TW200909462A - Metallized polyhedral oligomeric silsesquioxanes as catalysts for polyurethanes - Google Patents
Metallized polyhedral oligomeric silsesquioxanes as catalysts for polyurethanes Download PDFInfo
- Publication number
- TW200909462A TW200909462A TW97118481A TW97118481A TW200909462A TW 200909462 A TW200909462 A TW 200909462A TW 97118481 A TW97118481 A TW 97118481A TW 97118481 A TW97118481 A TW 97118481A TW 200909462 A TW200909462 A TW 200909462A
- Authority
- TW
- Taiwan
- Prior art keywords
- poms
- polymer
- metallized
- blending
- polyurethane system
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/24—Catalysts containing metal compounds of tin
- C08G18/242—Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
200909462 九、發明說明: 相關申請案之對照參考資料 本申請案請求美國臨時專利申請序號第60/931,310號 案(2007年5月21曰申請)之利益,且係美國專利申請序號第 5 ^/015,185號案(2004年12月17曰申請,其請求美國臨時專 利申請序號第60/531,458號案(2003年12月18曰申請)之利 益)之部份繼續案。200909462 IX. INSTRUCTIONS: RELATED APPLICATIONS RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Patent Application Serial No. 60/931,310 (filed May 21, 2007), and is the U.S. Patent Application Serial No. 5^/ Case No. 015, 185 (17 December 2004 application, part of the continuation of the US Provisional Patent Application No. 60/531, 458 (Application of December 18, 2003)).
【發明所屬之技術領域J 發明領域 10 本發明一般係有關於利用金屬化奈米結構化學品作為 固化促進劑及催化劑以使單體、寡聚物及聚合物之混合物 交聯成用於作為塗料、塗覆物、發泡體、複合物,及單塊 體之應用之熱固性聚胺基甲酸酯樹脂之之方法。 【先前技 15 背景 金屬被用於催化聚胺基曱酸酯鏈之固化(連接性)。聚胺 基甲酸酯係由藉由胺基甲酸酯鏈結合之有機單元鏈所組成 之任何聚合物。聚胺基甲酸酯被廣泛用於可撓性及剛性之 發泡體、耐用性彈性體、高性能黏著劑及密封劑、纖維、 2〇 密封件、墊片、地毯襯墊,及硬塑料零件。 聚胺基曱酸酯係一類包含環氧化物、不飽和聚酯,及 酚醛樹脂之化合物。胺基曱酸酯鍵係藉由使異氰酸酯 基,-N=C=0與經基(醇)’ -OH反應而產生。聚胺基甲酸酯 係藉由聚異氰酸酯與聚醇(多元醇)於催化劑及其它添加劑 5 200909462 具 且 反 存在中之濛加成反應而產生。於此情況,聚異氰酸鲳係 有二或更多個異氰酸酯官能基之分子,R-(N=C=C)) 、 多元醇係具有二或更多羥基官能基之分子,R,(〇扣 應產物係含有胺基甲酸酯,-RNHCOOR,-,之聚合物 5 10 15 聚胺基甲酸酯商業上係藉由使液體異氰酸自旨歲夕 > ''曰 >、多开 醇、催化劑,及任何其它添加劑之液體摻合物反應而產生 此等組份被稱為聚胺基甲酸酯系統,或簡單地稱為系έ 。 異氰酸酯一般被稱為,Α-側,或僅稱為,異|。多元醇及其a 加劑之摻合物一般被稱為,B-側,或’聚,。此混合物亦可稱2 树月a或樹脂推合物’。樹脂推合物添加劑可包含鏈辦長、 交聯劑、表面活性劑、阻燃劑、發泡劑、色料,及填料 聚合反應係藉由三級胺(諸如,二曱基環己胺)及有機金 屬鹽(諸如,二丁基錫二月桂酸鹽)催化。再者,催化劑可、 其是否利用胺基曱酸酯(膠凝)反應(諸如,重氮二環辛卜) 或尿素(發泡)反應(諸如,雙-二甲基胺基乙基醚,或特別係 趨動異氰酸酯三聚合反應(諸如,辛酸鉀)為基準而選擇。' 催化作用係藉由稱為催化劑之物質(本身不會藉由敕 體反應而消耗)加速(增加速率)化反應反應。更普遍地有 時可稱加速反應且本身不會消耗或改變之任何者為“催化 劑”。促進劑係催化作用之加速劑,但本身非催化劑。 用於聚胺基甲酸酯之最普遍的催化劑係二丁基錫二月 桂酸鹽(DBTDL),其係組成物C32H64〇4Sn之微黃色液體, 631.6(bp 205°,mp 24°)。DBTDL之使用對於產業用途 係不再為所欲的,因為其於火中發出可燃性且刺激性有毒 20 200909462 煙霧,且係細胞毒性及生物累積性。因此,存在需要一種 替代D B T D L之催化劑。高度所欲地係呈非可燃性之可溶性 固體型式之含有更具活性之%原子之催㈣。此—權化劑 了以較低;辰度使用,且能於聚胺基尹酸醋產物中提供整體 5 上降低之Sn。 最近於奈米科學之發展現已有於成本上有效地製造大 量之最佳被描述為金屬化奈米結構化學品之物料,其係由 於其特別且精確之化學式、混雜(無機_有機)之化學組成, 及相對於傳統化學分子尺寸(0.3-0.5 nm)之大的物理尺寸, 10及相對於較大尺寸之傳統填料之(>50 nm)之小尺寸。含有 催化活性金屬之奈米結構化學品係作為填料及催化劑以 促進聚合物鏈本身之間,與填料及表面,及與奈米結構化 學品間之連接性。 金屬化奈米結構化學品之最佳例示係以低成本之多面 15體寡倍半矽氧烷(P0SS)及多面體寡聚矽酸鹽(P〇s)為主 者。第1圖係例示金屬化奈米結構化學品之某些代表性例 子所有3石夕之系統係稱為POSS且金屬化系統係稱為 POMS。POMS(多面體募金屬倍半矽氧烷)係於中間籠狀框 架之内或外含有一或多個金屬原子之籠狀物。於某些例 20子,籠狀物可含有多於一種金屬或金屬原子型式,甚至金 屬合金。 如同所有含矽之POSS籠狀物,p〇MS係混雜(即,有機 -無機)之組成物,其含有主要包含無機矽_氧鍵但亦可含有 一或多個與籠狀物結合或於其内部之金屬原子之内部框 200909462 (第2圖)。除金屬及矽-氧框架外,p〇Ms奈米結構化學品之 外部另外係藉φ反應性及非反應性之有機官能性⑻覆 蓋,其確保奈米結構與有機聚合物之相容性及可修整性。 不同於金屬或其它顆粒狀填料,此等金屬化奈米結構化學 叩具有範圍可為0.5 nm至5.0 nm之分子直徑,係低密度 (>2·5克/毫升)’可高度分散於聚合物及溶劑内,展現優異 之固有阻燃性,及具有獨特之光學及電子性質。 【明内-容】 發明概要 1〇 本發明描述藉由使金屬化POSS及P〇S(奈米結構化學 品,最普遍係稱為POMS)併納於聚合物内之製備催化劑之 方法及聚合物組成物。形成之組成物係以本身使用或與其 它材料混合形成層合物或互穿網絡,或與巨觀強化物料(諸 如’纖維、黏土、玻璃礦物、非金屬化p〇ss籠狀物、金屬 15顆粒,及其它填料)混合。形成之聚合物係特別用於其間改 良之疏水性、表面性質,及降低之毒性係所欲之可撓性及 剛性之發泡體、耐用性彈性體、高性能黏著劑及密封劑、 纖維、密封件、墊片、地毯襯墊、硬塑料零件,及皮膚及 毛髮之應用。 20 此間呈現之較佳組成物含有二主要材料混合物:(1)來 自多面體寡倍半矽氧烷、多面體募矽酸鹽、聚金屬氧酸鹽、 碳硼酸、硼烷,及碳之多晶型物之化學種類之金屬化奈米 結構化學品、金屬化奈米結構募聚物,或含金屬之奈米結 構聚合物;及(2)用於聚胺基甲酸酯製造之所有組份。 200909462 較佳地,使金屬化奈米結構化學品(POMS)併納於聚合 物内係經由使POMS與聚合物、預聚物,或單體或寡聚物之 混合物摻合或混合而完成。所有型式、技術及順序之摻合 及混合(包含炼融搀合、乾式換合、溶液捧合,及反應性及 5 非反應性之摻合)係有效。 除均質混合外,使奈米結構化學品選擇性併納於聚合 物之特定區域内可藉由利用具有可與聚合物内之此區域之 化學位能相容之化學位能(溶混性)之金屬化奈米結構化學 品而完成。因為其化學性質,金屬化奈米結構化學品亦可 10被修整以顯示與幾近所有聚合物系統之相容性或不相容 性。 圖式簡單說明 第1圖例示以多面體募金屬倍半矽氧烷(POMS)為主之 金屬化奈米結構化學品。 15 第2圖顯示POMS催化劑之一般結構例子。 第 3 圖係[(iBuSiOu^fn-butylhSn)]^^ POMS 之差式 掃瞄量熱圖。 第4圖顯示例示p 〇 μ S之吸收範圍之紫外線-可見光之 圖。 20 【實施方式】 奈米結構之化學式代表之定義 為了瞭解本發明之化學組成物,下列之用於多面體寡 倍半矽氧烷(POSS)及多面體募矽酸鹽(POS)奈米結構之化 學式代表之定義被為之: 9 200909462TECHNICAL FIELD OF THE INVENTION FIELD OF THE INVENTION The present invention generally relates to the use of metalized nanostructured chemicals as curing accelerators and catalysts to crosslink mixtures of monomers, oligomers and polymers for use as coatings. , coatings, foams, composites, and methods of applying thermosetting polyurethane resins for monolithic applications. [Prior Art 15 Background Metals are used to catalyze the curing (linkability) of polyamine phthalate chains. The polyurethane is any polymer composed of an organic unit chain bonded by a urethane chain. Polyurethanes are widely used in flexible and rigid foams, durable elastomers, high performance adhesives and sealants, fibers, 2 〇 seals, gaskets, carpet liners, and hard plastics. Components. Polyamine phthalates are a class of compounds comprising epoxides, unsaturated polyesters, and phenolic resins. The amino phthalate linkage is produced by reacting an isocyanate group, -N=C=0, with a trans group (alcohol)'-OH. The polyurethane is produced by a polyaddition of a polyisocyanate with a polyalcohol (polyol) in a catalyst and other additives 5 200909462 and in an anti-existing manner. In this case, the polyisocyanate is a molecule having two or more isocyanate functional groups, R-(N=C=C)), the polyol is a molecule having two or more hydroxyl functional groups, R, ( The product of the ketone containing urethane, -RNHCOOR,-, 5 10 15 polyurethane is commercially made by making liquid isocyanic acid gt; ''曰> The reaction of a liquid blend of a multi-opening alcohol, a catalyst, and any other additive to produce such components is referred to as a polyurethane system, or simply as a system. Isocyanates are generally referred to as hydrazine- Side, or simply called, iso |. The blend of polyol and its a addition agent is generally referred to as B-side, or 'poly. This mixture can also be called 2 tree month a or resin conjugate' The resin pusher additive may comprise a chain length, a crosslinking agent, a surfactant, a flame retardant, a blowing agent, a colorant, and a filler polymerization reaction by a tertiary amine such as dinonylcyclohexylamine. And catalyzed by an organometallic salt such as dibutyltin dilaurate. Further, the catalyst can be reacted with an amino phthalate (gelling) (such as , a diazobicyclobutene or a urea (foaming) reaction (such as bis-dimethylaminoethyl ether, or a special system of isocyanate tripolymerization (such as potassium octoate) as a reference." Catalytic action accelerates (increased rate) reaction by a substance called a catalyst (which itself is not consumed by the steroid reaction). More generally, it can sometimes be called any one that accelerates the reaction and does not itself consume or change. It is a "catalyst". Accelerator is an accelerator for catalysis, but it is not a catalyst itself. The most common catalyst for polyurethanes is dibutyltin dilaurate (DBTDL), the composition of which is C32H64〇4Sn The slightly yellow liquid, 631.6 (bp 205 °, mp 24 °). The use of DBTDL is no longer desirable for industrial use because it emits flammable and irritating toxic in fire 20 200909462 Smoke and cytotoxicity And bioaccumulation. Therefore, there is a need for a catalyst to replace DBTDL. It is highly desirable to be a non-flammable soluble solid type containing a more active atomic atom (4). Low; used at the end, and can provide a total reduction of Sn in the polyamine-based vinegar product. Recently, the development of nanoscience has now been cost-effectively manufactured in large quantities, best described as metallization. Nanostructured chemical material due to its special and precise chemical formula, mixed (inorganic-organic) chemical composition, and physical size relative to traditional chemical molecular size (0.3-0.5 nm), 10 and relative Small size of the larger size of conventional fillers (>50 nm). Nanostructured chemicals containing catalytically active metals act as fillers and catalysts to promote the polymer chains themselves, with fillers and surfaces, and with Nai Connectivity between rice structural chemicals. The best examples of metallized nanostructured chemicals are low-cost multifaceted oligosesquioxanes (P0SS) and polyhedral oligomeric phthalates (P〇s). Figure 1 illustrates some representative examples of metallized nanostructured chemicals. All 3 systems are called POSS and the metallization system is called POMS. POMS (polyhedral metal sesquioxane) is a cage containing one or more metal atoms inside or outside the intermediate cage frame. In some examples 20, the cage may contain more than one metal or metal atomic form, or even a metal alloy. Like all POS-containing POSS cages, p〇MS is a hybrid (ie, organic-inorganic) composition that contains primarily inorganic oxime-oxygen bonds but may also contain one or more combinations with cages or The internal frame of the internal metal atom is 200909462 (Fig. 2). In addition to the metal and bismuth-oxygen framework, the exterior of the p〇Ms nanostructured chemical is additionally covered by φ reactive and non-reactive organic functionality (8), which ensures compatibility of the nanostructure with the organic polymer and Can be trimmed. Unlike metal or other particulate fillers, these metallized nanostructured chemical ruthenium can have a molecular diameter ranging from 0.5 nm to 5.0 nm, and low density (>2.5 g/ml) can be highly dispersed in the polymerization. It exhibits excellent intrinsic flame retardancy and unique optical and electronic properties in materials and solvents. BRIEF DESCRIPTION OF THE INVENTION 1. The present invention describes a method and polymerization for preparing a catalyst by metallizing POSS and P〇S (nanostructured chemicals, most commonly referred to as POMS) and incorporating them into a polymer. Composition. The formed composition is used by itself or mixed with other materials to form a laminate or interpenetrating network, or with macroscopic reinforcing materials (such as 'fiber, clay, glass mineral, non-metallized p〇ss cage, metal 15 Mix the particles, and other fillers. The formed polymer is particularly useful for the improved hydrophobicity, surface properties, and reduced toxicity of the desired flexibility and rigidity of the foam, durable elastomer, high performance adhesive and sealant, fiber, Seals, gaskets, carpet liners, hard plastic parts, and skin and hair applications. 20 The preferred composition presented herein contains a mixture of two major materials: (1) polymorphs from polyhedral oligosesquioxanes, polyhedral bismuth citrates, polyoxometallates, carboronic acid, borane, and carbon. a metallized nanostructured chemical, a metalized nanostructured polymer, or a metal-containing nanostructured polymer of the chemical species; and (2) all components used in the manufacture of polyurethanes. Preferably, the metallized nanostructured chemical (POMS) is incorporated into the polymer by blending or mixing the POMS with a polymer, prepolymer, or a mixture of monomers or oligomers. All types, techniques and sequences of blending and mixing (including smelting, dry blending, solution holding, and reactivity and 5 non-reactive blending) are effective. In addition to homogenous mixing, the selective characterization of the nanostructured chemical in a particular region of the polymer can be achieved by utilizing a chemical potential (miscibility) that is compatible with the chemical potential of the region within the polymer. The metallized nanostructured chemical is completed. Because of their chemical nature, the metallized nanostructured chemical can also be trimmed to exhibit compatibility or incompatibility with nearly all polymer systems. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 illustrates a metallized nanostructured chemical mainly composed of polyhedral metal sesquioxanes (POMS). 15 Figure 2 shows an example of the general structure of a POMS catalyst. Fig. 3 is a differential scanning calorimetry diagram of [(iBuSiOu^fn-butylhSn)]^^ POMS. Figure 4 shows an ultraviolet-visible image illustrating the absorption range of p 〇 μ S . 20 [Embodiment] Definition of chemical formula of nanostructure In order to understand the chemical composition of the present invention, the following chemical formulas for polyhedral oligo-sesitene oxide (POSS) and polyhedral citrate (POS) nanostructures are used. The definition of the representative is: 9 200909462
φ聚財石夕氧炫係以化學式⑽i01•▲表示之材料,A 表莫耳聚合度,且R,表有機取代基(H、錢氧 基、%狀或線性之脂族或芳香 胥族或貺化基,其可另外含 有反應性吕能性,諸如,醇、酿、胺、綱、稀煙、喊,或 齒化物)。聚倍神氧燒可為均配位或非均配位。均配位系 統僅含有-種R基,而非均配位系統含有多於—種之R基。 POSS及p〇s奈米結構組成物係以下列化學式表示: 對於均配位組成物係[(RSi〇丨5)η]Σ# 10 對於非均配位組成物係[(RSi〇1 5)n(R,Si〇i 5)m㈣其 中,R其R,) 對於官能化之非均配位組成物係 [(RSiOl.sWRXSiOi.o)!^〆其中,r基可為相等或不相等) 對於雜官能化之非均配組成物係 [(ί^Κ)ι·5)η(ί^ί〇ΐ.〇)ιη(Μ)】]Σ#。 15 於上述所有者中,R係與如上定義者相同,且X不受限 地包含ONa、OLi、OK、OH、a、Br、I、烷氧化物(〇R)、 乙酸鹽(OOCR)、過氧化物(OOR)、胺(NR2)、異異氰酸酯 (NCO),及R。符號Μ係指組成物内之金屬元素,包含高及 低Ζ金屬,包含s及ρ區金屬、d及f區過渡、鑭系,及婀系之 20 金屬。此等包含Al、B、Ga、Gd、Ce、W、Re、Ru ' Nb、 Fe、Co、Ni、Eu、Y、Zn、Mn、Os、Ir、Ta、Cd、Cu、φ聚财石夕氧系 is a material represented by the chemical formula (10) i01•▲, A represents the molar degree of polymerization, and R, an organic substituent (H, methoxy, % or linear aliphatic or aromatic steroid or A thiol group, which may additionally contain reactive luminosity, such as alcohol, brewing, amine, sulphur, smog, shout, or dentate. Polypoxy Oxygen Burn can be either coordinating or non-coordinating. The homo-coordination system contains only one R group, while the non-coordination system contains more than one R group. The POSS and p〇s nanostructures are represented by the following chemical formula: For the homogeneous coordination system [(RSi〇丨5)η]Σ# 10 For the heterogeneous coordination system [(RSi〇1 5) n(R,Si〇i 5)m(d) wherein R is R,) is a heterogeneous coordination composition for functionalization [(RSiOl.sWRXSiOi.o)!^ where the r groups may be equal or unequal) For the heterofunctionalized non-homogeneous composition system [(ί^Κ)ι·5)η(ί^ί〇ΐ.〇)ιη(Μ)]]Σ#. 15 In the above-mentioned owner, R is the same as defined above, and X includes, without limitation, ONa, OLi, OK, OH, a, Br, I, alkoxide (〇R), acetate (OOCR), Peroxide (OOR), amine (NR2), isocyanate (NCO), and R. The symbol Μ refers to the metal elements in the composition, including high and low bismuth metals, including s and ρ region metals, d and f region transitions, lanthanides, and lanthanides. These include Al, B, Ga, Gd, Ce, W, Re, Ru ' Nb, Fe, Co, Ni, Eu, Y, Zn, Mn, Os, Ir, Ta, Cd, Cu,
Ag、V、As、Tb、In、Ba、Ti、Sm、Sr、Pd、Pt、Pb、Lu、Ag, V, As, Tb, In, Ba, Ti, Sm, Sr, Pd, Pt, Pb, Lu,
Cs、H、Te、Sn、Zr,及Hf。符號m、n及j係指組成物之化 學計量。符號Σ係指組成物形成奈米結構物,且符號#係指 10 200909462 奈米結構物内所含之矽原子數。#之值一般係m+n之總和, 其中,η範圍典型上係丨至24,且⑺範圍典型上係丨至12。需 注意Σ#不應被混淆為用於決定化學計量之乘數,因其僅描 述此系統之整體奈米結構特性(aka籠狀物尺寸)。 5 詳細說明 本發明教示使用金屬化奈米結構化學品作為聚胺基甲 酸酯之催化劑、固化促劑進及摻合劑。使P0MS能作為分子 等級之強化劑及作為固化促進劑之關鍵係:(1)其關於聚合 物鍵尺寸之獨特尺寸,(2)其與聚合物系統相容以克服排斥 10力(其促進奈米強化劑受聚合物之不相容及驅除)之能力,及 (3)其使催化活性金屬原子及合金均勻地容納及分佈於聚合 物、券聚物,及單體内之能力。POMS因其奈米性質而提供 催化功能及似填料之強化作用。 金屬化奈米結構化學品可經由改變每一籠狀物上之尺 15基或經由使金屬原子與聚合物内所含之官能性締結而被修 正展現與5^合物微結構之優先親和性/相容性。同時,金屬 化奈米結構化學品亦可被修整而與相同聚合物内之微結構 不相容,因而能選擇性地強化特定之聚合物微結構。因此, 影響選擇性奈米強化之因素包含特定之籠狀物尺寸'尺寸 20分佈,及金屬化奈米結構化學品及聚合物系統間之相容性 及不同。 金屬化奈米結構化學品之催化活性及固化促進性質可 經由與籠狀物附接或其附近之金屬性質或金屬原子之數 量、籠狀物之空間及電子性質,及籠狀物之分散特性而控 11 200909462Cs, H, Te, Sn, Zr, and Hf. The symbols m, n and j refer to the stoichiometry of the composition. The symbol Σ means that the composition forms a nanostructure, and the symbol # refers to the number of ruthenium atoms contained in the nanostructure of 200909462. The value of # is generally the sum of m+n, where the range of η is typically 丨24, and the range of (7) is typically 丨12. It should be noted that Σ# should not be confused as a multiplier for determining stoichiometry, as it only describes the overall nanostructure characteristics of the system (aka cage size). 5 DETAILED DESCRIPTION The present invention teaches the use of metallized nanostructured chemicals as catalysts for polyurethanes, curing accelerators, and blending agents. P0MS can be used as a molecular grade enhancer and as a key accelerator for curing accelerators: (1) its unique size with respect to polymer bond size, and (2) its compatibility with polymer systems to overcome repulsive 10 forces (which promotes nevus The ability of the rice fortifier to be incompatible and repelled by the polymer, and (3) its ability to uniformly accommodate and distribute the catalytically active metal atoms and alloys in the polymer, the vesicle, and the monomer. POMS provides catalytic and filler-like strengthening due to its nano nature. The metallized nanostructured chemical can be modified to exhibit preferential affinity to the 5^ microstructure by altering the 15 base on each cage or by conjugating the metal atom to the functionality contained within the polymer. /compatibility. At the same time, the metallized nanostructured chemicals can also be tailored to be incompatible with the microstructures within the same polymer, thereby selectively reinforcing specific polymer microstructures. Therefore, factors affecting selective nanofortification include specific cage size 'size 20 distributions', and compatibility and differences between metallized nanostructured chemicals and polymer systems. The catalytic activity and cure-promoting properties of metallized nanostructured chemicals can be via the nature of the metal attached to or near the cage or the number of metal atoms, the space and electronic properties of the cage, and the dispersion characteristics of the cage. And control 11 200909462
奈米結構化學品(諸如,第丨圖例示之?〇]^8)係可以固 體及油獲得。二型式皆溶於熔融之聚合物及溶劑因此, 解決長期之與傳統顆粒填料及固化促進劑有關之分散問 5 再者,因為P0MS係以分子等級溶於塑料,來自溶解/ =合之力量(即’自由能)係足以避免籠狀物形成於傳統及其 匕有機B食匕化填料發生之聚結區域。顆粒填料及催化劑之 聚結係苦惱化合者、模製者,及樹脂製造商之問題。 第1表列示相較於聚合物尺寸物及填料尺寸之POMSi 10尺寸lnl PQMS之尺寸粗略地料於大部份聚合物尺寸 物,因此,於分子等級,籠狀物可有效改變聚合物鏈之運 動。Nanostructured chemicals (such as the 丨 例 〇 ^ ^ ^ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 Both types are soluble in molten polymers and solvents. Therefore, it solves the long-term dispersion problems associated with traditional granular fillers and curing accelerators. 5 Because P0MS is dissolved in plastics at a molecular level, it comes from the power of dissolution / = That is, the 'free energy' is sufficient to prevent the formation of cages in the coalescence of the conventional and organic bismuth-based food fillers. Agglomeration of particulate fillers and catalysts is a problem for distressed formulators, molders, and resin manufacturers. Table 1 shows the size of POMSi 10 size lnl PQMS compared to polymer size and filler size roughly approximated by most polymer sizes, so at the molecular level, the cage can effectively change the polymer chain. The movement.
顆粒型式 顆粒直徑 #結日日性之聚合物片段 0.5 - 5 nm 七環 1.5 nm 热规來合物線團 5-10 nm 膠體矽石 9 - 80 nm 矣I日日片層 1.0 - 9,000 nm 填料/有機黏土 2 - 100,000 nm —---J 第1表.奈米結構化學品、聚合物尺寸物,及填料之相對尺寸 POSS及POMS蘢狀物控制鏈運動及促進固化程度之能 力於其等被接枝於聚合物鏈上係特別顯見。當Pqms催化聚 合反應時,其未被消耗,而聚合反應後,當POMS奈米結構 與聚合物鏈結合時’其用以減慢鏈勒,因此,促進與時 12 15 200909462 財關之性質,諸如,Tg、HDT^變、模量、硬度,及 k疋,其與增加之模量、硬度,及耐磨耗性及_性 本發明證顯著之性質促進可藉由使催化活性之金屬化 奈未結構化學品併納於聚胺基旨内作為催化劑、固化 促進劑及摻合劑而實現。此大量_化胃㈣ 性及毒性問題外,習知技藝之催化劑(諸如,贿DL)另夕;: 係不作為聚合物形態物内之強化劑,亦不作為捧合劑。 再者,因為金屬化POSS奈米結構化學品係單 一化學實 體,且具有個別之炼點,及溶於溶劑、單體及塑料,因此 10亦可有效降低聚合物系統之黏度。後者係相似於經由使塑 化劑併納於聚合物内所產生者,但由於化學品之奈米性質 而具有促進聚合物之固化及個別聚合鏈之強化之額外益 處。因此’輕易加工處理及強化之功效係、可藉由使用金屬 化奈米結構化學品(例如,POMS)而獲得,而習知技藝需使 15用塑化劑及填料劑,或使p〇ss與聚合物鍵共價鍵結。 實施例Particle type particle diameter #结日日性polymer fragment 0.5 - 5 nm Seven-ring 1.5 nm Thermal gauge clad 5-10 nm Colloidal vermiculite 9 - 80 nm 矣I daily layer 1.0 - 9,000 nm Filler /Organic clay 2 - 100,000 nm —---J Table 1. Nanostructured chemicals, polymer sizes, and relative sizes of fillers POSS and POMS 茏 control chain movement and ability to promote cure It is particularly evident that it is grafted onto the polymer chain. When Pqms catalyzes the polymerization reaction, it is not consumed, and after the polymerization reaction, when the POMS nanostructure is combined with the polymer chain, it is used to slow down the chain, thus promoting the property of the financial period of time 12 15 200909462, For example, Tg, HDT, modulus, hardness, and k疋, which are associated with increased modulus, hardness, and attrition resistance, and the significant properties of the present invention promote metallization by catalytic activity. The naf made structure chemical is incorporated in the polyamine group as a catalyst, a curing accelerator, and a blending agent. In addition to this large amount of stomata (four) sex and toxicity problems, the catalyst of the conventional technology (such as bribe DL) is another day;: It is not used as a strengthening agent in the polymer form, nor as a holding agent. Furthermore, since the metallized POSS nanostructured chemical is a single chemical entity with individual refining points and is soluble in solvents, monomers and plastics, 10 can also effectively reduce the viscosity of the polymer system. The latter is similar to those produced by incorporating a plasticizer into the polymer, but has the added benefit of promoting the curing of the polymer and strengthening the individual polymeric chains due to the nano nature of the chemical. Therefore, the 'easy processing and strengthening effect can be obtained by using metallized nanostructured chemicals (for example, POMS), and the conventional art requires 15 plasticizers and fillers, or p〇ss Covalently bonded to a polymer bond. Example
想用至所有方法之一般碑理_拏 如化學方法中典型般,具有數個可用以控制任何方法 之純度、選擇性、速率及機構之變數。影響使金屬化奈米 20結構化學品(例如,POMS)併納於塑料内之方法之變數包含 奈米結構化學品之尺寸及多分散性,與組成。相似地’聚 合物系統之分子量、多分散性,及組成亦需與奈米結構化 學品者相符合。最後,化合方法期間使用之動力學、熱力 學,及處理助劑亦係可衝擊自奈米結構化學品併納於聚合 13 200909462 物内而產生之載荷量及促進度之職業工具。諸如,您融推 合、乾式摻合,及溶液混合摻合之摻合方法於使金屬化$ 米結構化學品混合及掺合於塑料内皆有效。 訾施例l.Sn POMS檯化劊 5 含錫(Sn)之POMS催化劑係經由二丁基錫試劑與p〇Ss 矽醇及POSS矽氧化物反應而輕易製備。此一合成之—般例 子係於下提供作為此方法之證明。此方法係不欲受限制。 溶於THF(90毫升)内之二正丁基錫二氯化物(42.8克, 141毫莫耳,1.001當量)之溶液係以滴液方式添加至於 10 THF(500毫升)内之七異丁基p〇SS三石夕醇 [(i-BuSiOuMiBi^HCOSi丨〇)3]Σ7(125 克,140 毫莫耳)及三乙 基胺(43.3克,59.6毫升,3.05當量)之溶液。此添加於2小時 後完成,且反應於室溫攪拌14小時。混合物被過濾,且揮 發物於減壓下移除而產生固體,其被溶於二乙基喊,且經 15 由活性碳及塞里塑料過濾產生蠟狀固體,90%產率。 一系列之Sn POMS係顯示於第2表。此等組成物係不欲 受限制,而係被提供以相對於DBTDL比較Sn POMS之元素 組成、Sn含量’及物理型式。再者,需注意含有矽烷基 (Si(CH3)2H)之Sn POMS組成物被提供以指示於Sn POMS上 20併納用於形成互穿網絡(二級反應位置)之二級反應位置或 使奈米籠狀物自最終組成物瀝濾之能力。另外,此可經由 使用於POSS籠狀物上含有R基之烯烴、鹵化物等而完成。 二級反應基對於改良黏著劑、濕潤性、光固化,及生物功 能係所欲的。 14 200909462 第2表.DBTDL(C32H6404Sn)及Sn POMS間之催化劑關係 催化劑結構 化學式 元素% 物理狀態 、 」 C32H5404S11 C: 60.86, Η: 油 >s、/ 10.21, 0: 〆 10.13, Sn: 18.80The general purpose of using all methods is as follows. As is typical in chemical methods, there are several variables that can be used to control the purity, selectivity, rate and mechanism of any method. The variables affecting the method of incorporating metallized nano 20 structural chemicals (e.g., POMS) into plastics include the size and polydispersity, and composition of the nanostructured chemicals. Similarly, the molecular weight, polydispersity, and composition of the polymer system need to be consistent with those of nanostructured chemicals. Finally, the kinetics, thermodynamics, and processing aids used during the compounding process are also occupational tools that can be impacted from nanostructured chemicals and loaded into the aggregate and promoted by the polymerization. For example, your blending, dry blending, and solution blending blending methods are effective for mixing and blending metallized $m structural chemicals into plastics. EXAMPLES 1.Sn POMS 刽 刽 5 The POMS catalyst containing tin (Sn) was easily prepared by reacting dibutyltin reagent with p〇Ss sterol and POSS oxime oxide. A general example of this synthesis is provided below as proof of this method. This method is not intended to be limited. A solution of di-n-butyltin dichloride (42.8 g, 141 mmol, 1.001 eq.) in THF (90 mL) was added dropwise to a solution of ss. A solution of SS triterpenoid [(i-BuSiOuMiBi^HCOSi丨〇) 3] Σ7 (125 g, 140 mmol) and triethylamine (43.3 g, 59.6 mL, 3.05 eq.). This addition was completed after 2 hours, and the reaction was stirred at room temperature for 14 hours. The mixture was filtered and the volatiles were removed under reduced pressure to give a solid, which was dissolved in diethyl ether and filtered from activated carbon and sele. to give a waxy solid, 90% yield. A series of Sn POMS lines are shown in Table 2. These compositions are not intended to be limited, but are provided to compare the elemental composition, Sn content', and physical form of Sn POMS with respect to DBTDL. Furthermore, it should be noted that a Sn POMS composition containing a decyl group (Si(CH3)2H) is provided to indicate a secondary reaction site for forming an interpenetrating network (secondary reaction site) on the Sn POMS 20 or The ability of the nanocage to leach from the final composition. Further, this can be accomplished by using an olefin, a halide or the like containing an R group on a POSS cage. Secondary reactive groups are desirable for improving adhesives, wettability, photocuring, and biofunctional systems. 14 200909462 Table 2. Catalyst relationship between DBTDL (C32H6404Sn) and Sn POMS Catalyst structure Chemical formula Element % Physical state, ” C32H5404S11 C: 60.86, Η: oil >s, / 10.21, 0: 〆 10.13, Sn: 18.80
C64H76〇14SisSn2C64H76〇14SisSn2
C: 50.20, Η:固體 5.00, Ο: 14.63, Si: 14.67, Sn: 15.50 C25H62012Si8Sn C:33.43,H:固體 6.96, Ο: 21.38, Si: 25.02, Sn: 13.22C: 50.20, Η: solid 5.00, Ο: 14.63, Si: 14.67, Sn: 15.50 C25H62012Si8Sn C: 33.43, H: solid 6.96, Ο: 21.38, Si: 25.02, Sn: 13.22
C24H60〇12Si8Sll C: 32.60, Η: 固體 6.84, 0: 21.72, Si: 25.41, Sn: 13.43 C32H9〇〇i3SisSn C: 37.44, Η: 固體〇np. 8.84, 〇: 52°C) 20.26, Si: 21.89, Sn: 11.57 15 200909462C24H60〇12Si8Sll C: 32.60, Η: solid 6.84, 0: 21.72, Si: 25.41, Sn: 13.43 C32H9〇〇i3SisSn C: 37.44, Η: solid 〇np. 8.84, 〇: 52°C) 20.26, Si: 21.89 , Sn: 11.57 15 200909462
C32H90〇l2Si8Sn C: 38.04, Η 蠟狀固體 8.98, 0 (mp 19.00, Si 54°C) 22.24, Sn 11.75 C3iHs8〇i2Si8Sn C: 37.37, Η 蠟狀固體 8.90, 〇 19.27, Si 22.55, Sn 11.91 C67Hi46〇12Si8Sn C: 54.11, H 油 9.89, 0 12.91, Si 15.11, Sn 7.98 C66Hi44〇12Si8Sn C: 53.81, H 油 9.85, 0 13.03, Si 15.25, Sn 8.06 青施例2. POMS催化劊之熱安定性C32H90〇l2Si8Sn C: 38.04, 蜡 waxy solid 8.98, 0 (mp 19.00, Si 54 ° C) 22.24, Sn 11.75 C3iHs8〇i2Si8Sn C: 37.37, Η waxy solid 8.90, 〇19.27, Si 22.55, Sn 11.91 C67Hi46〇 12Si8Sn C: 54.11, H oil 9.89, 0 12.91, Si 15.11, Sn 7.98 C66Hi44〇12Si8Sn C: 53.81, H oil 9.85, 0 13.03, Si 15.25, Sn 8.06 Example 2. Thermal stability of POMS catalyzed ruthenium
Sn POMS之熱安定性被檢測以決定其是否能維持催化 固化且不會進行分解。POMS被發現係不受低溫影響,且於 最高達350°C時展現熱安定性(第3圖)。 5 實施例3. POMS之紫外線及真空紫外線安定性 POMS籠狀物因其吸收輻射之特性而另外於聚合物内 16 200909462 係有利(第4圖)。吸收波長係可於廣範圍調整,且係高度地 依籠狀物上之R基之性質及金屬原子之型式而定。與高熱安 定性結合之吸收範圍係超過全部有機吸收劑之性能,且提 供用於保護高溫聚合物、複合物及塗覆物免於紫外線損害 5 之新的機會。Sn POMS對於200-250 nm輻射之吸收係特別 所欲的。Ti POMS亦有效地作為聚胺基甲酸酯之催化劑, 且於200-300 nm之輻射吸收係有效。 f施例4_胺基甲酸酯榭脂之TIN POMS催化作用 POMS於結構及組成係存在大量不同(例如,見第1 10圖)。許多此等系統能於不同樹脂系統作為催化劑或共催化 劑及固化促進劑。聚胺基甲酸酯固化之較佳組成係 [(RSi015)8((n-butyl)2Sn)]I9 或 [(RSiOMhGn-butylhSnOo.sXOSiMeJb。POMS對聚胺基曱 酸酯固化之活性於〇.〇〇 1重量%至50重量%之POMS載荷量 15 範圍係可能,且較佳載荷量係0.01重量%至1重量%。 例如,添加1重量%之DBTDL至PPGDU1000需要2小時 之固化時間’而添加1重量%之Sn POMS [(iBuSiCh.AGn-butylhSn)]^9於20分鐘產生等化固化。因 此,使用Sn POMS於錫之使用提供7重量%之降低,且於固 20 化時間係83%之降低。另外之反應性可經由胺及Sn POMS 催化劑之協同使用而促進。於某些例子,胺之併納對於作 為發泡劑及控制反應速率係所欲的。三級胺係作為協同劑 之較佳者。 除DBTDL外,有機金屬錫錯合物係極少被認為係現存聚胺 17 200909462 基曱酸雜化⑽、統之可實施之另類物。主要原因翁機錯錯合 物之差的水解安定性及其毒性。所有之Sn p〇Ms展現優異之水 解安定性及與聚胺基甲酸酯組份之相容性,因為籠狀物上 之膨鬆之疏水性R基提供金屬原子疏水性同時維持高程度之催 5化活性。另外,籠狀物上之R基提供poms溶入樹脂組份内。對於 脂族樹脂系統,POMS上之脂族R基係較佳,而對於芳香族樹脂, POMS上之芳香族基係較佳。 實施例5.胺某甲酸酯樹脂之鈦及鋁p〇Ms催化作爾 除錫外’含鈦(Ti)及鋁(A1)之POMS於胺基曱酸酯樹脂 10之催化作用亦有效。一般,Ti POMS係使聚胺基甲酸酯著 色。著色可經由添加小量之有機過氧化物(其使丁丨維持氧化 且無色之狀態)而減緩。 相似地,A1 POMS可有效作為聚胺基甲酸酯催化劑。 A1 POMS [(RSiObMAlOM)]^係以二聚物以固體狀態存 15在,且需以單體活化以便催化反應。此係經由加熱及經由 併納胺協同劑而完成。再次地,三級胺係作為共催化劑之 較佳者。 雖然某些代表性實施例及細節已為了例示本發明而顯 示’但對於熟習此項技藝者顯見者係此間揭露之方法及裝 20置之各種改變可於未偏離於所附申請專利範圍中界定之本 發明範圍而為之。 【睏式簡皁說明】 第1圖例示以多面體募金屬倍半石夕氧烧(POMS)為主之 金屬化奈米結構化學品。 200909462 第2圖顯示POMS催化劑之一般結構例子。 第 3 圖係[(iBuSiOuMb-butylhSn)]” POMS 之差式 掃猫量熱圖。 第4圖顯示例示POMS之吸收範圍之紫外線-可見光之 5 圖。 【主要元件符號說明】 (無) 19The thermal stability of Sn POMS is tested to determine if it can maintain catalytic cure without decomposition. POMS was found to be unaffected by low temperatures and exhibited thermal stability up to 350 °C (Figure 3). 5 Example 3. Ultraviolet and vacuum UV stability of POMS POMS cages are additionally advantageous in the polymer due to their radiation absorbing properties (2009 Figure 4). The absorption wavelength can be adjusted over a wide range and is highly dependent on the nature of the R group on the cage and the type of metal atom. The absorption range combined with high heat stability exceeds the performance of all organic absorbents and provides new opportunities to protect high temperature polymers, composites and coatings from UV damage. Sn POMS is particularly desirable for absorption of 200-250 nm radiation. Ti POMS is also effective as a catalyst for polyurethanes and is effective at radiation absorption systems of 200-300 nm. f Example 4 - TIN POMS catalysis of urethane oxime POMS differs greatly in structure and composition (see, for example, Figure 10). Many of these systems are capable of acting as catalysts or cocatalysts and curing accelerators in different resin systems. The preferred composition for the curing of polyurethane is [(RSi015)8((n-butyl)2Sn)]I9 or [(RSiOMhGn-butylhSnOo.sXOSiMeJb. POMS is effective for the curing of polyamine phthalate). A range of POMS loading of 15% by weight to 50% by weight is possible, and a preferred loading amount is 0.01% by weight to 1% by weight. For example, adding 1% by weight of DBTDL to PPGDU1000 requires 2 hours of curing time' The addition of 1% by weight of Sn POMS [(iBuSiCh.AGn-butylhSn)]^9 resulted in an equalization cure over 20 minutes. Therefore, the use of Sn POMS in the use of tin provided a 7 wt% reduction, and the solidification time was 83. The reduction in % can be facilitated by the synergistic use of amines and Sn POMS catalysts. In some instances, the amine incorporation is desirable for use as a blowing agent and to control the rate of reaction. Preferred among the agents. In addition to DBTDL, the organometallic tin complex is rarely considered to be an existing polyamine 17 200909462 ruthenium acid hybrid (10), which can be implemented as an alternative. Poor hydrolytical stability and its toxicity. All Sn p〇Ms show excellent water Solubility and compatibility with the polyurethane component, because the bulky hydrophobic R group on the cage provides hydrophobicity of the metal atom while maintaining a high degree of catalytic activity. The R group on the object provides poms dissolved in the resin component. For the aliphatic resin system, the aliphatic R group on the POMS is preferred, and for the aromatic resin, the aromatic group on the POMS is preferred. The titanium and aluminum p〇Ms of a certain acid ester resin catalyze the catalysis of the POMS containing titanium (Ti) and aluminum (A1) on the amine phthalate resin 10. Generally, Ti POMS colorates polyurethanes. Coloration can be slowed by the addition of small amounts of organic peroxides which maintain the oxidation and colorless state of the butyl sulphate. Similarly, A1 POMS is effective as a polyaminocarboxylic acid. Ester catalyst. A1 POMS [(RSiObMAlOM)] is stored as a dimer in a solid state and is activated by a monomer to catalyze the reaction. This is accomplished by heating and via a diminamide synergist. Again, Tertiary amines are preferred as co-catalysts. While certain representative embodiments and details The present invention has been shown to be illustrative of the present invention. It is to be understood by those skilled in the art that the present invention may be practiced without departing from the scope of the invention as defined in the appended claims. Description of the trapped simple soap Fig. 1 illustrates a metallized nanostructured chemical mainly composed of polyhedral metal sesquix (POMS). 200909462 Fig. 2 shows a general structural example of a POMS catalyst. Fig. 3 is a differential scanning swallowing calorimetry diagram of [(iBuSiOuMb-butylhSn)]" POMS. Fig. 4 shows an ultraviolet-visible light diagram illustrating the absorption range of POMS. [Main component symbol description] (none) 19
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US93131007P | 2007-05-21 | 2007-05-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200909462A true TW200909462A (en) | 2009-03-01 |
Family
ID=40122213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97118481A TW200909462A (en) | 2007-05-21 | 2008-05-20 | Metallized polyhedral oligomeric silsesquioxanes as catalysts for polyurethanes |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW200909462A (en) |
WO (1) | WO2008144735A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114729092A (en) * | 2019-03-26 | 2022-07-08 | 波利有限公司 | Selective polyurethane prepolymer synthesis |
TWI801638B (en) * | 2018-07-31 | 2023-05-11 | 大陸商中國石油化工科技開發有限公司 | Nanocage confined catalyst, preparation method and use |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009065873A2 (en) * | 2007-11-21 | 2009-05-28 | Basf Se | Polyhedral oligomeric stannasilsesquioxanes as catalyst for polyurethane curing |
BR112012013200B1 (en) | 2009-12-21 | 2019-08-13 | Huntsman Int Llc | method for forming a urethane material, reactive composition, and polyurethane material |
EP2796493A1 (en) | 2013-04-25 | 2014-10-29 | Huntsman International Llc | Composition comprising silylated polymers and polyhedral oligomeric metallo silsesquioxane |
EP2865704A1 (en) | 2013-10-28 | 2015-04-29 | Huntsman International Llc | Synthesis and use of metallized polyhedral oligomeric silsesquioxane catalyst compositions |
CN115181256B (en) * | 2022-08-01 | 2023-09-26 | 江西聚锐德新材料股份有限公司 | Cage-shaped polysilsesquioxane titanium catalyst, liquid catalyst, preparation method and application thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60112265T2 (en) * | 2000-03-24 | 2006-05-24 | Hybrid Plastics LLP, Fountain Valley | NANOSTRUCTURED CHEMICAL SUBSTANCES AS ALLOYING COMPONENTS IN POLYMERS |
CN100544836C (en) * | 2003-12-18 | 2009-09-30 | 杂混复合塑料公司 | Polyhedral oligomeric silsesquioxane and metallized polyhedral oligomeric silsesquioxane as coating, composite and additive |
-
2008
- 2008-05-20 TW TW97118481A patent/TW200909462A/en unknown
- 2008-05-21 WO PCT/US2008/064371 patent/WO2008144735A1/en active Application Filing
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI801638B (en) * | 2018-07-31 | 2023-05-11 | 大陸商中國石油化工科技開發有限公司 | Nanocage confined catalyst, preparation method and use |
CN114729092A (en) * | 2019-03-26 | 2022-07-08 | 波利有限公司 | Selective polyurethane prepolymer synthesis |
CN114729092B (en) * | 2019-03-26 | 2024-04-26 | 波利有限公司 | Selective polyurethane prepolymer synthesis |
Also Published As
Publication number | Publication date |
---|---|
WO2008144735A1 (en) | 2008-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200909462A (en) | Metallized polyhedral oligomeric silsesquioxanes as catalysts for polyurethanes | |
US7820761B2 (en) | Metallized nanostructured chemicals as cure promoters | |
JP4799406B2 (en) | One-component polyorganosiloxane (POS) composition that is crosslinked to form an elastomer by polycondensation reaction in the presence of water at ambient temperature, and the elastomer thus obtained | |
EP1928948A2 (en) | Metallized nanostructured chemicals as cure promoters | |
CN104968749B (en) | Stability hot radical curable organosilicon adhesive composition | |
US7737228B2 (en) | Metallized polyhedral oligomeric silsesquioxanes as catalysts for polyurethanes | |
JP7197518B2 (en) | Silicone polyether copolymers, isocyanate-functional silicone polyether copolymers formed therefrom, silicone polyether urethane copolymers, sealants containing them, and related methods | |
TW201217438A (en) | Moisture curable organopolysiloxane composition | |
HUE025139T2 (en) | Compounds having a guanidine structure and use of same as organopolysiloxane polycondensation catalysts | |
TW200918606A (en) | Curable silicon-containing compositions prossessing high translucency | |
TW200902589A (en) | Process for making hydrolyzable silylated polymers | |
JP2011519988A5 (en) | ||
CN1703437A (en) | Bismuth-catalyzed polyurethane composition | |
JP7076644B2 (en) | Silicone-polyester copolymers, sealants containing them, and related methods | |
CN113195594B (en) | Silicone-polycarbonate copolymers, sealants including silicone-polycarbonate copolymers, and related methods | |
US4954472A (en) | Temperature activated catalysts for liquid polymer cures | |
JPH0446962A (en) | Heat-curable silicone elastomer composition | |
CN113272364B (en) | Silicone-polyacrylate copolymers, sealants including silicone-polyacrylate copolymers, and related methods | |
JP4460214B2 (en) | Curable composition | |
JPH1142436A (en) | Platinum complex catalyst composition, its production and thermoplastic resin fine-grain catalyst composition | |
KR101864005B1 (en) | Catalyst for polymerization of monomer having a ring-type ester group, and method of forming polymer using the catalyst | |
JP7469310B2 (en) | Silicone-organic copolymers, sealants containing same, and related methods | |
CN101180301A (en) | Process for continuous production of olefin polyhedral oligomeric silsesquioxane cages | |
WO2006006620A1 (en) | Process for producing curable resin composition | |
JPS5810430B2 (en) | Room temperature curable composition |