TW200908021A - Conducting material with good thermal stability - Google Patents

Conducting material with good thermal stability Download PDF

Info

Publication number
TW200908021A
TW200908021A TW096128658A TW96128658A TW200908021A TW 200908021 A TW200908021 A TW 200908021A TW 096128658 A TW096128658 A TW 096128658A TW 96128658 A TW96128658 A TW 96128658A TW 200908021 A TW200908021 A TW 200908021A
Authority
TW
Taiwan
Prior art keywords
annealing
minutes
specific example
present
conductive material
Prior art date
Application number
TW096128658A
Other languages
Chinese (zh)
Other versions
TWI377582B (en
Inventor
Jin Zhu
zong-xin Lin
Original Assignee
Jin Zhu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jin Zhu filed Critical Jin Zhu
Priority to TW096128658A priority Critical patent/TWI377582B/en
Priority to US12/058,928 priority patent/US20090035173A1/en
Publication of TW200908021A publication Critical patent/TW200908021A/en
Application granted granted Critical
Publication of TWI377582B publication Critical patent/TWI377582B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Abstract

This invention provides a conducting material with well thermal stability formed on a substrate, which comprise a composition containing of Cu100-x-yMxNy, wherein, 0. 0 < x ≤ 2. 0, 0. 0 ≤ y ≤ 2. 0, calculated by atomic percentage, and M is selected from Ru, Re, Ho, or a combination thereof. Parts of M are in solid solution with Cu with form of supersaturation and precipitated in the grain boundaries of the Cu grains.

Description

200908021 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種導電材料,特別是指一種高溫穩 定性佳的導電材料。 【先前技術】 由於銅本身具備有極佳的導電性及抗電荷遷移性質 (electromigration resistance);因此,使得使用有銅導線的半 導體元件之使用壽命及穩定性得以獲得改善,並進而成為 取代鋁導線的導電層。 然而,由於銅、銅合金等導電材料在高溫狀態下的機 械性質較差且高溫穩定性不足,以致於此等導電材料在使 用上受到許多限制。因此,半導體元件之銅導線在製程上 則面臨到許多因製程溫度所致的問題,諸如:附著性不足 、易與矽產生反應形成銅矽化物因而增加電阻係數 (resistivity)與漏電流等問題。 冶金術(metallurgy)相關領域者皆知,雖然於Cu内添加 與Cu互溶之金屬元素以形成固溶體(solid solution)可增加 Cu合金的高溫穩定性;然而,卻造成電阻係數增加等問題 。因此,為解決銅導線在半導體製程上所面臨的高溫穩定 性不足等問題,可透過滅鍍(sputtering)的製程在Cu鐘膜内 均勻散佈不互溶的元素,以使得此等不互溶元素得以呈過 飽和的形式固溶於Cu晶體(crystal)内以細化晶粒。藉由此 等晶粒細化(grain refinement)之抑制再結晶的現象、且可降 低Cu原子的擴散速率,並抑制Cu與矽基板在高溫的製程 200908021 環境下產生反應,進而降低電阻係數、漏電流問題並增加 銅導線的高溫穩定性。 此等添加不互溶元素於Cu晶體内來增加Cu的高溫穩 定性之相關技術手段,可見發明人於Metallurgical and Materials Transactions A, Vol. 29A, p. 647-658, (1998)、 Journal of Applied Physics, 85, p.6462-6469 (1999) ' Journal of Materials Research, Vol. 18, No. 6, p. 1429-1434 (2003) ' Applied Physics Letters, Vol. 87,No_ 21,p. 211902 (2005)等 期刊上所發表之 Microstructure and Properties of Cu-C Pseudoalloy Films Prepared by Sputter Deposition 、 Microstructure and Properties of Sputtered Copper Films Containing Insoluble Molybdenum、Thermal Stability of Sputtered Copper Films Containing Dilute Insoluble Tungsten :A Thermal Annealing Study ' Formation of A Reacted Layer at The Barrierless Cu(WN)/Si Interface 等文章中。另,相關 技術亦可見 S. L. Zhang 等人於 Journal of Electronic Materials,Vol. 30,p. LI, (2001)所發表之 High conductivity copper-boron alloys obtained by low temperature annealing 的 文章。又,中華民國專利證書編號第TWI237328號發明專 利,亦揭露有銅薄膜内添加有不互溶氮化物(如WNt)以細化 晶粒等技術。 前揭技術手段中所添加的不互溶元素或氮化物,雖然 可增加銅導線的高溫穩定性;然而,此等不互溶元素或氮 化物對於晶粒細化的貢獻度有限,在400°C〜530°C的退火 200908021 (amieaHng)溫度下,Cu原子亦將因晶粒細化之抑制再結晶 忐力不足而擴散到矽基材並與矽產生反應;因此,仍無法 有效地改善電阻係數、漏電流等問題。 由上述說明可知,使得有效量的不互溶元素得以呈過 飽和的形式固溶於銅晶體中,並降低銅晶體整體的電阻係 數與漏電&amp;以增力口其在+導體元件&lt;高溫製程上的適用性 ,疋當剛開發高溫穩定性佳的導電材料相關領域者所待解 決的課題。 ^ 【發明内容】 &lt;發明概要&gt; 與C、W、WNt、Mo、B、Ta等不溶於Cu曰曰日體中的元 素或氮化物相比較之下,Ru、Re、H〇等不與Cu互溶的元 素,更可有效地呈過飽和的形式固溶於Cu晶體中;因此, 在高溫的退火處理過程中,部&gt; Ru、Re、H〇等元素可自 Cu晶格位置(lattlce site)中析出於&amp;晶粒的晶界如 boundary)處,如此,更可有效地抑制Cu晶粒的再結晶 (recrystallization)行為,對晶粒細化之抑制再結晶能力的貢 獻度亦相對比先前技術所提的元素高。 因此,本發明主要是在銅晶體内引入M以形成一含有 CUl(H)-x_具乂之組成物,且Μ是選自Ru、Re、H〇,或此等 之一組合。值得—提的是,當X值或y值過大時,將影響 該組成物的導電度(electrical conductivity);因此,以原子 百分比計,0·0&lt;χ$ 10.0,O.OSyS 10.0。 &lt;發明目的;&gt; 200908021 即在提供一種高溫穩定性佳的 因此,本發明之目的 導電材料。 於是,本發明高溫穩定杜 __ „ 〜疋佳的導電材料,是被形成於 基材上,包含:一含有Cii $ Ul00-X-yMxNy之組成物,以原子 百为比計,〇.〇&lt; 10 〇,〇 •0^y各10.0,且Μ是選自Ru、200908021 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a conductive material, and more particularly to a conductive material having high temperature stability. [Prior Art] Since copper itself has excellent electrical conductivity and resistance to electromigration resistance, the service life and stability of a semiconductor element using a copper wire are improved, and the aluminum wire is replaced. Conductive layer. However, since conductive materials such as copper and copper alloys have poor mechanical properties at high temperatures and insufficient high-temperature stability, such conductive materials are subject to many limitations in use. Therefore, the copper wire of the semiconductor element faces many problems due to the process temperature in the process, such as insufficient adhesion, easy reaction with bismuth to form copper bismuth, and thus increased resistance and leakage current. It is well known in the related art of metallurgy that the addition of a metal element which is mutually miscible with Cu to form a solid solution in Cu increases the high temperature stability of the Cu alloy; however, it causes problems such as an increase in the electrical resistivity. Therefore, in order to solve the problem of insufficient high-temperature stability of the copper wire in the semiconductor process, the non-miscible element can be uniformly dispersed in the Cu film through the sputtering process, so that the immiscible elements can be presented. The supersaturated form is dissolved in the crystal of Cu to refine the crystal grains. By suppressing the phenomenon of recrystallization by grain refinement, the diffusion rate of Cu atoms can be reduced, and the reaction between Cu and the germanium substrate in the high temperature process 200908021 can be suppressed, thereby reducing the resistivity and leakage. Current problems and increase the high temperature stability of copper wires. Such a technique for adding an immiscible element to a Cu crystal to increase the high temperature stability of Cu can be seen by the inventors in Metallurgical and Materials A, Vol. 29A, p. 647-658, (1998), Journal of Applied Physics , 85, p.6462-6469 (1999) 'Journal of Materials Research, Vol. 18, No. 6, p. 1429-1434 (2003) ' Applied Physics Letters, Vol. 87, No. 21, p. 211902 (2005) Microstructure and Properties of Cu-C Pseudoalloy Films Prepared by Sputter Deposition , Microstructure and Properties of Sputtered Copper Films Containing Insoluble Molybdenum, Thermal Stability of Sputtered Copper Films Containing Dilute Insoluble Tungsten : A Thermal Annealing Study ' Formation of A Reacted Layer at The Barrierless Cu (WN) / Si Interface and other articles. Further, related art can also be found in the article by S. L. Zhang et al., Journal of Electronic Materials, Vol. 30, p. LI, (2001), High conductivity copper-boron alloys obtained by low temperature annealing. Further, the invention patent of the Republic of China Patent No. TWI237328 discloses a technique in which an immiscible nitride (e.g., WNt) is added to a copper film to refine grains. The immiscible elements or nitrides added in the prior art techniques can increase the high temperature stability of the copper wires; however, the contribution of such immiscible elements or nitrides to grain refinement is limited at 400 ° C. At 530 ° C annealing 200908021 (amieaHng) temperature, Cu atoms will also diffuse into the ruthenium substrate due to insufficient grain refinement to reproduce the ruthenium substrate and react with ruthenium; therefore, it is still unable to effectively improve the resistivity, Leakage current and other issues. It can be seen from the above description that an effective amount of the immiscible element is dissolved in the copper crystal in a supersaturated form, and the resistivity and leakage of the copper crystal as a whole are reduced, and the force is increased on the +conductor element&lt;high temperature process. Applicability, the problem that the Dangdang has just developed in the field of conductive materials with good high temperature stability. ^ [Summary of the Invention] &lt;Summary of the Invention&gt; In contrast to elements or nitrides which are insoluble in Cu 曰曰, such as C, W, WNt, Mo, B, Ta, etc., Ru, Re, H〇, etc. The element miscible with Cu is more effectively dissolved in the form of supersaturated in the Cu crystal; therefore, in the high temperature annealing process, elements such as Ru, Re, H〇 can be from the lattice position of the Cu (lattlce) In the site), the grain boundaries such as boundary are precipitated, and thus, the recrystallization behavior of Cu grains can be effectively suppressed, and the contribution to the recrystallization ability of grain refinement is relatively Higher than the elements mentioned in the prior art. Accordingly, the present invention mainly introduces M into a copper crystal to form a composition containing CU1(H)-x_, and Μ is selected from Ru, Re, H〇, or a combination thereof. It is worth mentioning that when the value of X or y is too large, it will affect the electrical conductivity of the composition; therefore, in terms of atomic percentage, 0·0&lt;χ$10.0, O.OSyS 10.0. &lt;Objectives of the Invention; &gt; 200908021 That is, it is an object of the present invention to provide a conductive material which is excellent in high temperature stability. Therefore, the high-temperature stable Du _ _ ~ 的 good conductive material of the present invention is formed on a substrate, comprising: a composition containing Cii $ Ul00-X-yMxNy, in atomic ratio, 〇.〇 &lt; 10 〇, 〇•0^y each 10.0, and Μ is selected from Ru,

Re、Ho ’或此等之一組合。复由 &quot;τ ’部分Μ是以過飽和的形 式固溶於Cu的晶格位置以乃鉍 置以及析出於Cii晶粒的晶界。 本發明之功效在於,RU、心 ττ吐 u He、Ho等不與Cu互溶的元 素可有效地呈過飽和的形式阆:六 Λ 口 /合於銅晶體中,並降低銅晶 體整體的電阻係數盘漏雷、、&amp; 、 J电1你数一属電机,以增加其在半導體元件之高 溫製程上的適用性。 【實施方式】 &lt;發明詳細說明&gt; 本發明高溫穩定性佳的導電材料,是被形成於一基材 上,包含含有Cu⑽·x.yMxNy之組成物,以原子百分比 計,o.kdo.o’o.eyuoo,且 μ 是選自 Ru、Re、 或此等之一組合。其中,部分M是以過飽和的形式固 溶於Cu的晶格位置以及析出於Cu晶粒的晶界。 較佳地,該組成物是被施予一退火處理以消除其殘留 應力(residua〗 stress)並降低其電阻係數,且該退火處理的條 件致使Cu不與該基材反應形成一含Cu的化合物。更佳地 ,該退火處理的溫度是介於2〇(TC〜75(rc之間,該退火處理 的時間是介於10秒鐘〜120分鐘之間;且該組成物中之Cu 的晶粒尺寸(grain size)是介於3 0 nm〜150 nm之間。又更佳 8 200908021 地,〇_〇&lt;χ$5.0,0.0Sy$5.0 ;退火處理的時間是介於】 分鐘〜90分鐘之間。 值得一提的是,退火處理的目的,主要是在於消除該 組成物内的殘留應力以初步地降低該組成物的電阻係數; 另外,亦提供該組成物取得足夠的熱能以使得部分Μ得以 進一步自Cu的晶格位置析出,並抑制Cu原子擴散到該基 材與該組成物的介面處以阻止形成該含Cll的化合物。然而 ,退火處理的溫度與時間是呈反比的關係,當退火處理的 溫度已足夠高時,退火處理的時間則不需過長;因此,本 發明並非僅侷限於前揭退火溫度範圍。 在一具體例中,Μ是Ru,0.0 &lt; X $ 2.0,y=〇,該退火 處理的溫度是介於30(TC〜58(rc之間,該退火處理的時間是 介於10分鐘〜60分鐘之間。 在另一具體例中,Μ 是 Ru,0.0&lt;x$2.0,〇.5gyg2.〇 ’該退火處理的溫度是介於300°c〜68(rc之間,該退火處理 的時間是介於1 〇分鐘〜690分鐘之間。 在又一具體例中,Μ是Re,0.0&lt;x$2.0,y=〇,該退 火處理的溫度是介於30CTC〜5601:之間,該退火處理的時間 疋介於10分鐘〜6〇分鐘之間。 在另又一具體例中,Μ是Re,0.0&lt;χ^2·0,0.5gy客 2·〇 ’該退火處理的溫度是介於30(rc〜730°c之間,該退火 處理的時間是介於10分鐘~60分鐘之間。 在再另又一具體例中,Μ是Ho,0.0&lt;xS2.0,〇.5gy $2.0 ’該退火處理的溫度是介於3〇(rc〜66〇°c之間,該退 200908021 火處理的時間是介於10分鐘〜60分鐘之間。 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之五個具體例的詳細說明中,將可清楚 的呈現。 &lt;具體例 在本發明高溫穩定性佳的導電材料之一具體例1的 Cu100.x-yMxNy 之組成物中,M 是 Rll,且 0.0&lt; xg 2.0,y=〇 。本發明該具體例丨之製作方法,是簡單地說明於下。 首先’於一内部引入有Ar電漿(plasma)氣體的磁控滅 鍍系統(magnetron sputtering system)中設置一石夕(Si)基板, 對一 Cu-Ru靶材(target)施予約15〇 w的輸出功率,藉以在 該矽基板上以4_8 nm/min的濺鍍速率形成一厚度約3〇〇 nmRe, Ho' or a combination of these. The complex &quot;τ ′ portion Μ is solid-dissolved in the form of supersaturation in the lattice position of Cu to form and precipitate the grain boundaries of the Cii grains. The effect of the present invention is that an element which is not miscible with Cu, such as RU, heart ττ, u He, Ho, etc., can be effectively supersaturated. Λ: Λ / 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合Leakage, & J, 1 is a motor to increase its applicability in the high temperature process of semiconductor components. [Embodiment] &lt;Detailed Description of the Invention&gt; The conductive material of high temperature stability of the present invention is formed on a substrate comprising a composition containing Cu(10)·x.yMxNy in atomic percent, o.kdo. O'o.eyuoo, and μ is selected from Ru, Re, or a combination of these. Among them, part M is solid-dissolved in the lattice position of Cu and precipitated in the grain boundary of Cu crystal. Preferably, the composition is subjected to an annealing treatment to eliminate its residual stress and reduce its resistivity, and the annealing treatment conditions cause Cu to not react with the substrate to form a Cu-containing compound. . More preferably, the annealing temperature is between 2 〇 (TC 〜 75 (rc, the annealing time is between 10 seconds and 120 minutes; and the grain of Cu in the composition) The grain size is between 30 nm and 150 nm. More preferably 8 200908021 ground, 〇_〇&lt;χ$5.0, 0.0Sy$5.0; annealing time is between 】minutes to 90 minutes It is worth mentioning that the purpose of the annealing treatment is mainly to eliminate the residual stress in the composition to initially reduce the resistivity of the composition; in addition, the composition is also provided to obtain sufficient thermal energy to enable partial enthalpy Further precipitating from the lattice position of Cu, and inhibiting the diffusion of Cu atoms to the interface between the substrate and the composition to prevent formation of the C11-containing compound. However, the temperature of the annealing treatment is inversely proportional to the time when annealing treatment When the temperature is sufficiently high, the annealing treatment time does not need to be too long; therefore, the present invention is not limited to the pre-annealing annealing temperature range. In one specific example, Μ is Ru, 0.0 &lt; X $ 2.0, y= Oh, the temperature of the annealing treatment is Between 30 and TC to 58 (rc, the annealing time is between 10 minutes and 60 minutes. In another specific example, Μ is Ru, 0.0&lt;x$2.0, 〇.5gyg2.〇' The annealing temperature is between 300 ° C and 68 (rc, and the annealing time is between 1 〜 and 690 minutes. In still another example, Μ is Re, 0.0 &lt; x $2.0, y=〇, the annealing temperature is between 30 CTC and 5601:, and the annealing time is between 10 minutes and 6 minutes. In still another specific example, Μ is Re, 0.0 &lt; χ ^ 2 · 0, 0.5 gy 2 · 〇 ' The temperature of the annealing treatment is between 30 (rc ~ 730 ° c, the annealing time is between 10 minutes ~ 60 minutes. In still another specific example, Μ is Ho, 0.0 &lt; xS2.0, 〇.5gy $2.0 ' The annealing temperature is between 3 〇 (rc~66 〇 °c, the retreat 200908021 fire treatment The time is between 10 minutes and 60 minutes. The foregoing and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the five specific examples of the reference drawings. Presently, in the composition of Cu100.x-yMxNy, which is one of the conductive materials having high temperature stability of the present invention, M is R11, and 0.0 &lt; xg 2.0, y = 〇. The specific production method is simply described below. First, a "Si" substrate is placed in a magnetron sputtering system in which an Ar plasma gas is introduced, and a The Cu-Ru target is applied with an output power of about 15 〇w, thereby forming a thickness of about 3 〇〇 nm on the ruthenium substrate at a sputtering rate of 4-8 nm/min.

的Cu100—xRUx鍍層;在該具體例i中,該磁控濺鍍系統的工 作壓力(working pressure)約 lxl0-2 T〇rr,於該 Cu 丨鍍 層之沉積過程中,基材溫度約8〇°c D 進一步地,對該(:111〇(^1111&gt;(鍍層施予30(TC〜58(Tc且持 溫10分鐘〜60分鐘的退火處理,以使得該Cui⑼xRUx鍍層 得以消除殘留應力,並可使得微量的Ru由銅晶格位置析出 於晶界(grain boundary)’進而形成本發明該具體例i之組成 物。 此外’為量測本發明該具_丨之顯微組織的特性, 該具體例1之組成物上進一步地形成有一 pt鍍層。 &lt;具體例2&gt; 本發明高溫穩定性佳的導電材料之一具體例2大致上 10 200908021 是相同於該具體例1,其不同處僅在於〇 〇&lt;yg2 (),退火 皿度疋300 C〜680°c,且該磁控濺鍍系統内的電漿氣體是混 Αγ N2。 &lt;具體例3&gt; 本發明咼溫穩定性佳的導電材料之一具體例3大致上 是相同於該具體例1,其不同處僅在於Μ是Re,退火溫度 疋300C〜560 C,且該磁控濺鍍系統内的靶材是Cu_Re。 &lt;具體例4&gt; 本發明尚溫穩定性佳的導電材料之一具體例4大致上 疋相同於該具體例3,其不同處僅在於〇 〇 &lt; y — 2 〇,退火 溫度是30(TC〜73(TC,且該磁控濺鍍系統内的電漿氣體是混 合Ar與N2。 &lt;具體例5&gt; 本發明高溫穩定性佳的導電材料之一具體例5大致上 疋相同於5亥具體例1,其不同處僅在於M是H〇,〇 2.0,退火溫度是300。(:〜66(TC,且該磁控濺鍍系統内的電 漿氣體是混合Ar與N2。 &lt;比較例1&gt; 用來與本發明該等具體例之電性進行比較的一比較例1 ,大致上是相同於該具體例丨,其不同處僅在於退火處理的 溫度是600°c。 &lt;比較例2&gt; 用來與本發明該等具體例之電性進行比較的一比較例2 ,大致上是相同於該具體例2,其不同處僅在於退火處理的 11 200908021 溫度是700°C。 &lt;比較例3&gt; 用來與本發料等具體狀電性進行比較的—比較例3 ’大致上是相同於該具體例3,其不同處僅在於退火處理的 溫度是580°C。 &lt;比較例4&gt; 用來與本發明該等具體狀魏進行峰的—比較例4 ,大致上疋相同於該具體例4’其不同處僅在於退火處理的 溫度是750°C。 &lt;比較例5&gt; b用來與本發明等具體例進行比較的-比較例5,大致上 是相同於該具體例5,其不同處僅在於退火處理的温度是 680°C。 &lt;比較例6&gt; 用來與本發明等具體例之電性進行比較的一比較例6, 大致上疋相同於該具體例丨,其不同處僅在於退火處理的溫 度疋介於200 C〜560°C,且χ=〇。 該等比較例與本發明該等具體例之退火條件是簡單地 整理於下列表丨·中。 &lt;分析數據&gt; 本發明該具體例1〜5在經過電子微探針分析儀(electron probe micro analyser,簡稱EpMA)所取得之組成分析及其退 火溫度,是簡單地被整理於下列表2·中。 12 200908021 表1 · 組成 退火溫度(°c) 退火時間(分鐘、 具體例1 CUi〇〇-xRux 300〜580 --- 10 〜60 比較例1 CUi〇〇-xRux 600 10〜60 具體例2 CUl〇〇_x-yRUXNy 300〜680 10〜6〇 比較例2 CUl〇〇-x-VRUXNy 700 &quot;——一 10 〜60 具體例3 Cu 1 00-xR^X 300〜560 10 〜60 比較例3 Cii] oo-xRCx 580 10〜60 具體例4 Cll] 00-x-yRCxNy 300〜730 10〜60 比較例4 Cui 〇〇-x-yRexNy 750 10 〜60 具體例5 CUl〇〇-x-yH〇XNy 300〜660 10〜60 比較例5 CUl〇〇-x_yH〇xNy 680 10-60 比較例6 Cu 200〜560 10-60 表2· 具體例 組成 退火溫度(°c) X (at%) y (at%) 1 Cu100.xRux 300〜580 0.5 〜2.0 0 2 Cui〇〇.x.yRuxNy 300〜680 〇·5 〜2.0 0.5〜2.0 3 Ciii〇〇_xRcx 300〜560 0.5 〜2.0 0 4 Cui〇〇.x.yRexNy 300〜730 0.5〜2.0 0.5 〜2.0 5 Cll 1 0 0-x-yH〇xN y 300〜660 0.5 〜2.0 0.5 〜2_0 參閱圖1 ’由該等比較例與本發明該等具體例之電阻係 數對退火溫度曲線圖顯示可知,該比較例6在30CTC的退火 溫度下已出現有電阻係數增加的現象;另外,該比較例1〜4 分別於600°C、700°C、580°C、750。(:出現有電阻係數增加 的現象;因此,本發明該具體例1〜4可分別在58〇。〇、680 °C、560°C、730°C維持高溫穩定性。 參閱圖2 ’由§亥比較例1〜2與本發明該具體例1〜2之X 射線繞射(x-ray diffraction ’簡稱XRD)圖譜顯示可知,該比 13 200908021 較例1〜2分別在600°C、700°C之退火處理時出現有銅矽化 合物的繞射峰;因此,本發明該具體例1〜2分別在580°C、 680°C可維持有高溫穩定性。 參閱圖3,由該比較例3、6與本發明該具體例3~4之 XRD圖譜顯示可知,該比較例3、6分別在580°C、400°C 之退火處理時出現有銅矽化合物的繞射峰;而本發明該具 體例3〜4分別在5 6 0 °C、7 3 0 °C皆未出現有銅石夕化合物的繞 射峰,顯然本發明該具體例3〜4分別在560°C、730°C仍可 維持有高溫穩定性。 參閱圖4,由該比較例5、6與本發明該具體例5之 XRD圖譜顯示可知,該比較例5、6分別在400°C、680°C 之退火處理時出現有銅矽化合物的繞射峰;而本發明該具 體例5在660°C未出現有銅矽化合物的繞射峰,顯然本發明 該具體例5在660°C仍可維持有高溫穩定性。 參閱圖5,為該具體例1在實施退火處理前之穿透式電 子顯微鏡(transmission electron microscope ;以下簡稱 TEM) 的分析數據圖。由TEM形貌圖[圖5(a)]顯示可知,該具體 例1之晶粒尺寸約介於8 nm〜12 nm之間,因此,本發明 該具體例1在實施退火處理之前,微量的Ru已初步地細化 晶粒0另夕卜,由選區電子繞射(selected area electron diffraction,簡稱SAED)圖[圖5(b)]顯示可知,由[011]之晶 帶軸(zone axis)所得的組成物為面心立方(face-centered cubic,FCC)晶相的Cu,顯然Ru是呈過飽和的形式固溶於 Cu的晶格當中。 14 200908021 麥閲圖6,為該具體例i在實施58〇。〇退火處理後之 TEM的分析數據圖。由TEM形貌圖[圖6⑷]顯示可知,該 具體命u之晶粒尺寸約介於70nm〜75nm之間因此本 毛明3玄具體例i在實施退火處理後,透過微量的如可抑制 Cu產生再結晶以達到晶粒細化並阻止cu原子擴散到石夕基 板形成石夕化銅之目的。另外,由簡高倍率形貌圖[圖 6(咖示可知’本發明該具體例1之組成物㈣基板的介 面處僅存在有原生氧化物(native Qxide)層並未存在有石夕化 銅。 參閱圖7,為該具體例2在實施退火處理前之tem的 刀析數據圖由ΤΕΜ形貌圖[圖7(a)]顯示可知,該具體例2 之Cu晶粒尺寸約介K5nm〜1〇nm之間因此本發明該 具體例2在實施退火處理之前,微量的Ru肖尺机已初步 地細化晶粒。另外,由SAED圖[圖7(b)]顯示可知,由[〇ιι] 之晶帶軸所得的組成物為FCC晶相的Cu ;此外,亦可見有 邛刀的氮化釕(RuNz) ’顯然RU是呈過飽和的形式固溶於Cu 的晶格當中。又,由TEM之暗視野(dark field)影像圖[圖 7(c)]顯示可知,氮化釕(RuNz)之晶粒大小約4 nm左右。 參閱圖8 ’為該具體例2在實施680。〇退火處理後之 TEM的分析數據圖。由TEM形貌圖[圖8⑷]顯示可知,該 具體例2之晶粒尺寸約介於9〇 nm〜95 nm之間,因此,本 舍明5亥具體例2在實施退火處理後,透過微量的Ru及 RuNz可抑制Cu產生再結晶以到達晶粒細化並阻止原子 擴政到石夕基板形成銅石夕化合物之目的。另外,由TEM高倍 15 200908021 率形貌圖[圖8(b)]顯不可知,本發明該具體例2之組成物與 石夕基板的介面處僅存在有原生氧化物層,並未存在有銅石夕 化合物。 參閱圖9,由該比較例6與本發明該具體例卜2之電流 密度對電場強度曲線圖顯示可知’該比較例6在彻。c退火 处里後所知之電流後度約$ 1〇-7(A/cm2);反觀本發明該具 體例1〜2 ’在相同溫度的退火處理後所得之電流密度可分別 維持在 l〇-8(A/cm2)與 l〇-9(A/cm2)。 該比較例6與本發明該具體 &lt;列j〜2 &lt;附著性是採用 ASTM-D3359.B標準測試,其測試結果,是簡單地整理於下 列表3中。Cu100-xRUx coating; in this specific example i, the working pressure of the magnetron sputtering system is about lxl0-2 T rr, during the deposition of the Cu ruthenium plating, the substrate temperature is about 8 〇 °c D Further, the (:111〇(^1111&gt; (coating layer 30 (TC~58 (Tc and holding temperature for 10 minutes to 60 minutes of annealing treatment, so that the Cui (9) xRUx coating can eliminate residual stress, and It is possible to cause a trace amount of Ru to be precipitated from the grain boundary of the copper to form a composition of the specific example i of the present invention. Further, in order to measure the characteristics of the microstructure of the present invention, A pt plating layer is further formed on the composition of Specific Example 1. <Specific Example 2> One of the conductive materials having excellent high-temperature stability of the present invention is substantially the same as that of the specific example 1, and the difference is only In the case of 〇〇&lt;yg2(), the annealing degree is C300 C to 680 °c, and the plasma gas in the magnetron sputtering system is mixed γ N2. &lt;Specific Example 3&gt; One of the conductive materials is substantially the same as the specific example 1, which is substantially the same as The difference is only that Μ is Re, the annealing temperature is C300C~560 C, and the target in the magnetron sputtering system is Cu_Re. <Specific Example 4> One specific example of the conductive material with good temperature stability of the present invention 4 is substantially the same as the specific example 3, the difference is only 〇〇 &lt; y - 2 〇, the annealing temperature is 30 (TC ~ 73 (TC, and the plasma gas in the magnetron sputtering system is mixed Ar and N2. <Specific Example 5> One of the conductive materials of the present invention having excellent high-temperature stability is substantially the same as that of the specific example of 5, and the difference is that M is H〇, 〇2.0, annealing temperature. It is 300. (: ~66 (TC, and the plasma gas in the magnetron sputtering system is a mixture of Ar and N2. &lt;Comparative Example 1&gt; A comparison with the electrical properties of the specific examples of the present invention Comparative Example 1 is substantially the same as the specific example, except that the annealing temperature is 600 ° C. <Comparative Example 2> A comparison with the electrical properties of the specific examples of the present invention Comparative Example 2 is substantially the same as the specific example 2, the difference being only in the annealing treatment 11 200908021 The temperature is 7 00 ° C. &lt;Comparative Example 3&gt; Comparative Example 3, which is used for comparison with the specific electrical properties of the present invention, is substantially the same as the specific example 3, except that the annealing temperature is 580. °C. &lt;Comparative Example 4&gt; - Comparative Example 4 for carrying out the peaks of the specific shapes of the present invention, substantially the same as the specific example 4', except that the annealing temperature was 750 ° C . &lt;Comparative Example 5&gt; b Comparative Example 5 for comparison with a specific example of the present invention is substantially the same as the specific example 5 except that the annealing temperature is 680 °C. &lt;Comparative Example 6&gt; A comparative example 6 for comparison with the electrical properties of the specific examples of the present invention is substantially the same as the specific example, except that the temperature of the annealing treatment is 200 200 C 〜 560 ° C, and χ = 〇. The annealing conditions of the comparative examples and the specific examples of the present invention are simply summarized in the following table. &lt;Analytical data&gt; The composition analysis obtained by the electron probe micro analyser (EpMA) and the annealing temperature thereof in the specific examples 1 to 5 of the present invention are simply arranged in the following table 2 ·in. 12 200908021 Table 1 · Composition annealing temperature (°c) Annealing time (minutes, specific example 1 CUi〇〇-xRux 300~580 --- 10 ~60 Comparative example 1 CUi〇〇-xRux 600 10~60 Specific example 2 CUl 〇〇_x-yRUXNy 300~680 10~6〇Comparative example 2 CUl〇〇-x-VRUXNy 700 &quot;——A 10~60 Specific Example 3 Cu 1 00-xR^X 300~560 10 ~60 Comparative Example 3 Cii] oo-xRCx 580 10 to 60 Specific Example 4 Cll] 00-x-yRCxNy 300 to 730 10 to 60 Comparative Example 4 Cui 〇〇-x-yRexNy 750 10 to 60 Specific Example 5 CUl〇〇-x-yH 〇XNy 300~660 10~60 Comparative Example 5 CUl〇〇-x_yH〇xNy 680 10-60 Comparative Example 6 Cu 200~560 10-60 Table 2· Specific Example Composition Annealing Temperature (°c) X (at%) y (at%) 1 Cu100.xRux 300~580 0.5~2.0 0 2 Cui〇〇.x.yRuxNy 300~680 〇·5 ~2.0 0.5~2.0 3 Ciii〇〇_xRcx 300~560 0.5 〜2.0 0 4 Cui〇 〇.x.yRexNy 300~730 0.5~2.0 0.5 〜2.0 5 Cll 1 0 0-x-yH〇xN y 300~660 0.5 〜2.0 0.5 〜2_0 See Figure 1 'The specifics of these comparative examples and the present invention The resistivity of the example shows the annealing temperature graph. In Comparative Example 6, the increase in resistivity occurred at the annealing temperature of 30 CTC; in addition, Comparative Examples 1 to 4 were respectively at 600 ° C, 700 ° C, 580 ° C, and 750. (: There was an increase in resistivity. Phenomenon; therefore, the specific examples 1 to 4 of the present invention can maintain high temperature stability at 58 〇, 680 ° C, 560 ° C, and 730 ° C, respectively. See Fig. 2 'Comparative Examples 1 to 2 and § According to the X-ray diffraction (XRD) spectrum of the specific examples 1 to 2, it is known that the ratio 13 200908021 is compared with the examples 1 to 2 at 600 ° C and 700 ° C respectively. The diffraction peak of the ruthenium compound; therefore, the specific examples 1 to 2 of the present invention can maintain high temperature stability at 580 ° C and 680 ° C. Referring to Fig. 3, the comparative examples 3 and 6 and the specific example of the present invention The XRD patterns of 3 to 4 show that the diffraction peaks of the copper ruthenium compound appear in the annealing treatment at 580 ° C and 400 ° C in the comparative examples 3 and 6, respectively, and the specific examples 3 to 4 of the present invention are respectively 5 At 60 ° C and 7 30 ° C, there is no diffraction peak of the copper compound, and it is obvious that the specific examples 3 to 4 of the present invention are still at 560 ° C and 730 ° C, respectively. Maintain high temperature stability. Referring to Fig. 4, it can be seen from the XRD patterns of the comparative examples 5 and 6 and the specific example 5 of the present invention that the comparative examples 5 and 6 are wound with a copper ruthenium compound at an annealing treatment at 400 ° C and 680 ° C, respectively. In the specific example 5 of the present invention, no diffraction peak of the copper ruthenium compound was observed at 660 ° C. It is apparent that the specific example 5 of the present invention can maintain high temperature stability at 660 ° C. Referring to Fig. 5, there is shown an analysis data of a transmission electron microscope (TEM) of the specific example 1 before performing an annealing treatment. It can be seen from the TEM topography [Fig. 5(a)] that the grain size of the specific example 1 is between about 8 nm and 12 nm. Therefore, the specific example 1 of the present invention has a trace amount before the annealing treatment. Ru has initially refined the grain 0, and the selected area electron diffraction (SAED) chart [Fig. 5(b)] shows that the zone axis of [011] is known. The resulting composition is Cu in a face-centered cubic (FCC) crystal phase, and it is apparent that Ru is in a supersaturated form and is dissolved in the crystal lattice of Cu. 14 200908021 Mai read Figure 6, for this specific example i is implemented 58〇. Analytical data plot of TEM after annealing. It can be seen from the TEM topography [Fig. 6 (4)] that the grain size of the specific life is between 70 nm and 75 nm. Therefore, after the annealing treatment, the specific example i can pass through a trace amount such as Cu. Recrystallization is produced to achieve grain refinement and prevent cu atoms from diffusing to the Si Xi substrate to form the Si Xi copper. In addition, from the simple high-magnification topography [Fig. 6 (the coffee shows that the composition of the composition of the specific example 1 of the present invention (4) substrate only exists in the native oxide (native Qxide) layer does not exist in the stone Referring to FIG. 7, the figure data of the TEM of the specific example 2 before the annealing treatment is shown by the topography [Fig. 7(a)], the Cu grain size of the specific example 2 is about K5nm~ Between 1 〇 nm and thus the specific example 2 of the present invention, before the annealing treatment, a trace amount of Ru Xiaoji machine has preliminary refinement of crystal grains. Further, as shown by the SAED chart [Fig. 7(b)], it is known that [〇] The composition obtained by the crystal axis of the ιι] is Cu of the FCC crystal phase; in addition, tantalum nitride (RuNz) with a boring tool is also seen. [Apparently RU is solid-dissolved in the crystal lattice of Cu in a supersaturated form. It can be seen from the dark field image of TEM [Fig. 7(c)] that the grain size of tantalum nitride (RuNz) is about 4 nm. Referring to Fig. 8 'This embodiment 2 is implemented at 680. The analysis data of the TEM after annealing treatment. It can be seen from the TEM topography [Fig. 8 (4)] that the grain size of the specific example 2 is between about 9 〇 nm and 95 nm. Therefore, in the specific example 2 of Bensheming 5H, after the annealing treatment, a small amount of Ru and RuNz can inhibit the recrystallization of Cu to reach the grain refinement and prevent the atomic expansion to the formation of the copper compound. In addition, it is apparent from the TEM high magnification 15 200908021 rate topography [Fig. 8(b)] that only the native oxide layer exists in the interface of the specific example 2 of the present invention and the interface of the Shixi substrate, and there is no existence. There is a copper stone compound. Referring to Fig. 9, the current density versus electric field intensity curve of the comparative example 6 and the specific example of the present invention show that the current of the comparative example 6 is known after the annealing. Afterwards, the current density of the specific examples 1 to 2' after annealing at the same temperature can be maintained at l〇-8 (A/cm2) and l, respectively. 〇-9(A/cm2). This Comparative Example 6 and the specific &lt;column j~2&lt;2&gt; adhesion of the present invention are tested using the ASTM-D3359.B standard test, and the test results are simply summarized in the following Table 3. in.

綜上所述,本發明高溫穩定性佳的導電椅料,其所引 入之不互溶元素可有效地呈過飽和的形式固溶於銅晶 ,並降低銅晶體整體的電阻係數、漏電流與提昇其附著性 ,增加了本發明之導電材料在半導體元件之高溫製程上的 16 200908021 適用性,確實達到本發明之目的。 惟以上所述者,僅為本發明之具體實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明巾請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明] 圖1是一電阻係數對退火溫度曲線圖,說明該等比較 例與本發明該等具體例之高溫穩定性; 圖2是一比較例u與本發明一具體例u之圖 譜; 圖3是一比較例3、6與本發明一具體例3〜4之 圖譜; 圖4是一比較例5、6與本發明一具體例5之XRX)圖 譜; 圖5是一 τΕΜ分析數據圖,說明本發明該具體例1在 實施退火處理前之ΤΕΜ分析數據; 圖6是本發明該具體例1在實施580°C退火處理後之 TEM分析數據圖; 圖7是本發明該具體例2在實施退火處理前之TEM的 分析數據圖; 圖8是本發明該具體例2在實施680。(:退火處理後之 TEM分析數據圖;及 圖9是一電流密度對電場強度曲線圖,說明該比較例6 與本發明該具體例1〜2之漏電流特性。 17 200908021 【主要元件符號說明】 無 18In summary, the conductive material of the high temperature stability of the present invention can effectively dissolve the copper crystal in a supersaturated form, and reduce the overall resistivity, leakage current and enhance the copper crystal. Adhesion, which increases the applicability of the conductive material of the present invention on the high temperature process of a semiconductor device, does achieve the object of the present invention. The above is only the specific embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph of resistivity versus annealing temperature, illustrating the high temperature stability of the comparative examples and the specific examples of the present invention; Fig. 2 is a comparative example u and a specific example of the present invention Figure 3 is a map of Comparative Examples 3 and 6 and a specific example 3 to 4 of the present invention; Figure 4 is a XRX) map of Comparative Example 5, 6 and a specific example 5 of the present invention; Figure 5 is a τΕΜ analysis The data chart illustrates the enthalpy analysis data of the specific example 1 of the present invention before the annealing treatment is performed. FIG. 6 is a TEM analysis data diagram of the specific example 1 of the present invention after the annealing treatment at 580 ° C. FIG. 7 is the specific figure of the present invention. Example 2 is an analysis data chart of the TEM before the annealing treatment; FIG. 8 is a concrete example 680 of the present invention. (: TEM analysis data chart after annealing treatment; and Fig. 9 is a graph of current density versus electric field intensity, illustrating the leakage current characteristics of the comparative example 6 and the specific example 1 to 2 of the present invention. 17 200908021 [Description of main component symbols 】 no 18

Claims (1)

200908021 十、申請專利範圍: 是被形成於一基材上 一種高溫穩定性佳的導電材料 該導電材料包含: 一 §有Cu100_x_yMxNy之組成物,以 Ho,或此等之一組合; 其中’部分Μ是以過飽和的形式固溶於cu的晶 格位置以及析出於Cu晶粒的晶界。 2.依據申請專利範圍第i項所述之高溫穩定性佳的導電材 料,其中,該組成物是被施予一退火處理以消除其殘留 應力亚降低其電阻係數,且該退火處理的條件致使Cu 不與該基材反應形成一含Cu的化合物。 3 _依據申明專利範圍第2項所述之高溫穩定性佳的導電材 料,其中,該退火處理的溫度是介於2〇〇t&gt;c 〜75〇(&gt;c之間 ,§亥退火處理的時間是介於丨〇秒鐘〜丨2〇分鐘之間;且 該組成物中之Cu的晶粒尺寸是介於3〇 nm〜1 50 nm之 間。 4.依據申請專利範圍第3項所述之高溫穩定性佳的導電材 料’其中’ Μ是Ru,〇.〇&lt; 2.0,y=0 ;該退火處理的 溫度是介於30〇°c〜58(TC之間,該退火處理的時間是介 於10分鐘〜6 0分鐘之間。 5 依據申請專利範圍第3項所述之高溫穩定性佳的導電材 料,其中,Μ 是 ,0_0&lt; 2.0,0.5S yS 2.0 ;該退 火處理的溫度是介於30(TC〜680°C之間,該退火處理的 19 200908021 時間是介於1 〇分鐘〜60分鏠之間。 6. 依據申睛專利範圍第3項所述之高溫穩定性佳的導電材 料,其中,Μ是Re ’ 0.〇&lt;χ$2 〇 , y=〇 ;該退火處理的 溫度是介於30(TC〜56(TC之間,該退火處理的時間是介 於10分鐘〜6〇分鐘之間。 7. 依據申請專利範圍第3項所述之高溫穩定性佳的導電材 料’其中 ’ Μ 是 Re,〇·〇&lt; 2 〇,〇 5$ 2 〇 ;該退 火處理的溫度是介於300。(:〜73〇。(:之間,該退火處理的 時間是介於1〇分鐘〜60分鐘之間。 ’依據申請專利範圍第3項所述之高溫穩定性佳的導電材 料’其中 ’ Μ 是 Ho,0.0&lt;x^2.0,〇.5SyS2.0 ;該退 火處理的溫度是介於300°c〜660°c之間,該退火處理的 時間是介於1 〇分鐘〜6〇分鐘之間。 20200908021 X. Patent application scope: It is a conductive material with good high temperature stability formed on a substrate. The conductive material comprises: a composition of Cu100_x_yMxNy, with Ho, or a combination of these; It is solid-dissolved in the form of supersaturation in the lattice position of cu and the grain boundary of Cu crystal. 2. The high temperature stability conductive material according to the scope of claim patent, wherein the composition is subjected to an annealing treatment to eliminate residual stress and reduce its resistivity, and the annealing treatment condition is caused. Cu does not react with the substrate to form a Cu-containing compound. 3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The time is between 丨〇 second and 丨 2 〇 minutes; and the grain size of Cu in the composition is between 3 〇 nm and 150 nm. 4. According to the third item of the patent application scope The high temperature stability conductive material 'where ' ' is Ru, 〇. 〇 &lt; 2.0, y = 0; the annealing temperature is between 30 〇 ° c ~ 58 (TC, the annealing treatment The time is between 10 minutes and 60 minutes. 5 According to the high temperature stability of the conductive material described in the third paragraph of the patent application, wherein Μ is, 0_0&lt; 2.0, 0.5S yS 2.0; the annealing treatment The temperature is between 30 (TC ~ 680 ° C, the annealing time of 19 200908021 is between 1 〜 minutes ~ 60 minutes 6. 6. According to the high temperature stability of the scope of claim 3 A good conductive material, wherein Μ is Re ' 0. 〇 &lt; χ $2 〇, y = 〇; the annealing temperature is between 30 (TC ~ 56 (TC Between the time of the annealing treatment is between 10 minutes and 6 minutes. 7. The conductive material of the high temperature stability described in item 3 of the patent application 'where' is 'Re, 〇·〇&lt; 2 〇, 〇 5$ 2 〇; the annealing temperature is between 300. (: ~73 〇. (: between, the annealing time is between 1 〜 minutes ~ 60 minutes. 'Based on The high-temperature stability conductive material described in the third paragraph of the patent application 'where' ' is Ho, 0.0 &lt; x ^ 2.0, 〇.5SyS2.0; the annealing temperature is between 300 ° c and 660 ° Between c, the annealing time is between 1 〜 minutes and 6 〇 minutes.
TW096128658A 2007-08-03 2007-08-03 Conducting material with good thermal stability TWI377582B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW096128658A TWI377582B (en) 2007-08-03 2007-08-03 Conducting material with good thermal stability
US12/058,928 US20090035173A1 (en) 2007-08-03 2008-03-31 Electrically Conductive Material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096128658A TWI377582B (en) 2007-08-03 2007-08-03 Conducting material with good thermal stability

Publications (2)

Publication Number Publication Date
TW200908021A true TW200908021A (en) 2009-02-16
TWI377582B TWI377582B (en) 2012-11-21

Family

ID=40338339

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096128658A TWI377582B (en) 2007-08-03 2007-08-03 Conducting material with good thermal stability

Country Status (2)

Country Link
US (1) US20090035173A1 (en)
TW (1) TWI377582B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI395829B (en) * 2010-01-06 2013-05-11 Chon Hsin Lin Sputtered copper layer with good properties and method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201125007A (en) * 2010-01-07 2011-07-16 Univ Nat Taiwan Science Tech MIM capacitor and method for manufacturing the same
CN105274389A (en) * 2015-11-06 2016-01-27 广西南宁智翠科技咨询有限公司 Low-resistance copper alloy wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI395829B (en) * 2010-01-06 2013-05-11 Chon Hsin Lin Sputtered copper layer with good properties and method for manufacturing the same

Also Published As

Publication number Publication date
US20090035173A1 (en) 2009-02-05
TWI377582B (en) 2012-11-21

Similar Documents

Publication Publication Date Title
Chang et al. Structural and thermodynamic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials
Tsai et al. Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization
TWI523087B (en) Al alloy film for semiconductor devices
TWI374482B (en)
JP2010502841A (en) Copper sputtering target having very small crystal grain size and high electromigration resistance and method for producing the same
TW201203368A (en) Thin film formation method
TW200908021A (en) Conducting material with good thermal stability
Ou Integrity of copper–hafnium, hafnium nitride and multilayered amorphous-like hafnium nitride metallization under various thickness
Qingxiang et al. Diffusion barrier performance of amorphous W–Ti–N films in Cu metallization
Cao et al. Evaluation of Cu (Ti) and Cu (Zr) alloys in barrier-less Cu metallization
Tsai et al. Characteristics of a 10 nm-thick (TiVCr) N multi-component diffusion barrier layer with high diffusion resistance for Cu interconnects
JP2013087338A (en) High strength and high conductive copper alloy and manufacturing method thereof
Lin et al. The application of barrierless metallization in making copper alloy, Cu (RuHfN), films for fine interconnects
TWI291496B (en) Copper alloy for semiconductor interconnections, fabrication method thereof, semiconductor device having copper alloy interconnections fabricated by the method, and sputtering target for fabricating copper alloy interconnections for semiconductors
Cao et al. Evaluation of Cu (V) self-forming barrier for Cu metallization
Yan et al. Copper diffusion barrier performance of amorphous Ta–Ni thin films
TW201131656A (en) Method of forming cu wiring
Dalili et al. Ta–Rh binary alloys as a potential diffusion barrier between Cu and Si: Stability and failure mechanism of the Ta–Rh amorphous structures
Yang et al. Improvement of Diffusion Barrier Performance of Ru Thin Film by Incorporating a WHfN Underlayer for Cu Metallization
Chen et al. Comparative study of Cu diffusion in Ru and Ru-C films for Cu Metallization
JP2006179881A (en) Wiring, electrode, and sputtering target
TW201619419A (en) Protection film and method for depositing the protection film
Huang et al. Growth, thermal stability and Cu diffusivity of reactively sputtered NbN thin films as diffusion barriers between Cu and Si
TWI395829B (en) Sputtered copper layer with good properties and method for manufacturing the same
Chang et al. Thermal stability and interface diffusion behaviors of electrolessly deposited CoWP and Cu films

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees