TW200908599A - System and method of transmitting and receiving an OFDM signal with reduced peak-to-average power ratio - Google Patents

System and method of transmitting and receiving an OFDM signal with reduced peak-to-average power ratio Download PDF

Info

Publication number
TW200908599A
TW200908599A TW97121285A TW97121285A TW200908599A TW 200908599 A TW200908599 A TW 200908599A TW 97121285 A TW97121285 A TW 97121285A TW 97121285 A TW97121285 A TW 97121285A TW 200908599 A TW200908599 A TW 200908599A
Authority
TW
Taiwan
Prior art keywords
ofdm
bit sequence
candidate
sequence
rti
Prior art date
Application number
TW97121285A
Other languages
Chinese (zh)
Inventor
Dong Wang
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200908599A publication Critical patent/TW200908599A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2618Reduction thereof using auxiliary subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2615Reduction thereof using coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Error Detection And Correction (AREA)

Abstract

A method transmits data by generating (110-i) a plurality of candidate orthogonal frequency division multiplex (OFDM) signals, selecting (120) the candidate OFDM signal that has the lowest peak-to-average-power ratio, and transmitting (130) the selected OFDM signal. Each of the candidate OFDM signals is generated by inserting (112, 200) a set of one or more dummy bits before a data bit sequence to produce an input bit sequence, recursively convolutionally encoding (114) the input bit sequence to generate an encoded bit sequence, interleaving (166) the encoded bit sequence, and OFDM modulating (118) the interleaved, encoded bit sequence to generate the candidate OFDM signal. The set of one or more dummy bits for each of the candidate OFDM signals is different than the set of one or more dummy bits for each of the other candidate OFDM signals.

Description

200908599 九、發明說明: 【發明所屬之技術領域】 本發明係關於資料通信之領扶 域•’且更特定言之,係關於 一種傳送與接收一正交分頰多τ 工(OFDM)信號之系統及方 法。 【先前技術】 持續存在對較靈活且高效的資 隨著開發出新通信系統 料通信技術之需要。200908599 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to the field of data communication, and more specifically, to a transmission and reception of an orthogonal cheek multi-tower (OFDM) signal. System and method. [Prior Art] There is a need for more flexible and efficient resources to develop new communication system communication technologies.

ϋ 對無線通信系統之一風并、s I & 风仃選擇為正交分頻多工 (OFDM)。舉例而言,微波存取全球互通(wiMAx)標準及ϋ For one of the wireless communication systems, s I & 仃 is selected as Orthogonal Frequency Division Multiplexing (OFDM). For example, the Worldwide Interoperability for Microwave Access (wiMAx) standard and

WiMedia超寬頻(UWB)通用無線電平台兩者皆使用 OFDM。OFDM歸因於其針對頻率選擇性衰落之穩固性、 高頻寬效率及容易實施而為用於高資料速率無線通信應用 之有效傳送方法。 因此,OFDM為無線通信應用之有吸引力的技術。 然而’存在OFDM信號之一些限制及缺點。〇FDM之主 要缺點之一為OFDM信號之高峰均功率比(pApR)。具有高 PAPR之OFDMk號將不良設計選擇強加於輸出功率放大 級。若基於所傳送之〇FDM信號之平均功率而選擇放大 器,則OFDM信號之峰值可使功率放大器過載,且引起頻 帶内失真及頻帶外輻射。頻帶内失真增加位元錯誤率 (BER)且頻帶外輻射導致不可接受之鄰近頻道干擾。另一 方面’輸出功率放大器可具備足夠高的壓縮點來處置 OFDM信號之峰值且提供線性響應。然而,一般而言,此 132011.doc 200908599 放大器將不良地大、低效,且將消耗太多功率。 已提議降低OFDM信號之PAPR的許多不同機制。基本 上,可將此等機制分組為兩個類別。 屬於第一類別之機制故意地修改所傳送之OFDM信號, 使得峰值得到抑制。X. Li等人之〇/Both WiMedia Ultra Wideband (UWB) universal radio platforms use OFDM. OFDM is an efficient transmission method for high data rate wireless communication applications due to its robustness to frequency selective fading, high frequency efficiency, and ease of implementation. Therefore, OFDM is an attractive technology for wireless communication applications. However, there are some limitations and disadvantages of OFDM signals. One of the main drawbacks of 〇FDM is the peak-to-average power ratio (pApR) of OFDM signals. The OFDMk number with high PAPR imposes poor design choices on the output power amplification stage. If the amplifier is selected based on the average power of the transmitted 〇FDM signal, the peak of the OFDM signal can overload the power amplifier and cause intra-band distortion and out-of-band emissions. In-band distortion increases the bit error rate (BER) and out-of-band emissions cause unacceptable adjacent channel interference. On the other hand, the output power amplifier can have a sufficiently high compression point to handle the peak of the OFDM signal and provide a linear response. However, in general, this 132011.doc 200908599 amplifier will be badly large, inefficient, and will consume too much power. Many different mechanisms for reducing the PAPR of OFDM signals have been proposed. Basically, these mechanisms can be grouped into two categories. The mechanism belonging to the first category deliberately modifies the transmitted OFDM signal such that the peak is suppressed. X. Li et al.

Filtering on the P erformance of OFDM'' (IEEEFiltering on the P erformance of OFDM'' (IEEE

Communications Letters,第 2 卷,第 5 期,第 131-133 頁,1998年5月)為揭示此第一類別中之PAPR降低機制之 參考的一實例。然而,故意修改操作自身可引入頻帶内雜 訊’其可降低傳送之位元錯誤率(BER)效能。此類別中之 最簡單的解決方案為故意截割OFDM信號。 相反,第二類別中之機制在傳送器處對於給定資料序列 產生多個經調變之OFDM信號,且接著選擇待傳送之具有 最低PAPR之OFDM信號。此等機制不對OFDM信號造成失 真,但其實現係以在傳送器處之增加的複雜性為代價的。 部分傳送序列(PTS)及選擇性映射(SLM)為此類別中之兩個 類型之機制。 L.J. Cimini、Jr.等人之PowerCommunications Letters, Vol. 2, No. 5, pp. 131-133, May 1998) is an example of a reference to reveal the PAPR reduction mechanism in this first category. However, deliberate modification of the operation itself can introduce in-band noise' which can reduce the bit error rate (BER) performance of the transmission. The simplest solution in this category is to intentionally cut OFDM signals. Instead, the mechanism in the second category generates a plurality of modulated OFDM signals for a given data sequence at the transmitter, and then selects the OFDM signal with the lowest PAPR to be transmitted. These mechanisms do not cause distortion of the OFDM signal, but the implementation is at the expense of increased complexity at the transmitter. Partial Transfer Sequence (PTS) and Selective Mapping (SLM) are two types of mechanisms in this category. Power of L.J. Cimini, Jr., etc.

Reduction of an OFDM Signal Using Partial Transmit Sequences'' (IEEE COMMUNICATIONS LETTERS » 第 4期,第 86-88 頁,2000 年 3 月)及 C. Tellambura 之”P/zase Optimization criterion for reducing peak-to-average power ratio in OFDM” (ELECTRONIC LETTERS,第 43卷,第 2期, 第169-170頁,1998年)揭示使用PTS之機制。 132011.doc 200908599 同時,P.V. Eetvelt 等人之"ΡβαΑ: ίο Jwotge Power Reduction for OFDM Schemes by Selective Scrambling'' (Electronic Letters,第 32卷,第 1963-1964頁,1996年 10 月);S. Muller 等人之”6>77£>从孙"办/^£/«<^<^尸6(3众-^〇-Reduction of an OFDM Signal Using Partial Transmit Sequences'' (IEEE COMMUNICATIONS LETTERS » No. 4, pp. 86-88, March 2000) and C. Tellambura's "P/zase Optimization criterion for reducing peak-to-average power Ratio in OFDM" (ELECTRONIC LETTERS, Vol. 43, No. 2, pp. 169-170, 1998) discloses a mechanism for using PTS. 132011.doc 200908599 Meanwhile, PV Eetvelt et al. "ΡβαΑ: ίο Jwotge Power Reduction for OFDM Schemes by Selective Scrambling'' (Electronic Letters, Vol. 32, pp. 1963-1964, October 1996); S. Muller Etc. "6>77£> From Sun "do/^£/«<^<^ 尸6(3众-^〇-

Average Power Ratio by Multiple Signal Representation'' (Annals of Telecommunications,第 52卷,第 1-2期,第 58-67 頁,1997 年);N. Chen 等人之"Crew Facior Reduction in OFDM Using Blind Selected Pilot Tone Mo办/αίζ·⑽”(美國專利申請公開案US2006274868A1);及 M. Breiling ^ A ^ "SLM Peak-Power Reduction Without Explicit Side Information” (IEEE COMMUNICATIONS Letters,第5卷,第6期,第239-241頁,2001年6月)皆揭 示使用SLM之機制。 同樣,已提議用於降低空間-時間編碼OFDM系統中之所 傳送之OFDM信號之PAPR之若干方法。舉例而言,H. Reddy 專 A 之” Space-Time Coded OFDM with Low PAPR” (IEEE Global Telecommunications Conference,第 2 卷,第799-803頁,2003年12月)揭示一種基於格子成形之 PAPR降低機制。其可有效地降低OFDM信號之PAPR。然 而,歸因於格子成形,降低了頻譜效率。此外,歸因於錯 誤傳播,BER效能差於非格子成形機制之情況下的BER效 能。同時,Y.L. Lee 等人之"·PeaAr-io-dverage Power Λαίζ’ο in MI MO-OFDM Systems Using Selective Mappin”(ΥΕΈΈ Communications Letters,第 7 卷,第 12期,第 575-577 132011.doc 200908599 頁,2003年12月)提議一種用於多輸入多輸出 (MIMO)OFDM系統之基於SLM的PAPR降低機制。所提議 之機制選擇所有傳送的天線上具有最低平均pApR之所傳 送之序列。 SLM技術對於每一輸入資訊位元序列產生"個充分不同 的候選OFDM信號,且選擇將傳送的具有最低pApR之信 號。存在產生¢/個偽隨機候選OFDM信號之若干方式。在 Lee等人的文獻中,c/個隨機化的相位旋轉向量用以使頻域 OFDM符號右隨機化且接著產生卩個候選〇FDM信號。同 時,在Breiling等人的文獻中,作者使用擾亂器來擾亂輸 入資訊位元,且/7個虛擬位元用以將擾亂器設定至不同初 始狀態。在此《個虛擬位元之不同值的情況下,可產生 個偽隨機候選OFDM信號。 然而,第二類別中之此等現有機制亦具有缺點。 在一些狀況下,需要將對應於所傳送之OFDM信號的相 位旋轉向量之索引明確地傳送至接收器,通常作為旁資 訊。此可增加附加項且減小資料輸送量。此外,歸因於所 使用之不正確的相位反旋器,在偵測此旁資訊過程中之錯 誤可引起錯誤傳播。 在其他狀況下’額外的複雜性被添加至接收器,諸如, 解擾亂器之添加。 同樣,舉例而言,由Chen揭示之機制需要〇FDM導頻音 調,其具有實質大於正常OFDM符號之功率位準的功率: 準,且因此其不適合於一些風行的〇fdm系統,諸如, 132011 .doc 200908599Average Power Ratio by Multiple Signal Representation'' (Annals of Telecommunications, Vol. 52, No. 1-2, pp. 58-67, 1997); N. Chen et al. "Crew Facior Reduction in OFDM Using Blind Selected Pilot Tone Mo Office/αίζ·(10)” (US Patent Application Publication No. US2006274868A1); and M. Breiling ^ A &"SLM Peak-Power Reduction Without Explicit Side Information” (IEEE COMMUNICATIONS Letters, Vol. 5, No. 6, Pages 239-241, June 2001) all reveal mechanisms for using SLM. Also, several methods have been proposed for reducing the PAPR of the transmitted OFDM signal in a space-time coded OFDM system. For example, H. Reddy's "Space-Time Coded OFDM with Low PAPR" (IEEE Global Telecommunications Conference, Vol. 2, pp. 799-803, December 2003) reveals a PAPR reduction mechanism based on lattice shaping. . It can effectively reduce the PAPR of OFDM signals. However, due to lattice shaping, spectral efficiency is reduced. Furthermore, due to error propagation, BER performance is worse than BER performance in the case of non-lattice shaping mechanisms. Meanwhile, YL Lee et al. "PeaAr-io-dverage Power Λαίζ'ο in MI MO-OFDM Systems Using Selective Mappin" (ΥΕΈΈ Communications Letters, Vol. 7, No. 12, 575-577 132011.doc 200908599 Page, December 2003) proposes an SLM-based PAPR reduction mechanism for Multiple Input Multiple Output (MIMO) OFDM systems. The proposed mechanism selects the sequence with the lowest average pApR transmitted on all transmitted antennas. Producing a sufficiently different candidate OFDM signal for each input information bit sequence and selecting the signal with the lowest pApR to be transmitted. There are several ways to generate a pseudo-random candidate OFDM signal. In Lee et al. The c/randomized phase rotation vectors are used to randomize the frequency domain OFDM symbols to the right and then generate the candidate 〇FDM signals. Meanwhile, in the Breiling et al. literature, the author uses the scrambler to disturb the input information bits. Yuan, and /7 virtual bits are used to set the scrambler to different initial states. In the case of "different values of virtual bits", a pseudo-slave can be generated. Machine candidate OFDM signals. However, such prior mechanisms in the second category also have disadvantages. In some cases, the index of the phase rotation vector corresponding to the transmitted OFDM signal needs to be explicitly transmitted to the receiver, usually as a side Information. This increases the number of additional items and reduces the amount of data delivered. In addition, due to the incorrect phase derotator used, errors in detecting this side information can cause error propagation. Additional complexity is added to the receiver, such as the addition of a descrambler. Also, for example, the mechanism disclosed by Chen requires a 〇FDM pilot tone with power substantially greater than the power level of the normal OFDM symbol: Quasi, and therefore it is not suitable for some popular 〇fdm systems, such as, 132011 .doc 200908599

WiMAX及 WiMedia UWB 〇 此外,在此等機制中之一些中,未考慮頻道編碼,而在 最真實的OFDM系統中,在〇FDM調變器達成頻率分集並 降低BER前,會使用頻道編碼(包括交錯)。 因此’將需要提供一種傳送與接收具有降低之p APR的 OFDM信號之系統及方法。 【發明内容】WiMAX and WiMedia UWB In addition, channel coding is not considered in some of these mechanisms, but in the most realistic OFDM systems, channel coding is used before the 〇FDM modulator achieves frequency diversity and reduces BER (including staggered). Therefore, it would be desirable to provide a system and method for transmitting and receiving OFDM signals having reduced p APR. [Summary of the Invention]

在本發明之一態樣中,提供一種用於傳送資料之方法。 該方法包含:產生複數個候選正交分頻多工(〇fdm)信 號,其中產生該專候選OFDM信號中之每一者包含在一資 料位兀序列前插入一組一或多個虛擬位元以產生一輸入位 元序列、遞歸迴旋編碼該輸入位元序列以產生一經編碼之 位元序列、交錯該經編碼之位元序列、〇fdm調變該經交 錯之經編碼之位元序列以產生該候選〇fdm信號;選擇具 有一取低峰均功率比的該複數個候選〇Fdm信號中之一 者”及傳达該選定之〇FDM信號。該等候選〇fdm信號中 之每者的e亥組一或多個虛擬位元與其他候選〇FDM信號 中之每一者的該組一或多個虛擬位元不同。 在本發明之另一態樣中’一種用於傳送資料之系統包 含:複數個候選正交分頻多卫(qFDm)信號產生器,每一 OF^ML號產生包含一虛擬位元插入器,其經調適以在 -資料位元序列前插入一組一或多個虛擬位元以產生一輸 入位元序列,一遞歸迴旋編碼器,其 位兀序列且產生一經編碼之位元序列 經調適以接收該輸入 ’一交錯器,其經調 132011.doc -10- 200908599 適以交錯該經編碼之位元序列,一〇FE)M調變器,其經調 適以接收該經交錯之經編碼之位元序列且產生一候選 OFDM信號;一信號選擇器,其經調適以選擇具有一最低 峰均功率比的該複數個候選OFDM信號中之—者;及—傳 送器,其經調適以傳送該選定之〇FDM信號。該等候選 OFDM信號產生器中之每—者的該組—或多個虛擬位元與 其他候itOFDM信號產以中之每一 |的該組一或多個虛 擬位元不同。In one aspect of the invention, a method for transmitting data is provided. The method includes generating a plurality of candidate orthogonal frequency division multiplexing (〇dfm) signals, wherein generating each of the specialized candidate OFDM signals includes inserting a set of one or more dummy bits before a data bit sequence Generating an input bit sequence, recursively encoding the input bit sequence to generate an encoded bit sequence, interleaving the encoded bit sequence, and 〇fdm modulating the interleaved encoded bit sequence to generate The candidate 〇fdm signal; selecting one of the plurality of candidate 〇Fdm signals having a low peak-to-average power ratio and transmitting the selected 〇FDM signal. The e of each of the candidate 〇fdm signals One or more virtual bits of the group are different from the group of one or more virtual bits of each of the other candidate 〇FDM signals. In another aspect of the invention, a system for transmitting data includes : a plurality of candidate orthogonal frequency division multi-weiler (qFDm) signal generators, each OF^ML number generation comprising a virtual bit inserter adapted to insert a set of one or more before the data bit sequence Virtual bit to generate an input bit a sequence, a recursive cyclocoder, which is located in sequence and produces an encoded bit sequence adapted to receive the input 'an interleaver, which is adapted to interleave the encoded bit 132011.doc -10- 200908599 a sequence, a FE) M modulator adapted to receive the interleaved encoded bit sequence and to generate a candidate OFDM signal; a signal selector adapted to select a lowest peak to average power ratio And - a transmitter adapted to transmit the selected 〇 FDM signal. The set of each of the candidate OFDM signal generators - or a plurality of dummy bits The element is different from the set of one or more virtual bits of each of the other itCT signals.

C c 在本發明之又一態樣中,一種資料接收器包含:—正交 分頻多卫(0FDM)解調變器,其經調適以接收沉糊言號且 輸出-經交錯之經編碼之位元序列;一解交錯器,与調 適以接收該經交錯之經編碼之位元序列且輸出—經編碼之 位元序列;一迴旋解碼器,其經調適以解碼該經編碼之位 凡序列且輸出-輸出位元序列;及—虛擬位元移除^,宜 經調適以移除一組-或多個虛擬位元且輸出-資料位元; 列。 β 【實施方式】 在以下實施方式中,出於經摆品 1…一 解釋而非限制之目的,闡明揭 不特疋細卽之實例實施例以便徹底理解根據本教示之营 施例。然而,e自本揭^案獲益的―般熟f ^ 顯而易見,脫離本文中所福干夕姓— 又们·考將 豆他會wu /、寺疋細節的根據本教示的 ”他實施例仍在隨时請專利範圍的範心。此外 對眾所熟知之裝置及方法的描述1便不混 二 之描述。此等方法及裝置顯然在本教示之料内 例 132011.doc 200908599 圖1為正交分頻多工(〇FDM)傳送系統之—實施例之功能 區塊圖。如熟習此項技術者將瞭解,可錢軟體控制之微 處理器、固線式(hard-Wd)邏輯電路、或其組合來實體實 施圖1中所展示之各種功能。同冑,雖然功能區塊出於解 釋目的而在圖i中被說明為分離的,但可將其組合於任一 實體實施例中。 OFDM傳送系統1〇〇包含複數個(例如,"個)候選〇雇 信號產生器1HM、一信號選擇器12〇及一傳送器13〇。每一 〇FDMj5號產生器11〇_’又包含:一虛擬位元插入器"2、 一遞歸迴旋編碼器114、一交錯器U6及一 〇FDM調變器 118。0FDM調變器118包含符號映射器14〇及時域變換器 150。在OFDM傳送系統1〇〇中,時域變換器15〇包含一反快 速傅立葉變換器(IFFT),但可使用其他實施例。在〇FDM 傳送系統100十,傳送器13〇包括一正交空間_時間區塊編 碼益(OSTBC)132及一包含天線系統134之空間分集傳送系 統。可使用僅使用單一天線之其他傳送配置。 雖然未展示於圖1中,但在OFDM傳送系統1 〇〇中可使用 保護間隔(循環前置項)插入/移除區塊。然而,因為此區塊 不影響0FDM信號之峰均功率比(PAPR),所以其將自圖1 省略以簡化接下來的圖式及論述。 OFDM傳送系統1 〇〇如下操作。 將資料位元序列提供至個候選〇FDM信號產生器110-Z。每一候選0FDM信號產生器110-/自資料位元序列產生唯 一候選0FDM信號。信號選擇器120自個候選OFDM信號 132011.doc -12· 200908599 中選擇具有最低峰均功率比(PAPR)之信號且將選定之 OFDM信號提供至傳送器13〇,傳送器⑽接著傳送具有最 低PAPR之選定之OFDM信號。 在每-候選OFDM信號產生器_中,頻道碼用以採用 頻率分集並改良舰效能。有益地,頻道石馬為遞歸迴旋 碼,且其反饋部分可被看作擾亂器。 將輸入位元序列輸入至遞歸迴旋編碼器〗丨4。接著,經 編碼之位元穿過位元交錯器116且由符號映射器14〇映射為 符號心’ Ml』),其來自符號星象〇,其中m〇fdm符 號中之副載波之數目。所得符號分組到—起且傳遞至ifft 150以輸出候選OFDM信號。 可將複雜的基頻OFDM信號表達為Cc In yet another aspect of the invention, a data receiver includes: an orthogonal frequency division multiple security (OFDM) demodulator adapted to receive a subtle speech and output-interleaved coding a sequence of bits; a deinterleaver, adapted to receive the interleaved encoded bit sequence and output-encoded bit sequence; a convolutional decoder adapted to decode the encoded bit The sequence and the output-output bit sequence; and - the virtual bit removed ^, should be adapted to remove a set of - or more virtual bits and output - data bits; columns. [Embodiment] In the following embodiments, the exemplary embodiments are described for the purpose of understanding the embodiments of the present invention. However, the “common familiarity” that e has benefited from this disclosure is obvious, and it is clear from the name of the Fufu Xi’s in this article—we’ll take the wu, and the details of the temple’s details according to the teachings. The scope of the patent scope is still available at any time. In addition, the description of well-known devices and methods is not described in the following. These methods and devices are obviously within the teachings of this teaching example 132011.doc 200908599 Figure 1 Functional block diagram of an embodiment of an orthogonal frequency division multiplexing (〇FDM) transmission system. As will be appreciated by those skilled in the art, a microprocessor-controlled, hard-wired (hard-Wd) logic circuit Or a combination thereof to physically implement the various functions shown in Figure 1. Similarly, although the functional blocks are illustrated as separate in Figure i for purposes of explanation, they may be combined in any physical embodiment. The OFDM transmission system 1 复 includes a plurality of (for example, "" candidate employment signal generators 1HM, a signal selector 12〇, and a transmitter 13〇. Each 〇FDMj5 generator 11〇_' Contains: a virtual bit inserter "2, a recursive cyclocoder 114 An interleaver U6 and a 〇 FDM modulator 118. The OFDM modulator 118 includes a symbol mapper 14 〇 a time domain transformer 150. In the OFDM transmission system 〇〇, the time domain converter 15 〇 includes an inverse fast Fourier Inverter (IFFT), but other embodiments may be used. In the FDM transmission system 100, the transmitter 13A includes an orthogonal space_time block coding benefit (OSTBC) 132 and a spatial diversity transmission including the antenna system 134. System. Other transmission configurations using only a single antenna may be used. Although not shown in Figure 1, the guard interval (loop preamble) may be used to insert/remove blocks in the OFDM transmission system 1 。. However, because This block does not affect the peak-to-average power ratio (PAPR) of the OFDM signal, so it will be omitted from Figure 1 to simplify the following diagram and discussion. OFDM Transmission System 1 〇〇 The following operations are provided. a candidate 〇 FDM signal generator 110-Z. Each candidate OFDM signal generator 110-/ generates a unique candidate OFDM signal from the data bit sequence. The signal selector 120 is selected from the candidate OFDM signals 132011.doc -12· 200908599 The lowest peak-to-average power ratio (PAPR) signal and the selected OFDM signal is provided to the transmitter 13, and the transmitter (10) then transmits the selected OFDM signal with the lowest PAPR. In each-candidate OFDM signal generator _, the channel code It is used to adopt frequency diversity and improve ship performance. Advantageously, the channel stone is a recursive convolutional code, and its feedback part can be regarded as a scrambler. The input bit sequence is input to the recursive cyclocoder 丨 。 4. Then, The encoded bits pass through the bit interleaver 116 and are mapped by the symbol mapper 14 为 to the symbol heart 'Ml』) from the symbol asterisk 〇, where the number of subcarriers in the m 〇 fdm symbol. The resulting symbols are grouped into and passed to the ifpt 150 to output the candidate OFDM signal. A complex baseband OFDM signal can be expressed as

(1) ViV ㈣ > 0<t<NT 其中’ f(k)=k*M,Μ=1/(ΝΤ) ’且NT為〇FDM符號間隔長 度。 OFDM傳送系統100為經空間-時間編碼之〇Fdm系統, 且因此’ OSTBC 132包括於在OFDM調變器118後之傳送鍵 中。舉例而§ ’總而§之’所傳送之信號係使用所謂之 Alamouti機制基於兩個連續OFDM信號⑺及;c2⑺而產 生。在第一 OFDM符號間隔中,經由天線系統134之第一天 線而傳送X/(%),且經由天線系統13 4之第二天線而傳送 心⑺。在第二OFDM符號間隔中,經由第一天線而傳送 ,且經由第二天線而傳送[/,其中(·)* 132011.doc -13- 200908599 表示複共軛。然而,應理解,在不使用空間分集之OFDM 傳送系統之其他實施例中,可省略OSTBC 1 32,且天線系 統134可僅使用單一天線。 可將等式(1)中之OFDM信號之PAPR界定為(1) ViV (4) >0<t<NT where 'f(k)=k*M, Μ=1/(ΝΤ) ' and NT is the 〇FDM symbol interval length. The OFDM transmission system 100 is a space-time encoded 〇Fdm system, and thus the 'OSTBC 132 is included in the transfer key behind the OFDM modulator 118. For example, the signals transmitted by § 'total §' are generated based on two consecutive OFDM signals (7) and c2 (7) using the so-called Alamouti mechanism. In the first OFDM symbol interval, X/(%) is transmitted via the first antenna of the antenna system 134, and the heart (7) is transmitted via the second antenna of the antenna system 134. In the second OFDM symbol interval, transmitted via the first antenna and transmitted via the second antenna [/, where (·)* 132011.doc -13- 200908599 represents a complex conjugate. However, it should be understood that in other embodiments of an OFDM transmission system that does not use spatial diversity, OSTBC 1 32 may be omitted and antenna system 134 may use only a single antenna. The PAPR of the OFDM signal in equation (1) can be defined as

PAPR (2) max |x(〇| Q<t<NT' ' E{\x(tf) 2PAPR (2) max |x(〇| Q<t<NT' ' E{\x(tf) 2

其中E{·}表示期望運算。可展示,當超取樣速率L大時, (2)中界定之PAPR可準確地近似為:Where E{·} represents the desired operation. It can be shown that when the oversampling rate L is large, the PAPR defined in (2) can be accurately approximated as:

PAPR max \x„ 0<t<LN' (3) 其中Xm(對於〇£w<LA〇為時域信號樣本,且被界定為: (4)PAPR max \x„ 0<t<LN' (3) where Xm (for w£w<LA〇 is a time domain signal sample and is defined as: (4)

N_~[ jl^cm 4n k=0N_~[ jl^cm 4n k=0

> 0<m<LN>0<m<LN

OFDM傳送器100對於每一輸入資訊位元序列產生t/個充 分不同的候選OFDM信號,且選擇待傳送之具有最低PAPR 之信號。 特定言之,在每一候選OFDM信號產生器110-/中使用η 個虛擬位元之不同型樣以將每一對應的遞歸迴旋編碼器 1 1 4設定至不同初始狀態。在此《個虛擬位元之不同值的情 況下,可產生個偽隨機候選OFDM信號。頻道編碼可 採用頻率分集並改良BER效能。同樣,交錯器116及非線 性符號映射器11 8可增加候選OFDM信號之偽隨機性。 如將在下文看出,在資料接收器處,不需要解擾亂器, 132011.doc -14- 200908599 且僅需要維特比(viterbi)解碼器來解碼遞歸迴旋碼。與接 收不具有PAPR之類似OFDIv/Hf號相比,維特比解碼器之複 雜性不改變,其限制條件為由遞歸迴旋編碼器ιΐ4使用的 迴%碼之反饋多項式不增加記憶長度。此外,因為不存在 錯誤傳播,所以不存在歸因於PAPR降低之BER效能損 失。 'The OFDM transmitter 100 generates t/sufficient candidate OFDM signals for each input information bit sequence and selects the signal with the lowest PAPR to be transmitted. In particular, different patterns of n virtual bits are used in each candidate OFDM signal generator 110-/ to set each corresponding recursive cyclocoder 1 1 4 to a different initial state. In the case of "different values of virtual bits", a pseudo-random candidate OFDM signal can be generated. Channel coding can use frequency diversity and improve BER performance. Similarly, interleaver 116 and non-linear symbol mapper 118 can increase the pseudo-randomness of candidate OFDM signals. As will be seen below, at the data receiver, the descrambler is not required, 132011.doc -14-200908599 and only a Viterbi decoder is needed to decode the recursive convolutional code. The Viterbi decoder does not change the complexity of receiving a similar OFDIv/Hf number without PAPR, with the constraint that the feedback polynomial of the back % code used by the recursive cyclocoder ι 4 does not increase the memory length. Furthermore, since there is no error propagation, there is no BER performance loss due to PAPR reduction. '

在第一實施例中,虛擬位元插入器i 12將”個虛擬位元直 接插在資料位元序列之資料位元前以產生施加至遞歸迴旋 編碼器114的輸入位元序列。在„個虛擬位元之個不同 值的情況下,可將C/個候選0FDM信號產生器丨1〇d之遞歸 迴旋編碼器114設定至f/個不同初始狀態。對於圖i中之虛 擬位元插人器D,·,Mm),&之二元表示的虛擬^ 插入於一資料位元序列前以產生一輸入位元序列。接著, 將該輸入位元序列輸入至遞歸迴旋編碼器1丨4以產生一經 編碼之位元序列。將該經編碼之位元序列提供至交錯器 116以產生一經交錯之經編碼之位元序列^最後,將該經 父錯之經編碼之位元序列提供至〇F DM調變器118以產生以 個不同候選OFDM信號。 然而,在此實施例之情況下,存在迴旋碼之記憶長度應 大於虛擬位元之數目η的約束。另外,必須存在將遞歸迴 旋編碼器1 14設定至同一初始狀態之„個虛擬位元之兩個不 同值’其意謂,存在彼此相同之兩個候選〇FDM信號。因 此’減小了 PAPR降低效能。 圖2為可在圖1之OFDM傳送系統中使用的虛擬位元插入 132011.doc -15- 200908599 器200之另一實施例之功能區塊圖。如熟習此項技術者將 瞭解’可使用軟體控制微處理器、固線式邏輯電路、或其 組合來實體實施圖2中所展示之各種功能。同樣,雖然功 食塊出於解釋目的在圖2中被說明為分離的,但可將其 組合於任一實體實施例中。 虛擬位元插入器200包括一漢明(Hamming)編碼器210及 一位元翻轉器220。In the first embodiment, virtual bit inserter i 12 inserts "virtual bit elements directly" before the data bit of the data bit sequence to produce an input bit sequence applied to recursive cyclocoder 114. In the case of a different value of the virtual bit, the recursive cyclocoder 114 of the C/ candidate OFDM signal generator 丨1〇d can be set to f/ different initial states. The virtual ^ of the binary representation of the virtual bit inserter D, ·, Mm), & in Fig. i is inserted before a sequence of data bits to produce an input bit sequence. The input bit sequence is then input to a recursive cyclocoder 1丨4 to produce an encoded bit sequence. The encoded bit sequence is provided to interleaver 116 to produce an interleaved encoded bit sequence. Finally, the parent-coded bit sequence is provided to 〇F DM modulator 118 to generate A different candidate OFDM signal. However, in the case of this embodiment, there is a constraint that the memory length of the whirling code should be larger than the number η of virtual bits. In addition, there must be two different values of "one virtual bit" that set the recursive cyclocoder 1 14 to the same initial state, which means that there are two candidate 〇FDM signals that are identical to each other. Therefore, the PAPR reduction is reduced. Figure 2 is a functional block diagram of another embodiment of a virtual bit insertion 132011.doc -15-200908599 device 200 that can be used in the OFDM transmission system of Figure 1. As will be appreciated by those skilled in the art. The various functions shown in Figure 2 are physically implemented using a software controlled microprocessor, a fixed line logic circuit, or a combination thereof. Again, although the functional blocks are illustrated as separate in Figure 2 for purposes of explanation, It is combined in any of the physical embodiments. The virtual bit inserter 200 includes a Hamming encoder 210 and a bit flipper 220.

ύ 漢明編碼器210接收長度之資料位元序列的第一群 組(2"-心1)個資料位元,且自其產生長度(2«—”之經漢明編 碼之位元序列。位元翻轉器22〇翻轉經漢明編碼之序列之/ 個位tl (其中(χκο,以輸出一輸出位元序列之長度(2^) 的第一組位元。位元翻轉器220故意地藉由翻轉由漢明編 碼器210輸出之位元中之一者來引入位元序列中之一位元 錯誤。虛擬位元插入器接著輸出資料位元序列之第二群組 (F-«-[2*^-1])=^^2”+1)個位元作為輸出位元序列之第一組 位兀。因此,虛擬位元插入器2〇〇接收長度(F_w)之資料位 元序列,且輸出包含F個位元之輸出位元序列。 元插入器200用於圖丨之候選0FDM信號產生器丨丨〇_丨中時, 既而將其輸出位元序列作為輸人位元序列施加至遞歸迴旋 編碼器114。 對於候選〇脑信號產生器11(Μ中之每—者,翻轉經漢 明編碼之序列中之-不同位元(包括不翻轉_信號產生 器lio-ί中之一者的任何位元)。 因此: 13201J.doc -16- 200908599 •經漢明編碼之位元山,1夕s(2M),及 •其他貢料位元di=b(i_n),2”夕<尸 歸迴旋編碼器114中以進行頻道編碼。因為漢 == 誤,所以故意〜之-位元錯誤可由 編❹::之漢明解碼器校正’其限制條件為所有漢明 ^碼位4經正確地偵測。遞歸迴旋編瑪器114、位元交 及非線性映射器⑽可保貯個候選 分不同,使得可達成良好的PAPR降低效能。 “虎充 在此實施例中,不存在對迴旋碼之記憶長度的約束。 ^上兩個實施例中,因為虛擬位_人操作、迴旋編 '广交錯為線性操作,所以僅需要產生—對應於虛擬 :以插:㈣之單一經交錯之迴旋碼字組。藉由將一預計 异之陵疋位7L序列添加至經交錯之迴旋碼字組%來計算對 絲其他虛擬位元插入器112之經交錯之迴旋碼字組。此 可間化傳送器設計。因為需要在傳送器侧執行以個謝操 作’所以增加傳送器之複雜性以提供改良之PAPR效能。 然而,資料接收器之複雜性保持幾乎不變。 古圖3為-〇FDM資料接收器之_實施例之功能區塊圖。如 熟習此項技術者將瞭解,可使用軟體控制微處理器、固線 :邏輯電路、或其組合來實體實施圖3中所展示之各種功 能·^同樣,雖然功能區塊出於解釋目的在圖3中被說明為 分離的,但可將其組合於任—實體實施例中。 一正交分頻多工 一迴旋解碼器340 資料接收器300包括一天線系統31〇、 (OFDM)解調變器320、一解交錯器330、 132011.doc •17· 200908599 及一虛擬位元移除器350。 OFDM解調變器32〇包括第一頻域變換器322—丨及第二頻 域變換器322-2、一正交空間-時間區塊編碼(〇STBC)解碼 器324及_ 0FDM符號至位元轉換器或解映射器。在一 實施例中第一頻域變換器322-1及第二頻域變換器322-2 各自為快速傅立葉變換器(FFT)。 資料接收器300操作以接收一經空間-時間編碼之〇FDM 信號。然而,應理解,在〇FDM接收器之其他實施例中, 不使用空間分集,且天線系統310可僅使用單一天線, OFDM解調變器32〇可僅包括單一頻域變換器切,且可省 略OSTBC解碼器324。 〇FDM解調變器320接收-包括OFDM符號之OFDM信號 且輸出一經交錯之經編碼之位元序列。若使用空間-時間 編碼(例如,M_-0FDM配置),則仍丁%解碼器324在頻 域隻換後執行空間時間碼解碼。解交錯器33q接收經交錯 之經編碼之位元序列,解交錯該位元序列,且輸出—經編 碼之位元序列。迴旋解碼器34G解碼該經編碼之位元序列 且輸出-輸出位元序列。虛擬位元移除器35〇自位元序列 移除《個虛擬位元,且輸出—資料位元序列。在—實施例 中虛擬位兀移除器350包括一漢明解碼器352以移除由虛 擬位元插入器200插入於所傳送之位元序列中之一或多個 虛擬位元。 在接下來的圖4至圖6中,被表示為,,類型4 ”之曲線對應 於以上關於圖!而描述之第一實施例虛擬位元插入器⑴, 13201I.doc -18- 200908599 且被表示為',類型-3"之曲線對應於第二實施例虛擬位元插 入器’其實例為圖2中所示之虛擬位元插入器2〇〇。 圖4描繪使用根據各種實施例之〇FDM傳送系統而產生的 OFDM信號之峰均功率比之模擬降低。在該等模擬中, OFDM副載波之數目"為128,且星象〇為16(^河。使用行 業標準%速率迴旋碼[133 171],且此碼之記憶長度為6。此 碼經修改以處於具有133之反饋多項式之遞歸形式。 亦描繪理論PAPR效能曲線作為參考。此等理論結果很 好地匹配類型-2實施例之模擬結果。對於相同數目之虛擬 位元,類型-2實施例始終展示出好於類型_丨實施例之pApR 效能的PAPR效能,但隨著„增加,此兩個機制之間的效能 間隙減小。在兩個(2)虛擬位元的情況下,在丨〇_4之機率 下,類型-1機制可達成PAPR降低約21 dB,且類型_2機制 可達成PAPR降低約2.7 dB。在三個(3)虛擬位元的情況 下,在ΙΟ·4之機率下,可達成約3·4 dB2PApR降低。當使 用四個(4>虛擬位元,可達成約4 dBi pApR降低s然而, 此改良實現係以需要在傳送器處執行十六個(16)128_ IFFT(在四個虛擬位元之狀況下)為代價的。 圖5說明使用根據各種實施例之〇FDM傳送系統而產生的 OFDM信號之功率譜密度。在圖5中,藉由量測失真的傳送 信號之功率譜密度(PSD)來評估在非線性功率放大器後之 頻帶外功率。為了模擬非線性功率放大器,使用以下 AM/AM轉換模型: 132011.doc -19- 200908599 (5) s(xm) 1 +The Hamming encoder 210 receives the first group (2"-heart 1) data bits of the length data bit sequence and generates a Hamming-coded bit sequence of length (2«-" therefrom. The bit flipper 22 flips the first bit of the sequence of the Hamming coded sequence (where (χκο, to output the length of the output bit sequence (2^). The bit flipper 220 intentionally A bit error in the sequence of bits is introduced by flipping one of the bits output by the Hamming encoder 210. The virtual bit inserter then outputs a second group of data bit sequences (F-«- [2*^-1])=^^2"+1) bits are used as the first group of bits of the output bit sequence. Therefore, the virtual bit inserter 2 receives the data bit of the length (F_w) a sequence, and outputting a sequence of output bits comprising F bits. When the meta-interpolator 200 is used in the candidate OFDM signal generator 丨丨〇_丨 of the figure, the output bit sequence is used as the input bit sequence. Applied to the recursive cyclocoder 114. For the candidate camphor signal generator 11 (each of which is flipped by the Hamming coded sequence - The same bit (including any bit that does not flip one of the signal generators lio-ί). Therefore: 13201J.doc -16- 200908599 • The bite mountain coded by Hamming, 1 s (2M), and • Other tributary bits di=b(i_n), 2" eve < corpse returning gyro encoder 114 for channel coding. Because han == error, deliberate ~ - bit error can be edited:: Hamming decoder correction 'its constraint is that all Hamming code bits 4 are correctly detected. Recursive whirling coder 114, bit intersection and non-linear mapper (10) can save different candidate points, making achievable Good PAPR reduces performance. "In this embodiment, there is no constraint on the memory length of the whirling code. In the above two embodiments, because the virtual bit_human operation, the revolving, the wide interleave is a linear operation, So only need to generate - corresponding to the virtual: insert: (d) a single interlaced convolutional codeword group. Calculate the other by adding a predicted 7L sequence to the interlaced convolutional codeword group % The interleaved whirling codeword group of the virtual bit inserter 112. This inter-transfer Design. Because of the need to perform a thank-you operation on the transmitter side, the complexity of the transmitter is increased to provide improved PAPR performance. However, the complexity of the data receiver remains almost unchanged. The ancient map 3 is -〇FDM data reception Functional block diagram of the embodiment of the device. As will be appreciated by those skilled in the art, various functions as shown in FIG. 3 can be physically implemented using a software control microprocessor, a fixed line: logic circuit, or a combination thereof. Likewise, although the functional blocks are illustrated as separate for purposes of explanation in FIG. 3, they may be combined in any of the physical embodiments. An orthogonal frequency division multiplexing one cyclotron decoder 340 data receiver 300 includes An antenna system 31 〇, (OFDM) demodulation transformer 320, a deinterleaver 330, 132011.doc • 17· 200908599 and a virtual bit remover 350. The OFDM demodulator 32A includes a first frequency domain converter 322-丨 and a second frequency domain converter 322-2, an orthogonal spatial-temporal block coding (〇STBC) decoder 324, and a _0FDM symbol in place. Meta converter or demapper. In one embodiment, the first frequency domain converter 322-1 and the second frequency domain converter 322-2 are each a fast Fourier transformer (FFT). The data receiver 300 operates to receive a space-time encoded 〇FDM signal. However, it should be understood that in other embodiments of the 〇FDM receiver, spatial diversity is not used, and the antenna system 310 can use only a single antenna, and the OFDM demodulation transformer 32 can include only a single frequency domain converter, and can The OSTBC decoder 324 is omitted. The 〇FDM demodulation transformer 320 receives the OFDM signal including the OFDM symbol and outputs an interleaved encoded bit sequence. If space-time coding (e.g., M_-0FDM configuration) is used, the still-% decoder 324 performs spatial time code decoding after only the frequency domain is changed. Deinterleaver 33q receives the interleaved encoded bit sequence, deinterleaves the bit sequence, and outputs the encoded bit sequence. The cyclotron decoder 34G decodes the encoded bit sequence and outputs an output bit sequence. The virtual bit remover 35 removes the "virtual bit, and outputs - the sequence of data bits from the bit sequence. In the embodiment the virtual bit remover 350 includes a Hamming decoder 352 to remove one or more virtual bits inserted by the virtual bit inserter 200 into the transmitted bit sequence. In the following FIGS. 4 to 6, it is shown that the curve of type 4" corresponds to the first embodiment virtual bit inserter (1), 13201I.doc -18-200908599 described above with respect to the figure! The curve denoted as ', type-3' corresponds to the second embodiment virtual bit inserter' example of which is the virtual bit inserter 2 shown in Figure 2. Figure 4 depicts the use of 根据 according to various embodiments The peak-to-average power ratio of the OFDM signal generated by the FDM transmission system is reduced. In these simulations, the number of OFDM subcarriers is "128, and the astrological sign is 16 (^河. Using the industry standard % rate whirling code [ 133 171], and the memory length of this code is 6. This code is modified to be in a recursive form with a feedback polynomial of 133. The theoretical PAPR performance curve is also depicted as a reference. These theoretical results are well matched to the Type-2 embodiment. Simulation results. For the same number of virtual bits, the Type-2 embodiment consistently exhibits PAPR performance better than the pApR performance of the Type_丨 embodiment, but with the increase, the performance gap between the two mechanisms is reduced. Small. In two ( 2) In the case of virtual bits, the type-1 mechanism can achieve a PAPR reduction of approximately 21 dB under the probability of 丨〇_4, and the type_2 mechanism can achieve a PAPR reduction of approximately 2.7 dB. In three (3) virtual In the case of a bit, a reduction of about 3·4 dB2 PApR can be achieved at a probability of ΙΟ4. When four (4 > virtual bits are used, a reduction of about 4 dBi pApR can be achieved. However, this improved implementation is required Performing sixteen (16) 128_ IFFTs at the transmitter (at the condition of four virtual bits). Figure 5 illustrates the power spectral density of an OFDM signal generated using a 〇FDM transmission system in accordance with various embodiments. In Figure 5, the out-of-band power after the nonlinear power amplifier is evaluated by measuring the power spectral density (PSD) of the distorted transmitted signal. To simulate a nonlinear power amplifier, the following AM/AM conversion model is used: 132011 .doc -19- 200908599 (5) s(xm) 1 +

|VP Λ2Ρ 二中二為輸入信號,且福功率放大器之最大輸出信號振 下田。^此等模擬中,产3。在6 ^之輸入回退(邮)的情況 下Ά=3之所提議之類型_2機制可將頻帶外輕射減少 約5 dB。為了比較,圖5亦展示對於具有二⑺之截判比 ㈣的㈣機制之模擬結果。吾人可看出在無後渡波情況|VP Λ2Ρ The second two is the input signal, and the maximum output signal of the power amplifier is oscillating. ^ In these simulations, production is 3. In the case of a 6^ input fallback (post), the proposed type_2 mechanism of Ά=3 can reduce the out-of-band light shot by about 5 dB. For comparison, Figure 5 also shows the simulation results for the (four) mechanism with a cutoff ratio of four (7). We can see that there is no post wave situation.

下之截割大大地增加了頻帶外輕射。對於相同鄰近頻道干 擾2求’由OFDM傳送系統1〇〇使用之pApR機制對功率放 大器之IBO提出了較不嚴格的要求,纟意謂達成了較大的 功率效率。 圖6比較使用兩個不同OFDM傳送系統而產生的〇fdm系 統之位元錯誤率效能。在圖6中,展示由使用空間_時間編 碼的OFDM傳送系統1〇〇使用之機制的BER效能。所模擬之 系統具有兩個傳送天線及一接收天線。Alam〇uti機制用以 達成空間分集。在此模擬中,頻道模型為準靜態平坦衰落 頻道。在OFDM調變器後使用具有IB〇=6 dB之非線性功率 放大器。在接收器側處’執行硬決策解調變。亦給出使用 具有CR=1.9之截割機制的系統之BEr效能以用於比較。如 了看出’因為截割機制引入頻帶内雜訊,所以具有[7,4]漢 明碼之類型-2機制具有相對於截割機制的約1 dB的效能增 益。 總之’在《個虛擬位元的情況下,對於每一資訊位元序 132011.doc -20- 200908599The next cut greatly increases the out-of-band light shot. For the same adjacent channel interference 2, the pApR mechanism used by the OFDM transmission system 1 imposes less stringent requirements on the IBO of the power amplifier, which means that a greater power efficiency is achieved. Figure 6 compares the bit error rate performance of the 〇fdm system generated using two different OFDM transmission systems. In Figure 6, the BER performance of the mechanism used by the OFDM transmission system 1 using space_time coding is shown. The simulated system has two transmit antennas and one receive antenna. The Alam〇uti mechanism is used to achieve spatial diversity. In this simulation, the channel model is a quasi-static flat fading channel. A nonlinear power amplifier with IB 〇 = 6 dB is used after the OFDM modulator. A hard decision demodulation is performed at the receiver side. The BEr performance of a system using a cutting mechanism with CR = 1.9 is also given for comparison. As can be seen, the type-2 mechanism with the [7,4] Hamming code has a performance gain of about 1 dB relative to the cutting mechanism because the truncation mechanism introduces in-band noise. In short 'in the case of a virtual bit, for each information bit sequence 132011.doc -20- 200908599

=’ OFDM傳送系統剛可產生2”個充分不同的候選〇丽 信號’且選擇具有最低以叹之^聰信號加以傳送。 PAPR降低係以在料器處的複雜性之增加^價而達成 的。在接收器側處,解碼幾乎與不具有pApR降低之習知 經編碼之OFDM機制相同。最重要的$ ’不存在歸因於任 何旁資訊偵測錯誤之錯誤傳播。因為基地台始終具有較強 大的數位信號處理器,所以此機制尤其適合於經編碼之 OFDM系統之下行鏈路。此外,可易於將其併人至經空間_ 時間編碼之OFDM系統内,尤其是併人正交空間_時間區塊 碼經布署以達成空間分集的0FDM系統中,且迴旋碼用以 達成頻率分集X改良職效能。應理解,可將此機制自缺 地延伸至具有#他頻道碼及、經$間_時間編碼之機制的系 統’諸如’渦輪碼及空間·時間格子碼。 雖然本文中揭示了較佳實施例,但可能有許多在本發明 之概念及範疇内之變化。在檢閱本文之說明書、圖式及申 請專利範圍後,一般熟習此項技術者將瞭解此等變化。因 此,本發明僅受隨附申請專利範圍之精神與範疇的限制。 【圖式簡單說明】 圖1為正交分頻多工(OFDM)傳送系統之一實施例之功 區塊圖。 圖2為可在圖1之OFDM傳送系統中使用的虛擬位元插入 器之一實施例之功能區塊圖。 圖3為0FDM資料接收器之一實施例之功能區塊圖。 圖4描繪使用根據各種實施例之〇FE)VI傳送系統而產生的 13201Ldoc -21 - 200908599 OFDM信號之峰均功率比之模擬降低。 圖5說明使用根據各種實施例之OFDM傳送系統而產生的 OFDM信號之功率譜密度。 圖6比較使用兩個不同OFDM傳送系統而產生的OFDM系 統之位元錯誤率效能。 【主要元件符號說明】 11 漢明解碼器 100 正交分頻多工(OFDM)傳送系統 110-/ OFDM信號產生器 112 虛擬位元插入器 114 遞歸迴旋編碼器 116 位元交錯器 118 OFDM調變器 120 信號選擇器 130 傳送器 132 正交空間-時間區塊編碼器(OSTBC) 134 天線系統 140 符號映射器 150 時域變換器/IFFT 200 虛擬位元插入 210 漢明編碼器 220 位元翻轉器 300 資料接收器 3 10 天線系統 132011.doc -22- 200908599 320 正交分頻多工(OFDM)解調變器 322-1 第一頻域變換器 322-2 第二頻域變換器 324 正交空間-時間區塊編碼(OSTBC)解碼器 326 OFDM符號至位元轉換器或解映射器 330 解交錯器 340 迴旋解碼器 350 虛擬位元移除益 132011.doc •23 ·= 'The OFDM transmission system can just generate 2" sufficiently different candidate brilliant signals' and choose to transmit with the lowest sigh signal. PAPR reduction is achieved by increasing the complexity at the feeder. At the receiver side, decoding is almost identical to the conventionally encoded OFDM mechanism without pApR reduction. The most important $' does not exist due to error propagation of any side information detection errors. Because the base station always has A powerful digital signal processor, so this mechanism is especially suitable for the downlink of the coded OFDM system. In addition, it can be easily integrated into the space-time coded OFDM system, especially in the orthogonal space _ The time block code is deployed in the 0FDM system to achieve spatial diversity, and the whirling code is used to achieve frequency diversity X to improve the performance. It should be understood that this mechanism can be extended to have the #他频道码和经$ A system of inter-time coding mechanisms such as 'turbo code and space·time trellis code. Although preferred embodiments are disclosed herein, there may be many variations within the concepts and scope of the present invention. The present invention will be understood by those skilled in the art after reviewing the specification, the drawings and the scope of the patent application. Therefore, the present invention is limited only by the spirit and scope of the accompanying claims. Figure 1 is a block diagram of an embodiment of an embodiment of an orthogonal frequency division multiplexing (OFDM) transmission system. Figure 2 is a diagram of an embodiment of a virtual bit inserter that can be used in the OFDM transmission system of Figure 1. Figure 3 is a functional block diagram of one embodiment of an OFDM data receiver. Figure 4 depicts the peak-to-average power of a 13201Ldoc-21-200908599 OFDM signal generated using a 〇FE) VI transmission system in accordance with various embodiments. Figure 5 illustrates the power spectral density of an OFDM signal generated using an OFDM transmission system in accordance with various embodiments. Figure 6 compares the bit error rate performance of an OFDM system generated using two different OFDM transmission systems. Main component symbol description] 11 Hamming decoder 100 orthogonal frequency division multiplexing (OFDM) transmission system 110-/OFDM signal generator 112 virtual bit inserter 114 recursive cyclocoder 116 bit Element Interleaver 118 OFDM Modulator 120 Signal Selector 130 Transmitter 132 Orthogonal Space-Time Block Encoder (OSTBC) 134 Antenna System 140 Symbol Mapper 150 Time Domain Converter / IFFT 200 Virtual Bit Insert 210 Hamming Encoder 220 bit flipper 300 data receiver 3 10 antenna system 132011.doc -22- 200908599 320 orthogonal frequency division multiplexing (OFDM) demodulator 322-1 first frequency domain converter 322-2 second Frequency Domain Converter 324 Orthogonal Space-Time Block Coding (OSTBC) Decoder 326 OFDM Symbol to Bit Converter or Demapper 330 Deinterleaver 340 Cyclotron Decoder 350 Virtual Bit Removal Benefit 132011.doc •23 ·

Claims (1)

200908599 十、申請專利範圍: 1 · 一種傳送資料之方法,其包含: 產生(11〇-Z)複數個候選正交分頻多工(OFDM)信號,其 中產生該等候選〇FDM信號中之每一者包含: 在—資料位元序列前插入(112、2〇〇)一組一或多個 虛擬位元以產生一輸入位元序列, 遞歸迴%編碼(114)該輸入位元序列以產生一經編碼 之位元序列, 交錯(11 6)該經編碼之位元序列, OFDM調變(11 8)該經交錯之經編碼之位元序列以產 生該候選OFDM信號; 選擇(120)具有一最低峰均功率比的該複數個候選 OFDM信號中之一者;及 傳送(130)該選定之〇fdm信號, 其中該等候選OFDM信號中之每一者的該組一或多 個虛擬位元與其他候選OFDM信號中之每一者的該袓 j ' ' 或多個虛擬位7L不同。 2.如請求項1之方法’其中該資料位元序列包含2個位元, 且其中在該資料位元序列前插入(2〇〇)該組一或多個虛擬 位元以產生該輸入位元序列包含: 將該資料位元序列之一第一群組X個位元施加至一 漢明(Hamming)編碼器(2 1 〇)以產生一經漢明編碼之位 元序列; 翻轉(220)該經漢明編碼之序列之/個位元,其中 132011.doc 200908599 ,以輸出該輸入位序 υ /r力〈弟一組位元;及 輪出該資料位元序列 篦_ ^ 第一群組個位元,作為 該輸入位元序列之一第二組位元, 其中對於該等候選OFDM俨鲈中夕底 土 现中之母一者,經翻轉 之該經漢明編碼之序列之一位元與其他候選0FDM信 號中之每-者的經翻轉之該經漢明編碼之序列之一位 兀*不同。 3. 如吻求項]之方法,並中〇 F /、r OFDM調變(11 8)該經交錯之經 編碼之位元序列以產生該候選OFDM信號包含: 將該經交錯之經編碼之位元序列映射〇4〇)至複數個 OFDM符號;及 將該等OFDM符號變換(15〇)至時域以產生該〇FDM 信號。 4·如睛求項1之方法’其中傳送〇3〇)該選定之OFDM信號 包含正交空間-時間區塊編碼(〇STBC)(1 32)該〇fdm信號 且將该OSTBC信號施加至一空軋分集傳送系統(134)。 5. —種用於傳送資料之系統(1〇〇),其包含: 複數個候選正交分頻多工(OFDM)信號產生器(11 〇_ 0,每一者包含, 一虛擬位元插入器(112、200),其經調適以在一資 料位元序列前插入一組一或多個虛擬位元以產生一輸 入位元序列, 一遞歸迴旋編碼器(114),其經調適以接收該輸入位 元序列且產生一經編碼之位元序列, 132011.doc 200908599 一交錯器(11 6),其經調適以交錯該經編碼之位元序 列, 一 OFDM調變器(118),其經調適以接收該經交錯之 經編碼之位元序列且產生一候選〇FDm信號; 一信號選擇器(120),其經調適以選擇具有一最低峰 均功率比的該複數個候選OFDM信號中之一者;及 一傳送器(1 30),其經調適以傳送該選定之〇FDM信 號, 其中該等候選OFDM信號產生器(1 1 〇_〇中之每一者 的該組一或多個虛擬位元與其他候選〇FDM信號產生 器(11 0-Z)中之每一者的該組一或多個虛擬位元不同。 6·如請求項5之系統(100),其中每一虛擬位元插入器(2〇〇) 包含: 一漢明編碼器(210),其經調適以接收該資料位元序 列之一第一群組位元且產生一經漢明編碼之位元序 列;及 位兀翻轉益(22〇),丨經調適以翻轉該經漢明編碼 之序列之個位元,其中〇划,以輪出該輸入位元序 列之一第一組位元; 其中對於該等候選〇FDM信號中之每—者,經翻轉 之該經漢明編碼之序列之一位元與其他候選〇蘭信 號中之每-相經翻轉之該經漢明㉟石馬之序列之一位 元不同。 7.如請求項5之系統(1〇〇),其中該〇FDM調變器⑴8)包含· 132011.doc 200908599 ~ OFDM符號映射器(140),其經調適以將該經交錯 之經編碼之位元序列映射至複數個〇FDm符號;及 ~變換器(1 5 0) ’其經調適以將該等〇Fdm符號變換 至時域以產生該OFDM信號。 8. 如明求項5之系統(1〇〇),其中該傳送器(130)包含一正交 二間·蛉間區塊編碼器(OSTBC)(l 32)及一空間分集傳送系 統(134)。 9. 一種資料接收器(300),其包含: 正父分頻多工(OFDM)解調變器(32〇),其經調適 以接收OFDM信號且輸出一經交錯之經編碼之位元序 解交錯器(330),其經調適以接收該經交錯之經編 碼之位元序列且輸出一經編碼之位元序列; 一迖旋解碼器(340),其經調適以解碼該經編碼之位 元序列且輪出一輸出位元序列;及 一虛擬位元移除器(350),其經調適以自該輸出位元200908599 X. Patent Application Range: 1 · A method for transmitting data, comprising: generating (11〇-Z) a plurality of candidate orthogonal frequency division multiplexing (OFDM) signals, wherein each of the candidate 〇FDM signals is generated One includes: inserting (112, 2〇〇) a set of one or more dummy bits before the data bit sequence to generate an input bit sequence, recursively returning to the % code (114) the input bit sequence to generate An encoded bit sequence, interleaving (116) the encoded bit sequence, OFDM modulating (11 8) the interleaved encoded bit sequence to generate the candidate OFDM signal; selecting (120) having a One of the plurality of candidate OFDM signals having a lowest peak-to-average power ratio; and transmitting (130) the selected 〇fdm signal, wherein the set of one or more virtual bits of each of the candidate OFDM signals This 袓j ' ' or multiple virtual bits 7L are different from each of the other candidate OFDM signals. 2. The method of claim 1 wherein the data bit sequence comprises 2 bits, and wherein the set of one or more dummy bits is inserted (2〇〇) before the data bit sequence to generate the input bit The meta-sequence includes: applying a first group of X bits of one of the data bit sequences to a Hamming encoder (2 1 〇) to generate a Hamming-encoded bit sequence; flipping (220) The sequence of the Hamming coded sequence, 132011.doc 200908599, to output the input bit sequence υ /r force <a group of bits; and rotate the data bit sequence 篦 _ ^ first group Forming a bit as a second set of bits of the input bit sequence, wherein one of the sequences of the Hamming code that is flipped over is inverted for the parent of the candidate OFDM 现The element is different from one of the Hamming-coded sequences of each of the other candidate OFDM signals. 3. The method of </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; The bit sequence maps 〇4〇) to a plurality of OFDM symbols; and transforms (15〇) the OFDM symbols into a time domain to generate the 〇FDM signal. 4. The method of claim 1 wherein the selected OFDM signal comprises orthogonal space-time block coding (〇STBC) (1 32) the 〇fdm signal and applying the OSTBC signal to an empty Rolling diversity transfer system (134). 5. A system for transmitting data (1〇〇), comprising: a plurality of candidate orthogonal frequency division multiplexing (OFDM) signal generators (11 〇 _ 0, each containing, a dummy bit insertion And (112, 200) adapted to insert a set of one or more dummy bits before a sequence of data bits to generate an input bit sequence, a recursive cyclocoder (114) adapted to receive The input bit sequence is generated and an encoded bit sequence is generated, 132011.doc 200908599 an interleaver (116) adapted to interleave the encoded bit sequence, an OFDM modulator (118) Adapting to receive the interleaved encoded bit sequence and generating a candidate 〇 FDm signal; a signal selector (120) adapted to select the plurality of candidate OFDM signals having a lowest peak-to-average power ratio And a transmitter (1 30) adapted to transmit the selected 〇FDM signal, wherein the candidate OFDM signal generators (1 1 〇 〇 的 of the group of one or more Virtual bit and other candidate 〇FDM signal generators (1 The set of one or more virtual bits of each of 1 0-Z) is different. 6. The system (100) of claim 5, wherein each virtual bit inserter (2〇〇) comprises: a Hamming encoder (210) adapted to receive a first group of bits of the data bit sequence and to generate a Hamming-coded bit sequence; and to position the flip-bit (22〇) To flip a bit of the Hamming coded sequence, wherein the first row of bits of the input bit sequence is rotated to be rotated; wherein each of the candidate 〇FDM signals is flipped One of the sequences of the Hamming coded sequence is different from one of the sequences of the Hamming 35 stone horse that each of the other candidate magnolia signals is flipped. 7. The system of claim 5 ( 1〇〇), wherein the 〇FDM modulator (1)8) includes a 132011.doc 200908599 ~ OFDM symbol mapper (140) adapted to map the interleaved encoded bit sequence to a plurality of 〇FDm a symbol; and a converter (1 50) that are adapted to transform the 〇Fdm symbols into the time domain to produce the OFDM 8. The system of claim 5, wherein the transmitter (130) comprises an orthogonal two-interval block encoder (OSTBC) (l 32) and a spatial diversity transmission system (134) 9. A data receiver (300) comprising: an Orthodox Division Frequency Division Multiplexing (OFDM) demodulation transformer (32A) adapted to receive an OFDM signal and output an interlaced encoded a bit sequence deinterleaver (330) adapted to receive the interleaved encoded bit sequence and output an encoded bit sequence; a cyclocoder (340) adapted to decode the sequence Encoded bit sequence and rotates an output bit sequence; and a virtual bit remover (350) adapted to derive from the output bit 資料位元序Data bit order 多個虛擬位元的值。 其_該虛擬位元移除器 利疋待移除的該組—或The value of multiple virtual bits. The virtual bit remover is beneficial to the group to be removed — or 輸出的解映射器(326) ’其中該OFDM解調變器 用於解映射該頻域變換器 132011.docAn output demapper (326)' wherein the OFDM demodulator is used to demap the frequency domain converter 132011.doc
TW97121285A 2007-06-11 2008-06-06 System and method of transmitting and receiving an OFDM signal with reduced peak-to-average power ratio TW200908599A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US94307907P 2007-06-11 2007-06-11
US98476607P 2007-11-02 2007-11-02

Publications (1)

Publication Number Publication Date
TW200908599A true TW200908599A (en) 2009-02-16

Family

ID=39811761

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97121285A TW200908599A (en) 2007-06-11 2008-06-06 System and method of transmitting and receiving an OFDM signal with reduced peak-to-average power ratio

Country Status (2)

Country Link
TW (1) TW200908599A (en)
WO (1) WO2008152596A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137055A (en) * 2010-09-06 2011-07-27 华为技术有限公司 Method, device and system for reducing peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) system
US8737911B2 (en) 2009-05-11 2014-05-27 Qualcomm Incorporated Dual-stage echo cancellation in a wireless repeater using an inserted pilot
TWI501596B (en) * 2010-03-08 2015-09-21 Sony Corp Communications system using adaptive orthogonal frequency division multiplexing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021093075A1 (en) * 2019-12-13 2021-05-20 Zte Corporation Time-domain modulation scheme for low peak average power ratio

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8737911B2 (en) 2009-05-11 2014-05-27 Qualcomm Incorporated Dual-stage echo cancellation in a wireless repeater using an inserted pilot
US9020009B2 (en) 2009-05-11 2015-04-28 Qualcomm Incorporated Inserted pilot construction for an echo cancellation repeater
TWI501596B (en) * 2010-03-08 2015-09-21 Sony Corp Communications system using adaptive orthogonal frequency division multiplexing
US9154280B2 (en) 2010-03-08 2015-10-06 Sony Corporation Communications system using adaptive orthogonal frequency division multiplexing
CN102137055A (en) * 2010-09-06 2011-07-27 华为技术有限公司 Method, device and system for reducing peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) system
WO2011137795A1 (en) * 2010-09-06 2011-11-10 华为技术有限公司 Method, device and system for reducing peak to average power ratio in optical orthogonal frequency division multiplexing system

Also Published As

Publication number Publication date
WO2008152596A3 (en) 2009-02-05
WO2008152596A2 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
KR101103472B1 (en) System, method, and computer-readable medium for multilevel shaping for wireless communication systems
Han et al. Modified selected mapping technique for PAPR reduction of coded OFDM signal
Rahmatallah et al. Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy
Sabbaghian et al. Near Shannon limit and low peak to average power ratio turbo block coded OFDM
CN105340262B (en) The device for transmitting broadcast singal, the device for receiving broadcast singal, the method for transmitting broadcast singal and the method for receiving broadcast singal
TW200414731A (en) System and method of protecting and transmitting side information for multicarrier communication systems with reduced peak-to-average power ratio
US7586997B2 (en) Method and system for maximum transmit diversity
Jiang et al. Using fountain codes to control the peak-to-average power ratio of OFDM signals
US7974358B2 (en) Orthogonal frequency division multiplexing (OFDM) encoding and decoding methods and systems
Gupta et al. Peak to average power ratio reduction in OFDM using higher order partitioned PTS sequence and Bose Chaudhuri Hocquenghem Codes
Jiang et al. OFDM peak-to-average power ratio, reduction by complement block coding scheme and its modified version
US20060098747A1 (en) Coded OFDM system and method with improved PAPR reduction
TW200908599A (en) System and method of transmitting and receiving an OFDM signal with reduced peak-to-average power ratio
CN101345731B (en) Multi-user OFDM modulation method based on imbedded training sequence and LDPC code
CN102307170A (en) Anti-interference wireless multimedia mobile broadcast signal framing modulation method
Dey et al. Performance analysis of PAPR reduction for OFDM-BPSK,-QPSK and-QAM using forward error correcting code
Carson et al. Peak-to-average power ratio reduction of OFDM using repeat-accumulate codes and selective mapping
EP1853018B1 (en) Encoding and decoding for multicarrier signals.
EP1779547A2 (en) A method and system for maximum transmit diversity
CN102281232B (en) Multimedia broadcast mobile signal anti-noise framing modulation method
Hsu et al. Improving a power line communications standard with LDPC codes
CN102271115B (en) Anti-noise transmission method of digital broadcasting mobile signals
Wael et al. PTS-based PAPR reduction in fixed WiMAX system with Grouping Phase Weighting (GPW)
Li et al. Increasing data rates through iterative coding and antenna diversity in OFDM-based wireless communication
Malathi et al. Peak to average power ratio (PAPR) reduction techniques for OFDM-MIMO system