TW200908489A - Method and apparatus for stabilizing and tuning the bandwidth of laser light - Google Patents

Method and apparatus for stabilizing and tuning the bandwidth of laser light Download PDF

Info

Publication number
TW200908489A
TW200908489A TW97113198A TW97113198A TW200908489A TW 200908489 A TW200908489 A TW 200908489A TW 97113198 A TW97113198 A TW 97113198A TW 97113198 A TW97113198 A TW 97113198A TW 200908489 A TW200908489 A TW 200908489A
Authority
TW
Taiwan
Prior art keywords
bandwidth
laser
control
source
laser system
Prior art date
Application number
TW97113198A
Other languages
Chinese (zh)
Other versions
TWI424645B (en
Inventor
William N Partlo
Robert N Jacques
Kevin M O'brien
Toshihiko Ishihara
Original Assignee
Cymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/082,301 external-priority patent/US7899095B2/en
Priority claimed from US12/082,253 external-priority patent/US7822084B2/en
Application filed by Cymer Inc filed Critical Cymer Inc
Publication of TW200908489A publication Critical patent/TW200908489A/en
Application granted granted Critical
Publication of TWI424645B publication Critical patent/TWI424645B/en

Links

Abstract

According to aspects of an embodiment of the disclosed subject matter, method and apparatus are disclose that ma y comprise adjusting a differential timing between gas discharges in the seed laser and amplifier laser for bandwidth control, based on the error signal, or for control of another laser operating parameter other than bandwidth, without utilizing any beam magnification control, or adjusting a differential timing between gas discharges in the seed laser and amplifier laser for bandwidth control, based on the error signal, or for control of another laser operating parameter other than bandwidth, while utilizing beam magnification control for other than bandwidth control, and adjusting a differential timing between gas discharges in the seed laser and amplifier laser for bandwidth control, based on the error signal, or for control of another laser operating parameter other than bandwidth, while utilizing beam magnification control for bandwidth control based on the error signal.

Description

200908489 九、發明說明: 【發明所屑技術領域3 發明領域 本揭露標的是關於(例如)一 D U V氣體放電雷射系統(例 5 如,用於(例如)一譜線窄化應用的一準分子或氟分子雷射系 統)内的帶寬之主動控制,例如作為以光刻製造的積體電路 之一雷射光源。 發明背景 10 穩定帶寬(例如,用於DUV半導體積體電路光刻雷射光 源设计之E95)包括被動及主動帶寬控制。主動控制可使此等 光源受益於光學效能校正(“OPC”)及工具對工具匹配此類 的光源。序列號為60/923,486的美國臨時專利申請案(名稱 為 “TWO STAGE EXCIMER LASER WITH SYSTEM FOR 15 BANDWIDTH CONTROL”,於 2006 年4 月 13 日提出申請)包 括序列號為11/510,037的美國專利申請案(名稱為“ACTIVE SPECTRAL CONTROL OF DUV LIGHT SOURCE”,於2006 年8月25日提出申請’於2007年8月23日公開,公開號為 US-2007-0195836-A1)之揭露,其主張序列號為60/774,770 20 的美國臨時申請案(名稱為“ACTIVE SPECTRAL CONTROL OF DUV LIGHT SOURCES FOR OPE MINIMIZATION”,於2006年2月17日提出中請)之優先權, 此等申請案中的每個之揭露以參照方式被併入本文。序列 號為11/510,037的申請案揭露了一種使用粗及細控制致動 200908489 器的多級帶寬控制系統。 本申請案揭露了作為一致動器的光栅彎曲(使光柵變 曲的—帶寬控制設備“BCD”之位置)以及其他致動器之使 用致此f寬穩定的各種技術被討論。主動帶寬控制系統 5 了使用非常精確的板上頻譜測量(例如,E^)以及帶寬錯誤 回饋。基於其他雷射參數/輸出信號(例如,目標能量及工作 週期)的補償可致能控制各種帶寬選擇致動器(actuat〇rs),包 括低頻率大幅值致動器以及一高頻率小幅值致動器。 —光刻光源雷射(一多輸入多輸出(ΜΙΜΟ)隨時間變化 10的非線性系統)可使用一(複數)致動器,除了改變帶寬之 外,该(等)致動器本身可能對雷射效能引起其他影響(被期 望的或不被期望的)。包括具有利用個別操作參數輸入(致動 器)影響雷射行為的多階(例如,雙階致動器設計)一起運作 時可被最佳化以回應一(複數)特定類別的干擾。干擾可藉由 15時標(time scale)及/或影響之大小被分類。脈衝能量設定可 包括低幅值快時標干擾(在一細致動範圍内一般為毫秒至 秒)。工作週期設定點及氟氣消耗(以小時為時標)變化之高 (以秒為時標)及低(小時)頻率層面可能引起較大的幅值影 響。其他長期參數變化、元件老化及錯誤對準(天至周或者 20甚至更長)可導致最大的幅值(在一粗致動範圍)變化。 因此,被分類到粗致動及細致動的控制動作被揭露, 各自使用一或多個參數變化致動器。其中—者著重於大幅 值低頻率干擾(大的Em設定點變化、氣體老化影響及工作週 期變化之長時標元素(例如)自慢的熱負载變化、雷射元 200908489 件之使科間增減咖者產外另—封著重於較小幅 值較高頻率干擾(輸出脈衝能量以紅作週期變化之快元 素一一(例如)自較快的熱負載暫態及類似者產生)。該粗致 動器也可用以解飽和或者重新定位中心,—(複數)細致動器 在其控制範圍内。 _粗致動器(例如,匕氣體注入)及細致動器光拇 彎曲或者其他前波一致調整或者可對光束調整孔徑等械 顯示以調整帶寬且一起用於帶寬控制,具有對其他雷射參 數之各種影響以及測量之時間架構以供回饋及允許解搞合 之致動。詞5吾dtMOPA或ΔίΜ0ΡΑ或者差動發射時間或者差動 放電時序或差動計异控制(如此處所使用的)都是以下概念 之簡化符號:在種源雷射電極與放大器雷射電極之間的放 電計時以選擇性地放大在該放大器增益媒體内的種源雷射 脈衝之一部分,從而選擇該雷射光源之輸出的帶寬。注意 15到需要足夠的致動範圍以能夠解決來自由於長期工作週期 變化、氣體老化及元件老化的一般需要被抑制的此等影響 之Τ寬偏差。由於其他雷射操作參數引起的誤差信號變化 (濾波及其他正規化)該等控制器可被補償/減少敏感度。 入射到一中心波長選擇光學元件(例如,分散光栅)上的 2〇 一光束之可變放大也可能影響光源之帶寬。此一系統在序 號為6,393,037的美國專利(於2002年5月21日被發證給200908489 IX. Description of the Invention: [Technical Field of the Invention] Field of the Invention The present disclosure relates to, for example, a DUV gas discharge laser system (for example, an excimer for, for example, a line narrowing application) Active control of the bandwidth within a fluorine molecular laser system, for example, as one of the integrated circuits fabricated by photolithography. BACKGROUND OF THE INVENTION 10 Stable bandwidth (e.g., E95 for DUV semiconductor integrated circuit lithography laser source design) includes passive and active bandwidth control. Active control allows these sources to benefit from optical performance correction ("OPC") and tool-to-tool matching of such sources. US Provisional Patent Application Serial No. 60/923,486, entitled "TWO STAGE EXCIMER LASER WITH SYSTEM FOR 15 BANDWIDTH CONTROL", filed on April 13, 2006, including U.S. Patent Application Serial No. 11/510,037 (Announcement of "ACTIVE SPECTRAL CONTROL OF DUV LIGHT SOURCE", filed on August 25, 2006, published on August 23, 2007, the disclosure of which is US-2007-0195836-A1, which claims the serial number Priority for the US Provisional Application No. 60/774, 770 20 (named "ACTIVE SPECTRAL CONTROL OF DUV LIGHT SOURCES FOR OPE MINIMIZATION", filed on February 17, 2006), each of these applications The disclosure is incorporated herein by reference. The application serial number 11/510,037 discloses a multi-level bandwidth control system that uses the coarse and fine control to activate the 200908489 device. The present application discloses various techniques for raster bending as an actuator (the position of the bandwidth-modifying device "BCD" that distort the grating) and the use of other actuators to stabilize this f-width. Active Bandwidth Control System 5 uses very accurate on-board spectrum measurements (eg, E^) and bandwidth error feedback. Compensation based on other laser parameters/output signals (eg, target energy and duty cycle) can enable control of various bandwidth selection actuators, including low frequency large value actuators and a high frequency small amplitude Actuator. - lithographic source laser (a multi-input multi-output (ΜΙΜΟ) nonlinear system with a time varying of 10) can use a (complex) actuator, except that the bandwidth is changed, the actuator itself may Laser performance causes other effects (expected or undesired). Multiple orders (e.g., two-step actuator designs) that have the effect of affecting laser behavior with individual operational parameter inputs (actuators) can be optimized to respond to a (plural) specific class of interference. Interference can be classified by the time scale and/or the size of the influence. Pulse energy settings can include low amplitude fast time-scale interference (typically milliseconds to seconds in a fine actuation range). The high duty cycle (in seconds) and the low (hour) frequency level of the duty cycle set point and fluorine gas consumption (in hours) can cause large amplitude effects. Other long-term parameter changes, component aging, and misalignment (day to week or 20 or even longer) can result in a change in maximum amplitude (in a coarse actuation range). Thus, control actions classified into coarse actuation and fine actuation are disclosed, each using one or more parameter varying actuators. Among them, the emphasis is on large-value low-frequency interference (large Em set point changes, gas aging effects and long-term changes in duty cycle (for example) from slow heat load changes, and laser elements of 200,908,489 The café has a focus on the higher amplitude and higher frequency interference (the fast pulse element of the output pulse energy changes in red, for example, from the faster thermal load transient and the like). The actuator can also be used to desaturate or reposition the center, the (complex) fine actuator is within its control range. _ coarse actuator (eg, helium gas injection) and fine actuator light thumb bending or other front wave consistent Adjustments can be made to the beam adjustment aperture or other mechanical display to adjust the bandwidth and used together for bandwidth control, with various effects on other laser parameters and the time frame of the measurement for feedback and allowing the deconstruction to act. Word 5 my dtMOPA Or ΔίΜ0ΡΑ or differential emission time or differential discharge timing or differential counting control (as used herein) is a simplified notation for the following concepts: at the source laser electrode and Discharge timing between the laser electrodes to selectively amplify a portion of the source laser pulse within the amplifier gain medium to select the bandwidth of the output of the laser source. Note 15 to require sufficient actuation range to Ability to address wide variations in these effects from general effects that are inhibited due to long-term duty cycle changes, gas aging, and component aging. Error signal changes (filtering and other normalization) due to other laser operating parameters Can be compensated/reduced sensitivity. The variable amplification of a 2 〇 beam incident on a central wavelength selective optic (eg, a dispersion grating) can also affect the bandwidth of the source. This system is in U.S. Patent No. 6,393,037 ( Issued on May 21, 2002

Basting等人)中被討論’此專利之内容以參照方式被併入本 文。Basting之摘要描述了一包括角度分散光學元件(光柵) 的可調諧雷射以及一包括在一譜線窄化模組内的一或兩個 7 200908489 旋轉棱鏡的擴束^難帶寬。複數稜鏡擴《(當兩個被 使用時)被揭露以機械地彼此連接,因此當該放大變化時, 該分散元件上的光束之人㈣沒有被改變。此配置使得非 常難以(若不是不可能的)利用旋轉稜鏡控制中心、波長及帶 寬。除此之外’該帶寬控㈣統使用串接操作的兩稜鏡是 非常困難的。 相信GlgaPh〇t〇n發佈了 一種使用某種光學致動執行Ε95 控制的產品。日本發佈的專利申請案襄〇24855(於篇年 7月9日發佈)也揭露了一種可變放大lnm,具有兩個旋轉棱 Π)鏡且將在-種源雷射與放大雷射之間的一差動放電發射時 序用於帶寬控制。此-配置使其難以(若不是不可能的则 稜鏡控财㈣長及帶寬,以及在H制個續嶋 控制帶寬可能具有一些缺點。 第12圖(取自〇37申請案)描述了使用^MOPA的&帶寬 控制中制差動發射時間作為一細致動器控制&帶寬 八有。優點,包括.⑴E95之測量及△【_之變化都可能 以大約幾十個脈衝時標或者更短發生,例如脈衝對脈衝, 攸而允許非爷向的頻率干擾拒絕;以及⑺致動之可用範圍 句大、衰減/抑制被作為目標的帶寬偏移之來源,即雷射 20能量及工作週期變化之較高的頻率影響。 現存類型的主動帶寬控制可能具有一些缺點,例如用 太長時間從—大的干擾(例如,在-氟注人之後的-暫態) 或目私帶寬之變化恢復。其等可能使帶寬離開目標多達 當考慮—55個擊發移動平均狀例子)或料㈣當 200908489 以積分求和)。返回到目 考慮-55個擊發標準偏差之例子, 標可能花費多於幾十秒。 除此之夕卜,糾 錢,㈣錢大卿,或者從伽 =低至聰_錢大⑽秒,當要求可能低至大約10 秒時0The contents of this patent are discussed in the 'Butting et al.' The Basting abstract describes a tunable laser comprising an angularly dispersive optical element (grating) and a beam expandable bandwidth of one or two of the 200908489 rotating prisms included in a line narrowing module. The plural expansion (when both are used) is revealed to be mechanically connected to each other, so that when the magnification changes, the person (four) of the light beam on the dispersing element is not changed. This configuration makes it very difficult, if not impossible, to use the rotary 稜鏡 control center, wavelength, and bandwidth. In addition to this, the bandwidth control (four) system is very difficult to use the two operations of the serial operation. It is believed that GlgaPh〇t〇n has released a product that uses some kind of optical actuation to perform Ε95 control. Japanese patent application 襄〇24855 (released on July 9th of the year) also revealed a variable magnification 1nm with two rotating prisms and will be between the source laser and the amplified laser. A differential discharge emission timing is used for bandwidth control. This configuration makes it difficult (if not impossible, then controlling money (4) length and bandwidth, and controlling the bandwidth in H may have some disadvantages. Figure 12 (taken from 〇37 application) describes the use ^MOPA&Bandwidth Control makes the differential emission time as a fine actuator control & bandwidth. There are advantages, including. (1) E95 measurement and △ [_ change can be about tens of pulse time scale or more Short occurrences, such as pulse-to-pulse, 允许 allow for non-directional frequency interference rejection; and (7) actuation of the available range, the attenuation/suppression is the source of the target's bandwidth offset, ie, the laser 20 energy and duty cycle Higher frequency effects of change. Existing types of active bandwidth control may have some disadvantages, such as using too long a period of time to recover from large disturbances (eg, transients after -flux injection) or changes in private bandwidth They may cause the bandwidth to leave the target as much as possible - 55 firing averages (for example) or (4) when 200,908,489 are summed with points). Return to the target Considering -55 examples of firing standard deviations, the target may take more than a few tens of seconds. In addition to this, correct money, (4) Qian Daqing, or from gamma = low to Cong _ Qian Da (10) seconds, when the request may be as low as about 10 seconds 0

、於其他方面,誤差可能由於控制㈣ϋ而產生 L在—控制器步進信號可被發給-帶寬致動步進器之 刚延遲太多脈衝),使得在帶寬可以較低頻率被取樣之低工 10作週期上、,具有非常高的機率在一叢發期間步進命令將不 發生、。因為步進器命令或步進器本身可在一叢發中間間隔 期間被致能,所以帶寬内的叢發對叢發誤差可在彼此上建 立,和;又有任何修正信號被發給(複數)帶寬控制致動器。 習知的帶寬穩定控制能夠以一設定且忘記方式設定一 15帶寬控制设定點。較嚴格的要求需要一可調諧帶寬設定可 由雷射光源之終端使用者控制。也要求帶寬控制系統沒有 對其他雷射操作或輸出參數之控制產生負面影響,例如輸 出脈衝能量及劑量穩定及類似者。 本文提出的使用雷射共振腔外部的一可變孔徑及結合 20其他帶寬控制致動器的主動帶寬控制相對於習知技術具有 優勢。§亥共振腔内的光學元件可被簡化及減少數量,特別 是在一個單一腔室内或者在光學負載非常嚴重的一多變化 雷射系統之放大器内。該可變孔徑結合其他致動器可以是 一用於帶寬控制的粗調整器或細調整器。 9 200908489 【發明内容】 發明概要 本發明提供一種用於控制一雷射系統内的帶寬之方 法,該雷射系統包含: 5 —氣體放電種源雷射,具有一共振腔且產生一種源雷 射輸出; 一氣體放電放大器雷射,放大該種源雷射輸出且產生 一雷射系統輸出; 一帶寬度量單元,測量該雷射系統輸出之帶寬且提供 10 一帶寬測量值;以及 一帶寬誤差信號產生器,接收該帶寬測量值及一帶寬 設定點且提供一帶寬誤差信號; 一可變放大譜線窄化單元,位於該種源雷射之共振腔 内,包含一光柵及一可變光束放大光學系統; 15 一差動時序控制器,選擇該種源雷射内的一個別電極 對與該放大器雷射内的一個別電極對之間的一放電之發射 的時序; 該方法包含以下步驟: 利用一帶寬控制器控制帶寬,該帶寬控制器具有三個 20 模式的放大控制,其中一第一模式不控制該譜線窄化單元 内的光束之放大,一第二模式將該譜線窄化單元内的該光 束之該放大驅動至獨立於該帶寬誤差信號的一選定值,以 及一第三模式根據該帶寬誤差信號驅動該譜線窄化單元内 的該光束之該放大;以及 10 200908489 其中在每個模式内,該差動時序控制器根據該帶寬誤 差信號選擇該時序或者不考慮該帶寬誤差信號。 本發明提供一種雷射系統,包含: 一氣體放電種源雷射,具有一共振腔且產生一種源雷 5 射輸出; 一氣體放電放大器雷射,放大該種源雷射輸出且產生 一雷射系統輸出; 一帶寬度量單元,測量該雷射系統輸出之帶寬且提供 一帶寬測量值;以及 10 一帶寬誤差信號產生器,接收該帶寬測量值及一帶寬 設定點且提供一帶寬誤差信號; 一可變放大譜線窄化單元,位於該種源雷射之共振腔 内,包含一光栅及一可變光束放大光學系統; 一差動時序控制器,選擇該種源雷射内的一個別電極 15 對與該放大器雷射内的一個別電極對之間的一放電之發射 的時序; 一帶寬控制器具有三個模式的放大控制,該帶寬控制 器不控制該可變放大譜線窄化單元的一第一模式,該帶寬 控制器控制該可變放大譜線窄化單元以將該放大驅動至一 20 與帶寬誤差信號無關的選定值的一第二模式,以及該帶寬 控制器根據該帶寬誤差信號控制該可變放大譜線窄化單元 以選擇該雷射系統輸出之該帶寬的一第三模式;以及 其中該差動時序控制器根據該帶寬誤差信號選擇該時 序或者不考慮該帶寬誤差信號。 11 200908489 本發明提供一種雷射系統,包含: 一雷射光源,包含: 一種源雷射,定義一產生一輸出的光學共振腔; 一放大器雷射,接收該種源雷射輸出且放大該種源雷 5 射輸出; 一帶寬度量模組,測量由該光源產生的一雷射輸出光 脈衝束脈衝之帶寬且產生一帶寬測量值; 一帶寬誤差信號產生器,接收該帶寬測量值及一帶寬 設定點且提供一帶寬誤差信號; 10 一帶寬選擇元件,位於該種源雷射之該共振腔外部, 選擇光束之一空間部分以選擇性地改變該種源雷射輸出之 該帶寬。 本發明提供一種雷射系統,包含: 一種源雷射,定義一產生一輸出的光學共振腔; 15 —放大器雷射,接收且放大該種源雷射之該輸出且提 供一雷射系統輸出; 一帶寬度量模組,測量由該光源產生的一雷射輸出光 脈衝束脈衝之帶寬且產生一帶寬測量值; 一帶寬誤差信號產生器,接收該帶寬測量值及一帶寬 20 設定點且提供一帶寬誤差信號; 一差動時序系統,回應該帶寬誤差信號以選擇性地調 整該種源雷射與放大器之間的一差動發射時間;以及 一光束大小(dimension)調整系統,可控地調整在該種 源雷射之該共振腔内的一光束之一光束大小以選擇性地改 12 200908489 變該種源雷射輸出之帶寬且也可控地調整該種源脈衝之中 心波長;以及 該光束大小調整系統包含: 多數個光束大小調整稜鏡;以及 5 至少另一棱鏡,包含一中心波長選擇棱鏡。 本發明提供一種裝置,包含: 一種源雷射,定義一產生一輸出的光學共振腔; 一放大器雷射,接收且放大該種源雷射之該輸出且提 供一雷射系統輸出; 10 一帶寬度量模組,測量由該光源產生的一雷射輸出光 脈衝束脈衝之帶寬且產生一帶寬測量值; 一帶寬誤差信號產生器,接收該帶寬測量值及一帶寬 設定點且提供一帶寬誤差信號; 一差動時序系統,回應該帶寬誤差信號以選擇性地調 15 整該種源雷射與放大器之間的一差動發射時間;以及 一光束大小調整系統,可控地調整該種源雷射之該共 振腔内的一光束之一光束大小以選擇性地改變該種源雷射 輸出之帶寬且也可控地調整該種源脈衝之中心波長;以及 該光束大小調整系統包含: 20 多數個光束大小調整稜鏡; 一分散光學元件; 以及 一中心波長選擇棱鏡,至少部分定義該分散光學元件 上的該光束之一入射角;以及 13 200908489 一中心波長選擇反射鏡,與該至少另一稜鏡協作,定 義該分散光學元件上的該光束之該入射角。 圖式簡單說明 第1圖顯示了一帶寬控制設備e95敏感度曲線; 5 第2圖描述了依據被揭露的標的之一實施例之層面的 干擾類型與時標及幅值; 第3圖示意性且以方塊圖形式顯示了依據被揭露的標 的之一實施例之層面的具有一可變放大譜線窄化模組及差 動發射時間(dtMOPA)帶寬控制的一多級氣體放電雷射系 10 統; 第4圖示意性且以方塊圖形式顯示了依據被揭露的標 的之一實施例之層面的具有4個稜鏡及一光柵的一實施 例,其中至少一稜鏡可被旋轉以增加/減少光束寬度,從而 改變帶寬; 15 第5圖描述了可用於被揭露的標的之一實施例之層面 的一雷射控制系統整體架構; 第6圖示意性且以方塊圖形式描述了依據被揭露的標 的之一實施例之層面控制的一代表性雷射系統“植入”; 第7圖示意性且以方塊圖形式描述了依據被揭露的標 20 的之一實施例之層面的一帶寬控制器; 第8圖示意性且以方塊圖形式描述了依據被揭露的標 的之一實施例之層面的一擊發平滑器; 第9圖示意性且以方塊圖形式描述了依據被揭露的標 的之一實施例之層面的一不感帶磁滯方塊; 25 第10圖示意性且以方塊圖形式描述了依據被揭露的標 14 200908489 器; 了依據被揭露的標 —中心波長選擇反 的之一實施例之層面的一控制模式選擇 第π圖示意性且以方塊圖形式描述 的之一實施例之層面的具有複數稜鏡及 射鏡的一實施例; 心; —實施例 第12圖描述了一使用Δϊμ〇ρα的E95帶寬控制中 第13圖示意性地描述了依據被揭露的標的之 之層面的一可變放大LNM ; 第Μ圖示意性且以方塊圖形式描述了依據被揭露的標 10 的之-實施例之層面的一可調整孔徑帶寬控制致動器(控 制中心); ° 第15圖示意性地且以方塊圖形式顯示了依據被揭露的 標的之一實施例之層面的一帶寬控制系統;以及 第16圖示意與光束經過的孔徑之大小相依的帶寬變化 之例子。 15 【實施方式】 較佳實施例之詳細說明In other respects, the error may be due to the control (four) ϋ L is generated - the controller step signal can be sent to - the bandwidth actuated stepper has just delayed too many pulses, so that the bandwidth can be sampled at a lower frequency. On the 10th cycle, there is a very high probability that the step command will not occur during a burst. Since the stepper command or the stepper itself can be enabled during a burst interval, the bursts within the bandwidth can be established on each other, and any correction signals are sent to (plural) Bandwidth control actuator. Conventional bandwidth stabilization control can set a 15 bandwidth control set point in a set and forgotten manner. The more stringent requirements require a tunable bandwidth setting that can be controlled by the end user of the laser source. Bandwidth control systems are also required to have no negative impact on other laser operations or control of output parameters, such as output pulse energy and dose stabilization and the like. The use of a variable aperture outside the laser cavity and the active bandwidth control of the other bandwidth controlled actuators proposed herein are advantageous over prior art techniques. The optical components in the cavity can be simplified and reduced in number, especially in a single chamber or in an amplifier with a multi-variable laser system with very high optical loads. The variable aperture in combination with other actuators can be a coarse adjuster or a fine adjuster for bandwidth control. SUMMARY OF THE INVENTION The present invention provides a method for controlling bandwidth within a laser system, the laser system comprising: 5 - a gas discharge source laser having a resonant cavity and producing a source laser Output; a gas discharge amplifier laser that amplifies the source laser output and produces a laser system output; a bandwidth metric unit that measures the bandwidth of the laser system output and provides a bandwidth measurement; and a bandwidth error signal a generator, receiving the bandwidth measurement value and a bandwidth set point and providing a bandwidth error signal; a variable amplification line narrowing unit located in the resonant cavity of the source laser, comprising a grating and a variable beam amplification An optical system; 15 a differential timing controller that selects a timing of a discharge between a pair of electrodes within the source laser and a pair of electrodes within the laser of the amplifier; the method comprising the steps of: The bandwidth is controlled by a bandwidth controller having three 20-mode amplification controls, wherein a first mode does not control the line narrow Amplifying the beam within the cell, a second mode driving the amplification of the beam within the line narrowing unit to a selected value independent of the bandwidth error signal, and a third mode driving the band based on the bandwidth error signal The amplification of the beam within the line narrowing unit; and 10 200908489, wherein in each mode, the differential timing controller selects the timing based on the bandwidth error signal or does not consider the bandwidth error signal. The invention provides a laser system comprising: a gas discharge seed source laser having a resonant cavity and generating a source lightning output; a gas discharge amplifier laser amplifying the source laser output and generating a laser a system metric unit, measuring a bandwidth of the output of the laser system and providing a bandwidth measurement value; and 10 a bandwidth error signal generator, receiving the bandwidth measurement value and a bandwidth set point and providing a bandwidth error signal; a variable amplification line narrowing unit, located in the resonant cavity of the source laser, comprising a grating and a variable beam amplifying optical system; a differential timing controller, selecting a different electrode in the source laser a timing of a discharge of a discharge between a pair of electrodes in the laser of the amplifier; a bandwidth controller having three modes of amplification control, the bandwidth controller not controlling the variable amplification line narrowing unit In a first mode, the bandwidth controller controls the variable amplification line narrowing unit to drive the amplification to a selected value that is independent of the bandwidth error signal. a second mode, and the bandwidth controller controls the variable amplification line narrowing unit to select a third mode of the bandwidth of the laser system output according to the bandwidth error signal; and wherein the differential timing controller is based The bandwidth error signal selects the timing or does not consider the bandwidth error signal. 11 200908489 The present invention provides a laser system comprising: a laser source comprising: a source laser defining an optical resonant cavity that produces an output; an amplifier laser that receives the laser output of the source and amplifies the species a source metric output module; a bandwidth metric module that measures a bandwidth of a laser output light pulse beam pulse generated by the light source and generates a bandwidth measurement value; a bandwidth error signal generator that receives the bandwidth measurement value and a bandwidth Setting a point and providing a bandwidth error signal; 10 a bandwidth selecting component external to the resonant cavity of the source laser, selecting a spatial portion of the beam to selectively vary the bandwidth of the source laser output. The present invention provides a laser system comprising: a source laser defining an optical resonant cavity that produces an output; 15 - an amplifier laser that receives and amplifies the output of the source laser and provides a laser system output; a bandwidth metric module for measuring a bandwidth of a laser output optical pulse beam generated by the light source and generating a bandwidth measurement value; a bandwidth error signal generator receiving the bandwidth measurement value and a bandwidth 20 set point and providing a bandwidth a bandwidth error signal; a differential timing system that echoes the bandwidth error signal to selectively adjust a differential transmission time between the source laser and the amplifier; and a beam adjustment system that is controllably adjusted a beam size of a beam within the resonant cavity of the source laser to selectively change the bandwidth of the source laser output and also controllably adjust the center wavelength of the source pulse; The beam sizing system comprises: a plurality of beam size adjustments; and 5 at least one other prism comprising a central wavelength selective prism. The present invention provides an apparatus comprising: a source laser defining an optical resonant cavity that produces an output; an amplifier laser that receives and amplifies the output of the source laser and provides a laser system output; a metric module that measures a bandwidth of a laser output optical pulse beam pulse generated by the light source and generates a bandwidth measurement value; a bandwidth error signal generator that receives the bandwidth measurement value and a bandwidth set point and provides a bandwidth error signal a differential timing system that echoes the bandwidth error signal to selectively adjust a differential emission time between the source laser and the amplifier; and a beam size adjustment system that controllably adjusts the source radar Generating a beam of a beam within the cavity to selectively vary the bandwidth of the source laser output and also controllably adjusting the center wavelength of the source pulse; and the beam resizing system comprises: 20 a beam size adjustment 稜鏡; a dispersive optical element; and a center wavelength selective prism at least partially defining the light on the dispersive optical element One angle of incidence; 13200908489 and a central wavelength selective mirror, cooperating with the other Prism, the dispersion is defined at least on the incident angle of the optical elements of the beam. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a bandwidth control device e95 sensitivity curve; 5 Figure 2 depicts the interference type and time scale and amplitude of the layer according to one embodiment of the disclosed subject matter; And a multi-level gas discharge laser system with a variable amplification line narrowing module and differential emission time (dtMOPA) bandwidth control according to the level of one embodiment of the disclosed subject matter is shown in block diagram form. Figure 4 is a schematic and block diagram showing an embodiment having four turns and a grating in accordance with a layer of one embodiment of the disclosed subject matter, wherein at least one turn can be rotated Increasing/reducing the beam width to change the bandwidth; 15 Figure 5 depicts the overall architecture of a laser control system that can be used at the level of one of the disclosed embodiments; Figure 6 is schematically and in block diagram form A representative laser system "implanted" in accordance with the level of one embodiment of the disclosed subject matter; FIG. 7 schematically and in block diagram form the level of an embodiment in accordance with the disclosed target 20 one of a wide controller; Figure 8 is a schematic and block diagram depicting a firing smoother in accordance with one level of an embodiment of the disclosed subject matter; Figure 9 is schematic and illustrated in block diagram form according to the disclosure One of the elements of the embodiment is a non-inductive hysteresis block; 25 Figure 10 is schematically and in block diagram form according to the disclosed standard 14 200908489; according to the disclosed target-center wavelength selection A control mode at a level of one embodiment selects an embodiment having a complex chirp and a mirror at the level of one embodiment of the embodiment illustrated schematically and in block diagram form; heart; - embodiment Figure 12 depicts a 13th diagram of E95 bandwidth control using Δϊμ〇ρα, which schematically depicts a variable amplification LNM in accordance with the level of the disclosed target; the second diagram is schematic and depicted in block diagram form An adjustable aperture bandwidth control actuator (control center) according to the disclosed embodiment of the standard 10; ° Figure 15 shows schematically and in block diagram form according to the disclosed subject matter One implementation An example of a bandwidth control system; and Figure 16 illustrates an example of a change in bandwidth dependent on the size of the aperture through which the beam passes. 15 Embodiments Detailed Description of Preferred Embodiments

依據被揭露的標的之一實施例之層面的主動帶寬控制 之主要目的是控制雷射光之Εκ帶寬’使用與先前被使用的 主動帶寬控制系統相同或類似的(複數)輸入信號,然而具有 20 不同的信號處理及致動機制。因此,一可調諧進階帶寬穩 定“八38,,(“1^^5”)被提出以將帶寬控制到某目標設定點, 該目標設定點可由一雷射終端使用者或者一雷射光使用工 具控制系統選擇。 將帶寬控制到士 50 fm或更少(對於常數脈衝接收速率 或其他選定的常數操作參數)被提出且在大於50 fm之帶寬 15 25 200908489 内具有一誤差’該系統能夠以大於或等於〇.〇〇〇3fm/雷射擊 發返回到設定點。中心波長沒有被影響或者受到最小的影 響,同時帶寬之控制在除了一目標變化模式之外的模式(透 過<5 fm—考慮一 55擊發移動平均波長值為例—以及<6 5 fm-考慮一55擊發移動標準差為例,其以積分求和)。一控 制 >貝真法可使用各種帶寬致動器控制步進器以用於帶寬選 擇(粗及或細),包括一可變放大譜線窄化模組 (“VMLNM”)、一帶寬控制模組(“bWCM”)、一光束分析模 組(“BAM”)’如本文所討論的。 10 一被量測的Εκ信號被用以決定一帶寬控制設備 (BCD )或類似者之調整。包括用於使中心波長選擇光栅變 形從而影響雷射光源的輸出之帶寬的機制之BCd是該項領 域内眾所周知的。帶寬控制可以如下目標實現:保持在一 BCD操作曲線之一特定側,例如BCD曲線之右側或左側, 15 如第1圖中所描述的。 申請人已注意到,干擾80可由影響此等雷射操作參數 (例如’ Em帶寬)的時標及/或幅值被分類,如第2圖之圖表 所描述的,且如序列號為11 /510 0 3 7的美國專利申請案(名稱 為 “ACTIVE SPECTRAL CONTROL OF DUV LIGHT 20 SOURCE,,,於2006年8月25日提出申請,於2〇〇7年8月23曰 發佈’公開號為US-2007-0195836-A1)中較詳細解釋的,此 申請案以參照方式被併入本文。如此處所解釋的在一細 致動範圍82(例如,能量變化或較高頻率工作週期影響)或粗 致動範圍84(例如,較低頻率工作週期影響,氣體老化戋元 16 200908489 :老化/誤對準)内的此等干擾8Q可由帶寬控制致動器(粗致 動或細致動或其二者一起)產生。 第3圖顯示了具有一可變放大譜線窄化模組及差動發 射時間(舰0PA)帶寬控制的_多級氣體放電雷射5〇〇。第一 5級可:是一主振盪器M〇,以及下_級可以是一單通道功率 放大器、-多通道功率放大器、一功率振盈器或一行波放 大器(例如’―功率環放大器),其中振盪在作為-放大級的 共振腔内發生。 此一雷射线之—例子可包括第3目巾所*的元件中 10的-些或所有,取決於配置。第3圖中所示的元件包括一可 變放大譜線窄化模組502、一第一級腔室5〇4、一第一級輸 出耦接器506、轉向光學元件5〇8a,b、一輸入耦接器51〇、一 第二級腔室512、-分束器514、-帶寬測量模組516以及一 放電時序控制模組518。該種源雷射5〇4可以是一氣體放電 15準分子或者氟分子雷射,例如一XC1、XF、KrF、ArF、F2 或類似的雷射。此等類型的雷射已知用於晶圓之光刻製程 處理以製造半導體電路。該種源雷射504可(例如)在該譜線 窄化模組502與該輸出耦接器506之間定義一光學共振腔且 產生一輸出。該放大器雷射512可透過中繼光學元件(反射 20鏡50如及b)接收種源雷射輸出且放大該種源雷射輸出以產 生一雷射系統輸出。該帶寬度量模組516(為該項領域内眾 所周知)可測量一雷射輸出之帶寬且可提供可被一帶寬控 制器518(如以下所討論的)使用的一帶寬測量值,該帶寬控 制器518可以是個別的單元以產生可與一目標/設定點比較 17 200908489 的帶寬誤差。差動時序可根據該誤差信號被調整以調整雷 射系統輸出帶寬。 第4圖顯示了具有4個棱鏡520、522、524、526以及一 光柵528的一帶寬(及中心波長)致動器機制(控制中心)之一 5可能的實施例。稜鏡520可被固定在一包括旋轉移動固定 (例如’一彎曲固定(圖未示))的致動器(圖未示)上,因此該 稜鏡520可透過一旋轉致動器(例如,一步進器馬達(圖未示) 及/或PZT(圖未示))旋轉以增加/減少光束寬度,從而改變帶 寬。稜鏡522可保持靜止或者也可具有一旋轉位置致動器 10 (圖未示)。稜鏡524也被固定以旋轉移動(如對稜鏡52〇所描 述的)(例如)以細調整中心波長(例如,以飛米(1〇—,5m)之等級 變化)。棱鏡524也可被如此固定以粗調整中心波長(例如, 以10xl〇_15m之等級變化)。 第11圖示意性地描述了 一帶寬(及中心波長)致動器(控 15制中心)之一可能的實施例,其中此一Rmax反射鏡540及其 致動器540a(為雷射系統中心波長選擇之領域内眾所周知 的)可被用以將自該光束擴展稜鏡526出來的被擴展光束折 射回到一光柵528。該光栅528可以是一延長光柵以使用被 擴展的光束,例如一被擴展45X的光束。藉由決定該光拇528 2〇 上的光束之入射角,該反射鏡540可被部分用於中心波長控 制。該項領域内所知的Rmax折疊式反射鏡本身可具有對一 個單一光學元件之粗及細中心波長控制,即將—步進器馬 達(圖未示)用於粗控制及將一PZT堆疊(圖未示)用於細且快 中心波長控制’如以上所注明的。當結合一中心波長^制 18 200908489 棱鏡(例如稜鏡520)時,該Rmax反射鏡54〇可保持其相對於 該光柵528之角度的控制或者只使用ρζτ堆疊之細控制且不 使用任何步進器馬達控制。該中心波長控制稜鏡(例如,稜 鏡520)可被用於粗控制,接著該Rmax折疊式反射鏡54〇可被 5用於較細的中心波長控制,或者反之亦然。 在後一實施例中,該PZT堆疊可被刪除,且僅一步進器 馬達被用以定位該RMAX折疊式反射鏡以供粗中心波長控 制,同時該中心波長控制稜鏡可被用於較細的中心波長選 擇。可選擇的方式是,設於該光束擴展機制内的一連串稜 10鏡内的母個棱鏡可具有一類似RMAX的粗控制及細控制,其 中一步進器馬達用於粗調整以及一 PZT堆疊用於細調整,或 者忒粗調整稜鏡可利用一步進器馬達或類似的機械調整被 控制,且§亥(等)細調整棱鏡藉由一較快且較細的控制致動器 被控制(例如一 ΡΖΤ堆疊)。 15 信號可自雷射硬體被接收以指出來自最近雷射光之 Εν帶寬的測量值。一控制器(如第7圖中所示)或者元件5〇2 及/或518之部分接著可透過各種濾波、不感帶(deadbands)、 磁滯及平滑化處理該等信號且產生以一(複數)命令之形式 的一(複數)輸出給可執行如(舉例而言)移動或扭曲_(複數) 20機械及/或光學元件此類的功能之一(複數)致動器。此(等) 元件之移動或扭曲可引起Εκ帶寬之變化以減少帶寬錯誤。 可具有幾種控制模式,例如下列但不限於下列,其中 沒有任何放大控制被實施(即,可變放大LNM變化系統沒有 被使用),因此沒有由於可變放大產生對帶寬控制之影響。 19 200908489 在此模式中’可具有兩個子模式,在一模式中,dtMOPA雷 射時序沒有被用於直接控制帶寬,以及在一模式中, dtMOPA被用以直接控制帶寬。The primary purpose of active bandwidth control in accordance with one embodiment of the disclosed subject matter is to control the Ε 带宽 bandwidth of the laser light 'using the same or similar (complex) input signal as the previously used active bandwidth control system, however with 20 different Signal processing and actuation mechanisms. Therefore, a tunable advanced bandwidth stabilization "eight 38," ("1^^5") is proposed to control the bandwidth to a target setpoint that can be used by a laser end user or a laser beam. Tool control system selection. Controlling bandwidth to ±50 fm or less (for constant pulse reception rate or other selected constant operating parameters) is proposed and has an error in bandwidth greater than 50 fm 15 25 200908489 'The system can Greater than or equal to 〇.〇〇〇3fm/Ray shots return to the set point. The center wavelength is not affected or minimally affected, while the bandwidth is controlled in a mode other than a target change mode (via <5 fm— Consider a 55-shot moving average wavelength value as an example - and <6 5 fm - consider a 55-striving movement standard deviation as an example, which is summed by integral.) A control > Bezhen method can be controlled using various bandwidth actuators The stepper is used for bandwidth selection (thick and thin), including a variable amplification line narrowing module ("VMLNM"), a bandwidth control module ("bWCM"), and a beam analysis module (" BAM") As discussed herein. 10 A measured Εκ signal is used to determine the adjustment of a Bandwidth Control Device (BCD) or the like, including the bandwidth used to deform the center wavelength selective grating to affect the output of the laser source. The mechanism of BCd is well known in the art. Bandwidth control can be achieved by maintaining a specific side of a BCD operating curve, such as to the right or left side of a BCD curve, as described in Figure 1. It is noted that the interference 80 can be classified by time scales and/or amplitudes that affect these laser operating parameters (e.g., 'Er bandwidth), as depicted in the graph of Figure 2, and if the serial number is 11 / 510 0 3 U.S. Patent Application No. 7 (ACTIVE SPECTRAL CONTROL OF DUV LIGHT 20 SOURCE,,, filed on August 25, 2006, published on August 23, 2007, 'publication number US-2007- This application is hereby incorporated by reference in its entirety in its entirety. As explained herein, in a fine actuation range 82 (eg, energy change or higher frequency duty cycle effect) or coarse actuation range 84 (eg, lower frequency duty cycle effects, gas aging unit 16 200908489: aging/mismatch Such interference 8Q within the quasi-) can be generated by a bandwidth controlled actuator (coarse actuation or fine actuation or both). Figure 3 shows a multi-stage gas discharge laser with a variable amplification line narrowing module and differential emission time (ship 0PA) bandwidth control. The first 5 stages can be: a primary oscillator M〇, and the lower _ stage can be a single channel power amplifier, a multi-channel power amplifier, a power oscillator or a row-wave amplifier (eg, a “power loop amplifier”). The oscillation occurs in the resonant cavity as an amplification stage. An example of such a ray may include some or all of the elements of the third item*, depending on the configuration. The component shown in FIG. 3 includes a variable amplification line narrowing module 502, a first stage chamber 5〇4, a first stage output coupler 506, steering optical elements 5〇8a, b, An input coupler 51, a second stage chamber 512, a beam splitter 514, a bandwidth measurement module 516, and a discharge timing control module 518. The source laser 5〇4 may be a gas discharge 15 excimer or a fluorine molecular laser such as an XC1, XF, KrF, ArF, F2 or similar laser. These types of lasers are known for lithographic processing of wafers to fabricate semiconductor circuits. The source laser 504 can define, for example, an optical resonant cavity between the line narrowing module 502 and the output coupler 506 and produce an output. The amplifier laser 512 receives the source laser output through the relay optics (reflector 20 mirrors 50 and b) and amplifies the source laser output to produce a laser system output. The bandwidth metric module 516 (known in the art) can measure the bandwidth of a laser output and can provide a bandwidth measurement that can be used by a bandwidth controller 518 (as discussed below). 518 can be an individual unit to produce a bandwidth error that can be compared to a target/setpoint 17 200908489. The differential timing can be adjusted based on the error signal to adjust the output bandwidth of the laser system. Figure 4 shows one possible embodiment of a bandwidth (and center wavelength) actuator mechanism (control center) having four prisms 520, 522, 524, 526 and a grating 528. The crucible 520 can be fixed to an actuator (not shown) that includes a rotationally movable fixation (e.g., a bend fixation (not shown), such that the crucible 520 can be transmitted through a rotary actuator (eg, A stepper motor (not shown) and/or PZT (not shown) rotates to increase/decrease the beam width, thereby changing the bandwidth. The crucible 522 can remain stationary or can have a rotational position actuator 10 (not shown). The crucible 524 is also fixed for rotational movement (as described for 稜鏡 52 )) (for example) to fine tune the center wavelength (e.g., in the order of femto (1 〇 -, 5 m)). The prism 524 can also be fixed such that the center wavelength is coarsely adjusted (e.g., on a scale of 10 x 1 〇 15 m). Figure 11 schematically depicts one possible embodiment of a bandwidth (and center wavelength) actuator (the center of the control 15), wherein the Rmax mirror 540 and its actuator 540a (for the laser system) As is well known in the art of center wavelength selection, it can be used to refract the extended beam from the beam spread 526 back to a grating 528. The grating 528 can be an elongated grating to use an extended beam, such as a beam that is extended 45X. By determining the angle of incidence of the beam on the optical 528 2 ,, the mirror 540 can be used in part for center wavelength control. The Rmax folding mirrors known in the art can have coarse and fine center wavelength control for a single optical component, ie, a stepper motor (not shown) for coarse control and a PZT stack (Fig. Not shown) for fine and fast center wavelength control' as noted above. When combined with a center wavelength 18 200908489 prism (e.g., 稜鏡 520), the Rmax mirror 54A can maintain its control relative to the angle of the grating 528 or use only fine control of the ρζτ stack without any stepping Motor control. The center wavelength control 稜鏡 (e.g., prism 520) can be used for coarse control, and then the Rmax folding mirror 54 can be used for fine center wavelength control, or vice versa. In the latter embodiment, the PZT stack can be deleted, and only one stepper motor is used to position the RMAX folding mirror for coarse center wavelength control, while the center wavelength control can be used for finer The center wavelength is chosen. Alternatively, the parent prisms in a series of rib 10 mirrors disposed within the beam expanding mechanism may have a coarse control and fine control similar to RMAX, wherein a stepper motor is used for coarse adjustment and a PZT stack is used for Fine adjustment, or upset adjustment, can be controlled using a stepper motor or similar mechanical adjustment, and § ( fine adjustment prism is controlled by a faster and thinner control actuator (eg one ΡΖΤ Stacking). The 15 signal can be received from the laser hardware to indicate the measured value of the Εν bandwidth from the most recent laser light. A controller (as shown in Figure 7) or a portion of components 5〇2 and/or 518 can then process the signals through various filtering, deadbands, hysteresis, and smoothing and generate one (plural) One (complex) of the form of the command is output to one (complex) actuator that can perform functions such as, for example, moving or distorting _ (complex) 20 mechanical and/or optical components. This (etc.) movement or distortion of the component can cause a change in the Εκ bandwidth to reduce bandwidth errors. There may be several control modes, such as the following but not limited to the following, in which no amplification control is implemented (i.e., the variable amplification LNM variation system is not used), so there is no effect on bandwidth control due to variable amplification. 19 200908489 In this mode ' can have two sub-modes, in one mode, dtMOPA laser timing is not used to directly control the bandwidth, and in one mode, dtMOPA is used to directly control the bandwidth.

在一第二放大驅動模式中,可變放大也未被使用,雖 5然該系統將可變放大驅動至某選定的值(例如,至一最大 值,例如至45X)。在此第二可變放大模式中,對於一第一 dtMOPA時序模式’能量及時序控制演算法設定dtM〇pA, 且dtMOPA或可變放大(除了被驅動至一選定值,例如全45χ 放大之外)都沒有被改變以供帶寬控制。對一第二dtMOPA 1〇時序控制模式,帶寬利用dtMOPA被設定,同時放大被維持 在(例如)45X放大。 另一放大控制模式可被使用,其中放大基於一些帶寬 回饋控制帶寬。接著放大倍率可基於帶寬之一目標被選 擇,如以上所注明的。在一第一dtM〇pA控制模式之放大控 15制之此模式中,該能量及時序控制演算法出於除了帶寬控 制之外的其他原因設定dtMOPA時序,例如雷射效率、劑量 穩定或類似者。放大倍率被選擇以獲得獨立於dtM〇pA的一 選定的帶寬。在-第二dtMOPA控制模式中,VMLNM之放 大倍率及dtMOPA都可被選擇以獲得一目標帶寬,其中一者 20被用作-粗帶寬選擇機制且另一者被用作一細選擇機制。 该系統可被設定使得具有磁滯配置的一不感帶 (deadband)被使用,從而(舉例而言)控制只在誤差(絕對值) 離開一較大/外不感帶時啟動以及在誤差返回到一較小/内 不感帶時關閉。而且,帶寬馬達抖動可被使用,例如利用 20 200908489 一下限制值’在改變方向之前在—方向㈣微步之數目的 -下限制值。除了利用_帶寬目標變化之外,該系統可被 配置以獲付在—給定卫作週期(例如,對於(舉例而言)1〇〇 ,發,度,以5。就為1〇秒)之某時間限制值内的新目 ‘同^光刻之光源的使用被禁能。這可限制抖動及/或客 製化f X控制以指定客戶要求。 10 15 i 20 田被濾波的γ覓在不感帶之外時,該控制器可只在一 方向内命令該步進H,從而在不感帶邊界附近阻止與操作 有關的抖動。若帶寬(誤差信號)大於高/外不感帶值,則此 控制致能帶寬㈣致動ϋ回触£/初始彳t命令發出,以及 右帶寬(誤差信號)小於低/内不感帶值,則禁能命令發出。 否則,系統不改變目前的命令發出狀態(致能或禁能),同時 °亥,寬(誤差信號)在高/外不感帶值與低/内不感帶值中 間。換言之,當該帶寬(誤差)信號在該等不感帶限制值中間 時(已從一高值進入此區域),以致輸入命令發出被致能,於 疋其保持被致能直到該帶寬(誤差)信號經過低/内不感帶值 且命令發出被禁能。類似地,當來自小於低/内不感帶值(其 中命令發出被禁能)時,此功能保持被禁能直到帶寬(誤差) 信號經過高/外不感帶值。 不感帶之大小可被選擇以取捨幾個效能值,例如減少 抖動、控制器回應時間對干擾之總速度以及被允許的帶寬 誤差之大小。 該系統可使用一函數產生器(可使用一豐富特徵集合) 以(僅舉例)命令一帶寬控制致動器(例如一步進器馬達)至 21 200908489 擊發數之任意函數。 個別硬體及軟體“增益,,可被用於軟體(以促進硬體更新 能力)。 一控制器延遲(holdoff)也可被使用,使得(舉例而言)在 5 一叢發之開始,在一些脈衝内沒有任何帶寬步進被允許, 例如在一叢發開始之後的3〇個擊發内。 該帶寬控制系統之三個基本操作可利用一帶寬致動器 (例如,一可變放大LNM)被執行。擊發處理可在每個擊發 上發生(一擊發由LAM更新指出)。當帶寬目標變化發生 10時,帶寬目標變化處理可發生。 每當譜線中心(波長)分析模組(“LAM”)送回波長資料 時(例如,基於一逐擊發基準),擊發處理邏輯可被執行。利 用一擊發資料記錄,輸入信號可被檢查。該演算法可執行 其。十异且將§玄專結果移到相同的擊發資料記錄内。一帶寬 刀析模組(“BAM”)狀態信號可被用以決定是否可獲得新的 帶寬資料(例如E9 5帶寬資料)。接著該系統可嘗試濾除壞的 或者其他無效的帶寬資料。 5亥f寬控制系統(例如,使用一帶寬控制致動器(例如, —可變放大譜線窄化模組(“VMLNM”)的帶寬控制系統)可 被要求以:(1)使帶寬穩定在某選定帶寬内,例如大約土5〇 m ’(2)以一選定的速率(例如,大約0.0003 fm/shot)自一選 疋的目標或設定點校正帶寬之誤差;確保波長穩定性被 維持’例如當使用具有帶寬致動器的帶寬控制允許不大於 選定值(例如’大約5 fm額外的55_擊發移動平均波長誤 22 200908489 差),以及不大於-選定值(例如,在波長誤差額外 的55-擊發移動標準差);(4)包括一具有磁㈣不感帶,可 被用以改變效能;(5)為阻止步進器馬達抖動,因此該步進 器必須至少在-方向步進-選定的數目(例如,大約_步 階),在往另一方向步進之前;以及(6)提供用於帶寬目標變 化,可在-選定的時間内達成,例如(舉例而言培為2〇〇脈 衝/秒之一最小擊發速率為大約10秒(對於一4 kHz脈衝重複 率雷射系統)。 因此,一濾波器可只在帶寬更新時被使用。在帶寬更 1〇新之間,其他功能可發生(例如,步進平滑化),但是大部分 其他功能取決於被濾波的誤差。因此,當且若此不變化時, 其他控制|§狀態也保持恒定。該系統也可使用利用ΜΟΡΑ 時序模式及BW步進器模式決定的帶寬控制演算法且也可 使用BW步進器馬達函數產生器/播放且提供贿步進器 之“重設定,,至基線放大。 。 -目‘可此被要求在某選定的時間内改 約10秒。右mJ ^ 見π改變期間,波長穩定性可不需要在規 ^二。目,,化表該錢11可能需要以其最快的速 20 止 ^算法可命令該步進器以盡可能最快的速率在 p j方向内移動,且當所量測的帶寬接近目標時停止該 進' T選擇的方式是,該演算法可使用帶寬對步階曲 线乂及絕對步階之位置感測以估計獲得目標帶寬所 用的步階之正確數目。 若目前叢發内發射的擊發之數目小於或等於一被儲存 23 200908489 的值(表示在一叢發開始時用以阻止帶寬步進的擊發之數 目)且若目標變化模式之狀態被致能(“丨”),則該系統可基於 回饋控制將此擊發所用的步階之數目設定為=〇。基於回饋 控制’此擊發所用的帶寬步階之總數目可被計算為用以命 5令一帶寬控制機制致動步進器(例如一可變放大棱鏡旋轉 步進器)的微步之數目等於被命令的步階之數目。 該演算法輸出可被更新,例如,若用以命令該控制致 動器(例如,該可變放大步進器)的微步之數目的絕對值大於 〇或若目前的目標變化狀態與先前的目標變化狀態不同則 ίο 5玄演算法輸出可被設定為1,否則被設定為〇。該演算法輪 出可以是表示新的步進器命令是否需要被發送給控制器以 致動帶寬變化從而減少誤差信號(例如,是否致能一 BWCM,如以下所討論的)的一信號,從而產生用以更新一 帶寬控制機制致動步進器的一信號。該步進器可以是一可 15變放大LNM旋轉稜鏡。 當一目標變化被檢測出時,該演算法可基於目前被濾 波的誤差、先前帶寬目標以及新的帶寬目標決定—新的追 蹤誤差(tracking error),即被濾波的誤差加先前目標減去新 〇的目標。這可提供步進器移動之正確方向。該演算法接著 0也可重設㈣波器’使得被遽波的誤差等於新的追縱誤 差。該系統可命令該步進器在所需的方向内以最大速率移 動(破稱為“迴旋”(slewing)) ’直到被濾除的帶寬誤差在為了 能夠停止迴旋而沒有過衝的某選定的範圍内。該演算法也 可檢查被濾波的誤差是否在迴旋期間改變正負號。、二旦此 24 200908489 等條件中的任何-者未被滿足,控制器可返回纟彳正常控制。 帶寬“尖峰’,可能由於大的波長改變而發生。在一帶寬 目才示變化迴旋期間,由於帶寬步進與波長之耦合,波長也 可月b被影響。雖然該波長控制器可補償此等變化,但是其 5無法在叢發中間間隔期間如此做,使得若該步進器繼續迴 旋則波長可能改變。在叢發中間間隔之後,該波長控制 可能必須回應一新的且相對較大的波長誤差。這可能導 致波長之-快速且大的變化,即使具有實質上以2㈣改變 之能力,-非常快速(且細的)波長控制機制(例如,基於一 10 RMAX的PZT堆疊)或者改變光柵上的光束之人射角的棱鏡定 位元件(作為一主波長控制源)。 在一 BAM積分期間的波長之變化可由BAM感知為帶 見之增加。一般而言,波長變化越快,BAM測量内的正偏 差越大#波長變化足夠快,則在一些情況下,一異常大 is的穴峰可被BAM報告。在一目標改變期間,此等尖峰可 能使該控制器將㈣誤解釋為表示帶寬迴旋已完成且在達 到目標之前很早就返回到正常控制。這可能使目標變化花 費比選定的時間長得多的時間,例如,大於10秒。 該控制器可實施幾種方法以濾除該等帶寬尖峰。該尖 20峰可此由在-短的時間上的一大的波長變化而引起。當波 長在BAM積分視窗期間改變多於某—量時忽略帶寬測量 :為-遽波器,當波長之總的被包括的範圍大於某預定值 時该濾波器忽略-帶寬測量。對實際帶寬(加雜訊)之實際限 制值致能it波,從而忽略大於某預定值的任何帶寬讀數(例 25 200908489 如,2x最大帶寬)。當一帶寬讀數被濾除/忽略時,上一個良 好的(即’未被忽略的)測量值可在其位置上被使用。典型的 值可以是最大被允許的波長TIR=300 fm及最大被允許報告 的帶寬=1000 fm。 5 —叢發之首次幾個擊發一般可由波長及能量内的大的 且有時可重複的暫態被特徵化。該波長控制演算法可包含 可阻止對該等叢發暫態過度反應的邏輯。然而,波長在此 初始化期間對干擾較敏感。帶寬步進(這可能引起波長改變) 可被阻止一叢發之第一被選擇數目的擊發,在本申請案中 10 被稱為一叢發延遲。延遲的擊發之數目是一控制器操作參 數且可以大約為3個擊發。 依據另一可能的實施例(如第13圖中示意性地描述),用 以控制帶寬及波長的具有4個稜鏡520、522、524及526的 LNM被顯示。該等稜鏡中的兩者524及526可被與第4及5圖 15 中所示的稜鏡524、526之致動器類似的致動器(圖未示)旋 轉。一棱鏡526可被一步進器馬達致動器(圖未示)旋轉,且 另一稜鏡524可被一PZT堆疊(圖未示)旋轉。該兩個稜鏡526 及524可分別被用於波長之粗及細調整。它們的定位可根據 來自一中心波長控制器系統的信號,回應中心波長由於目 20 標變化或中心波長漂移而不在目標上。其他稜鏡t的至少 一者可旋轉以供帶寬控制,例如稜鏡520。旋轉可利用一步 進器馬達(圖未示)達成。 第5圖以方塊圖形式描述了一包括帶寬及波長控制的 雷射系統控制器200之一整體架構,一般與序號為6690704 26 200908489 的美國專利(其以參照方式被併入本文)中所討論的控制器 相同,附加一帶寬控制模組(“BWCM,,)220及一可變放大譜 線窄化模組(“VMLNM”)222。一發射控制平臺(“FCP”)處理 器202可控制(例如)一個單一腔室雷射系統(例如,Cymer之 5 7000系列雷射系統)内的電極之間的放電之發射或者—種 源雷射放大器配置(例如Cymer之XLA系列的ΜΟΡΑ雷射系 統或者XLR系列的環功率放大器ΜΟΡΟ雷射系統)内的多數 個雷射腔室中的每個内的電極之間的放電之發射。該 202可使用控制演算法軟體且提供控制信號給一發射控制 1〇 通信器(“FCC”)204。 該FCP 202可回應來自一雷射控制處理器(“Lcp”)2〇6 的命令信號且與該LCP 206進行通訊。該FCC 204可自—光 束分析模組(“BAM”)210(有些類似‘704專利中討論的頻譜 分析模組(“SAM”)(用於帶寬)以及一譜線中心分析模組 15 (“LAM”)212(用於中心波長)接收波長及帶寬資訊,且可中 斷該FCP 202以執行一波長或帶寬控制演算法或其二者。該 FCC 204也可將FCP 202命令傳給一帶寬控制模組 (“BWCM”)220 ’該BWCM 220可被用以命令所有被用以控 制帶寬或波長的致動器,例如可存在一可變放大譜線窄化 20模組(“VMLNM”)222内。VMLNM 222及其致動器之狀態可 透過該FCC 204傳遞回給該FCP 202。 第6圖以方塊圖形式描述了 一代表性的雷射系統“植入 模型”,其中一帶寬(或者可能是波長)步進器馬達步階命令 232可被輸入給一加法器234且與一樣本延遲236之一輪出 27 200908489 求和以提供一輸入給一步階對BW查找,該步階對BW查找 產生一期望的帶寬值,該期望的帶寬值被輸入給一加法器 242且與來自干擾方塊240的一代表性干擾求和。在一樣本 延遲方塊244之後,該加法器242之輸出在加法器246内與來 5自常數方塊248的一常數以及來自雜訊方塊247的雜訊求總 和以產生被量測的帶寬在輸出249上的一表示。 第7圖顯示了 一帶寬控制器250之一說明性例子。該控 制器250可具有帶寬(或可能是波長)目標252、被量測的帶寬 (波長)254及波長TIR 256之輸入,其等的後兩者被輸入到一 10 “壞”帶寬量測處理器257,其“好”帶寬之一輸出在一加法器 258内與該目標帶寬輸入252求和以提供一輸入給一雜訊濾 波器260。若該帶寬測量值需被濾除/忽略(例如,因為該測 量值或TIR太大)’則方塊257之輸出將是一先前被量測的 “好”帶寬,否則該被量測的帶寬可通過方塊257。 15 §玄雜说滤、波益260之輸出提供一輸入給一步階命令路 徑、一模式選擇路徑及一迴旋步進路徑。該步進命令路徑 可包括具有磁滯“接通/截止”方塊262的一不感帶,其一例子 在第9圖中被較詳細地描述。若具有磁滯的不感帶之輸出以 回饋致動致能/啟動模式(例如’ a 1),則該乘法器270之輸出 20 是該雜訊濾波器260之輸出,以及若其是以回饋致動禁能/ 關閉模式0,則該乘法器270之輸出是〇。該乘法器270之輸 出在控制增益放大器272内被放大一增益因數κ且通過一命 令飽和方塊274到一步階平滑器276,該步階平滑器276之一 例子在第8圖中被詳細地顯示。該命令飽和方塊可被用以限 28 200908489 制帶寬步進速率對中心波長控制之影響。一限制值可被建 立等於每-畫面的最大步階(例如,每次bam/帶寬測量更 新0.1次擊發(標稱為3〇),在此一典型情況下將是3步階)。 該模式選擇路徑可包括一控制模式選擇器264,其一例 5子在第10圖中被詳細地顯示。該模式選擇器⑽接收該雜訊 遽波器260之輸出(在一Bw誤差輸入端上)以及—目標變化 檢測器268之輸出為一輸入,該目標變化檢測器268具有至 來自輸入252的帶寬目標之—輸人端。該目標變化檢測器 268之輸出形成該模式選擇器264之目標變化輸入端的一輸 1〇入。該迴旋步進路徑可包括接收該雜訊渡波器⑽之輸出的 -正負號方塊266,該正負號方塊266之輸出在一目標變化 迴旋步進放大器278内被放大一因數N。 s亥等路徑中的每個之輸出提供輸入給一三極開關280 之個別終端,其等之輸出是一步階命令284。 15 第9圖以方塊圖形式描述了一不感帶磁滯控制方塊 262 ’其可將該雜訊濾波器260之輸出作為一輸入29〇,如第 7圖中所描述的。該輸入290可被提供給一絕對值函數方塊 292 ’該絕對值函數方塊292之輸出可被提供給一中繼方塊 294’該中繼方塊294可包含(作為一例子)具有磁滯的一對稱 20開關以提供一“接通/截止,,輸出296。當帶寬誤差(或者可能 是利用帶寬本身内的不感帶量測的帶寬,與帶寬誤差相反) 大於外/高不感帶值時,該對稱開關294可作用以產生一‘‘接 通”輸出(“1”),以及當其小於内/低帶寬值時,產生一“截 止”(“0”)。當與一高或低不感帶值相比使用誤差信號之絕對 29 200908489 值時’使用帶寬誤差只是在邏輯上易於實施。若先前的輸 出是一‘Ί’’/“接通”,則當帶寬誤差在高/外不感帶值與低/内 不感帶值之間時,該開關294可產生一 “接通,,輸出,及當先 前的輸出是“〇’V“戴止”時反之亦然。這是本文中的磁滯之含 5義。 如第8圖中所描述,一步階平滑器276可將一步階命令 作為一輸入’例如來自第7圖中說明的命令飽和方塊274的 步階命令。該步階平滑器276可包括一除法器,該除法器將 前進的步階之輸入步階命令c除以前進c數目的步階所用的 10擊發之數目(或時間)T。該除法器340之輸出提供一輸入給 一加法器342及一截取方塊360。 該加法器342之輸出被提供給乘法器方塊346,該乘法 器方塊346之輸出X步階在捨入方塊35〇内被捨到最接近的 整數。方塊350之輸出形成s步階之一輸出命令,被提供給 15如第7圖中所描述的開關280。該乘法器方塊346之輸出也在 一加法器348内自該舍入方塊35〇之輸出被減去以提供一輸 入給一樣本延遲344,該樣本延遲344之輸出提供一輸入給 該加法器342。需要確保具有對帶寬控制致動器步階之一限 制值以限制對波長控制之壞的影響(例如,波長鎖定),這可 能每10個擊發S ! BW步階以維持机鎖定(其不應是一平均 值)〇BW控制迴圈每隔30個擊發(可對應bam更新速率)被 執订’當且若控制迴圈期望在該等3〇個擊發期間具有最大3 個步P白)’這將平均化為僅!步階/1〇擊發。然而,若該BWCM -次命令所有三個’則其㈣統要求可能被干擾。存在在 30 200908489 30個擊發期間將該等步階均勻分佈之需求,這是該步階平 滑器276執行的。 該輸入(被命令的c步階)也被提供給一加法器3 64,其在 該加法器364内與加法器370内的對該捨入方塊350之輸出 5 與方塊368内被延遲的輸出之一個單一樣本延遲求和之結 果求總和’其中該加法器364之輸出提供一輸入給一個單一 樣本延遲方塊366。在方塊366内的一樣本延遲之後,方塊 364之輸出提供一輸入給一絕對值方塊354。方塊354之輸出 在方塊352内被比較以檢查其是否大於一值“r”,該值“r”源 10 於該截取方塊360,其中方塊340内的除法之結果藉由移除 該結果之任何十進制部分而被截取且在加法器358内與一 常數(例如1.0)求和,且在乘法器方塊356内乘以一值(例 如,0.5)以提供一輸入r給比較器方塊352。在虛線之外的該 步階平滑器256之元件確保步進在被命令的所需的步階之 15數目(即,c)之後停止。否則’若對於一BAM更新之下一次 不具有一BAM更新,則該步進器可能僅保持步進該帶寬控 制機制,即使一不感帶下/上限制值被經過。 s亥控制器250可具有幾個參數,其等之值可被選擇且代 表值在括弧内被注明,例如,雜訊濾波器係數c(〇 9735)、 20控制器增益κ(1)、不感帶内及外限制值(分別為(1.0 fm)及 d〇(9.5 fm))、命令飽和限制值L(每個BAM更新期間2個步 階)、目標-變化-完成錯誤限制值m(15 fm)、最大被允許的 波長TIR(3GG·· fm)以及最大被允許報告的帶寬(__1〇〇〇 fm) 〇 31 200908489 若給定此等因素(如感測器雜訊、效能要求以及強健 性),則當決定閉迴路内的整體效能時,該等參數可以一高 非線性方式合併。因此,申請人已決定選擇開始較鬆散耦 合的參數。最大被允許的TIR基於在一目標變化迴旋期間的 5 實驗被選擇,其被認為是一最糟糕情形持續操作。對於一 示範性ArF雷射系統,在正常操作情形中,最大可能的帶寬 是大約300-500 fm,因此次數2給出了被選擇的限制值。 在一ArF雷射系統之例子中,Μ被選擇,因為一重濾波 測試信號可能在實際信號與測試信號之間具有大的延遲, 10 從而導致早停止一目標變化迴旋以阻止超量的過衝。對於 L,因為帶寬及波長步進器可能影響帶寬,所以波長步進器 可移動以補償一帶寬步進器移動(一控制中心之帶寬控制 致動),例如透過該波長控制器内的ΡΖΤ去飽和。由於帶寬 步進產生的波長之變化可被波長步進抵消。對於Κ(具有波 15 長步進器速率限制),該控制器具有實質上無限的增益邊 限。控制增益被選擇,因此命令有效地總是飽和,從而提 供最快速的回應時間。當該帶寬步進器每步階提供〜0.005 fm(以每30個擊發2步階),則每個擊發0.00033 fm滿足其他 系統要求。對於dQ = 9.5,調諧内不感帶限制值山,(例如, 20 用於客戶帶寬控制需求)以及利用重濾波表示被濾除的值 是實際的即時帶寬(除了在帶寬(例如,步階)快速變化下), d。可提供於實際帶寬之標稱整個不感帶。帶寬測量雜訊近 似於白高斯(標準偏差〜20 fm,帶寬之一總範圍小於(2*9.5 = 19 fm))是合理的以限制步進器之致動。内不感帶限制值山= 32 200908489 1.0可最大化不感帶磁滯,最小化一控制中心在一帶寬控制 致動步進器或其他致動器的命令内的抖動。而且,當帶寬 測量在大約一 1 fm解析度時,若該内不感帶被設定小於1 fm,則其是無效的。對於C,增加的穩定性以及阻止雜訊濾 5 波器抖動也可能增加延遲,其過度的量是不被期望的。命 令飽和可自波長變化與波長及帶寬控制器致動步階之比率 選擇,且期望以一個單一波長步階補償一帶寬致動步階且 捨入到整數步,因為若被舍入,則該波長步進器可能使帶 寬步進落後。對於一30個擊發之BAM積分期間,該波長控 10 制器可允許每3 0個擊發1個波長步階。因此L=2 (其是大約每 個擊發0.00033)滿足系統要求。若步階之大小需增加(或者 它們對帶寬之影響),則這可能減少增益邊限。 雜訊濾波器之步階回應可以是: yk =u(l-ck)+y0 +vk 15 其中U是步階輸入之大小,y〇是初始輸出,C是係數,v 是被濾除的雜訊且k = 30*(擊發數目)。當一步進干擾發生 時控制器250在不感帶内,控制動作可能無法啟動,直到被 濾波的誤差增加到d。以上,其所需的時間是由濾波器產生 的一初始延遲。當y越過不感帶時,解k: u(l-ck)+y0 +vk >d0 ck<u + y〇-d0+vk=> u ln(u + y0-do+vk)-ln(u) ιφ) 其中已知C< 1。假設在實際被濾波的帶寬到達不感帶 之前(由於雜訊且忽略雜訊“尖峰”),不感帶(平均)為1西格 33 20 200908489 馬’其中d。> y〇且避免U + y〇 < d。(表示U + y〇 — d。> ο),當11 大且U + y〇 - d。小時,k可被最大化。即使如此,可能具有干 擾與初始條件之一組合,使得被濾波的誤差用幾乎無限的 時間經過d。,與c無關。當利用以1 fm解析度量測的帶寬(u + 5 y〇 - d。之最小值=1是合理的)以及利用d。= 9.5(最小化u + 丫〇-(1。= 1的u之最大值是u = 2*ci0+ 1 =20),一初始條件 可被設置在不感帶之“底部”,且一步進干擾足以離開不感 帶之“頂部”。第一階濾波器響應(無過衝)可能用最長的時間 退出不感帶。當以每個樣本30個擊發以及200擊發/秒之最 10小擊發累加速率,離開不感帶的最大時間可由以下決定:In a second amplified drive mode, variable amplification is also unused, although the system drives the variable amplification to a selected value (e.g., to a maximum value, e.g., to 45X). In this second variable amplification mode, dtM〇pA is set for a first dtMOPA timing mode 'energy and timing control algorithm, and dtMOPA or variable amplification (except for being driven to a selected value, such as full 45χ amplification) ) have not been changed for bandwidth control. For a second dtMOPA 1〇 timing control mode, the bandwidth is set using dtMOPA while the amplification is maintained at, for example, 45X amplification. Another amplification control mode can be used, where amplification is based on some bandwidth feedback control bandwidth. The magnification can then be selected based on one of the bandwidth targets, as noted above. In this mode of amplification control of the first dtM〇pA control mode, the energy and timing control algorithm sets the dtMOPA timing for reasons other than bandwidth control, such as laser efficiency, dose stabilization or the like. . The magnification is selected to obtain a selected bandwidth independent of dtM〇pA. In the -second dtMOPA control mode, both the VMLNM's magnification and dtMOPA can be selected to achieve a target bandwidth, one of which is used as a coarse bandwidth selection mechanism and the other as a fine selection mechanism. The system can be set such that a deadband with a hysteresis configuration is used, such that, for example, control is initiated only when the error (absolute value) leaves a larger/outer sense band and returns to the error Closed when the smaller/inner is not sensed. Moreover, bandwidth motor jitter can be used, for example, using 20 200908489 to limit the value of the limit value in the - direction (four) microsteps before changing direction. In addition to utilizing the _bandwidth target change, the system can be configured to be paid for - given a guard cycle (eg, for example, 1 〇〇, ,, degrees, 5 就 1 )) The use of a new source within the time limit value of the same lithography source is disabled. This can limit jitter and/or customize f X control to specify customer requirements. 10 15 i 20 When the field filtered γ觅 is not sensed, the controller can command the step H in only one direction to prevent operation-related jitter near the band boundary. If the bandwidth (error signal) is greater than the high/outer sense band value, then the control enable bandwidth (4) actuation ϋ 触 / / / initial 彳 t command is issued, and the right bandwidth (error signal) is less than the low / inner non-sensitive band value, then The disable command is issued. Otherwise, the system does not change the current command-issuing state (enable or disable), while °H, wide (error signal) is between the high/outer sensed value and the low/inner sensed value. In other words, when the bandwidth (error) signal is in the middle of the non-inductive band limit value (has entered the region from a high value), the input command is issued, so that it remains enabled until the bandwidth (error) The signal passes through the low/inner sense and the command is disabled. Similarly, when a value from less than the low/inner sense band (where the command is issued is disabled), this function remains disabled until the bandwidth (error) signal passes the high/outer sense band value. The size of the insensitive band can be chosen to choose between several performance values, such as reduced jitter, controller response time versus total speed of interference, and the amount of bandwidth error allowed. The system can use a function generator (a rich feature set can be used) to (by way of example only) command a bandwidth controlled actuator (e.g., a stepper motor) to any function of the number of firings of 21 200908489. Individual hardware and software "gain, can be used for software (to promote hardware update capability). A controller delay (holdoff) can also be used, for example, at the beginning of 5 clusters, at No bandwidth stepping is allowed in some pulses, for example, within 3 bursts after the start of a burst. The three basic operations of the bandwidth control system may utilize a bandwidth actuator (eg, a variable amplification LNM). The firing process can occur on each firing (one shot is indicated by the LAM update). Bandwidth target change processing can occur when a bandwidth target change occurs 10. Whenever the line center (wavelength) analysis module ("LAM" ") When the wavelength data is sent back (for example, based on a firing-by-shot basis), the firing processing logic can be executed. With a firing data record, the input signal can be checked. The algorithm can execute it. The result is moved to the same firing data record. A Bandwidth Analysis Module ("BAM") status signal can be used to determine if new bandwidth data is available (eg E9 5 bandwidth data). The system can then taste Try to filter out bad or other invalid bandwidth data. 5H wide control system (for example, using a bandwidth control actuator (for example, - variable amplification line narrowing module ("VMLNM") bandwidth control system ) can be required to: (1) stabilize the bandwidth within a selected bandwidth, such as approximately 5 〇 m '(2) at a selected rate (eg, approximately 0.0003 fm/shot) from a selected target or setting Point correction bandwidth error; ensure that wavelength stability is maintained 'eg when using bandwidth control with bandwidth actuators allows for no more than a selected value (eg 'about 5 fm extra 55_fire moving average wavelength error 22 200908489 difference), and Not greater than - selected value (for example, an additional 55-to-spin movement standard deviation in wavelength error); (4) includes a magnetic (four) non-inductive band that can be used to change performance; (5) to prevent stepper motor jitter, Thus the stepper must be stepped at least in the - direction by a selected number (eg, approximately _ steps), before stepping in the other direction; and (6) provided for bandwidth target changes, which may be selected Time reached, example (For example, the training rate is 2 〇〇 pulse / sec. The minimum firing rate is about 10 seconds (for a 4 kHz pulse repetition rate laser system). Therefore, a filter can be used only when the bandwidth is updated. Between 1 new, other functions can occur (for example, step smoothing), but most of the other functions depend on the error being filtered. Therefore, if and if this does not change, the other control | § state is also constant The system can also use the bandwidth control algorithm determined by the 时序 timing mode and the BW stepper mode and can also use the BW stepper motor function generator/play and provide a “reset” of the bribe stepper to the baseline. Zoom in. - Mesh' can be requested to change for about 10 seconds in a selected time. Right mJ ^ See π change period, wavelength stability may not need to be in the second. Therefore, the money 11 may need to be at its fastest speed. The algorithm can command the stepper to move in the pj direction at the fastest possible rate and stop when the measured bandwidth approaches the target. The way to select 'T' is that the algorithm can use the position sensing of the bandwidth versus step curve and the absolute step to estimate the correct number of steps used to obtain the target bandwidth. If the number of firings in the current burst is less than or equal to a value stored 23 200908489 (representing the number of firings used to prevent bandwidth stepping at the beginning of a burst) and if the state of the target change mode is enabled ( "丨"), the system can set the number of steps used for this firing to =〇 based on feedback control. Based on the feedback control, the total number of bandwidth steps used for this firing can be calculated as the number of microsteps used to actuate the stepper (eg, a variable amplification prism rotary stepper) equal to a bandwidth control mechanism. The number of steps that are commanded. The algorithm output can be updated, for example, if the absolute value of the number of microsteps used to command the control actuator (eg, the variable amplification stepper) is greater than 〇 or if the current target change state is prior to the previous If the target change state is different, the output of the illusion algorithm can be set to 1, otherwise it is set to 〇. The algorithm rounding may be a signal indicating whether a new stepper command needs to be sent to the controller to actuate the bandwidth change to reduce the error signal (eg, whether a BWCM is enabled, as discussed below). A signal of the stepper is actuated by updating a bandwidth control mechanism. The stepper can be a variable-amplitude LNM rotary 稜鏡. When a target change is detected, the algorithm can be based on the currently filtered error, the previous bandwidth target, and the new bandwidth target—a new tracking error, ie, the filtered error plus the previous target minus the new one. Awkward goals. This provides the correct direction for the stepper to move. The algorithm can then reset (4) the waver to make the error of the chopping equal to the new tracking error. The system can command the stepper to move at the maximum rate in the desired direction (short for "slewing") until the filtered bandwidth error is in a selected one that is not overshooting in order to be able to stop the whirling Within the scope. The algorithm can also check if the filtered error changes the sign during the spin. If any of the conditions such as 24 200908489 are not met, the controller can return to normal control. The "spike" of the bandwidth may occur due to large wavelength changes. During a bandwidth change, the wavelength can also be affected by the coupling of the bandwidth step and the wavelength. Although the wavelength controller can compensate for this, the wavelength controller can compensate for this. Change, but its 5 cannot be done during the inter-band interval, so that the wavelength may change if the stepper continues to swirl. After the inter-band interval, the wavelength control may have to respond to a new and relatively large wavelength. Error. This can result in a fast and large change in wavelength, even with the ability to change substantially in 2 (four) - very fast (and fine) wavelength control mechanisms (eg based on a 10 RMAX PZT stack) or changing the grating The prismatic locating element of the beam of the person's angle of incidence (as a dominant wavelength control source). The change in wavelength during a BAM integration can be perceived by BAM as an increase. In general, the faster the wavelength changes, within the BAM measurement. The greater the positive deviation, the wavelength change is fast enough, in some cases, the peak of an abnormally large is reported by BAM. During a target change, these spikes It may be that the controller misinterprets (d) as indicating that the bandwidth swing has completed and returns to normal control very early before reaching the target. This may cause the target change to take much longer than the selected time, for example, greater than 10 seconds. The controller can implement several methods to filter out the bandwidth spikes. This tip 20 peak can be caused by a large wavelength change over a short period of time. When the wavelength changes more than a certain value during the BAM integration window - The bandwidth measurement is ignored when the quantity is: a chopper, the filter ignores the bandwidth measurement when the total range of the wavelength is included is greater than a predetermined value. The actual limit value of the actual bandwidth (adding noise) enables the it wave , thereby ignoring any bandwidth readings greater than a predetermined value (Example 25 200908489 eg, 2x maximum bandwidth). When a bandwidth reading is filtered/ignored, the last good (ie, 'not ignored') measurement can be The position is used. Typical values can be the maximum allowed wavelength TIR = 300 fm and the maximum allowed bandwidth = 1000 fm. 5 - The first few shots of the burst can generally be large and within the wavelength and energy Sometimes repeatable transients are characterized. The wavelength control algorithm can include logic that prevents transient overreaction of the bursts. However, the wavelength is more sensitive to interference during this initialization. Bandwidth stepping (this may Causing a wavelength change) can be prevented by a burst of the first selected number of firings, which in this application is referred to as a burst delay. The number of delayed firings is a controller operating parameter and can be approximately three According to another possible embodiment (as schematically depicted in Fig. 13), an LNM having four 稜鏡520, 522, 524 and 526 for controlling bandwidth and wavelength is displayed. Both of the 524 and 526 can be rotated by an actuator (not shown) similar to the actuators of the 稜鏡524, 526 shown in Figs. 4 and 5. A prism 526 can be rotated by a stepper motor actuator (not shown) and the other jaw 524 can be rotated by a PZT stack (not shown). The two turns 526 and 524 can be used for coarse and fine adjustment of the wavelength, respectively. They are positioned to respond to signals from a central wavelength controller system that respond to center wavelengths that are not on the target due to changes in the target or center wavelength. At least one of the other 稜鏡t can be rotated for bandwidth control, such as 稜鏡520. Rotation can be achieved with a stepper motor (not shown). Figure 5 is a block diagram depicting an overall architecture of a laser system controller 200 including bandwidth and wavelength control, generally discussed in U.S. Patent No. 6,690,704, issued to The controllers are identical, with a bandwidth control module ("BWCM", 220 and a variable amplification line narrowing module ("VMLNM") 222. A launch control platform ("FCP") processor 202 can control (for example) a discharge of discharge between electrodes in a single chamber laser system (eg, Cymer's 5 7000 series laser system) or a source laser amplifier configuration (eg Cymer's XLA series of ΜΟΡΑ laser systems) Or the emission of discharge between the electrodes in each of the plurality of laser chambers in the XLR series of ring power amplifiers ΜΟΡΟ laser systems. The 202 can use control algorithm software and provide control signals to a launch control 1〇 communicator ("FCC") 204. The FCP 202 can respond to and communicate with a command signal from a laser control processor ("Lcp") 2〇6. The FCC 204 can be self-lighted Beam Analysis Module ("BAM") 210 (some similar to the Spectrum Analysis Module ("SAM") (for bandwidth) and the Line Center Analysis Module 15 ("LAM") 212 discussed in the '704 patent (using The wavelength and bandwidth information is received at a central wavelength and the FCP 202 can be interrupted to perform a wavelength or bandwidth control algorithm or both. The FCC 204 can also pass the FCP 202 command to a bandwidth control module ("BWCM"). 220' The BWCM 220 can be used to command all actuators used to control bandwidth or wavelength, for example, there can be a variable amplification line narrowing 20 module ("VMLNM") 222. VMLNM 222 and its The state of the actuator can be communicated back to the FCP 202 through the FCC 204. Figure 6 depicts a representative laser system "implantation model" in block diagram form with a bandwidth (or possibly wavelength) stepping The motor motor step command 232 can be input to an adder 234 and summed with one of the same delays 236, 27 200908489, to provide an input to a step-by-step BW lookup that produces a desired bandwidth value for the BW lookup. , the expected bandwidth value is input to an addition 242 and summing with a representative interference from interference block 240. After a sample delay block 244, the output of adder 242 is summed within adder 246 by a constant from constant block 248 and from noise block 247. The noise sums up to produce a representation of the measured bandwidth on output 249. Figure 7 shows an illustrative example of a bandwidth controller 250. The controller 250 may have a bandwidth (or possibly wavelength) target 252, the measured bandwidth (wavelength) 254 and the input of the wavelength TIR 256, the latter two of which are input to a 10 "bad" bandwidth measurement processor 257, one of the "good" bandwidth outputs in an addition The target 258 is summed with the target bandwidth input 252 to provide an input to a noise filter 260. If the bandwidth measurement needs to be filtered/ignored (eg, because the measurement or TIR is too large), then the output of block 257 will be a previously measured "good" bandwidth, otherwise the measured bandwidth may be Pass block 257. 15 § Xuanzi said that the output of the filter and Boyi 260 provides an input to the step-by-step command path, a mode selection path, and a whirling step path. The step command path may include a non-inductive strip having a hysteresis "on/off" block 262, an example of which is described in more detail in FIG. If the non-inductive output with hysteresis is fed back to the enable enable/start mode (eg, ' a 1), then the output 20 of the multiplier 270 is the output of the noise filter 260 and if it is fed back With the disable/off mode 0, the output of the multiplier 270 is 〇. The output of the multiplier 270 is amplified by a gain factor κ in the control gain amplifier 272 and passed through a command saturation block 274 to a step-by-step smoother 276, an example of which is shown in detail in FIG. . This command saturation block can be used to limit the effect of the 200908489 bandwidth step rate on the center wavelength control. A limit value can be established equal to the maximum step per picture (e.g., each time the bam/bandwidth measurement updates 0.1 times (nominally 3 〇), in this case it will be 3 steps). The mode selection path may include a control mode selector 264, an example of which is shown in detail in Fig. 10. The mode selector (10) receives the output of the noise chopper 260 (on a Bw error input) and - the output of the target change detector 268 is an input, the target change detector 268 having a bandwidth from the input 252 The goal - the input side. The output of the target change detector 268 forms an input of the target change input of the mode selector 264. The whirling step path can include a plus sign block 266 that receives the output of the noise waver (10), the output of the sign block 266 being amplified by a factor N in a target change whirling stepper amplifier 278. The output of each of the paths such as shai provides input to an individual terminal of a three-pole switch 280, the output of which is a one-step command 284. Figure 9 is a block diagram depicting a non-inductive hysteresis control block 262' which can have the output of the noise filter 260 as an input 29〇, as depicted in Figure 7. The input 290 can be provided to an absolute value function block 292 'The output of the absolute value function block 292 can be provided to a relay block 294'. The relay block 294 can include (as an example) a symmetry with hysteresis 20 switches to provide an "on/off", output 296. This symmetry is greater when the bandwidth error (or possibly the bandwidth measured by the non-inductance within the bandwidth itself, as opposed to the bandwidth error) is greater than the outer/high non-inductive value Switch 294 can act to generate a 'on" output ("1") and, when it is less than the inner/low bandwidth value, produces an "off" ("0"). When using the absolute value of the error signal compared to a high or low non-inductive value 29 200908489 value, the use of bandwidth error is only logically easy to implement. If the previous output is a 'Ί''/"ON", the switch 294 can generate an "on," output when the bandwidth error is between the high/outer sensed value and the low/inner sensed value. And vice versa when the previous output is "〇'V". This is the meaning of the hysteresis in this article. As described in Figure 8, the step-by-step smoother 276 can take the one-step command as an input 'e.g., from the step command 274 of the command saturation block 274 illustrated in Figure 7. The step smoother 276 can include a divider that divides the input step command c of the advanced step by the number (or time) T of 10 shots used to advance the c number of steps. The output of the divider 340 provides an input to an adder 342 and a block 360. The output of the adder 342 is provided to a multiplier block 346 whose output X step is rounded to the nearest integer within the rounding block 35A. The output of block 350 forms an output command of one of the steps of s, which is provided to switch 280 as described in FIG. The output of the multiplier block 346 is also subtracted from the output of the rounding block 35 within an adder 348 to provide an input to the same local delay 344, the output of which provides an input to the adder 342. . There is a need to ensure that there is a limit on the bandwidth control actuator step to limit the effects of wavelength control (eg, wavelength lock), which may be every 10 firing S! BW steps to maintain machine lock (which should not Is an average) 〇 BW control loop every 30 firings (corresponding to bam update rate) is ordered 'when the control loop is expected to have a maximum of 3 steps P white during the 3 firings) This will average to only! Step / 1 〇 firing. However, if the BWCM - all three orders are ordered, then the (4) system requirements may be disturbed. There is a need to evenly distribute the steps during 30 200908489 30 firings, which is performed by the step slider 276. The input (command c step) is also provided to an adder 3 64, which is output within the adder 364 and the output 5 of the rounding block 350 in the adder 370 and the output delayed in block 368. The result of a single sample delay sum is summed 'where the output of the adder 364 provides an input to a single sample delay block 366. After the same delay in block 366, the output of block 364 provides an input to an absolute block 354. The output of block 354 is compared in block 352 to check if it is greater than a value "r", the value "r" source 10 is at the intercept block 360, wherein the result of the division in block 340 is removed by removing any of the results. The decimal portion is truncated and summed with a constant (e.g., 1.0) in adder 358, and multiplied by a value (e.g., 0.5) within multiplier block 356 to provide an input r to comparator block 352. The elements of the step smoother 256 outside the dashed line ensure that the step stops after the number of steps 15 (i.e., c) required to be commanded. Otherwise, if there is no BAM update for a BAM update next time, the stepper may only keep stepping the bandwidth control mechanism even if a no-in/down limit value is passed. The controller 250 can have several parameters, the values of which can be selected and the representative values are noted in parentheses, for example, the noise filter coefficient c (〇9735), the controller gain κ(1), Does not sense the inner and outer limit values ((1.0 fm) and d〇 (9.5 fm) respectively), the command saturation limit value L (2 steps per BAM update period), the target-change-complete error limit value m ( 15 fm), the maximum allowed wavelength TIR (3GG··fm) and the maximum allowed bandwidth (__1〇〇〇fm) 〇31 200908489 Given these factors (eg sensor noise, performance requirements and Robustness), when determining the overall performance within a closed loop, the parameters can be combined in a highly nonlinear manner. Therefore, the applicant has decided to choose a parameter that starts to be loosely coupled. The maximum allowed TIR is selected based on 5 experiments during a target change maneuver, which is considered to be a worst case continuous operation. For an exemplary ArF laser system, in normal operating conditions, the maximum possible bandwidth is approximately 300-500 fm, so the number 2 gives the selected limit value. In the case of an ArF laser system, Μ is selected because a single filtered test signal may have a large delay between the actual signal and the test signal, 10 resulting in early stopping of a target change cyclotron to prevent excessive overshoot. For L, because the bandwidth and wavelength stepper may affect the bandwidth, the wavelength stepper can be moved to compensate for a bandwidth stepper movement (a control center bandwidth control actuation), such as through the wavelength controller saturation. The change in wavelength due to the bandwidth step can be offset by the wavelength step. For Κ (with wave 15 long stepper rate limit), the controller has a virtually unlimited gain margin. The control gain is selected so the command is always always saturated, providing the fastest response time. When the bandwidth stepper provides ~0.005 fm per step (2 steps per 30 shots), each shot 0.00033 fm meets other system requirements. For dQ = 9.5, the tuning does not sense the value of the mountain, (for example, 20 for customer bandwidth control requirements) and the use of re-filtering to indicate that the filtered value is the actual instantaneous bandwidth (except in the bandwidth (eg, step) fast Change), d. Can be provided in the actual bandwidth of the nominal no sense. Bandwidth measurement noise is similar to white Gaussian (standard deviation ~20 fm, one of the total bandwidth is less than (2*9.5 = 19 fm)) is reasonable to limit the actuation of the stepper. The inner sense is not limited to the value of the mountain = 32 200908489 1.0 can maximize the non-inductive hysteresis, minimizing the jitter of a control center within a bandwidth control command to actuate the stepper or other actuator. Moreover, when the bandwidth is measured at a resolution of about 1 fm, it is ineffective if the inner non-inductive band is set less than 1 fm. For C, increased stability and blocking of noise filtering can also increase latency, an excessive amount of which is undesirable. Command saturation can be selected from the ratio of wavelength variation to wavelength and bandwidth controller actuation steps, and it is desirable to compensate a bandwidth actuation step with a single wavelength step and round to integer steps because if rounded, then The wavelength stepper may make the bandwidth step backwards. For a 30-shot BAM integration period, the wavelength control allows one wavelength step to be fired every 30. Therefore L = 2 (which is approximately 0.00033 per shot) meets the system requirements. If the size of the steps needs to be increased (or their effect on bandwidth), this may reduce the gain margin. The step response of the noise filter can be: yk = u(l-ck)+y0 +vk 15 where U is the size of the step input, y〇 is the initial output, C is the coefficient, and v is the filtered impurity. And k = 30* (number of shots). When a stepping disturbance occurs, the controller 250 does not sense the band, and the control action may not start until the filtered error increases to d. Above, the time required is an initial delay produced by the filter. When y crosses the non-inductive band, the solution k: u(l-ck)+y0 +vk >d0 ck<u + y〇-d0+vk=> u ln(u + y0-do+vk)-ln( u) ιφ) where C<1 is known. Suppose that before the actual filtered bandwidth reaches the insensitive band (due to noise and ignores the "spike" of the noise), the band is not (average) 1 sigma 33 20 200908489 horse 'where d'. > y〇 and avoid U + y〇 < d. (indicating U + y〇 - d. > ο), when 11 is large and U + y〇 - d. In hours, k can be maximized. Even so, there may be a combination of interference and one of the initial conditions such that the filtered error passes through d for almost infinite time. , has nothing to do with c. When using the bandwidth measured by 1 fm resolution (u + 5 y 〇 - d. The minimum value = 1 is reasonable) and use d. = 9.5 (minimum u + 丫〇 - (1. = 1 u is the maximum value is u = 2 * ci0 + 1 = 20), an initial condition can be set at the "bottom" of the inductive band, and a stepping interference is sufficient Leave the "top" without feeling. The first-order filter response (no overshoot) may take the longest time to exit the non-inductive band. When with 30 shots per sample and a maximum of 10 hits per second of 200 shots/sec, leave The maximum time that you do not feel the tape can be determined as follows:

其中是感測器雜訊標準偏差’(舉例而言)等於2〇 fm。這可定義一絕對最差情形,且一蒙特卡羅研究顯示典 型的延遲小於0.5秒,得到一 1〇秒之延遲(一合理的選擇)使 15 得一C = 0.9735之濾波器係數是合理的。 一步進器馬達與一 BWCM之一組合可作為—具有速率 限制值(4000微步/秒)的累加器(積分器)’其也可以是一完全 無雜訊。BW是絕對步進器位置之一非線性函數,且也可具 有從WL至BW之可忽略的耦合’這可允許個別地關閉0”控 20 制迴路且與其他迴路無關。然而’從BW粞合到〜[以及導 出WL誤差S 5 fm之一要求可能需要特別考量。雖然被控制 的植入可作為一自然積分器(具有良好的雜訊拒絕特性),但 34 200908489 是也可能需要額外的濾波以幫助阻止步進器命令内的抖 動。 該系統可尋求將該帶寬控制機制步進器移到一基線位 置之方法,例如一基線放大或一基線孔徑口或類似者。這 5 可藉由使用限制開關(例如,在該LNM内)被執行,發出大 量的步階(例如)以最極放大且等待來自一個別限制開關的 一中斷信號,這使該BWCM由於來自該限制開關的信號而 停止命令步進器致動。同樣地可被應用於其他帶寬控制致 動器,例如一可調整孔徑。該限制開關位置應被設定到已 10 知帶寬設定,例如一已知放大或一已知孔徑大小及位置。 當此功能被實施時,也可測量且更新一BW對步階曲線。 申請人已模擬此一帶寬控制系統且自此模擬決定,系 統響應可由演算法BW步進器速率限制值主導(例如, 〜0.0005 fm/shot)。濾、波可有效地改良雜訊響應以使不感帶 15 縮小。控制器增益可被設定足夠高,因此該步進器命令總 是飽和或者“截止”。該系統可達到誤差=(内不感帶)+(〜3σ 被濾波的雜訊),其誤差當雜訊尖峰觸發偶然步進時,“潛 動”較低(假設無干擾)。該潛動可藉由增加磁滯之大小被最 小化。不感帶加雜訊滤波器可有效地消除抖動。該系統可 20 以是高度強健,具有一實際上無限制的增益邊限。該BW步 進器速率限制值以及不感帶可阻止雜訊將不穩定移動注入 該系統。 一中心波長選擇機制可包括一分散光學元件,且該中 心波長選擇稜鏡及/或其他中心波長選擇光學元件可控地 35 200908489 調整該分散光學元件上的光束之入射角。該差動時序系統 可包含一粗帶寬控制調整,或者反之亦然。粗及細帶寬及/ 或中心波長控制致動之各種組合可被使用。 依據另一可能的實施例(在第13圖中被示意性地描 5 述)’ 一具有4個用以控制帶寬及波長的稜鏡520、522、524、 10 15 20 526之LNM被顯示。其中兩稜鏡524及526可被與第4及11圖 中的稜鏡524、526之致動器類似的致動器(圖未示)旋轉。一 棱鏡526可被一步進器馬達致動器(圖未示)旋轉,且另一稜 鏡524可被-PZT堆疊(圖未示)旋轉。該兩稜鏡526及—分 別可被用於波長之粗調整及細調整。它們的定位可根據來 自中〜波長控制器系統的信號,回應中心波長由於目標 變化或中心波長漂移而不在 仕目標上。其他稜鏡中的至少一 者可旋轉用於帶寬控制,例如接& J如稜鏡520。旋轉可利用一步進 器馬達達成(圖未示)。 一禋万凌3被用以控制〜 (例如,-ΜΟΡΑ或M0P0雷^種㈣射放大器雷射配 可能較適用於-MOPQ雷射,糸統)之頻講輪廓(帶寬), 大器)級512的ΜΟ能量。此方為其可減少輸入到第二( 制,其之使用可能對-或&可能不依靠dtM〇PA時序 如,能量穩定性)具有一不期望=他雷 射系統操作參數( 時序控制可被用以擴充此處卜的負面政應,雖然dtM0] 方法可被用以提供-雷射控#迷的衣置及方法。該裝置 制。 ^ 1頰譜之對稱性及非對稱性 使用一稜鏡及/或折叠式 戈射鏡以及基於光栅頻譜窄 36 200908489Where is the sensor noise standard deviation ' (for example) equal to 2 〇 fm. This defines an absolute worst case, and a Monte Carlo study shows that the typical delay is less than 0.5 seconds, resulting in a delay of 1 〇 (a reasonable choice) so that a filter coefficient of 15 = C = 0.9735 is reasonable. . A stepper motor in combination with one of the BWCMs can be used as an accumulator (integrator) with a rate limit (4000 microsteps per second) which can also be completely noise free. BW is a non-linear function of the absolute stepper position and can also have a negligible coupling from WL to BW' which allows for individually closing the 0" control loop and is independent of the other loops. However, 'from BW粞The combination of ~[and the derived WL error S 5 fm may require special considerations. Although the controlled implant can be used as a natural integrator (with good noise rejection characteristics), 34 200908489 may also require additional Filtering to help prevent jitter within the stepper command. The system may seek to move the bandwidth control mechanism stepper to a baseline position, such as a baseline amplification or a baseline aperture or the like. Using a limit switch (eg, within the LNM) is performed, issuing a large number of steps (for example) to maximize amplification and waiting for an interrupt signal from a different limit switch, which causes the BWCM to be due to a signal from the limit switch Stop command stepper actuation. It can also be applied to other bandwidth control actuators, such as an adjustable aperture. The limit switch position should be set to 10 bandwidth settings. For example, a known amplification or a known aperture size and position. When this function is implemented, a BW versus step curve can also be measured and updated. Applicants have simulated this bandwidth control system and decided from this simulation system The response can be dominated by the algorithm BW stepper rate limit value (eg, ~0.0005 fm/shot). Filtering, waves can effectively improve the noise response to reduce the insensitive band 15. The controller gain can be set high enough so that The stepper command is always saturated or “off.” The system can achieve error = (without sensing) + (~3σ filtered noise), the error is "sneak" when the noise spike triggers the accidental stepping Lower (assuming no interference). This dive can be minimized by increasing the hysteresis. The non-inductive noise filter can effectively eliminate jitter. The system can be highly robust, with one virtually no Limited gain margin. The BW stepper rate limit and no sense band prevent noise from injecting the system into the system. A center wavelength selection mechanism can include a dispersive optical component and the center wavelength is selected. And/or other central wavelength selective optics controllable 35 200908489 Adjusting the angle of incidence of the beam on the dispersive optical element. The differential timing system can include a coarse bandwidth control adjustment, or vice versa. Thick and thin bandwidth and / Or various combinations of central wavelength control actuations may be used. According to another possible embodiment (illustrated schematically in Figure 13) 'a has four 稜鏡520 for controlling bandwidth and wavelength, The LNM of 522, 524, 10 15 20 526 is displayed, wherein the two turns 524 and 526 can be rotated by an actuator (not shown) similar to the actuators of the ports 524, 526 of Figures 4 and 11. A prism 526 can be rotated by a stepper motor actuator (not shown) and the other jaw 524 can be rotated by a -PZT stack (not shown). The two 526 and - can be used for coarse adjustment and fine adjustment of the wavelength. They are positioned according to the signal from the medium-wavelength controller system, responding to the central wavelength due to target changes or center wavelength drift without being on the target. At least one of the other ports can be rotated for bandwidth control, such as & J, for example 520. Rotation can be achieved with a stepper motor (not shown). A 禋 凌 3 3 is used to control ~ (for example, - ΜΟΡΑ or M0P0 雷 ^ (4) amps lasers may be more suitable for -MOPQ laser, 糸 system) frequency profile (bandwidth), level) 512 energy. This side has a reduced input to the second system, which may be used for - or & may not rely on dtM 〇 PA timing, such as energy stability, has an undesired = his laser system operating parameters (timing control can be It is used to augment the negative politicians here, although the dtM0] method can be used to provide - the device and method of the laser control #. The device system. ^ 1 The symmetry and asymmetry of the cheek spectrum use one稜鏡 and / or folding goggles and based on the grating spectrum narrow 36 200908489

化方法的雷射之輸出頻譜在(舉例而言)垂直於該光柵之鋸 齒結構之方向内可能具有波長之一空間非均勻性。第16圖 描述了與光束經過的孔徑之大小相依的帶寬變化之例子。 藉由以(舉例而言)一可調整孔徑(例如,第14圖中的158或者 第15圖中的610,或者例如序列號為11/173,988的共同申請 的專利申請案中所示的’該專利名稱為“ACTIVE BANDWIDTH CONTROL FOR A TUNED LASER”,於2005 10 15 \ 20 年6月30日提出申請,在此以參照方式被併入本文,第μ圖 取自此專利)自該主振盪器選擇雷射光束之一部分且將部 分光束注入該功率放大器或功率振盪器(例如,第3圖中示 意性描述的放大器512),系統輸出頻譜帶寬可被控制。被 用作第二級(放大器)的功率放大器或功率振盪器(例如,第3 圖中的512)可能需要某-輸人光束大小,這可由兩透鏡或 者類似裝置(例如,一擴束器(舉稜鏡為例))之一組合或者另 一可調整孔徑提供,以在其經過孔徑之後調整光束大小且 使其成形’例如擴縣束及使其平行,以選擇—期望的部 分以供調整或選擇帶寬之目的。舉—例,在第15圖中示意 性描述的-可調整光束擴展準直器_可被使用。 -帶寬監測器(例如,位於第3圖中的一帶寬分析模组 (“BAM”)516内)可提供1饋信號給—帶寬控制器(例如,, 第15圖中的62〇)’該帶寬控制器可使用帶寬信號調整經過 該可調整隸610的光束之部分,例如在輯況下, 選擇孔徑大小及光束成形都被控制以選擇帶寬及光束 給該雷射系統之放大級以提供頻譜形狀(帶寬)之對稱及非 37 200908489 對知控制’這可(舉例而言)在該可調整光束擴展器/準直器 600内被執行。將明白的是,在該可調整孔徑之前的種源雷 射光束(例如,MO光束)之帶寬應足夠大以提供在可調整孔 徑之後的一期望範圍的頻譜帶寬。 5 右期望,依據本揭露之標的,為了除了帶寬之外的其 他雷射操作參數之利益(例如,_能量、劑量狀性及類 似者)’ dtMOPA時序可被獨立用以允許厘〇1>八雷射以其最佳 dtMOPA時序操作,同時該可調整孔徑61〇或其他形式的主 動帶寬控制可結合一或多個其他帶寬控制致動器(作為粗 10或細調整器或具有相對相等的調整速度)被使用,作為一帶 寬選擇致動器(控制中心)以選擇帶寬。可選擇的方式是,該 dtMOPA帶寬選擇致動器只可被用於細調整,因此就其他操 作觀點而言(例如,脈衝能量穩定性、劑量穩定性或類似 者),不需要大大地偏離最佳dtMOPA。 15 因為一種源雷射放大器雷射(例如ΜΟΡΑ或ΜΟΡΟ)之能 量穩定性可能受到輸入到ΡΑ/ΡΟ的ΜΟ能量之強烈影響,所 以可能期望具有對ΜΟ及ΡΑ/ΡΟ之個別電壓控制以調整且 控制獨立於放大器部分的ΜΟ能量輸出,例如ΡΑ/ΡΟ。 一可調整孔徑可以是矩形的以在光束之短轴内調整, 20其在申請人之讓渡人的雷射系統(例如,Cymer之7ΧΧΧ系列 或XLA或LXLR系列雷射系統)内一般是在水平方向的大小 之調整’在一譜線窄化雷射之情況下,如第丨4圖中的例子 所示。如第15圖中所描述的,光束可在可調整孔徑之前被 擴展以改良可控性’例如利用一擴束器612、一稜鏡或多數 38 200908489 fThe output spectrum of the laser of the method may have a spatial non-uniformity of wavelengths, for example, in a direction perpendicular to the sawtooth structure of the grating. Figure 16 depicts an example of a change in bandwidth that depends on the size of the aperture through which the beam passes. By way of example, an adjustable aperture (e.g., 158 in Figure 14 or 610 in Figure 15 or as shown in the co-pending patent application Serial No. 11/173,988 The patent name is "ACTIVE BANDWIDTH CONTROL FOR A TUNED LASER", filed on June 10, 2005, the entire disclosure of which is hereby incorporated by reference herein in The system output spectral bandwidth can be controlled by selecting a portion of the laser beam and injecting a portion of the beam into the power amplifier or power oscillator (e.g., amplifier 512, which is schematically depicted in FIG. 3). A power amplifier or power oscillator (eg, 512 in Figure 3) that is used as the second stage (amplifier) may require some-input beam size, which may be by two lenses or similar devices (eg, a beam expander (eg, a beam expander ( As an example) a combination or another adjustable aperture is provided to adjust the beam size and shape it after it passes through the aperture 'eg, expand the beam and make it parallel to select - the desired portion for adjustment Or choose the purpose of bandwidth. By way of example, an adjustable beam spread collimator, as schematically depicted in Fig. 15, can be used. A bandwidth monitor (e.g., within a Band Analysis Module ("BAM") 516 in Figure 3) can provide a feed signal to the bandwidth controller (e.g., 62 in Figure 15). The bandwidth controller can adjust the portion of the beam passing through the adjustable 610 using the bandwidth signal. For example, in the case of the selection, the aperture size and beam shaping are controlled to select the bandwidth and the beam to the amplification stage of the laser system to provide the spectrum. Symmetry of shape (bandwidth) and non-comprising 37 200908489 Sense control 'This can be performed, for example, within the adjustable beam expander/collimator 600. It will be appreciated that the bandwidth of the source laser beam (e.g., the MO beam) prior to the adjustable aperture should be large enough to provide a desired range of spectral bandwidth after the adjustable aperture. 5 Right expectation, in accordance with the subject matter of this disclosure, for the benefit of laser operating parameters other than bandwidth (eg, _energy, dose regimen, and the like) 'dtMOPA timing can be used independently to allow for centist 1> The laser operates at its optimal dtMOPA timing while the adjustable aperture 61〇 or other form of active bandwidth control can be combined with one or more other bandwidth controlled actuators (as a coarse 10 or fine adjuster or with relatively equal adjustments) Speed) is used as a bandwidth selection actuator (control center) to select the bandwidth. Alternatively, the dtMOPA bandwidth selection actuator can only be used for fine adjustments, so that from other operational perspectives (eg, pulse energy stability, dose stability, or the like), there is no need to deviate significantly from the most Good dtMOPA. 15 Because the energy stability of a source laser amplifier laser (such as helium or neon) may be strongly affected by the energy input to ΡΑ/ΡΟ, it may be desirable to have individual voltage controls for ΜΟ and ΡΑ/ΡΟ to adjust and Controls the chirp energy output independent of the amplifier section, such as ΡΑ/ΡΟ. An adjustable aperture may be rectangular to adjust within the short axis of the beam, 20 which is typically within the applicant's transferee's laser system (eg, Cymer's 7-inch series or XLA or LXLR series laser systems) The adjustment of the size in the horizontal direction is as shown in the example in Fig. 4 in the case of narrowing the laser in a line. As described in Fig. 15, the beam can be expanded to improve controllability prior to the adjustable aperture', e.g., using a beam expander 612, a chirp or a majority 38 200908489 f

個稜鏡'或者透鏡组合之一透鏡及類似者。在光束之—部 分被可調整孔徑選擇之後,其(如以上所注明的)可被擴展/ 壓縮且準直以滿足PA或Ρ〇之光束大小要求(例如在該可調 整光束擴展準直器内),這可以(舉例而言)是-望遠鏡或具 5有一獨立準直透鏡的可調整望遠鏡。光束擴展可能不需要 用於-ΜΟΡΟ配置,其中在該等電極之間的放電期間的該 等放大器電極之區域内的光束大小可以不與一(複數)固定 通道放大1㈣-樣重要。鱗衫細彡光學元件也可(舉 例而言)是在兩個被調整的透鏡之間具有距離的圓柱透二 1〇之一組合。對於對稱頻譜控制,—可調整孔徑之中心可被 調整到光束之中心。對於非對稱頻譜控制,可調整孔徑之 令心可在-軸内移動(例如,在向著光束之一邊緣或另:邊 緣的水平方向内)以(例如)增加或減少波長。 對於-雷射操作參數之某些干擾(例如,與光束品質相 15關,例如帶寬),變化較可能出現在光束之垂直方向内。作 為重複率相依干擾之-例子,這可是真的。因此,第_ 中描述的可變孔徑可在所描述的頁面之平面内旋物。且 選擇該光束之-垂直方向部分以供光束品質參數選擇(例 如’帶寬選擇)。這也可利用第14圖中的—選擇孔徑串聯剛 20 才描述的另一孔徑被執行。 對於一些應用,該可變放大譜線窄化模組502可回應該 帶寬測量模組516產生的錢。該可變放大譜線窄化模組 502可被用於粗帶寬控制,利用帶寬控制可旋轉稜鏡52〇、 以及另一帶寬控制致動 522、524及/或526中的一者或兩者 39 200908489 器(例如差動發射時間(dtM0PA)或者光栅彎曲,例如利用在 第7圖中的630中示意性顯示的—帶寬控制設備(“bcd”)光 桃變形器),或者共振腔内或外的—可變孔徑可被用於細帶 寬控制。該等帶寬選擇致動器中的每個可與其他致動器中 5的任何-者或多者結合使用,作為一粗控制致動器及—細 控制致動器中的一者或另一者。 該項領域内具有通常知識者將明白的是,以上所揭露 的才示的之實施例的層面意指滿足揭露每個申請專利範圍之 標的之至少一致能實施例之要求且只是—或多個此等示範 10性實施例且不以任何方式限制任何申請專利範圍之範圍且 不特定於一特定個別揭露的實施例。該項領域内具有通常 知識者將明白且瞭解的是,可對申請專利範圍之所揭露的 標的之實施例之被揭露的層面作出許多變化及修改特別 是關於解釋申請專利範圍以供等效物之說明。附加的申請 15專利範圍在本範圍及含義内意指不僅涵蓋所主張的標的之 實施例之被揭露的層面,而且此等等效及其他修改及變化 是該項領域内具有通常知識者顯而易見的。除了以上所、、主 明的本發明之被揭露的標的之被揭露且主張的層面之變化 及修改之外,其他變化及修改可被實施。 20 【圖式簡單說明】 第1圖顯示了一帶寬控制設備E95敏感度曲線; 第2圖描述了依據被揭露的標的之一實施例之層面的 干擾類型與時標及幅值; 第3圖示意性且以方塊圖形式顯示了依據被揭露的才# 200908489 的之一實施例之層面的具有一可變放大譜線窄化模組及差 動發射時間(dtMOPA)帶寬控制的一多級氣體放電雷射系 統; 第4圖示意性且以方塊圖形式顯示了依據被揭露的標 , 5 的之一實施例之層面的具有4個棱鏡及一光栅的一實施 例,其中至少一棱鏡可被旋轉以增加/減少光束寬度,從而 改變帶寬; 第5圖描述了可用於被揭露的標的之一實施例之層面 c 的一雷射控制系統整體架構; 10 第6圖示意性且以方塊圖形式描述了依據被揭露的標 的之一實施例之層面控制的一代表性雷射系統“植入”; 第7圖示意性且以方塊圖形式描述了依據被揭露的標 的之一實施例之層面的一帶寬控制器; 第8圖示意性且以方塊圖形式描述了依據被揭露的標 15 的之一實施例之層面的一擊發平滑器; 第9圖示意性且以方塊圖形式描述了依據被揭露的標 / 的之一實施例之層面的一不感帶磁滯方塊; 第10圖示意性且以方塊圖形式描述了依據被揭露的標 的之一實施例之層面的一控制模式選擇器; 20 第11圖示意性且以方塊圖形式描述了依據被揭露的標 的之一實施例之層面的具有複數稜鏡及一中心波長選擇反 射鏡的一實施例; 第12圖描述了 一使用AtMOPA的E95帶寬控制中心; 第13圖示意性地描述了依據被揭露的標的之一實施例 25 之層面的一可變放大LNM ; 41 200908489 第14圖示意性且以方塊圖形式描述了依據被揭露的桿 的之一實施例之層面的一可調整孔徑帶寬控制致動器 制中心); 第15圖示意性地且以方塊圖形式顯示了依據被揭露的 5標的之一實施例之層面的一帶寬控制系統;以及 第16圖示意與光束經過的孔徑之大小相依的帶寬變化 之例子。 【主要元件符號說明】 80…干擾 82.. .細致動範圍 84.. .粗致動範圍 158.. .可調整孔徑 200.. .雷射系統控制器One lens or a lens combination and the like. After the beam is partially selected by the adjustable aperture, it (as noted above) can be expanded/compressed and collimated to meet the beam size requirements of the PA or ( (eg, in the adjustable beam spread collimator) Inside), this can, for example, be a telescope or an adjustable telescope with 5 independent collimating lenses. Beam spreading may not be required for a -ΜΟΡΟ configuration where the beam size in the region of the amplifier electrodes during discharge between the electrodes may not be as large as a (multiple) fixed channel amplification. The scalloped optical element may also, by way of example, be a combination of a cylindrical translucent having a distance between two tuned lenses. For symmetric spectrum control, the center of the adjustable aperture can be adjusted to the center of the beam. For asymmetric spectrum control, the aperture can be adjusted to move within the -axis (e.g., in the horizontal direction toward one edge of the beam or another: the edge) to, for example, increase or decrease the wavelength. For some disturbances of the laser operating parameters (e.g., with respect to beam quality, such as bandwidth), the variation is more likely to occur in the vertical direction of the beam. As an example of repetition rate dependent interference, this is true. Thus, the variable aperture described in _ can be rotated within the plane of the page being described. And select the - vertical portion of the beam for beam quality parameter selection (e.g., 'bandwidth selection'). This can also be performed using another aperture described in Figure 14 - Selecting the aperture series just 20 . For some applications, the variable amplification line narrowing module 502 can respond to the money generated by the bandwidth measurement module 516. The variable amplification line narrowing module 502 can be used for coarse bandwidth control, utilizing bandwidth control rotatable 〇52〇, and one or both of another bandwidth control actuation 522, 524, and/or 526 39 200908489 (eg differential emission time (dtM0PA) or grating bending, for example using the bandwidth control device ("bcd") varnish deformer shown schematically in 630 in Figure 7, or in the cavity or External - variable aperture can be used for fine bandwidth control. Each of the bandwidth selective actuators can be used in conjunction with any one or more of the other actuators 5 as one or the other of a coarse control actuator and a fine control actuator By. It will be apparent to those skilled in the art that the above-described embodiments of the present invention are intended to satisfy the requirements of at least the consistent embodiments of the subject matter of the disclosure The exemplary embodiments are not intended to limit the scope of any claims and are not intended to be limited to a particular disclosed embodiment. It will be apparent to those skilled in the art that many variations and modifications can be made in the disclosed aspects of the disclosed embodiments of the subject invention. Description. The scope of the appended claims 15 is intended to cover the scope of the disclosed subject matter, and such equivalents and other modifications and variations are obvious to those of ordinary skill in the field. . In addition to the above-described changes and modifications of the disclosed subject matter of the present invention, other variations and modifications can be implemented. 20 [Simple diagram of the diagram] Figure 1 shows the sensitivity curve of a bandwidth control device E95; Figure 2 depicts the interference type and time scale and amplitude of the layer according to one of the disclosed targets; Figure 3 Illustratively and in block diagram form a multi-level with a variable amplification line narrowing module and differential transmission time (dtMOPA) bandwidth control in accordance with one aspect of the disclosed embodiment #200908489 Gas discharge laser system; Figure 4 is a schematic and block diagram showing an embodiment having four prisms and a grating in accordance with the disclosed embodiment, wherein at least one prism Can be rotated to increase/decrease the beam width to change the bandwidth; Figure 5 depicts the overall architecture of a laser control system that can be used for level c of one of the disclosed embodiments; 10 Figure 6 is schematic and The block diagram depicts a representative laser system "implantation" in accordance with the level of control of one of the disclosed embodiments; Figure 7 is schematically and in block diagram depicting implementation in accordance with one of the disclosed targets A bandwidth controller of the level of the example; FIG. 8 schematically and in block diagram form a firing smoother according to the level of one embodiment of the disclosed target 15; FIG. 9 is schematic and is a block The diagram depicts a non-inductive hysteresis block in accordance with the level of one embodiment of the disclosed subject matter; FIG. 10 is a schematic and block diagram depicting aspects of an embodiment in accordance with the disclosed subject matter. A control mode selector; 20 Figure 11 is a schematic and block diagram depicting an embodiment having a plurality of chirps and a center wavelength selective mirror in accordance with a level of an embodiment of the disclosed subject matter; The figure depicts an E95 bandwidth control center using AtMOPA; Figure 13 schematically depicts a variable amplification LNM of the layer of embodiment 25 in accordance with the disclosed subject matter; 41 200908489 Figure 14 is schematically and The block diagram depicts an adjustable aperture bandwidth control actuator centering in accordance with one level of an embodiment of the disclosed pole; FIG. 15 is schematically and in block diagram representation in accordance with the disclosed Subject According to a level of a bandwidth control system embodiment; and examples of the variations and Figure 16 a schematic of the beam passes through the aperture size dependent bandwidth. [Main component symbol description] 80... Interference 82.. . Fine actuation range 84.. . Rough actuation range 158.. Adjustable aperture 200.. . Laser system controller

202.. .FCP202.. .FCP

204.. .FCC204.. .FCC

206.. .LCP206.. .LCP

210.. .BAM210.. .BAM

212.. .LAM 220.. .帶寬控制模組 222···可變放大譜線窄化模組 232.. .步階命令 234.. .加法器 236.. .樣本延遲 240.. .干擾方塊 242.. .加法器 244.··樣本延遲方塊 246…加法器 247…雜訊方塊 248·.·常數方塊 249…輸出 250…帶寬控制器 252···帶寬目標 254…被量測的帶寬212.. .LAM 220.. . Bandwidth Control Module 222··· Variable Magnification Line Narrowing Module 232.. Step Command 234.. Adder 236.. . Sample Delay 240.. . Block 242.. Adder 244. Sample Delay Block 246... Adder 247... Noise Block 248.. Constant Block 249... Output 250... Bandwidth Controller 252···Bandwidth Target 254...Measured Bandwidth

256…波長TIR 257…處理器 258…加法器 260…雜訊濾波器 262··.不感帶磁滯控制方塊 264…控制模式選擇器 266…正負號方塊 268.··目標變化檢測器 270…乘法器 42 200908489 272.. .控制增益放大器 274.. .命令飽和方塊 276.. .步階平滑器 278.. .目標變化迴旋步進放大器 280.. .三極開關 284.. .步階命令 290.. .輸入 292.. .絕對值函數方塊 294.. .轉發方塊 296.. .輸出 340.. .除法器 342.. .加法器 344.. .樣本延遲 346.. .乘法器方塊 348.. .加法器 350.. .舍入方塊 352.. .方塊 354.. .絕對值方塊 356.. .乘法器方塊 358.. .加法器 360.. .截取方塊 364.. .加法器 366.. .樣本延遲方塊 368.. .延遲方塊 370.. .加法器 500.. .多級氣體放電雷射 502.. .可變放大譜線窄化模組 504.. .第一級腔室 506.. .第一級輸出耦接器 508a...轉向光學元件 508b...轉向光學元件 510.. .輸入耦接器 512.. .第二級腔室 514.. .分束器 516.. .帶寬測量模組 518.. .放電時序控制模組 520.. .棱鏡 522.. .稜鏡 524.. .稜鏡 526.. .稜鏡 528.. .光柵 540.. .Rmax 反射鏡 600.. .可調整光束擴展準直器 610’...可調整孔徑 612.. .擴束器 620.. .帶寬控制器 630.. .帶寬控制設備 43256...wavelength TIR 257...processor 258...adder 260...noise filter 262··.without hysteresis control block 264...control mode selector 266...symbol block 268.·target change detector 270...multiplication 42 200908489 272.. Control Gain Amplifier 274.. Command Saturation Block 276.. Step Smoother 278.. Target Change Swirling Stepper Amplifier 280.. Three-Phase Switch 284.. Step Command 290 .. Enter 292.. Absolute value function block 294.. . Forwarding block 296.. Output 340.. Divider 342.. Adder 344.. Sample delay 346.. . Multiplier block 348. Adder 350.. . Rounding block 352.. . Block 354.. Absolute value block 356.. Multiplier block 358.. Adder 360.. . Intercept block 364.. Adder 366. Sample Delay Block 368.. Delay Block 370.. Adder 500.. Multi-Level Gas Discharge Laser 502.. Variable Magnification Line Narrowing Module 504.. First Stage Chamber 506 The first stage output coupler 508a...turns to the optical element 508b...the steering optical element 510..the input coupler 512..the second stage chamber 514..the beam splitter 516. . Bandwidth measurement Module 518.. discharge timing control module 520.. prism 522.. .稜鏡524.. .稜鏡526.. .稜鏡528.. grating 540.. .Rmax mirror 600.. . Adjustable beam spread collimator 610'... adjustable aperture 612.. beam expander 620.. bandwidth controller 630.. bandwidth control device 43

Claims (1)

200908489 十、申請專利範圍: 1. 一種用於控制一雷射系統内的帶寬之方法,該雷射系統 包含: 一氣體放電種源雷射,具有一共振腔且產生一種源 5 雷射輸出; 一氣體放電放大器雷射,放大該種源雷射輸出且產 生一雷射系統輸出; 一帶寬度量單元,測量該雷射系統輸出之帶寬且提 供一帶寬測量值;以及 10 一帶寬誤差信號產生器,接收該帶寬測量值及一帶 寬設定點且提供一帶寬誤差信號; 一可變放大譜線窄化單元,位於該種源雷射之共振 腔内,包含一光柵及一可變光束放大光學系統; 一差動時序控制器,選擇該種源雷射内的一個別電 15 極對與該放大器雷射内的一個別電極對之間的一放電 之發射的時序; 該方法包含以下步驟: 利用一帶寬控制器控制帶寬,該帶寬控制器具有三 個模式的放大控制,其中一第一模式不控制該譜線窄化 20 單元内的光束之放大,一第二模式將該譜線窄化單元内 的該光束之該放大驅動至獨立於該帶寬誤差信號的一 選定值,以及一第三模式根據該帶寬誤差信號驅動該譜 線窄化單元内的該光束之該放大;以及 其中在每個模式内,該差動時序控制器根據該帶寬 44 200908489 誤差信號選擇該時序或者不考慮該帶寬誤差信號。 2.如申請專利範圍第1項所述之方法,進一步包含以下步 驟: 利用一内帶寬不感帶值及一外帶寬不感帶值,根據 5 該帶寬誤差信號控制該譜線窄化單元内的該光束之該 放大,其中只有在該控制器影響一帶寬變化使得該帶寬 接近該内帶寬不感帶值之情況下,該帶寬控制器根據在 該内不感帶值與外不感帶值之間的帶寬驅動該譜線窄 化單元内的該光束之放大。 10 3.如申請專利範圍第1項所述之方法,進一步包含以下步 驟: 使用帶寬誤差減少之兩個模式; 一第一正常帶寬誤差減少模式,其中該帶寬控制器 執行帶寬誤差減少命令以不會大大地影響除了帶寬之 15 外的另一雷射系統操作參數;以及 一第二帶寬目標變化誤差減少模式,其中該帶寬控 制器執行帶寬誤差減少命令以改變到新的帶寬目標,不 考慮在該另一雷射系統操作參數上的影響;以及 當帶寬目標產生一變化時,該控制器切換到該第二 20 誤差減少模式,且當達到該新的帶寬目標時,切換到該 第一誤差減少模式。 4.如申請專利範圍第2項所述之方法,進一步包含以下步 驟: 使用帶寬誤差減少之兩個模式; 45 200908489 帛iL吊帶寬誤差減少模式,其中該帶寬控制器 執行帶寬誤差減少命令以不會大大地影響除了帶寬之 外的另一雷射系統操作參數;以及 。一第二帶寬目標變化誤线少模式,其中該帶寬控 制器執行帶寬誤差減少命令以改變到新的帶寬目標,不 考慮在該另一雷射系統操作參數上的影響;以及 …當帶寬目標產生-變化時,該控難切換到該第二 °、咸/模式’ h達到該新的帶寬目標時切換到該第 —誤差減少模式。 5·如申請專利範圍第丨項所述之方法,進—步包含以下步 驟: 在一第-方向内將帶寬致動器抖動限制到一最小 數目的步階,在一第二相反方向内抖動之前。 ”請專職圍第4韻述之方法,進— 跟· * ^200908489 X. Patent application scope: 1. A method for controlling bandwidth in a laser system, the laser system comprising: a gas discharge source laser having a resonant cavity and generating a source 5 laser output; a gas discharge amplifier laser that amplifies the source laser output and produces a laser system output; a bandwidth metric unit that measures the bandwidth of the laser system output and provides a bandwidth measurement; and a bandwidth error signal generator Receiving the bandwidth measurement value and a bandwidth set point and providing a bandwidth error signal; a variable amplification line narrowing unit located in the resonant cavity of the source laser, comprising a grating and a variable beam amplifying optical system a differential timing controller that selects a timing of an electrical discharge between a pair of 15 poles of the source laser and a pair of electrodes within the laser of the amplifier; the method comprising the steps of: utilizing A bandwidth controller controls the bandwidth, and the bandwidth controller has three modes of amplification control, wherein a first mode does not control the line narrowing 20 Amplification of the beam within the element, a second mode driving the amplification of the beam within the line narrowing unit to a selected value independent of the bandwidth error signal, and a third mode driving the band based on the bandwidth error signal The amplification of the beam within the line narrowing unit; and wherein in each mode, the differential timing controller selects the timing based on the bandwidth 44 200908489 error signal or does not consider the bandwidth error signal. 2. The method of claim 1, further comprising the steps of: controlling the line in the narrowing unit according to the bandwidth error signal by using an inner bandwidth non-inductive band value and an outer bandwidth non-inductive band value; The amplification of the beam, wherein the bandwidth controller is driven according to a bandwidth between the non-inductance value and the external non-inductance band value only if the controller affects a bandwidth change such that the bandwidth is close to the inner bandwidth non-inductance value. The line narrows the amplification of the beam within the cell. 10. The method of claim 1, further comprising the steps of: using two modes of bandwidth error reduction; a first normal bandwidth error reduction mode, wherein the bandwidth controller performs a bandwidth error reduction command to Will greatly affect another laser system operating parameter in addition to bandwidth 15; and a second bandwidth target variation error reduction mode in which the bandwidth controller performs a bandwidth error reduction command to change to a new bandwidth target, regardless of The effect of the operating parameter of the other laser system; and when the bandwidth target produces a change, the controller switches to the second 20 error reduction mode, and when the new bandwidth target is reached, switches to the first error Reduce the mode. 4. The method of claim 2, further comprising the steps of: using two modes of bandwidth error reduction; 45 200908489 帛iL hoist bandwidth error reduction mode, wherein the bandwidth controller performs a bandwidth error reduction command to Will greatly affect the operating parameters of another laser system in addition to the bandwidth; a second bandwidth target change mis-line mode, wherein the bandwidth controller performs a bandwidth error reduction command to change to a new bandwidth target, regardless of the impact on the operational parameters of the other laser system; and... when the bandwidth target is generated - When changing, the control is difficult to switch to the second °, salt / mode 'h to switch to the first error reduction mode when the new bandwidth target is reached. 5. The method of claim 2, the method comprising the steps of: limiting bandwidth actuator jitter to a minimum number of steps in a first direction, and dithering in a second opposite direction prior to. "Please refer to the method of the fourth rhyme in full-time, enter - and * * 20 在一第-方向内將帶寬致動器抖動限制到一最小 數目的步階’在-第二相反方向内抖動之前。 如申請專利範圍第i項所述之方法,進—步包含以下步 驟· 當帶寬目標被改變時,基於在—選定時間量内的該 破量測的帶寬與該新的目標帶寬之間的-料,將該帶 寬控制器_至筒的帶寬目標,且賴雷㈣統在該 所選定的時間量料被認為是在規格内發訊出。 如申請專利範圍第4項所述之方法,進一步包含以下步 46 200908489 驟: 當帶寬目標被改變時,基於在一選定時間量内的該 被量測的帶寬與該新的目標帶寬之間的一誤差,將該帶 寬控制器驅動至該新的帶寬目標,且將該雷射系統在該 5 所選定的時間量内不被認為是在規格内發訊出。 9. 如申請專利範圍第1項所述之方法,進一步包含: 使用一函數產生器以命令一帶寬選擇致動步進器。 10. 如申請專利範圍第4項所述之方法,進一步包含: 使用一函數產生器以命令一帶寬選擇致動步進器。 10 11.如申請專利範圍第9項所述之方法,其中: 該函數產生器基於擊發數之任意函數命令該帶寬 選擇致動器。 12. 如申請專利範圍第10項所述之方法,其中: 該函數產生器基於擊發數之任意函數命令該帶寬 15 選擇致動器。 13. 如申請專利範圍第1項所述之方法,其中: 該帶寬控制器包含一帶寬選擇致動器步階命令平 滑器。 14. 如申請專利範圍第12項所述之方法,其中: 20 該帶寬控制器包含一帶寬選擇致動器步階命令平 滑器。 15. —種雷射系統,包含: 一氣體放電種源雷射,具有一共振腔且產生一種源 雷射輸出; 47 200908489 一氣體放電放大器雷射,放大該種源雷射輸出且產 生一雷射系統輸出; 一帶寬度量單元,測量該雷射系統輸出之帶寬且提 供一帶寬測量值;以及 5 一帶寬誤差信號產生器,接收該帶寬測量值及一帶 寬設定點且提供一帶寬誤差信號; 一可變放大譜線窄化單元,位於該種源雷射之共振 腔内,包含一光栅及一可變光束放大光學系統; 一差動時序控制器,選擇該種源雷射内的一個別電 10 極對與該放大器雷射内的一個別電極對之間的一放電 之發射的時序; 一帶寬控制器,具有三個模式的放大控制,該帶寬 控制器不控制該可變放大譜線窄化單元的一第一模 式,該帶寬控制器控制該可變放大譜線窄化單元以將該 15 放大驅動至一與帶寬誤差信號無關的選定值的一第二 模式,以及該帶寬控制器根據該帶寬誤差信號控制該可 變放大譜線窄化單元以選擇該雷射系統輸出之該帶寬 的一第三模式;以及 其中該差動時序控制器根據該帶寬誤差信號選擇 20 該時序或者不考慮該帶寬誤差信號。 16. —種雷射系統,包含: 一雷射光源,包含: 一種源雷射,定義一產生一輸出的光學共振腔; 一放大器雷射,接收該種源雷射輸出且放大該種源 48 200908489 雷射輸出; 一帶寬度量模組,測量由該光源產生的一雷射輸出 光脈衝束脈衝之帶寬且產生一帶寬測量值; 一帶寬誤差信號產生器,接收該帶寬測量值及一帶 5 寬設定點且提供一帶寬誤差信號; 一帶寬選擇元件,位於該種源雷射之該共振腔外 部,選擇光束之一空間部分以選擇性地改變該種源雷射 輸出之該帶寬。 17. 如申請專利範圍第16項所述之雷射系統,其中: 10 該帶寬選擇元件包含一可調整孔徑。 18. 如申請專利範圍第16項所述之雷射系統,進一步包含: 一第二帶寬選擇致動器,與該帶寬選擇元件一起協 作以選擇該雷射系統之帶寬。 19. 如申請專利範圍第18項所述之雷射系統,其中: 15 該第二帶寬選擇系統包含一差動發射時序系統,其 調整該種源雷射與放大器雷射之間的一差動發射時間。 20. 如申請專利範圍第19項所述之雷射系統,其中: 該可調整孔徑包含一粗帶寬控制致動器以及該差 動發射時序系統包含一細帶寬控制致動器。 20 21.如申請專利範圍第16項所述之雷射系統,進一步包含: 一光束擴展系統,擴展入射到一帶寬選擇光學元件 上的光束之大小。 22.如申請專利範圍第20項所述之雷射系統,進一步包含: 一光束擴展系統,擴展入射到一帶寬選擇光學元件 49 200908489 上的光束之大小。 23.如申請專利範圍第19項所述之雷射系統,其中: 該可調整孔徑包含一粗帶寬控制致動器以及該光 束擴展系統包含一細帶寬控制致動器。 5 24.如申請專利範圍第19項所述之雷射系統,其中: 該可調整孔徑包含一細帶寬控制致動器以及該光 束擴展系統包含一粗帶寬控制致動器。 25. 如申請專利範圍第16項所述之雷射系統,進一步包含: 一帶寬控制設備,修改一帶寬選擇光學元件之一光 10 束入射部分之形狀。 26. 如申請專利範圍第24項所述之雷射系統,進一步包含: 一帶寬控制設備,修改一帶寬選擇光學元件之一光 束入射部分之形狀。 27. 如申請專利範圍第19項所述之雷射系統,其中: 15 該可調整孔徑包含一粗帶寬控制致動器以及該帶 寬控制設備包含一細帶寬控制致動器。 28. 如申請專利範圍第20項所述之雷射系統,其中: 該可調整孔徑包含一細帶寬控制致動器以及該帶 寬控制設備包含一粗帶寬控制致動器。 20 29.如申請專利範圍第16項所述之雷射系統,進一步包含: 一擴束器,位於該帶寬控制元件與該放大器之間, 調整進入該放大器的光束大小。 30.如申請專利範圍第17項所述之雷射系統,進一步包含: 一擴束器,位於該帶寬控制元件與該放大器之間, 50 200908489 調整進入該放大器的光束大小。 31.如申請專利範圍第29項所述之雷射系統,進一步包含: 一光束準直器,位於該帶寬控制元件與該放大器之 間,準直進入該放大器的光束。 5 32.如申請專利範圍第30項所述之雷射系統,進一步包含: 一光束準直器,位於該帶寬控制元件與該放大器之 間,準直進入該放大器的光束。 33. 如申請專利範圍第31項所述之雷射系統,進一步包含: 一擴束器,位於該種源雷射與該帶寬控制元件之 10 間。 34. 如申請專利範圍第32項所述之雷射系統,進一步包含: 一擴束器,位於該種源雷射與該帶寬控制元件之 間。 35. 如申請專利範圍第33項所述之雷射系統,其中: 15 該擴束器與光束準直器包含一光束大小調整準直 器。 36. 如申請專利範圍第34項所述之雷射系統,其中: 該擴束器與光束準直器包含一光束大小調整準直 器。 20 37. —種雷射系統,包含: 一種源雷射,定義一產生一輸出的光學共振腔; 一放大器雷射,接收且放大該種源雷射之該輸出且 提供一雷射系統輸出; 一帶寬度量模組,測量由該光源產生的一雷射輸出 51 200908489 光脈衝束脈衝之帶寬且產生一帶寬測量值; 一帶寬誤差信號產生器,接收該帶寬測量值及一帶 寬設定點且提供一帶寬誤差信號; 一差動時序系統,回應該帶寬誤差信號以選擇性地 5 調整該種源雷射與放大器之間的一差動發射時間;以及 一光束大小調整系統,可控地調整該種源雷射之該 共振腔内的一光束之一光束大小以選擇性地改變該種 源雷射輸出之帶寬且也可控地調整該種源脈衝之中心 波長;以及 10 該光束大小調整系統包含: 多數個光束大小調整稜鏡;以及 至少另一棱鏡,包含一中心波長選擇稜鏡。 38. 如申請專利範圍第37項所述之雷射系統,其中: 該等光束大小調整稜鏡包含一粗帶寬調整稜鏡及 15 一細帶寬調整稜鏡。 39. 如申請專利範圍第38項所述之雷射系統,其中: 該差動時序系統調整該差動發射時間以維持帶寬 在帶寬之一選定的範圍内。 40. 如申請專利範圍第39項所述之雷射系統,其中: 20 該至少一中心波長選擇稜鏡包含一粗中心波長選 擇稜鏡及一細中心波長選擇稜鏡。 41. 如申請專利範圍第38項所述之雷射系統,進一步包含: 一附加的中心波長選擇光學元件,結合該中心波長 選擇稜鏡操作以選擇中心波長。 52 200908489 42.如申請專利範圍第37項所述之雷射系統,進一步包含: 一中心波長選擇機制,包含一分散光學元件;以及 該中心波長選擇稜鏡調整在該分散光學元件上的 光束之一入射角。 5 43.如申請專利範圍第41項所述之雷射系統,進一步包含: 一中心波長選擇機制,包含一分散光學元件;以及 該中心波長選擇稜鏡調整在該分散光學元件上的 光束之一入射角。 44. 如申請專利範圍第37項所述之雷射系統,進一步包含: 10 該系統選擇性地調整該差動發射時間,包含一細帶 寬控制調整;以及 該系統可控地調整該光束大小,包含一粗帶寬控制 調整。 45. 如申請專利範圍第43項所述之雷射系統,進一步包含: 15 該系統選擇性地調整地該差動發射時間,包含一細 帶寬控制調整;以及 該系統可控地調整該光束大小,包含一粗帶寬控制 調整。 46. —種裝置,包含: 20 一種源雷射,定義一產生一輸出的光學共振腔; 一放大器雷射,接收且放大該種源雷射之該輸出且 提供一雷射系統輸出; 一帶寬度量模組,測量由該光源產生的一雷射輸出 光脈衝束脈衝之帶寬且產生一帶寬測量值; 53 200908489 一帶寬誤差信號產生器,接收該帶寬測量值及一帶 寬設定點且提供一帶寬誤差信號; 一差動時序系統,回應該帶寬誤差信號以選擇性地 調整該種源雷射與放大器之間的一差動發射時間;以及 5 一光束大小調整系統,可控地調整在該種源雷射之 該共振腔内的一光束之一光束大小以選擇性地改變該 種源雷射輸出之帶寬且也可控地調整該種源脈衝之中 心波長;以及 該光束大小調整系統包含: 10 多數個光束大小調整稜鏡; 一分散光學元件; 以及 一中心波長選擇稜鏡,至少部分定義該分散光學元 件上的該光束之一入射角;以及 15 一中心波長選擇反射鏡,與該至少另一棱鏡協作, 定義該分散光學元件上的該光束之該入射角。 47.如申請專利範圍第46項所述之裝置,其中: 該等光束大小調整稜鏡包含一粗帶寬調整稜鏡及 一細帶寬調整棱鏡。 20 48.如申請專利範圍第46項所述之裝置,其中: 該差動時序系統調整該差動發射時間以維持帶寬 在帶寬之一選定範圍内。 49.如申請專利範圍第47項所述之裝置,其中: 該至少一中心波長選擇棱鏡,包含一粗中心波長選 54 200908489 擇稜鏡及一細中心波長選擇稜鏡。 50.如申請專利範圍第47項所述之裝置,進一步包含: 一附加的中心波長選擇光學元件,結合該中心波長 選擇稜鏡一起操作以選擇中心波長。 5 51.如申請專利範圍第47項所述之裝置,進一步包含: 一中心波長選擇機制,包含一分散光學元件;以及 該中心波長選擇稜鏡調整該分散光學元件上的該 光束之一入射角。 52.如申請專利範圍第47項所述之裝置,進一步包含: 10 該系統選擇性地調整該差動發射時間,包含一細帶 寬控制調整;以及 該系統可控地調整該光束大小,包含一粗帶寬控制 調整。 5520 limits the bandwidth actuator jitter to a minimum number of steps in a first direction - before the jitter in the second opposite direction. As described in claim i, the method further comprises the steps of: - when the bandwidth target is changed, based on the measured bandwidth between the measured amount of time and the new target bandwidth - The bandwidth controller _ to the bandwidth target of the cartridge, and the ray (four) system is considered to be within the specification at the selected time. The method of claim 4, further comprising the following step 46: 200908489: when the bandwidth target is changed, based on the measured bandwidth between the measured bandwidth and the new target bandwidth An error drives the bandwidth controller to the new bandwidth target and the laser system is not considered to be within the specification for the selected amount of time. 9. The method of claim 1, further comprising: using a function generator to command a bandwidth selection to actuate the stepper. 10. The method of claim 4, further comprising: using a function generator to command a bandwidth selection to actuate the stepper. 10. The method of claim 9, wherein: the function generator commands the bandwidth selection actuator based on an arbitrary function of the number of shots. 12. The method of claim 10, wherein: the function generator commands the bandwidth 15 to select an actuator based on an arbitrary function of the number of shots. 13. The method of claim 1, wherein: the bandwidth controller comprises a bandwidth selection actuator step command smoother. 14. The method of claim 12, wherein: the bandwidth controller comprises a bandwidth selection actuator step command smoother. 15. A laser system comprising: a gas discharge source laser having a resonant cavity and producing a source laser output; 47 200908489 A gas discharge amplifier laser amplifying the source laser output and generating a thunder a system of measuring a bandwidth, measuring a bandwidth of the output of the laser system and providing a bandwidth measurement; and a bandwidth error signal generator for receiving the bandwidth measurement and a bandwidth set point and providing a bandwidth error signal; a variable amplification line narrowing unit, located in the resonant cavity of the source laser, comprising a grating and a variable beam amplifying optical system; a differential timing controller selecting one of the source lasers a timing of a discharge of a discharge between a pair of electrodes and a pair of electrodes within the laser of the amplifier; a bandwidth controller having three modes of amplification control, the bandwidth controller not controlling the variable amplification line a first mode of the narrowing unit, the bandwidth controller controls the variable amplification line narrowing unit to drive the 15 amplification to a bandwidth error signal a second mode of the selected value, and the bandwidth controller controlling the variable amplification line narrowing unit to select a third mode of the bandwidth of the laser system output according to the bandwidth error signal; and wherein the differential timing The controller selects the timing according to the bandwidth error signal or does not consider the bandwidth error signal. 16. A laser system comprising: a laser source comprising: a source laser defining an optical resonant cavity that produces an output; an amplifier laser that receives the source laser output and amplifies the source 48 200908489 Laser output; a bandwidth measurement module, measuring a bandwidth of a laser output light pulse pulse generated by the light source and generating a bandwidth measurement value; a bandwidth error signal generator receiving the bandwidth measurement value and a band width of 5 The set point is provided and a bandwidth error signal is provided; a bandwidth selecting component located outside the resonant cavity of the source laser, and a spatial portion of the beam is selected to selectively vary the bandwidth of the source laser output. 17. The laser system of claim 16, wherein: the bandwidth selection component comprises an adjustable aperture. 18. The laser system of claim 16, further comprising: a second bandwidth selection actuator cooperating with the bandwidth selection element to select a bandwidth of the laser system. 19. The laser system of claim 18, wherein: the second bandwidth selection system comprises a differential emission timing system that adjusts a differential between the source laser and the amplifier laser Launch time. 20. The laser system of claim 19, wherein: the adjustable aperture comprises a coarse bandwidth control actuator and the differential emission timing system comprises a fine bandwidth control actuator. The laser system of claim 16, further comprising: a beam expanding system that extends the size of the beam incident on a bandwidth selective optical element. 22. The laser system of claim 20, further comprising: a beam expanding system that extends the size of the beam incident on a bandwidth selective optic element 49 200908489. 23. The laser system of claim 19, wherein: the adjustable aperture comprises a coarse bandwidth control actuator and the beam expansion system comprises a thin bandwidth control actuator. 5. The laser system of claim 19, wherein: the adjustable aperture comprises a thin bandwidth control actuator and the beam expansion system comprises a coarse bandwidth control actuator. 25. The laser system of claim 16, further comprising: a bandwidth control device that modifies the shape of the incident portion of the light beam of one of the bandwidth selective optical elements. 26. The laser system of claim 24, further comprising: a bandwidth control device that modifies the shape of the beam incident portion of one of the bandwidth selective optical elements. 27. The laser system of claim 19, wherein: 15 the adjustable aperture comprises a coarse bandwidth control actuator and the bandwidth control device comprises a thin bandwidth control actuator. 28. The laser system of claim 20, wherein: the adjustable aperture comprises a thin bandwidth control actuator and the bandwidth control device comprises a coarse bandwidth control actuator. The laser system of claim 16, further comprising: a beam expander positioned between the bandwidth control element and the amplifier to adjust a beam size entering the amplifier. 30. The laser system of claim 17, further comprising: a beam expander positioned between the bandwidth control element and the amplifier, 50 200908489 adjusting the beam size entering the amplifier. 31. The laser system of claim 29, further comprising: a beam collimator positioned between the bandwidth control element and the amplifier to collimate the beam entering the amplifier. The laser system of claim 30, further comprising: a beam collimator positioned between the bandwidth control element and the amplifier to collimate the beam entering the amplifier. 33. The laser system of claim 31, further comprising: a beam expander located between the source laser and the bandwidth control element. 34. The laser system of claim 32, further comprising: a beam expander positioned between the source laser and the bandwidth control element. 35. The laser system of claim 33, wherein: 15 the beam expander and the beam collimator comprise a beam size adjustment collimator. 36. The laser system of claim 34, wherein: the beam expander and the beam collimator comprise a beam size adjustment collimator. 20 37. A laser system comprising: a source laser defining an optical resonant cavity that produces an output; an amplifier laser that receives and amplifies the output of the source laser and provides a laser system output; a bandwidth metric module for measuring a laser output generated by the light source 51 200908489 optical pulse beam pulse bandwidth and generating a bandwidth measurement value; a bandwidth error signal generator receiving the bandwidth measurement value and a bandwidth set point and providing a bandwidth error signal; a differential timing system that echoes the bandwidth error signal to selectively adjust a differential emission time between the source laser and the amplifier; and a beam size adjustment system that adjustably adjusts the a beam size of a beam within the resonant cavity of the source laser to selectively vary the bandwidth of the source laser output and controllably adjust the center wavelength of the source pulse; and 10 the beam size adjustment system Includes: a plurality of beam size adjustments; and at least one other prism comprising a center wavelength selection 稜鏡. 38. The laser system of claim 37, wherein: the beam size adjustment comprises a coarse bandwidth adjustment and a fine bandwidth adjustment. 39. The laser system of claim 38, wherein: the differential timing system adjusts the differential transmission time to maintain a bandwidth within a selected range of bandwidth. 40. The laser system of claim 39, wherein: the at least one center wavelength selection 稜鏡 comprises a coarse center wavelength selection 稜鏡 and a fine center wavelength selection 稜鏡. 41. The laser system of claim 38, further comprising: an additional center wavelength selective optical element operative to select a center wavelength in conjunction with the center wavelength. The invention as claimed in claim 37, further comprising: a central wavelength selection mechanism comprising a dispersing optical element; and the central wavelength selective 稜鏡 adjusting a beam of light on the dispersing optical element An angle of incidence. The laser system of claim 41, further comprising: a center wavelength selection mechanism comprising a dispersing optical element; and the center wavelength selection 稜鏡 adjusting one of the light beams on the dispersing optical element Angle of incidence. 44. The laser system of claim 37, further comprising: 10 the system selectively adjusting the differential transmission time, including a fine bandwidth control adjustment; and the system controllably adjusting the beam size, Includes a coarse bandwidth control adjustment. 45. The laser system of claim 43, further comprising: 15 the system selectively adjusting the differential transmission time, including a fine bandwidth control adjustment; and the system controllably adjusting the beam size Contains a coarse bandwidth control adjustment. 46. A device comprising: 20 a source laser defining an optical resonant cavity that produces an output; an amplifier laser that receives and amplifies the output of the source laser and provides a laser system output; Metric module for measuring a bandwidth of a laser output light pulse pulse generated by the light source and generating a bandwidth measurement value; 53 200908489 A bandwidth error signal generator receiving the bandwidth measurement value and a bandwidth set point and providing a bandwidth Error signal; a differential timing system that echoes the bandwidth error signal to selectively adjust a differential transmission time between the source laser and the amplifier; and 5 a beam size adjustment system that is controllably adjusted in the species a beam size of a beam within the resonant cavity of the source laser to selectively vary the bandwidth of the source laser output and controllably adjust the center wavelength of the source pulse; and the beam resizing system includes: 10 a plurality of beam size adjustments; a dispersive optical element; and a center wavelength selection 稜鏡, at least partially defining the dispersion optics The angle of incidence of the light beam on one of the members; 15 and a central wavelength selective mirror, which cooperate with at least another prism, the angle of incidence define the dispersion of the light beam on the optical element. 47. The device of claim 46, wherein: the beam size adjustment comprises a coarse bandwidth adjustment and a thin bandwidth adjustment prism. The apparatus of claim 46, wherein: the differential timing system adjusts the differential transmission time to maintain a bandwidth within a selected range of bandwidth. 49. The device of claim 47, wherein: the at least one central wavelength selective prism comprises a coarse center wavelength and a fine center wavelength selection. 50. The apparatus of claim 47, further comprising: an additional central wavelength selective optical element operative in conjunction with the central wavelength selective 以 to select a central wavelength. The device of claim 47, further comprising: a center wavelength selection mechanism comprising a dispersing optical element; and the central wavelength selection 稜鏡 adjusting an incident angle of the beam on the dispersing optical element . 52. The apparatus of claim 47, further comprising: 10 the system selectively adjusting the differential transmission time, including a fine bandwidth control adjustment; and the system controllably adjusting the beam size, including a Thick bandwidth control adjustment. 55
TW97113198A 2007-04-13 2008-04-11 Method and apparatus for stabilizing and tuning the bandwidth of laser light TWI424645B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US92348607P 2007-04-13 2007-04-13
US12/082,301 US7899095B2 (en) 2007-04-13 2008-04-09 Laser lithography system with improved bandwidth control
US12/082,253 US7822084B2 (en) 2006-02-17 2008-04-09 Method and apparatus for stabilizing and tuning the bandwidth of laser light
US12/082,254 US7894494B2 (en) 2007-04-13 2008-04-09 Method and apparatus to control output spectrum bandwidth of MOPO or MOPA laser

Publications (2)

Publication Number Publication Date
TW200908489A true TW200908489A (en) 2009-02-16
TWI424645B TWI424645B (en) 2014-01-21

Family

ID=44723681

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97113198A TWI424645B (en) 2007-04-13 2008-04-11 Method and apparatus for stabilizing and tuning the bandwidth of laser light

Country Status (1)

Country Link
TW (1) TWI424645B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102834988A (en) * 2010-04-07 2012-12-19 西默股份有限公司 Method and apparatus for controlling light bandwidth
TWI649646B (en) * 2013-10-14 2019-02-01 美商應用材料股份有限公司 Matching process controller for improved matching of processes, computer implemented methods, systems, and non-transitory machine readable storage media

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6463086B1 (en) * 1999-02-10 2002-10-08 Lambda Physik Ag Molecular fluorine laser with spectral linewidth of less than 1 pm
US6549551B2 (en) * 1999-09-27 2003-04-15 Cymer, Inc. Injection seeded laser with precise timing control
JP4334261B2 (en) * 2003-04-08 2009-09-30 ウシオ電機株式会社 Two-stage laser equipment for exposure
JP4798687B2 (en) * 2004-07-09 2011-10-19 株式会社小松製作所 Narrow band laser equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102834988A (en) * 2010-04-07 2012-12-19 西默股份有限公司 Method and apparatus for controlling light bandwidth
CN102834988B (en) * 2010-04-07 2015-01-14 西默有限公司 Method and apparatus for controlling light bandwidth
TWI649646B (en) * 2013-10-14 2019-02-01 美商應用材料股份有限公司 Matching process controller for improved matching of processes, computer implemented methods, systems, and non-transitory machine readable storage media
US10884400B2 (en) 2013-10-14 2021-01-05 Applied Materials, Inc. Matching process controllers for improved matching of process

Also Published As

Publication number Publication date
TWI424645B (en) 2014-01-21

Similar Documents

Publication Publication Date Title
JP5718048B2 (en) Method and apparatus for stabilizing and adjusting the bandwidth of laser light
US7822084B2 (en) Method and apparatus for stabilizing and tuning the bandwidth of laser light
KR101346609B1 (en) Multi­chamber gas discharge laser bandwidth control through discharge timing
KR101811742B1 (en) Method and apparatus for controlling light bandwidth
TWI558045B (en) System and method for seed laser mode stabilization
KR102462465B1 (en) Spectral feature selection and pulse timing control of a pulsed light beam
TW201036294A (en) Line narrowed high average power high pulse repetition laser micro-photolithography light source bandwidth control system and fluorine injection control system
US11769982B2 (en) Lithography system bandwidth control
KR101742715B1 (en) Method and apparatus for laser control in a two chamber gas discharge laser
TW200908489A (en) Method and apparatus for stabilizing and tuning the bandwidth of laser light
TWI749546B (en) Apparatus for and method of modulating a light source wavelength
US11947268B2 (en) Energy correction module for an optical source apparatus
WO2022132447A1 (en) Apparatus for and method of modulating a wavelength of an excimer laser as a function of its repetition frequency.