TW200908533A - Structuring of piezoelectric power generator - Google Patents

Structuring of piezoelectric power generator Download PDF

Info

Publication number
TW200908533A
TW200908533A TW96128177A TW96128177A TW200908533A TW 200908533 A TW200908533 A TW 200908533A TW 96128177 A TW96128177 A TW 96128177A TW 96128177 A TW96128177 A TW 96128177A TW 200908533 A TW200908533 A TW 200908533A
Authority
TW
Taiwan
Prior art keywords
piezoelectric
piezoelectric transducer
fixed shaft
metal piece
piece
Prior art date
Application number
TW96128177A
Other languages
Chinese (zh)
Other versions
TWI339487B (en
Inventor
Syh-Yuh Cheng
Yun-Tien Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96128177A priority Critical patent/TWI339487B/en
Publication of TW200908533A publication Critical patent/TW200908533A/en
Application granted granted Critical
Publication of TWI339487B publication Critical patent/TWI339487B/en

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

A structuring of piezoelectric power generator includes two piezoelectric transducer units, a resilient object, and a plurality of fixing means. The resilient object is disposed between the piezoelectric transducer units. The fixing means is used for adjusting the distance between the piezoelectric transducer units so as to deform the piezoelectric transducer units by way of the stress arising from the resilient object. The piezoelectric transducer units, receiving the stress, can output maximum electric energy.

Description

200908533 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種壓電發電器結構,尤指一種對壓 電換能元件單元預加應力產生形變,使壓電換能元件單元 在固定外力作用下能產生最大電能輸出之壓電發電器結 構。 【先前技術】 壓電材料為電能與機械能間轉換的材料,以锆鈦酸鉛 及其衍生成份為代表,其所具有的壓電特性也是目前機電 轉換效率最高者。壓電材料應用於電壓產生的代表為點火 元件,使用彈簧儲存機械能後瞬間撞擊壓電材料表面,利 用壓電特性將機械能轉換成電能,產生的電壓一般達到上 萬伏特的直流電壓,經由一定間距的電極放電以點燃瓦斯 氣體,產生的電壓與壓電材料的電容與壓電轉換特性有 關’由於需要尚的輸出電壓以產生氣體放電’因此壓電材 料以柱狀為主,其電容值低因此可產生上萬伏特的電壓。 雖然有高電壓的輸出,但電壓持續時間短(毫秒以下),無 法以電能儲存裝置如電池或電容器來儲存。降低壓電材料 的厚度可提高電容值,產生的電壓因此降低,唯電壓持續 的時間仍然不足以有效的充入電能儲存裝置中,此外,承 受機械能作用時薄的壓電材料因強度較弱,工作時會有機 械破壞的風險。 進一步的電容量提高可經由多層的陶瓷結構來獲得, 0954-A22208TWF(N2);P54960029TW;itshen 5 200908533 在機械能量作用下,層與層間的機械結合強度,以及整體 多層結構在工作時的穩定性,使薄化的壓電材料應用於發 電功能時,必須有適度的機械結構來強化壓電材料機械耐 力,同時使機械能量有比較穩定的輸入。因此,良好的壓 電發電器設計,除高機電轉換特性外,配合的機械結構是 整體元件功能發揮的重要基礎。 壓電材料具有如第1圖的變形量(或稱應變)與電壓關 係’在最大的斜率處代表壓電材料具有最大的應變隨輸入 電壓變化,亦即在相同的驅動電壓下可以產生最大的變形 量,反之亦同,以相同的變形量驅動可以產生最大的電壓 輸出’此時壓電材料具有最南的機電能量轉換效果。如果 將壓電材料預先施加固定量的形變,使其類似被驅動到第 1圖曲線的最大斜率處(標示X點處),此時再有形變輸入會 使壓電材料產生更大的電壓輸出,對製作高機電轉換率的 壓電發電器提供高功能設計的依據。使壓電材料承受應力 必先有一機械結構,穩定機械能量輸入也需機械結構,因 此,如果將兩種需求的機械結構作整體設計,使其兼具預 加應力與穩定機械能輸入功能,將有利於高轉換效率的壓 電發電器模組製作。 使用彈性體的回彈力,使其對壓電材料產生預加應力 的作用,在外加力量作用下,彈性體的緩衝特性使壓電材 料有更長時間的電壓輸出,有利於電能的擷取儲存。 一般來說,壓電發電器的基礎組成為配合一機械結構 0954-A22208TWF(N2);P54960029TW;itshen 6 200908533 的壓電換能單元,利用機 或作用時間的延長,使、、、°構提供外力作用方向的改變 形,透過機電轉料料力心在壓轉能單元造成變 ..,,,,,Λμ /、电路接線使產生的電能導4。a 增加轉換的能量,機械結構常祜一+目」 出 外力作用可迅速將變化傳 H、有南的靈敏度’隨 夕童“傳到壓電換能單元上。此外,將 --+ , 、更大的電能輸出。不論何種 5又汁,Μ寬發電器均產生夺括200908533 IX. Description of the Invention: [Technical Field] The present invention relates to a piezoelectric generator structure, and more particularly to a deformation of a piezoelectric transducer element unit by pre-stressing, so that the piezoelectric transducer element unit is fixed A piezoelectric generator structure that produces maximum electrical energy output under external force. [Prior Art] Piezoelectric materials are materials that convert electrical energy and mechanical energy. They are represented by lead zirconate titanate and its derivative components, and their piezoelectric properties are also the highest electromechanical conversion efficiency. The piezoelectric material is applied to the voltage generation as the ignition element. When the spring is used to store the mechanical energy, the piezoelectric material is instantaneously impacted on the surface of the piezoelectric material, and the piezoelectric energy is used to convert the mechanical energy into electrical energy. The generated voltage generally reaches a DC voltage of tens of thousands of volts. A certain distance of the electrode discharges to ignite the gas, and the generated voltage is related to the piezoelectric material's capacitance and piezoelectric conversion characteristics. 'Because the required output voltage is required to generate a gas discharge', the piezoelectric material is mainly columnar, and its capacitance value Low, so it can generate tens of thousands of volts. Although there is a high voltage output, the voltage duration is short (below milliseconds) and cannot be stored in an electrical energy storage device such as a battery or capacitor. Reducing the thickness of the piezoelectric material increases the capacitance value, and the generated voltage is thus reduced. However, the duration of the voltage is still insufficient to be effectively charged into the electrical energy storage device. In addition, the thin piezoelectric material is weak due to the mechanical energy. There is a risk of mechanical damage during work. Further capacitance enhancement can be obtained via multi-layer ceramic structures, 0954-A22208TWF(N2); P54960029TW;itshen 5 200908533 Mechanical bond strength between layers and mechanical stability, and stability of the overall multilayer structure during operation When the thinned piezoelectric material is applied to the power generation function, it is necessary to have a moderate mechanical structure to strengthen the mechanical endurance of the piezoelectric material, and at the same time, the mechanical energy has a relatively stable input. Therefore, a good piezoelectric generator design, in addition to high electromechanical conversion characteristics, the mechanical structure of the fit is an important basis for the function of the overall component. The piezoelectric material has a deformation amount (or strain) as shown in Fig. 1 and the voltage relationship 'at the maximum slope, the piezoelectric material has the largest strain with the input voltage variation, that is, the maximum can be generated at the same driving voltage. The amount of deformation, and vice versa, can be generated with the same amount of deformation to produce the maximum voltage output. At this time, the piezoelectric material has the southernmost electromechanical energy conversion effect. If the piezoelectric material is pre-applied with a fixed amount of deformation so that it is driven to the maximum slope of the curve in Figure 1 (marked at point X), then the deformation input will cause the piezoelectric material to produce a larger voltage output. It provides the basis for high-performance design of piezoelectric generators that produce high electromechanical conversion rates. In order to stress the piezoelectric material, there must be a mechanical structure. The mechanical energy input is also required to stabilize the mechanical energy input. Therefore, if the mechanical structure of the two requirements is designed as a whole, it has both pre-stressing and stable mechanical energy input functions. It is beneficial to the fabrication of piezoelectric generator modules with high conversion efficiency. Using the resilience of the elastomer, it exerts a pre-stressing effect on the piezoelectric material. Under the action of external force, the buffering property of the elastomer makes the piezoelectric material have a longer voltage output, which is beneficial to the storage of electric energy. . In general, the basic composition of the piezoelectric generator is to cooperate with a mechanical structure 0854-A22208TWF (N2); P54960029TW; itshen 6 200908533 piezoelectric transducer unit, using the extension of the machine or the action time, to provide, The change of the direction of the external force acts through the electromechanical material to force the change in the pressure-transfer unit..,,,,, Λμ /, the circuit wiring makes the generated electric energy. a Increase the energy of the conversion, the mechanical structure is often one + mesh. The external force can quickly transmit the change H, and the sensitivity of the south is transmitted to the piezoelectric transducer unit. In addition, the --+, , Larger power output. No matter what kind of 5 and juice, Μ wide generators are produced

^ , Λ 又机的電壓,如此一來,作為電 源應用就必須經過黎、;今駐里 過正"L凌置,因此在壓電發電器中常含有 整流的電子元件。 懸臂式結構為產生機械振動的基本結構,在懸臂上貼 口 £電片形成壓電發電器,如專利w〇〇i2〇76〇、 JP11146663、lP2〇()3()61367,前者將壓電片姑於微加工製 作的懸臂上,後者使用懸臂帶動壓縮或拉伸壓電片使其產 生電壓。 另外如專利 JP920578卜 US5751091、JP2004222414 等 使用類似懸臂結構’固定壓電片與懸臂使機械振動傳送至 壓電片產生電壓’其中使用多層結構的壓電片以增加產生 的電能。 透過機械連動的傳送裝置,使其帶動鋼球類的硬物對 壓電片表面產生撞擊,進而產生電壓輸出,如專利 W02004077652 > US2006226739 ' JP2006129602 > JP2005275852 、 JP2001231272 、 JP2006012465 、 JP2003116285與JP11275877,除機械連動裝置外,其中並 0954-A22208TWF(N2);P54960029TW;itshen 7 200908533 ' 有設計緩衝撞擊的膜、片或彈簧,利用緩衝撞擊材料來延 長撞擊作用時間,使壓電片產生足夠長的電能輸出時間。 由於緩衝材料的反彈力,造成撞擊力的來回擺動,因此能 產生交流的電壓輸出。 綜合既有專利可知,為提高電能的輸出,一般多採用 多數個壓電單元串並聯的結構來達成,不論結構設計如 何,均為交流電壓的輸出,因此作電源的應用時需先經過 (' 整流電路的調整。 壓電材料的機電轉換特性也可透過施加偏壓方式來提 升,如專利US6201336,使用直流偏壓來使壓電材料有高 的機電轉換效率,在輸出端以電路將直流偏壓濾除。雖然 直流偏壓提高轉換效率,但外加電池使壓電發電器仍無法 達到無電池的電源用途,因此實用性有限。 除直流偏壓外,機械偏壓或預施應變(變形)於壓電片 上,也同樣具有提高壓電片之機電轉換效率功用,本發明 I, 即在設計預加應變於壓電片的壓電發電器結構,使壓電轉 換能在預加變形情況下,達到更高的機電轉換效率。此外, 預加應變會使壓電被偏壓在特定的機電轉換方向,使壓電 發電器受外力的作用只產生直流電壓的輸出,與傳統壓電 發電器之交流電壓輸出再經整流成直流電壓,本發明結構 具有應用的優勢。 【發明内容】 本發明提出一種壓電發電器結構,提供預加應力於壓 0954-A22208TWF(N2);P54960029TW;itshen 8 200908533 電換能元件單元以產生形變,使壓電換能元件單元在固定 外力的作用下能產生最大電能輸出。 本發明之壓電發電器結構包含二個壓電換能元件單 元、一彈性體、以及複數個固定元件。其中彈性體係容置 於該等壓電換能元件單元間。固定元件係用以固定該等壓 電換能元件單元以及該彈性體。利用在壓電換能元件單元 間置入彈性體與調整固定元件中的螺帽來施加壓力之方 式,對壓電換能元件單元產生預加應力的作用,以提高該 壓電換能元件單元的壓電轉換效率。 每一壓電換能元件單元可由單一的壓電片貼合於金屬 片的上或下侧形成,也可以串聯的方式在金屬片的上下兩 侧貼合連接來提高電容量;壓電片所貼附的金屬片比該等 壓電片具更大面積,且在金屬片的周圍有複數個貫通孔, 以使固定元件穿過;每一固定元件皆有一固定軸,該固定 軸的表面係由一絕緣軸襯包覆著以隔絕電流,固定軸上係 套有一彈性元件、複數個固定螺帽與複數個絕緣墊片,彈 性元件可為彈簧或彈片,係用以支撐調節缓衝貫通於固定 軸上的二壓電換能元件單元,由於有了容置於壓電換能元 件單元間的彈性體與固定元件上的彈性元件之支撐,使得 二壓電換能元件單元間產生一初始距離,並使用固定螺帽 將該等壓電換能元件單元上的金屬片固定,而複數個絕緣 墊片則是設置於彈性元件、固定螺帽與金屬片之間,以防 止電流造成短路。 0954-A22208TWF(N2);P54960029TW;itshen 9 200908533 壓電換能元件單元與彈性體由貫穿通過金屬片的複數 個固定元件固定,調整固定元件上固定螺帽的高度,縮短 改變二壓電換能元件單元之間距,使容置於其中的彈性體 承受外力作用,利用彈性體的回彈力來提供應力,作用在 該等壓電換能元件單元上,使之得到對壓電片預加應力的 效果,在壓電換能元件單元上產生形變,調整應變大小使 其被應變偏壓在最靈感狀態(如第1圖X點的位置),在 這樣的作用下,施加應力於已形變的該等壓電換能元件單 元,則可使該等壓電換能元件單元發電,並提供較未預施 加應力者高的電壓輸出。 由壓電換能元件單元、固定元件與螺帽、彈性體等形 成的壓電發電器,工作時在外加應力作用下,彈性體的緩 衝功能提供機械能儲存與延長外力作用時間的效果,使壓 電發電器可產生更長時間的輸出電壓,以利電能的擷取儲 存。壓電發電器的結構兼具預加應力與延長輸出電壓的作 用,使壓電發電器具有實用的價值。 為使本發明之上述目的、特徵和優點能更明顯易懂, 下文特舉較佳實施例並配合所附圖式做詳細說明。 【實施方式】 以下參照隨附之圖式來描述本發明為達成目的所使用 的技術手段與功效,而以下圖式所列舉之實施例僅為輔助 說明,但本案之技術手段並不限於所列舉圖式。 請參閱第2圖至第4圖所示,本發明提供之壓電發電 0954-A22208TWF(N2);P54960029TW;itshen 10 200908533 器結構10包含二壓電換能元件單元11G、U(r、複數個固 定元件210以及-彈性體31〇;其中,該彈性體31〇係容 置於該等壓電換能元件單元11〇、11〇,間;該等固定元件 210係用以固定該等壓電換能元件單S 11Q、11(),以及該彈 性體310 ;其中該彈性體31〇可為塑膠、橡膠或其他金屬 材料,該彈性體310也可為球狀物或彈簧體。 該壓電換能元件單元110包含一金屬片121以及至少 一遂電片m,該金屬#121比該壓電月lu具更大面積, 该堡電片m係貼附於該金屬片121上,也可如第3B圖所 ^以上下貼合的方式使二㈣片ln、112串聯在該金屬 二,上,其中該等壓電片ln、112可為單層或多層結構 的壓電陶£材料’該金屬片121上有複數個貫通孔131(如 f3A圖所示),係位於該金屬片周圍,使該等固定元件210 穿過。 另一麗電換能元件單元110,的構造與^, Λ The voltage of the machine, as a result, must be passed through the Li, as a power source application; nowadays it is too positive, so the piezoelectric generator often contains rectified electronic components. The cantilever structure is a basic structure for generating mechanical vibration, and a piezoelectric generator is formed on the cantilever to form a piezoelectric generator, such as the patents w〇〇i2〇76〇, JP11146663, lP2〇()3()61367, the former will be piezoelectric The film is fabricated on a cantilever arm made by micromachining, which uses a cantilever to drive the compression or stretching of the piezoelectric piece to generate a voltage. Further, as a patent JP920578, US Pat. No. 5,751,091, JP2004222414, etc., a similar cantilever structure is used, 'fixing the piezoelectric piece and the cantilever to transmit mechanical vibration to the piezoelectric piece to generate a voltage', wherein a piezoelectric piece of a multilayer structure is used to increase the generated electric energy. Through the mechanically coupled conveying device, the hard object of the steel ball is caused to collide with the surface of the piezoelectric piece, thereby generating a voltage output, such as patents WO2004077652 > US2006226739 ' JP2006129602 > JP2005275852, JP2001231272, JP2006012465, JP2003116285 and JP11275877, except Outside the mechanical linkage, among them, 0854-A22208TWF(N2); P54960029TW;itshen 7 200908533' There are membranes, sheets or springs designed to cushion the impact. The cushioning impact material is used to prolong the impact time, so that the piezoelectric sheet generates enough long electric energy. Output time. Due to the repulsive force of the cushioning material, the impact force is oscillated back and forth, so that an alternating voltage output can be generated. According to the comprehensive patents, in order to improve the output of electric energy, the structure of a plurality of piezoelectric units is generally used in series and parallel connection. Regardless of the structural design, the output of the AC voltage is used, so the application of the power supply needs to pass (' Adjustment of the rectifier circuit. The electromechanical conversion characteristics of the piezoelectric material can also be improved by applying a bias voltage. For example, patent US6201336 uses a DC bias voltage to make the piezoelectric material have high electromechanical conversion efficiency, and the circuit is DC biased at the output end. Pressure-filtering. Although the DC bias improves the conversion efficiency, the external battery makes the piezoelectric generator still unable to reach the battery-free power supply, so the practicality is limited. In addition to the DC bias, the mechanical bias or the pre-applied strain (deformation) On the piezoelectric sheet, it also has the function of improving the electromechanical conversion efficiency of the piezoelectric sheet, and the invention I, that is, designing the piezoelectric generator structure pre-strained to the piezoelectric sheet, so that the piezoelectric conversion energy can be in the case of pre-addition deformation To achieve higher electromechanical conversion efficiency. In addition, the pre-stress will cause the piezoelectric to be biased in a specific electromechanical conversion direction, causing the piezoelectric generator to be subjected to external forces. The utility model only produces the output of the direct current voltage, and the alternating voltage output of the conventional piezoelectric generator is rectified into the direct current voltage, and the structure of the invention has the advantage of application. SUMMARY OF THE INVENTION The present invention provides a piezoelectric generator structure, which provides pre-addition. The stress is pressed to 0954-A22208TWF(N2); P54960029TW; ithen 8 200908533 The electric transducer element unit is deformed to enable the piezoelectric transducer element unit to generate maximum electric energy output under the action of a fixed external force. The piezoelectric generator of the present invention The structure comprises two piezoelectric transducing element units, an elastic body, and a plurality of fixing elements, wherein an elastic system is accommodated between the piezoelectric transducing element units, and the fixing element is used for fixing the piezoelectric transducing elements. a unit and the elastic body. The pre-stressing action is applied to the piezoelectric transducer element unit by applying a pressure between the piezoelectric transducer element unit and the nut in the adjustment fixing element to increase the Piezoelectric conversion efficiency of the piezoelectric transducer element unit. Each piezoelectric transducer element unit can be attached to the metal piece by a single piezoelectric piece or The lower side is formed, or may be connected in series on the upper and lower sides of the metal piece to increase the capacitance; the metal piece attached to the piezoelectric piece has a larger area than the piezoelectric piece, and is around the metal piece. There are a plurality of through holes for the fixing elements to pass through; each of the fixing elements has a fixed shaft, the surface of the fixed shaft is covered by an insulating bushing to isolate the current, and the fixed shaft has a resilient element, a plurality of a fixed nut and a plurality of insulating spacers, wherein the elastic element can be a spring or a spring piece, and is used for supporting a bimorphic transducing element unit that adjusts and buffers through the fixed shaft, because of the capacitive transposition The elastic body between the component units and the elastic component on the fixing component support an initial distance between the two piezoelectric transducer elements, and fix the metal piece on the piezoelectric transducer component unit by using a fixing nut. A plurality of insulating spacers are disposed between the elastic member, the fixing nut and the metal piece to prevent a short circuit caused by the current. 0954-A22208TWF(N2);P54960029TW;itshen 9 200908533 The piezoelectric transducer element unit and the elastic body are fixed by a plurality of fixing elements penetrating through the metal piece, adjusting the height of the fixing nut on the fixing element, shortening the change of the piezoelectric transmission The distance between the component units is such that the elastic body accommodated therein is subjected to an external force, and the elastic force of the elastic body is used to provide stress, which acts on the piezoelectric transducer element unit to obtain pre-stressing of the piezoelectric piece. The effect is that deformation occurs on the piezoelectric transducer element unit, and the strain is adjusted to be strain-biased in the most inductive state (as in the position of point X of FIG. 1). Under such action, stress is applied to the deformed portion. The piezoelectric transducer element unit can cause the piezoelectric transducer elements to generate electricity and provide a higher voltage output than those without pre-stressing. The piezoelectric generator formed by the piezoelectric transducer element unit, the fixing element, the nut, the elastic body, etc., under the action of external stress during operation, the buffer function of the elastic body provides the effect of mechanical energy storage and prolonging the external force action time, so that Piezoelectric generators produce longer output voltages for efficient storage of electrical energy. The structure of the piezoelectric generator has both pre-stressing and extended output voltage, making the piezoelectric generator practical. The above described objects, features and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment] Hereinafter, the technical means and effects of the present invention for achieving the object are described with reference to the accompanying drawings, and the embodiments listed in the following drawings are only for the purpose of explanation, but the technical means of the present invention are not limited to the enumerated figure. Referring to FIGS. 2 to 4, the present invention provides a piezoelectric power generation 0954-A22208TWF(N2); P54960029TW; itshen 10 200908533 device structure 10 includes two piezoelectric transducer element units 11G, U(r, plural a fixing member 210 and an elastic body 31; wherein the elastic body 31 is received between the piezoelectric transducer elements 11A, 11A; and the fixing member 210 is used for fixing the piezoelectric The transducer element S 11Q, 11 (), and the elastomer 310; wherein the elastomer 31 can be a plastic, rubber or other metal material, and the elastomer 310 can also be a ball or a spring body. The transducing element unit 110 includes a metal piece 121 and at least one electric piece m. The metal #121 has a larger area than the piezoelectric element, and the bucks are attached to the metal piece 121. As shown in FIG. 3B, the two (four) sheets ln, 112 are connected in series on the metal two, wherein the piezoelectric sheets ln, 112 may be single or multi-layer piezoelectric ceramic materials. The metal piece 121 has a plurality of through holes 131 (as shown in the figure f3A), which are located around the metal piece to make the fixed elements 210 therethrough. Li another electrical transducer element unit 110, and the configuration

Kj: 目同,包含一金屬片121,以及至少一壓電片J早 该孟屬片121'比該壓電片llr具更大面積,該, 係貼附於該金屬片121'上,也可如第3B圖所示,以 ,合的方式使二Μ電片11Γ、112,串聯在該金屬片121, ^同樣的該等壓電片ln,、llr可為單層或 壓電陶瓷材料。 …構的 如第4圖所示,該等固定元件21〇包含 一絕緣車由襯251、一彈性元件⑷、複數個固定螺巾Ϊ221、 0954- A22208TWF(N2);P54960029TW;itshen 200908533 • 222、以及複數個絕緣墊片231、232。其中絕緣軸襯251 係包覆在該固定轴211的表面;彈性元件241可為彈箬戋 彈片,係被該固定軸211貫穿;固定螺帽221、222被該固 定軸221貫穿,並將該等金屬片12卜12Γ失於該固定軸 211兩端;絕緣墊片231、232係設置於該彈性元件241、 該等固定螺帽221、222、223、224及該等金屬片12卜121, 之間,且被該固定軸211貫穿。 f 芩照第2圖及第5圖,操作時首先調整該等固定元件 21〇上的該等固定螺帽221、222、223、224來縮短該等堡 2換能7G件單元110、110,間的距離,使容置於該等壓電換 能几件單元110、110'間的該彈性體31〇提供應力於該等壓 電換能7G件單元110、1ΚΓ上,進而使該等換能元件單 兀110、1HT產生形變(如第5圖);此時,施加一應力F 於已形變的該等麼電換能元件單元110、110,上的壓電片 11 卜 112、11Γ、112',使該等壓電片 lu、112、lu,、二y V 有最大電壓輸出。 為了能更有效的利用產出的電壓,壓電發電哭10更勺 含至少-條導線⑷,該導線⑷係連接於該等壓電換: 兀件單元110、110'上的壓電片lu、112、11Γ、112,,、= 線141的連接方式可依不同需求作串聯或並聯,參日^ = 圖,外接導線141連接壓電片ln、112、U1,、u ,金屬片12卜12Γ形成並聯式的電路連結,#外加機械妒 量(應力或應變)時,上、下麈電片lu、n2或 〇954-A22208TWF(N2);P54960029TW;itshen 200908533 將產生相同的電極性,使導線141輸出電壓;利用導線141 與金屬片121、12Γ形成的並聯電路結構,可使壓電換能元 件單元110具有最大的電容值,能提供較低的等效阻抗, 有利於高電流的輸出;此外,導線141上更可裝設一整流 器(未圖示),將壓電發電器10的輸出做整流,以供有效利 用。 在壓電換能元件單元110、11(Γ上之金屬片121、12Γ 的四周製作貫通孔131,作為固定壓電換能元件單元110、 110'於固定元件210之用途,固定元件210結構如第4圖 所示,為避免上下兩壓電換能元件單元110、110'透過固定 軸211短路,因此在螺帽221、222、223、224與固定軸 211間存在絕緣轴襯251,螺帽221、222、223、224之間 同時透過絕緣墊片231、232隔離,以確保壓電換能元件單 元110、110'間的電性隔絕。上下壓電換能元件單元110、 110'之螺帽221、222、223、224間存在一彈性元件241, 調整螺帽221、222、223、224間距時,利用彈性元件241 的反作用力來穩定螺帽221、222、223、224間距,避免壓 電發電器10在工作時,受外力振動而產生螺帽221、222、 223、224鬆脫的問題。 參照第6圖,第6圖顯示壓電發電器另一態樣的實施 情形。其中壓電發電器60中的壓電換能元件單元610、610' 為圓形或橢圓形。 參照第7圖,第7圖顯示壓電發電器又一態樣的實施 0954-A22208TWF(N2);P54960029TW;iishen 200908533 • 情形。其中壓電發電器70中的壓電換能元件單元710、710' 為具有弧度的板狀結構,此處特別要強調的是,上下壓電 換能元件單元710、710'為反向裝設,使之向内凹向彈性體 310 ° 綜上所述,本發明提供之壓電換能元件單元受彈性體 的預加形變作用,在外力作用下產生電壓輸出,如第8圖 所示,其中使用上述的壓電換能元件單元為輸出,調整螺 f' 帽改變兩壓電換能元件單元間距(由15mm變化至5mm), 在相同的應力作用下,輸出電壓會隨間距的縮小而增加, 顯示因預加形變於壓電換能元件單元能提高輸出電壓的效 果,亦即提高壓電換能元件單元的機電轉換效率,證實第 1圖所預測的結果。 此外,在兩壓電換能元件單元間距為5mm時,將上下 壓電換能元件單元的輸出電壓以導線串聯方式相連接,結 果如第9圖所示,可以產生多一倍的最大輸出電壓,顯示 I, 此種結構可以有效的將上下壓電換能單元的電壓相加,以 產生最大的電壓輸出。 使用單一個壓電換能元件單元在傳統的懸臂式結構 (未預施加應變)與本發明壓電發電器結構在相同應力輸入 下的輸出電壓,如第10圖所示,經相同外力作用後懸臂式 結構會產生上下振盪現象,因此會產生交流電壓的輸出, 本發明壓電發電器結構預施加應變使壓電換能單元只能產 生單一方向的形變,因此輸出電壓為直流性質,可以不需 0954-A22208TWF(N2);P54960029TW;itshen 14 200908533 ' 使用整流器即可產生直流電壓。 如果將兩種壓電發電器的輸出電壓進行積分,取其與 時間軸的面積值,此項曲線面積值將代表能量的大小。請 參閱第11圖及第12圖所示,其中第11圖係第10圖之本 發明結構之輸出電壓經積分計算曲線涵蓋面積圖,如果縱 座標(輸出電壓)以y表示,而橫座標(時間)以X表示,則計 算曲線為 r ^-2914^+440x-0.1 經積分後,得到面積為 \ydx ^ ^'\-29Ux2 +AA0x-Q.\)dx = 1.63 第12圖係第10圖之傳統懸臂式結構之輸出電壓經積 分計算曲線涵蓋面積圖,如果縱座標輸出電壓以y表示, 而橫座標(時間)以X表示,則計算曲線為 7 = -871x2 +102^ + 4.87 I : 經積分後,得到面積為 ^ydx = ^ (一871x2 + 102;c + 4·87)ώ: = 0.9 由上面計算結果顯示,本發明的輸出能量(電能)比傳統懸 臂式結構高出近一倍。 另外,由於能產生較大的電壓輸出,因此本發明結構 提供的輸出功率較傳統懸臂式多一倍,如第13圖所示,隨 負載電阻減小,本發明結構的輸出功率增加比傳統懸臂式 0954-A22208TWF(N2);P54960029TW;itshen 200908533 =值顯示在預加應變情況下,本發明結構有較小的等效阻 絲合上述實施例的結果,在預施加變形的作用 件早凡可以產生直流的電壓輸出,其輪出電壓比 未加變形者大,等效阻抗比比未預施加變形者小,因 =嶋況(負載電阻低)下’預施加變形 ; :广倍左右的電功率輸出,使本發明結構更具= 雖然本發明已以較佳實施例揭露如上,然 限定本發明’任何其所屬技術領域中具有通常ς識者,= :脱月神和範圍内’當可作任意之更動 =本發明之保護範圍當視後附之申請專利範圍;: 0954-A22208TWF(N2);P54960029TW;itshen 200908533 【圖式簡單說明】 第1圖係壓電材料之應變(A1)與電壓(U)關係圖, 其中標示X處為斜率最大處,即對應於相同值的應變輸入 可以產生最大的電壓輸出。 第2圖係依據本發明之壓電發電器其中一實施例的結 構圖。 第3A圖係依據本發明之壓電換能元件單元之立體圖。 第3B圖係依據本發明之壓電換能元件單元之侧視圖。 第4圖係依據本發明之固定元件結構圖。 第5圖係依據本發明之壓電發電器結構承受應變作用 不意圖。 第6圖係依據本發明之壓電發電器另一實施例的結構 圖。 第7圖係依據本發明之壓電發電器又一實施例的結構 圖。 第8圖係本發明之壓電換能元件單元間距改變對輸出 電壓的影響之比較圖。 第9圖係本發明之壓電換能元件單元之間距固定時, 上下壓電換能元件單元串連相接與單一壓電換能元件單元 之輸出電壓比較圖。 第10圖係使用單一壓電換能元件單元在傳統懸臂式結 構與本發明結構在相同應力作用下的輸出電壓比較圖。 第11圖係第10圖之本發明結構之輸出電壓經積分計 0954-A22208TWF(N2);P54960029TW;itshen 200908533 算曲線涵蓋面積圖。 第12圖係第10圖之傳統懸臂式結構之輸出電壓經積 分計算曲線涵蓋面積圖。 第13圖顯示使用單一壓電換能元件單元之懸臂式結構 與本發明結構在相同應力下的輸出功率(橫座標為負載電 阻)。 【主要元件符號說明】 10-壓電發電器 110、 110'-壓電換能元件單元 111、 111'-壓電片 112、 112'-壓電片 121、121'-金屬片 131-貫通孔 141-導線 20-壓電發電器 210- 固定元件 211- 固定軸 221、222、223、224-螺帽 231、232-絕緣墊片 241-彈性元件 251-絕緣軸襯 30-壓電發電器 310-彈性體 0954-A22208TWF(N2);P54960029TW;itshen 18 200908533 60-壓電發電器 610、610'-壓電換能元件單元 70-壓電發電器 710、710'-壓電換能元件單元Kj: the same, comprising a metal piece 121, and at least one piezoelectric piece J, the Meng dynasty piece 121' has a larger area than the piezoelectric piece llr, and is attached to the metal piece 121', As shown in FIG. 3B, the two electrodes 11 Γ and 112 are connected in series to the metal piece 121. The same piezoelectric sheets ln, llr may be a single layer or a piezoelectric ceramic material. . As shown in Fig. 4, the fixing members 21A include an insulating car liner 251, an elastic member (4), a plurality of fixing spirals 221, 0954-A22208TWF (N2); P54960029TW; itshen 200908533 • 222, And a plurality of insulating spacers 231, 232. The insulating bushing 251 is wrapped around the surface of the fixed shaft 211; the elastic member 241 can be a spring elastic piece, which is penetrated by the fixed shaft 211; the fixing nut 221, 222 is penetrated by the fixed shaft 221, and the The metal sheets 12 and 12 are lost at the two ends of the fixed shaft 211; the insulating spacers 231 and 232 are disposed on the elastic member 241, the fixing nuts 221, 222, 223, and 224, and the metal sheets 12 and 121. And penetrated by the fixed shaft 211. f Referring to Figures 2 and 5, the fixed nuts 221, 222, 223, 224 on the fixing elements 21 are first adjusted to shorten the two 2G units 110, 110, The distance between the piezoelectric elements 11 and 110' of the piezoelectric transducers 110, 110' provides stress to the piezoelectrically transducing 7G unit 110, 1ΚΓ, thereby making the replacement The energy component elements 110, 1HT are deformed (as shown in Fig. 5); at this time, a stress F is applied to the piezoelectric elements 11 and 112, which are deformed on the electrically-transducing element units 110, 110. 112', the piezoelectric sheets lu, 112, lu, and two y V have maximum voltage output. In order to make more efficient use of the voltage produced, the piezoelectric power generation crying 10 has at least one wire (4) connected to the piezoelectric plate: the piezoelectric piece lu on the element 110, 110' The connection modes of 112, 11Γ, 112, , and = line 141 can be connected in series or in parallel according to different requirements. The reference wire ^ 211, the external wire 141 is connected to the piezoelectric sheets ln, 112, U1, u, the metal piece 12 12Γ forms a parallel circuit connection. When adding mechanical stress (stress or strain), the upper and lower 麈 麈 lu, n2 or 〇 954-A22208TWF (N2); P54960029TW; itshen 200908533 will produce the same polarity, so that The output voltage of the wire 141; the parallel circuit structure formed by the wire 141 and the metal pieces 121, 12Γ enables the piezoelectric transducer element unit 110 to have the largest capacitance value, can provide a lower equivalent impedance, and is advantageous for high current output. In addition, a rectifier (not shown) may be mounted on the wire 141 to rectify the output of the piezoelectric generator 10 for efficient use. Through-holes 131 are formed in the piezoelectric transducer element units 110, 11 (the metal sheets 121, 12A on the crucibles), and the fixing elements 210 are configured as fixed piezoelectric elements 110, 110'. As shown in FIG. 4, in order to prevent the upper and lower piezoelectric transducer element units 110, 110' from being short-circuited through the fixed shaft 211, there is an insulating bushing 251 between the nut 221, 222, 223, 224 and the fixed shaft 211, and a nut 221, 222, 223, 224 are simultaneously isolated by insulating spacers 231, 232 to ensure electrical isolation between the piezoelectric transducer element units 110, 110'. The upper and lower piezoelectric transducer element units 110, 110' An elastic member 241 exists between the caps 221, 222, 223, and 224. When the pitch of the nut 221, 222, 223, and 224 is adjusted, the reaction force of the elastic member 241 is used to stabilize the spacing of the nuts 221, 222, 223, and 224 to avoid pressure. When the electric generator 10 is in operation, the external force is vibrated to cause the nuts 221, 222, 223, and 224 to be loosened. Referring to Fig. 6, Fig. 6 shows another embodiment of the piezoelectric generator. The piezoelectric transducer element units 610, 610' in the electric generator 60 are circular Elliptical. Referring to Fig. 7, Fig. 7 shows another embodiment of the piezoelectric generator. 0954-A22208TWF(N2); P54960029TW; iishen 200908533 • Case where the piezoelectric transducer element in the piezoelectric generator 70 710, 710' is a plate-like structure having a curvature, and it is particularly emphasized here that the upper and lower piezoelectric transducer element units 710, 710' are reversely mounted so as to be inwardly concave toward the elastomer 310 °. The piezoelectric transducer element unit provided by the present invention is subjected to a pre-deformation action of the elastic body to generate a voltage output under the action of an external force, as shown in FIG. 8, wherein the piezoelectric transducer element unit is used as an output and is adjusted. The screw f' cap changes the pitch of the two piezoelectric transducer elements (from 15mm to 5mm). Under the same stress, the output voltage increases with the decrease of the pitch. The display changes to the piezoelectric transducer component due to pre-addition. The effect of the output voltage can be improved, that is, the electromechanical conversion efficiency of the piezoelectric transducer element unit is improved, and the result predicted in Fig. 1 is confirmed. Further, when the pitch of the two piezoelectric transducer elements is 5 mm, the upper and lower piezoelectrics are exchanged. Energy component The output voltage of the element is connected in series by wires. As shown in Fig. 9, the maximum output voltage can be doubled, and I can be displayed. This structure can effectively add the voltages of the upper and lower piezoelectric transducer units. To produce the maximum voltage output. Use a single piezoelectric transducer element unit in the conventional cantilever structure (without pre-applied strain) and the output voltage of the piezoelectric generator structure of the present invention at the same stress input, as shown in Fig. 10. It is shown that the cantilever structure generates an up-and-down oscillation phenomenon after the same external force, and thus an output of an alternating voltage is generated. The piezoelectric generator structure of the present invention pre-applies the strain so that the piezoelectric transducer unit can only generate deformation in a single direction, so the output The voltage is of a DC nature and can be used without generating 0854-A22208TWF(N2); P54960029TW;itshen 14 200908533' using a rectifier to generate a DC voltage. If the output voltages of the two piezoelectric generators are integrated and their area values with the time axis are taken, the area value of the curve will represent the magnitude of the energy. Please refer to Fig. 11 and Fig. 12, wherein the output voltage of the structure of the present invention in Fig. 11 is the area of the output curve through the integral calculation curve, if the ordinate (output voltage) is represented by y, and the abscissa ( Time) is expressed by X, then the calculated curve is r ^-2914^+440x-0.1. After integration, the area is \ydx ^ ^'\-29Ux2 +AA0x-Q.\)dx = 1.63 12th figure is the 10th The output voltage of the traditional cantilever structure of the figure is calculated by the integral calculation curve. If the ordinate output voltage is represented by y and the abscissa (time) is represented by X, the calculation curve is 7 = -871x2 +102^ + 4.87 I : After integration, the obtained area is ^ydx = ^ (a 871x2 + 102; c + 4·87) ώ: = 0.9. The above calculation results show that the output energy (electric energy) of the present invention is higher than that of the conventional cantilever structure. Doubled. In addition, since a large voltage output can be generated, the output of the present invention provides twice the output power compared to the conventional cantilever type. As shown in Fig. 13, the output power of the structure of the present invention increases as compared with the conventional cantilever as the load resistance decreases. Formula 0954-A22208TWF (N2); P54960029TW; itshen 200908533 = value shows that in the case of pre-stressed, the structure of the invention has a smaller equivalent resistance to the results of the above embodiment, the pre-applied deformation of the action can be early The DC voltage output is generated, and the wheel-out voltage is larger than that of the undeformed one. The equivalent impedance ratio is smaller than that without the pre-applied deformation, because the condition is lower (the load resistance is lower), the 'pre-applied deformation; The structure of the present invention is made more = although the present invention has been disclosed above in the preferred embodiment, but the invention is defined as having any of the ordinary knowledge in the art to which it belongs, =: detachment and in-range' The scope of protection of the present invention is as follows: 0954-A22208TWF (N2); P54960029TW; itshen 200908533 [Simple description of the diagram] Figure 1 is the response of piezoelectric materials (A1) and voltage (U) diagram, which is indicated at X slope is maximum, i.e. the value corresponding to the same strain may produce the maximum input voltage output. Fig. 2 is a structural view showing an embodiment of a piezoelectric generator according to the present invention. Fig. 3A is a perspective view of a piezoelectric transducer element unit in accordance with the present invention. Figure 3B is a side view of a piezoelectric transducer element unit in accordance with the present invention. Figure 4 is a structural view of a fixing member in accordance with the present invention. Fig. 5 is a view showing the strain-carrying action of the piezoelectric generator structure according to the present invention. Fig. 6 is a structural view showing another embodiment of the piezoelectric generator according to the present invention. Fig. 7 is a structural view showing still another embodiment of the piezoelectric generator according to the present invention. Fig. 8 is a graph showing the effect of the change in the pitch of the piezoelectric transducer elements of the present invention on the output voltage. Fig. 9 is a graph showing the comparison of the output voltages of the upper and lower piezoelectric transducer element units in series and the single piezoelectric transducer element unit when the piezoelectric transducer element units of the present invention are fixed at a fixed distance. Figure 10 is a graph comparing output voltages of a conventional piezoelectric structure with a single piezoelectric transducer element unit under the same stress as the structure of the present invention. Fig. 11 is a diagram showing the output voltage of the structure of the present invention in Fig. 10 through an integral meter 0954-A22208TWF(N2); P54960029TW; itshen 200908533 The calculation curve covers the area map. Fig. 12 is a diagram showing the output voltage of the conventional cantilever structure of Fig. 10 through the integral calculation curve. Figure 13 shows the output power (the abscissa is the load resistance) of the cantilever structure using a single piezoelectric transducer element unit under the same stress as the structure of the present invention. [Description of main component symbols] 10-piezoelectric generator 110, 110'-piezoelectric transducer element 111, 111'-piezoelectric piece 112, 112'-piezoelectric piece 121, 121'-metal piece 131-through hole 141-wire 20-piezoelectric generator 210- fixing member 211- fixed shaft 221, 222, 223, 224-nut 231, 232 - insulating spacer 241 - elastic member 251 - insulating bush 30 - piezoelectric generator 310 - Elastomer 0954-A22208TWF(N2); P54960029TW;itshen 18 200908533 60-Piezoelectric generator 610, 610'-Piezoelectric transducer element 70-Piezoelectric generator 710, 710'-Piezotransducer element unit

0954-A22208TWF(N2);P54960029TW;itshen 190954-A22208TWF(N2); P54960029TW;itshen 19

Claims (1)

200908533 十、申請專利範圍: 1. 一種壓電發電器,其包含: 二個壓電換能元件單元; 一彈性體,容置於該等壓電換能元件單元間; 複數個固定元件,固定該等壓電換能元件單元以及該 彈性體。 2. 如請求項1所述之壓電發電器,其更包含至少一導 f 線,連接該等壓電換能元件單元。 3. 如請求項2所述之壓電發電器,其中該等壓電換能元 件單元間連接方式為串聯或並聯。 4. 如請求項2所述之壓電發電器,其更包含一整流器, 連接該導線。 5. 如請求項1所述之壓電發電器,其中該彈性體為塑 膠、橡膠或金屬材料。 6. 如請求項1所述之壓電發電器,其中該彈性體為球狀 I 物或彈簧體。 7. 如請求項1所述之壓電發電器,其中每一壓電換能元 件單元包含: 一金屬片; 一壓電片,係貼附於該金屬片上,且該金屬片比該壓 電片具更大面積; 複數個貫通孔,係位於該金屬片周圍,使該等固定元 0954-A22208TWF(N2);P54960029TW;itshen 20 200908533 件穿過。 8. 如請求項7所述之壓電發電器,其中該壓電片為單層 或多層結構的壓電陶竞材料。 9. 如請求項7所述之壓電發電器,其中該壓電片以串聯 方式貼合於該金屬片上。 10. 如請求項7所述之壓電發電器,其中每一固定元 件,包含: 一固定軸; 一絕緣軸襯,係包覆在該固定轴的表面; 一彈性元件,被該固定軸貫穿; 複數個固定螺帽,被該固定軸貫穿,將該金屬片夾於 該固定軸兩端; 複數個絕緣墊片,設置於該彈性元件、該等固定螺帽 及該金屬片之間,且被該固定軸貫穿。 11. 請求項10所述之壓電發電器,其中該彈性元件為彈 簧或彈片。 12. —種壓電發電的方法,係利用請求項1所述之該壓 電發電器所實施,該壓電發電方法包含下列步驟: a. 以該等固定元件縮短該等壓電換能元件單元間的距 離,使容置於該等壓電換能元件單元間的該彈性體提供應 力於該等壓電換能元件單元上,在該等壓電換能元件單元 產生形變; b. 施加應力於已形變的該等壓電換能元件單元,使該等 0954-A22208TWF(N2);P54960029TW;itshen 21 200908533 壓電換能元件單元發電。200908533 X. Patent application scope: 1. A piezoelectric generator comprising: two piezoelectric transducer element units; an elastic body accommodated between the piezoelectric transducer elements; a plurality of fixed components, fixed The piezoelectric transducer element unit and the elastomer. 2. The piezoelectric generator according to claim 1, further comprising at least one conductive f-line connecting the piezoelectric transducing element units. 3. The piezoelectric generator according to claim 2, wherein the connection modes of the piezoelectric transducing elements are series or parallel. 4. The piezoelectric generator of claim 2, further comprising a rectifier connected to the wire. 5. The piezoelectric generator of claim 1, wherein the elastomer is a plastic, rubber or metal material. 6. The piezoelectric generator according to claim 1, wherein the elastomer is a spherical body or a spring body. 7. The piezoelectric generator according to claim 1, wherein each piezoelectric transducer element unit comprises: a metal piece; a piezoelectric piece attached to the metal piece, and the metal piece is more than the piezoelectric piece The sheet has a larger area; a plurality of through holes are located around the metal sheet to pass the fixed elements 0854-A22208TWF(N2); P54960029TW; ithen 20 200908533. 8. The piezoelectric generator according to claim 7, wherein the piezoelectric sheet is a piezoelectric or ceramic material of a single layer or a multilayer structure. 9. The piezoelectric generator according to claim 7, wherein the piezoelectric sheet is attached to the metal piece in series. 10. The piezoelectric generator according to claim 7, wherein each of the fixing members comprises: a fixed shaft; an insulating bushing covering the surface of the fixed shaft; and an elastic member penetrated by the fixed shaft a plurality of fixing nuts are inserted through the fixed shaft to clamp the metal piece to the two ends of the fixed shaft; a plurality of insulating spacers are disposed between the elastic member, the fixing nut and the metal piece, and It is penetrated by the fixed shaft. 11. The piezoelectric generator of claim 10, wherein the elastic element is a spring or a spring. 12. A method of piezoelectric power generation, which is carried out by the piezoelectric generator of claim 1, the piezoelectric power generation method comprising the steps of: a. shortening the piezoelectric transducer elements with the fixing elements The distance between the cells such that the elastomer accommodated between the piezoelectric transducer elements provides stress to the piezoelectric transducer elements, and the piezoelectric transducer elements are deformed; b. Stressing the deformed piezoelectric transducing element units causes the 0951-A22208TWF(N2); P54960029TW;itshen 21 200908533 piezoelectric transducing element unit to generate electricity. 0954-A22208TWF(N2);P54960029TW;iishen 220954-A22208TWF(N2); P54960029TW; iishen 22
TW96128177A 2007-08-01 2007-08-01 Piezoelectric power generator and piezoelectric power generating method TWI339487B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96128177A TWI339487B (en) 2007-08-01 2007-08-01 Piezoelectric power generator and piezoelectric power generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96128177A TWI339487B (en) 2007-08-01 2007-08-01 Piezoelectric power generator and piezoelectric power generating method

Publications (2)

Publication Number Publication Date
TW200908533A true TW200908533A (en) 2009-02-16
TWI339487B TWI339487B (en) 2011-03-21

Family

ID=44723700

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96128177A TWI339487B (en) 2007-08-01 2007-08-01 Piezoelectric power generator and piezoelectric power generating method

Country Status (1)

Country Link
TW (1) TWI339487B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI589111B (en) * 2016-05-06 2017-06-21 中原大學 Piezoelectric energy harvester
CN112439640A (en) * 2019-08-28 2021-03-05 若川深度科技有限公司 Torsion bar type piezoelectric actuating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI589111B (en) * 2016-05-06 2017-06-21 中原大學 Piezoelectric energy harvester
CN112439640A (en) * 2019-08-28 2021-03-05 若川深度科技有限公司 Torsion bar type piezoelectric actuating device

Also Published As

Publication number Publication date
TWI339487B (en) 2011-03-21

Similar Documents

Publication Publication Date Title
CN101373938B (en) Piezoelectric generating unit structure
Kim et al. Energy harvesting using a piezoelectric “cymbal” transducer in dynamic environment
Kim et al. Piezoelectric energy harvesting under high pre-stressed cyclic vibrations
JP4048203B2 (en) Piezoelectric generator
JP2011511618A (en) Apparatus, system, and method for recovering power from railroad tracks
KR101047654B1 (en) Power generator for vehicle tire
KR101727252B1 (en) Piezoelectric Energy Harvesting Apparatus
US7078850B2 (en) Piezoelectric power generation device and piezoelectric ceramics member used therefor
CN104184367B (en) Column is multi-direction to stack formula piezo-electricity energy harvester
JPWO2012105368A1 (en) Piezoelectric generator
CN101262189A (en) Piezoelectric generator for collecting bending vibration energy
US20040041498A1 (en) Piezoelectric generator
US20090160292A1 (en) Scalable tubular mechanical energy harvesting device
KR100911886B1 (en) Road energy harvester using vibrating piezoelectric film
JP2011233563A (en) Piezoelectric power generation device and antivibration device
TW200908533A (en) Structuring of piezoelectric power generator
KR20150134677A (en) Power generation apparatus using piezoelectric element stacked by multilayer structure
KR20140001061A (en) Piezoelectric harvesting system for using handle of vehicles
KR101051436B1 (en) Piezo power generator using shear deformation mode piezoelectric body
WO2013080857A1 (en) Energy conversion element and method of manufacturing same, and method for determining young's modulus of damping member of energy conversion element
CN107238730A (en) A kind of piezoelectric type high-frequency vibrating table
JP3489618B2 (en) Piezoelectric generator
KR101125164B1 (en) Piezo power generator using shear deformation mode piezoelectric body
KR20160132807A (en) Power generation apparatus using piezoelectric element stacked by multilayer structure
KR101380538B1 (en) Piezoelectric harvesting system using compressive force