0.5 1 1.5 2 KOH granular composite SAP% 1 hour 4 7 11 15 19 3 hours 10 19 27 33 40 6 hours 11 21 27 33 39 overnight 7 14 20 25 30 ΚΌΗ granules | fit no SAP% 1 hour 3 7 10 13 15 3 hours 7 14 20 25 30 6 hours 7 14 20 27 33 Overnight 5 10 14 19 23 # 酸酸粒状复合 a), b) 1 hour 0.5 1 1.5 2.5 3 3 hours 0 0 0.5 0.5 1 6 hours 0 0 0 0 0.5 Overnight 0 0 0 0 0 a) The particle size range is between 150 microns and 1200 microns. b) Samples taken from Table 21. Independent measurement. The data in Table 24 shows that the control group malodorous solution increased the ammonia concentration in the headspace with an increased number of shots, but was not correlated with time. Ammonia concentration 55 200909484 reached its peak after about 3 to 6 hours. The control malodorous solution data also shows a slight natural decrease in ammonia concentration in the headspace because the ammonia gas molecules are absorbed by the walls of the large vessel. This is visible in the case of overnight, usually in a 16 hour time zone. Furthermore, as time increases, higher levels of odor control are found. The granular composite containing citric acid further significantly reduces the concentration of ammonia in the headspace. The citric acid-containing granular composite appeared to outperform the granular composite, which is consistent with the results shown in Table 22. The granular composite containing potassium hydroxide, irrespective of the presence or absence of SAP, exhibits a basic malodor (e.g., ammonia used in the test) which is inferior to the granular composite 10 and the citric acid-containing granular composite. Example 19: Granular composite coated with citrus essential oil for odour control efficacy using orange essential oil (CAS#: 8008-57-9, cold pressed, California, Aldrich) at 2 wt% (in granular composite) The amount based on the dry weight is a special additive. The dry and dry composite material (1 gram) having a particle size of 150 micrometers and 1200 micrometers is placed in a 5 inch mL PE bottle, and a few drops of pine tangerine oil are added to the surface thereof, and the cover is covered. The bottle was shaken for 3 to 5 minutes. This step was repeated until all of the citrus essential oil was used up. This coating step results in a free L-assisted non-condensed granule and is hereinafter referred to as a fragrant granular composite. Example 20: Large container headspace ammonia concentration (ppm) gas detection test and citrus essential oil flavor efficacy The citrus essential oil treated aromatic granule complex & body was tested at two different times, for example: 1 hour and 3 hours. 0.9% salt containing 1200 ppm ammonia 56 200909484 Solution (600 μL) was used as the control group malodorous solution. The results are shown in Table 25 and compared with those obtained from the granular composite under the same conditions. Table 25: Large container headspace ammonia concentration (ppm) gas detection test and citrus essential oil fragrance efficacy sample time 100cm3 air 200cm3 air 300cm3 air 400cm3 air 500cm3 air control malodorous solution 1 hour 7 13 19 25 30 3 hours 7 13 19 25 30 Aromatic granular composite a) 1 hour 1.5 3 4.5 5.5 7 3 hours 0 0.5 0.5 1 1 5 a) The particle size range is between 150 microns and 1200 microns. The data shows that the control malodorous solution increases the ammonia concentration in the headspace with an increased number of shots. The control group malodorous solution detected a slightly lower ammonia concentration after 3 hours. However, the aromatic granular composite sample reduced the ammonia concentration in the headspace of 10, irrespective of time. In addition, as the time increases, a higher malodor control efficiency is found. Example 21: Large container headspace TMA concentration (ppm) gas detection test and citrus essential oil fragrance efficacy Test the aromatic granular composite treated with citrus 15 orange essential oil at two different times, for example: 1 hour and 3 hours TMA performance. The results are shown in Table 26 and compared to those obtained from the granular composite under the same conditions. A 0.9% salt solution (6 Torr microliters) containing 1200 ppm of TMA was used as the control group malodorous solution. 57 200909484 Table 26: Large container headspace TMA concentration (ppm) Gas detection test sample time 100cm3 Air 200cm3 Air 300cm3 Air 400cm3 Air 500cm3 Air control malodorous solution 1 hour 7 13 20 η 33 3 hours 13 26 38 47 56 Aromatic granular Complex a) 1 hour 2 4 6 8 10 3 hours 2 4 5.5 7 8 a) The particle size range is between 150 microns and 1200 microns. The data shows that the control group malodorous solution increases the concentration of TM A 5 in the headspace, regardless of time. The control group malodorous solution was increased to a higher concentration after 3 hours. The fragrant granular composite sample reduced the concentration of TMA in the headspace, regardless of time. As time went on, the odor control efficacy of the aromatic granular composite was found to be more southerly. Example 22: Aromatic Odour Control Particles and Comparison with Cat Litter 1 The odor control efficacy of the composite sample and the aromatic complex sample was tested at a TMA concentration of 1200 ppm based on the weight of the synthetic urine solution. This odour control performance was next compared to Scoop AwayTM ("Fresh Scent, Maximum Odor Control"), which is a commercial cat litter product of the Clorox Company, and the results are shown in Table 27. 58 200909484 Table 27: granulated complex and aromatic granular composite at i2〇〇ppm _ degree of treatment time 0 15 minutes 1 hour 3 hours 5 hours 7 hours 16 hours Scoop Away3) 3 2 2 1.5 1.5 1.5 1.5 Granular complex b) 2 1.5 0.5 0.5 0.5 0.5 0 Aromatic granular composite ^ — 2 1.5 ---- 0 0 0 0 0 a) Use in the form obtained. b) The particle size range is between 150 microns and 1200 microns. The results shown in Table 27 indicate that the aromatic granular composite exhibits a synergistic effect with malodor control. The results also point to different air care applications, such as air fresheners, where it is necessary to release aroma and have a potential malodor control agent. In the case of litter, the granular composite of the present invention and the 10 aromatic granular composites all exhibited significantly better than the scoop control efficacy of Scoop Away. Example 23: Large container headspace ammonia concentration (ppm) gas detection test and baking soda performance in a composite sample with ARM & HAMMERTM baking soda, its 15 Church & Dwight Co_ commercial deodorant product interaction study The ammonia measured in the headspace of the large container is shown in Table 28. The values in Table 28 are the parts per million (ppm). A 0.9% salt solution (600 μl) containing 1200 ppm of ammonia was used as the control group malodorous solution. 59 200909484 Table 28: Ammonia concentration (ppm) in the headspace of large containers Gas test results Sample time 100cm3 Air 200cm3 Air 300cm3 Air 400cm3 Air 500cm3 Air control group odor solution 3 hours 5 10 12 15 20 3曰3 5 6 6 8 Baking soda a) 3 hours 5 10 15 18 21 3 a 3 5 6 7 8 Granular complex b) 3 hours 0 0 0.5 1 2 3曰0 0 0 0 0 a) Use according to the obtained form. b) The particle size fraction is between 150 microns and 1200 microns. The data in Table 28 shows that the control group malodorous solution increases the ammonia concentration in the headspace by an increased number of hits' irrespective of time. The control group malodorous solution data for more than three days seems to show a strong natural decrease in the ammonia concentration in the headspace due to the absorption of ammonia gas molecules on the walls of the large vessel. The fine baking soda powder sample did not reduce the ammonia concentration in the headspace, irrespective of time. The ammonia concentration in the headspace was found to be almost the same as the malodorous group control solution. The granular composite sample reduces the ammonia concentration in the headspace, regardless of time. Furthermore, as time goes on, it shows a higher efficiency of malodor control. Example 24: Test with Nicole Low Pressure Basket Extrusion Machine and Effect of Activated Carbon PAC200 15 Activated Carbon PAC200 in powder form at 20 wt.% (CAS#: 7440-44-0; Norit Americas Inc ., Τχ 75670, USA) as a special addition to the composite granules. The activated carbon powder is used in the form obtained. The extrusion test is shown in Table 29. 60 200909484 Table 29: Using Nicole Low Pressure Basket Extrusion Machine Complex Sample Extrusion Sample Additive Naphthene Bentonite DLP 220 SAP Fine Pergopak Μ 20% PAC200 20wt·% Activated Carbon PAC 200 45wt.% 5wt.% 25wt. % 5wt.% The activated carbon composite sample provides a normal extruded strand. The addition of citric acid and glass beads does not alter the extrusion processability. The dried composite body material was honed and sieved through a 150- and 1200-micron screen prior to use (see Table 30). Example 25: Large container headspace ammonia concentration (ppm) gas detection test and activated carbon efficiency The odor of a composite sample containing activated carbon was measured at a concentration of 1200 ppm ammonia at a time ranging from 1 hour to 5 days. Control performance. The odour control efficacy was compared with pure activated carbon powder PAC200, and the results are shown in Table 30. The data for this location presents the average of repeated trials. A 0.9% salt concentrate having a 1200 ppm ammonia concentration of 3.6 was used as the control group malodorous solution. 15 61 200909484 Table 30: Ammonia concentration (ppm) gas test result at the top of large container Sample time 100cm3 Air 200cm3 Air 300cm3 Air 400cm3 Air 500cm3 Air control group malodorous solution 1 hour 11 21 28 37 47 3 hours 25 46 65 >70 a) >70 a) 3曰14 28 42 54 65 5曰9 18 23 28 34 Granular complex b) 1 hour 2 4 5 6 7 3 hours 4 6 8 10 11 3曰0 0 0 0 0 5曰0 0 0 0 0 Pure activity _ PAC200cJ 1 hour 1 2 3 4 4 3 hours 2 4 6 7 8 3曰5 8 13 16 20 5曰3 4 5 6 7 20%PAC200 Granular complex b) 1 hour 2 4 5 6 7 3 hours 3 4 5 6 6 3曰0 0 1 1 2 5曰0 0 1 2 2 a) Slightly exceed the Drageger tube range from Oppm to 70ppm. b) The particle size range is between 150 microns and 1200 microns. c) Formed for use as obtained. Very fine powder, less than 45 microns (min. 50%), less than 75 5 microns (88%) and less than 150 microns (96%); iodine value (mg/g) = 900 minutes. These data indicate that the control group malodorous solution increases the ammonia concentration in the headspace with an increased number of shots, regardless of time. The ammonia gas concentration shows a high ammonia concentration after a time of 3 hours to 3 days. And the control group malodorous solution data 10 appears for an extended period of time (e.g., 5 days) to show that the ammonia concentration is substantially reduced from 62 200909484 due to the absorption of ammonia gas molecules located on the walls of the large vessel. The granular composite sample reduced the ammonia concentration in the headspace. As the time increases, a higher malodor control efficiency is found, and no ammonia is detected for, for example, 3 days and 5 曰. 5 Pure activated carbon PAC200 samples were significantly reduced in ammonia concentration in the headspace within the first few hours, such as enthalpy and 3 hours. The performance of the pure activated carbon powder sample PAC 200 appeared to be slightly better than that of the granular composite based on its higher surface area than that of the granular composite up to 3 hours ago. However, the performance of the pure activated carbon powder sample PA C 200 seems to decrease with time, and 10 becomes worse than the granular composite on or after 3 days. Interestingly, there was a strong increase in the 3 曰 hour, which was slightly less on the 5th, partly because of the natural reduction effect, but still higher than the granular composite. Even more interesting is that the odor control effect of the activated carbon-containing composite sample (based on the dry weight of the granular composite sample, 20% by weight of activated carbon) can be between the two samples at the beginning of several hours ( Pure activated carbon powder PAC200 and granular composite). The 20% PAC 200 granular composite sample did not appear to be as effective as the granular composite, but it appeared to outperform the pure activated carbon powder PAC sample on or after 3 days. Example 26: In-Line Over-Evaluation Test of Various Activated Carbon Granular Composite Samples 20 Different concentrations of active-breaking samples and Fossil samples were tested by in-line filtration tests at an ammonia concentration of 12 〇〇 Ppm (Abscents 3000, obtained from UOP Company, particle diameter approx. 3 microns; CAS#: 76774-74-8) The test activated carbon sample consists of pure activated carbon powder PAC200, Norit RBAA1 extruded pellets and Norit RO 〇8 extruded pellets . The serving size is 63 200909484 5.4 mL of a 0.9% salt solution containing 1200 ppm ammonia concentration is used as the control group malodorous solution. The test time was kept at 3 hours. The results are shown in Table 31. The weight of each material used in the in-line filtration test is also shown in Table 31. 5 Table 31: Intraline filtration test results of ammonia concentration (ppm) Sample 100cm3 Air 200cm3 Air 300cm3 Air 400cm3 Air 500cm3 Air control group malodorous solution 10 21 32 43 54 Citric acid granular composite a) (0.796 g) 1.5 3 4.5 6 7 Citric acid granular composite fine R (0.591 g) 0 0 0 0 0 pure activated carbon PAC200c) (0.278 g) 4 8 12 16 21 Norit RBAA1 d) (0.531 g) 5 11 18 25 32 Norit RO 0.8 e) (0_306 g) 9 19 28 38 48 Abscents 3000 ^ (0.355 g) 0 0 1 3 5 a) Particle size between 150 μm and 1200 μm. b) <150 micron c) very fine powder, less than 45 microns (min. 50%), less than 75 microns (88%) and less than 150 microns (96%); moth (mg/g) = 900 Min. 10 d) extruded pellets; apparent density = 53.53g/cm3 e) extruded pellets; apparent density = 〇.4〇g/cm3; BET = 1300m2/gf) particle diameter of about 3 microns After the ultrafine powder was filtered through the pipeline, the different activated carbon samples showed a phase 15 high ammonia concentration irrespective of the form of activated carbon. When the relative coarse particle size is also used, for example between 15 〇 and 1200 particles, the effect of pure zeolite Abscents 3000 seems to match or slightly exceed the citric acid-containing granules 64 200909484 complex. However, the performance of the fine-sized citric acid-containing granulated composite seems to be more effective, so that no ammonia is detected. Example 27. Various In-Line Filtration Tests Containing Pre-Activated Activated Carbon The odour control efficiency of the activated carbon filter for use as an air cleaner was examined by an in-line filtration test at an ammonia concentration of 1200 ppm. The test sample contained the Hamilton Beach TmeAir Air Cleaner pre-filter. The active slave pre-twist is cut into 5/8" rounds and placed in the pipeline. The serving size is 600 μl of 〇.9〇/ containing 1200 ppm ammonia concentration. The salt solution was used as a control group malodorous solution. The test time was kept at 3 hours. The results are shown in Table 32. 10 Table 32: Ammonia concentration in the headspace (ppm) Filtration in the headspace Gas detection test results Sample 100cm3 Air 200cm3 Air 300cm3 Air 400cm3 Air 500cm3 Air control group malodorous solution 6 11 15 20 24 Granular composite Finesa) ( 466.466grams) 0 0 0 0 0 Hmnilton Beach TrueAir Air Cleaner Pre-filter b) 5 10 14 19 22 a) <150 μm b) Containing activated carbon Air detergent instead of prefilter, purchased from L〇wes retail market With 5 liters of activated carbon pre-conditioner, Hamilton Beach True Air Pre-filter 'shows a relatively high ammonia concentration when used as a filter medium in in-line filtration. The effectiveness of the granular composite fine form (particle size less than 150 microns) is shown in Table 32. The fine-sized granular composite appears to be an effective filter medium, and it is understood that the invention is not limited to the embodiments specifically exemplified herein. This variation of the invention is highly apparent to those skilled in the art. Such changes and improvements do not fall short of the scope of the patent application attached. In addition, each of the recited ranges includes combinations of ranges and subgroups, as well as specific numbers included therein. In addition, each of the patents, patent applications, and patent publications, which are incorporated herein by reference in its entirety herein in its entirety herein in its entirety herein in [Simple description of the figure 3 Figure 1 is a graph showing the effect of different degrees of redispersible latex powder (Dow of Dow powder, DLP) and the amount of synthetic urine on the weight of the clot. [Main component symbol description] (none) 66

Claims (1)

200909484 十、申請專利範圍: 1. 一種粒狀複合體,其包含a)—無機顆粒,b)—可再分散 性乳膠粉末,以及c) 一或多種超吸收聚合物,一多孔性 增進劑,一水溶性聚合物,以及一氣味控制劑,或是一 5 油吸收劑。 2. 如申請專利範圍第1項之複合體,其中該無機顆粒是黏 土。 3. 如申請專利範圍第1至2項中任一項之複合體,其中該無 機顆粒是納膨潤土黏土。 10 4.如申請專利範圍第1至3項中任一項之複合體,其中該複 合體包含至少lwt.%的無機顆粒。 5. 如申請專利範圍第1至4項中任一項之複合體,其中該複 合體包含至少0.lwt.%之可再分散性乳膠粉末。 6. 如申請專利範圍第1至5項中任一項之複合體,其中該複 15 合體包含至少O.lwt.%之超吸收聚合物。 7. —種粒狀複合體,其包含a)—黏土,以及b)—可再分散 性乳膠粉末,其中以該黏土與該可再分散性乳膠粉末的 結合重量為基準,該複合體包含多於15wt.%之黏土。 8. 如申請專利範圍第1至7項中任一項之複合體,其進一步 20 包含醇、芳香劑、表面活性劑、色料、染劑、濕氣反應 指示劑、pH指示劑,或是其混合物。 9. 如申請專利範圍第1項之複合體,其包含氣味控制劑, 其中該氣味控制劑為活性碳;環糊精;多孔性聚合物吸 附劑;離子交換聚合物;重碳酸鈉;硼砂;過氧化物, 67 200909484 5 10 15 20 諸如納、钟或是敍之過氧碳酸鹽、過氧化物、過氧二硫 酸鹽及高錳酸鹽;生物殺滅劑;植物萃取物,諸如:綠 茶葉、橄欖葉、絲蘭、蘆薈與石鹼木之萃取及/或乾粉; 檸檬酸;螯合劑;天然及合成沸石;香水;各種金屬及 金屬化合物;呈各種形式之金屬及離子銀;聚葡萄胺 糖,或是其混合物。 10. —種粒狀複合體,甚包含: a) 1 至 99wt.% 之黏土; b) 0·1至25.0wt.%之可再分散性乳膠粉末; c) 0.1-99wt_%超吸收聚合物(SAP); d) 0.1-25wt.%水溶性聚合物; e) 0_01-25wt_%多孔性增進劑; f) 0.01-25wt.%氣味控制劑;以及 g) 0.01-25wt·%水。 11. 一種製造如申請專利範圍第1至10項中任一項之複合體 的方法,其包含 乾燥摻合黏土、可再分散性乳膠粉末,以及該複合 體的其他成份以形成混合物; 藉由水或水溶液濕化該混合物; 擠塑該潤濕混合物以形成粒狀複合體; 乾燥該經擠塑材料; 量度尺寸並篩選以形成複合體; 再濕潤該複合體;以及 將該複合體氣體除塵。 68 200909484 12.—種物件,其包含有如申請專利範圍第1至10項中任一 項之粒狀複合體。 69200909484 X. Patent application scope: 1. A granular composite comprising a) - inorganic particles, b) - redispersible latex powder, and c) one or more superabsorbent polymers, a porosity improver , a water soluble polymer, and an odor control agent, or a 5-oil absorbent. 2. The composite of claim 1, wherein the inorganic particles are clay. 3. The composite of any one of claims 1 to 2 wherein the inorganic particles are nano-bentonite clay. The composite of any one of claims 1 to 3, wherein the composite comprises at least 1 wt.% of inorganic particles. 5. The composite of any one of claims 1 to 4, wherein the composite comprises at least 0.1% by weight of a redispersible latex powder. 6. The composite of any one of claims 1 to 5, wherein the complex comprises at least 0.1 wt.% of a superabsorbent polymer. 7. A granular composite comprising a) a clay, and b) a redispersible latex powder, wherein the composite comprises a plurality of weights based on a combined weight of the clay and the redispersible latex powder At 15wt.% clay. 8. The composite according to any one of claims 1 to 7, further comprising 20 an alcohol, a fragrance, a surfactant, a colorant, a dye, a moisture reaction indicator, a pH indicator, or Its mixture. 9. The composite of claim 1, comprising an odor controlling agent, wherein the odor controlling agent is activated carbon; a cyclodextrin; a porous polymer adsorbent; an ion exchange polymer; sodium bicarbonate; borax; Peroxide, 67 200909484 5 10 15 20 Peroxycarbonate, peroxide, peroxodisulfate and permanganate such as sodium, bell or sulphur; biocide; plant extracts such as: green tea Extraction of leaves, olive leaves, yucca, aloe and stone alkali and/or dry powder; citric acid; chelating agent; natural and synthetic zeolite; perfume; various metals and metal compounds; metal and ionic silver in various forms; Amino sugar, or a mixture thereof. 10. A granular composite comprising: a) from 1 to 99 wt.% of clay; b) from 0.1 to 25.0 wt.% of redispersible latex powder; c) from 0.1 to 99 wt% of superabsorbent polymer (SAP); d) 0.1-25 wt.% water-soluble polymer; e) 0_01-25 wt_% porosity enhancer; f) 0.01-25 wt.% odor control agent; and g) 0.01-25 wt.% water. A method of producing a composite according to any one of claims 1 to 10, which comprises drying a blended clay, a redispersible latex powder, and other components of the composite to form a mixture; Water or an aqueous solution wets the mixture; extruding the wetting mixture to form a granular composite; drying the extruded material; measuring dimensions and screening to form a composite; rewetting the composite; and dusting the composite gas . 68 200909484 12. An article comprising a granular composite according to any one of claims 1 to 10. 69
TW97124857A 2007-07-03 2008-07-02 Granular composites of inorganic particulates and redispersible latex powders and methods TW200909484A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US95823607P 2007-07-03 2007-07-03

Publications (1)

Publication Number Publication Date
TW200909484A true TW200909484A (en) 2009-03-01

Family

ID=39877723

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97124857A TW200909484A (en) 2007-07-03 2008-07-02 Granular composites of inorganic particulates and redispersible latex powders and methods

Country Status (3)

Country Link
AR (1) AR067404A1 (en)
TW (1) TW200909484A (en)
WO (1) WO2009006377A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112012418A (en) * 2020-08-26 2020-12-01 瑞洲建设集团有限公司 Construction method for laying indoor stone materials capable of preventing hollowing

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942469B1 (en) * 2009-02-24 2011-04-29 Vicat COMPOSITION USEFUL FOR PREPARING CONCRETE WITHOUT ADDING WATER.
CN102426158B (en) * 2011-09-19 2014-04-02 南京工业大学 Novel method for directly measuring oil quantity in water adsorbed by oil absorption material
US9393164B2 (en) 2013-02-28 2016-07-19 Kimberly-Clark Worldwide, Inc. Aldehyde control in personal care products
KR102452566B1 (en) 2018-04-27 2022-10-06 주식회사 엘지화학 Super absorbent polymer composition
CN108404597A (en) * 2018-06-05 2018-08-17 广西中医药大学 A kind of graphene spray and its preparation method and application
DE202020100696U1 (en) * 2020-02-10 2020-02-21 Clariant International Ltd Absorbent material for moisture and volatile organic compounds
CN111704218A (en) * 2020-06-19 2020-09-25 德蓝水技术股份有限公司 Special flocculating agent for industrial wastewater and preparation method thereof
CN111875197A (en) * 2020-08-07 2020-11-03 湖北爱国环保技术开发有限公司 Recycling method for industrial oil sludge
CN113567052B (en) * 2021-06-03 2024-03-22 襄阳达安汽车检测中心有限公司 Dust for automobile dust tightness experiment, preparation method and experiment method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2848552B1 (en) * 2002-12-13 2005-05-27 Rhodia Chimie Sa A METHOD FOR INCREASING HYDROFUGATION OF MINERAL HYDRAULIC BINDER COMPOSITIONS AND COMPOSITIONS WHICH MAY BE OBTAINED BY THIS PROCESS AND USES THEREOF
CN100339448C (en) * 2004-11-23 2007-09-26 中国建筑材料科学研究院 Decoration paint with air-purifying, sterilization and dampness adjusting function for internal wall
CN100355853C (en) * 2004-12-30 2007-12-19 同济大学 Water-proofing material for stopping leak
CN1737066A (en) * 2005-04-28 2006-02-22 四川大学 Environment-friendly type inner wall emulsion paint production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112012418A (en) * 2020-08-26 2020-12-01 瑞洲建设集团有限公司 Construction method for laying indoor stone materials capable of preventing hollowing
CN112012418B (en) * 2020-08-26 2021-08-03 瑞洲建设集团有限公司 Construction method for laying indoor stone materials capable of preventing hollowing

Also Published As

Publication number Publication date
AR067404A1 (en) 2009-10-07
WO2009006377A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
TW200909484A (en) Granular composites of inorganic particulates and redispersible latex powders and methods
JP6722654B2 (en) Aqueous liquid absorbent resin particle production method, aqueous liquid absorbent resin particle, absorbent body and absorbent article
TWI412382B (en) Deodorant particles
US20080261807A1 (en) Polysaccharide-Inorganic Composite Particles as Performance Additives for Superabsorbent Polymers
KR100413665B1 (en) Deodorant resin composition and its production method
JP2006068731A (en) Particulate water absorbent mainly composed of water absorbing resin, manufacturing method therefor, and absorptive article
JPH06506252A (en) Wrinkled absorbent particles with highly available surface area for fast absorption rate
WO2007011058A1 (en) Water absorbing resin composition
WO2011038374A2 (en) Absorbent composition and methods thereof
WO2015175620A1 (en) Agglomerated superabsorbent polymer particles
JP6333535B2 (en) Composite consisting of water-absorbent resin and fiber powder
JP4311603B2 (en) Water-absorbing agent composition, method for producing the same, absorbent article and absorbent body
WO2005120594A1 (en) Polymers with odor control properties and method for their preparation
WO2002042379A1 (en) Water absorbing agent composition and method for production thereof, absorptive article and absorbing material
CN107522996B (en) Preparation method of graphene composition for enhancing absorption performance of super absorbent resin
JPS6342917A (en) Production of fiber with adsorption activity
JP2012066085A (en) Deodorant
JP2004285202A (en) Water-absorbing resin composition
JPH09208787A (en) Antibacterial water absorbent composition and production thereof
JP4883828B2 (en) Deodorant composition
JPS63192446A (en) Water absorbable aromatic material
JP5276788B2 (en) Water absorbent resin composition
JP2012246419A (en) Water-absorptive resin composition, absorber and absorbent article
JPS6173664A (en) Aromatic material
JP2016010593A (en) Disposable absorbent article