TW200908233A - Three dimensional NAND memory and method of making thereof - Google Patents

Three dimensional NAND memory and method of making thereof Download PDF

Info

Publication number
TW200908233A
TW200908233A TW97110923A TW97110923A TW200908233A TW 200908233 A TW200908233 A TW 200908233A TW 97110923 A TW97110923 A TW 97110923A TW 97110923 A TW97110923 A TW 97110923A TW 200908233 A TW200908233 A TW 200908233A
Authority
TW
Taiwan
Prior art keywords
semiconductor
pillar
region
active region
forming
Prior art date
Application number
TW97110923A
Other languages
Chinese (zh)
Other versions
TWI424536B (en
Inventor
Nima Mokhlesi
Roy Scheuerlein
Original Assignee
Sandisk 3D Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/691,901 external-priority patent/US7848145B2/en
Priority claimed from US11/691,885 external-priority patent/US7745265B2/en
Priority claimed from US11/691,917 external-priority patent/US7575973B2/en
Priority claimed from US11/691,858 external-priority patent/US7808038B2/en
Priority claimed from US11/691,939 external-priority patent/US7851851B2/en
Priority claimed from US11/691,840 external-priority patent/US7514321B2/en
Application filed by Sandisk 3D Llc filed Critical Sandisk 3D Llc
Publication of TW200908233A publication Critical patent/TW200908233A/en
Application granted granted Critical
Publication of TWI424536B publication Critical patent/TWI424536B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A monolithic, three dimensional NAND string includes a first memory cell located over a second memory cell. A semiconductor active region of the first memory cell is formed epitaxially on a semiconductor active region of the second memory cell, such that a defined boundary exists between the semiconductor active region of the first memory cell and the semiconductor active region of the second memory cell.

Description

200908233 九、發明說明: 【發明所屬之技術領域】 本發明大體而言係關於半導體裝置之領域且具體言之係 關於三維反及串及其他三維裝置。 【先前技術】 在IEDM Pr〇C(2〇01)第33至36頁τ End〇h等人之標題為 "Novel Ultra High Density Memory With A Stacked-Smrounding Gate Transistor (S_SGT) structured CeU"之文 〆 早中揭不二維垂直反及串。然而,此反及串每單元僅提供 個位7G。此外’反及串之作用區域❹包含側壁間隔物 之重複形成及基板之部分之㈣的相對困難且耗時之製程 形成,其導致大致圓錐形作用區域形狀。 【發明内容】200908233 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to the field of semiconductor devices and, more particularly, to three-dimensional anti-strings and other three-dimensional devices. [Prior Art] In IEDM Pr〇C (2〇01), pages 33 to 36, τ End〇h et al. titled "Novel Ultra High Density Memory With A Stacked-Smrounding Gate Transistor (S_SGT) structured CeU" In the early days, I did not reveal the two-dimensional vertical anti-string. However, this inverse string provides only 7 Gbits per cell. In addition, the area of action of the "reverse string" includes a relatively difficult and time consuming process of repetitive formation of sidewall spacers and portions of the substrate (4) which result in a generally conical shaped region shape. [Summary of the Invention]

根據本發明之一實施例,一 位於一第二記憶體單元上方之 體單元之半導體作用區域蟲晶 半導體作用區域上,以使得在 用區域與第二記憶體單元之半 定之邊界。 種單體、三維反及串包含一 第一記憶體單元。第一記憶 地形成於第二記憶體單元之 第一記憶體單元之半導體作 導體作用區域之間存在經界 根據本發明之另一實施例 位於第二記憶體單元上方之 至少該第一記憶體單元之半 晶秒 。 ,—種單體、三維反及串包含 至少一第一記憶體單元,其中 導體作用區域包含再結晶之多 根據本發明之另一實施例 一種單體、三維反及串包含 129933.doc 200908233 位於第二記憶體單元上方之至少一第一記憶體單元,其中 反及串之至少一區域被平坦化。 【實施方式】 下文將參考隨附圖式來描述本發明之實施例。應理解, 以下描述意欲描述本發明之例示性實施例,且不意欲限制 本發明。 本發明之實施例提供記憶體裝置之單體、三維陣列,諸 如垂直反及串之陣列。反及串經垂直地定向以使得至少— 記憶體單元位於另一記憶體單元上方。陣列允許反及裝置 之垂直縮放以便每單位面積之矽或其他半導體材料提供記 憶體單7L之較高密度。此非揮發性記憶體較佳在每一記憶 體層級中每4F2含有兩個電荷收集記憶體單元(諸如「 SONOS單元)。因此,四記憶體單元層級組態將每單元具 有〇.5F2之面積或每單元具有〇.5F2之二進制位元。陣列^ 具有兩個或兩個以上單元層級,諸如,兩個至八個層級。 因此,N記憶體單元層級組態將每單元具有4f2/2n之面 積。必要時,每一反及串之選擇電晶體亦可能單體地整合 至記憶體單元上方及/或下方之每一反及串中。 單體三維記憶體陣列為在諸如半導體晶圓之單個基板上 方(不具有介入基板)形成多個記憶體層級的陣列。術語"單 體”意指陣列之每-層級之層直接地沈積於陣列之每一下 覆層級之層上。城,二維陣列可獨立地形成且接著封裝 在^以形成非單體記憶體裝置。舉例而$,如在Leedy "Three Dimensional Structure Memory··^ ^ ^ 129933.doc 200908233 利第5,915’167號中’已藉由在獨立基板上形成記憶體層級 且重疊地黏著記憶體層級而建構非單體堆疊之記憶體。基 板可在結合之前變薄或自記憶體層級移除,但因為記憶體 層級初始地形成於獨立基板上方,所以此等記憶體並非真 單體三維記憶體陣列。 反及串之較佳程式化及擦除方法為經由F〇wier_ N〇rdheimrTN”)穿隧。多種%狀態類型或鏡位元類 型之反及串之多位準單元(”MLC”)操作亦為可能的。 因此,陣列在每一記憶體層級中每叩2含有兩個位元且 藉由垂直地整合多個記憶體層級而進一步提供縮放。每一 電荷收集記憶體單元可以提供大裕度及高效能之二元方式 操作。由可垂直地整合選擇電晶體且可完全地省略一個或 可舱兩個選擇電晶體之事實來提供進一步效率。選擇電晶 體之垂直整合消除用於每一裝置層級之遮罩之規則線及空 間圖案的任何斷裂。不存在整個記憶體陣列之規則及完全 週期性之線及空間的連續性的斷裂,進而允許具有由微影 形成之狹窄間距之小裝置特徵。與先前技術之二維平坦反 及裝置相反,不需要針對反及串線及空間之結束建立額外 空間。 潦代實施例包括具有形成於石夕晶圓或其他基板中之渠溝 中的選擇閘極之組態,不具有選擇閘極(亦即,無選擇閘 極線且無選擇電晶體)之組態,僅具有選擇閘極汲極之組 態’僅具有選擇閘極源極之組態及具有兩個選擇閘極二者 之組態。選擇閘極線關於源極線、位元線及字線之定向的 129933.doc 200908233 定向在各種組態中可改變。如下文將描述,甚至各種線關 於彼此之非直角定向亦為可能的。在一些實施例中,源極 線可由共同源極區域代替,該源極區域在基板之平面之兩 個維度上延伸且在不能夠選擇個別源極線電壓之代價下提 供較高電流汲取能力。亦可改變記憶體層級關於彼此之定 向。舉例而言,每一記憶體層級可具有在關於上方層級及 下方層級之垂直方向上定向之字線。 圖1A及圖1B說明製作根據本發明之第一實施例的反及 串之方法中的第一步驟。圖1A為俯視圖且圖1B為沿圖Μ 中平行於字線而延伸之線A_A之側視橫戴面圖。圖ib說明 含有鄰近於表面之η型矽層3之p型矽基板丨。應注意,可顛 倒Ρ型及η型區域且可使用除矽之外的諸如砷化鎵之半導體 材料。基板1及層3較佳包含單晶矽。可藉由毯覆式離子植 或在Ρ型基板上悬晶地生長η型層而形成層3。基板1中之 作用區域與層3由絕緣隔離區域7彼此間隔。可使用任何合 適隔離區域7,諸如,LOCOS氧化矽或STI氧化物填充之渠 溝。較佳地,基板i與層3之間的pn接面位於隔離區域7之 底部上方(諸如,在STI渠溝底部上方)以能夠驅使每一作用 裝置之電壓獨立於其他裝置。可藉由圖案化且蝕刻標準 STI渠溝、執行熱或自由基内壁隔離層氧化、沈積渠溝填 充氧化物且由諸如化學機械拋光(CMP)之任一合適平坦化 方法來關於矽層3之頂部平坦化填充氧化物而形成STI隔離 區域7。 圖2A及圖⑼說明製作反及串之方法中之第二步驟。圖 '29933.doc 200908233According to an embodiment of the invention, a region of the semiconductor-active region of the bulk cell above the second memory cell is acted upon by the semiconductor semiconductor active region such that the active region and the second memory cell are at a boundary. The monomer, three-dimensional inverse and string comprise a first memory unit. Having a first memory formed between a semiconductor of a first memory cell of a second memory cell as a boundary between at least the first memory of the second memory cell according to another embodiment of the present invention The semi-second of the unit. The monomer, the three-dimensional inverse and the string comprise at least one first memory unit, wherein the conductor active region comprises a plurality of recrystallized according to another embodiment of the present invention, a single cell, a three-dimensional inverse and a string comprising 129933.doc 200908233 At least one first memory cell above the second memory cell, wherein at least one region of the inverted string is planarized. [Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The following description is intended to describe the exemplary embodiments of the invention, and is not intended to limit the invention. Embodiments of the present invention provide a single, three-dimensional array of memory devices, such as arrays of vertical and vertical strings. In contrast, the strings are oriented vertically such that at least the memory cells are located above the other memory cells. The array allows vertical scaling of the device to provide a higher density of memory cells per unit area or other semiconductor material. Preferably, the non-volatile memory contains two charge collection memory cells (such as "SONOS cells" per 4F2 in each memory level. Therefore, the four memory cell level configuration will have an area of 〇.5F2 per cell. Or each cell has a binary bit of 〇5F2. The array ^ has two or more cell levels, such as two to eight levels. Therefore, the N memory cell level configuration will have 4f2/2n per cell. Area. If necessary, each of the counter-selected transistors may also be individually integrated into each of the opposite and/or below the memory cells. The monolithic three-dimensional memory array is in, for example, a semiconductor wafer. An array of a plurality of memory levels is formed above a single substrate (without an intervening substrate). The term "monomer" means that each layer of the array is deposited directly on the layer of each of the underlying layers of the array. The two dimensional arrays can be formed separately and then packaged to form a non-single memory device. For example, $, as in Leedy "Three Dimensional Structure Memory·· ^ ^ ^ 129933.doc 200908233, No. 5,915 '167, has been constructed by forming a memory level on a separate substrate and overlapping the memory levels on top of each other. Non-monomer stacked memory. The substrate can be thinned or removed from the memory level prior to bonding, but because the memory levels are initially formed over a separate substrate, such memory is not a true monolithic three dimensional memory array. The preferred stylization and erasure method for the inverse string is tunneling via F〇wier_N〇rdheimrTN"). Multiple % state types or mirror bit types are also used to reverse the string multi-level cell ("MLC") operation. Therefore, the array contains two bits per 叩2 in each memory level and further provides scaling by vertically integrating multiple memory levels. Each charge collection memory unit can provide a large margin And high-performance binary operation. Further efficiency is provided by the fact that the selection transistor can be vertically integrated and one or two selectable transistors can be completely omitted. Selecting the vertical integration of the transistor is eliminated for each device. Any break in the regular line and spatial pattern of the mask of the level. There is no rule of the entire memory array and the continuity of the line and space of the complete periodicity, thereby allowing small device features with narrow spacing formed by lithography. Contrary to prior art two-dimensional flat reversal devices, there is no need to create additional space for the end of the cross and the end of the space. The deuterated embodiment includes having The configuration of the selected gates in the trenches of Shixi wafers or other substrates does not have the configuration of selecting gates (ie, no gates are selected and no transistors are selected), and only has gates selected. The configuration of the pole 'only has the configuration of selecting the gate source and the configuration with two selected gates. Selecting the gate line with respect to the orientation of the source line, the bit line and the word line is 129933.doc 200908233 The orientation can vary in various configurations. As will be described below, even non-orthogonal orientations of the various lines with respect to each other are possible. In some embodiments, the source lines can be replaced by a common source region, which is on the substrate. The two dimensions of the plane extend and provide higher current draw capability at the expense of not being able to select individual source line voltages. The orientation of the memory levels relative to each other can also be changed. For example, each memory level can have Word lines oriented in the vertical direction with respect to the upper level and the lower level. Fig. 1A and Fig. 1B illustrate a first step in the method of fabricating the inverse and string according to the first embodiment of the present invention. Fig. 1A is a plan view and Fig. 1B for Figure ib illustrates a side view of a line A_A extending parallel to the word line. Figure ib illustrates a p-type germanium substrate 含有 containing an n-type germanium layer 3 adjacent to the surface. It should be noted that the inverted type and the n type can be reversed. A semiconductor material such as gallium arsenide other than germanium may be used in the region. The substrate 1 and layer 3 preferably comprise a single crystal germanium. The n-type layer may be grown by a blanket ion implantation or suspension on a germanium substrate. The layer 3 is formed. The active regions in the substrate 1 are separated from each other by the insulating isolation regions 7. Any suitable isolation regions 7, such as LOCOS yttrium oxide or STI oxide filled trenches may be used. Preferably, the substrate i The pn junction with layer 3 is above the bottom of isolation region 7 (such as above the bottom of the STI trench) to enable the voltage of each active device to be independent of the other devices. By patterning and etching standard STI channels Ditching, performing heat or radical inner wall isolation layer oxidation, depositing trench fill oxides and forming STI isolation by flattening the fill oxide with respect to the top of the germanium layer 3 by any suitable planarization method such as chemical mechanical polishing (CMP) Area 7. 2A and 9(9) illustrate a second step in the method of making the inverse string. Figure '29933.doc 200908233

2A為俯視圖且圖2B為沿圖2A中平行於字線而延伸之線A_A 之側視橫截面圖。如圖2B中所展示,在隔離區域7之間暴 露之作用區域5上磊晶地生長矽層9。作用區域5充當用於 層9之磊晶生長之晶種。因此,層9中之晶粒邊界丨丨形成於 隔離區域7上方,而層9中之本質上單晶矽區域形成於作用 區域5上方。 層9含有在n型區域13與17之間的p型區域15。可在生長 期間藉纟?文變前驅物氣體中之摻雜齊丨濃度來原位掺雜層 9。此6形形成稍後將界定垂直側壁M〇s選擇電晶體之源 極/通道/汲極區域之npn結構13、15、17。離子植入或摻雜 各種層13至17之其他形式亦係可能的但導致較複雜處理流 程。η型區域13電接觸且實體接觸層3十之n型作用區域5。 圖3Α及圖3Β說明製作反及串之方法中之第三㈣。圖 3Α為俯視圖且圖㈣沿圖从中平行於字線而延伸之線μ 之側視橫截面圖。%圖3Β中所展#,由諸如cMp之任__合 適平坦化方法來平坦化^層9以提供平坦上表面。 圖4Α及圖4Β說明製作反及串之方法中之第四步驟。圖 4Α為俯視圖且圖4Β為沿圖4Α中平行於字線延伸之線以之 側視橫截面圖。遙晶層9被圖案化為條_。如本文中所 使用’術語"條紋”指具有遠大於厚度或寬度之長度且在沿 長度之一方向上延伸之本體。如下文將較詳細地描述,第 一實施例中之條紋19沿位元線方向延伸。 藉由在層9上方形成遮罩(諸如,經光微影圖案化之光阻 層遮罩)且㈣層9之未遮罩之部分㈣成隸Η。如圖Μ 129933.doc 200908233 及圖5时所展示,條紋之圖案化未必與下方之作用區域5 自動對準。較佳但未必,條紋19不與作用區域5對準,以 使得條紋19橫向地越過作用區域5且在隔離區域了上方延伸 (如圖5B中所展示)’及/或以使得作用區域5之部分在條紋 1 9下方暴露(如圖5A中所展示)。 圖5A及圖5B說明製作反及串之方法中之第五步驟。圖 5A為俯視圖且圖5B為沿圖4A中平行於字線而延伸之線a_a 之側視橫截面圖。 如圖5A及圖5B中所展示,諸如氧化矽之絕緣層及/或另 一絕緣層2 1在條紋之間沈積且關於條紋丨9之頂表面來平坦 化。可藉由CMP或諸如回蝕之其他平坦化方法來平坦化絕 緣層2 1。 圖6A至圖6D說明製作反及串之方法中之第六步驟。圖 6 A為俯視圖且圖6B為沿圖6 A中平行於字線而延伸之線八_ a 之側視橫截面圖。圖6C為沿圖6A中平行於位元線而延伸 之線B-B之側視橫截面圖。圖6D為圖6A至圖6C中所展示之 製作中之裝置的三維圖。 條紋19及在條紋19之間的絕緣層21之部分被平坦化為平 竹於字線方向且垂直於條紋19而延伸的條紋2 3。藉由在條 紋19及絕緣層21上方形成遮罩(諸如,經光微影圖案化之 光阻層遮罩)且蝕刻條紋19及層21之未遮罩之部分而形成 條紋23。 條紋23由半導體柱狀物25組成,該等半導體柱狀物25在 字線方向上由絕緣層2 1之部分與鄰近之柱狀物間隔。每一 129933.doc -12- 200908233 柱狀物25在位元線方向上由柱狀物之間的渠溝27而與鄰近 之柱狀物間隔。每一柱狀物25在垂直方向上含有位於n塑 導電性類型半導體區域13、17之間的ρ型導電性之半導體 區域丨5(亦即,關於基板1,區域15在區域13上方且在區域 17下方)。 較佳地,如圖6Α中所展示,在自頂部觀看時,每一柱狀 物25具有正方形或矩形橫截面。因此,每一柱狀物25較佳 地具有四個垂直側面。 圖7Α至圖7C說明製作反及串之方法中之第七步驟。圖 7Α為俯視圖且圖7Β為沿圖7Α中平行於字線而延伸之線Α_Α 之側視橫截面圖。圖7C為沿圖7Α中平行於位元線而延伸 之線Β-Β之側視橫截面圖。 如圖7C中所展示,閘極絕緣層29形成於在柱狀物25之間 的渠溝27中並形成於柱狀物25之頂表面上方。閘極絕緣層 29可包含氧化矽、氮化矽或任一其他合適閘極絕緣層材 料。必要時,層29可含有具有不同組份之兩個或兩個以上 子層。 接著在閘極絕緣層29上方沈積選擇閘極層。可對選擇閘 極層使用任何合適閘電極材料中之一或多者,諸如, ^ 日白 矽、矽化物(矽化鈦等)、鎢、鋁或此等材料之子層之組 合。 接著藉由諸如CMP之任一合適平坦化方法關於閘極絕緣 層29之頂部來平坦化選擇閘極層。如圖7C中所展示,平垣 化留下位於閘極絕緣層29上方之渠溝27之部分中的選擇閘 129933.doc 200908233 極31。 圖8A至圖8C說明製作反及串之方法中之第八步驟。圖 8A為俯視圖且圖叫沿圖8A中平行於字線而延伸之線μ 之側視橫戴面圖。圖此為沿圖8八中平行於位元線而延伸 之線B - B之側視橫截面圖。 如圖8C中所展tf ’選擇間極3 i經部分地回钱以使得選擇 閘極之頂部位於柱狀物25之頂部下方。可使用在閘㈣緣 層29材料上方選擇性地㈣閘極材料之選擇性似彳來回餘 閘極3 1。 圖9A至圖9C說明製作反及争之方法中之第九步驟。圖 9A為俯視圖且圖祀為力圖9A中平行於字線而延伸之線μ 之側視橫截面圖。圖9C為沿圖9八中平行於位元線而延伸 之線B-B之側視橫截面圖。 在凹入之選擇閘極3 i上方及閘極絕緣層2 9上方沈積絕緣 頂盍層。較佳地,頂蓋層包含與閘極絕緣層29之材料相同 的材料,諸如,氧化矽。頂蓋層接著經平坦化(諸如, CMP平坦化)以填充位於選擇閘極31上方之渠溝且形成位 於每一選擇閘極31上方之絕緣頂蓋33。頂蓋33將選擇閘極 與將在上方形成之反及串記憶體單元電隔離。在平坦化頂 盍層期間,亦移除位於半導體柱狀物25上方之閘極絕緣層 29之部分以暴露柱狀物25之頂部區域17。 如圖9A中所展示,選擇閘極3 1包含在字線方向上延伸之 選擇閘極線之部分。因此,選擇閘極線包含位於渠溝 27(其展示於圖6A中)中之條紋狀之線。每一選擇閘極3丨充 129933.doc -14- 200908233 當用於在圖7C中之閘極3!之左側及右側的兩個鄰近選擇電 晶體3 5之閘電極。 因此,第九步驟完成用於反及串之底部選擇電晶體Μ。 每一選擇場效電晶體35包含柱狀物25作用區域(其中,區 域15充當通道且區域13及17充當"源極,,及”汲極,,區域)、充 當電晶體之閘電極之選擇閘極31及位於選擇閘極31與柱狀 物25之間的閘極絕緣層29。因為每一柱狀物乃位於兩個不 同選擇閘極31之間’所以每一柱狀物25之左側及右側可被 視作用於待在柱狀物25上方形成的同一反及串之獨立選擇 電晶體35。 圖10Α至圖10C說明製作反及串之方法中之第十步驟。 圖10A為俯視圖且圖1〇B為沿圖1〇A中平行於字線而延伸之 線A-A之側視橫截面圖。圖1〇c為沿圖1〇八中平行於位元線 而延伸之線B-B之側視橫截面圖。 圖10A至圖10C說明在選擇電晶體35上方形成記憶體單 70之第一步驟。首先,較佳在圊9C中之CMP步驟之後清潔 暴露之柱狀物25之矽表面。舉例而言,可藉由熱氧化或自 由基氧化來處理每一矽柱狀物之頂表面(亦即,以在柱狀 物之頂部形成氧化矽層),繼之以潤濕、平緩氧化物蝕刻 以便移除氧化物層連同在CMp及/或乾式蝕刻期間發生之 損壞,以使矽表面對下一磊晶層之生長作好準備措施。此 損壞可影響後續磊晶層生長之品質。 接著如圖10A至圖1 〇c中所展示,在完成之選擇閘極 電晶體35上生長下—磊晶層109。形成第一反及記憶體單 129933.doc •15· 200908233 元之後續步驟類似於圖2至圖9中所展示之方法步驟,除了 替代閘極絕緣層29而形成電荷儲存區域之外。 如圖10B及圖1 〇c中所展示,在由絕緣層2丨、29及33形 成之隔離區域之間暴露的柱狀物作用區域25上磊晶地生長 矽層109。舉例而言,可使用電漿輔助之磊晶(亦即, PECVD)以在較低溫度下(諸如,在7〇〇<t&更低溫度下, 例如在約650 C下)生長矽層1 〇9。雖然可使用較高溫度生 長處理,但低溫PECVD處理允許使用較低熱預算金屬及介 電貝(亦即,不可承文南於7〇〇。匚之溫度之金屬及介電質)且 提供更大之受控接面深度及通道長度。 柱狀物作用區域25之暴露之盒形上表面充當用於磊晶地 生長層109之晶種。因此,在隔離區域7上方形成層1〇9中 之晶粒邊界ill,而在作用區域25上方形成層1〇9中之本質 上單晶矽區域。層109之晶粒生長自下方的晶種25迅速增 加且形成在磊晶處理期間晶粒彼此相遇之晶粒邊界丨丨j。 因此,晶粒邊界Π 1之位置將為隨機晶粒相遇之處且晶粒 邊界111將通常不如圖10A至圖10C中示意地說明般平滑且 可預期。然而,晶粒邊界位於將在後續步驟期間蝕刻掉之 區域中。因此,不要求高等級之平滑度及可預期性。 層109含有在垂直方向上位型區域113與117之間的p 型區域115。可在生長期間藉由改變前驅物氣體中之摻雜 劑濃度來原位摻雜層1〇9。此情形形成梢後將界定電荷收 集MOS記憶體裝置(亦即,反及記憶體單元)之源極/通道/ 汲極區域之ηρη結構113、115、117。離子植入或摻雜各種 129933.doc -16- 200908233 層11 3至11 7之其他形式亦係可能的但導致較複雜之處理流 %。η型區域113電接觸且實體接觸柱狀物25中之η型作用 區域17。 圖11Α至圖11C說明製作反及串之方法中之第十一步 驟。圖11Α為俯視圖且圖11Β為沿圖UA中平行於字線而延 伸之線Α-Α之側視橫截面圖。圖nc為沿圖ηΑ中平行於位 元線而延伸之線Β-Β之側視橫截面圖。 如圖11Β及11C中所展示,由諸如CMP之任一合適平坦化 方法來平坦化磊晶層丨〇9以提供平坦上表面。 圖12A至圖12C說明製作反及串之方法中之第十二步 驟。圖12A為俯視圖且圖12β為沿圖12Λ中平行於字線而延 伸之線A-A之側視橫截面圖。圖12C為沿圖12A中平行於位 元線而延伸之線B-B之側視橫截面圖。 蟲晶層1 09被圖案化為條紋119。如本文中所使用,術語 條紋”指具有遠大於厚度或寬度之長度且在沿長度之一方 向上延伸之本體。如下文將較詳細地描述,第一實施例中 之條紋119沿位元線方向延伸。 藉由在層109上方形成遮罩(諸如,經光微影圖案化之光 阻層遮罩)且蝕刻層109之未遮罩之部分而形成條紋119。 如圖12A至圖12C中所展示,條紋之圖案化未必與下方柱 狀物作用區域2 5自動對準。較佳但未必’條紋11 9不與作 用區域25對準’以使得條紋119橫向地越過作用區域25且 在由圍繞柱狀物25之層21、29及33形成的隔離區域上方延 伸(如圖12B及12C中所展示),及/或以使得作用區域25之 129933.doc •17- 200908233 部分在條紋119下方暴露(如圖丨2a中所展示)。 圖13A至圖13C說明製作反及串之方法中之第十三步 驟。圖13A為俯視圖且圖ι3Β為沿圖13A中平行於字線而延 伸之線A-A之側視橫截面圖。圖]3C為沿圖丨3 A中平行於位 元線而延伸之線B-B之側視橫戴面圖。 如圖1 3 A至1 3 B中所展示,諸如氧化石夕之絕緣層及另一 絕緣層121鄰近於條紋119之暴露之橫向側面而沈積於條紋 119之間。接著關於條紋丨丨9之頂表面來平坦化層丨21。可 藉由CMP或諸如回蝕之其他平坦化方法來平坦化絕緣層 121 ° 圖14A至圖14C說明製作反及串之方法中之第十四步 驟。圖14A為俯視圖且圖14β為沿圖14A中平行於字線而延 伸之線A-A之側視橫截面圖。圖14C為沿圖14A中平行於位 7L線而延伸之線B-B之側視橫截面圖。 條紋11 9及條紋11 9之間的絕緣層12 1之部分被圖案化為 平行於字線方向且垂直於條紋丨丨9而延伸之條紋丨23。藉由 在條紋119及絕緣層1 21上方形成遮罩(諸如,經光微影圖 案化之光阻層遮罩)且蝕刻條紋119及層121之未遮罩之部 分而形成條紋123。 條紋123由半導體柱狀物1 25組成,半導體柱狀物丨25在 字線方向上由絕緣層121之部分與鄰近柱狀物間隔。每一 才狀物12 5在位元線方向上由柱狀物之間的渠溝m與鄰近 柱狀物間隔。每一柱狀物125含有在垂直方向上位於η型導 電性類型半導體區域113、117之間的ρ型導電性之半導體 129933.doc -18- 200908233 區域115(亦即,區域115關於基板丨在區域113上方且在區 域11 7下方)。 較佳地,如圖14A所展示,在自頂部觀看時,每一柱狀 物125具有正方形或矩形橫截面。因此,每一柱狀物125較 佳具有四個垂直側面。 /2A is a top view and FIG. 2B is a side cross-sectional view along line A_A extending parallel to the word line in FIG. 2A. As shown in Fig. 2B, the ruthenium layer 9 is epitaxially grown on the active region 5 exposed between the isolation regions 7. The active region 5 acts as a seed for the epitaxial growth of the layer 9. Therefore, the grain boundary 丨丨 in the layer 9 is formed over the isolation region 7, and the single crystal germanium region in the layer 9 is formed above the active region 5. Layer 9 contains a p-type region 15 between n-type regions 13 and 17. Can you borrow during the growth period? The doped concentration in the precursor gas of the variator is used to dope the layer in situ. This 6-shape forms npn structures 13, 15, 17 which will later define the source/channel/drain regions of the vertical sidewall M?s selection transistor. Other forms of ion implantation or doping of the various layers 13 to 17 are also possible but result in a more complex process. The n-type region 13 is in electrical contact and the physical contact layer 3 is n-type active region 5. Figure 3 and Figure 3 illustrate the third (four) of the method of making the inverse and string. Figure 3 is a side elevational cross-sectional view of the top view and the line (4) extending along the line from the line parallel to the word line. % shown in Fig. 3, the layer 9 is planarized by a __ suitable planarization method such as cMp to provide a flat upper surface. Figure 4A and Figure 4 illustrate the fourth step in the method of making the inverse and string. Figure 4 is a top plan view and Figure 4A is a side cross-sectional view taken along line extending parallel to the word line in Figure 4A. The crystal layer 9 is patterned into strips _. As used herein, the term "strip" refers to a body having a length that is much greater than the thickness or width and that extends in one direction along the length. As will be described in more detail below, the stripes 19 along the bit in the first embodiment The line direction is extended by forming a mask over the layer 9 (such as a photoresist mask patterned by photolithography) and (4) the unmasked portion of the layer 9 (4) into a shackle. Figure 129933.doc As shown in 200908233 and Fig. 5, the patterning of the stripes is not necessarily automatically aligned with the active area 5 below. Preferably, but not necessarily, the strips 19 are not aligned with the active area 5 such that the strips 19 laterally pass over the active area 5 and The isolation region extends above (as shown in Figure 5B) 'and/or such that portions of the active region 5 are exposed below the stripes 19 (as shown in Figure 5A). Figures 5A and 5B illustrate the fabrication of the reverse and string The fifth step of the method. Fig. 5A is a plan view and Fig. 5B is a side cross-sectional view along line a_a extending parallel to the word line in Fig. 4A. As shown in Figs. 5A and 5B, insulation such as yttrium oxide is shown. Layer and/or another insulating layer 2 1 is deposited between the stripes The top surface of the stripe 9 is planarized. The insulating layer 21 can be planarized by CMP or other planarization methods such as etch back. Figures 6A through 6D illustrate the sixth step in the method of making the inverse and string. 6A is a plan view and FIG. 6B is a side cross-sectional view taken along line _a of FIG. 6A extending parallel to the word line. FIG. 6C is a line BB extending parallel to the bit line in FIG. 6A. Figure 6D is a three-dimensional view of the device shown in Figures 6A through 6C. The strips 19 and portions of the insulating layer 21 between the stripes 19 are flattened to the direction of the word line. And a stripe 23 extending perpendicular to the stripe 19. By forming a mask over the stripe 19 and the insulating layer 21 (such as a photoresist mask patterned by photolithography) and etching the strip 19 and the layer 21 The strips 23 are formed by portions of the mask. The strips 23 are composed of semiconductor pillars 25 spaced apart from adjacent pillars by portions of the insulating layer 21 in the word line direction. Each 129,933. Doc -12- 200908233 The pillars 25 are in the direction of the bit line by the trenches 27 between the pillars and the adjacent pillars Each of the pillars 25 has a p-type conductivity semiconductor region 丨5 between the n-type conductivity type semiconductor regions 13, 17 in the vertical direction (that is, with respect to the substrate 1, the region 15 is in the region) 13 is above and below the region 17.) Preferably, as shown in Figure 6A, each of the pillars 25 has a square or rectangular cross section when viewed from the top. Thus, each of the pillars 25 is preferably There are four vertical sides. Fig. 7A to Fig. 7C illustrate the seventh step in the method of making the reverse and the string. Fig. 7A is a top view and Fig. 7A is a side cross section of the line Α_Α extending along the line parallel to the word line in Fig. Figure. Figure 7C is a side cross-sectional view of the line Β-Β extending parallel to the bit line in Figure 7A. As shown in Fig. 7C, a gate insulating layer 29 is formed in the trench 27 between the pillars 25 and formed over the top surface of the pillar 25. The gate insulating layer 29 may comprise hafnium oxide, tantalum nitride or any other suitable gate insulating material. Layer 29 may contain two or more sub-layers having different compositions, if desired. A select gate layer is then deposited over the gate insulating layer 29. One or more of any suitable gate electrode materials may be used for the select gate layer, such as, for example, ruthenium, telluride (titanium telluride, etc.), tungsten, aluminum, or a combination of sublayers of such materials. The select gate layer is then planarized with respect to the top of the gate insulating layer 29 by any suitable planarization method such as CMP. As shown in Figure 7C, the planarization leaves a selection gate 129933.doc 200908233 pole 31 in the portion of the trench 27 above the gate insulating layer 29. 8A to 8C illustrate an eighth step in the method of making the inverse string. Figure 8A is a top plan view and is a side cross-sectional view of the line μ extending parallel to the word line in Figure 8A. This is a side cross-sectional view of line B - B extending parallel to the bit line in Figure 8-8. The tf' selection interpole 3i is partially returned as shown in Fig. 8C such that the top of the selected gate is located below the top of the pillar 25. A selective (iv) gate material may be selectively used above the material of the gate (four) edge layer 29 to circumscribe the remaining gate 3 1 . 9A to 9C illustrate the ninth step in the method of making the opposite. Figure 9A is a top plan view and is a side cross-sectional view of the line μ extending parallel to the word line in force diagram 9A. Figure 9C is a side cross-sectional view taken along line B-B of Figure 9 parallel to the bit line. An insulating top layer is deposited over the recessed select gate 3 i and over the gate insulating layer 29. Preferably, the cap layer comprises the same material as the gate insulating layer 29, such as hafnium oxide. The cap layer is then planarized (e.g., CMP planarized) to fill the trench above the select gate 31 and form an insulating cap 33 over each of the select gates 31. The top cover 33 electrically isolates the select gate from the reverse memory memory cell that will be formed above. During the planarization of the top layer, portions of the gate insulating layer 29 over the semiconductor pillars 25 are also removed to expose the top regions 17 of the pillars 25. As shown in Figure 9A, select gate 3 1 includes a portion of the select gate line that extends in the direction of the word line. Thus, the select gate line includes a striplined line located in the trench 27 (shown in Figure 6A). Each of the selection gates 3 is charged. 129933.doc -14- 200908233 When used for the gate electrodes of the two adjacent selection transistors 35 on the left and right sides of the gate 3! in Fig. 7C. Therefore, the ninth step is completed to select the transistor Μ for the bottom of the string. Each of the selected field effect transistors 35 includes a region of action of the pillars 25 (wherein region 15 acts as a channel and regions 13 and 17 act as "sources, and "dippoles, regions"), acting as gate electrodes for the transistors The gate 31 and the gate insulating layer 29 between the selection gate 31 and the pillar 25 are selected. Since each pillar is located between two different selection gates 31, each pillar 25 is The left and right sides can be viewed as acting on the same counter-and-string independent selection transistor 35 to be formed over the pillars 25. Figure 10A to Figure 10C illustrate the tenth step in the method of making the inverse and string. Figure 10A is a top view 1B is a side cross-sectional view along line AA extending parallel to the word line in FIG. 1A. FIG. 1〇c is a line BB extending parallel to the bit line in FIG. A side cross-sectional view. Figures 10A through 10C illustrate a first step of forming a memory cell 70 over a selective transistor 35. First, it is preferred to clean the exposed surface of the exposed pillar 25 after the CMP step in 圊9C. For example, the top surface of each column can be treated by thermal oxidation or free radical oxidation. (ie, to form a hafnium oxide layer on top of the pillars), followed by wetting, gentle oxide etching to remove the oxide layer along with damage that occurs during CMp and/or dry etching to surface Prepare for the growth of the next epitaxial layer. This damage can affect the quality of the subsequent epitaxial layer growth. Next, as shown in FIG. 10A to FIG. 1c, the growth is performed on the completed gate crystal 35. - epitaxial layer 109. Forming the first inverse memory block 129933.doc • 15· 200908233 The subsequent steps are similar to the method steps shown in Figures 2 to 9, except that instead of the gate insulating layer 29, charge storage is formed. Outside the region. As shown in Fig. 10B and Fig. 1c, the germanium layer 109 is epitaxially grown on the pillar action region 25 exposed between the isolation regions formed by the insulating layers 2, 29 and 33. In contrast, plasma assisted epitaxy (i.e., PECVD) can be used to grow the germanium layer 1 at lower temperatures (such as at 7 Torr < t & lower temperatures, e.g., at about 650 C). 〇 9. Although higher temperature growth treatment can be used, low temperature PECVD treatment It is permissible to use lower thermal budget metals and dielectric shells (ie, metals and dielectrics that are not compliant with the temperature of 〇〇.) and provide greater controlled joint depth and channel length. The exposed box-shaped upper surface of the object application region 25 serves as a seed crystal for the epitaxial growth layer 109. Therefore, the grain boundary ill in the layer 1〇9 is formed over the isolation region 7, and is formed over the active region 25. The single crystal germanium region in layer 1〇9. The grain growth of layer 109 rapidly increases from the underlying seed crystal 25 and forms a grain boundary 丨丨j where the grains meet each other during the epitaxial treatment. The position of the boundary Π 1 will be where the random grains meet and the grain boundaries 111 will generally not be as smooth and predictable as schematically illustrated in Figures 10A-10C. However, the grain boundaries are located in regions that will be etched away during subsequent steps. Therefore, high levels of smoothness and predictability are not required. Layer 109 contains a p-type region 115 between the bit-shaped regions 113 and 117 in the vertical direction. Layer 1〇9 may be doped in situ by varying the dopant concentration in the precursor gas during growth. In this case, the ηρη structures 113, 115, 117 of the source/channel/drain regions of the charge-collecting MOS memory device (i.e., opposite to the memory cells) will be defined. Ion implantation or doping of various types 129933.doc -16- 200908233 Other forms of layers 11 3 to 11 7 are also possible but result in a more complicated process stream %. The n-type region 113 is in electrical contact and physically contacts the n-type active region 17 in the pillar 25. Fig. 11A to Fig. 11C illustrate the eleventh step in the method of making the inverse and the string. Figure 11 is a plan view and Figure 11 is a side cross-sectional view of the line Α-Α extending parallel to the word line in Figure UA. Figure nc is a side cross-sectional view of the line Β-Β extending parallel to the bit line in Figure η. As shown in Figures 11A and 11C, the epitaxial layer 9 is planarized by any suitable planarization method, such as CMP, to provide a flat upper surface. Figures 12A through 12C illustrate the twelfth step in the method of making the inverse and string. Fig. 12A is a plan view and Fig. 12 is a side cross-sectional view taken along line A-A extending parallel to the word line in Fig. 12A. Figure 12C is a side cross-sectional view along line B-B extending parallel to the bit line in Figure 12A. The worm layer 109 is patterned into stripes 119. As used herein, the term "strip" refers to a body having a length that is much greater than the thickness or width and that extends in one direction along the length. As will be described in more detail below, the stripes 119 in the first embodiment are oriented along the bit line The stripe 119 is formed by forming a mask over the layer 109 (such as a photolithographic patterned photoresist layer) and etching the unmasked portion of the layer 109. As shown in Figures 12A-12C It is shown that the patterning of the stripes is not necessarily automatically aligned with the lower pillar action region 25. Preferably, but not necessarily the 'stripes 11 9 are not aligned with the active region 25' such that the stripes 119 laterally pass over the active region 25 and are surrounded by The isolation regions formed by layers 21, 29, and 33 of pillars 25 extend above (as shown in Figures 12B and 12C), and/or such that portions of 129933.doc • 17-200908233 of active region 25 are exposed below stripes 119. (shown in Figure 2a). Figures 13A through 13C illustrate a thirteenth step in the method of making the inverse and string. Figure 13A is a top view and Figure 3A is a line extending along parallel to the word line in Figure 13A. Side cross-sectional view. Figure] 3C A side view of the line BB extending parallel to the bit line in Fig. 3 A. As shown in Fig. 1 3 A to 1 3 B, an insulating layer such as an oxidized oxide layer and another insulating layer 121 Adjacent to the exposed lateral sides of the strips 119, deposited between the stripes 119. The layer stack 21 is then planarized with respect to the top surface of the strips 9. The insulating can be planarized by CMP or other planarization methods such as etch back. Layer 121 ° Figures 14A through 14C illustrate a fourteenth step in the method of making the inverse and string. Figure 14A is a top view and Figure 14 is a side cross-sectional view along line AA extending parallel to the word line in Figure 14A. Figure 14C is a side cross-sectional view taken along line BB extending parallel to the line 7L in Figure 14A. The portion of the insulating layer 12 1 between the stripes 11 9 and the stripes 11 9 is patterned parallel to the word line direction and A stripe 丨 23 extending perpendicular to the stripe 丨丨 9. A mask (such as a photolithographic patterned photoresist layer) is formed over the stripe 119 and the insulating layer 121 and the strip 119 and the layer 121 are etched. The unmasked portion forms a stripe 123. The stripe 123 is composed of a semiconductor pillar 1 25, half The body pillars 25 are spaced apart from the adjacent pillars by a portion of the insulating layer 121 in the direction of the word line. Each of the particles 12 5 is in the direction of the bit line by the trench m between the pillars and the adjacent pillar Each column 125 includes a p-type conductivity semiconductor 129933.doc -18-200908233 region 115 (ie, region 115) located between the n-type conductivity type semiconductor regions 113, 117 in the vertical direction. The substrate is above the region 113 and below the region 117). Preferably, as shown in Figure 14A, each of the pillars 125 has a square or rectangular cross section when viewed from the top. Therefore, each of the pillars 125 preferably has four vertical sides. /

'U 圖MA至圖15C說明製作反及串之方法中之第十五步 驟。圖15A為俯視圖且圖15B為沿圖15八中平行於字線而延 伸之線Α·Α之側視橫截面圖。圖15(:為沿圖15八中平行於位 元線而延伸之線B_B之側視橫截面圖。 如圖15A至圖15C中所展示,在條紋123之間形成電荷儲 存區域。電荷儲存區域可包含介電質隔離之浮閘或介電質 電荷儲存材料。舉例而言’為形成介電質隔離之浮閉,在 諸如氧切穿隨及阻隔層的兩個絕緣層之間沈積多晶石夕 :。舉,而言’可使用側壁間隔物形成之浮間。可藉由將 二=早元(MLC)程式化用於此等裝置而補償由間隔物浮 閘佔據之額外空間。 /形成介電質電荷儲存區域,在穿隨與阻隔介電(亦 :二緣)層之間沈積電荷儲存介電層。舉例而言 電層可包含氣切層’而穿隨及阻隔層可包含氧化 夕層以形成"S〇NOS”型裝置之”〇Ν〇 地’穿隨介電層比阻隔介電層薄。何儲耗域。較佳 例脚㈣氮…氧切之外的材料。舉 本文;之型裝置。如全文以引用的方式併入 之吴國專利第M5M99號中所揭示,諸如具有高於 129933.doc •19- 200908233 3.9之介電常數之材料的高介電常數絕緣材料可替代氧化 石夕用於穿隨及/或阻隔介電層。此等材料包括金屬氧化物 層’諸如氧化紹、氧化组、氧化紀、氧化約、氧化錢或氧 化錯。電何儲存介電質可或者包含氮氧化石夕層,且中在氮 化f層中氮之部分以氧取代。或者,諸如氧化组、氧化錯 或氧化铪之金屬氧化物層可用作電荷儲存介電質。 在以下論述中,將描述〇Ν〇電荷儲存區域1而,應理 解° #代地使用浮閘電荷儲存區域或其他介電質電荷儲 存材料組合。 如圖及圖15C中所展示,穿隨介電層128、電荷儲存 介電層129及阻隔介電層m以此次序形成於在柱狀物⑵ 之間(亦V _近於柱狀物之暴露之側面)的渠溝U7中及柱 狀物125之頂矣而μ 士 ^ „ _ 面上方。穿隧及阻隔介電質可包含氧化 矽,而電荷儲存介電質可包含氮化矽。 著在"電層128至130上方沈積控制閘極層。可對控制 閘極層使用任何合適閘電極材料中之一或多者,諸如,多 晶m物㈣化鈦等)n或此等材料之子層之組 合0 接著藉由諸如CMP之任一合適平坦化方法關於穿隧層 1 28之頂。卩來平坦化控制閘極層。平坦化留下位於介電層 128至130上方之渠溝127之部分中的控制閘極i3i。 控制閘極13 1經部分地回蝕以使得閘極之頂部位於柱狀 物125之頂部下方。可使用在ΟΝΟ介電層128至130上方選 擇生地钮刻閘極材料之選擇性钱刻來回姓閘極1 3丨。 、 129933.doc -20· 200908233 接著在凹入之控制間梅丨^ 7 L + _ 市』閘極131上方及ΟΝΟ介電質上方沈積 絕緣頂盖層。較佳地,頂墓思 貝盍層包含與阻隔介電質130之材 料相同的材料,諸如,氧化石夕。頂蓋層接著經平坦化(諸 如’ CMP平坦化)以填充位於控制閘極ΐ3ι上方之渠溝且形 成位於每一選擇閘極丨3 ] t + π ^ & ^ 上方之絕緣頂蓋133。頂蓋133將 控制閘極與將在上方形成之額外反及串記憶體單元電隔 離。在平坦化頂蓋層期間,亦移除位於半導體柱狀物125 上方之ΟΝΟ介電層128至130之部分以暴露柱狀物125之頂 部區域11 7。 如圖15Α中所展示,控制閘極131包含在字線方向上在頂 蓋133下方延伸之字線之部分。因此,字問極線包含位於 渠溝127中之條紋狀的線。每一控制閘極131充當用於在圖 1 5 C中之閘極1 3 1之左側及右側的兩個鄰近記憶體單元13 5 之閘電極。 此情形使用於反及串之底部記憶體單元丨35完成。每一 記憶體單元135均包含柱狀物125作用區域(其中,區域115 充當通道且區域11 3及11 7充當”源極”及”汲極”區域)、充當 電晶體之閘電極的控制閘極/字線13丨及諸如位於控制閘極 13 1與柱狀物125之間的ΟΝΟ介電層128至130之電荷儲存區 域。因為每一柱狀物125位於兩個不同控制閘極丨3 i之間, 所以每一柱狀物125之左側及右側可被視作記憶體單元。 圖1 6說明沿完成之垂直反及串之位元線方向之側視橫截 面圖。與第一記憶體單元135完全相同之記憶體單元235的 苐二層級係藉由重複上文關於圖10至圖15來描述之處理步 129933.doc •21 · 200908233 ρ而在第一記憶體單元135上形成以形成多層級垂直反及 =。必要時,可藉由重複上文描述之處理步驟而在記憶體 早7L 135的第—層級上方形成記憶體單元之額外層級(諸 如:記憶體單元之兩個或六個層級)。接著在記憶體單元 之取上層級上方形成複數個位元線137。位元線137接觸記 憶體單70之上部層級之柱狀物作用區域。舉例而言,展示 於圖16中之單個位元線137垂直於記憶體單元之字線131、 23 1延伸而。然而,如下文將較詳細地描述,位元線137可 在其他方向上延伸。 此外’必要時,使用與下部選擇閘極電晶體35之方法相 同的方法’上部選擇電晶體可在位元線13 7下方之記憶體 單兀之上部層級上方。除下部選擇閘極電晶體35之外或替 代下部選擇閘極電晶體35,形成上部選擇電晶體。 因此’圖16說明垂直地在基板上方形成之垂直反及串 1 00。一記憶體單元235位於上部裝置層級中且另一記憶體 單元135位於下部裝置層級中,下部裝置層級位於基板上 方及第一裝置層級23 5下方。因為作用區域125及225在不 同蟲晶生長步驟中生長,所以在半導體作用區域125與225 之間存在經界定之邊界。邊界可包含關於在邊界處之柱狀 物125的柱狀物225之位錯、晶粒邊界或橫向偏置。相反, 描述於IEDM Pr〇c(2001)第33至36頁T. Endoh等人之標題為 "Novel Ultra High Density Memory With A Stacked-Surrounding Gate Transistor (S-SGT) Structured Cell" t 先前技術之垂直反及串係藉由基板之同一區域之複數個蝕 129933.doc -22· 200908233 刻步驟而形成。 此外,在自頂部觀看時,由上文描 心万法製作的垂首 反及串記憶體單元之柱形作用區域具 ^工万形或矩形橫截 面。此情形提供用於每一單元中之每— ^ 于綠之獨立面且每 k組態允許兩個位元。藉由將作用層圖案化為條紋且接 者將條紋圖案化為柱狀物而形成柱形作用區域。相反在 自頂部觀看時,E_h等人之作用區域具有圓形㈣面。 作用區域由用於每單元組態之一位元之圍繞閘極圍繞。 選擇電晶體35之半導體作用區域25包含柱狀物。下部記 憶體單元之半導體作用區域125包含不與選擇電晶體Μ: 半導體作用區域25對準之柱狀物。在圖16中所展示之非限 制性實施例中,作用區域125在至少—方向上橫向地越過 選擇電晶體35之半導體作用區域25而延伸。類似地,柱狀 物作用區域225在至少-方向上橫向地越過單元135之柱狀 物作用區域125而延伸,以使得柱狀物125不與柱狀物225 對準。 記憶體單元135之半導體作用區域為包含位於第二導電 性類型半導體區域丨13、i 17之間的第一導電性類型半導體 區域115之柱狀物125。記憶體單元235之半導體作用區域 為包含位於第二導電性類型半導體區域213、217之間的第 —導電性類型半導體區域215之柱狀物225。柱狀物225中 之第二導電性類型半導體區域213接觸柱狀物125中之第二 導電性類型半導體區域11 7。 如圖16中所展示,在下部記憶體單元135中,第一電荷 129933.doc -23- 200908233 儲存η電質129A鄰近於柱狀物i 25中之第一導電性類型半 導體區域⑴的一側面而定位,且第一控制閘極131八鄰近 於第-電荷儲存介電質129入而定位。第二電荷儲存介電質 鄰近於柱狀物125中之第一導電性類型半導體區域η? 的相對側面而定位,且第二控制閘極13 鄰近於第二電荷 儲存介電質129B而定位。在上部記憶體單元235中存在類 似組態’ #中兩個電荷儲存介電質及兩個控制閘極位於柱 狀物225中之區域2〗5之相對兩側。 圖17A及圖17B說明根據本發明之替代第二及第三實施 ’J的反及串之選擇電晶體之部分的側視橫截面圖。 圖說明沿第二實施例之字線方向之側視橫截面圖, 其中,省略下部選擇電晶體35。在此狀況下,在基板^ 方形成底部記憶體單元層級。 圖虎月第二實施例之位元線方向之側視橫截面 圖’其中選擇電晶體35之選擇閘極31形成於基板i中的渠 溝中。在此實施例巾,p型基板i含有n_p_n結構13、Μ、 17,其係藉由將n㈣子離子植入至基板^以在經植入之 η型區域13與17之間留下基板15之P型區域而形成。或者, 可藉由蠢晶層生長及 d长及在生長期間之原位換雜而形成區域ΐ3 至17。接著’藉由經由npn結構對基板型部分光微影 及钱刻而形成渠丨冓。以諸如氧切之絕緣材料Μ填充渠 溝。接著藉由光微影及㈣來圖案化絕緣材料Μ以在材料 2〇中形成額外渠溝。以選擇閘極材料填充此等額外渠溝, 其接著經平坦化以形成選擇閘極31。若省略選擇電晶體 129933.doc -24· 200908233 35 ’則可替代地在渠溝中形成最下部記憶體單元us。The 'U diagram MA to Fig. 15C illustrates the fifteenth step in the method of making the inverse and the string. Fig. 15A is a plan view and Fig. 15B is a side cross-sectional view of the line Α·Α extending parallel to the word line in Fig. 15. Figure 15 (is a side cross-sectional view of the line B_B extending parallel to the bit line in Figure 15 VIII. As shown in Figures 15A to 15C, a charge storage region is formed between the stripes 123. Charge storage region A dielectrically isolated floating gate or dielectric charge storage material may be included. For example, to form a dielectric isolation floating, a polycrystalline layer is deposited between two insulating layers, such as an oxygen cut-through barrier layer. Shi Xi: In other words, 'the floating space formed by the sidewall spacers can be used. The extra space occupied by the spacer floating gate can be compensated by staging the two = early element (MLC) for these devices. a dielectric charge storage region that deposits a charge storage dielectric layer between the via and the barrier dielectric (also: two-edge) layer. For example, the electrical layer may comprise a gas-cut layer and the barrier layer may comprise oxidation The layer of the layer formed by the "S〇NOS" type device is thinner than the barrier dielectric layer. What is the storage area? The preferred example is the material other than the nitrogen (oxygen) oxygen cut. The device of this type is disclosed in the Wu Guo patent No. M5M99, which is incorporated by reference in its entirety. A high dielectric constant insulating material such as a material having a dielectric constant higher than 129933.doc •19-200908233 3.9 can be used in place of and in addition to the oxide layer. These materials include a metal oxide layer. 'such as oxidized, oxidized, oxidized, oxidized, oxidized or oxidized. The electrical storage medium may or may comprise a layer of nitrogen oxynitride, and the portion of nitrogen in the nitrided f layer is replaced by oxygen. Alternatively, a metal oxide layer such as an oxidation group, an oxidation oxidization or a ruthenium oxide may be used as the charge storage dielectric. In the following discussion, the 〇Ν〇 charge storage region 1 will be described, and it should be understood that a charge storage region or other combination of dielectric charge storage materials. As shown in FIG. 15C, the pass-through dielectric layer 128, the charge storage dielectric layer 129, and the barrier dielectric layer m are formed in the pillars in this order. (2) Between the trenches U7 (also V _ near the exposed side of the pillars) and the top of the pillars 125 and above the surface of the pillars _ _ _. The tunneling and blocking dielectric may contain yttrium oxide And the charge storage dielectric may comprise tantalum nitride. " a control gate layer is deposited over the electrical layers 128 to 130. One or more of any suitable gate electrode material may be used for the control gate layer, such as polycrystalline m (tetra) titanium, etc.) n or such material The combination of layers 0 then planarizes the control gate layer by any suitable planarization method, such as CMP, with respect to the top of the tunneling layer 128. The planarization leaves trenches 127 above the dielectric layers 128-130. Control gate i3i in the portion. Control gate 13 1 is partially etched back such that the top of the gate is below the top of pillar 125. The ground button can be selected above the germanium dielectric layers 128 to 130. The selective material of the polar material is engraved with a gate of 1 3 来回. 129933.doc -20· 200908233 Next, an insulating cap layer is deposited over the gate of the recessed control, the gate of the gate, and the top of the dielectric. Preferably, the tombstone layer comprises the same material as the material of the barrier dielectric 130, such as oxidized stone. The cap layer is then planarized (e.g., CMP planarization) to fill the trench above the control gate ΐ3ι and form an insulating cap 133 over each of the select gates ]3] t + π ^ & ^. The top cover 133 electrically isolates the control gate from the additional reverse string memory cells that will be formed above. During planarization of the cap layer, portions of the germanium dielectric layers 128-130 above the semiconductor pillars 125 are also removed to expose the top regions 11 7 of the pillars 125. As shown in Fig. 15A, the control gate 131 includes a portion of the word line extending below the cap 133 in the direction of the word line. Therefore, the word line includes a stripe line located in the groove 127. Each of the control gates 131 serves as a gate electrode for two adjacent memory cells 13 5 on the left and right sides of the gate 1 3 1 in FIG. This situation is used to complete the memory unit 丨35 at the bottom of the string. Each memory cell 135 includes a region of action of pillars 125 (where region 115 acts as a channel and regions 11 3 and 11 7 act as "source" and "dip" regions), a control gate that acts as a gate electrode for the transistor The pole/word line 13A and a charge storage region such as the germanium dielectric layers 128-130 between the control gate 13 1 and the pillars 125. Since each pillar 125 is located between two different control gates i3 i , the left and right sides of each pillar 125 can be considered as a memory unit. Figure 16 illustrates a side cross-sectional view of the direction of the bit line along the finished vertical and the string. The second level of the memory unit 235 which is identical to the first memory unit 135 is in the first memory unit by repeating the processing steps 129933.doc • 21 · 200908233 ρ described above with respect to FIGS. 10 to 15 . Formed on 135 to form a multi-level vertical inverse and =. If necessary, an additional level of memory cells (e.g., two or six levels of memory cells) can be formed over the first level of memory 7L 135 by repeating the processing steps described above. A plurality of bit lines 137 are then formed over the upper level of the memory cell. The bit line 137 contacts the pillar action area of the upper level of the memory unit 70. For example, the single bit line 137 shown in Figure 16 extends perpendicular to the word lines 131, 23 1 of the memory cell. However, as will be described in greater detail below, bit line 137 can extend in other directions. Further, if necessary, the same method as that of the lower selection gate transistor 35 is used. The upper selection transistor can be above the upper level of the memory cell below the bit line 137. An upper selection transistor is formed in addition to or instead of the lower selection gate transistor 35. Thus, Fig. 16 illustrates a vertical inverse of the string 100 formed vertically above the substrate. One memory unit 235 is located in the upper device level and the other memory unit 135 is located in the lower device level, the lower device level being located above the substrate and below the first device level 23 5 . Since the active regions 125 and 225 are grown in different insect growth steps, there is a defined boundary between the semiconductor active regions 125 and 225. The boundary may include dislocations, grain boundaries or lateral offsets with respect to the pillars 225 of the pillars 125 at the boundaries. In contrast, it is described in IEDM Pr〇c (2001) on pages 33 to 36. The title of T. Endoh et al. is "Novel Ultra High Density Memory With A Stacked-Surrounding Gate Transistor (S-SGT) Structured Cell" The vertical and reverse series are formed by a plurality of etching steps 129933.doc-22.200908233 in the same region of the substrate. Further, when viewed from the top, the cylindrical action area of the vertical memory and the serial memory unit fabricated by the above method has a versatile or rectangular cross section. This situation is provided for each of the cells - each of the green faces and two bits per k configuration. The cylindrical action region is formed by patterning the active layer into stripes and patterning the stripes into pillars. On the contrary, when viewed from the top, the active area of E_h et al. has a circular (four) plane. The active area is surrounded by a gate around one of the bits for each unit configuration. The semiconductor active region 25 of the selected transistor 35 comprises a pillar. The semiconductor active region 125 of the lower memory cell includes pillars that are not aligned with the selected transistor Μ: semiconductor active region 25. In the non-limiting embodiment shown in Figure 16, the active region 125 extends laterally across the semiconductor active region 25 of the selective transistor 35 in at least the direction. Similarly, the column active region 225 extends laterally across the column active region 125 of the unit 135 in at least a direction such that the pillars 125 are not aligned with the posts 225. The semiconductor active region of the memory cell 135 is a pillar 125 comprising a first conductivity type semiconductor region 115 between the second conductivity type semiconductor regions 丨13, i17. The semiconductor active region of the memory cell 235 is a pillar 225 comprising a first conductivity type semiconductor region 215 between the second conductivity type semiconductor regions 213, 217. The second conductivity type semiconductor region 213 in the pillar 225 contacts the second conductivity type semiconductor region 11 7 in the pillar 125. As shown in FIG. 16, in the lower memory cell 135, the first charge 129933.doc -23- 200908233 stores the n-type 129A adjacent to a side of the first conductivity type semiconductor region (1) in the pillar i 25 And positioning, and the first control gate 131 is positioned adjacent to the first charge storage dielectric 129. The second charge storage dielectric is positioned adjacent the opposite side of the first conductivity type semiconductor region η? in the pillar 125, and the second control gate 13 is positioned adjacent to the second charge storage dielectric 129B. There are two similar charge storage dielectrics in the upper memory unit 235 and two opposite sides of the region 2 of the control gates located in the pillars 225. Figures 17A and 17B illustrate side cross-sectional views of portions of a counter transistor selected in accordance with the present invention in place of the second and third embodiments, respectively. The figure illustrates a side cross-sectional view along the word line direction of the second embodiment, in which the lower selection transistor 35 is omitted. In this case, the bottom memory cell level is formed on the substrate. A side cross-sectional view of the bit line direction of the second embodiment of Fig. 2, wherein the selection gate 31 of the selection transistor 35 is formed in a trench in the substrate i. In this embodiment, the p-type substrate i contains an n_p_n structure 13, Μ, 17, which is formed by implanting n (tetra) sub ions into the substrate to leave a substrate 15 between the implanted n-type regions 13 and 17. Formed as a P-type region. Alternatively, the regions ΐ3 to 17 may be formed by the growth of the stray layer and the length of the d and the in-situ replacement during the growth. Then, the channel is formed by photolithography of the substrate type portion via the npn structure. The trench is filled with an insulating material such as oxygen cut. The insulating material is then patterned by photolithography and (iv) to form additional trenches in the material 2〇. These additional trenches are filled with a select gate material which is then planarized to form the select gate 31. If the selection of the transistor 129933.doc -24· 200908233 35 ' is omitted, the lowermost memory unit us can alternatively be formed in the trench.

在替代第四實施例中,選擇電晶體及/或記憶體單元之 柱狀物作用區域25、125等係以多晶半導體材料9、1〇9等 y成 口此,在下覆之柱狀物上形成諸如珍層之非晶、微 晶或多晶半導體層’而非在下覆之柱狀物上形成磊晶半導 體層9、1G9等。此非晶、微晶或多晶半導體層接著經再結 晶以形成諸如大晶粒多晶矽層之大晶粒多晶半導體材料 層。可由諸如在爐中熱退火、雷射退火及/或閃光燈退火 ^任一合適退火方法進行再結晶。如上文所描述,此再結 晶之層接著被圖案化為柱狀物作用區域25、125等。使用 低溫沈積且再結晶之多晶石夕允許在不可承受高溫的金屬接 線或電極上方形成作用區域。 ,因此,可在下覆記憶體單元之半導體作用區域上磊晶地 形成上部記憶體單元之半導體作用區域,或者可在再結晶 之多晶石夕中形成一或多個第一記憶體單元之半導體作二 域。蠢晶地形成記憶體單元之最下部層級之作用區域,或 藉由在選擇電晶體之半導體作用區域上進行再結晶而形成 記憶體單元之最下部層級之仙區域。蠢晶地形成選擇電 晶體之作用區域,或藉由在基板上方再結晶而形成選擇電 晶體之作用區域。 記憶體陣列在橫向維度上之女 又上 < 大小係由字線、選擇閘 線、源極線及位元線之RC時間當怒卩p座丨 叮1 J吊敌限制。反及串被垂 地定向,且通道區域(展示p區七 、不域115,NMOS記憶體實 例)未接地。因此,必須注音总 貝冼思官理此浮動本體電位。在 129933.doc 200908233 對(未選擇之)一側之反轉層可經建立且使用以有助於在諸 如讀取、程式化及/或擦除的各種操作期間錨定浮動p型本 體之電位。 亦可使用具有陡接面之高度摻雜之]^及p區域以使得浮 動本體可經由較薄空乏區域而較堅固地彼此耦接。表示浮 動本體電位之另一方式為經由其接面漏電流。 此外,程式抑制之升壓(b〇〇St)應更加有效。然而,可與 加以升壓相反而驅動矽柱狀物作用區域,進而允許較陡接 面。 每一記憶體單元及選擇電晶體層級完全與自身自動對 準。換言之,在裝置層級之間不要求獨立對準步驟。此 外,每一裝置層級僅要求兩個微影步驟…形成第一條紋 之第一步驟及形成條紋123之第二步驟。每一裝置層級中 之剩餘特徵係藉由層沈積及平坦化而形成。因此,反及串 100之至少一區域或層及較佳地複數個區域或層係藉由 CMP及/或其他方法來平坦化。舉例而言對於單元而 5,當半導體作用區域丨25為磊晶層1〇9之形式時,其如圖 11B及11C中所展不而被平坦化,使反及串1〇〇與至少一其 他鄰近m絕緣之絕緣層121如圖13B所展$而被平^ 化,且電荷儲存介電質129'控制閘極131及頂蓋層133如 圖15B及圖15C所展示而被平坦化。因此,在每一單元 135、235等中,至少五個層(未計算穿隧及阻隔介電質)係 藉由CMP來平坦化。 必要時,在所有微影步驟中,矽晶圓基板丨可旋轉45。以 129933.doc -26· 200908233 。在此狀況 進而提供較 使得晶圓凹口不在12點位置,而在1:3〇位置 下’接著垂直側壁通道將在[1〇〇]結晶平面上, 同通道遷移率。 每一裝置層級並未與其下方之層級自動對準。然而, 為層級相狀區域被故意料為反及鏈之料用源極 極區域,所以此情形幾乎無後果。基於與各種層級相關之 退火之熱預算,每一層級之垂直維度及在每一層、級中的⑼ 接面之位置可與其他層級不同。可使用諸如pecvd生長之 低溫(諸如,低於700之溫度)半導體磊晶生長及電漿氧^來 最小化層級至層級之變化。此情形亦允許在形成所有記憶 體及選擇閘極層級之後之單個高溫退火。然而,亦可使用 獨立逐層級退火或者用於記憶體/選擇層級之多個退火步 驟。必要時,亦可進行在氫氣環境中之退火。 如上文所述,在自側面觀看時,柱狀物較佳為矩形或正 方形。然而’當渠溝側壁並不垂直時,諸如選擇電晶體柱 狀物作用區域部分5之作用層將為具有大於頂部之矩形或 正方形底部之截頭角錐之形式。因此,特定量之未對準將 不導致-㈣柱狀物之頂部與其上方之層之梦柱狀物之底 部的接觸面積之變化。 圖1 8A說明上文描述之反及率之陣列的電路示意圖。圖 ⑽說明圖18A之電路示意圖之部分,但出於清晰起見移 除源極線、選擇線及字線。圖丨8 A及圖丨8B說明位於基板 上或者基板中之渠溝中的選擇電晶體35及垂直地位於選擇 電阳體35上方之§己憶體單元的至少兩個層級。每一反及串 129933.doc -27· 200908233 被描繪為單個行,其中記憶體單元之每一層級位於記憶體 單元之下覆層級上方。舉例而言,由行Μ中之位元線237 控制之中間垂直反及串1〇〇包括選擇電晶體35及位於四個 層級中之四個記憶體單元135、235、345及445。選擇電晶 體35連接至列Ν+1/2中之源極線SL。選擇電晶體35由列Ν 及Ν+1中之選擇閘極線3丨控制。最下部記憶體單元丨3 $由垂 直層級1中之列N及N+1中之字線131(在圖18A中被展示為 WL(N+X列,z層級),諸如,針對列N、層級i中之字線為 wl(n,1))控制。其他記憶體單元235、335及445分別由層 級2、3及4中之列N及N+1中之字線231、331及441控制。 上部s己憶體單元445電連接至位元線行M中之位元線23 7。 因此,每一垂直反及串包括選擇電晶體35及垂直地配置 。己隐體單tl 1 35至445 ’該等記憶體單元重疊地^位。字線 13丨至43丨不與位元線237平行。舉例而言,字線垂直於位 元線237而延伸。然而,字線131至431平行於源極線239與 、擇閘極線3 1中之至少一者(諸如,平行於源極線及選 擇閘極線3 1)而延伸。 在一替代實施例中,在不同垂直層級中之字線可在彼此 不同之方向上延伸。舉例而言,記憶體單元層級一中之字 可在與記憶體單元層級二中之字線231之方向不同的 方向上(諸如, 在垂直方向上)延伸。字線方 憶體單元層級之間交替。舉例而 在母。己 5,在層級一及三中之字 線在 方向上延伸且在声级-u 延伸。字㈤巾之字線在不同方向上 線方向可能彼此相差-至九十度。此組態可藉由 129933.doc -28- 200908233 將電何儲存位置放置成鄰近於鄰近記憶體單元層級之柱狀 物作用區域之不同面而減少在裝置層級間之耦合(舉例而 言’電荷在層級一及三中鄰近於柱狀物之北面及南面而儲 存且在層級二及四中鄰近於東面及西面而儲存 在圖1 9中所展示之另一替代實施例中,位元線、字線及 源極線彼此不平行。換言之,位元線237不平行於字線j 3工 至431,字線131至431不平行於源極線239,源極線239不 平行於位元線。舉例而言,如圖19中所展示,字線13 j至 43 1可垂直於源極線239而延伸,而位元線237關於字線及 源極線而對角地(亦即,以1至89度之角度,諸如,3〇至6〇 度,例如45度)延伸。此情形允許藉由提高反及串中之每 一者的源極線及位元線以提供各種有效程式化/抑制電壓 而將不同多狀態VT層級同時程式化至在同一字線上之一群 记憶體單元。來自每一位元線之電流汲取至個別地選擇之 源極線,因此降低提供至特定源極線之電流之量。圖^之 對角位兀線可具有比圖18A及I8B中所展示之位元線之間 距狹窄的間距。 必要時,彳改變配置以使得字線及位元線彼此垂直且源 極線為對角的。可在頂部形成源極線且可在底部形成位元 線。此情形允許金屬及/切化物而非半導體源極線之形 成’其導致歸因於較低電阻率源極線材料的降低之電流擁 擠。必要時’所有三個類型之線可為彼此不垂直且關於彼 此對角地延伸。較佳地,選擇線與字線平行。 如圖19中所展示,每—記憶體單元具有與陣列中所有其 129933.doc -29- 200908233 他記憶體單元不同之相關冑之字線、位元線纟源極線組 σ舉例而s,與字線方向平行之—列中之所有記憶體單 元由不同位元線及不同源極線控制。圖19之組態允許即使 田兩個鄰近單兀共用同一字線時陣列中之每一記憶體單元 仍被個別地程式化(替代一起程式化每一對鄰近單元),因 為此等4 a I兀連才妾至彼此不同之&元線與源極線之組 δ舉例而5,在平行於一源極線之同一行中之兩個鄰近 單元由不同位元線控制。因&,在同_行中之兩個鄰近單 元與同一字線及源極線但不同之位元線相關聯。必要時, 歸因於將逐位元線控制用於程式化單元而個別地程式化每 -記憶體單元的能力,纟圖19之、组態中可視情況省略選擇 電曰曰體3 1。然而,較佳在每一反及串2〇〇中逐層級地進行 程式化,其中’順序地程式化交替之層級。 在另一替代實施例中,可由在基板丨之平面之兩個維度 上(亦即,在x-y平面中)延伸之共同源極區域(源極平面)代 替源極線239。共同源極區域可包含與陣列之所有選擇電 晶體35之柱狀物作用區域25電接觸之共同導電板,諸如, 高度摻雜之單晶或多晶半導體、矽化物及/或金屬板。若 省略選擇電晶體,則源極板接觸最下部記憶體單元135層 級之柱狀物〗25。共同源極板在放鬆選擇個別源極線電壓 之能力之代價下提供較高電流汲取能力。 用於MLC操^乍之替代實施例具有沿相同方向延伸的源極 線及位兀線以提供在逐位元線基礎上改變整個反及鏈電壓 以便程式化比正被程式化為較低Vt狀態之單元更快的正被 129933.doc -30· 200908233 程式化為較高ντ狀態之單元的方式。將提高正被程式化為 較低ντ狀態之單元的源極線及位元線電壓以便延遲程式化 些此等單π,以使得將使用較少程式化脈衝來程式化二 維或三維組態中之整個集合之狀態。 已出於說明及描述之目的給出本發明之實施例之前文描 述。其不意欲為詳盡的或將本發明限制於所揭示之精確形 式且修改及改變根據上文教示係可能,且可自本發明之 實踐獲得。選擇且描述實施例以便解釋本發明之原理且作 為實際應用以使熟習此項技術者能夠在各種實施例中且加 以適於預期特定用途之各種修改來利用本發明。意欲由隨 附於此之申請專利範圍及其等效物來界定本發明之範轉。 【圖式簡單說明】 圖 ΙΑ、2Α、3Α、4Α、5Α、6Α、7Α、8Α、9Α、10Α、 11Α、12Α、13Α、14Α及15Λ為製作根據本發明之第一實 施例的裝置之步驟的俯視圖。 圖 IB、2Β、3Β、4Β、5Β、6Β、6C、7Β、7C、8Β、 . / 8C、9B、9C、10Β、10C、11Β、11C、12Β、12C、13Β、 13C、14Β、14C、15Β及15C為製作根據本發明之第一實施 例的裝置之步驟的側視橫截面圖。圖6 D為圖6 Α中所展示 之製作中之裝置的三維圖。 圖16說明沿本發明之第一實施例的完成之垂直反及串之 位元線方向的側視橫截面圖。 圖17A及圖17B說明根據本發明之第二實施例及第三實 施例的反及串之存取電晶體之部分的側視橫截面圖。 129933.doc •31 · 200908233 圖1 8 A及圖1 9說明本發明之實施例的反及串之電路示意 圖。圖1 8B說明圖1 8A之電路示意圖之部分,但出於清晰 起見移除源極線、選擇線及字線。 【主要元件符號說明】 I p型矽基板 3 η型碎層 5 作用區域 7 絕緣隔離區域/STI隔離區域 9 矽層 II 晶粒邊界 13 η型區域/ηρ η結構 15 ρ型區域/ηρη結構 17 η型區域/ηρη結構 19 條紋 20 絕緣材料 21 絕緣層 23 條紋 25 半導體柱狀物 27 渠溝 29 閘極絕緣層 3 1 選擇閘極 33 絕緣頂蓋 35 選擇電晶體 100 反及串 129933.doc -32- 200908233 109 蟲晶層 111 晶粒邊界 113 η型區域/npn結構 115 p型區域/npn結構 117 η型區域/ηρη結構 119 條紋 121 絕緣層 123 條紋 / 125 半導體柱狀物/半導體作用區域 127 渠溝 128 穿隧介電層 129 電荷儲存介電層 129A 第一電荷儲存介電質 129B 第二電荷儲存介電質 130 阻隔介電層 131 控制閘極/字線 K / 131A 第一控制閘極 131B 第二控制閘極 133 頂蓋層/絕緣頂蓋 ' 135 第一記憶體單元 200 反及串 213 第二導電性類型半導體區域 215 第一導電性類型半導體區域 217 第二導電性類型半導體區域 129933.doc -33- 200908233 225 半導體作用區域/柱狀物 231 字線 235 記憶體單元 237 位元線 239 源極線 331 字線 335 記憶體單元 431 字線 129933.doc -34-In the alternative fourth embodiment, the pillar action regions 25, 125, etc. of the selected transistor and/or memory cell are formed by polycrystalline semiconductor material 9, 1 〇 9, etc., in the underlying pillar. An amorphous, microcrystalline or polycrystalline semiconductor layer such as a rare layer is formed thereon instead of forming an epitaxial semiconductor layer 9, 1G9 or the like on the underlying pillar. The amorphous, microcrystalline or polycrystalline semiconductor layer is then recrystallized to form a large grain polycrystalline semiconductor material layer such as a large grain polycrystalline germanium layer. Recrystallization can be carried out by any suitable annealing method such as thermal annealing in a furnace, laser annealing, and/or flash lamp annealing. As described above, this recrystallized layer is then patterned into pillar action regions 25, 125, and the like. The use of cryogenically deposited and recrystallized polycrystals allows the formation of active regions over metal wires or electrodes that cannot withstand high temperatures. Therefore, the semiconductor active region of the upper memory cell can be epitaxially formed on the semiconductor active region of the underlying memory cell, or the semiconductor of the first memory cell can be formed in the recrystallized polycrystalline spine Make two domains. The action region of the lowermost level of the memory cell is formed subtly, or the refinement of the lowermost level of the memory cell is formed by recrystallization on the semiconductor active region of the selected transistor. The active region of the selective crystal is formed in a staggered manner, or the active region of the selective crystal is formed by recrystallization over the substrate. The memory array is in the horizontal dimension. The upper limit is the RC time of the word line, the selection gate, the source line and the bit line. When the roar p is 丨 J1 J, the enemy is restricted. In contrast, the string is oriented vertically, and the channel region (showing p-region seven, non-domain 115, NMOS memory instance) is not grounded. Therefore, it is necessary to note the total body potential of the phone. The inversion layer on the (unselected) side of 129933.doc 200908233 can be established and used to facilitate anchoring the potential of the floating p-type body during various operations such as reading, programming, and/or erasing. . It is also possible to use highly doped and p-regions with steep junctions so that the floating bodies can be more strongly coupled to each other via thinner depletion regions. Another way to indicate the potential of the floating body is to leak current through its junction. In addition, the program suppression boost (b〇〇St) should be more efficient. However, it is possible to drive the columnar action area as opposed to boosting, thereby allowing a steeper junction. Each memory cell and selected transistor level is automatically aligned with itself. In other words, no separate alignment steps are required between device levels. In addition, each device level requires only two lithography steps... a first step of forming a first stripe and a second step of forming strips 123. The remaining features in each device level are formed by layer deposition and planarization. Thus, at least one region or layer of the string 100 and preferably a plurality of regions or layers are planarized by CMP and/or other methods. For example, for the cell 5, when the semiconductor active region 丨25 is in the form of the epitaxial layer 1〇9, it is planarized as shown in FIGS. 11B and 11C, so that the inverse string 1〇〇 and at least one The other insulating layer 121 adjacent to the m insulation is planarized as shown in FIG. 13B, and the charge storage dielectric 129' control gate 131 and the cap layer 133 are planarized as shown in FIGS. 15B and 15C. Therefore, in each of the cells 135, 235 and the like, at least five layers (the tunneling and the blocking dielectric are not calculated) are planarized by CMP. If necessary, the wafer substrate 丨 can be rotated 45 in all lithography steps. Take 129933.doc -26· 200908233. In this case, it is further provided that the wafer notch is not at the 12 o'clock position, and at the 1:3 〇 position, then the vertical sidewall channel will be on the [1〇〇] crystal plane, the same channel mobility. Each device level is not automatically aligned with the level below it. However, the phase-like region is deliberately expected to be the source-polar region for the material of the chain, so this situation has almost no consequences. Based on the thermal budget of the annealing associated with the various levels, the vertical dimension of each level and the position of the (9) junction in each layer can be different from the other levels. Semiconductor epitaxial growth and plasma oxygenation, such as low temperature growth of pecvd (such as temperatures below 700), can be used to minimize gradation to gradation. This situation also allows for a single high temperature anneal after all memory is formed and the gate level is selected. However, separate layer-by-layer annealing or multiple annealing steps for the memory/selection level can also be used. Annealing in a hydrogen atmosphere may also be performed as necessary. As described above, the pillars are preferably rectangular or square when viewed from the side. However, when the side walls of the trench are not vertical, the active layer such as the selective crystal column active region portion 5 will be in the form of a truncated pyramid having a rectangular or square bottom greater than the top. Therefore, a certain amount of misalignment will not result in a change in the contact area of the top of the - (iv) pillar with the bottom of the dream pillar of the layer above it. Figure 18A illustrates a circuit schematic of an array of inverse rates as described above. Figure (10) illustrates a portion of the circuit diagram of Figure 18A, but with the source lines, select lines, and word lines removed for clarity. 8A and 8B illustrate at least two levels of the selective transistor 35 on the substrate or in the trench in the substrate and the § memory element located vertically above the selected electrical anode 35. Each inverse string 129933.doc -27· 200908233 is depicted as a single row in which each level of the memory cell is above the overlay level below the memory cell. For example, the intermediate vertical inverse string 1 控制 controlled by the bit line 237 in the row includes the selection transistor 35 and four memory cells 135, 235, 345, and 445 located in the four levels. The electrification crystal 35 is connected to the source line SL in the column Ν + 1/2. The selection transistor 35 is controlled by the selected gate line 3丨 of the columns Ν and Ν+1. The lowermost memory cell 丨3$ is represented by a column of lines N and N+1 in vertical level 1 (shown as WL (N+X columns, z-level) in Figure 18A, such as for column N, The word line in level i is controlled by wl(n, 1)). The other memory cells 235, 335 and 445 are controlled by word lines 231, 331 and 441 in columns N and N+1 of levels 2, 3 and 4, respectively. The upper s-resonance unit 445 is electrically connected to the bit line 23 7 in the bit line row M. Therefore, each of the vertical inverse strings includes the selection transistor 35 and is vertically arranged. The hidden cells tl 1 35 to 445 'the memory cells are overlapped. The word lines 13丨 to 43丨 are not parallel to the bit line 237. For example, the word line extends perpendicular to bit line 237. However, word lines 131 through 431 extend parallel to at least one of source line 239 and select gate line 31, such as parallel to the source line and select gate line 31. In an alternate embodiment, the word lines in different vertical levels may extend in different directions from each other. For example, the word in memory cell level one may extend in a different direction (e.g., in the vertical direction) than the direction of word line 231 in memory cell level two. The word line side alternates between the body unit levels. For example, in the mother. 5, the lines in the first and third levels extend in the direction and extend at the sound level -u. The word line of the word (five) is in different directions. The line directions may differ from each other - to ninety degrees. This configuration can be used by 129933.doc -28- 200908233 to place the electrical storage location adjacent to different faces of the column active region adjacent to the memory cell level to reduce coupling between device levels (eg, 'charge Stored in layers 1 and 3 adjacent to the north and south of the column and stored adjacent to the east and west in levels 2 and 4 and stored in another alternative embodiment shown in FIG. The line, word line and source line are not parallel to each other. In other words, the bit line 237 is not parallel to the word line j 3 to 431, the word lines 131 to 431 are not parallel to the source line 239, and the source line 239 is not parallel to the bit line. For example, as shown in FIG. 19, word lines 13 j to 43 1 may extend perpendicular to source line 239, while bit line 237 is diagonally opposite to word line and source line (ie, Extending at an angle of 1 to 89 degrees, such as 3 to 6 degrees, such as 45 degrees. This situation allows various effective programs to be provided by increasing the source and bit lines of each of the inverted strings. Simultaneously program different multi-state VT levels to one of the same word lines Body unit. The current from each bit line is drawn to the individually selected source line, thus reducing the amount of current supplied to a particular source line. The diagonal position line of Figure 2 can have a ratio compared to Figures 18A and I8B. A narrow spacing between the bit lines shown. If necessary, the configuration is changed such that the word lines and the bit lines are perpendicular to each other and the source lines are diagonal. A source line can be formed at the top and a bit can be formed at the bottom. Element. This situation allows the formation of metal and/or diced rather than semiconductor source lines' which results in reduced current crowding due to lower resistivity source line material. Where necessary, 'all three types of lines can be They are not perpendicular to each other and extend diagonally with respect to each other. Preferably, the selection line is parallel to the word line. As shown in Figure 19, each memory cell has all of its memory cells in the array with its 129933.doc -29-200908233 Different related 胄 word lines, bit lines 纟 source line group σ, for example, s, parallel to the word line direction—all memory cells in the column are controlled by different bit lines and different source lines. Configuration allows even two fields in the field Each memory cell in the array is still individually programmed (alternatively stylized with each pair of adjacent cells) when the same word line is shared, because these 4 a I connections are different from each other. The group of line and source lines δ is exemplified by 5, and two adjacent units in the same row parallel to one source line are controlled by different bit lines. Because &, two adjacent units in the same line The same word line and source line but different bit lines are associated. If necessary, due to the use of bit-wise line control for the stylized unit, the ability to individually program each-memory unit is shown in Figure 19 In the configuration, the selection of the electrical body 3 1 may be omitted as appropriate. However, it is preferable to programmatically in each of the reversed strings 2 逐, where 'sequentially stylize alternate levels. In another alternative embodiment, the source line 239 may be replaced by a common source region (source plane) extending in two dimensions of the plane of the substrate (i.e., in the x-y plane). The common source region may comprise a common conductive plate in electrical contact with the pillar active regions 25 of all of the select transistors 35 of the array, such as highly doped monocrystalline or polycrystalline semiconductors, germanium and/or metal plates. If the selection of the transistor is omitted, the source plate contacts the pillar 25 of the lowest memory unit 135 level. The common source plate provides higher current draw capability at the expense of the ability to relax the selection of individual source line voltages. An alternate embodiment for MLC operation has source lines and bit lines extending in the same direction to provide for changing the entire anti-chain voltage on a bit-by-bit basis so that the programmatic ratio is being programmed to a lower Vt The unit of state is being faster programmed by 129933.doc -30· 200908233 to a higher ντ state unit. The source line and bit line voltages of the unit being programmed to a lower ντ state will be increased to delay the stylization of these single πs so that less stylized pulses will be used to program the 2D or 3D configuration The state of the entire collection. The foregoing description of the embodiments of the invention has been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed. The embodiments were chosen and described in order to explain the principles of the invention and the embodiments of the invention in the It is intended that the scope of the invention be defined by the scope of the claims BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2, 3Α, 4Α, 5Α, 6Α, 7Α, 8Α, 9Α, 10Α, 11Α, 12Α, 13Α, 14Α and 15Λ are steps for fabricating a device according to a first embodiment of the present invention. Top view. Figure IB, 2Β, 3Β, 4Β, 5Β, 6Β, 6C, 7Β, 7C, 8Β, . / 8C, 9B, 9C, 10Β, 10C, 11Β, 11C, 12Β, 12C, 13Β, 13C, 14Β, 14C, 15Β And 15C are side cross-sectional views of the steps of making the apparatus according to the first embodiment of the present invention. Figure 6D is a three dimensional view of the device being fabricated as shown in Figure 6. Figure 16 is a side cross-sectional view showing the direction of the bit line of the completed vertical reverse and string along the first embodiment of the present invention. 17A and 17B are side cross-sectional views showing portions of an anti-string access transistor according to a second embodiment and a third embodiment of the present invention. 129933.doc • 31 · 200908233 FIGS. 1 8 A and FIG. 1 9 illustrate circuit diagrams of the inverse and string of the embodiment of the present invention. Figure 1 8B illustrates a portion of the circuit diagram of Figure 18A, but with the source lines, select lines, and word lines removed for clarity. [Main component symbol description] I p-type germanium substrate 3 n-type fragment layer 5 active region 7 insulating isolation region / STI isolation region 9 germanium layer II grain boundary 13 n-type region / ηρ η structure 15 p-type region / ηρη structure 17 N-type region / ηρη structure 19 stripe 20 insulating material 21 insulating layer 23 stripe 25 semiconductor pillar 27 trench 29 gate insulating layer 3 1 select gate 33 insulating cap 35 select transistor 100 reverse string 129933.doc - 32- 200908233 109 worm layer 111 grain boundary 113 n-type region / npn structure 115 p-type region / npn structure 117 n-type region / ηρη structure 119 stripe 121 insulating layer 123 stripe / 125 semiconductor pillar / semiconductor active region 127 Channel 128 Tunneling Dielectric Layer 129 Charge Storage Dielectric Layer 129A First Charge Storage Dielectric 129B Second Charge Storage Dielectric 130 Barrier Dielectric Layer 131 Control Gate/Word Line K / 131A First Control Gate 131B second control gate 133 top cover layer/insulating cap 135 first memory unit 200 opposite string 213 second conductivity type semiconductor region 215 first conductivity type semiconductor region 217 Second Conductive Type Semiconductor Region 129933.doc -33- 200908233 225 Semiconductor Active Region/Column 231 Word Line 235 Memory Cell 237 Bit Line 239 Source Line 331 Word Line 335 Memory Unit 431 Word Line 129933. Doc -34-

Claims (1)

200908233 十、申請專利範圍: 1. 一種單體、三維反及串’其包含位於一第二記憶體單元 上方之至少一第一記憶體單元’其中該第一記憶體單元 之—半導體作用區域磊晶地形成於該第二記憶體單元之 一半導體作用區域上,以使得在該第一記憶體單元之該 半導體作用區域與該第二記憶體單元之該半導體作用區 域之間存在一經界定之邊界。 2.如請求項1之反及串,其中: 該反及串垂直地形成於一基板上方; 該第一記憶體單元位於一第一裝置層級中;且 6亥第二記憶體單元位於一位於該基板上方及該第一裝 置層級下方之第二裝置層級中。 3. 如印求項1之反及串,其進一步包含一位於該第二記憶 體單元下方之選擇電晶體。 4.如請求項3之反及串,其中:200908233 X. Patent application scope: 1. A single-body, three-dimensional anti-string and a string comprising at least one first memory unit above a second memory unit, wherein the first memory unit has a semiconductor active area Forming a crystal on one of the semiconductor active regions of the second memory cell such that a defined boundary exists between the semiconductor active region of the first memory cell and the semiconductor active region of the second memory cell . 2. The reverse string of claim 1, wherein: the reverse string is formed vertically above a substrate; the first memory unit is located in a first device level; and the second memory unit is located at a location Above the substrate and in the second device level below the level of the first device. 3. The reverse string of claim 1 further comprising a selection transistor underlying the second memory unit. 4. The reverse of the request item 3, where: 該選擇電晶體位於-基板上或該基板中之一渠溝中;且 該第二記憶體單元之該半導體作用區域蠢晶地形成於 該選擇電晶體之一半導體作用區域上。 5. 如請求項4之反及串,其中: 該選擇電晶體之該半導體作 菔邗用區域包含一在自上方觀 看=、有一正方形或矩形橫截面之柱狀物;且 〇玄第_ a己憶體單元之該丰墓辨从m 方觀看時具有—正方形二=用區域包含-在自上 該選擇電晶體之該半導體作=截面之柱狀物’其不與 乍用區域對準且其橫向地越過 129933.doc 200908233 該選擇電晶體之該半導體作用區域而延伸。 6. 如請求項1之反及串,其中: 該第一 §己憶體單元之該半導體作用區域包含一第一柱 狀物,該第一柱狀物包含一位於第二導電性類型半導體 區域之間的第一導電性類型半導體區域; 該第二記憶體單元之該半導體作用區域包含一第二柱 狀物,該第二柱狀物包含一位於第二導電性類型半導體 區域之間的第一導電性類型半導體區域;The selection transistor is located on the substrate or in a trench in the substrate; and the semiconductor active region of the second memory cell is staggeredly formed on one of the semiconductor active regions of the selected transistor. 5. The reverse string of claim 4, wherein: the semiconductor-using region of the selected transistor comprises a pillar having a square or rectangular cross-section viewed from above; and The tomb of the memory unit has a square-shaped view from the m-square; the area contains - the pillar of the semiconductor from which the transistor is selected; the pillar is not aligned with the region It extends laterally across the semiconductor active region of the selected transistor of 129933.doc 200908233. 6. The inverse of the string of claim 1, wherein: the semiconductor active region of the first § memory unit comprises a first pillar, the first pillar comprising a second conductivity type semiconductor region a first conductivity type semiconductor region; the semiconductor active region of the second memory cell includes a second pillar, and the second pillar includes a second region between the second conductivity type semiconductor regions a conductive type semiconductor region; 第-柱狀物中之-第二導電性類型半導體區域接觸 該第二柱狀物中之一第二導電性類型半導體區域;且 該第一柱狀物不與該第二柱狀物對準,以使得該第一 柱狀物橫向地越過該第二柱狀物而延伸。 7·如請求項6之反及串,其進一步包含: 上-第-電荷儲存介電質,其鄰近於該第—柱狀物中之 該第一導電性類型半導體區域而定位; ――第—㈣閘極’其鄰近於該第—電荷儲存介電質而 :第二電荷儲存介電質,其鄰近於該第二柱狀物中之 ^弟一導電性類型半導體區域而定位;及 定:第二控制閘極,其鄰近於該第二電荷儲存介電質而 :二單體、三維反及串’其包含位於一第二記憶體單元 上方之至少___. ^ … 弟-記憶體單元’其中至少該第一記憶體 早兀之—半導體作用區域包含再結晶之多晶石夕。 129933.doc 200908233 9.如請求項8之反及串,其中: 該反及串垂直地形成於一基板上方; 該第一記憶體單元位於一第一裝置層級中;且 該第—§己憶體單元位於一位於該基板上方及該第一裝 置層級下方之第二裝置層級中。 1 〇.如吻求項8之反及串,其進一步包含佈線及一位於該第 二記憶體單元下方之選擇電晶體。 11.如請求項1〇之反及串,其中: 忒選擇電晶體位於一基板上或該基板中之一渠溝中;且 β亥第—§己憶體單元之一半導體作用區域包含再結晶之 多晶秒。 12.如請求項11之反及串,其中: 涫k擇電晶體之該半導體作用區域包含一在自上方觀 看守/、有正方开〉或矩形橫截面之柱狀物;且a second conductivity type semiconductor region of the first pillar contacting one of the second pillar type second conductivity type semiconductor regions; and the first pillar is not aligned with the second pillar Extending the first pillar laterally across the second pillar. 7. The reverse string of claim 6, further comprising: an upper-first charge storage dielectric positioned adjacent to the first conductivity type semiconductor region in the first pillar; - (d) a gate adjacent to the first charge storage dielectric: a second charge storage dielectric positioned adjacent to the second conductivity type semiconductor region of the second pillar; a second control gate adjacent to the second charge storage dielectric: a two-cell, a three-dimensional inverse and a string 'containing at least ___. ^ ... - memory - memory located above a second memory unit The unit 'in which at least the first memory is early—the semiconductor active region comprises recrystallized polycrystalline lit. 129933.doc 200908233 9. The reverse string of claim 8, wherein: the reverse string is formed vertically above a substrate; the first memory unit is located in a first device level; and the first memory The body unit is located in a second level of the device above the substrate and below the level of the first device. 1 〇. For example, the inverse of the string of 8 is further included in the wiring and a selection transistor under the second memory unit. 11. The inverse of the string of claim 1 wherein: 忒 the selected transistor is located on a substrate or in a trench in the substrate; and the semiconductor active region of the β 第 § 体 体 unit includes recrystallization Polycrystalline seconds. 12. The inverse of the claim 11 wherein: the semiconductor active region of the 涫k electrification crystal comprises a pillar having a guarded / squared or rectangular cross section viewed from above; ㈣二記憶體單s之該半導體作用區域包含—在自上 方觀看時具有·_正方形或矩形橫戴面之柱狀物,其不與 該選擇電晶體之該半導體作用區域料且其橫向地越過 該選擇電晶體之該半導體作用區域而延伸。 13_如請求項8之反及串,其中: 成币一記憶體單 - 叫I r zq歧峡巴一 pp 狀物,該第-柱狀物包含—位於第二導電性類裂半導错 區域之間的第一導電性類型半導體區域. 該第二記憶體單元之一半導體作用區域包含H 狀物’該第二柱狀物包含—位於第二導電性類裂半導毙 129933.doc 200908233 區域之間的第一導電性類型半導體區域; 該第一柱狀物♦之一第二導電性類型半導體區域接觸 該第二柱狀物中之一第二導電性類型半導體區域;且 該第一柱狀物不與該第二柱狀物對準,以使得該第_ 柱狀物橫向地越過該第二柱狀物而延伸。 1 4.如請求項1 3之反及串,其進一步包含: 一第一電荷儲存介電質,其鄰近於該第一柱狀物中之 該第一導電性類型半導體區域而定位; 一第一控制閘極,其鄰近於該第一電荷儲存介電質而 定位; 一第二電荷儲存介電質,其鄰近於該第二柱狀物中之 該第一導電性類型半導體區域而定位;且 一第二控制閘極,其鄰近於該第二電荷儲存介電質而 定位。 15. —種單體、三維反及串,其包含位於一第二記憶體單元 上方之至少一第一記憶體單元,其中該反及串之至少— 區域被平坦化。 16. 如請求項1 5之反及串,其中: 該反及串垂直地形成於一基板上方; 5玄弟一記憶體單元位於一第一裝置層級中;且 該第二記憶體單元位於一位於該基板上方及該第—裝 置層級下方之第二裝置層級中。 1 7 ·如請求項1 5之反及串’其進一步包含一位於該第二記憶 體單元下方之選擇電晶體。 129933.doc -4- 200908233 18.如請求項]7之反及串其中·· 該選擇電晶體位於-基板上或該基板中之-渠溝中’· s亥選擇電晶體之該半導體作用區域包含一在自上方觀 看時具有一正方形或矩形橫截面之柱狀物·且 :第一 §己憶體單元之該半導體作用區域包含一在自上 &quot; 寸八有正方形或矩形橫截面之柱狀物,其不與 :亥選擇電晶體之該半導體作用區域對準且其橫向地越過 4k擇電晶體之該半導體作用區域而延伸。 19.如請求項15之反及串,其中: °亥第一s己憶體單元之一半導體作用區域包含一第一柱 狀物4第一柱狀物包含一位於第二導電性類型半導體 區域之間的第一導電性類型半導體區域; 、π亥第一記憶體單元之一半導體作用區域包含一第二柱 狀物’ 4第二柱狀物包含—位於第二導電性類型半導體 區域之間的第一導電性類型半導體區域; ^亥第—柱狀物中之一第=導電性類㉟半導體區域接觸 5亥第一柱狀物中之—第二導電性類型半導體區域; 該第一柱狀物不與該第二柱狀物對準,以使得該第一 柱狀物橫向地越過該第二柱狀物而延伸;且 該第一柱狀物包含再結晶之多晶矽或在該第二柱狀物 上磊晶地生長之石夕。 20.如請求項19之反及串,其進一步包含: 一第一電荷儲存介電質,其鄰近於該第—柱狀物中之 該第一導電性類型半導體區域而定位; 129933.doc 200908233 質而 第一控制閘極,其鄰近於該第--電荷儲存介電 定位; 一第二電荷儲存介電質,其鄰近於該第二柱狀物中之 該第—導電性類型半導體區域而定位;及 —第二控制閘極’其鄰近於該第二電荷儲存介電質而 定位。 、 21·如請求項15之反及串,其中被平坦化之該反及串之該至 少一區域包含該第一記憶體單元之一半導體作用區域。 22. 如明求項2丨之反及串,其中被平坦化之該反及串之該至 '、區域進步包含該第一 s己憶體單元之—控制閘極。 23. 如凊求項22之反及串,其中被平坦化之該反及串之該至 少一區域進一步包含: 該第二記憶體單元之一半導體作用區域; s亥第二記憶體單元之一控制閘極;及 —絕緣層,其使該反及串與至少—其他鄰近反 緣。 24. —種製作一單體、三維反及串之方 卞〜々凌,该反及串包含一 位於一第二記憶體單元上方之第—記 &lt; 11體早70,該方法 包含: 生長第二記憶體單元之一半導體作用區域;及 在一與生長第二記憶體單元之該半实 X千導體作用區域之該 步驟不同的生長步驟中’在該第二記 尤隱體早元之該半導 體作用區域上磊晶地生長該第一記憎挪Μ 1心體早元之一半導體 作用區域。 129933.doc 200908233 25.如請求項24之方法,其進—步包含: 在一基板上方形成該第二記憶體單元; X第一。己憶體單元之該半導體作用區域上县晶地生 長一第—半導體層; 平坦化該第—半導體層; 將該第一半導體層圖案化為一在一第一方向上延伸之 第一半導體條紋; 形成一第一絕緣層,其鄰近於該第一半導體條紋之暴 露之橫向侧面; 圖案化該第一半導體條紋以形成一第一半導體柱狀 物; 形成一第一電荷儲存介電質,其鄰近於該第一半導體 柱狀物之一第一暴露之側面而定位; 形成一第一控制閘極,其鄰近於該第一電荷儲存介電 質; 形成一第二電荷儲存介電質,其鄰近於該第—半導體 柱狀物之一第二暴露之側面而定位;及 形成一弟二控制閘極,其鄰近於該第二電荷儲存介電 質。 2 6.如請求項2 5之方法,其中: 在該第一記憶體單元之該半導體作用區域與該第二記 憶體單元之該半導體作用區域之間存在一經界定之邊 界, 該第一半導體柱狀物包含該第一記憶體單元之該半導 129933.doc 200908233 體作用區域;且 二導電性類型半導 區域。 該第一半導體柱狀物包含一位於第 體區域之間的第一導電性類型半導體 2 7 ·如s青求項2 5之方法’其進一步包含: 在該第一半導體柱狀物上方沈積— 膜及一控制閘極層; 電荷儲存介電質 薄 平坦化該電荷儲存介電質薄膜及該控制閘極層以暴露 該第-半導體柱狀物且形成該第一電荷儲存介電質及該 第二電荷儲存介電質以及該第一控制閘極及該第二控制 閘極; 部分地蝕刻該第一控制閘極及該第二控制閘極; 在該第一部分地蝕刻之控制閘極及該第二部分地蝕刻 之控制閘極上方形成一第二絕緣層;及 平坦化3亥弟一絕緣層以暴露該第一半導體柱狀物。 28·如凊求項24之方法,其進一步包含在一基板上或在該其 板中之一渠溝中形成一選擇電晶體。 2 9 _如請求項2 8之方法,其進一步包含: 在該選擇電晶體之一半導體作用區域上磊晶地生長— 第二半導體層; 平坦化該第二半導體層; 將該第二半導體層圖案化為一在一第一方向上延伸之 第二半導體條紋; 形成一第三絕緣層,其鄰近於該第二半導體條紋之暴 露之橫向側面; 129933.doc 200908233 圖案化該第二半導體彳么έ 導體柱狀 等體條紋以形成一第二半 物; f 形成一第三電荷儲存 , 柱狀物之一第-暴露之側面而定:鄰近於該第二半導體 電 質形成一第三控制間極,其鄰近於該第三電荷儲存介 形成-第四電荷儲存介電質,其鄰近於該第二半導體 柱狀物之-第二暴露之側面而定位;及 办成第四控制閘極,其鄰近於該第四電荷儲存介電 Μ 0 3 0.如請求項29之方法,其中: 該第二半導體柱狀物包含該第二記憶 體作用區域;導 D亥第一半導體柱狀物包含—位於第二導電性類型 體區域之㈣第—導電性類型半導體區域。 fc../ 3!•如請求項30之方法,其中該第二半導體柱狀物不與該第 一記憶體單元之—半導體作用區域對準。 32.如請求項29之方法,其中形成該選擇電晶體之該步驟包 含: 層; 在基板上或在一基板中蟲晶地生長一第三半導 體 平坦化該第三半導體層; 延伸之 將該第三半導體層圖案化為一在一第一方向上 第三半導體條紋; 129933.doc 200908233 形成一第四絕緣層,其鄰近於該第三半導體條紋之暴 露之横向側面; 圖案化該第三半導體條紋以形成一第三半導體柱狀 物; 形成一第一閘極介電質,其鄰近於該第三半導體柱狀 物之—第一暴露之側面而定位; 形成—第一選擇閘極,其鄰近於該第一閘極介電質; $成一第二閘極介電質,其鄰近於該第三半導體柱狀 物之—苐二暴露之側面而定位;及 开/成一第二選擇閘極,其鄰近於該第二閘極介電質。 3 3 _如請求項3 2之方法,其中: 忒第三半導體柱狀物包含該選擇電晶體之該半導體作 用區域;且 '^第二半導體柱狀物包含一位於第二導電性類型半導 體區域之間的第一導電性類型半導體區域。 Μ.如請求項33之方法,其中該第三半導體柱狀物不與該第 二半導體柱狀物對準。 35. :種製作一單體、三維反及串之方法,其包含在一第二 。己隐體單兀上方形成一第一記憶體單元’其中至少該第 -記憶體單元之一半導體作用區域包含再結晶之多晶 石夕。 36. 如請求項35之方法,其進一步包含: 在該第二記憶體單元上方形成該第一記憶體單元之一 非晶矽或多晶矽半導體作用區域;及 129933.doc -10· 200908233 使該第一記憶體單元之該非晶矽或多晶矽半導體作用 區域再結晶以形成該第一記憶體單元之一再結晶之多曰 石夕半導體作用區域。 37·如請求項36之方法,其進—步包含: 在一基板上或該基板中之一渠溝中形成一選擇電晶 體; 曰曰 在該選擇電晶體上方形成該第二記憶體單元之一非晶 石夕或多晶矽半導體作用區域;及 使°亥第—5己憶體單元之該非晶石夕或多晶石夕半導體作用 區域再結晶以形成該第二記憶體單元之一再結晶之多晶 石夕半導體作用區域。 3 8.如請求項3 7之方法,其中: ^ 5己丨思體單元之該半導體作用區域包含一第一柱 狀物,該第一柱狀物包含一位於第二導電性類型半導體 區域之間的第一導電性類型半導體區域; 5亥第二記憶體單元之該半導體作用區域包含一第二柱 狀物,邊第二柱狀物包含一位於第二導電性類型半導體 區域之間的第一導電性類型半導體區域; a該第—柱狀物中之一第二導電性類型半導體區域接觸 °亥第-柱狀物中之一第二導電性類型半導體區域;且 Λ第杈狀物不與該第二柱狀物對準。 39.如請求項38之方法,其進一步包含: 形成1 —電荷儲存介電質,其鄰近於該第—柱狀物 之該第一導電性類型半導體區域而定位; 129933.doc 200908233 形成-第-控制閘極’其鄰近於 質而定位; 電何儲存介電 形成一第二電荷儲存介電質,其鄰近於該第二柱狀物 中之該第一導電性類型半導體區域而定位·’及 形成-第二控制閘極,其鄰近於該第二電荷儲存介電 質而定位。 40. —種製作一單體 '三維反及串之方法,其包含:(4) The semiconductor active region of the two memory sheets s includes a pillar having a square or a rectangular cross-face when viewed from above, which is not adjacent to the semiconductor active region of the selected transistor and laterally crossed The semiconductor active region of the selected transistor extends. 13_, as in the reverse of the request item 8, wherein: the coin-memory single--I r zq----------------------------------------------- a first conductivity type semiconductor region between the regions. One of the semiconductor memory regions of the second memory cell includes an H-shaped object. The second pillar includes - a second conductive crack-like semi-conductive semiconductor 129933.doc 200908233 a first conductivity type semiconductor region between the regions; the first pillar ♦ one of the second conductivity type semiconductor regions contacting one of the second pillars of the second conductivity type semiconductor region; and the first The pillars are not aligned with the second pillar such that the first pillar extends transversely across the second pillar. 1 . The reverse string of claim 13 further comprising: a first charge storage dielectric positioned adjacent to the first conductivity type semiconductor region in the first pillar; a control gate positioned adjacent to the first charge storage dielectric; a second charge storage dielectric positioned adjacent to the first conductivity type semiconductor region in the second pillar; And a second control gate positioned adjacent to the second charge storage dielectric. 15. A monomer, three-dimensional inverse and string comprising at least one first memory cell located above a second memory cell, wherein at least the region of the inverse string is planarized. 16. The reverse string of claim 15 wherein: the inverse string is formed vertically above a substrate; 5 a memory unit is located in a first device level; and the second memory unit is located at Located in the second device level above the substrate and below the level of the device. 1 7 - The inverse of the string of claim 1 5 further includes a selection transistor located below the second memory unit. 129933.doc -4- 200908233 18. The reverse of the request item 7 and the string of the selected transistor are located on the substrate or in the substrate - in the trench, the semiconductor active region of the transistor A pillar having a square or rectangular cross section when viewed from above, and: the semiconductor active region of the first § memory unit comprises a column having a square or rectangular cross section from above And which does not extend in alignment with the semiconductor active region of the X-selective transistor and laterally across the semiconductor active region of the 4k electret. 19. The inverse of the claim 15 wherein: one of the first suffix unit semiconductor active regions comprises a first pillar 4 and the first pillar comprises a second conductivity type semiconductor region a first conductivity type semiconductor region between; a semiconductor active region of one of the first memory cells includes a second pillar '4 the second pillar includes - between the second conductivity type semiconductor regions a first conductivity type semiconductor region; one of the first pillars of the first conductivity type 35 semiconductor region contacts the first pillar of the 5H - the second conductivity type semiconductor region; the first pillar Not aligned with the second pillar such that the first pillar extends laterally across the second pillar; and the first pillar comprises recrystallized polysilicon or in the second The stone is grown on the column. 20. The inverse of the claim 19, further comprising: a first charge storage dielectric positioned adjacent to the first conductivity type semiconductor region in the first pillar; 129933.doc 200908233 a first control gate adjacent to the first charge storage dielectric; a second charge storage dielectric adjacent to the first conductivity type semiconductor region of the second pillar Positioning; and - the second control gate is positioned adjacent to the second charge storage dielectric. 21. The inverse of the claim 15 wherein the at least one region of the inverse of the flattened region comprises a semiconductor active region of the first memory cell. 22. In the case of the inverse of the string, the inverse of the string, wherein the inverse of the string to the ', the regional progress includes the first s-resonant unit - the control gate. 23. The reverse string of the item 22, wherein the at least one region of the inverted pixel and the string further comprises: one semiconductor active region of the second memory cell; one of the second memory cells Controlling the gate; and - an insulating layer that causes the opposing string to intersect at least the other adjacent edges. 24. A method for making a single, three-dimensional, and a string of squares, wherein the inverse string comprises a first portion above a second memory unit, and the method comprises: growing a semiconductor active region of the second memory cell; and in a growth step different from the step of growing the semi-solid X-conductor region of the second memory cell, 'in the second memory of the second hidden body The first semiconductor device is epitaxially grown on the semiconductor active region. 129933.doc 200908233 25. The method of claim 24, further comprising: forming the second memory unit over a substrate; X first. Forming a first-semiconductor layer on the semiconductor active region of the memory cell; planarizing the first semiconductor layer; patterning the first semiconductor layer into a first semiconductor strip extending in a first direction Forming a first insulating layer adjacent to the exposed lateral side of the first semiconductor stripe; patterning the first semiconductor stripe to form a first semiconductor pillar; forming a first charge storage dielectric, Positioning adjacent to a first exposed side of the first semiconductor pillar; forming a first control gate adjacent to the first charge storage dielectric; forming a second charge storage dielectric, Positioning adjacent to a second exposed side of the first semiconductor pillar; and forming a second control gate adjacent to the second charge storage dielectric. The method of claim 25, wherein: a defined boundary exists between the semiconductor active region of the first memory cell and the semiconductor active region of the second memory cell, the first semiconductor pillar The body includes the semi-conductive region of the first memory unit 129933.doc 200908233; and the second conductivity type semi-conductive region. The first semiconductor pillar includes a first conductivity type semiconductor between the first body regions. The method of the first semiconductor pillar is further included: depositing over the first semiconductor pillar. a film and a control gate layer; the charge storage dielectric thinly planarizes the charge storage dielectric film and the control gate layer to expose the first semiconductor pillar and form the first charge storage dielectric and a second charge storage dielectric and the first control gate and the second control gate; partially etching the first control gate and the second control gate; and the first partially etched control gate and Forming a second insulating layer over the second partially etched control gate; and planarizing the third insulating layer to expose the first semiconductor pillar. 28. The method of claim 24, further comprising forming a selective transistor on a substrate or in a trench in the plate. The method of claim 28, further comprising: epitaxially growing on a semiconductor active region of the selective transistor - a second semiconductor layer; planarizing the second semiconductor layer; Patterning a second semiconductor strip extending in a first direction; forming a third insulating layer adjacent to the exposed lateral side of the second semiconductor strip; 129933.doc 200908233 Patterning the second semiconductor导体 a conductor columnar stripe to form a second half; f forming a third charge storage, one of the pillars being exposed to the side: adjacent to the second semiconductor power to form a third control room a fourth charge storage dielectric adjacent to the third charge storage dielectric, positioned adjacent to the second exposed side of the second semiconductor pillar; and forming a fourth control gate, The method of claim 29, wherein: the second semiconductor pillar comprises the second memory active region; The inclusions include - (4) a first conductivity type semiconductor region located in the second conductivity type body region. </ RTI> The method of claim 30, wherein the second semiconductor pillar is not aligned with the semiconductor active region of the first memory cell. 32. The method of claim 29, wherein the step of forming the selective transistor comprises: layering: crystallizing a third semiconductor on the substrate or in a substrate to planarize the third semiconductor layer; The third semiconductor layer is patterned into a third semiconductor stripe in a first direction; 129933.doc 200908233 forms a fourth insulating layer adjacent to the exposed lateral side of the third semiconductor stripe; patterning the third semiconductor Striping to form a third semiconductor pillar; forming a first gate dielectric positioned adjacent to the first exposed side of the third semiconductor pillar; forming a first selected gate, Adjacent to the first gate dielectric; forming a second gate dielectric positioned adjacent to the exposed side of the third semiconductor pillar; and opening/forming a second selected gate It is adjacent to the second gate dielectric. The method of claim 3, wherein: the third semiconductor pillar comprises the semiconductor active region of the selective transistor; and the second semiconductor pillar comprises a second conductivity type semiconductor region A first conductivity type semiconductor region between. The method of claim 33, wherein the third semiconductor pillar is not aligned with the second semiconductor pillar. 35. A method of making a single, three-dimensional, and string, which is included in a second. A first memory cell unit is formed over the hidden body unit, wherein at least one of the semiconductor functional regions of the first memory cell unit comprises a recrystallized polycrystalline stone. 36. The method of claim 35, further comprising: forming an amorphous germanium or polysilicon semiconductor active region of the first memory cell over the second memory cell; and 129933.doc -10· 200908233 The amorphous germanium or polycrystalline germanium semiconductor active region of a memory cell is recrystallized to form a multi-small semiconductor active region in which one of the first memory cells is recrystallized. 37. The method of claim 36, further comprising: forming a selection transistor on a substrate or a trench in the substrate; forming a second memory cell over the selected transistor An amorphous or a polycrystalline germanium semiconductor active region; and recrystallizing the amorphous or polycrystalline semiconductor active region of the hexa-implex unit to form one of the second memory cells to recrystallize The spar semiconductor operating area. 3. The method of claim 37, wherein: the semiconductor active region of the ^5 丨 丨 body unit comprises a first pillar, the first pillar comprising a semiconductor region of the second conductivity type a first conductive type semiconductor region; the semiconductor active region of the second memory cell includes a second pillar, and the second pillar includes a second region between the second conductivity type semiconductor regions a conductive type semiconductor region; a one of the first pillars of the second conductive type semiconductor region contacting one of the second conductive type semiconductor regions; and the first conductive material is not Aligned with the second pillar. 39. The method of claim 38, further comprising: forming a charge storage dielectric positioned adjacent to the first conductivity type semiconductor region of the first pillar; 129933.doc 200908233 forming - - controlling the gate 'position adjacent to the mass; the electrical storage dielectric forms a second charge storage dielectric positioned adjacent to the first conductivity type semiconductor region in the second pillar And forming a second control gate positioned adjacent to the second charge storage dielectric. 40. A method of making a single 'three-dimensional inverse and string, which includes: 在一第二記憶體單元上方形成一第一記憶體單元;及 平坦化該反及串之至少一區域。 4 1.如請求項40之方法,其進一步包含: 在一基板上方形成該第二記憶體單元; 在該第二記憶體單元之一半導體作用區域上磊晶地生 長一第一半導體層; 平坦化該第一半導體層; 將該第一半導體層圖案化為一在一第一方向上延伸之 第一半導體條紋; 形成一第一絕緣層,其鄰近於該第一半導體條紋之暴 露之橫向側面; 圖案化該第一半導體條紋以形成一第一半導體柱狀 物; 形成一第一電荷儲存介電質,其鄰近於該第一半導體 柱狀物之一第一暴露之側面而定位; 形成一第一控制閘極,其鄰近於該第一電荷儲存介電 質; 129933.doc -12- 200908233 形成一第二電荷儲存介電質,其鄰近於該第一半導體 柱狀物之一第二暴露之側面而定位;及 形成一弟·一控制閘極,其鄰近於該第·一電何儲存介電 質。 42·如請求項4 1之方法,其中: 該第一半導體柱狀物包含該第一記憶體單元之—半導 體作用區域;且 該第一半導體柱狀物包含一位於第二導電性類型半導 體區域之間的第一導電性類型半導體區域。 43.如請求項42之方法,其進一步包含: 在該第一半導體柱狀物上方沈積一電荷儲存介電質薄 膜及一控制閘極層; 平坦化該電荷儲存介電質薄膜及該控制閘極層,以暴 露該第一半導體柱狀物,且形成該第一電荷儲存介電質 及該第二電荷儲存介電質以及該第一控制閘極及該第二 控制閘極; 部分地蝕刻該第一控制閘極及該第二控制閘極; 在該第-部分地蝕刻之控制閘極及該第二部分地蝕刻 之控制閘極上方形成一第二絕緣層,·及 平坦化該第二絕緣層以暴露該第—半導體柱狀物。 44.如請求項4〇之方法,其中平坦化之該步驟包含藉由化學 機械抛光來平坦化。 三維陣列之方 45. —種製作半導體記憶體裝置之一單體 法,其包含: 129933.doc -13- 200908233 僅使用兩個光微影步驟而在一第一裝置層級中形成選 擇電晶體之一陣列;及 僅使用兩個額外光微影步驟而在與該第一裝置層級不 同之一第二裝置層級中形成記憶體單元之—陣列。 46.如請求項45之方法,其進一步包含: 在一第一半導體層上方形成一第一光阻層; 經由一第一光微影遮罩而暴露該第一光阻層; 將該第一半導體層圖案化為複數個第—條紋; 在該複數個第一條紋上方形成一第二光阻層; 經由一第二光微影遮罩而暴露該第二光阻層; 將該複數個第一條紋圖案化為選擇電晶體之該陣列之 複數個半導體柱狀物作用區域; 在選擇電晶體之該陣列上方形成一第二半導體層; 在該第二半導體層上方形成一第三光阻層; 經由一第三光微影遮罩而暴露該第三光阻層; 將該第二半導體層圖案化為複數個第二條紋; 在該複數個第二條紋上方形成一第四光阻層; 經由一第四光微影遮罩而暴露該第四光阻層;及 將該複數個第二條紋圖案化為該第二裝置層級中之記 憶體單元之該陣列的複數個半導體柱狀物作用區域。 47.如請求項46之方法,其進一步包含: 在該第二裝置層級中之記憶體單元之該陣列上方形成 一第三半導體層; 在該第三半導體層上方形成一第五光阻層; 129933.doc 14 200908233 經由—第五光微影遮罩而暴露該第五光阻層; 將該第三半導體層圖案化為複數個第三條紋; 在該複數個第三條紋上方形成一第六光阻層; 經由一第六光微影遮罩而暴露該第六光阻層; 將, 复數個第三條紋圖案化為一第三裝置層級中之記 憶體單元之-陣列的複數個半導體柱狀物作用區域。 48, 如請求項45之方法,其中半導體記憶體裝置之該陣列包 3垂直反及串之^—陣列。 fForming a first memory cell over a second memory cell; and planarizing at least one region of the inverse string. The method of claim 40, further comprising: forming the second memory unit over a substrate; epitaxially growing a first semiconductor layer on a semiconductor active region of the second memory unit; Forming the first semiconductor layer; patterning the first semiconductor layer into a first semiconductor strip extending in a first direction; forming a first insulating layer adjacent to the exposed lateral side of the first semiconductor stripe Patterning the first semiconductor strip to form a first semiconductor pillar; forming a first charge storage dielectric positioned adjacent to a first exposed side of the first semiconductor pillar; forming a a first control gate adjacent to the first charge storage dielectric; 129933.doc -12- 200908233 forming a second charge storage dielectric adjacent to a second exposure of the first semiconductor pillar Positioning on the side; and forming a control gate that is adjacent to the first electrical storage medium. 42. The method of claim 41, wherein: the first semiconductor pillar comprises a semiconductor active region of the first memory cell; and the first semiconductor pillar comprises a second conductivity type semiconductor region A first conductivity type semiconductor region between. 43. The method of claim 42, further comprising: depositing a charge storage dielectric film and a control gate layer over the first semiconductor pillar; planarizing the charge storage dielectric film and the control gate a pole layer for exposing the first semiconductor pillar and forming the first charge storage dielectric and the second charge storage dielectric and the first control gate and the second control gate; partially etching The first control gate and the second control gate; forming a second insulating layer over the first partially etched control gate and the second partially etched control gate, and planarizing the first Two insulating layers to expose the first semiconductor pillar. 44. The method of claim 4, wherein the step of planarizing comprises planarizing by chemical mechanical polishing. A method of fabricating a semiconductor memory device, comprising: 129933.doc -13- 200908233 forming a selective transistor in a first device level using only two photolithography steps An array; and an array of memory cells formed in a second device level different from the first device level using only two additional photolithography steps. The method of claim 45, further comprising: forming a first photoresist layer over a first semiconductor layer; exposing the first photoresist layer via a first photolithographic mask; The semiconductor layer is patterned into a plurality of first stripes; a second photoresist layer is formed over the plurality of first stripes; and the second photoresist layer is exposed through a second photolithographic mask; a stripe patterning is selected to select a plurality of semiconductor pillar active regions of the array of transistors; a second semiconductor layer is formed over the array of selected transistors; and a third photoresist layer is formed over the second semiconductor layer Exposing the third photoresist layer via a third photolithography mask; patterning the second semiconductor layer into a plurality of second stripes; forming a fourth photoresist layer over the plurality of second stripes; Exposing the fourth photoresist layer via a fourth photolithography mask; and patterning the plurality of second stripes into a plurality of semiconductor pillars of the array of memory cells in the second device level region. 47. The method of claim 46, further comprising: forming a third semiconductor layer over the array of memory cells in the second device level; forming a fifth photoresist layer over the third semiconductor layer; 129933.doc 14 200908233 exposing the fifth photoresist layer via a fifth photolithography mask; patterning the third semiconductor layer into a plurality of third stripes; forming a sixth over the plurality of third stripes a photoresist layer; exposing the sixth photoresist layer via a sixth photolithography mask; patterning the plurality of third stripes into a plurality of semiconductor pillars of the array of memory cells in a third device level The area of action. 48. The method of claim 45, wherein the array package 3 of the semiconductor memory device is perpendicular to the array of strings. f 49 · 一種單體、三維反及串,其包含: 第5己憶體單元,其位於一第二記憶體單元上方; 一選擇電晶體; 該第一記憶體單元之一第一字線; 該第二記憶體單元之一第二字線; 一位元線; 一源極線;及 該選擇電晶體之一選擇閘極線; 其中: 該第—子線及該第二字線不平行於該位元線;且 該第一字線及該第二字線平行於該源極線及該選擇 閘極線中之至少一者而延伸。 50.如請求項49之反及串,其中: 該反及串垂直地形成於一基板上方; 該選擇電晶體位於一基板上或該基板中之一渠溝中; 該第一記憶體單元位於一第一裝置層級中;且 129933.doc _ 15· 200908233 “ - H單70位於—位於該選擇電晶體上及該第 一裝置層級下方之第二裝置層級中。 51.如請求項50之反及串,其中·· X第。己fe體單%之—半導體作用區域蟲晶地形成於 該第二記憶體單元之一半導體作用區域上; “第一。己隐體單兀之該半導體作用區域磊晶地形成於 該選擇電晶體之一半導體作用區域上; 第電荷儲存&quot;電質位於該第一記憶體單元之該半 導體作用區域與該第一字線之間;且 -第二電荷儲存&quot;質位於該第二記憶體單元之該半 導體作用區域與該第二字線之間。 52.如請求項51之反及串,其中: 該第-記憶體單元之該半導體作心域包含—第一柱 狀物,5亥第一柱狀物包含一位於第二導電性類型半導體 區域之間的第一導電性類型半導體區域; /亥第二記憶體單元之該半導體作料域包含—第二柱 ^物’該第二柱狀物包含一位於第二導電性類型半導體 區域之間的第一導電性類型半導體區域; 該選擇電晶體之該半導體作用區域包含一第三柱狀 物; :第才主狀物中之一第二導電性類型半導體區域接觸 〜第二柱狀物中之—第二導電性類型半導體區域; '亥第一柱狀物不與該第二柱狀物對準,以使得該第一 柱狀物橫向地越過該第二柱狀物而延伸;且 129933.doc -16- 200908233 S亥第一枉狀物不與該第三柱狀物對準,以使得該第二 柱狀物橫向地越過該第三柱狀物而延伸。 53. 如請求項49之反及串,其中: 該第一字線及該第二字線垂直於該位元線而延伸;且 s亥第一子線及5亥第二字線平行於該源極線及該選擇閘 極線而延伸。 54. 如請求項49之反及串,其中: 該第一字線及該第二字線垂直於該位元線而延伸;且 該第一字線及該第二字線平行於該源極線而延伸。 55. 如請求項49之反及串,其中: 該第一字線及該第二字線垂直於該位元線而延伸;且 該第一字線及該第二字線平行於該選擇閘極線而延 伸。 56. —種單體、三維反及串,其包含:49. A monomer, three-dimensional inverse and string, comprising: a fifth memory unit located above a second memory unit; a selection transistor; a first word line of the first memory unit; a second word line of the second memory unit; a bit line; a source line; and one of the selection transistors selects a gate line; wherein: the first sub-line and the second word line are not parallel to The bit line; and the first word line and the second word line extend parallel to at least one of the source line and the select gate line. 50. The reverse string of claim 49, wherein: the reverse string is formed vertically above a substrate; the selection transistor is located on a substrate or in a trench in the substrate; the first memory unit is located In a first device level; and 129933.doc _ 15· 200908233 "- H single 70 is located in the second device hierarchy on the selected transistor and below the first device level. 51. And a string, wherein · X is a single body - the semiconductor action region is formed on the semiconductor active region of the second memory cell; "first. The semiconductor active region of the hidden body is epitaxially formed on one of the semiconductor active regions of the selective transistor; the first charge storage is located in the semiconductor active region of the first memory cell and the first word Between the lines; and - the second charge storage &quot; is located between the semiconductor active region of the second memory cell and the second word line. 52. The reverse string of claim 51, wherein: the semiconductor core region of the first memory cell comprises a first pillar, and the first pillar of the fifth core comprises a second conductivity type semiconductor region a semiconductor region between the first conductivity type; the semiconductor region of the second memory cell includes a second pillar; the second pillar includes a semiconductor region between the second conductivity type a first conductive type semiconductor region; the semiconductor active region of the selective transistor includes a third pillar; wherein one of the second conductive type semiconductor regions contacts the second pillar a second conductivity type semiconductor region; 'the first pillar is not aligned with the second pillar such that the first pillar extends laterally across the second pillar; and 129933. Doc -16- 200908233 The first weir is not aligned with the third pillar such that the second pillar extends transversely across the third pillar. 53. The reverse string of claim 49, wherein: the first word line and the second word line extend perpendicular to the bit line; and the first sub-line and the fifth second word line are parallel to the The source line and the selected gate line extend. 54. The reverse string of claim 49, wherein: the first word line and the second word line extend perpendicular to the bit line; and the first word line and the second word line are parallel to the source Extend the line. 55. The reverse string of claim 49, wherein: the first word line and the second word line extend perpendicular to the bit line; and the first word line and the second word line are parallel to the select gate Extends the polar line. 56. — A monomer, a three-dimensional inverse and a string, comprising: 一第一記憶體單元,其位於一第二記憶體單元上方. 該第一記憶體單元之一第一字線;及 該第二記憶體單元之一第二字線; 其中: 該苐一字線在第一方向上延伸;且 該第二字線在一與該第一方向不同之第二方向 5 7 ·如請求項5 6之反及串,其中: 該反及串垂直地形成於一基板上方; 一選擇電晶體位於一基板上或該基板中之一渠溝中 129933.doc -17· 200908233 該第,記憶體單元位於—第一震置層級中;且 垓第一。己k體單疋位於—位於該選擇電晶體上及該第 一裝置層級下方之第二裝置層級中。 58. 如請求項57之反及串,其中: 該第一記憶體單元之一半導體作用區域蠢晶地形成於 該第,記憶體單元之一半導體作用區域上; X第&quot;己It體單%之該半導體作用區域蟲晶地形成於 該選擇電晶體之一半導體作用區域上; ,一第—電荷儲存介電f位於㈣—記憶體單元之該半 導體作用區域與該第-字線之間;且 -第二電荷儲存介電質位於該第二記憶體單元之該半 導體作用區域與該第二字線之間。 59. 如請求項58之反及串,其中: ^第-記憶體單元之該半導體作龍域包含—第一柱 該第-柱狀物包含一位於第二導電性類型半導體 '域之間的第-導電性類型半導體區域; °亥第一記憶體單元之兮· m 早凡之該+導體作用^或包含—第二柱 區域之二第ΓΓ包含一位於第二導電性類型半導體 4之間的第—導電性類型半導體區域,· 物; 之4 +導體作用區域包含一第三柱狀 遠第一柱狀物中之— 該第一柱狀物中之—第 該第一柱狀物不與該 第二導電性類型半導體區域接觸 二導電性類型半導體區域; 第一柱狀物對準,以使得該第一 129933.doc -18- 200908233 柱狀物橫向地越過該第二柱狀物而延伸;且 該第二柱狀物不與該第三柱狀物對準,以使得該第二 柱狀物橫向地越過該第三柱狀物而延伸。 6〇.如請求項56之反及串,其中該第一字線垂直於該第二字 線而延伸。 61 _ —種反及陣列,其包含: 垂直反及串之一陣列; 複數個字線; 複數個位元線;及 複數個源極線; 其中: 該等位元線不平行於該等字線; 該等字線不平行於該等源極線;且 該等源極線不平行於該等位元線。 62 ·如請求項6 1之陣列,其中: 該等字線垂直於該等源極線而延伸;且 該等位元線關於該等字線及該等源極線而對角地 伸。 63 .如請求項6 1之陣列,其中: 該等字線垂直於該等位元線而延伸;且 該等源極線關於該等字線及該等位元線而對角地 伸。 6 4 ·如凊求項6 1之陣列,其中: 每一垂直反及串均包含至少兩個垂直配置之記憶體單 129933.doc 200908233 元;且 每一垂直反及串之每一記憶體單元均具有一與該陣列 中之所有其他記憶體單元不同之相關聯之字線、位元線 及源極線組合。 65. 如請求項64之陣列,其中該陣列中之每一記憶體單元均 經調適以個別地加以程式化。 66. —種反及陣列,其包含: 垂直反及串之一陣列;a first memory unit located above a second memory unit. a first word line of the first memory unit; and a second word line of the second memory unit; wherein: the word The line extends in a first direction; and the second word line is in a second direction different from the first direction. 5 7. As in the inverse of the request item 56, wherein: the inverse string is formed vertically in one Above the substrate; a selective transistor is located on a substrate or in a trench in the substrate 129933.doc -17· 200908233 the first, the memory unit is located in the first seismic level; and is first. The body is located in the second device level on the selected transistor and below the level of the first device. 58. The reverse string of claim 57, wherein: a semiconductor active region of the first memory cell is silly formed on the semiconductor active region of the first memory cell; X&quot; % of the semiconductor active region is crystallized on one of the semiconductor active regions of the selective transistor; a first charge storage dielectric f is located between the semiconductor active region of the (four)-memory cell and the first word line And a second charge storage dielectric is between the semiconductor active region of the second memory cell and the second word line. 59. The inverse of the claim 58 wherein: the semiconductor of the first memory cell comprises a long domain - the first pillar of the first pillar comprises a region between the second conductivity type semiconductor domains a first conductivity type semiconductor region; 亥 第一 第一 m m m 早 早 早 早 早 早 + + + + + + + + + + + + + + + + + m m m m m m m m m m m m m m a first conductivity type semiconductor region, the object; the 4 + conductor action region includes a third columnar distal first pillar - the first pillar is - the first pillar is not Contacting the second conductivity type semiconductor region with the second conductivity type semiconductor region; the first pillar is aligned such that the first 129933.doc -18-200908233 pillar laterally crosses the second pillar Extending; and the second pillar is not aligned with the third pillar such that the second pillar extends transversely across the third pillar. 6. The inverse of the request item 56, wherein the first word line extends perpendicular to the second word line. 61 _ - an inverse array, comprising: an array of vertical inverses and strings; a plurality of word lines; a plurality of bit lines; and a plurality of source lines; wherein: the bit lines are not parallel to the words Lines; the word lines are not parallel to the source lines; and the source lines are not parallel to the bit lines. 62. The array of claim 61, wherein: the word lines extend perpendicular to the source lines; and the bit lines extend diagonally about the word lines and the source lines. 63. The array of claim 61, wherein: the word lines extend perpendicular to the bit lines; and the source lines extend diagonally about the word lines and the bit lines. 6 4 - The array of claim 6 1 wherein: each of the vertical inverse strings comprises at least two vertically arranged memory sheets 129933.doc 200908233; and each vertical inverse string of each memory unit Each has a different combination of word lines, bit lines, and source lines than all other memory cells in the array. 65. An array of claim 64, wherein each memory cell in the array is adapted to be individually programmed. 66. An anti-array comprising: an array of vertical inverses and strings; 複數個字線; 複數個位元線;及 一共同源極平面,其電連接該等垂直反及串中之 項Μ之陣列,其中該共同源極平面包含一導電 ΰ f貝67之陣列,其中該導 串中之每导玉板電接觸該等垂直反及 69.一種製作j的—選擇電晶體之-作用區域。 |體、三維反及串之方法,其包含: 形成—選擇電晶體; 第—記憶體單元 第一字線; 弟一字線; 在第二記憶體單元上方形成— 形成—用於該第一記憶體單元之 形成—用於該第二記憶體單元之 形成—位元線; 形成—源極線;及 用於該選擇電晶體之選擇間極線; 129933.doc -20- 200908233 其中: 该第一字線及該第二字線不平行於該位元線;且 该第一字線及該第二字線平行於該源極線及該選擇 閘極線中之至少一者而延伸。 70. 如請求項69之方法,其中: 該反及串垂直地形成於一基板上方; &quot;亥選擇電晶體位於一基板上或該基板中之一渠溝中; °亥第一s己憶體單元位於一第一裝置層級申;且 — 5己憶體單元位於一位於該選擇電晶體上及該第 裝置層級下方之第二裝置層級中。 71. 如請求項7〇之方法,其中: a =第—記憶體單元之一半導體作用區域磊晶地形成於 °亥第一 5己憶體單元之一半導體作用區域上; ;該第二記憶體單元之該丨導體作用【域蟲晶地形成於 5亥選擇電晶體之一半導體作用區域上; 一第—電荷儲存介電質位於該第一記憶體單元之該半 導體作用區域與該第一字線之間;且 第二電荷儲存介電質位於該第二記憶體 導體作用區域與該第二字線之間。 以 72. 如請求項71之方法,其中: 、°亥第—記憶體單元之該半導體作用區域包含—第一柱 狀物,該第一柱狀物包含一位於第二導電性類型半導體 區域之間的第一導電性類型半導體區域; D亥第一記憶體單元之該半導體作用區域包含—第二柱 129933.doc -21 - 200908233 狀物’ 5亥第-柱狀物包含 '一位於 -道册i » ^ ^ ^ 〇 5 W孓弟一導電性類型半導體 區域之間的第一導電性類型半導體區域; 該選擇電晶體之該半導體作用區域包含一第三柱狀 物; 該第一柱狀物中之一第二導電性類型半導體區域接觸 該第二柱狀物中之一第二導電性類型半導體區域; 該第一柱狀物不與該第二柱狀物對準,以使得該第一 柱狀物橫向地越過該第二柱狀物而延伸;且 §亥第二柱狀物不與該第三柱狀物對準,以使得該第二 柱狀物橫向地越過該第三柱狀物而延伸。 73. 如請求項69之方法,其中: 該第一字線及該第二字線垂直於該位元線而延伸;且 該第一字線及該第二字線平行於該源極線及該選擇閘 極線而延伸。 74. 如請求項69之方法’其中: f 該第—字線及該第二字線垂直於該位元線而延伸;且 該第一字線及該第二字線平行於該源極線而延伸。 75_如請求項69之方法,其中: 該第—字線及該第二字線垂直於該位元線而延伸;且 該第一字線及該第二字線平行於該選擇閘極線而延 伸。 76. —種製作—單體、三維反及串之方法,其包含: 在—第二記憶體單元上方形成一第一記憶體單元; 形成一用於該第一記憶體單元之第一字線; 129933.doc -22· 200908233 /成用於該第二記憶體單元之第二字線; 形成一位元線;及 形成一源極線; 其中: 該第—字線在第一方向上延伸;且 5亥第二字線在一與該第一方向不同之第二方向上延 伸。 77. 如請求項76之方法,其中: 該反及亊垂直地形成於一基板上方; 選擇電晶體位於一基板上或該基板中之一渠溝中; /第5己憶體單元位於一第一裝置層級中;且 該第一上 以 一 s己憶體單元位於一位於該選擇電晶體上及該第 -裝置層級下方之第二裝置層級中。 78. 如請求項77之方法,其中: ^ „亥第—記憶體單元之一半導體作用區域磊晶地形成於 及第己憶體單元之一半導體作用區域上; 該第—δ己憶體單元之該半導體作用區域磊晶地形成於 5亥選擇電晶體之—半導體作用區域上; —電荷儲存介電質位於該第一記憶體單元之該半 導體作用區域盘#&amp; 匕Q興6亥苐一字線之間;且 ,___^ 贫一 一電荷儲存介電質位於該第二記憶體單元之該半 導體作用區域與該第二字線之間。 79_如請求項78之方法,其中: β亥第 C憶體單元之該半導體作用區域包含一第一枉 129933.doc -23- 200908233 狀物’該第一柱狀物包含一位於第-莫带以a 々、罘一导電性類型半導體 區域之間的第一導電性類型半導體區域; 該第二記憶體單元之該半導體作用區域包含一包含一 第二柱狀物,該第二柱狀物位於第二導電性類型半導體 區域之間的第一導電性類型半導體區域; 該選擇電晶體之該半導體作用區域包含一第三柱狀 物; 該第一柱狀物中之ϋ電性類型+導體區域接觸 該第二柱狀物中之一第二導電性類型半導體區域; 該第一柱狀物不與該第二柱狀物對準,以使得該第一 柱狀物橫向地越過該第二柱狀物而延伸;且 該第二柱狀物不與該第三柱狀物對準,以使得該第二 柱狀物橫向地越過該第三柱狀物而延伸。 80·如請求項76之方法,其中該第一字線垂直於該第二字線 而延伸。 81. —種製作一反及陣列之方法,其包含: 形成垂直反及串之一陣列; 形成複數個字線; 形成複數個位元線;及 形成複數個源極線; 其中: 該等位元線不平行於該等字線; 該等字線不平行於該等源極線;且 該等源極線不平行於該等位元線。 J29933,doc -24- 200908233 82. 如請求項81之方法,其中: °亥等字線垂直於該等源極線而延伸;且 5亥等位元線關於該等字線及該等源極線而對角地延 伸0 83. 如請求項8 1之方法,其中: 6亥等字線垂直於該等位元線而延伸;且 5亥等源極線關於該等字線及該等位元線而對角地延 伸。 84. 如請求項81之方法,其中: 每—垂直反及串均包含至少兩個垂直配置之記憶體單 元;且 每—垂直反及串之每一記憶體單元均具有一與該陣列 中之所有其他記憶體單元不同之相關聯之字線、位元線 及源極線組合。 85. 如w求項84之方法,其中該陣列中之每一記憶體單元均 經調適以個別地加以程式化。 86. —種製作一反及陣列之方法,其包含: 形成垂直反及串之一陣列; 形成複數個字線; 形成複數個位元線;及 形成一共同源極平面,其電連接該等垂直反及串中之 每一者。 87. 如請求項86之方法,其中該共同源極平面包含一導電 板0 129933.doc •25- 200908233 8 8.如請求項 、 &lt;万法,其中該導電板雷姑細# _ 串中之每、 电板電接觸該等垂直反及 89. -種單體_、一選擇電晶體之-作用區域。 元上方:第三維反及串,其包含-位於-第二記憶體單 ^弟—記憶體單元,其中: 方:!一記憶體單元之-半導體作用區域包含-在自上 第一&quot;次矩形秩截面之第一柱狀物,該 的第匕含一位於第二導電性類型半導體區域之間 的弟-導電性類型半導體區域; 方記憶體單元之一半導體作用區域包含-在自上 當具有—正方形或矩形橫截面之第二柱狀物,該 柱狀物位於該第-柱狀物之下,該第二柱狀物包含 一位於第二導電性類型半導體區域之間的第-導電性類 型半導體區域;且 乂第柱狀物中之一第二導電性類型半導體區域接觸 該第二柱狀物中之—第二導電性類型半導體區域。 9〇·如請求項89之反及串,其進—步包含—位於該第二記憶 體單元下方之選擇電晶體。 91.如請求項90之反及串,其中: 該反及串垂直地形成於一基板上方; 該選擇電晶體位於一基板上或該基板中之一渠溝中; 該第一記憶體單元位於一第一裝置層級中;且 該第二記憶體單元位於一位於該選擇電晶體上及該第 一裝置層級下方之第二裝置層級中。 92.如請求項90之反及串,其中: 129933.doc -26- 200908233 β亥第一記憶體單元之該半導體作用區域磊晶地形成於 »亥第—記憶體單元之—半導體作用區域上; 該第二記憶體旱元之該半導體作用區域蟲晶地形成於 該選擇電晶體之一半導體作用區域上; 一第—電荷储存介電質位於該第一記憶體單元之該半 導體作用區域與一第—字線之間;且 一第二電荷儲存介電質位於該第二記憶體單元之該半 導體作用區域與一第二字線之間。 93 .如請求項9〇之反及串,其中: 该選擇電晶體之該半導體作用區域包含一第三柱狀 物;且 該第二柱狀物不與該第三柱狀物對準,以使得該第 柱狀物橫向地越過該第三柱狀物而延伸。 94,如請求項90之反及串’其進一步包含: 一位元線; 一源極線;及 該選擇電晶體之一選擇閘極線。 第二記憶體單 95.—種單體、三維反及串,其包含一位於一 元上方之第一記憶體單元,其中: 該第一記憶體單元之一半導體作用區域包含一第一柱 狀物’該第一柱狀物包含一位於第二導電性類型半導體 區域之間的第一導電性類型半導體區域; 該第二記憶體單元之一 +導體作用1 土或包含_位於1 第-柱狀物下之第二柱狀物’該第二柱狀物包含二 129933.doc -27- 200908233 第二導電性類型半導體區域之間的第一導電性類型半導 體區域; 該第一柱狀物中之一第二導電性類型半導體區域接觸 s亥第一柱狀物中之一第二導電性類型半導體區域;且 該第一s己憶體單元之該半導體作用區域或—選擇電晶 體之一半導體作用區域中之至少一者位於一基板中之一 渠溝中。 96.如請求項95之反及串,其進一步包含該選擇電晶體該 選擇電B曰體包含位於該基板中之該渠溝中之該半導體作 用區域。 97·如請求項96之反及串,其中: 該反及串垂直地形成於一基板上方; 該選擇電晶體位於一基板上或該基板中之一渠溝中; 該第一 δ己憶體單元位於一第一裝置層級中;且 §玄第一 δ己憶體單元位於一位於該選擇電晶體上及該第 1} 一裝置層級下方之第二裝置層級中。 98.如請求項97之反及串,其中: 該第一記憶體單元之料導體作用以或遙晶地形成於 s玄第一 §己憶體單元之一半導體作用區域上; 該第二記憶體單元之該半導體作用區域蟲晶地形成於 該選擇電晶體之一半導體作用區域上; 一第一電荷儲存介電質位於該第一記憶體單元之該半 導體作用區域與一第一字線之間;且 一第二電荷儲存介電質位於該第二記憶體單元之該半 129933.doc -28- 200908233 導體作用區域與一第二字線之間。 99. 如請求項96之反及串,其中: 第 柱狀 δ亥選擇電晶體之該半導體作用區域包含 物;且 該第二柱狀物不與該第三柱狀物對準,以使得节 柱狀物橫向地越過該第三柱狀物而延伸。 100. 如請求項95之反及串,其中該第二記 ί G隐體早几之該半導 體作用區域位於該基板中之該渠溝中。 101. 一種單體、三維反及串,其包含一位 -L _ 、弟一§己憶體單 凡上方之第一記憶體單元,其中: 該第一記憶體單元之一半導體作用區域包含一第—柱 狀物,該第一柱狀物包含一位於第二導 主 、 ^ 等冤性類型半導體 區域之間的第一導電性類型半導體區域; 該第二記憶體單元之一半導體作用區域包含一位於該 第-柱狀物下之第二柱狀物’該第二桎狀物包含一位於 第二導電性類型半導體區域之間的第—導電性類型 體區域; 該第-柱狀物中之-第二導電性類型半導體區域接觸 該第二柱狀物中之一第二導電性類型半導體區域;且 該第一柱狀物不與該第二柱狀物對準,以使得該第一 柱狀物橫向地越過該第二柱狀物而延伸。 如請求項101之反及串’其進一步包含—位於該第二記 憶體單元下方之選擇電晶體。 103.如請求項1〇2之反及串,其中: 129933.doc -29- 200908233 該反及串垂直地形成於一基板上方; 該選擇電晶體位於一基板上或該基板令之一渠溝中; 該第一記憶體單元位於一第一裝置層級中·,且 該第二記憶體單元位於—位於該選擇電晶體上及該第 一裝置層級下方之第二裝置層級尹。 104. 如請求項1 03之反及串,其中: 該第一記憶體單元之該半導體作用區域蟲晶地形成於 該第二記憶體單元之一半導體作用區域上; 該第二記憶體單元之該半導體作用區域遙晶地形成於 該選擇電晶體之一半導體作用區域上; 一第-電荷儲存介電質位於該第—記憶體單元之該半 導體作用區域與一第—字線之間;且 -第二電荷儲存介ff位於該第二記憶體單元之該半 導體作用區域與一第二字線之間。 105. 如請求項102之反及串,其中: 該選擇電晶體之該半導體作用區域包含一第三柱狀 物;且 /第一柱狀物不與該第三柱狀物對準,以使得該第二 柱狀物橫向地越過該第三柱狀物而延伸。 106. 如請求項104之反及串’其進一步包含: 一位元線; 一源極線;及 忒選擇電晶體之一選擇閘極線。 107. 如請求項106之反及串,其中: 129933.doc -30· 200908233 ^ 子線及该第二字線垂直於該位元線而延伸丨且 /第子線及该第二字線平行於該源極線及該選擇閘 極線中之至少一者而延伸。 108.如請求項1〇4之反及串其中: 該第一字線在第一方向上延伸;且 該弟二字線在一與該第一方向不同之第二方向上延 伸。 109 —種製作一單體 二維反及串之方法,其包含在一第二 。己隐體單凡之一半導體作用區域上方形成一第一記憶體 單兀之一半導體作用區域,其中: '亥第一 s己憶體單元之該半導體作用區域包含一在自上 方觀看B寸具有一正方形或矩形橫載面之第一枉狀物該 第柱狀物包含一位於第i導電纟類型丨導體區域之間 的第一導電性類型半導體區域; °亥第一 §己憶體單“該半導體作用區域包含〆在自上a plurality of word lines; a plurality of bit lines; and a common source plane electrically coupled to the array of the vertical and the columns of the string, wherein the common source plane comprises an array of conductive ΰ f Wherein each of the guide plates in the lead string is electrically contacted with the vertical opposition 69. an actuating region of the selected transistor. a method of body, three-dimensional inverse and string, comprising: forming-selecting a transistor; a first word line of the first memory cell; a word line of the second memory; forming over the second memory cell - forming - for the first Forming a memory cell - for forming a second memory cell - a bit line; forming a source line; and selecting a polarity line for the selected transistor; 129933.doc -20- 200908233 wherein: The first word line and the second word line are not parallel to the bit line; and the first word line and the second word line extend parallel to at least one of the source line and the select gate line. 70. The method of claim 69, wherein: the reverse string is formed vertically above a substrate; &quot; the selection transistor is located on a substrate or in a trench in the substrate; The body unit is located at a first device level; and the 1-5 unit is located in a second device level on the selection transistor and below the device level. 71. The method of claim 7, wherein: a = a semiconductor functional region of the first memory cell is epitaxially formed on a semiconductor active region of the first 5th memory cell; The 丨 conductor function of the body unit is formed on a semiconductor active region of the 5 Hz selective transistor; a first charge storage dielectric is located in the semiconductor active region of the first memory unit and the first Between the word lines; and the second charge storage dielectric is between the second memory conductor active region and the second word line. The method of claim 71, wherein: the semiconductor active region of the memory cell comprises a first pillar, the first pillar comprising a semiconductor region of the second conductivity type The first conductive type semiconductor region; the semiconductor active region of the DH first memory cell includes - the second pillar 129933.doc -21 - 200908233, the '5 haidi-column contains 'one-way Booklet i » ^ ^ ^ 〇5 W 孓 a first conductivity type semiconductor region between the conductive type semiconductor regions; the semiconductor active region of the selective transistor includes a third pillar; the first pillar One of the second conductivity type semiconductor regions contacts one of the second pillars of the second conductivity type semiconductor region; the first pillar is not aligned with the second pillar such that the first a pillar extends laterally across the second pillar; and the second pillar is not aligned with the third pillar such that the second pillar laterally crosses the third pillar Extending like a substance. 73. The method of claim 69, wherein: the first word line and the second word line extend perpendicular to the bit line; and the first word line and the second word line are parallel to the source line and The gate line is selected to extend. 74. The method of claim 69, wherein: f the first word line and the second word line extend perpendicular to the bit line; and the first word line and the second word line are parallel to the source line And extended. The method of claim 69, wherein: the first word line and the second word line extend perpendicular to the bit line; and the first word line and the second word line are parallel to the select gate line And extended. 76. A method of fabricating a single cell, a three-dimensional inverse, and a string, comprising: forming a first memory cell over the second memory cell; forming a first word line for the first memory cell 129933.doc -22· 200908233 / is used for the second word line of the second memory unit; forming a bit line; and forming a source line; wherein: the first word line extends in the first direction And the 5th second word line extends in a second direction different from the first direction. 77. The method of claim 76, wherein: the inverse is formed vertically above a substrate; the selective transistor is located on a substrate or in a trench in the substrate; / the fifth memory element is located in a In a device level; and the first upper suffix unit is located in a second device level on the select transistor and below the first device level. 78. The method of claim 77, wherein: ^ „海第—a semiconductor functional region of one of the memory cells is epitaxially formed on a semiconductor active region of the first memory cell; the first δ hexamor cell The semiconductor active region is epitaxially formed on the semiconductor active region of the 5H selection transistor; the charge storage dielectric is located in the semiconductor active region of the first memory cell. #&#; And a method of claim 78, wherein: ___^ a charge storage medium is located between the semiconductor active region of the second memory cell and the second word line. The semiconductor active region of the β海第C memory unit includes a first 枉129933.doc -23- 200908233 ′′ the first pillar includes a conductivity type of a 々, 罘, 罘a first conductivity type semiconductor region between the semiconductor regions; the semiconductor active region of the second memory cell includes a second pillar, the second pillar being located in the second conductivity type semiconductor region a first conductivity type semiconductor region; the semiconductor active region of the selective transistor includes a third pillar; the electrical conductivity type + conductor region of the first pillar contacts the second pillar a second conductivity type semiconductor region; the first pillar is not aligned with the second pillar such that the first pillar extends laterally across the second pillar; and the second The pillar is not aligned with the third pillar such that the second pillar extends laterally across the third pillar. 80. The method of claim 76, wherein the first word line is vertical Extending the second word line. 81. A method for fabricating an inverse array, comprising: forming an array of vertical inverses and strings; forming a plurality of word lines; forming a plurality of bit lines; and forming a plurality of a source line; wherein: the bit lines are not parallel to the word lines; the word lines are not parallel to the source lines; and the source lines are not parallel to the bit lines. J29933,doc -24- 200908233 82. The method of claim 81, wherein: The line extends perpendicular to the source lines; and the 5 haith bit line extends diagonally with respect to the word lines and the source lines. 83. The method of claim 8 1 wherein: The line extends perpendicular to the bit line; and the source line such as 5 hai extends diagonally with respect to the word line and the bit line. 84. The method of claim 81, wherein: The strings each include at least two vertically arranged memory cells; and each of the vertical and reverse memory cells has an associated word line, bit line different from all other memory cells in the array And source line combination. 85. The method of claim 84, wherein each of the memory cells in the array is adapted to be individually programmed. 86. A method of fabricating an inverse array, comprising: forming an array of vertical inverses and strings; forming a plurality of word lines; forming a plurality of bit lines; and forming a common source plane, electrically connecting the lines Vertically reverses each of the strings. 87. The method of claim 86, wherein the common source plane comprises a conductive plate 0 129933.doc • 25- 200908233 8 8. If the request item, &lt; 10,000, wherein the conductive plate is in the _ _ string Each of the electric plates is electrically contacted with the vertical opposition and 89. - a selective region of the transistor. Above the element: the third dimension and the string, which contains - located in the second memory - the memory unit, where: Party:! a semiconductor unit-semiconductor active region comprising - a first pillar from a first &quot;sub-rectangular rank cross section, the third layer comprising a second conductivity between the second conductivity type semiconductor regions Type semiconductor region; one of the square memory cells comprising a second pillar having a square or rectangular cross section, the pillar being located below the first pillar, the second pillar The first conductivity type semiconductor region between the second conductivity type semiconductor regions; and one of the second conductivity type semiconductor regions of the first pillar contacts the second pillar A two-conductivity type semiconductor region. 9. In the case of the inverse of the claim 89, the further step comprises - selecting the transistor below the second memory unit. 91. The reverse string of claim 90, wherein: the reverse string is formed vertically above a substrate; the selection transistor is located on a substrate or in a trench in the substrate; the first memory unit is located In a first device level; and the second memory unit is located in a second device level on the selection transistor and below the first device level. 92. The inverse of the claim 90, wherein: 129933.doc -26- 200908233 The semiconductor active region of the first memory cell of the hexa-helium is epitaxially formed on the semiconductor-active region of the memory cell The semiconductor active region of the second memory device is formed on the semiconductor active region of the selective transistor; a first charge storage dielectric is located in the semiconductor active region of the first memory cell Between a first word line and a second charge storage dielectric between the semiconductor active region of the second memory cell and a second word line. 93. The reverse string of claim 9 wherein: the semiconductor active region of the selective transistor comprises a third pillar; and the second pillar is not aligned with the third pillar The pillars are caused to extend laterally across the third pillar. 94. The reverse of the claim 90, wherein the string further comprises: a bit line; a source line; and one of the selected transistors selects the gate line. a second memory unit 95. - a monomer, a three-dimensional inverse and a string, comprising a first memory unit above a unit, wherein: a semiconductor active region of the first memory unit comprises a first pillar 'The first pillar comprises a first conductivity type semiconductor region between the second conductivity type semiconductor regions; one of the second memory cells + conductor acts 1 earth or contains _ is 1 columnar a second pillar under the object 'the second pillar comprises two first conductivity type semiconductor regions between the second conductivity type semiconductor regions; 129933.doc -27-200908233; a second conductivity type semiconductor region contacts one of the first conductive type semiconductor regions of the first pillar; and the semiconductor active region of the first s-resonant cell or one of the semiconductor functions of the selective transistor At least one of the regions is located in a trench in a substrate. 96. The inverse of claim 95, further comprising the select transistor, the selectable B body comprising the semiconductor active region in the trench in the substrate. 97. The reverse string of claim 96, wherein: the reverse string is formed vertically above a substrate; the selective transistor is located on a substrate or in a trench in the substrate; the first delta memory The unit is located in a first device level; and the first first δ memory unit is located in a second device level on the selection transistor and below the first device level. 98. The inverse of the claim 97, wherein: the material conductor of the first memory cell acts or is telecrystallized on a semiconductor active region of the first sth memory unit; the second memory The semiconductor active region of the bulk cell is formed on the semiconductor active region of the selective transistor; a first charge storage dielectric is located in the semiconductor active region of the first memory cell and a first word line And a second charge storage dielectric is located between the conductor 119933.doc -28-200908233 conductor active region and a second word line of the second memory unit. 99. The reverse string of claim 96, wherein: the semiconductor active region of the columnar δ ray select transistor comprises; and the second pillar is not aligned with the third pillar to cause the knuckle The pillar extends transversely across the third pillar. 100. The reverse string of claim 95, wherein the second semiconductor active region is located in the trench in the substrate. 101. A monomer, a three-dimensional inverse and a string, comprising a first memory unit above a one-L _, a first memory unit, wherein: a semiconductor active region of the first memory unit includes a a first pillar comprising a first conductivity type semiconductor region between the second conductor, and the like semiconductor region; the semiconductor active region of the second memory unit a second pillar under the first pillar, the second dome comprising a first conductivity type body region between the second conductivity type semiconductor regions; the first pillar a second conductivity type semiconductor region contacting one of the second pillars of the second conductivity type; and the first pillar is not aligned with the second pillar such that the first The pillar extends transversely across the second pillar. The reverse of the request item 101 and the string 'which further includes a selection transistor located below the second memory unit. 103. The reverse string of claim 1 〇 2, wherein: 129933.doc -29- 200908233 the reverse string is formed vertically above a substrate; the selection transistor is located on a substrate or the substrate is a trench The first memory unit is located in a first device level, and the second memory unit is located at a second device level located on the selection transistor and below the first device level. 104. The reverse string of claim 103, wherein: the semiconductor active region of the first memory cell is crystallized on a semiconductor active region of the second memory cell; the second memory cell The semiconductor active region is remotely formed on one of the semiconductor active regions of the selected transistor; a first charge storage dielectric is located between the semiconductor active region of the first memory cell and a first word line; a second charge storage medium ff is located between the semiconductor active region of the second memory cell and a second word line. 105. The reverse string of claim 102, wherein: the semiconductor active region of the selected transistor comprises a third pillar; and / the first pillar is not aligned with the third pillar such that The second pillar extends transversely across the third pillar. 106. The reverse of the claim 104, wherein the string further comprises: a bit line; a source line; and 之一 selecting one of the transistors to select the gate line. 107. The inverse of the request item 106, wherein: 129933.doc -30· 200908233 ^ the sub-line and the second word line extend perpendicular to the bit line and/the second sub-line and the second word line are parallel Extending in at least one of the source line and the select gate line. 108. The reverse of the string of claim 1 〇 4 wherein: the first word line extends in a first direction; and the second word line extends in a second direction that is different from the first direction. 109. A method of making a single-dimensional two-dimensional inverse and string, which is included in a second. Forming a semiconductor active region of a first memory cell above one of the semiconductor active regions, wherein: the semiconductor active region of the first sth memory cell includes a B-inch view from above a first dove of a square or rectangular cross-sectional surface, the first pillar comprising a first conductivity type semiconductor region between the ith conductive 纟 type 丨 conductor regions; The semiconductor active region contains 方觀看時具有—正方形或矩形撗截面之第二枉狀物,該 第二柱狀物位於該第—柱狀物下,該第二柱狀物包含一 位於第一導電性類型半導體區域之間的第一導電性類型 半導體區域;且 该第一柱狀物中之—第二導電性類型半導體區域接觸 該第二柱狀物中之一第二導電性類塑半導體區域。 110·如請求項1 〇 9之方沐,甘、办 万去其進—步包含在該第二記憶體單 元下方形成一選擇電晶體。 111 ·如請求項11 〇之方法,其中: 129933.doc •31 - 200908233 該反及串垂直地形成於一基板上方; 該選擇電晶體位於一基板上或該基板中之一渠溝中; 該第一記憶體單元位於一第一裝置層級中;且 該第二記憶體單元位於一位於該選擇電晶體上及該第 一裝置層級下方之第二裝置層級中。 112. 如請求項111之方法,其中: 該第一記憶體單元之該半導體作用區域磊晶地形成於 該第二記憶體單元之一半導體作用區域上; 該第二記憶體單元之該半導體作用區域磊晶地形成於 該選擇電晶體之一半導體作用區域上; 一第一電荷儲存介電質位於該第一記憶體單元之該半 導體作用區域與一第一字線之間;且 第一電何儲存介電質位於該第二記憶體單元之該半 導體作用區域與一第二字線之間。 113. 如古矣杰植1 1 Λ &gt;斗*、l -a second weir having a square or rectangular cross section when viewed from the side, the second pillar being located under the first pillar, the second pillar comprising a region between the first conductivity type semiconductor regions a first conductivity type semiconductor region; and the second conductivity type semiconductor region of the first pillar contacts one of the second pillars of the second pillar-shaped semiconductor region. 110. If the request item 1 〇 9 is in the form of a palm, the method of forming a selective transistor is formed under the second memory unit. 111. The method of claim 11, wherein: 129933.doc • 31 - 200908233 the reverse string is formed vertically above a substrate; the selection transistor is located on a substrate or in a trench in the substrate; The first memory unit is located in a first device level; and the second memory unit is located in a second device level on the selection transistor and below the first device level. The method of claim 111, wherein: the semiconductor active region of the first memory cell is epitaxially formed on a semiconductor active region of the second memory cell; the semiconductor function of the second memory cell a region is epitaxially formed on one of the semiconductor active regions of the selected transistor; a first charge storage dielectric is between the semiconductor active region of the first memory cell and a first word line; and the first The storage medium is located between the semiconductor active region of the second memory cell and a second word line. 113. Such as Gu Jiejie 1 1 Λ &gt; bucket *, l - 物;且 區域包含一第三柱狀 該第二柱狀物不與該第三柱狀物對準, 柱狀物橫向土也_該第三柱㈣而延伸 以使得該第二 114.如請求項109之方法,其進一步包含 在一基板上方形成該第二記憶體單元; 在該第二記憶體單元之該半導體作用g 二記憶體單元 長一第一半導體層; 用區域上磊晶地生 平坦化該第一半導體層; 129933.doc -32- 200908233 —將該第一半導體層圖案化為-在-第-方向上延伸之 第一半導體條紋; 咖形成—第—絕緣層,其鄰近於該第—半導體條紋之 露之橫向側面; - 圖案化該第一半導體條紋以形成該第—柱狀物; 形成一第一電荷儲存介電質,其鄰近於該第-柱狀物 之一第一暴露之側面而定位; 所形成-第一控制閘極,其鄰近於該第一電荷儲存介電 質; 形成一第二電荷儲存介電質,其鄰近於該第-柱狀物 之一第二暴露之側面而定位; 6形成一第二控制閘極,其鄰近於該第二電荷儲存介電 質, 在該第-柱狀物上方沈積一電荷儲存介電質薄膜及一 控制閘極層; 平坦化該電荷儲存介電質薄臈及該控制閘極層,以暴 露該第-柱狀物,且形成該第一電荷儲存介電質及該第 二電荷儲存介電質以及該第一控制閘極及該第二控制閘 極; 部分地钮刻該第一㈣閘極A該第二控制閘極; 在該第一部分地蝕刻之控制閘極及該第二部分地蝕刻 之控制閘極上方形成一第二絕緣層; 平坦化該第一絕緣層以暴露該第一柱狀物; 在該基板上或該基板中之一渠溝中形成一選擇電晶 129933.doc -33· 200908233 在該選擇電晶體之—半導體作用Q域上&quot;^晶地生長一 第二半導體層; 平坦化該第二半導體層; 將該第二半導體層圖案化為〆在該第一方向上延伸之 第二半導體條紋; 形成一第三絕緣層,其鄰近於該第二半導體條紋之暴 露之橫向側面; 圖案化該第二半導體條紋以形成δ亥弟二柱狀物; 形成一第二電荷儲存介電質,其鄰近於該第二柱狀物 之一第一暴露之側面而定位; 形成一第二控制閘極,其鄰近於該第三電荷儲存介電 形成一第四電荷儲存介電質,其鄰近於該第二柱狀物 一第二暴露之側面而定位;及 質。 115, —種製作一單體、 形成一第四控制閘極,其鄰近於該第四電荷儲存介電 、二維反及串之方法’其包含在一第二And the region includes a third column, the second column is not aligned with the third column, and the column lateral soil is also extended with the third column (four) to make the second 114. The method of claim 109, further comprising forming the second memory unit over a substrate; the semiconductor effect in the second memory unit; the second memory unit being a first semiconductor layer; Flattening the first semiconductor layer; 129933.doc -32- 200908233 - patterning the first semiconductor layer into a first semiconductor strip extending in a - direction - a coffee-forming insulating layer adjacent to a lateral side of the first semiconductor stripe; - patterning the first semiconductor strip to form the first pillar; forming a first charge storage dielectric adjacent to the first pillar Positioning on an exposed side; forming a first control gate adjacent to the first charge storage dielectric; forming a second charge storage dielectric adjacent to one of the first pillars Positioning on the side of the second exposure Forming a second control gate adjacent to the second charge storage dielectric, depositing a charge storage dielectric film and a control gate layer over the first pillar; planarizing the charge storage medium And the control gate layer to expose the first pillar and form the first charge storage dielectric and the second charge storage dielectric and the first control gate and the second Controlling the gate; partially engraving the first (four) gate A of the second control gate; forming a second insulating layer over the first partially etched control gate and the second partially etched control gate Flattening the first insulating layer to expose the first pillar; forming a selective crystal on the substrate or in a trench in the substrate 129933.doc -33· 200908233 in the selected transistor-semiconductor Forming a second semiconductor layer on the Q domain &lt;^ crystallizes; planarizing the second semiconductor layer; patterning the second semiconductor layer into a second semiconductor strip extending in the first direction; forming a first a third insulating layer adjacent to the a lateral side of the exposed portion of the semiconductor stripe; patterning the second semiconductor stripe to form a δ 弟 二 二 pillar; forming a second charge storage dielectric adjacent to the first exposure of the second pillar Positioning on a side surface; forming a second control gate adjacent to the third charge storage dielectric to form a fourth charge storage dielectric positioned adjacent to a second exposed side of the second pillar ; and quality. 115, a method of fabricating a single cell to form a fourth control gate adjacent to the fourth charge storage dielectric, two-dimensional inverse and string 該第二記憶體 單元之該半導體作用區域包 一位於該 狀物包含一位力第二$電性類型半導體 導電性類型半導體區域; 129933.doc -34· 200908233 第柱狀物下之第二柱狀物,該第二柱狀物包含一位於 第一導電性類型半導體區域之間的第一導電性類型 體區域; 、 f第-柱狀物中之—第二導電性類型半導體區域接觸 該第二柱狀物中之-第二導電性類型半導體區域;且 °亥第一 s己憶體單元之該半導體作用區域或一選擇電晶 體之帛導體作用區域中之至少―者位於一基板中之— 渠溝中。 116. 如請求項115之方法’其進一步包含形成該選擇電晶 體。亥選擇電晶體包含位於該基板中之該渠溝中之該半 導體作用區域。 117. 如„月求項116之方法’其進一步包含在該第二記憶體單 元下方形成一選擇電晶體。 118. 如請求項117之方法,其中: 該反及串垂直地形成於一基板上方; 』 该選擇電晶體位於一基板上或該基板中之一渠溝中; 。亥第一記憶體單元位於一第一裝置層級中;且 該第二記憶體單元位於一位於該選擇電晶體上及該第 一裝置層級下方之第二裝置層級中。 119. 如請求項118之方法,其中: 該第一記憶體單元之該半導體作用區域磊晶地形成於 該第二記憶體單元之一半導體作用區域上; a亥第二記憶體單兀之該半導體作用區域磊晶地形成於 該選擇電晶體之一半導體作用區域上; 129933.doc •35· 200908233 一第一 導體作用 電祷儲存介電質位於該第一 區域與—第一字線之間;且 記憶體單元之該半 —電荷儲存介電質位於該第二記憶體單元之兮 導體作用區域與-第二字線之間。 120•如靖求項115之方法,其中該第二記憶體單元之該 體作用區域位於該基板中之該渠溝中。 121· -種製作—單體、三維反及串之方法,其包含在—第二 。己隐體單7L之一半導體作用區域上方形成一第一記憶體 單元之一半導體作用區域,其中: 5亥第一記憶體單元之該半導體作用區域包含一第—柱 狀物’該第—柱狀物包含一位於第二導電性類型半導體 區域之間的第一導電性類型半導體區域; 該第二記憶體單元之該半導體作用區域包含一位於泫 第一柱狀物下之第二柱狀物,該第二柱狀物包含一位2The semiconductor active region of the second memory cell includes a second pillar of the second type of electrically conductive semiconductor conductivity type semiconductor region; 129933.doc -34· 200908233 a second pillar comprising a first conductivity type body region between the first conductivity type semiconductor regions; and a second conductivity type semiconductor region in the f-column contact a second conductivity type semiconductor region in the two pillars; and at least one of the semiconductor active regions of the first sigma cell or the selected transistor of the selected transistor is located in a substrate — in the trench. 116. The method of claim 115, which further comprises forming the selected electro-optic. The electret transistor comprises a region of the semiconductor that is located in the trench in the substrate. 117. The method of claim 116, further comprising forming a selection transistor under the second memory unit. 118. The method of claim 117, wherein: the reverse string is formed vertically above a substrate The selection transistor is located on a substrate or in a trench in the substrate; the first memory unit is located in a first device level; and the second memory unit is located on the selection transistor 119. The method of claim 118, wherein: the method of claim 118, wherein: the semiconductor active region of the first memory cell is epitaxially formed in one of the second memory cells In the active region, the semiconductor active region of the second memory cell is epitaxially formed on one of the semiconductor active regions of the selected transistor; 129933.doc •35· 200908233 A first conductor acts on the electric prayer storage dielectric Qualitatively located between the first region and the first word line; and the half-charge storage dielectric of the memory cell is located in the conductor active region of the second memory cell 120. The method of claim 115, wherein the body-acting region of the second memory unit is located in the trench in the substrate. a three-dimensional anti-string method, comprising: forming a semiconductor active region of a first memory cell above a semiconductor active region of the second hidden body 7L, wherein: the semiconductor of the first memory cell The active region includes a first pillar - the pillar comprises a first conductivity type semiconductor region between the second conductivity type semiconductor regions; the semiconductor active region of the second memory cell includes a a second pillar located below the first column of the crucible, the second column comprising a bit 2 第二導電性類型半導體區域之間㈣—導電十生類 體區域; 體區域接觸 區域;且 該第一柱狀物中之一第二導電性類型半導 該弟一柱狀物中之一第二導電性類型半導體 該第-柱狀物不與該第二柱狀物對準,以使得該第一 柱狀物橫向地越過該第二柱狀物而延伸。 二記憶體單 122·如請求項121之方法,其進一步包含在該第 元下方形成一選擇電晶體。 123.如請求項122之方法,其中: 該反及串垂直地形成於一基板上方; 129933.doc -36· 200908233 1亥選擇電晶體位於-基板上或該基板中之-渠溝中; 該第一 S己憶體單元位於一第一裝置層級中;且 δ玄第一記憶體單元位於一位於該選擇電晶體上及該第 -裝置層級下方之第二裝置層級中。 124. 如請求項123之方法,其中: 該第一 s己憶體單元之該半導體作用區域磊晶地形成於 該第二記憶體單元之_半導體作用區域上; 5亥第一 §己憶體單元之該半導體作用區域磊晶地形成於 該選擇電晶體之一半導體作用區域上; 一第一電荷儲存介電質位於該第一記憶體單元之該半 導體作用區域與一第一字線之間;且 第一電锜儲存介電質位於該第二記憶體單元之該半 導體作用區域與一第二字線之間。 125. 如請求項122之方法,其中: 該選擇電晶體之該半導體作用區域包含—第三柱狀 物;且 «亥第一柱狀物不與該第三柱狀物對準,以使得該第二 柱狀物橫向地越過該第三柱狀物而延伸。 126. 如請求項121之方法,其進一步包含: 在一基板上方形成該第二記憶體單元; 在該第二記憶體單元之該半導體作用區域上蠢晶地生 長一第一半導體層; 平坦化該第一半導體層; 將該第一半導體層目案化為一在—第一方向上延伸之 J29933.doc -37· 200908233 第—半導體條紋; 十形成第一絕緣層,其鄰近於該第一半導體條紋之暴 露之橫向側面; 圖案化該第—半導體條紋以形成該第—柱狀物; 形成一第一電荷儲存介電質,其鄰近於該第—柱狀物 之一第一暴露之側面而定位; 形成—第一控制閘極,其鄰近於該第一電荷儲存介電 質;Between the second conductivity type semiconductor regions (4) - a conductive genus body region; a body region contact region; and one of the first pillars of the second conductivity type is a second one of the pillars The first type of pillars of the conductivity type semiconductor are not aligned with the second pillar such that the first pillar extends laterally across the second pillar. The method of claim 121, further comprising forming a selection transistor under the element. 123. The method of claim 122, wherein: the reverse string is formed vertically above a substrate; 129933.doc -36. 200908233 1 Hai selects the transistor on the substrate or in the trench in the substrate; The first S memory unit is located in a first device level; and the δ first memory unit is located in a second device level on the selected transistor and below the first device level. 124. The method of claim 123, wherein: the semiconductor active region of the first s memory cell is epitaxially formed on a semiconductor active region of the second memory cell; The semiconductor active region of the cell is epitaxially formed on one of the semiconductor active regions of the select transistor; a first charge storage dielectric is between the semiconductor active region of the first memory cell and a first word line And the first electrical storage medium is located between the semiconductor active region of the second memory unit and a second word line. 125. The method of claim 122, wherein: the semiconductor active region of the select transistor comprises a third pillar; and the first pillar is not aligned with the third pillar such that The second pillar extends transversely across the third pillar. 126. The method of claim 121, further comprising: forming the second memory unit over a substrate; depositing a first semiconductor layer on the semiconductor active region of the second memory unit; planarizing The first semiconductor layer is visualized as a J29933.doc-37·200908233 first semiconductor strip extending in a first direction; a first insulating layer is formed adjacent to the first semiconductor layer a lateral side of the exposed semiconductor stripe; patterning the first semiconductor strip to form the first pillar; forming a first charge storage dielectric adjacent to a first exposed side of the first pillar Positioning; forming a first control gate adjacent to the first charge storage dielectric; 形成—第二電荷儲存介電質,其鄰近於該第一柱狀物 之第二暴露之側面而定位;且 形成一第二控制閘極,其鄰近於該第二電荷儲存介 質。 127.如請求項丨26之方法,其進一步包含: 在該第一柱狀物上方沈積一電荷儲存介電質薄臈及— 控制間極層; 平坦化該電荷儲存介電質薄膜及該控制閘極層,以暴 露該第-柱狀物,且形成該第—電荷儲存介電質及該^ 二電荷储存介電質以及該第一控制閘極及該第二控制 極; 部分地蝕刻該第一控制閘極及該第二控制閘極; 在該第-部分地蝕刻之控制閘極及該第二部分地蝕刻 之控制閘極上方形成一第二絕緣層;及 平坦化該第二絕緣層以暴露該第—柱狀物。 128.如請求項12 6之方法’其進一步包含· 129933.doc •38- 200908233 在該基板上或該基板中之一渠溝中形成一選擇電晶 體; 在該選擇電晶體之—半導體作用區域上磊晶地生長一 第二半導體層; 平坦化該第二半導體層; 將該第二半導體層圖案化為一在該第一方向上延伸之 第二半導體條紋; 形成一第三絕緣層’其鄰近於該第二半導體條紋之暴 露之橫向侧面; 圖案化該第二半導體條紋以形成該第二柱狀物; 形成一第二電荷儲存介電質,其鄰近於該第二柱狀物 之一第一暴露之側面而定位; 形成一第二控制閘極,其鄰近於該第三電荷儲存介電 質; 形成一第四電荷儲存介電質,其鄰近於該第二柱狀物 之一苐一暴露之側面而定位;及 形成一第四控制閘極,其鄰近於該第四電荷儲存介電 質。 129. —種製作半導體裝置之一單體、三維陣列之方法,其包 含: 在一第二裝置層級中形成複數個第二半導體柱狀物作 用區域,其中該等第二半導體柱狀物作用區域由絕緣材 料區域彼此間隔; 在該等第二半導體柱狀物作用區域及該等絕緣材料區 129933.doc •39- 200908233 域上蟲晶地生長-第-半導體層,以使得該第_半導體 層中之晶粒邊界區域位於該等絕緣材料區域上方;及 圖案化該第一半導體層以移除兮望曰i· 秒除°亥專晶粒邊界區域且在 一第一裝置層級中留下複數個實質 貝貝上早日日弟一半導體柱 狀物作用區域。 130.如請求項129之方法,其進一步包含: 平坦化該第一半導體層; 將該第一半導體層圖案 數個第-條紋,· 今在卜方向上延伸之複 在該複數個第一條紋之間形成-第-絕緣層; 圖案化該複數個第一條紋 ^ ^ 夂°亥第—絕緣層以形成該複 數個該等弟一半導體柱狀物作用區域; 在該等第一半導體柱狀物 £或之間的空間中形成 弟電何儲存介電質薄膜;及 以第一字線填充該第— 溝; 罨何儲存介電質薄膜中之渠 其中半導體裝置之兮睡 ⑴μ,、 “包含垂直反及串之-陣列。 131. 如明求項130之方法,其中誃 區域中之每—者均包人_ 弟一半導體柱狀物作用 域之門的第Μ 3 a於第二導電性類型半導體區 間的弟一導電性類型半導體區域。 132. 如請求項131之方法,其進—步包含: 平坦化該第一電荷儲存 电買〆專膜及該裳楚^一宝綠· 4分地蝕刻該等第—字線· 在該等部分地蝕刻之第— 子線上方形成一第一絕緣頂 129933.doc -40. 200908233 蓋層; 平坦化該第一絕緣頂蓋層以暴露該等第一半導體柱狀 物作用區域;及 形成與該等第一半導體柱狀物作用區域接觸之位元 線。 133·如請求項1 30之方法,其進一步包含: 在一基板上或該基板中之渠溝中形成複數個選擇電晶 體,其中該複數個選擇電晶體包含由絕緣材料區域間隔 之複數個第三半導體柱狀物作用區域; 在該等第三半導體柱狀物作用區域及該等絕緣材料區 域上磊晶地生長一第二半導體層,以使得該第二半導體 層中之晶粒邊界區域位於該等絕緣材料區域上方;且 圖案化該第二半導體層以移除該等晶粒邊界區域且在 一第二裝置層級中留下該複數個第:半導體柱狀物作用 區域。 134.如請求項133之方法,其進—步包含: 平坦化該第二半導體層; 將該第二半導體層圖案 韦化马在s亥第一方向上延伸之複 數個第二條紋; 在該複數個第二條紋之間形成一第二絕緣層; 數複數個第二條紋及㈣二絕緣層以形成該複 =專第二半導體柱狀物作用區域,其中該等第二半 V體柱狀物作用區域中之 母者均包含—位於第二導電 性類型半導體區域之間 Π的第一導電性類型半導體區域; 129933.doc -41 · 200908233 在該等第二半 笛-雷— 才主狀物作用區域之間的空間中形成 第一電何儲存介電質薄膜; 以第—子線填充該 — 溝; # —電何儲存介電質薄膜中之渠 平坦化該第二電荷儲左八 v , 電質薄膜及該等第二字線; 部/刀地蝕刻該等第二字線; 線上方形成一第 絕 在讀荨部分地♦虫刻之第二字 蓋層;及 平坦化該第二絕緣頂蓋層以異+ +路由該專絕緣材料區域 間隔之該等第二半導體柱狀物作用區域。 &lt;Forming a second charge storage dielectric positioned adjacent to a second exposed side of the first pillar; and forming a second control gate adjacent to the second charge storage medium. 127. The method of claim 26, further comprising: depositing a charge storage dielectric thin layer and a control interpole layer over the first pillar; planarizing the charge storage dielectric film and the control a gate layer to expose the first pillar and form the first charge storage dielectric and the second charge storage dielectric and the first control gate and the second control electrode; partially etching the a first control gate and the second control gate; forming a second insulating layer over the first partially etched control gate and the second partially etched control gate; and planarizing the second insulation A layer to expose the first pillar. 128. The method of claim 12, further comprising: 129933.doc • 38-200908233 forming a selective transistor on the substrate or in a trench in the substrate; in the semiconductor-active region of the selected transistor Forming a second semiconductor layer epitaxially; planarizing the second semiconductor layer; patterning the second semiconductor layer into a second semiconductor strip extending in the first direction; forming a third insulating layer Adjacent to the exposed lateral side of the second semiconductor stripe; patterning the second semiconductor stripe to form the second pillar; forming a second charge storage dielectric adjacent to one of the second pillars Positioning on a side of the first exposure; forming a second control gate adjacent to the third charge storage dielectric; forming a fourth charge storage dielectric adjacent to one of the second pillars Positioning on an exposed side; and forming a fourth control gate adjacent to the fourth charge storage dielectric. 129. A method of fabricating a single, three-dimensional array of a semiconductor device, comprising: forming a plurality of second semiconductor pillar active regions in a second device level, wherein the second semiconductor pillar active regions Intersecting the regions of the insulating material from each other; growing the -th semiconductor layer on the second semiconductor pillar active region and the insulating material regions 129933.doc • 39-200908233 to make the first semiconductor layer a grain boundary region is located above the regions of insulating material; and patterning the first semiconductor layer to remove the boundary region of the 晶粒 · · 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且A substantial beibei on the early day of a semiconductor pillar role area. 130. The method of claim 129, further comprising: planarizing the first semiconductor layer; patterning the first semiconductor layer pattern into a plurality of first-stripes, and extending in the direction of the first plurality of first stripes Forming a first-first insulating layer; patterning the plurality of first strips of the first insulating layer to form the plurality of regions of the semiconductor pillar; in the first semiconductor pillar Forming a dielectric film in a space between or between the materials; and filling the first groove with a first word line; and storing a drain in the dielectric film in the dielectric film (1) μ, " </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; 132. The method of claim 131, wherein the method further comprises: planarizing the first charge storage electricity purchase film and the skirt Chu ^ 1 green green · 4 Etching the first-word line Forming a first insulating top 129933.doc -40. 200908233 a cap layer over the partially etched first sub-line; planarizing the first insulating cap layer to expose the first semiconductor pillar active regions; And forming a bit line in contact with the active regions of the first semiconductor pillars. 133. The method of claim 1 30, further comprising: forming a plurality of selectable powers on a substrate or in a trench in the substrate a crystal, wherein the plurality of selective transistors comprise a plurality of third semiconductor pillar active regions spaced apart by an insulating material region; epitaxially growing on the third semiconductor pillar active regions and the insulating material regions a second semiconductor layer such that a grain boundary region in the second semiconductor layer is over the insulating material regions; and patterning the second semiconductor layer to remove the grain boundary regions and at a second device level Having the plurality of stages: a semiconductor pillar active region. 134. The method of claim 133, wherein the step further comprises: planarizing the second semiconductor layer; a plurality of second stripes extending in a first direction of the shai; a second insulating layer is formed between the plurality of second stripes; the plurality of second stripes and the (four) two insulating layers are Forming the second semiconductor pillar active region, wherein the mothers in the second half V pillar active region include - first conductivity between the second conductive type semiconductor regions Type semiconductor region; 129933.doc -41 · 200908233 forming a first electrical storage dielectric film in a space between the second semi-flute-ray-like active regions; filling the first-line — 沟; #—Electrical storage of the dielectric film in the channel flattening the second charge storage left volt, the electrolyte film and the second word line; the second word line is etched by the part/knife; Forming a second word cap layer that is partially inscribed in the 荨 ;; and planarizing the second insulating cap layer to circumscribe the second semiconductor pillars of the region of the specific insulating material region. &lt; 129933.doc 42-129933.doc 42-
TW97110923A 2007-03-27 2008-03-26 Three dimensional nand memory and method of making thereof TWI424536B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US11/691,901 US7848145B2 (en) 2007-03-27 2007-03-27 Three dimensional NAND memory
US11/691,885 US7745265B2 (en) 2007-03-27 2007-03-27 Method of making three dimensional NAND memory
US11/691,917 US7575973B2 (en) 2007-03-27 2007-03-27 Method of making three dimensional NAND memory
US11/691,858 US7808038B2 (en) 2007-03-27 2007-03-27 Method of making three dimensional NAND memory
US11/691,939 US7851851B2 (en) 2007-03-27 2007-03-27 Three dimensional NAND memory
US11/691,840 US7514321B2 (en) 2007-03-27 2007-03-27 Method of making three dimensional NAND memory

Publications (2)

Publication Number Publication Date
TW200908233A true TW200908233A (en) 2009-02-16
TWI424536B TWI424536B (en) 2014-01-21

Family

ID=44723616

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97110923A TWI424536B (en) 2007-03-27 2008-03-26 Three dimensional nand memory and method of making thereof

Country Status (1)

Country Link
TW (1) TWI424536B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485712B (en) * 2010-07-15 2015-05-21 Micron Technology Inc Memory arrays having substantially vertical, adjacent semiconductor structures and their formation
TWI575716B (en) * 2013-01-24 2017-03-21 美光科技公司 3-d memory

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312120A1 (en) * 2000-08-14 2003-05-21 Matrix Semiconductor, Inc. Dense arrays and charge storage devices, and methods for making same
US6853587B2 (en) * 2002-06-21 2005-02-08 Micron Technology, Inc. Vertical NROM having a storage density of 1 bit per 1F2
US6657250B1 (en) * 2002-08-21 2003-12-02 Micron Technology, Inc. Vertical flash memory cell with buried source rail
JP2005038909A (en) * 2003-07-15 2005-02-10 Fujio Masuoka Drive method of nonvolatile memory element, semiconductor storage device, and liquid crystal display unit provided with it
JP2006310651A (en) * 2005-04-28 2006-11-09 Toshiba Corp Method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485712B (en) * 2010-07-15 2015-05-21 Micron Technology Inc Memory arrays having substantially vertical, adjacent semiconductor structures and their formation
TWI575716B (en) * 2013-01-24 2017-03-21 美光科技公司 3-d memory

Also Published As

Publication number Publication date
TWI424536B (en) 2014-01-21

Similar Documents

Publication Publication Date Title
US7514321B2 (en) Method of making three dimensional NAND memory
US7848145B2 (en) Three dimensional NAND memory
US7575973B2 (en) Method of making three dimensional NAND memory
US7851851B2 (en) Three dimensional NAND memory
US7808038B2 (en) Method of making three dimensional NAND memory
US7745265B2 (en) Method of making three dimensional NAND memory
TWI694595B (en) Three-dimensional memory device and fabrication method thereof
CN110168728B (en) Three-dimensional memory device with deposited semiconductor plug and method of forming the same
US9331090B2 (en) Compact three dimensional vertical NAND and method of making thereof
US8188517B2 (en) Three-dimensional nonvolatile memory device and method for fabricating the same
WO2008118433A1 (en) Three dimensional nand memory and method of making thereof
CN100592519C (en) CMOS logic lock with spathic direction and its forming method
KR101437892B1 (en) Three dimensional nand memory and method of making thereof
TW505998B (en) Multigate semiconductor device with vertical channel current and method of fabrication
US20170053906A1 (en) Semiconductor memory device and structure
JP6464320B2 (en) Method of manufacturing an embedded memory device with a silicon-on-insulator substrate
US20140284697A1 (en) Vertical nand and method of making thereof using sequential stack etching and landing pad
JP3246917B2 (en) Highly integrated semiconductor memory and method of manufacturing the same
TW200908233A (en) Three dimensional NAND memory and method of making thereof
US20230301070A1 (en) Semiconductor structure and method for manufacturing the same, memory and method for manufacturing the same
US8995193B2 (en) NAND memory constructions and methods of forming NAND memory constructions
WO2008118435A1 (en) Three dimensional nand memory and method of making thereof
CN115332080A (en) Semiconductor structure and manufacturing method thereof, memory and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees