TW200907596A - Projecting exposure method, alignment method, and projecting exposure apparatus - Google Patents

Projecting exposure method, alignment method, and projecting exposure apparatus Download PDF

Info

Publication number
TW200907596A
TW200907596A TW097116420A TW97116420A TW200907596A TW 200907596 A TW200907596 A TW 200907596A TW 097116420 A TW097116420 A TW 097116420A TW 97116420 A TW97116420 A TW 97116420A TW 200907596 A TW200907596 A TW 200907596A
Authority
TW
Taiwan
Prior art keywords
substrate
exposure
reference mark
mark
loading
Prior art date
Application number
TW097116420A
Other languages
Chinese (zh)
Inventor
Ichiyo Kotani
Original Assignee
Mejiro Prec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2007/059466 external-priority patent/WO2007129688A1/en
Application filed by Mejiro Prec Inc filed Critical Mejiro Prec Inc
Priority to TW097116420A priority Critical patent/TW200907596A/en
Publication of TW200907596A publication Critical patent/TW200907596A/en

Links

Abstract

The present invention provides projecting exposure method and exposure apparatus, wherein the exposure method includes the driving platform, the location signal output mechanism, the standard mark inspection mechanism, and the projection exposure apparatus for location determination mechanism to project pattern and image onto exposure substrate; the exposure substrate has at least nine exposure regions provided for pattern and image projection and at least nine inspection regions provided for inspection substrate to be deformed; the standard mark for the exposure substrate presents at least nine standard locations of the exposure regions and also at least nine standard locations of the inspection regions, which includes the following steps: (1) exposure substrate location control step: after the exposure substrate is used as substrate and loaded on platform, sequentially moving the loading platform through the driving platform to position on at least four inspection locations of the exposure substrate; (2) storage step for exposure substrate location: retrieving each location of exposure substrate inspection on loading platform and storing them; (3) calculation step for standard mark position: based on the exposure substrate inspection location, using the standard mark inspection mechanism to inspect the standard mark on exposure region, and then based on inspection result and loading position to calculate the standard mark position of the exposure substrate; (4) calculation step for error parameter value in whole region: according to the standard mark position of the exposure substrate for the whole exposure substrate, using the least square method to calculate all error parameters in the whole region which is characterized by the error with the displacement of the exposure substrate standard mark; (5) calculation step for error parameter value in inspection region: based on at least two locations of the exposure substrate standard mark in each inspection region to calculate all error parameters in inspection region which is characterized by the error with the displacement of the exposure substrate standard mark; (6) calculation step of the linear relationship for error parameter value in inspection region: based on error parameter value in each inspection region, using the least square method to calculate the linear relationship of the error parameter valve in inspection region; (7) calculation step for differential linear relationship: calculating at least first differential value upon the error parameter value of the inspection region between two neighboring inspection regions; and based on the differential value, using the least square method to calculate the differential linear relationship; (8) calculation step for weighted coefficient: based on error parameter value in each inspection region, linear relationship on error parameter value in each inspection region, and accumulated summation of the ranks of differential method with the differential linear relationship to calculate error information of the error parameter values in inspection region. Therefore, according to error information of the error parameter values in inspection region to calculate weighted coefficients, the coefficients indicates: linear relationship according to the error parameter value in inspection region, error of the linear relationship in differential method, and the proportion and magnitude not based on these errors; (9) determination step for exposure substrate location: based on the standard mark location, the whole error parameter values, and the weighted coefficients of the exposure substrate to calculate the target location ready for positioning with loading platform, and to position the loading platform on the targeted location.

Description

200907596 九、發明說明: 【發明所屬之技術領域】 本發明’係有關在曝光基板形成圖案之投影曝光方法、 用於該投影曝光之對準方法、及可實現其等方 光裝置。 【先前技術】 以往,印刷電路板用之曝光裝置,係使用對準顯微鏡 而使形成於標線片之基準標記與形成於曝光基板之基準標 5己位置—致,然後使對準顯微鏡退離以進行曝光。 專利文獻1 :日本特開2003_316〇14號公報 ▲上述投影曝光裝置,不需有用來測定載台位置之干涉 計,因而成本較低,在印刷電路板用之曝光時廣被使用, 二二!ΐ板的處理步驟發生伸縮之情形時,並不能高精 又:〇疋位。又,若在載台移動時有發生誤差之情形, 同樣不能高精度將萤A宁^ ..^ 戟〇疋位。再者,印刷電路板較晶圓基 才反有更大的非線性誤茬授# 、 僅t稭日日圓基板用曝光裝置所利 用之線性誤差校正炎♦ & I,、佳 々A 〃 來霄^對準,亦有無法獲得充份的精度 之情形。 【發明内容】 本發明係有姜藍於^ μ、4·、t κ 、上述事項而提出者,其目的在於提供 才又衫曝光方法、對車太、土 η ,,w 法及投衫曝光裝置,不需使用載台 之干涉計等位置測量裝置,即可將基板定位於 置’且即使對於非線性誤差較大的印刷電路板亦 快速、高精度進行對準,再者,即使在曝光區域外設 200907596 有標記,亦可對非線性 複數個重疊曝光可利用 良好的對位。 誤差較大之印刷電路板進行對準, 同一標記來進行對準,可進行整層 ‘、、、達成上述目的,本發明之投影曝光方法 影曝光裝置,將曝光用朵昭文用才又 了聲亢用光照射於形成有圖案之標線 將該圖案像投影至裝载於裝載台的該曝光基板; 該投影曝光裝置包含: 驅動載台,將用以裝載基板之裝載台移動定位在至小 9個既定位置; v 位置訊號輸出機構,設置在該驅動載台,且輸出表示 该裝載台的位置之位置訊號; —基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標言己、或是形成於基準基板之基準基板基準標 記;以及 π 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 其特徵在於: 該曝光基板’具有供該圖案像投影之至少9個曝光區 域; °亥曝光基板’具有供檢測基板變形之至少9個檢測區 域; s亥曝光基板基準標記’係表示該至少9個曝光區域之 基準位置,且表示該至少9個檢測區域之基準位置; 且包含以下步驟: 200907596 曝光基板位置控制步驟,在該曝光基板被作為該基板 而裝載於該裝載台》,藉由該驅動載台,將該裝載台依序 移動定位在至少4個既定的曝光基板檢測位置; 曝光基板位置儲存步驟,係從該位置訊號取得在各該 曝光基板檢測位置之該裝載台的位置且予以儲存; ^基準標記位置算出步驟,係在各該曝光基板檢測位置, 藉該基準標記檢測機構來檢測該曝光區域基準標記,然後 根據其檢測結果與該裝載台的位置,算出該曝光基板基準 標記的位置; & 全區域誤差參數值算出步驟,係對於該曝光基板整體, 根據該曝光基板基準標記的位置,使用最小平方法,算出 以根據該曝光基板基準標記的位移之誤差為特徵之 誤差參數值; 5 檢測區域誤差參數值算出步驟,係在各該檢測區域, 根據至少2個該曝光基板基準標記的位置,算出以根據該 曝光基板基準標記的位移之誤差為特徵之檢測區域誤差失 數值; ' > 檢測區域誤差參數值線性成分算出步驟,係在各該檢 測區域,根據該檢測區域誤差參數值,使用最小平方法算 出該檢測區域誤差參數值的線性成分; 差分線性成分算出步驟,係對於相鄰的二個該檢測區 域算出其檢刺區域誤差參數值之至少1 |5比沾里八 、 ^卩6的差分,根據該 差分’使用最小平方法算出差分線性成分; 加權係數算出步驟,係在各該檢測區域,根據該檢測 200907596 區域誤差參數值、S亥檢測區域誤差參數值的線性成分、以 及根據a亥差为線性成分之該差分階數的累積和,算出該檢 測區域誤差參數值的誤差資訊,然後根據該檢測區域誤差 參數值的誤差資訊算出加權係數,該加權係數用以表示, 根據該檢測區域誤差參數值的線性成分及該差分線性成分 的誤差、與未根據其等的誤差之大小比例;以及 曝光基板位置決定步驟,根據該曝光基板基準標記的 位置、該整體誤差參數值、及該加權係數,算出要將該裝 載台定位之目標位置,然後將該裝載台定位在該目標位 置。 藉由此處理(智慧型整片方式之處理),對於基準標記 的位置块差,以可由3次式等來近似之誤差與隨機誤差的 大小為基準,判定何者係支配性誤差,根據其結果,可校 正曝光位置的誤差。因Λ ’在曝光時,可將供裝载有曝光 基板之裝載台疋位之目標位置設於更正確的位置。 本發明之投影曝光方法,該檢測區域參數係X方向BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure method for forming a pattern on an exposure substrate, an alignment method for the projection exposure, and an optical device capable of realizing the same. [Prior Art] Conventionally, an exposure apparatus for a printed circuit board uses an alignment microscope to make a reference mark formed on a reticle and a reference mark formed on an exposure substrate, and then to retreat the alignment microscope. For exposure. Patent Document 1: Japanese Laid-Open Patent Publication No. 2003-316 No. 14 ▲ The projection exposure apparatus described above does not require an interferometer for measuring the position of the stage, so that the cost is low, and it is widely used in exposure of printed circuit boards, 22! When the processing steps of the seesaw are stretched, it is not high-precision: 〇疋 position. Moreover, if there is an error in the movement of the stage, it is also impossible to accurately position the firefly A..^. Moreover, the printed circuit board has a larger nonlinear error than the wafer base, and the linear error correction used by the exposure device for the tatto-day substrate alone is ***, I, 々 A 〃霄^ Alignment, there are cases where sufficient accuracy cannot be obtained. SUMMARY OF THE INVENTION The present invention is based on the above-mentioned matters of ginger blue, ^ μ, 4 ·, t κ, the purpose of which is to provide a shirt exposure method, a car, earth η, w method and shirt exposure The device can position the substrate in the position without using a position measuring device such as an interferometer of the stage, and even for a printed circuit board with a large nonlinear error, the alignment is fast and high-precision, and even in the exposure The regional peripherals 200907596 are labeled and can also utilize good alignment for non-linear multiple overlapping exposures. The printed circuit board with large error is aligned, the same mark is used for alignment, and the whole layer can be performed, and the above object is achieved. The projection exposure method of the present invention is used for the image exposure apparatus, and the exposure is used again.亢 illuminating the patterned image onto the exposed substrate mounted on the loading platform by irradiating the patterned marking with the pattern; the projection exposure apparatus comprises: a driving stage, and positioning the loading platform for loading the substrate to a minimum of 9 a predetermined position; v a position signal output mechanism disposed on the drive stage and outputting a position signal indicating a position of the loading stage; a reference mark detecting mechanism for detecting an exposure substrate reference mark formed on the exposure substrate, Or a reference substrate reference mark formed on the reference substrate; and a π position determining mechanism that determines the position of the loading stage based on the position indicated by the position signal; wherein the exposure substrate 'has a projection for the pattern image At least 9 exposure areas; °H exposure substrate 'haves at least 9 detection areas for detecting substrate deformation; shai exposure The board reference mark ' indicates a reference position of the at least nine exposure areas, and indicates a reference position of the at least nine detection areas; and includes the following steps: 200907596 Exposure substrate position control step in which the exposure substrate is loaded as the substrate In the loading platform, the loading stage is sequentially positioned to move at least four predetermined exposure substrate detecting positions by the driving stage; and the exposure substrate position storing step is performed by detecting the exposure substrate from the position signal. The position of the loading station is stored and stored; ^ a reference mark position calculating step is performed at each of the exposure substrate detecting positions, and the reference mark detecting mechanism detects the exposure area reference mark, and then the loading table is based on the detection result The position of the exposure substrate reference mark is calculated; & the total area error parameter value calculation step is calculated based on the position of the exposure substrate reference mark based on the position of the exposure substrate reference mark using the least square method The error of the displacement of the mark is the error parameter value of the feature; 5 detection The domain error parameter value calculation step is to calculate a detection region error loss value characterized by an error of displacement based on the exposure substrate reference mark in each of the detection regions, based on at least two positions of the exposure substrate reference marks; ' > The detection region error parameter value linear component calculation step is performed by using the least square method to calculate a linear component of the detection region error parameter value according to the detection region error parameter value in each detection region; the differential linear component calculation step is adjacent to The two detection regions calculate a difference between at least 1 |5 of the spur region error parameter value, and a difference linear component is calculated according to the difference ′ using the least square method; the weighting coefficient calculation step is Each of the detection regions calculates the error parameter value of the detection region according to the detection unit 200907596 regional error parameter value, the linear component of the S-detection region error parameter value, and the cumulative sum of the difference order according to the linear component of a difference Error information, and then calculating the weight based on the error information of the error value of the detection area a weighting coefficient for indicating a linear component of the error value of the detection region and an error of the differential linear component and a ratio of an error according to the error, and an exposure substrate position determining step according to the exposure substrate reference The position of the marker, the overall error parameter value, and the weighting factor calculate a target position at which the loading station is to be positioned, and then the loading station is positioned at the target position. By this processing (the processing of the smart whole chip method), for the position block difference of the reference mark, the error of the approximation by the third-order equation and the magnitude of the random error are used as a reference to determine which is the dominant error, according to the result. , can correct the error of the exposure position. Since Λ ' at the time of exposure, the target position for loading the loading table on which the exposure substrate is mounted can be set to a more correct position. In the projection exposure method of the present invention, the detection region parameter is the X direction

的伸縮、Υ方向的伸縮、X方向的旋轉、γ方向的旋轉、X 方向的剪力變形、及γ方向的剪力變形中之至少一種。 本發明之投影曝光方法,對各該檢測區域算出該檢測 區域誤差參數值的誤差資訊,係根據將該檢測區域誤差參 數值的線性成分、與根據該差分線性成分的該差分階數的 累積和之和,從該檢測區域誤差參數值減去後所得之值 標準差; < 該裝載台被定位之目標位置,係在該檢測區域誤差參 200907596 數值的線性成分及該差分線性成分的累積和之和、與該檢 測區域誤差參數值之間,根據該加權係數而算出。 可供實現上述投影曝光方法之本發明之曝光裝置,係 將曝光用光照射於形成有圖案之標線片,以將該圖案像投 影至曝光基板之投影曝光裝置; 其特徵在於,包含: 驅動载台,將用以裝載基板之裝載台移動定位在至少 9個既定位置; 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於基準基板之基準基板基準標 記;以及 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 、 該曝光基板,具有供該圖案像投影之至少9個曝光區 域; 該曝光基板,具有供檢測基板變形之至少9個 域; 該曝光基板基準標記,係表示該至少9個曝光區域之 基準位置,且表示該至少9個檢測區域之基準位置; 5亥位置決定機構,包含以下機構: 曝光基板位置控制機構,在該曝光基板被作為該基板 而裝載於該楚載台後,藉由該驅動載台,將該裝载台依序 200907596 私動疋位在至少4個既定的曝光基板檢测位置; 曝光基板位置儲存機構,係從該位置訊號取得在各該 曝光基板檢測位置之該裝載台的位置且予以儲存; “基準標記位置算出機構,係在各該#光基板檢測位置, 藉該基準標記檢測機構來檢測該曝光區域基準標記,然後 根據其檢測結果與該裝載台的位置,#出該曝光基板基準 標記的位置; 全區域誤差參數值算出機構,係對於該曝光基板整體, 根據該曝光基板基準標記的位置,使用最小平方法,算出 以根據該曝光基板基準標記的位移之誤差為特徵之全區域 誤差參數值; 檢測區域誤差參數值算出機構,係在各該檢測區域, 根據至少2個該曝光基板基準標記的位置,算出以根據該 曝光基板基準標記的位移之誤差為特徵之檢測區域誤差 數值; 檢測區域誤差參數值線性成分算出機構,係在各該檢 測區域,根據該檢測區域誤差參數值,使用最小平方法: 出該檢測區域誤差參數值的線性成分; 一差分線性成分算出機構’係對於相鄰的二個該檢測區 域算出其檢測區域誤差參數值之至少"皆的差分,根據該 差分’使用最小平方法算出差分線性成分; 加權係數算出機構’係在各該檢測區域,根據 區域誤差參數值、該檢測區域誤差參數值的線性成分、以 及對應該差分線性成分之該差分階數的累積和,算出該^ 11 200907596 測區域誤差參數值的誤差資訊,然後根據該檢測區域誤差 參數值的誤差資訊算出加權係數,該加權係數用以表示, 根據該檢測區域誤差參數值的線性成分及該差分線性成分 的誤差、與未根據其等的誤差之大小比例;以及 曝光基板位置決定機構,根據該曝光基板基準標記的 位置、該整體誤差參數值、及該加權係數,算出要將該裝 載台定位之目標位置,然後將該裝载台定位在該目桿位 置。 本發明之投影曝光裝置,該檢測區域參數,係X方向At least one of expansion and contraction, expansion and contraction in the x-direction, rotation in the X direction, rotation in the γ direction, shear deformation in the X direction, and shear deformation in the γ direction. In the projection exposure method of the present invention, error information of the detection region error parameter value is calculated for each of the detection regions, based on a cumulative component of the linear component of the detection region error parameter value and the difference order according to the differential linear component. And the standard deviation of the value obtained by subtracting the error value of the detection region; < the target position at which the loading station is positioned is the linear component of the value of the error in the detection region 200907596 and the cumulative sum of the differential linear components The sum and the detection region error parameter value are calculated based on the weighting coefficient. The exposure apparatus of the present invention for realizing the above-described projection exposure method is a projection exposure apparatus that irradiates exposure light onto a patterned reticle to project the pattern image onto an exposure substrate; a loading stage for positioning the loading platform for loading the substrate in at least nine predetermined positions; a position signal outputting mechanism disposed on the driving stage and outputting a position signal indicating a position of the loading station; a reference mark detecting mechanism for Detecting an exposure substrate reference mark formed on the exposure substrate or a reference substrate reference mark formed on the reference substrate; and a position determining mechanism determining a position of the loading table based on a position indicated by the position signal; The substrate has at least nine exposed regions for projecting the image of the pattern; the exposed substrate has at least nine regions for detecting deformation of the substrate; and the exposed substrate reference mark indicates a reference position of the at least nine exposed regions, and indicates The reference position of the at least 9 detection areas; 5 hai position determining mechanism, including the following institutions The exposure substrate position control mechanism is mounted on the substrate after the exposure substrate is mounted as the substrate, and the loading stage is manually moved to at least four predetermined exposure substrates by the driving stage. a detection position; an exposure substrate position storage mechanism for acquiring and storing the position of the loading table at each of the exposure substrate detection positions from the position signal; and a "reference mark position calculation means" for each of the #光 substrate detection positions, The reference mark detecting means detects the exposure area reference mark, and then based on the detection result and the position of the loading table, the position of the exposure substrate reference mark is output, and the total area error parameter value calculating means is for the exposure substrate as a whole. And calculating, based on the position of the exposure substrate reference mark, a total area error parameter value characterized by an error according to the displacement of the exposure substrate reference mark; and a detection area error parameter value calculation mechanism in each of the detection areas Calculating according to the position of at least two of the exposed substrate reference marks, according to the exposed substrate The error of the displacement of the reference mark is the characteristic detection area error value; the detection area error parameter value linear component calculation means is used in each of the detection areas, and the least square method is used according to the detection area error parameter value: the detection area error parameter is obtained a linear component of the value; a differential linear component calculation means calculates a difference of at least the detection parameter error parameter values for the two adjacent detection regions, and calculates a differential linear component using the least square method according to the difference; The weighting coefficient calculation means calculates the sum of the regional error parameter value, the linear component of the detection region error parameter value, and the cumulative sum of the difference order corresponding to the differential linear component, in the respective detection regions. Error information of the error parameter value, and then calculating a weighting coefficient according to the error information of the error value of the detection area, the weighting coefficient is used to indicate that the linear component of the error parameter value according to the detection region and the error of the differential linear component are not based on The ratio of the magnitude of the error; A substrate position determining means, based on the exposure position of the substrate reference mark, the overall error parameter value, and said weighting coefficients, the means for calculating a target position of the stage positioning and the loading station is positioned at the opposite pole head. The projection exposure apparatus of the present invention, the detection area parameter is an X direction

的伸縮、Y方向的伸縮、x方向的旋轉、Y方向的旋轉、X 方向的剪力變形、及γ方向的煎力變形中之至少一種。 本發明之投影曝光裝置令,對各該檢測區域算出該檢 測區域誤差參數值的誤差資訊’係根據將該檢測區域誤差 參數值的線性成分、與根據該差分線性成分的該差分階數 的累積和之和,從該檢測區域誤差參數值減 的標準差; I# ^ m 該裝載台被定位之目標位置,係在該檢測區域誤差參 數值的線性成分及該差分線性成 '、" ,atJ F Μ ^ ^ v:t 的累積和之和、與該檢 心域决差參數值之間’根據該加權係數而算出。 習知,對於印刷電路板之對準方法之主流係_對準 方法’在使形成於各曝光區域 根攄“署-… 曝光前,先進行測量, 根據其位置資訊來修正曝光位置 此,在本發明所提案之對準方法 光。相對於 之產能,遂使用先將所有標刷電路板 J里刊用最小平方近 12 200907596 似計算而僅計算線性 ,,u , 運續進行曝光的整片放料-住 (global ahgnment)方法。然而 弋子準 會有較大的非線性畸變,在一 路板與晶圓不同, 不充份的情形,為對應於此 5有精度 是除線性誤差以外的誤差亦予棱正&知#早之方去,乃 法。 丌予扠正的智慧型整片式對準方 在該方法之中’對於為了利用相鄰之標 而離政配置標記的情形’甚至由於標記之形狀問題而造成 部分標記無法被檢測之情料,必須能與其對應。又 年來的客戶所需之傾向’亦有使用到排列在印刷電路板外 周或中心線部分等與曝光區域無關的標記以曝光者,對於 該種不具有内部資訊之情形’亦需能與其對應。 、 為對應於此,在本發明所提案者,係對於配置在印刷 電路板外周或中心線附近之標記亦能校正其曝光位置的線 誤差既定的非線性誤差,且亦能對應於標記檢測錯誤(無 法檢測)之對準方法。再者,在本發明所利用之標記排列 較曝光區域有更少的標記點數(標記數)且可設定穩定之標 記,因此,亦具有可提供速度快、精度高之對準之優點。 本發明之對準方法,在將光罩上之圖案透過投影光學 系統投影曝光至矩形印刷電路板時,檢測該印刷電路板上 之標記位置,並根據該標記位置資訊以決定曝光位置,其 特徵在於’包含以下步驟: 將與矩形基板之1邊平行配置之複數個標記資訊,至 ^劃分成與1對彼此對向的邊相對應的2組; 13 200907596 根據該組内之各標記之設計座標資訊、及各標記位置 的檢測資訊’來決定具有直線或利用近似所求得之曲線資 訊之數式; 對於在該2組所決定之各該數式,代入供進行曝光之 設計座標值’以算出2個位置資訊;及 使用曝光座標之與所算出之座標轴正交之軸方向之2 組標記座標相對的内分資訊,來決定曝光位置。 本發明之對準方法,在將光罩上之圖案透過投影光學 系統投影曝光至矩形印刷電路板時,檢測該印刷電路板上 之標記位置,並根據該標記位置資訊以決定曝光位置,其 特徵在於’包含以下步驟: 將與矩形基板之邊平行配置之複數個標記資訊,至 少劃分成與1對彼此對向的邊相對應的2組; 根據該組内之各標記之設計座標資訊、及各標記位置 的檢測資訊,來決定具有直線或制近似所求得之曲線資 組所決定 ,一 ^八伢進行曝朵夕 曝光區域對角線方向 ' 差分算出曝^ 2知的扠计座標值,根據其該 差刀异出曝先區域之倍率及旋轉資訊;及 」吏用曝光座標之與所算出之座標軸正交之軸方向 組標記座標相對的& & _ 之2 耵的内分貧訊,來決定曝光位置。 在本备月之對準方法,將平行配置於與該2 方向之邊的複數個標 /、μ 、,·交之 M知5己貝訊,至少割分忐盥7并 之邊相對應的2紐 一J刀烕與1對彼此對向 A ’並進行同樣的處理。 14 200907596 本發明之對準t、_±_如 所求得之曲線資:組内所決定之直線或利用近似 係以標c之數所決定,標記為 情形時係一次式,彳β 知3己為3點之情形時係2 -女十 ,ffi _ ^ 4點以上之情形時係3次式。 人式,標纪為 本發明之對準方法,其包含在進行 於該標記點數之方々、、t〜 +之別先以無關 步驟,# ·ΐ|摆 疋要计算至何次式為止之步驟;該 4㈣擇以線近似所求出之與 對應之式取平均值之】了吸此對向之邊相 之1 -人式或直線近似之〗次式 曲線近似之2次式。 人式、或2次 之第法其包含在印刷電路板之處理批量 步驟,係視進行直飨说… 愤判之步驟’該 订星線近似或曲線近似 似係數之值,使第2 κ了又2人及3次之近 數減少。 #以後之標記檢測點數較第i片之點 可供實現上述對準方法之本發明之曝 罩上之圖案透過投影弁風各& +;t 係將先 之投影曝光裝置,其特徵在於,包含:”刷電路板 驅動載台進行供裝㈣ 移動及定位; ^很心褒栽台之 位置訊號輸出機構,钟 、 _ ^ °又置在§亥驅動載台,且輪出矣- 邊裝載台的位置之位置訊號; 和出表不 標記位置檢測機構,田ιν &、, 標記位置;及 用以檢測形成於該印刷電路板之 對準控制機構,根楠 據藉忒橾C位置檢測機構得之標記 15 200907596 位置的檢測資訊以決定曝光位置,根據所決定之該曝光位 置及該位置訊號來控制該驅動載台; 該對準控制機構包含: 標記資訊分類機構,用以將與矩形基板之i邊平行配 置之複數個標記資訊,至少劃分成與丨對彼此 對應的2組; 邊相 數式决定機構’根據該組内之各標記之設計座標資訊、 及各標記位置的檢谓丨丨咨^ 也 、 刃揿判貝讯,來決定具有直線或利用近似所 求得之曲線資訊之數式; 位置貝#算出機構’對於由該2組所決^之各該數式, 代入供進行曝光之設計座標值,以算出2個位置資訊;及 2光位置決定機構,係使用曝光座標與算出之座標軸 正交之軸方向之2組標記座標的相對内分資訊,來 曝光位置。 可么、實現上述對準方法之本發明之曝光裝置,係將光 罩上之圖案透過投影光料、統投㈣光至矩形印刷電路板 之投影曝光裝置,其特徵在於,包含: 驅動載台,用以進行供裝載該印刷電路板之裝載台之 移動及定位; 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; ^榇。己位置檢測機構,用以檢測形成於該印刷電路板之 丁 ^位置,以及對準控制機構,根據藉該標記位置檢測機 構侍到之“ 5己位置的檢測資訊,以決定曝光位置,並根據 16 200907596 所決定之該曝光位置及該位置訊號來控制該驅動載台; 該對準控制機構包含: 標記資訊分類機構,將與矩形基板之丨邊平行配置之 複數個標記資訊,至少劃分成與丨對彼此對向之邊相對應 數式決定機構,根據該組内之各標記之設計座標資訊、 及各標記位置的檢測資訊,來決定具有直線或利用近似所 求得之曲線資訊之數式; 倍率及旋轉資訊算出機構,對於在該2組所決定之各 該數式,代入供進行曝光之曝光區域對角線方向之至少2 =的設計座標值,n由該差分算出曝光區域之倍率及旋轉 曝光位置決定機構 標軸正交之轴方向之2 定曝光位置。 ,係使用曝光座標之與所算出之座 組標記座標相對的内分資訊,來決 2組正交之 對彼此對向 在本發明之曝光裝置,將平行配置於與該 方向之邊的複數個標記資訊,至少劃分成與i 之邊相對應的2組’並進行同樣的處理。 似所长二 褒置,在組内所決定之該直線或利用近 之个主开^之Γ線貧訊,係以標記之數所決定,標記為2點 為:」、係一次式’標記為3點之情形時係2次式,桿纪 為4點以上之情形時係3次式。 己 =明之曝光裝置,其包含在實施該對 於^己點數之方式決定要計算至何次式為止之步驟Γ 17 200907596 對彼此對向之邊 之1次式、或2 該步驟,係選擇以直線近似所求出之與^ 相對應之式取平均值之!次式或直線近似 次曲線近似之2次式。 本發明之曝光裝置,人 匕S在印刷電路板之處理批量 之第1片,對各該組進行3赴丨、;L仏 订3點以上的標記檢測之步驟;該 步驟,係視進行直線近似岑曲 八、似次曲線近似時之2次及3次之近 似係數之值,使第2 H β β 後之“記檢測點數較第1片之點 數減少。 本發明之投影曝光裝置,將曝光用光照射於形成有圖 案之標線片’㈣該圖案像投影在曝光基板,其特徵在於, 包含: 驅動載σ,將用以裝載基板之裝載台移動定位在至少 4個既定位置; 位置訊號輸出機構’設置在該驅動載台,且輸出表示 该裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於基準基板之基準基板基準標 記;以及 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 該曝光基板基準標記,係由用來表示該曝光基板的基 準位置之至少4個標記所構成; 邊基準基板基準標記,係由用來表示該基準基板的基 準位置之至少4個標記所構成; 18 200907596 該位置決定機構包含·· 第"立置校正機構’用以校正在移動該裝 生之邊裝载台的位置誤差;以及 位置:差VI置校正機構,用以校正該曝光基板基準標記的 位置說差中的線性成分誤差; 該第1位置校正機構包含: 基準基板位置控制機構,在該基準基板被 而裝載於該裝載台後,藉由咳 ‘,"土板 動载台,將該裝載台依序 移動疋位在至少3個既定的基準基板檢測位置’· A準:::板位置儲存機構,係從該位置訊號取得在各該 準基板檢測位置之該裝載台的位置且予以儲存; 基準基板基準標記位置儲存機構,係在各該基準基板 =位置’藉由該基準標記檢測機構來檢測該基準基板基 準^己’然後根據其檢測結果與該裝載台的位置,算出該 基準基板基準標記的位置且予以儲存; / 基準基板位置校正運I健左搣 ^連鼻儲存機構’根據該基準基板基 旱標5己的位置,鼻出用以妨"P 4 ^士 & 异^用以扠正该裝載台的位置誤差之裝載 口位置校正資料且予以儲存; 該第2位置校正機構包含: 曝光基板位置控制機構,在 杜巧曝光基板被作為該基板 而I載於該裝載台時,藉由兮 精由該驅動载台,將該裴載台依序 移動定位在根據該裝載台位置校正資料所定出之至少3個 既定的曝光基板檢測位置; 曝光基板位置健存機構,係從該位置訊號取得在各該 19 200907596 曝光基板檢測位置之„以㈣ 曝光基板基準標記位置錯#_ 子 檢測位置,藉該基準標記檢柯機==該曝光基板 標記,然後根據其檢測結果與光基板基準 光基板基準標記的位置且予㈣存;以口及 算出該曝 線性决差校正運算機構,根據儲存 標記位置儲存機構之該曝光基板 料—該線性成分誤差之線性誤差校正資 置,:二述裝載台位置校正資料之值來校正裝載台位 ΐ: “驅動台的驅動控制,藉此,装载台之定位, :以二於基準基板之基準標記的形成誤差之等級來進 ::測定之用,能以整片方式將圖案轉印至曝=二 準;長尺寸測定及平均化效果,並可藉著減少基 料5己的測董點數來提高裝載台的定位精度,且,亦能提 局曝光基板的製造產能。 本發明之投影曝光裝置,包含:數位式微反射鏡元件, 有複數個反射鏡,且能使射至該複數個反射鏡之光的反 射方向刀別依該複數個反射鏡而定;以及微陣列透鏡,具 有與該複數個反射鏡分別對應之複數個微透鏡;將藉由該 微陣列透㈣成之點像投影至#光基板,其特徵在於/ 含: 驅動载台,將用以裝载基板之裝載台移動定位在至少 20 200907596 3個既定位置; 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於可供曝光之基準基板之基準 基板基準標記;以及 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 。亥曝光基板基準標s己,係由用來表示該曝光基板的基 準位置之至少3個標記所構成; 該基準基板基準標記,係、由用來表示該基準基板的基 準位置之至少3個標記所構成; 該位置決定機構包含: 第1位置校正機構,用以校正在移動該裝載台時所產 生之該裝載台的位置誤差;以及 第2位置校正機構,用以校正該曝光基板基準標記的 位置誤差中的線性成分誤差; 該第1位置校正機構包含: 基準基板位置控制機構,在該基準基板被作為該基板 而裝載於該裝載台後,藉由該驅動載台,將該裝载台依序 移動定位在至少3個既定的基準基板檢測位置; 基準基板位置儲存機構,係從該位置訊號取得在各該 基準基板檢測位置之該裝載台的位置且予以館存,· 基準基板曝光機構,係在各該基準基板檢測位置,將 21 200907596 2光用光照射在基準標線片,使形成於該基準標線片之標 標線片基準標記之像;以及板…基準基板形成該 2準基板位置校正運算儲存機構,藉由該基準標記檢 械構’檢測形成於該基準基板之該標線片基準標記之像 :該基準基板基準標記,根據檢測結果算出該標線片基準 ^之像及該基準基板基準標記的相對位置, 二對:置與該裝載台的位置,算出用以校正該裝載台的位 置决差之4載台位置校正資料且予以儲存; 該第2位置校正機構包含: 而位置控制機構,在該曝光基板被作為該基板 =載”裝載台時,藉由該驅動載台,將該裝载台依序 移動疋位在根據該袭載台位置校正資料所定出之至少3個 既定的曝光基板檢測位置; 曝光基板位置儲存機構,係從該位置訊號取得在各咳 曝光基板檢測位置之該裝载台的位置且予以儲存; 檢測ϋ基Ϊ基準標記位置儲存機構,係在各該曝光基板 =位置4該基準標記檢測機構來檢測該曝光基板基準 心5己’然後根據其檢測社果輿兮驻进a & *其加其、、隹挪 “果與3亥裝载台的位置’算出該曝 先基板基準標記的位置且予以儲存;以及 線性誤差校正運算播謹 俨“ 异機才冓根據儲存在該曝光基板基準 置儲存機構之該曝光基板基準標記的位置,使用最 =平方法算出用以校正該線性成分誤差之線性誤差校正資 22 200907596 本發明之投影曝光㈣,包含:數位·反射鏡元件, ;有複數減射鏡,且能㈣㈣複數錢射鏡之光的反 射方向分別依該複數個反射错而—· 射鏡而叱,以及微陣列透鏡,具 有與該複數個反射鏡分別對雇#、i / ⑴對應之複數個微透鏡;將藉由該 微陣列透鏡形成之點像投影至眠 知主曝先基板,其特徵在於,包 含: 驅動載台,將用以裝載基板之裝載台移動定位在至少 3個既定位置; 位置§fl號輸出機構,設置在兮μ叙# & ^ 1仕。哀IE動載台,且輸出表示 該裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於該曝光基板之曝 ,基板基準標記、或是形成於基準基板之基準基板基準標 呂己,以及 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 、 該曝光基板基準標記,係由用來表示該曝光基板的基 準位置之至少3個標記所構成; 該基準基板基準標記,係由用來表示該基準基板的基 準位置之至少3個標記所構成; 該位置決定機構包含: 第1位置权正機構,用以校正在移動該裝载台時所產 生之該裝載台的位置誤差;以及 第2位置校正機構,用以校正該曝光基板基準標記的 位置誤差中的線性成分誤差; 23 200907596 該第1位置校正機構包含: 基準基板位置控制機構,在該基準基板被作為該基板 而裝載於該裝載台後,藉由該驅動載台,將該裝載台依序 移動定位在至少3個既定的基準基板檢測位置; 基準基板位置儲存機才冓,係從該&置訊號取得在各該 基準基板檢測位置之該裝載台的位置且予以儲存; ^基準基板基準標記位置儲存機構,係在各該基準基板 位£ ||由6亥基準標記檢測機構來檢測該基準基板基 準標記,然後根據其檢測結果與該裝載台的位置,算出該 基準基板基準標記的位置且予以儲存;以及 基準基板位置校正運笪担^ A 4办碰 , •.隹μ 連异儲存機構,根據該基準基板基 準§己的位置,算出用以校 仅这裝载口的位置誤差之裝載 口位置校正資料且予以儲存; 該第2位置校正機構包含: 曝光基板位置控制播谱,+ β , 而在錢域板被作為該基板 而裝載於該裝載台時,藉由 精由及驅動载台’將該裝裁a 移動定位在根據該裝載台位 ° 且仪止貝科所定出之至, 個 既疋的曝光基板檢測位置; 曝光基板位置儲存機構, Λ# „ 係從该位置訊號取得在各該 曝先基板檢測位置之該裝载台 戰的位置且予以儲存; 曝光基板基準標記位置儲. @俘機構,係在各緣暖也| 檢測位置,藉該基準標記拾 以曝先基板 標記,然後根據其檢測結果盥 ' 土板基準 光基板基準標記的位置且予罝#出5亥曝 卞M儲存;以及 24 200907596 P己位置=杈正運算機構,根據儲存在該曝光基板基準 二方該曝光基板基準標記的位置,使用最 料具用以扠正該線性成分誤差之線性誤差校正資 2據域裝載台位置校正資料之值來校正裝載台位 ’據以貫施驅動台的驅動控制,藉此,裝載台之定位, 能以形成於基準基板之基準標記的形成誤差之等級來進 订。因此’無須有干涉計等位置測定裝置來作為裝載台的 位置測定之用,能以整片方式將圖案轉印至曝光基板具 有整片方式的長尺寸測定及平均化效果,並可藉著減少基 :標記的測量點數來提高裝載台的定位精度,i,亦能提 高曝光基板的製造產能。 —又,不使用標線片,即可將導體圖案形成於曝光基板, 藉著對於數位式微反射鏡元件的控制,可使導體圖案成為 所要的形狀。再者,藉著對於數位式微反射鏡元件的控制, 不僅止於伸縮度,就連正交度等亦能校正。 本發明之投影曝光裝置,其包含投影光學系統,用以 將該曝光用光照射於該曝光基板; 該基準標記檢測機構,包含配置在該投影光學系統與 裝載台間之對準光學系統; 該對準光學系統,將非曝光用光照射於該曝光基板基 準標記或該基準基板基準標記,以檢測該曝光基板基準標 S己或該基準基板基準標記; 該對準光學系統’係在檢測該曝光基板基準標記或該 25 200907596 基準基板基準標記後,被定位在檢測位置;在結束該曝光 基板基準標記或該基準基板基準標記之檢測後,被定位在 從該檢測位置退離之退離位置。 將非曝光用光照射在基準基板基準標記,即能準確的 檢測基準標記。又,在檢測複數個基準標記之情形時,係 在4»測最後的基準標§己之位置後’方使對準光學系統退 離,然後開始曝光,因此’無須在複數個曝光區域間分別 有對準光學系統的移動’可縮短基準標記檢測所需時間, 因而能提高產能。 本發明之投影曝光裝置’其中之該裝載台位置校正資 料’係根據在複數個基準基板檢測位置之該曝光基板基準 標記的位置之平均值而算出。 由於係根據曝光基板基準標記的位置之平均值算出裝 載台位置校正資料,藉此,就算是在驅動台的移動時產生 誤差、或是有因為驅動台的微幅偏斜而產生阿貝誤差之产 形’亦能進一步提高裝載台的定位精度。 本發明之投影曝光裝置,該基準基板基準標記係形成 於,在該基準基板中位在既定間隔的格子狀交點; 該裝載台位置校正資料,係根據位在該格子狀交點之 s亥基準基板基準標記的位置而算出; 該曝光基板位置控制機構,係使用該裝載台位置校正 資料且利用曲線近似或内插法,算出要將該裝載台定位之 目‘位置,然後將該裝載台定位在該目標位置。 當誤差係對應裝載台位置而逐漸變化時,由於係以裝 26 200907596 載台位置校正資料夹^ ^ 一 果實知曲線近似或内插計算以&尸咖^ 貧料,而能縮短基準卢 于内插 丞旱铋屺的位置測量時間、 置校正資料所佔的儲存 裝載口位 4里、及細短在移動驅 行運算之時間。 施動D别所進 本發明之投影曝光裝置,其包含·· 投影光學系統,可變更該圖案像的投 案投影至該曝光基板;以及 將D亥圖 投影倍率決定機槿, ^ 根據该線性誤差校正運算機槿所 算出的該線性誤差校正資粗 . 斤 左仅止貝枓’來決定該投影倍率。At least one of expansion and contraction, expansion and contraction in the Y direction, rotation in the x direction, rotation in the Y direction, shear deformation in the X direction, and frying deformation in the γ direction. The projection exposure apparatus of the present invention causes the error information of the detection region error parameter value to be calculated for each of the detection regions based on the linear component of the detection region error parameter value and the accumulation of the difference order according to the differential linear component And the sum of the standard deviations from the error value of the detection area; I# ^ m The target position at which the loading station is positioned is the linear component of the error parameter value in the detection area and the difference is linearized into ', " The sum of the cumulative sums of atJ F Μ ^ ^ v:t and the value of the check domain decision parameter are calculated based on the weighting coefficient. Conventionally, for the mainstream method of the alignment method of the printed circuit board, the alignment method is performed before the exposure is formed in each exposure area, and the exposure position is corrected according to the position information thereof. The alignment method proposed by the present invention is light. Relative to the production capacity, the first use of all the brush board J is first calculated with a minimum square of nearly 12 200907596 and only the linearity is calculated, u, the whole piece of the exposure is continued. The global ahgnment method. However, the scorpion will have a large nonlinear distortion, which is different from the wafer in one board. In the case of insufficient, the accuracy is in addition to the linearity error. The error is also given to the Orthodox &Sense; Known #早之方,是法. 丌 叉 的 的 的 的 的 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧 智慧'Even if the mark is not able to be detected due to the shape of the mark, it must be able to correspond to it. The tendency of the customer's needs for years has also been used to arrange the exposure on the periphery or centerline of the printed circuit board. The domain-independent mark should be able to correspond to the case where the person does not have internal information. In order to cope with this, in the proposal of the present invention, it is arranged near the outer circumference or the center line of the printed circuit board. The mark can also correct the line error of the exposure position to a predetermined nonlinear error, and can also correspond to the alignment method of the mark detection error (undetectable). Furthermore, the mark arrangement used in the present invention has fewer exposure areas. The number of marked points (number of marks) and the stable mark can be set, therefore, it also has the advantage of providing fast and high precision alignment. The alignment method of the present invention transmits the pattern on the reticle through the projection optical system. When the projection is exposed to the rectangular printed circuit board, the position of the mark on the printed circuit board is detected, and the exposure position is determined according to the mark position information, which is characterized by 'including the following steps: a plurality of pieces arranged in parallel with one side of the rectangular substrate Mark the information, to ^ divided into 2 groups corresponding to a pair of opposite sides; 13 200907596 According to the design coordinates of each mark in the group And the detection information of each marked position' to determine the number of equations having a straight line or using the approximated curve information; for each of the two types determined by the two groups, substituting the design coordinate value for exposure to ' Calculating two pieces of position information; and determining the exposure position by using the inner division information of the two sets of mark coordinates in the axial direction orthogonal to the calculated coordinate axis of the exposure coordinate. The alignment method of the present invention is on the reticle When the pattern is projected and exposed to the rectangular printed circuit board through the projection optical system, the position of the mark on the printed circuit board is detected, and the exposure position is determined according to the mark position information, which is characterized by 'including the following steps: the side of the rectangular substrate The plurality of mark information arranged in parallel is divided into at least two groups corresponding to one pair of opposite sides; the coordinate information of each mark in the group and the detection information of each mark position are determined to have a straight line or According to the curve obtained by the approximation, the curve is determined by the group of the 曝 伢 伢 曝 曝光 曝光 曝光 曝光 曝光 曝光 ' ' ' ' The value of the index is based on the magnification and rotation information of the difference zone before the exposure; and the axis of the exposure coordinate is orthogonal to the calculated coordinate axis, and the coordinates of the coordinate mark are opposite of the && _ Decentralize the news to determine the exposure location. In the alignment method of this preparation month, the plurality of labels /, μ, , ·, which are arranged in parallel with the side of the two directions, are arranged in parallel, and at least the side of the division is divided into 7 2 New 1 J knives and 1 pair of A ' opposite each other and the same processing. 14 200907596 The alignment t and _±_ of the present invention are as determined by the curve: the straight line determined in the group is determined by the number of the standard c by the approximation system, and the one time is marked as the case, 彳β knows 3 When it is 3 o'clock, it is 2 - female ten, and ffi _ ^ is more than 4 points. Human type, the standard is the alignment method of the present invention, which is included in the square of the number of the marked points, and t~ + is preceded by an unrelated step, and #·ΐ| Step; the 4 (four) is determined by the line approximation and the corresponding equation is averaged. The first-order curve approximating the one-person or straight line approximation of the side of the opposite phase is approximated. The human or the second method is included in the processing batch step of the printed circuit board, and the system is said to be straightforward... The step of the indignant judgment is that the star line approximation or the curve approximates the value of the coefficient, making the 2nd κ The number of two people and three times decreased. The mark of the subsequent detection mark is smaller than the point of the i-th slice, and the pattern on the exposure cover of the present invention for realizing the above alignment method is transmitted through the projection hurricane each &+; t is a prior projection exposure device, which is characterized in that , including: "brush board drive stage for loading (4) movement and positioning; ^ very heart-planting position signal output mechanism, clock, _ ^ ° is placed in the § Hai drive stage, and the wheel 矣 - side Position signal of the position of the loading station; and the position detecting mechanism of the unlabeled position, the field of the meter, and the position of the mark; and the alignment control mechanism for detecting the printed circuit board, The detecting mechanism obtains the detection information of the position of 200907596 to determine the exposure position, and controls the driving stage according to the determined exposure position and the position signal; the alignment control mechanism comprises: a marking information classification mechanism for The plurality of mark information arranged in parallel with the i side of the rectangular substrate is divided into at least two groups corresponding to each other; the edge phase number determining mechanism 'based on the design coordinate information of each mark in the group, and The inspection position of each mark position is also used to determine the number of the curve information obtained by the straight line or using the approximation; the position of the calculation unit is determined by the two groups. Each of the equations is substituted for the design coordinate value for exposure to calculate two position information; and the two light position determining mechanism is a relative internal division of the two sets of marker coordinates in the axial direction orthogonal to the calculated coordinate axis using the exposure coordinate The exposure device of the present invention for realizing the above alignment method is a projection exposure device for transmitting a pattern on a reticle through a projection light material and a projection (four) light to a rectangular printed circuit board. The utility model comprises: a driving stage for performing movement and positioning of a loading platform for loading the printed circuit board; a position signal outputting mechanism disposed on the driving stage and outputting a position signal indicating a position of the loading platform; a position detecting mechanism for detecting a position formed on the printed circuit board, and an alignment control mechanism, according to the position of the mark detecting mechanism Detecting information to determine an exposure position, and controlling the driving stage according to the exposure position and the position signal determined by 16 200907596; the alignment control mechanism comprises: a marking information classification mechanism, which is arranged in parallel with the edge of the rectangular substrate The plurality of mark information is divided into at least a corresponding number determining mechanism that is opposite to each other, and the determined coordinate information of each mark in the group and the detection information of each mark position are determined to have a straight line or use A formula for approximating the obtained curve information; a magnification and rotation information calculation means for substituting at least 2 = design coordinates of the diagonal direction of the exposure region for exposure for each of the two types determined by the two groups n is calculated from the difference by the magnification of the exposure area and the rotational exposure position determining the two exposure positions of the axis direction orthogonal to the axis of the mechanism. Using the internal division information of the exposure coordinates and the calculated coordinate set coordinates, the two pairs of orthogonal pairs are opposed to each other in the exposure apparatus of the present invention, and are arranged in parallel in a plurality of sides along the direction. The mark information is divided into at least two groups corresponding to the sides of i and the same processing is performed. It seems that the length of the line is determined by the line in the group or by using the nearest line of the main line. The number is marked by the number of marks. The mark is 2 points:", one-time type mark When it is 3 o'clock, it is a 2nd type, and when it is 4 or more, it is a 3rd type. The exposure apparatus of the present invention includes the steps of determining the order to be calculated in the manner of implementing the method for the number of points. 2009 17 200907596 The first-order type of the side opposite to each other, or 2 the step is selected The equation corresponding to ^ obtained by the straight line approximation is averaged! The second or straight line approximates the second-order approximation of the sub-curve. In the exposure apparatus of the present invention, the first sheet of the processing batch of the printed circuit board is subjected to a step of detecting the mark of 3 points or more for each of the groups; and the step of detecting the mark of 3 points or more; Approximate to the value of the approximation coefficient of the second and third times when the approximation of the approximation curve is approximated, so that the number of points detected by the second H β β is smaller than that of the first slice. The projection exposure apparatus of the present invention The exposure light is irradiated onto the patterned reticle sheet (4). The pattern image is projected on the exposure substrate, and includes: driving the σ, and positioning the loading table for loading the substrate in at least four predetermined positions. a position signal output mechanism 'disposed on the driving stage and outputting a position signal indicating a position of the loading stage; a reference mark detecting mechanism for detecting an exposure substrate reference mark formed on the exposure substrate or formed on the reference substrate a reference substrate reference mark; and a position determining mechanism that determines a position of the loading table based on a position indicated by the position signal; the exposure substrate reference mark is used to indicate At least four marks of the reference position of the exposure substrate are formed; and the reference substrate reference mark is composed of at least four marks indicating the reference position of the reference substrate; 18 200907596 The position determining mechanism includes ·· a vertical correction mechanism 'for correcting a position error of the loading stage on the side of moving the loading; and a position: difference VI setting correction mechanism for correcting a linear component error in the position difference of the exposure substrate reference mark; The first position correcting mechanism includes: a reference substrate position control mechanism that, after the reference substrate is mounted on the loading table, moves the loading table in sequence by at least a cough ', " soil plate moving stage Three predetermined reference substrate detection positions '· A standard::: plate position storage mechanism, the position of the loading table at each of the quasi-substrate detection positions is obtained from the position signal and stored; the reference substrate fiducial mark position storage mechanism And detecting the reference substrate reference by the reference mark detecting mechanism at each of the reference substrate=positions, and then according to the detection result thereof The position of the loading platform is calculated, and the position of the reference mark of the reference substrate is calculated and stored; / The reference substrate position correction is performed by the left side of the substrate, and the nasal storage mechanism is based on the position of the reference substrate based on the drought target 5 "P 4 ^士& is used to fork the loading position correction data of the position error of the loading table and store it; the second position correcting mechanism comprises: an exposure substrate position control mechanism, which is exposed on the Du Qiao exposure substrate When the substrate is mounted on the loading platform, the mounting stage is sequentially positioned by the driving stage to position at least three predetermined exposure substrates determined by the loading position correction data. Position; the exposure substrate position occupant mechanism obtains the position detection position of each of the 19 200907596 exposure substrates from the position signal by the (four) exposure substrate reference mark position error #_ sub detection position, by which the reference mark inspection machine == Exposing the substrate mark, and then according to the detection result and the position of the optical substrate reference optical substrate reference mark, and storing (4); calculating the exposure linear deviation correction operation mechanism by mouth and According to the exposure substrate material storing the mark position storage mechanism - the linear error correction resource of the linear component error, the value of the loading table position correction data is used to correct the loading station ΐ: "driver drive control Positioning of the loading table: the level of the formation error of the reference mark of the reference substrate: for measurement, the pattern can be transferred to the exposure = two standard; the long dimension measurement and the averaging effect Moreover, the positioning accuracy of the loading platform can be improved by reducing the number of measuring points of the base material 5, and the manufacturing capacity of the substrate can be improved. The projection exposure apparatus of the present invention comprises: a digital micromirror element having a plurality of mirrors, and wherein a direction of reflection of light incident on the plurality of mirrors is determined by the plurality of mirrors; and the microarray a lens having a plurality of microlenses corresponding to the plurality of mirrors respectively; and a point image formed by the microarray through the fourth image is projected onto the #optical substrate, characterized in that it comprises: a driving stage, which is to be loaded The loading platform of the substrate is positioned at at least 20 predetermined positions of 200907596; a position signal output mechanism is disposed on the driving stage, and outputs a position signal indicating a position of the loading platform; and a reference mark detecting mechanism for detecting the formation Exposing the substrate reference mark of the substrate or the reference substrate reference mark formed on the reference substrate that can be exposed; and the position determining means determining the position of the loading table based on the position indicated by the position signal; The base substrate reference mark is composed of at least three marks indicating a reference position of the exposed substrate; the reference substrate reference mark is at least three marks indicating a reference position of the reference substrate The position determining mechanism includes: a first position correcting mechanism for correcting a position error of the loading table generated when the loading table is moved; and a second position correcting mechanism for correcting the exposure substrate reference mark a linear component error in the position error; the first position correcting mechanism includes: a reference substrate position control mechanism, wherein the reference substrate is mounted on the loading platform as the substrate, and the loading stage is used to mount the loading table And sequentially positioning and positioning at at least three predetermined reference substrate detecting positions; the reference substrate position storing mechanism is configured to obtain the position of the loading platform at each of the reference substrate detecting positions from the position signal and store the same, and the reference substrate exposure mechanism At the detection position of each of the reference substrates, 21 200907596 2 light is irradiated onto the reference reticle to be formed on the reference And the reference substrate forms the 2 quasi-substrate position correction calculation storage mechanism, and the reference mark inspection structure detects the reticle reference mark formed on the reference substrate The reference substrate reference mark calculates the relative position of the image of the reticle reference and the reference mark of the reference substrate based on the detection result, and the two pairs are placed at the position of the loading table to calculate the position of the loading table. 4 position correction data of the position difference is stored and stored; the second position correction mechanism includes: and the position control mechanism, when the exposure substrate is used as the substrate=loading station, by the driving stage, The loading stage sequentially moves at least three predetermined exposure substrate detection positions determined according to the position correction data of the stage; the exposure substrate position storage mechanism obtains the detection position of each cough exposure substrate from the position signal Positioning and storing the loading table; detecting the ϋ base Ϊ reference mark position storage mechanism, each of the exposure substrate = position 4, the reference mark detecting mechanism To detect the exposure substrate reference center 5' and then calculate the exposure substrate according to the detection result, and add the ", and the position of the 3H loading table" to calculate the exposure substrate reference mark. Position and storage; and linear error correction calculation broadcast "Similar machine based on the position of the exposure substrate reference mark stored in the exposure substrate reference storage mechanism, using the most = flat method to calculate the linear component error Linear error correction capital 22 200907596 The projection exposure (four) of the present invention comprises: a digital mirror element; a complex subtractive mirror, and the reflection direction of the light of the (four) (four) complex money mirrors respectively depends on the plurality of reflection errors - · a mirror and a microarray lens having a plurality of microlenses corresponding to the plurality of mirrors respectively corresponding to the occupation #, i / (1); projecting the point image formed by the microarray lens to the sleep main exposure a first substrate, comprising: a driving stage, wherein the loading stage for loading the substrate is moved and positioned in at least three predetermined positions; the position §fl output mechanism is set in 兮μ叙# &amp ; ^ 1 official. a IE moving stage, and outputting a position signal indicating a position of the loading stage; a reference mark detecting mechanism for detecting exposure formed on the exposure substrate, a substrate reference mark, or a reference substrate reference mark formed on the reference substrate And the position determining unit determines the position of the loading platform based on the position indicated by the position signal; and the exposure substrate reference mark is formed by at least three marks indicating a reference position of the exposure substrate; The reference substrate reference mark is composed of at least three marks for indicating a reference position of the reference substrate; the position determining mechanism includes: a first position righting mechanism for correcting when the loading table is moved a position error of the loading stage; and a second position correcting mechanism for correcting a linear component error in a position error of the exposure substrate reference mark; 23 200907596 The first position correcting mechanism includes: a reference substrate position control mechanism, After the reference substrate is mounted on the loading stage as the substrate, the loading stage is mounted by the driving stage. The movement is positioned at at least three predetermined reference substrate detection positions; and the reference substrate position storage device obtains the position of the loading table at each of the reference substrate detection positions from the &signal; and stores the reference substrate reference The mark position storage means detects the reference substrate reference mark by the 6-inch reference mark detecting means at each of the reference substrate positions, and calculates the position of the reference substrate reference mark based on the detection result and the position of the loading stage. And the storage is performed; and the reference substrate position correction operation is performed, and the 隹μ separate storage mechanism calculates the position error of the load port based on the reference substrate reference position. The position correction data of the load port is stored and stored; the second position correction mechanism includes: an exposure substrate position control broadcast spectrum, +β, and is loaded and driven by the money field plate when being loaded on the loading platform as the substrate The stage 'moves the positioning a to the exposure substrate detection position determined according to the loading stage and determined by the Beco; The light substrate position storage mechanism, Λ# „ is obtained from the position signal at the position of the loading table at each of the exposure substrate detection positions and stored; the exposure substrate reference mark position is stored. @捕机构, at each edge Warm also | The detection position, by which the reference mark is picked up to expose the substrate mark, and then according to the detection result 盥 'the position of the reference plate of the earth reference light substrate and the 亥#出5海卞卞M storage; and 24 200907596 P Position=杈-calculation mechanism, based on the position of the exposure substrate reference mark stored in the reference substrate of the exposure substrate, using the most accurate tool for correcting the linear component error of the linear component error The value is used to correct the loading stage's drive control by the driving stage, whereby the positioning of the loading stage can be ordered at the level of the formation error of the reference mark formed on the reference substrate. Therefore, it is not necessary to have a position measuring device such as an interferometer as a position measuring device for the loading table, and it is possible to transfer the pattern to the exposed substrate in a one-piece manner and to have a long-length measurement and averaging effect in a one-piece manner, and by reducing Base: The number of measurement points marked to improve the positioning accuracy of the loading table, i, can also improve the manufacturing capacity of the exposed substrate. - Further, the conductor pattern can be formed on the exposure substrate without using the reticle, and the conductor pattern can be made into a desired shape by the control of the digital micromirror element. Furthermore, by controlling the digital micromirror element, not only the degree of expansion but also the degree of orthogonality can be corrected. The projection exposure apparatus of the present invention includes a projection optical system for irradiating the exposure light to the exposure substrate; the reference mark detection mechanism includes an alignment optical system disposed between the projection optical system and the loading stage; Aligning the optical system, irradiating the non-exposure light to the exposure substrate reference mark or the reference substrate reference mark to detect the exposed substrate reference mark or the reference substrate reference mark; the alignment optical system is detecting the After exposing the substrate reference mark or the 25 200907596 reference substrate reference mark, the substrate is positioned at the detection position; after the detection of the exposure substrate reference mark or the reference substrate reference mark is completed, the position is retracted from the detection position. . By irradiating the non-exposure light to the reference substrate reference mark, the reference mark can be accurately detected. Moreover, in the case of detecting a plurality of reference marks, the alignment optical system is retracted after the final reference mark of the 4» is measured, and then the exposure is started, so that it is not necessary to separate between the plurality of exposure regions. The movement of the alignment optical system shortens the time required for the reference mark detection, thereby increasing productivity. The projection exposure apparatus of the present invention is calculated based on the average value of the positions of the exposure substrate reference marks at the plurality of reference substrate detection positions. Since the loading table position correction data is calculated based on the average value of the positions of the exposure substrate reference marks, an error occurs in the movement of the driving table, or an Abbe error occurs due to the slight deflection of the driving table. Production shape can also further improve the positioning accuracy of the loading platform. In the projection exposure apparatus of the present invention, the reference substrate reference mark is formed on a lattice-like intersection at a predetermined interval in the reference substrate; and the loading position correction data is based on a reference substrate located at the lattice intersection Calculated by the position of the reference mark; the exposure substrate position control means calculates the position of the loading station by using the curve position approximation or interpolation method, and then positions the loading table The target location. When the error gradually changes according to the position of the loading platform, the reference can be shortened by the approximation or interpolation calculation of the position correction data folder of the 200907596 stage. The position measurement time of the interpolated flooding, the storage load port occupied by the correction data is 4, and the time of the mobile drive operation is short. The projection exposure apparatus of the present invention includes: a projection optical system capable of changing a projection projection of the pattern image to the exposure substrate; and determining a projection magnification of the D-hai image, ^ according to the linearity error The linear error correction calculation calculated by the correction computer . is limited to the projection magnification.

由於線性誤差校正眘祖在# 4f& E 貝科係根據長尺寸測量的結果而取 付,因此,能利用最小平方夕祈 μ 十万之近似計异而取得平均化效果, 根據該結果來校正投影倍率, 。平了將圖案以正確的尺寸轉 至曝光基板。 1 又’尤其,根據於線性誤差校正資料之參數,例如有 X方向的伸縮度或γ方向的伸縮度。在使用以非對稱方式 設計之投影光學系統時’可獨立的對χ方向與丫方向施以 倍率校正,而能更確實的將圖案轉印至曝光基板。 本發明之投影曝光裝置,係將曝光用光照射於形成有 圖案之標線片,以將該圖案像投影在曝光基板,其特徵在 於,包含: 驅動載台’冑用以裝載基板之裝載台移動定位在至少 4個既定位置; 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 27 200907596 基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於基準基板之基準基板基準標 記;以及 位置決定機構,根據該位置訊號所表示的位置, 定該裝載台的位置; 、 °亥曝光基板,具有供該圖案像投影之至少4個曝光區 域; °亥曝光基板基準標記,係用以表示該至少4個曝光區 域的基準位置之曝光區域基準標記; ;該位置決定機構,包含曝光位置校正機構,用以校正 该曝光基板基準標記的位置誤差; 該曝光位置校正機構包含: =光基板位置控制機構,在該曝光基板被作為該基板 於。亥裝載口時’糟由該驅動載台,將該裝載台依序 動定位在至少4個既定的曝光基板檢測位置; 眼光位置錯存機構’係從該位置訊號取得在各該 曝先基板檢測位置之該裝載台的位置且予以儲存; 曝光區域基準標記位置儲在 檢測位置,藉該基準構’係在各該曝光基板 土下11 w機構來檢測該曝光區域基準 ^ ’然後根據其檢測結果與該裝載台位置,算出 區域基準標記的位置且予以儲存丨 ° 位置誤差處理機構,根據 ^ 1 Μ # M it ^ „s r 子在3亥曝光區域基準標記 方法鼻出該曝光基板基準標記的位置…j 千 J位置誤差中非線性成分之 28 200907596 誤差資訊; 差分誤差處理機構,根據儲存在該曝光區域基準標記 位置儲存機構之該曝光區域基準標記的位置之差分,使用 最小平方法算出該曝光基板基準標記的位置之差分誤差中 非線性成分之誤差資訊;以及 曝光基板位置決定機構,根據2個該非線性成分中之 至少一誤差資訊來施以加權,以算出要將該裝载台定位之 目標位置,然後將該裝載台定位在該目標位置。 ,由於係對線性成分的誤差與非線性成分的誤差施以加 權,以算出要對裝载台定位之目標位置,目此,能按照曝 光基板的狀態,來決定其中之接近於逐片方式响— 之載台控制與接近於整片方式之载台控制,而能提 台的定位精度。此處之「加權」㈣義,並非僅是 線性誤差與、線性誤差& A小來選擇逐片方式與整片方式之 其:-方,且亦能按照非線性誤差與線性誤差的大小^出 射於形成有 ’其特徵在 本發明之投影曝光裝置’係將曝光用光照 圖案之標線片,以將該圖案像投影在曝光基板 於,包含: 3個既定位置; 驅動載台,將用以裝載基板 之裝載台移動定位在至少 位置訊號輸出機構,設置在 示 之曝 該裝載台的位置之位置訊號;在#㈣台,且輸出表 基準標記檢测機構,用以檢測形成於該曝光基板 29 200907596 光基板基準標記;以及 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 該曝光基板’具有供該圖案像投影之至少3個曝光區 域; 战曝尤丞板暴準標記,係用以表示該至少3個曝光區 域的基準位置之曝光區域基準標記; 該位置決定機構,包含曝光位置校正機構,用以校正 該曝光基板基準標記的位置誤差; 該曝光位置校正機構包含: 曝光基板位置控制機構,在該曝光基板被作為該基板 而裝載於該裝載台後,藉由該驅動載台,將該裝载台依序 移動定位在至少3個既定的曝光基板檢測位置; 曝光基板位置儲存機構,係從該位置訊號取得在各該 曝先基板檢測位置之該裝載台的位置且予㈣存; ^ 人曝光區域基準標記位置儲存機構,係在各該曝光 :測位置,藉該基準標記檢測機構來檢 : =然後根據其檢測結果與該裝載台的位 = 先區域基準標記的位置且予以儲存; 曝 線性误差校正】重曾德 桿纪位置儲“冑,機構,根據儲存在該曝光區域基準 己位置儲存機構之該曝光區域基準桿記之位… 小平方法算出用w ^ 土早‘记之位置,使用最 料; X正線性成分誤差之線性誤差校正資 差分异出機構,得 係用以算出錯存在該曝光區域基準標 30 200907596 記位置儲存機構之該曝光 及 區域基準標記的位置之差 分,·以 重疊控制機構’係將利用該最小平方法所得到之伸縮、 及正交中f少一種置換成該差②,將曝光用光照射 浐二:二 片’以具出及控制該圖案像投影在曝光基板時的 扠衫像與該曝光基板的重疊目標位置。 由於係將利用最小平方法取得之伸縮、旋轉、及正交 中至少-種置換成差分,而可使處理簡便,可提 造的產能。 | ,本發明之投影曝光方法’使用投影曝光裝置,將曝光 用光照射㈣成有圖案之標線片’以將該圖案像投影至裝 載於裝載台的曝光基板; 該投影曝光裝置包含: 驅動載台,將用以裝載基板之裝載台移動定位在至少 3個既定位置; ;位置訊號輸出機構,設置在該驅動載台,且輸出表示 忒裝載台的位置之位置訊號; 一基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於可供曝光之基準基板之基準 基板基準標記;以及 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 其特徵在於: 該曝光基板基準標記,係由用以表示該曝光基板的基 31 200907596 準位置之至少3個標記所構成; 該基準基板基準標記,係 準伯署”… 係由用以表不該基準基板的基 羊位置之至シ3個標記所構成; 且包含以下步驟: 基準基板位置控制步驟,在該基準基板被 而裝載於該裝載台《,藉由丧〜 梦如卜仏如卞、 將該裝載台依序 私動疋位在至少3個既定的基準基板檢測位置; 基準基板位㈣存步驟,係從該位置訊號取得在各該 基準基缝測位置之該袈载台的位置且^以儲存; 基準基板曝光步驟,係在各該基準基板檢測位置,將 曝光用光照射於基準標線片,使形成於該基準標線片之標 US::投影在該基準基板,以在該基準基板形成該 “線片基準標記之像; 基準基板位置校正運算儲存步驟,藉由該基準標記檢 測機構,檢測形成於該基準基板之該標線片I準標記之像 與該基準基板基準標記,根據檢測結果算出該標線片基準 標記之像及該基準基板基準標記的相對位置,然後根據續 ㈣位置與該裝載台的位置’算出用以校正該裝載台的位 置誤差之裝載台位置校正資料且予以儲存; 曝光基板位置控制步驟,在該曝光基板被作為該基板 而裝載於該裝載台後,藉由該驅動載台,將該裝載台依序 移動定位在根據該裝載台位置校正資料所定出之至少3個 既定的曝光基板檢測位置; 曝光基板位置儲存步驟,係從該位置訊號取得在各該 32 200907596 曝光基板檢測位置q 科口的位置且予以儲.. 曝光基板基準標記位 , 檢測位置,藉該基準標 f在各騎先基板 檢'則機構來檢測該曝光其柘其進 標記,然後根據其檢測 ^基板基準 光基板基準標記的位置t出該曝 I且T以儲存;以及 線性誤差校正運箄+ 命署計丰#步驟,根據在該曝光基板基準標記 位置儲存步驟所儲存之 该曝先基板基準標記的位置,使用 最小平方法算出用以校 料。 仅正線性成分誤差之線性誤差校正資 投影曝光裝置,將曝光 以將該圖案像投影至裝 本發明之投影曝光方法,使用 用光照射於形成有圖案之標線片, 載於裝載台的該曝光基板; 該投影曝光裳置包含: 驅動載台’將用以裝載基板之裝載台移動定位在至少 3個既定位置; 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; >基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於基準基板之基準基板基準標 記;以及 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 其特徵在於: 該曝光基板基準標記,係由用以表示該曝光基板的基 33 200907596 準位置之至少3個標記所構成; 該基準基板基準標記,係由用以表示該基準基板的基 準位置之至少3個標記所構成; 且包含以下步驟: 基準基板位置控制步驟,在該基準基板被作為該基板 裝載於D亥裝載台後’藉由該驅動載台’將該裝载台依序 移動定位在至少3個既定的基準基板檢測位置; 基準基板位置儲存步驟,係從該位置訊號取得在各該 基準基板檢測位置之該農載台的位置且予以儲存; 基準基板基準標記位置儲存步驟,係在各該基準基板 :測位置’错由&基準標記檢測機構來檢測該基準基板基 準標記,然後根據其檢測結果 其盘m 。禾與。亥裝载台的位置,算出該 基皁基板基準裇記的位置且予以儲存; 基準基板位置校正i軍置神+ μ W儲存步驟,根據該基準基板基 ^ m ί 役正錢載台的位置誤差之裝載 D位置权正資料且予以儲存; 曝光基板位置控制步驟,在 在邊曝先基板被作為該基板 而表載於該I載台後,藉由該 ^ 驅動載台,將該裝載台依戽 移動定位在根據該裝載台位置校 序 貞料所疋出之至少3個 既定的曝光基板檢測位置; y 3似 曝光基板位置儲存步驟, 你從該位置訊號取得在久兮 曝光基板檢測位置之該裝載于在各該 在戟σ的位置且予以儲存; 曝光基板基準標記位置健少 置僻存步驟,係在各續蔽伞Λ 檢測位置,藉該基準標記檢 "+先基板 機構來檢測該曝光基板基準 34 200907596 標記’然後根據其檢測結 光美;^甚^ °亥裝^的位置,算出該曝 先基板基準標記的位置且予以儲存·以及 位置==奴正運算步驟’根據在該曝光基板基準標記 0驟㈣存之㈣光絲基準標記的 取小平方法算屮ffl r, > τ ^ 料。 昇出用以正線性成分誤差之線性誤差校正資 根據上述裝截& 置,攄… 位置杈正資料之值來校正裝載台位 據“知驅動台的驅動控制,藉此 能以形成於基準基板之Α淮挪七^ 疋位 ,一 準‘ s己的形成誤差之等級來進 置二’無須有干涉計等位置測定裝置來作為裝載台的 古敕之用’能以整片方式將圖案轉印至曝光基板,且 ^片方式的長尺寸測定及平均化效果,並可藉著減少基 記的測量點數目來提高裝載台的定位精度,且,亦能 提命曝光基板的製造產能。 本發明之投影曝光方法,使用投影曝光裝置 微陣列透鏡所形成之點德,妒旦,$壯也 猎由 之點像技衫至裝載於裝载台之曝光基 板; 該投影曝光裝置包含: 驅動載台’將用以裝載基板之裳載台,移動定位在至 少3個既定位置; 位置訊號輸出機構,設置在該驅動載台,且輸出表干 該裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於曝光基板之曝光 基板基準標記、或是形成於可供曝光之基準基板之基準基 35 200907596 板基準標記; 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 數位式微反射鏡元件,具有複數個反射鏡且能使射 至該複數個反射鏡之光的反射方向分別依該複數個反射鏡 而定;以及 微陣列透鏡,具有與該複數個反射鏡分別對應之複數 個微透鏡; 其特徵在於: a亥曝光基板基準標記,係由用以表示該曝光基板的基 準位置之至少3個標記所構成; 該基準基板基準標記,係由用以表示該基準基板的基 準位置之至少3個標記所構成; 且包含以下步驟: 基準基板位置控制步驟,在該基準基板被作為該基板 而裝載於該裝載台藉由該驅動載台,將該裝載台依序 移動疋位在至y 3個既定的基準基板檢測位置; 基準基板位置儲存步驟,係從該位置訊號取得在各該 基準基板檢測位置之該裝載台的位置且予以儲存,· 基準基板曝光步驟,係在各該基準基板檢測位置將 曝光用光照射於基準標線片,使形成於該基準標線片之標 線片基準標記投影在該基準基板,以在該基準基板形成該 標線>5基準標記之像; 基準基板位置校正運算健存步驟,藉由該基準標記檢 36 200907596 測機構,檢測形成於該基準基板之該標線片基準標記之像 與該基準基板基準標記,根據檢測結果算出該標線片基準 標記之像及該基準基板基準標記的相對位置,然後根據該 相:位置_載台的位置,算出用以校正該裝載台的位 置获差之裝載台位置校正資料且予以儲存; 曝光基板位置控制步驟,在該曝光基板被作為該基板 而裝載於該裝載台後,#由該驅動載台,將該裝載台依序 移動定位在根據該裝載台位置校正資料所定出之至少3個 既定的曝光基板檢測位置; 曝光基板位置儲存步驟,係從該位置訊號取得在各該 曝光基板檢測位置之該裝載台的位置且予以儲存; 曝光基板基準標記位置儲存步驟,係在各該^⑭ :測位置,藉該基準標記檢測機構來檢測該曝光基板基準 I己,然、後根據其檢測結果與該裝载台的位置,算出該曝 光基板基準標記的位置且予以儲存;以及 ’根據在該曝光基板基準標記 光基板基準標記的位置,使用 線性成分誤差之線性誤差校正 線性誤差校正運算步驟 位置儲存步驟所儲存之該曝 最小平方法算出用以校正該 資料。 微 板 本發明之投影曝光方法 陣列透鏡所形成之點像, ’使用投影曝光裝置,將藉由 投影於裝载於裝載台之曝光基 該投影曝光裝置包含: 驅動載台,將用以奘韵其妃+ 褒載基板之裝载台,移動定位在至 37 200907596 少3個既定位置; 位置§fl號輸出機構,設置在該驅動載台,且輸出表示 s玄裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於曝光基板之曝光 基板基準標記、或是形成於基準基板之基準基板基準標 記; 位置決定機構’根據該位置訊號所表示的位置,來決 定該裝載台的位置; 數位式微反射鏡元件,具有複數個反射鏡,且能使射 至δ玄複數個反射鏡之光的反射方向分別依該複數個反射鏡 而定;以及 微陣列透鏡’具有與該複數個反射鏡分別對應之複數 個微透鏡; 其特徵在於: 遠曝光基板基準標記,係由用以表示該曝光基板的基 準位置之至少3個標記所構成; 該基準基板基準標記,係由用 _ 你田用以表不該基準基板的基 準位置之至少3個標記所構成; 且包含以下步驟: :準基板位置控制步驟,在該基準基板被作為該基板 :裝載於該裝載台_’藉由該驅動載台,將該裝载台依序 移動定位在至少3個既定的基準基板檢測位置; 基準基板位置儲存步驟,择你 > u . 係從該位置訊號,取得在各Since the linear error correction Shenzu is paid according to the result of the long-size measurement in #4f& E, the average effect can be obtained by using the least squares of the nearest square, and the projection is corrected based on the result. Magnification, . Flatten the pattern to the exposed substrate in the correct size. 1 Further, in particular, depending on the parameters of the linear error correction data, there are, for example, a degree of expansion in the X direction or a degree of expansion in the γ direction. When a projection optical system designed in an asymmetric manner is used, the magnification correction can be independently applied to the rubbing direction and the rubbing direction, and the pattern can be more reliably transferred to the exposure substrate. In the projection exposure apparatus of the present invention, the exposure light is irradiated onto the patterned reticle to project the pattern image on the exposure substrate, and includes: a drive stage 胄 loading platform for loading the substrate Positioning at at least four predetermined positions; a position signal output mechanism disposed on the drive stage and outputting a position signal indicating a position of the loading stage; 27 200907596 a reference mark detecting mechanism for detecting an exposure formed on the exposure substrate a substrate reference mark or a reference substrate reference mark formed on the reference substrate; and a position determining means for determining a position of the loading stage based on a position indicated by the position signal; and a substrate for displaying the image At least 4 exposure areas; a substrate exposure reference mark, an exposure area reference mark for indicating a reference position of the at least four exposure areas; and a position determining mechanism including an exposure position correction mechanism for correcting the exposure substrate Position error of the reference mark; the exposure position correction mechanism includes: = light substrate position control Mechanism, is used as the substrate in the exposed substrate. When the load port is used, the drive stage is driven by the drive stage, and the loading stage is sequentially positioned at at least four predetermined exposure substrate detection positions; the eye position misregistration mechanism is obtained from the position signal at each of the exposure substrates. Positioning the storage station and storing it; the exposure area reference mark position is stored at the detection position, and the reference structure is used to detect the exposure area reference ^' under the exposure substrate, and then according to the detection result Calculating the position of the region reference mark with the loading table position and storing the 丨° position error processing mechanism, and the position of the exposure substrate reference mark is nosed according to the ^1 Μ # M it ^ sr ...j The nonlinear component of the kilo-J position error 28 200907596 Error information; The differential error processing mechanism calculates the exposure using the least squares method based on the difference between the positions of the exposure region reference marks stored in the exposure region reference mark position storage mechanism Error information of nonlinear components in the difference error of the position of the substrate reference mark; and the exposure substrate position The determining means applies weighting according to at least one of the two non-linear components to calculate a target position to be positioned by the loading station, and then positions the loading station at the target position. The error and the error of the nonlinear component are weighted to calculate the target position to be positioned on the loading platform. Therefore, it is possible to determine the proximity of the substrate control according to the state of the exposed substrate. Close to the whole stage of the stage control, and can be used to adjust the positioning accuracy. Here the "weighting" (four) meaning, not only the linear error and linear error & A small to choose the piece by piece mode and the whole piece It is: - square, and can also be emitted according to the magnitude of the nonlinear error and the linearity error in the reticle formed with the illumination pattern formed by the projection exposure apparatus of the present invention to project the pattern image The substrate is exposed to include: three predetermined positions; the driving stage moves the loading platform for loading the substrate to at least the position signal output mechanism, and is disposed at the display a position signal of the position; at the #(four) stage, and an output table reference mark detecting mechanism for detecting a light substrate reference mark formed on the exposure substrate 29 200907596; and a position determining mechanism according to the position indicated by the position signal Determining the position of the loading platform; the exposure substrate 'having at least three exposure regions for projecting the pattern image; and the exposure exposure panel marking for displaying the exposure region reference of the reference position of the at least three exposure regions a position determining mechanism including an exposure position correcting mechanism for correcting a position error of the exposure substrate reference mark; the exposure position correcting mechanism comprising: an exposure substrate position control mechanism, wherein the exposure substrate is mounted as the substrate After the loading stage, the loading stage is sequentially positioned to move at least three predetermined exposure substrate detecting positions by the driving stage; and the exposure substrate position storage mechanism is obtained from the position signal for detecting the exposed substrate. Position of the loading station and (4) deposit; ^ Human exposure area reference mark position storage mechanism, In each of the exposures: the measurement position, the reference mark detection mechanism is used to check: = then according to the detection result and the position of the loading station = the position of the first area reference mark and stored; exposure linear error correction] heavy Zeng Deji The position is stored as “胄, the mechanism, according to the position of the reference area of the exposure area stored in the reference area storage area of the exposure area... The small flat method calculates the position of the use of w ^ soil early, the most used; X positive linear component error The linear error correction factor difference dissipating mechanism is used to calculate the difference between the exposure area reference mark 30 200907596 and the position of the exposure and area reference mark of the position storage mechanism, and the overlapping control mechanism will use the The expansion and contraction obtained by the least square method, and the difference between the orthogonal and the f, are replaced by the difference of 2, and the exposure light is irradiated with the second light: two pieces 'to display and control the image of the pattern on the exposed substrate. The overlapping target position of the exposure substrate. Since at least one of the expansion, the rotation, and the orthogonality obtained by the least square method is substituted into a difference, the processing can be simplified and the productivity can be improved. The projection exposure method of the present invention uses a projection exposure device to illuminate (four) the exposure light into a patterned reticle 'to project the pattern image onto an exposure substrate loaded on a loading stage; the projection exposure apparatus includes: a loading stage for positioning the loading platform for loading the substrate in at least three predetermined positions; a position signal outputting mechanism disposed on the driving stage and outputting a position signal indicating a position of the loading station; a reference mark detecting mechanism a reference substrate reference mark formed on the exposed substrate or a reference substrate reference mark formed on the reference substrate that can be exposed; and a position determining mechanism that determines the loading stage based on the position indicated by the position signal The position of the exposure substrate is defined by at least three marks indicating the position of the base 31 200907596 of the exposed substrate; the reference mark of the reference substrate is used by the company. It is composed of シ3 marks indicating the position of the base sheep of the reference substrate; and includes the following steps: a position control step in which the reference substrate is loaded on the loading table, and the loading table is privately clamped to at least three predetermined reference substrate detection positions by a mourning~dreaming; The substrate position (4) storing step is to obtain the position of the cymbal stage at each of the reference sulcus measurement positions from the position signal and to store the reference substrate exposure step, and to perform the exposure light at each of the reference substrate detection positions Irradiating the reference reticle, and projecting the standard US:: formed on the reference reticle to the reference substrate to form the image of the "line reference mark" on the reference substrate; and the reference substrate position correction calculation storage step The reference mark detecting means detects an image of the reticle I mark formed on the reference substrate and the reference substrate reference mark, and calculates an image of the reticle reference mark and the reference mark of the reference substrate based on the detection result. Position, and then calculating and loading the loading table position correction data for correcting the position error of the loading table according to the continued (four) position and the position of the loading station; The control step is such that after the exposure substrate is mounted on the loading platform as the substrate, the loading stage is sequentially moved by the driving stage to at least three predetermined levels determined according to the loading position correction data. The exposed substrate position detecting step is obtained by taking the position signal from each position of the 32 200907596 exposure substrate detecting position q and storing it. Exposing the substrate reference mark position, detecting the position, by the reference mark f detects the exposure in each of the first substrate inspections, and then extracts the exposure I and T according to the position t of the substrate reference substrate reference mark; and the linear error correction operation + In the step of determining the position of the exposure substrate reference mark stored in the exposure substrate reference mark position storage step, the method for calculating the material is calculated using the least square method. A linear error correction projection projection apparatus having only a positive linear component error, and exposing the pattern image to the projection exposure method of the present invention, using the light to be irradiated onto the patterned reticle, which is carried on the loading platform Exposing the substrate; the projection exposure comprises: driving the stage 'moving the loading table for loading the substrate in at least three predetermined positions; the position signal output mechanism, disposed on the driving stage, and outputting the loading table Position signal; > reference mark detecting means for detecting an exposure substrate reference mark formed on the exposure substrate or a reference substrate reference mark formed on the reference substrate; and a position determining means according to the position signal Positioning to determine the position of the loading platform; wherein: the exposure substrate reference mark is formed by at least three marks indicating a position of the base 33 200907596 of the exposure substrate; the reference substrate reference mark is Forming at least three marks indicating the reference position of the reference substrate; and including the following steps : a reference substrate position control step of sequentially positioning the loading stage by at least three predetermined reference substrate detection positions by the drive stage after the reference substrate is mounted on the D-loading stage as the substrate; The reference substrate position storing step is to acquire and store the position of the agricultural stage at each of the reference substrate detection positions from the position signal; and the reference substrate reference mark position storing step is performed on each of the reference substrates: the measurement position & the reference mark detecting means detects the reference substrate reference mark, and then the disk m according to the detection result thereof. Wo and. The position of the base load table is calculated and stored in the reference position of the base soap substrate; the reference substrate position correction i is placed on the base + μ W storage step, based on the position of the reference substrate base The error loading position D position is positively stored and stored; the exposure substrate position control step is performed after the substrate is mounted on the I stage as the substrate, and the loading stage is driven by the ^ Depending on the movement positioning, at least three predetermined exposure substrate detection positions are extracted according to the loading position of the loading table; y 3 is similar to the exposure substrate position storage step, and the position detection signal is obtained from the position signal. The loading is performed at each position of the 戟σ and stored; the exposure substrate reference mark position is less vacant, and is performed at each of the continuous umbrella detection positions, and the reference mark is used to detect the "+ first substrate mechanism Detecting the exposure substrate reference 34 200907596 mark 'and then according to the position of the detection junction light; ^ very ^ ° 装 ^ ^, calculate the position of the exposure substrate reference mark and store it and position = = slave operation step 'According to the method of taking the (4) filament reference mark stored in the exposure substrate reference mark 0 (4), 屮ffl r, > τ ^ material. The linear error correction for the positive linear component error is corrected according to the above-mentioned loading and closing, 摅... the value of the position correction data to correct the loading station according to the "driving drive control", thereby being able to form the reference The substrate is Α 挪 挪 ^ ^ ^ ^ , , , , , , , , , , , , ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成The transfer to the exposure substrate and the long-size measurement and averaging effect of the film method can improve the positioning accuracy of the loading table by reducing the number of measurement points of the base mark, and can also expose the manufacturing capacity of the substrate. The projection exposure method of the present invention uses a projection exposure apparatus micro-array lens to form a point, and the sturdy, sturdy stalks from the point of view to the exposure substrate loaded on the loading platform; the projection exposure apparatus comprises: The stage 'will be used to load the substrate, and the mobile station is positioned at at least three predetermined positions; the position signal output mechanism is disposed on the driving stage, and the position of the output table is outputted. a reference mark detecting mechanism for detecting an exposure substrate reference mark formed on the exposure substrate or a reference base 35 200907596 plate reference mark formed on the reference substrate for exposure; a position determining mechanism according to the position signal Positioning to determine the position of the loading station; the digital micromirror element having a plurality of mirrors and enabling the direction of reflection of light incident on the plurality of mirrors to be dependent on the plurality of mirrors; and the microarray lens And a plurality of microlenses corresponding to the plurality of mirrors respectively; wherein: the a-substrate substrate reference mark is formed by at least three marks indicating a reference position of the exposed substrate; the reference substrate reference The mark is composed of at least three marks indicating a reference position of the reference substrate, and includes the following steps: a reference substrate position control step in which the reference substrate is mounted as the substrate on the loading stage by the drive Carrying the stage, the loading stage is sequentially moved and clamped to y 3 predetermined reference substrate detecting positions; The quasi-substrate position storing step acquires and stores the position of the loading table at each of the reference substrate detecting positions from the position signal, and the reference substrate exposing step irradiates the exposure light to the reference at each of the reference substrate detecting positions. a reticle for projecting a reticle reference mark formed on the reference reticle on the reference substrate to form an image of the reticle > 5 fiducial mark on the reference substrate; and a reference substrate position correction operation storing step The reference mark detecting unit 36 200907596 detects an image of the reticle reference mark formed on the reference substrate and the reference substrate reference mark, and calculates an image of the reticle reference mark and the reference substrate reference based on the detection result. Corresponding position of the mark, and then calculating and storing the loading table position correction data for correcting the position difference of the loading table according to the position of the phase: position_stage; the exposure substrate position control step is performed on the exposure substrate After the substrate is loaded on the loading platform, # is driven by the driving stage, and the loading table is sequentially moved according to the loading. At least three predetermined exposure substrate detection positions determined by the position correction data; and the exposure substrate position storage step is to acquire and store the position of the loading table at each of the exposure substrate detection positions from the position signal; and expose the substrate reference mark The position storage step is to detect the exposure substrate reference I by the reference mark detecting mechanism at each of the measurement positions, and then calculate the exposure substrate reference mark based on the detection result and the position of the loading table. Position and storage; and 'according to the position of the reference mark of the light substrate at the exposure substrate reference mark, the linear error correction linear error correction linear error correction operation step stored in the position storage step is used to calculate The information. Microplate The dot image formed by the array lens of the projection exposure method of the present invention, 'Using a projection exposure apparatus, the projection exposure apparatus projected by the exposure stage mounted on the loading stage includes: a driving stage, which is used for the rhyme The loading platform of the 妃+ 褒-loading substrate is moved to the position of 37 200907596 and has three predetermined positions; the position §fl output mechanism is disposed on the driving stage, and outputs a position signal indicating the position of the s-shaped loading platform; a reference mark detecting means for detecting an exposure substrate reference mark formed on the exposure substrate or a reference substrate reference mark formed on the reference substrate; and the position determining means 'determining the position of the loading stage based on the position indicated by the position signal a digital micromirror element having a plurality of mirrors, and wherein a direction of reflection of light incident on the plurality of mirrors is dependent on the plurality of mirrors; and the microarray lens has a plurality of reflections Mirrors respectively corresponding to a plurality of microlenses; characterized in that: a remotely exposed substrate reference mark is used to represent the exposed substrate The reference substrate reference mark is composed of at least three marks for indicating the reference position of the reference substrate by using _ field field; and includes the following steps: : quasi-substrate position control Step: the reference substrate is used as the substrate: the loading stage is mounted on the loading stage, and the loading stage is sequentially moved and positioned at at least three predetermined reference substrate detecting positions; the reference substrate position storing step , choose you > u. From the location signal, get in each

该基準基板檢測位置之該裝載A 取戰°的位置且予以儲存; 38 200907596 檢心=標記位置儲存步驟,係在各該基準基板 準桿纪,™標記檢剩機構來檢測該基準基板基 暴羊基板基準標記的位置且予以儲存; 基準基板位置校正運算儲在 準俨V的相罢笞 存ν驟,根據該基準基板基 ^ ^ W ^ τ -^ 裝载台的位置誤差之裝載 口位置权正貝料且予以儲存; 曝光基板位置控制步驟, 茨曝先基板被作為該基板 而裝载於該裝載台後,藉由該 极 ^ ^ ^ ,. . ,p ^ ’動載口’將該裝載台依序 移動疋位在根據該裝載台位置校 仪'^貝枓所定出之至少3個 既定的曝光基板檢測位置; 曝光基板位置儲存步驟,俜 ”攸》亥位置讯號取得在各該 曝光基板檢測位置之該裝載a的 衣厥σ的位置且予以儲存; 曝光基板基準標記位置儲存牛 么 ^ , 直诚存步驟,係在各該曝光基板 檢測位置,藉該基準標記檢 ^ 私2檢測機構來檢測該曝光基板基準 標記,然後根據其檢測結果與該裝載台的位置,算出 光基板基準標記的位置且予以儲存;以及 &quot;、 線性誤差校正運算讳驟,&amp; 4击+ &amp; θ 廷异^驟,根據在該曝光基板基準標記 位置儲存步驟所儲存之該曝光基板基準標記的位置,使用 最小平方法算Μ以校正線性成分㈣之線性誤差校 料。 根據上述裝載台位置校正資料之值來校正裝載么位 置,據以實施驅動台的驅動控制,藉此,裝載台之定位, 能以形成於I準基板之I準標f己的形《誤差之等級來進 39 200907596 仃。因此,無須有干涉計等位置測定裝置來作為 位置測定方切圖㈣印轉域板,且 =片方式的長尺寸測定及平均化效果,並可藉著減少基 準^記的測量點數目來提高裝載台的定位精度,且,亦能 提鬲曝光基板的製造產能。 —又’不使用標線片’即可將導體圖案形成於曝光基板, 精者對於數位式微反射鏡元件的控制,可使導體圖案成為 所要的形狀。再者’藉著對於數位式微反射鏡元件的控制, 不僅止於伸縮度’就連正交度等亦能校正。 本發明之投影曝光方法,其中該投影曝光裝置,包含 用以將該曝光用光照射於該曝光基板之投影光學系統; 該基準標記檢測機構,包含配置在該投影光學系统盘 μ將非曝光用光照射於該曝光基 板基準標記或該基準基板基準標記,讀測料光基板基 準標記或該基準基板基準標記; 在藉由該基準標記檢測機構來檢測該基準基板基準標 記或該曝光基板基準標記時,包含以下步驟: 不 在檢測該曝光基板基準標記或該基準基板基準標呓 時’將該對準光學系、统定位在檢測位置;以及 在結束該曝光基板基準標記或該基準基板基準標記之 檢測後’使該對準光學系統定位在從該檢測位置退離之退 離位置。 以非曝光用光來照 檢測出基準標記。又, 射於基準基板基準標記,能確實的 在檢測複數個基準標記之情形時, 200907596 係在檢測最後的基準標記的位置之後,方使對準 2離’’然後開始曝光’因此’無須在複數個曝光間各 有對準光學系統的移動,能縮短檢測基準標時各 因而能提高產能。 “卞間, :發明之投影曝光方法之該裝載台位置 =在複數個基準基板檢測位置之該曝 : 位置之平均值而算出。 +知σ己的 由於係藉由曝光基板某進^^ 載台位置校正資料,就Him位置之平均值算出裝 # + m 就异疋在驅動台的移動時有產生誤 、或因驅動台的微幅傾斜而發、 能進-步提高裝載台的定位精度。 之㈣時,仍 本發明之投影曝光方法, 於,在該美準基你^ 4羊基板基準標記係形成 &quot; 板中位在既定間隔的格子狀交點; s亥裝載台位置校正警袓 ...^ 該基準基板基準標記的位置而算^位在該格子狀交點之 且包含以下步驟: 使用該裝裁a # ® &gt; 法〆山 置权正資料且利用曲線近似或内插 异要將裝栽台定位之目,^ ^ 位在該目標位置。 置…、後將謂载台定 當誤差係對應裝裁a 裝載台位置校正資料變化時,由於係使用 插資料,夢此At &quot; 線近似或内插計算進而取得内 載台位置=資:=基準標記的位置測量時間、減少裝 台前所進行之運算時門的儲存容量、以及縮短在移動驅動 41 200907596 本發明之投影曝光方法,其包含投影光學系統,可變 更該圖案像的投影倍率而將該圖案投影至該曝光基板; 且包含以下步驟: 根據該線性誤差校正運算步驟所算出的該線性誤差校 正資料’來決定該投影倍率。 由於線性誤差校正資料係由長尺寸測量之結果而取得 者,因此,可得到最小平方近似計算之平均化效果,根據 該結果來校正投影倍率,則能以正確的尺寸將圖案轉印至 曝光基板。 又,尤其,根據於線性誤差校正資料之參數,例如有 X方向的伸縮度或γ方向的伸縮度。在使用以非對稱方式 設計之投影光學系統時,能獨立的對χ方向與γ方向實施 倍率校正’因而能更精確的將圖案轉印至曝光基板。 本發明之投影曝光方法,係使用投影曝光裝置,將曝 光用光照射於形成有圖案之標線片,以將該圖案像投影至 裝載於裝載台的該曝光基板; 該投影曝光装置包含: 驅動载台,將用以裝載基板之裝載台移動定位在至少 4個既定位置; 位置戒號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; &quot;基準‘ β己檢測機冑,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於基準基板之基準基板基準標 記;以及 42 200907596 位置決定機構,根據該位置訊號所表示的位置, 定該裴载台的位置; 、 其特徵在於: 該曝光基板,具有供該圖案像投影之至少4個曝光區 域; 為曝光基板基準標記m表示該至少4個曝光區 域的基準位置之曝光區域基準標記; 且包含以下步驟: 曝光基板位置控制步驟’在該曝光基板被作為該基板 而裝載於該裝載台I,藉由該驅動載台,將該裝載台依序 移動定位在至少4個既定的曝光基板檢測位置; 曝光基板位置儲存步驟,係從該位置訊號取得在各該 曝光基板檢測位置之該裝載台的位置且予以儲存; &quot; 曝光區域基準標記位置儲存步驟,係在各該曝光基板 檢測位置’猎該基準標記檢測機構來檢測該曝光區域基準 標記,然後根據其檢測結果與該裝載台的位置,算出該曝 光區域基準標記的位置且予以儲存; 位置誤差處理步驟,根據在該曝光區域基準標記位置 儲存步驟所儲存之該曝光區域基準標記的位置,使用最小 平方法算出該曝光基板基準標記的位置誤差中非線性成分 之誤差資訊; 差分誤差處理步驟,根據在該曝光區域基準標記位置 儲存步驟所儲存之該曝光區域基準標記的位置之差分,使 用最小平方法算出該曝光區域基準標記的位置之差分誤差 43 200907596 中非線性成为之誤差資訊;以及 曝光基板定位步驟,根據2個該非㈣ -誤差資訊來施以加權’以算出要將該裝載台定位之目標 位置’然後將裝載台定位在該目標位置。 由於係對線性成分的誤差與非線性成分的誤差施以加 權,以算出要對裝載台定位之目標位4,@此, 光基板的狀態,來決定豆φ夕你w认 ’”、 术决疋其中之接近於逐片方式之載台控制 ”接近於整片方式之載台控制,而能提升裝載台的定位精 度。此處&lt;「加權」的意義,並非僅是按照非線性誤差盘 線性誤差的大小來選擇逐片方式與整片方式之其中一方Ϊ 且亦能按照非線性誤差與線性誤差的大小算出目標位置。 本發月之才又衫曝光方法,係使用投影曝光裝置,將曝 光用光照射於形成有圖案之標線片,以將該圖案像投影至 裝載於裝載台的該曝光基板; 該投影曝光裝置包含: 驅動載台,將用以裳載基板之裝載台移動定位在至少 3個既定位置; 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於基準基板之基準基板基準標 記;以及 w 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝载台的位置; 44 200907596 其特徵在於: 域; 該曝光基板,具有供該圖案像投影之至少3個曝光區 β亥曝光基板基準標記’係用以表示該至少、3個曝光區 域的基準位置之曝光區域基準標記; 且包含以下步驟: 曝光基板位置控制步驟,在該曝光基板被作為該基板 而裝載於該裝載台後,藉由該驅動載台,將該裝載台依序 移動定位在至少3個既定的曝光基板檢測位置; ,曝光基板位置儲存步驟,係從該位置訊號取得在各該 曝光基板檢測位置之該裝載台的位置且予以儲存; 曝光區域基準標記位置儲存步驟m該曝光基板 =位置’㈣基準標記檢測機構來檢測該曝光區域基準 ‘ s己’然後根據其檢測έ士果盘兮驻并△从 裝載台的位置,算出該曝 先&amp;域基準標記的位置且予以儲存,· 線性誤差校正運算步驟,根據在該曝光區域基準μ 位置儲#步驟所錯存之該曝光區域基 最小平方法算出用以校二位置,使用 料; 仅止踝性成刀备差之線性誤差校正資 差分算出步驟,係用以算出在該曝光區域基準標記位 以及 子之該曝μ域基準標記的位置之差分; 重:控制步驟,係將利用該最小平方 紅轉、及正交中至少-種置換成該差分,將曝光用=射 45 200907596 於礼線片’ Μ异出及控制該圖案像投影在曝光基板時的 才又影像與該曝光基板的重疊目標位置。 由於係將利用最小平方法_ &amp; π取J卞乃凌取侍之伸縮、旋轉、及正交 中至少一種置換成差分,可伟声 n J使處理間便,可提高基板製造 的產能。 不需使用載台位置測定用之干涉計等位置測量裝置, 即可將基板高速地定位於正確的位置。且,即使對於非線 性誤差較晶圓基板為大的印刷電路板,亦能取得充分的對 準精度。 再者’即使在曝光區域外設有標記,亦可對非線性誤 差較大之印刷電路板進行對準,基板的處理步驟所進行之 處理可減少曝光區域外標記之耗損,複數個重疊曝光可利 用同-標記來進行對準,可進行整層Μ好對位。 【實施方式】 以下’根據圖面來說明本發明之實施例。 〈〈〈〈第1實施形態〉〉〉〉 圖1係本發明之第1實施形態之投影曝光裝置〗〇〇的 概略圖。投影曝光裳i 100,主要係用以製造印刷電路板。 〈〈〈構成〉〉〉 〈〈投影光學系統〉〉 〈光源11 0〉 光源110,係用以發出期望波長的光束。例如,可為 水銀燈等發出短波長紫外線者。在光源i 10的燈泡内,有 封入作為發光物質的水銀、及陽極(未圖示)與陰極(未圖示) 46 200907596 這2個電極。上述之陽極與陰極係成對向配置。各電極與 金屬導體(未圖示)形成電氣連接,在陽極與陰極之間形成 電弧放電。 光源110的一方之鉗口 112a,被固定在設置於後述的 橢圖鏡120外側之支撐構件(未圖示p又,另一方的鉗口 112b,與未圖示的電源線連接。光源11〇之放電,係將既 定電壓透過其等鉗口而施加於兩電極。再者,電源線的徑 長小’不會妨礙光源11 〇所發出的光束。 在陽極與陰極之間產生電弧放電後,由稱為電弧柱的 放電部分產生強光。由該電弧柱放射之光束,成為朝四方 擴散之發散光。 〈橢圓鏡120〉 橢圖鏡120 ’用以會聚由光源丨丨〇所發的光束。如圖1 所示般’橢圖鏡120具有反射面122,橢圓鏡120乃是以 反射面122的形狀作為旋轉橢圓面之反射鏡。在橢圓鏡ι2〇 的底部形成有貫通孔126。在貫通孔126中配置著光源1 i 〇 的一部分。藉由將光源丨10的一部分配置在貫通孔126的 方式’可將光源11 0定位成,使光源丨丨〇的電弧部分位在 橢圓鏡120的第1焦點。 如上述’由光源110所發的光束經橢圓鏡12〇而暫時 會聚’可因而提高光束的照度。藉此,可提高由光源1 ^ 〇 所發出光束的利用效率。 如上述’在本發明之照明裝置,於會聚光學系統使用 橢圓鏡120。橢圓鏡i 20具有第1焦點與第2焦點這2個 47 200907596 焦點;光源110 ’係以使光源11 〇的電故部分位在橢圓鏡 120的第1焦點之方式而由支撐構件(未圖示)所支樓。藉 此’由光源110所發的光束,會在橢圓鏡12〇的反射面122 反射然後會聚在第2焦點。 〈光學棒13 0〉 光學棒130係呈長形之直方體形狀。光學棒13〇具有 入射面132與射出面134。光學棒13〇之配置方式,係使 光學棒130的光源像共輛面光學式的位在橢圓鏡12〇的第 2焦點、或是與第2焦點成共輛之點,再者,光學棒j 3 〇 之配置方式,亦使光學棒13〇的射出面134,位在與後述 的標線片142的圖案形成面ι44成共軛之位置。The reference substrate detects the position of the load A at the position of the battle and stores it; 38 200907596 The check mark = mark position storage step is performed on each of the reference substrates, and the TM mark check mechanism detects the base substrate base The position of the reference mark of the sheep substrate is stored; the reference substrate position correction operation is stored in the phase of the reference V, and the position of the load port of the position error of the loading table is based on the reference substrate base ^^W^τ -^ The right substrate is stored and stored; the exposure substrate position control step is performed after the substrate is mounted on the loading platform as the substrate, by the pole ^ ^ ^ , . . , p ^ 'moving port ' The loading station sequentially moves the clamp position at at least three predetermined exposure substrate detection positions determined according to the position of the loading station; the exposure substrate position storage step, the 俜"攸" Hai position signal is obtained in each The exposure substrate detects the position of the clothing 厥 of the loading a and stores it; the exposure substrate reference mark position stores the mouse, and the direct storage step is performed at each of the exposed substrate detection positions by the reference mark The detection unit 2 detects the exposure substrate reference mark, and then calculates and stores the position of the optical substrate reference mark based on the detection result and the position of the loading stage; and &quot;, linear error correction operation step, & 4 ++ & θ 异 ^, according to the position of the exposed substrate reference mark stored in the exposure substrate reference mark position storage step, using the least square method to calculate 线性 to correct the linear component (4) linear error correction. The value of the loading table position correction data is used to correct the loading position, and the driving control of the driving table is implemented, whereby the positioning of the loading table can be formed in the shape of the I-standard substrate of the I-standard substrate. Come in 39 200907596 仃. Therefore, there is no need to have an interferometer or other position measuring device as the position measurement square cut (4) printed area plate, and the long-size measurement and averaging effect of the slice method, and can be reduced by the reference The number of measuring points is used to improve the positioning accuracy of the loading table, and the manufacturing capacity of the exposed substrate can also be improved. - The conductor can be taken without using the reticle The case is formed on the exposure substrate, and the control of the digital micro-mirror element enables the conductor pattern to have a desired shape. Furthermore, by controlling the digital micro-mirror element, it is not only limited to the degree of expansion, but even orthogonal. The projection exposure apparatus of the present invention, wherein the projection exposure apparatus includes a projection optical system for irradiating the exposure light to the exposure substrate; the reference mark detection mechanism includes a projection optical system The disk μ irradiates the exposure substrate reference mark or the reference substrate reference mark to the exposure substrate reference mark or the reference substrate reference mark; and detects the reference substrate reference mark by the reference mark detection mechanism Or when the substrate reference mark is exposed, the method includes the steps of: positioning the alignment optical system at the detection position when the exposure substrate reference mark or the reference substrate reference mark is not detected; and ending the exposure substrate reference mark or After the detection of the reference substrate fiducial mark, 'position the alignment optical system from the inspection The position where the position is retracted is measured. The reference mark is detected by the non-exposure light. Moreover, when the reference mark is placed on the reference substrate, and it is possible to reliably detect a plurality of reference marks, 200907596 is after detecting the position of the last reference mark, and then the alignment is separated from '' and then the exposure is started. Therefore, it is not necessary to The movement of the alignment optical system between the plurality of exposures can shorten the detection of the reference standard and thus increase the productivity. "In the meantime, the position of the loading table of the projection exposure method of the invention is calculated based on the average value of the exposure of the plurality of reference substrate detection positions. The position correction data is calculated by calculating the average value of the Him position. The error occurs when the drive table moves, or the micro tilt of the drive table is generated, and the positioning accuracy of the loading table can be improved step by step. In the case of (4), the projection exposure method of the present invention is still in the form of a lattice-like intersection in the plate at the predetermined interval in the U.S. base plate; ...^ The position of the reference substrate fiducial mark is calculated at the grid-like intersection and includes the following steps: Using the pre-installation a # ® &gt; Fashen-san is the right data and uses curve approximation or interpolation To position the loading table, ^ ^ is at the target position. After the setting, the loading stage will be used as the error system corresponding to the loading a. When the loading station position correction data changes, because the data is inserted, dream this At &quot Line approximation or interpolation calculation Obtaining the position of the internal stage = capital: = position measurement time of the reference mark, reducing the storage capacity of the door during the calculation performed before the stage mounting, and shortening the moving exposure 41 200907596 The projection exposure method of the present invention includes a projection optical system, The projection magnification of the pattern image may be changed to project the pattern onto the exposure substrate; and the method includes the step of: determining the projection magnification based on the linear error correction data calculated by the linear error correction operation step. It is obtained by the result of the long dimension measurement, and therefore, the averaging effect of the least square approximation calculation can be obtained, and according to the result, the projection magnification can be corrected, and the pattern can be transferred to the exposure substrate in the correct size. According to the parameters of the linear error correction data, for example, the degree of expansion in the X direction or the degree of expansion in the γ direction. When the projection optical system designed in an asymmetric manner is used, the magnification correction can be performed independently for the χ direction and the γ direction. The pattern can be transferred to the exposure substrate more accurately. The projection exposure method of the present invention Using a projection exposure device, the exposure light is irradiated onto the patterned reticle to project the pattern image onto the exposure substrate loaded on the loading platform; the projection exposure device comprises: a driving stage, which is to be loaded The loading platform of the substrate is positioned and positioned in at least four predetermined positions; the position and number output mechanism is disposed on the driving stage, and outputs a position signal indicating the position of the loading station; &quot;reference 'β has been detected by the machine Detecting an exposure substrate reference mark formed on the exposure substrate or a reference substrate reference mark formed on the reference substrate; and 42 200907596 a position determining mechanism that determines a position of the 裴 stage based on the position indicated by the position signal; The exposure substrate has at least four exposure regions for projecting the pattern image; an exposure region reference mark indicating a reference position of the at least four exposure regions for the exposure substrate reference mark m; and the following steps: exposing the substrate position a control step of mounting the exposure substrate on the loading table as the substrate, by the driving a loading stage for sequentially positioning the loading table at at least four predetermined exposure substrate detecting positions; and an exposure substrate position storing step of obtaining the position of the loading platform at each of the exposed substrate detecting positions from the position signal and storing &quot; an exposure area reference mark position storing step of detecting the exposure area reference mark at each of the exposure substrate detection positions, and then calculating the exposure area based on the detection result and the position of the loading stage; The position of the reference mark is stored; the position error processing step calculates the nonlinearity in the position error of the exposure substrate reference mark using the least square method according to the position of the exposure area reference mark stored in the exposure area reference mark position storage step The error information of the component; the differential error processing step calculates the difference error of the position of the exposure region reference mark using the least square method according to the difference between the positions of the exposure region reference marks stored in the exposure region reference mark position storing step 43 200907596 Medium nonlinear The error information; and a step of exposing a substrate is positioned, (iv) based on the two of the non - error information to the weighting applied 'to the target position is calculated to the placing table' and then placing table in the target position. Since the error of the linear component and the error of the nonlinear component are weighted to calculate the target bit 4 to be positioned on the loading platform, @this, the state of the optical substrate, to determine the bean 夕 夕 w w w ” ”载 Among them, the stage control close to the piece-by-chip method is close to the stage control of the whole piece, and can improve the positioning accuracy of the loading table. Here, the meaning of "weighting" is not only to select one of the slice-by-chip mode and the whole chip mode according to the linear error of the nonlinear error disk, but also to calculate the target position according to the magnitude of the nonlinear error and the linear error. . The method for exposing the shirt of the present month is to use a projection exposure device to irradiate the exposure light onto the patterned reticle to project the pattern image onto the exposure substrate loaded on the loading platform; the projection exposure device The utility model comprises: a driving stage, wherein the loading platform for carrying the substrate is moved and positioned in at least three predetermined positions; a position signal output mechanism is disposed on the driving stage, and outputs a position signal indicating a position of the loading platform; a detecting means for detecting an exposure substrate reference mark formed on the exposure substrate or a reference substrate reference mark formed on the reference substrate; and a w position determining means for determining the loading stage based on the position indicated by the position signal 44 200907596 is characterized in that: the exposure substrate has at least three exposure regions for projecting the image of the pattern, and the substrate reference mark ' is used to indicate the exposure of the reference position of the at least three exposure regions. a region reference mark; and comprising the steps of: exposing a substrate position control step at which the exposure substrate is used as the base After being loaded on the loading platform, the loading stage is sequentially moved by the driving stage to be positioned at at least three predetermined exposure substrate detecting positions; and the exposure substrate position storing step is obtained from the position signals. Exposing the position of the loading table of the substrate detecting position and storing it; exposing the area reference mark position storing step m the exposure substrate=position '(4) the reference mark detecting mechanism detecting the exposure area reference 's' and then detecting the gentleman's fruit plate according to the exposure The position of the exposure &amp; field reference mark is calculated and stored from the position of the loading station, and the linear error correction operation step is performed according to the exposure area which is stored in the exposure area reference μ position storage step The minimum square method is used to calculate the position for the second position, and the material is used; the linear error correction component calculation step of only the stagnation tool is used to calculate the reference mark in the exposure region and the exposure domain reference The difference between the positions of the marks; the weight: control step, which is replaced by at least one of the least square red turn and the orthogonal The exposure = 45200907596 to Li exit ray 'Μ isobutyl controlling the pattern image and the projected image and only the exposure position overlaps the target substrate during the exposure of the substrate. Since the least square method _ &amp; π is used to take at least one of the expansion, rotation, and orthogonal of the 卞 凌 凌 置换 置换 , , , , , , , , , , , n n n n n n n n n n n n n n n n n n n The substrate can be positioned at a high speed at a high speed without using a position measuring device such as an interferometer for measuring the position of the stage. Further, even for a printed circuit board having a nonlinear error smaller than that of the wafer substrate, sufficient alignment accuracy can be obtained. Furthermore, even if a mark is provided outside the exposed area, the printed circuit board having a large nonlinear error can be aligned, and the processing performed by the substrate can reduce the wear of the mark outside the exposed area, and the plurality of overlapping exposures can be With the same-marking for alignment, the entire layer can be aligned. [Embodiment] Hereinafter, embodiments of the present invention will be described based on the drawings. <First Embodiment> FIG. 1 is a schematic view showing a projection exposure apparatus according to a first embodiment of the present invention. The projection exposure is i 100, mainly used to manufacture printed circuit boards. <<Configuration>> <Projection Optical System> <Light Source 11 0> The light source 110 is a light beam for emitting a desired wavelength. For example, it is possible to emit a short-wavelength ultraviolet ray for a mercury lamp or the like. In the bulb of the light source i 10, mercury as a luminescent material, and an anode (not shown) and a cathode (not shown) 46 200907596 are sealed. The above anode and cathode are arranged in opposite directions. Each electrode is electrically connected to a metal conductor (not shown) to form an arc discharge between the anode and the cathode. One of the jaws 112a of the light source 110 is fixed to a support member provided outside the ellipsoidal mirror 120 (not shown, and the other jaw 112b is connected to a power cord (not shown). The light source 11〇 The discharge is applied to the electrodes by passing a predetermined voltage through the jaws. Further, the small diameter of the power supply line does not interfere with the light beam emitted by the light source 11. After the arc discharge occurs between the anode and the cathode, A strong light is generated by a discharge portion called an arc column. The light beam emitted from the arc column becomes a divergent light that diffuses toward the square. <Elliptical mirror 120> The elliptical mirror 120' is used to concentrate the light beam emitted by the light source As shown in Fig. 1, the 'ellipsoid mirror 120 has a reflecting surface 122, and the elliptical mirror 120 has a shape of the reflecting surface 122 as a mirror for rotating the elliptical surface. A through hole 126 is formed at the bottom of the elliptical mirror ι2〇. A part of the light source 1 i is disposed in the through hole 126. By arranging a part of the light source 10 in the through hole 126, the light source 10 0 can be positioned such that the arc portion of the light source 位 is positioned in the elliptical mirror 120 The first focus. The fact that the light beam emitted by the light source 110 is temporarily concentrated by the elliptical mirror 12 可 can thereby increase the illuminance of the light beam. Thereby, the utilization efficiency of the light beam emitted by the light source 1 ^ 可 can be improved. The apparatus uses an elliptical mirror 120 in the concentrating optical system. The elliptical mirror i 20 has two 47th 200907596 focal points of a first focus and a second focus; the light source 110' is such that the electric part of the light source 11 位 is located at the elliptical mirror 120. The focus is supported by a support member (not shown), whereby the light beam emitted by the light source 110 is reflected by the reflection surface 122 of the elliptical mirror 12A and then concentrated at the second focus. 0> The optical rod 130 has an elongated rectangular shape. The optical rod 13 has an incident surface 132 and an emitting surface 134. The optical rod 13 is arranged such that the light source of the optical rod 130 is optically like a common surface. The second focus of the elliptical mirror 12 、 or the point of sharing with the second focus, and the arrangement of the optical rod j 3 〇 also causes the emitting surface 134 of the optical rod 13 , to be located later and later. The pattern forming surface ι44 of the reticle 142 is in a conjugated position .

在光學棒130的入射面132,係供光源11〇所發之光 束之射入。光學棒U〇,係用於使射至入射面132之光束 有近於均一之照度。由光學棒13〇的射出面134,可射出 照度近於均一之光束。光學# 13〇之使用,只要能使射至 入射面132之光束產生照度近於均一之照明者即可。 〈導光光學系統140 &gt; 導光光學系統,係由反射鏡136、照明中繼光學系統 138、及反射鏡140所構成。由光學棒13〇的射出面134 所射出的光束,藉由反射鏡丨3 6 _ 兄U 6而改變订進方向,藉照明 中繼光學系統138而擴大截面士 , ,, c ^ 戳面大小,經反射鏡140而再度 改變行進方向,射至後述的標線片142。 〈標線片142〉 標線片1 42係一種并·罝,a ,、丨士 &amp; 罩用以在製造印刷電路板時, 48 200907596 將導體圖案形成於後述的曝光基板156(156a、156b、或 156c)。該標線片142相當於負片作用,用以藉由光源110 所發之曝光用光,將形成於標線片142的圖案轉印至曝光 基板156而在曝光基板156形成導體圖案。在標線片142 的圖案形成面144形成之圖案,與欲於曝光基板156形成 的導體圖案相對應。 曝光基板156係由銅張積層基板之類的基板所構成, 乃是在導體圖案形成之前之基板,指已在其表面覆以光阻 等感光性物質之基板。又,導體圖案係指,在印刷電路板 错導電性材料而形成之圖形。再者,印刷電路板係指在曝 光基板156已形成導體圖案者。 如上述,由光學棒130的射出面134所射出、並在反 射鏡I4G改變作進方向之光束,照明於標線片⑷的圖案 形成面14 4。 〈標線片遮板146〉 在標線片M2的上方附近’配置有標線片遮板146。 標線片遮板146,具有可邊保持與標線片M2之平行,邊 f^動之移動板148。再者,在圖1所示之例中,標線片 =保持成水平’標線片遮板146的移動板148,係如 指般的移動於水平方向。標線片遮…能 光學棒13。的射出面134所射出的光束的一部分, 成期望的大小。經變更截面後的光束, 如、射在上述標線片1 42。 〈投影透鏡150〉 49 200907596 在上述標線片142的下方設有投影透鏡15〇。投影透 鏡150具有入射面152與射出面154,其係以入射面152 位在上側、射出面154位在下側之方式,而由支撐構件(未 圖示)所支撐。 投影透鏡150的入射面152,係供透過標線片142的 光束之入射。投影透鏡150,係由至少丨種以上之各種透 鏡所構成,在投影透鏡150的内部,係藉由其等透鏡而將 射至入射面1 52之光束的截面大小轉換成期望之大小,然 後將轉換後的光束由射出面154射出。藉此,形成於後述 之標線片142的圖案形成面144之圖案,遂經過投影透鏡 150而改變其像的大小,並使其圖案像投影至後述的曝光 基板156,而使形成於標線片142之圖案能以期望的大小 轉印至曝光基156上。再者,投影透鏡15()較佳係由等 倍投影光學系統所構成。 〈〈對準光學系統160〉〉 對準光學系統丨60,係對於形成於後述之曝光基板 156(156a、156b、或 156c)或基準基板 158(1583或 i58b)之 基板基準標記進行攝影,以供決定基板基準標記之位置 者。對準光學系統16〇被裝載於移動載台(未圖示),被定 位在退離位置與測定位置。有關該退離位置與測定位置, 容待後述。 又,對準光學系統丨60的運用時機尚有,對形成於後 述之基板裝載台(stage)17()的卫作台(taMe)m之工作台基 準標記179進行攝影’以決定工作台基準標記的位置時。 50 200907596 μ對準光學系統16G包含2個顯微鏡162a及162b。顯 U鏡162a及l62b,各自包含ccd鏡頭等攝影元件(未圖 可對基板基準標記或工作台基準標記進行攝影。顯微 、兄162a及l62b的攝影元件,有與影像處理裝置⑹形成 電氣連接。影像處理裝置164,係將顯微鏡162&amp;及⑽ ::攝得之像當作影像資料來讀取,並對影像資料施以加工 寻二並取出基板基準標記之像或工作台基準標記之像,以 決定基板基準標ip &amp; # $ I . +铋。己的位置或工作台基準標記的位置且予 存。 〃再者’在圖1之示例中的對準光學系統160只有i個, 係配置在投影透鏡! 5〇的 糸站而# u 下方左側’然而’亦可設有2個 先予系統而成為對準光學系統咖及祕。在 係使對準光學系統16〇a盥對 月开/ 投影透鏡”。的下方左側統160同樣的配置在 方左側使對準光學系統160b配置在 投影透鏡15〇的下方右側(未圖示)。對準 ,各與對準光學系統-具有同樣的構成,各且;及2 個顯微鏡而可對基板基標標m台基準桿^有 影。又,對準光學系統16〇3及 σ進仃攝 / a及160b’各與影像處理裝 形成電氣連接,可供處理由對準光學“⑽&amp;及… 自攝传之像。在使用上述2個對準 後述,可使處理更迅速。 予…之’月形時,如 〈〈基板裝載台170〉〉 如圖!所示,在投影透冑15 170。基板裝載台170的構成 °又 裝载台 3 . X方向移動用裁台 51 200907596 方向移動用載台174;及,方向移動用載台176。 考在圖1令,圖面内朝六&amp; 的” 圆面内朝右的方向表示+Χ方向,往圖面 的冰處之方向係+Υ方向,圖 7士二 口叫07上方則表不+Ζ方向。在 Ζ方向移動用载台176的上面,形忐 以水平m壯I的上面心成了用以將曝光基板!56 乂水千狀態來裝載之工作台177(未圖示)。 之工::其在工作° 177的上面之-部分,形成有未圖示 之工作σ基準標記】79,俾用來 的才m、隹⑽ 俾用來與形成於上述標線片M2 係用來表示桿線片42二 標線片基準標記, …p 準位置之基準標記。當該標線 進妒~、 町像(以下,稱為標線片基 丰己之像)的位置,與工作台 +秩》己W9的位置一致 係由對準先學糸統⑽來對此時之卫作台基準 /丁攝影’俾預先儲存工作台基準標$ HP的位 ^成於標線片142之圖案投影至曝光基板Η 利 用使先予儲存之工作台基準 則敗•利 記彼此位置—致之方;=?9的位置與基板基準標 ^ 式,而將形成於標線片142的圖宏0 衫至曝光基板156之期望的曝光區域。 ’、又 〈x方向移動用載台172、Y方向移動用載台174〉 圖2(a),係X方向移動用載台172盥γ方 ^74的詳細前視圖;圖2⑻U方向移動_/17载2 的坪細前視圖。再者,在圖2⑷及(b)中,圖 : 表示+X方向,圖面的朝上方向表示外方向。 方向 基板裝載台170具有長形之定盤ma與 ^與賜係各自固定在既定的台部(未圖示)。°疋盤 52 200907596 在定盤1 78a中,具有線性馬達定子! 8〇a與線性馬達 定子1 82a。線性馬達定子1 8〇a與線性馬達定子丨82a,係 呈長形。線性馬達定子1 80a與線性馬達定子i 82a係以彼 此平行、並且朝定盤178a的長邊方向延伸之方式,而設置 在定盤178a。 定盤1 78b亦設有線性馬達定子丨8〇b與線性馬達定子 182b。線性馬達定子180b與線性馬達定子18孔係呈長形。 線性馬達定子180b與線性馬達定子1821)係以彼此平行、 且朝著定盤178b的長邊方向延伸之方式,而設置在定盤 178b。 〜又,在定盤178a中的線性馬達定子18〇a與線性馬達 疋子182a之間,設有長形之線性滑執188a。在定盤178b 中的線性馬達定子180b與線性馬達定子182b之間,同樣 設有長形之線性滑軌丨88b。 在Y方向移動用載台丨74的下面之左侧,設有與線性 馬達定子18〇a相對應之線性馬達動子ma。又,在、γ方 向移動用載台174的下面之右側’設有與線性馬達定子⑽b 相對應之線性馬達動子184b。係將f流供應至線性馬達動 子⑷或1 84b,而使線性馬達動子1 84a邊受到線性滑執 的導引邊沿著線性馬達定子丨8Qa移動,並使線性馬 達動子184b邊受到線性滑執mb的導引邊沿著線性 定子 1 8 0 b 移動,f φ 移勤其結果,可將Y方向移動用載台174 動至±Y方向之期望位置。 在丫方向移動用載台174的下面之左側,亦以與線性 53 200907596 馬達定子182a相對應之方式而設有線性馬達動子i86a。 從線性馬達動子186a中會發出表示線性馬達動子驗相 對於線性馬達定子i 82a的位置之訊號。 又’在γ方向移動用載台174的下面之右側,亦以與 線性馬達定子182b相對應之方式而設有線性馬達動子 腿。從線性馬達動子祕中會發出表示線性馬達動子 職相對於線性馬達定子職的位置之訊號。 * γ方向移動用載台174有與控制裝置199連接。控制 ::199可接收線性馬達動子所發之訊號、及線性馬 186b所發之訊號,藉以取得Y方向移動用載台174 的γ方向位置或移動距離。在使¥方向移動用載台174朝 ±Y方向移動時’控制裝置199係接收線 所發的訊號、及绩枓民v 5a i 祕所發的㈣,根據線 性馬達動子186a與186K沾从》 + 、 的位置,來控制供應至線性馬達 動子184a或184b的電流。 又,若使線性馬達動子18以與 即可使Y方向移動用^ _朝㈣方向移動, 甚㈣^ 在±¥方向並行移動。又, u 動子186a與186b移動相異距離、或使 :Π::方:亦能使η: 飞逆時鐘方向有某種程度的旋轉。 圖2(b),係X方向移動用載台i 72 如圖2(b)所示般 :、’、别視圖。 #蒈古妗以东 甘万同移動用載台174的上部, °又、…馬達定子190與線性馬達定子192。魂| 定子19〇與線性馬達 ;1疋子192°線性馬達 子192係呈長形。線性馬達定子19〇 54 200907596 與線性馬達定子1 9 9 # 2係以彼此平行、且朝著γ方向移動 載台174的長邊方向益从 初用 ~延伸之方式,而設置在γ方向移動 載台]74。在丫方士^^ 助用 向移動用載台1 74中,於線性馬達定早 1 90與線性馬達定子 1 92之間設有長形之線性滑轨1 94。 在X方向移動載台172的下面,以與線性馬達定子19〇 士 &quot;的方式而叹有線性馬達動子1 96。將電流供應至線 性馬達動子196’藉使線性馬達動子196邊受到線性滑軌 194的導引,邊沿著線 每冰f生馬違疋子丨90而移動,其結果, 可使X方向移動用载台172在±\方向移動至期望位置。 在X方向移動用载台172的下面,亦以與線性馬達定 子192對應之方式而設有線性馬達動子198。從線性馬達 :子198中會發出,表示線性馬達動+ 198相對於線性馬 達定子192的位置之訊號。 X方向移動用載台172亦與控制裝置199連接。控制 裝置199藉著接收由線性馬達動+ 198所發的訊號,即可 取得又方向移動用載台172的位置或移動距離。再者,如 上述,由於亦能使Y方向移動用載台174在順時鐘或逆時 鐘方向有某種程度的旋轉,因此,由線性馬達動子198所 發的訊號’表示沿著γ方向移動用載纟174的長邊方向之 X方向移動用載台m的位置。在使乂方向移動用載台172 沿著γ方向移動用載台174的長邊方向而移動時,控制裝 =99係接收由線性馬達料198所發之訊號,根據線性 馬達動子198的位置來控制供應至線性馬達動子196之電 流。 55 200907596 由上述線性馬達動+ 者,係以γ 動子1 86a及1 86b所發之訊號所表示 作為原點方向移動用載自174的啟動原點(home position) 向移動:載Si盤之座標系統中的丫方 所發之訊向位置。又,由線性馬達動子- 原點作A 糸以X方向移動用載台1 72的啟動 .、占作為原點,固定在γ 中的χ ^ 乃门移動用载台174的座標系統 的Χ方向移動用載台172的位 向移動用載么174 ^ e _ 及位置,係沿者Y方 向移動用::長邊方向之位置。承上述,由於χ方 因此’控制裝置19:= 向移動用載台174的上部’ 所發之1 、 ’、犯取得由線性馬達動子1 86a及1 86b 吓&amp;之Λ 5虎’而能將χ方 成固定在定般 動用載口 172的位置,轉換 | &amp;或178b之座標系統中的位置。 、此控制裝置19 9可接收由@ 之訊號、線性馬達動子186tH 子腕所發 子⑼所發之訊节隹 #之訊諕、及線性馬達動 之❹“ 取得在固定於定盤17〜或⑽ 之座標系中的v 士 a必4 ^ 1/50 位署1 動用載台174 _ ¥方向位置或旋轉 位置,可取得固定在定盤丨 m轉 ^ μ ίίι m ^ ^ 或178b之座標系中的χ方 门私動用載台172之又方向位置。 乃 〈Z方向移動用載台176〉 圖3係Z方向移動用載台 Α ^ , , θ 币戰α 176的咩細側視圖。再者, 在圖3中’圖面的朝左方向表 γ ^ 向俜表干+Χ古a 向’在圖面的深處方 。係表不+X方向。圖3⑷的Y方向 在-Y方向的端部位置,圖 σ 4係位 ()的方向移動用載二174总 位在+Υ方向的端部位置。 σ 係 56 200907596 在X方向移動用載台172的上部,設有z方向移動用 載台176。如上述,在z方向移動用载台176的上面,形 成了用來破載曝光基板156之工作台方向移動用 載。1 76不僅只於能在±z方向並行移動,亦具有能使z方 向移動用載台176傾斜於水平之微傾斜驅動馬達(未圖 示)。藉著對於微傾斜驅動馬達的控制,可使該2方向移動 用載台176的工作台177以期望角度傾斜於水平面。 如圖3⑷及圖3(b)所示般,纟Z方向移動用載台176 的工作口 177巾’裝載有曝光基板156。藉著上述之微傾 斜機構而使z方向移動用載台176傾斜,能使被裝載於z 亡方向移動用載。76的工作台m之曝光基板i56,以期 望角度而傾斜於水平面。 又,如目3⑷及_ 3⑻所示般,朝向下方向之白底箭 碩,表示由投影透鏡150(未圖示)的射出面154所射 :束。由投影透鏡150的射出面154所射出的光束,昭射 」曝光基板156。目3⑷及圖3(b)所示之箭頭的範圍,、表 不由光源110所發的光束而曝光之曝光區域A。 工者為二t移Γ用載台176的卫作台177’以經過平坦加 者為較佳,然而,會有受制於被裝载於工 光基板156所具尺寸,而不得不加大工作台17^77之曝 在。在該種情形時,就算工作A 177 月形存 工,仍會有在工作台 ; 又1J良好的平坦加 生。 發生¥曲、即所謂撓曲之情形發 如所示 在Z方向移動用载台 176的工作台177有發 57 200907596 生彎曲之情形時,當曝光基板156被裝载於工作台I?? 曝光基板156會沿著已呈彎曲的工作台177而彎曲。^, 述,當曝光基板1 50以彎曲狀態而被裝載於工 上 叶σ丄77時, 如圖3(a)及圖3(b)所示般,能以控制上述ζ方向 σ 76的微傾斜驅動馬達之方式而使工作台丨傾斜於 平面,以使曝光基板156中的曝光區域八成為水平。於水 再者,微傾斜驅動馬達的控制,亦能以閉路控制 路控制中的任一者來進行。閉路控制係指,/汗 A L不向移動 =台微傾斜量測量感測器(未圖示),根據微傾 斜里測量感測器所測得之微傾斜量,來進行微傾斜驅 達的控制。另一方面,開路控制係指,預先對Z方向移動 用載台176的工作台177所產生㈣曲程度進行測定 予儲存其結果,在曝光時則讀取已預先儲存之彎曲程 控制微傾斜驅動馬達,以決定工作纟m的傾斜度。- 如上述’在z方向移動用載台176的上面, 來裝載曝光基板156之工作a 177·On the incident surface 132 of the optical rod 130, the light beam emitted from the light source 11 is incident. The optical rod U is used to provide a nearly uniform illumination of the beam incident on the incident surface 132. From the exit surface 134 of the optical rod 13 ,, a light beam having an illuminance close to a uniform light can be emitted. The use of the optical #13〇 can be performed as long as the light beam incident on the incident surface 132 can be illuminated with a uniform illumination. <Light Guide Optical System 140 &gt; The light guiding optical system is composed of a mirror 136, an illumination relay optical system 138, and a mirror 140. The light beam emitted from the exit surface 134 of the optical rod 13 改变 is changed by the mirror 丨 3 6 _ brother U 6 , and the direction of the contract is enlarged by the illumination relay optical system 138, and the size of the c ^ stamp surface is enlarged. The direction of travel is again changed by the mirror 140, and is incident on the reticle 142 which will be described later. <Marking sheet 142> The marking sheet 1 42 is a type of 并, a, a gentleman &amp; cover for manufacturing a printed circuit board, 48 200907596 A conductor pattern is formed on an exposure substrate 156 (156a, 156b) to be described later. , or 156c). The reticle 142 corresponds to a negative film for transferring the pattern formed on the reticle 142 to the exposure substrate 156 by the exposure light emitted from the light source 110 to form a conductor pattern on the exposure substrate 156. The pattern formed on the pattern forming surface 144 of the reticle 142 corresponds to the conductor pattern to be formed on the exposed substrate 156. The exposure substrate 156 is composed of a substrate such as a copper laminate substrate, and is a substrate before the formation of the conductor pattern, and refers to a substrate on which a photosensitive material such as a photoresist is applied. Further, the conductor pattern refers to a pattern formed by a conductive material on a printed circuit board. Further, the printed circuit board means a conductor pattern having been formed on the exposure substrate 156. As described above, the light beam emitted from the emitting surface 134 of the optical rod 130 is changed by the reflecting mirror I4G, and is illuminated by the pattern forming surface 14 of the reticle (4). <The reticle shutter 146> A reticle shutter 146 is disposed near the upper side of the reticle M2. The reticle shutter 146 has a moving plate 148 which is movable while being parallel to the reticle M2. Further, in the example shown in Fig. 1, the reticle = the moving plate 148 which is held horizontally as the reticle shutter 146 is moved in the horizontal direction as indicated. The reticle covers... can be optical rod 13. A part of the light beam emitted from the exit surface 134 is of a desired size. The light beam after the cross section is changed, for example, is incident on the reticle 1 42 described above. <Projection Lens 150> 49 200907596 A projection lens 15A is provided below the above-described reticle 142. The projection lens 150 has an incident surface 152 and an emitting surface 154 which are supported by a supporting member (not shown) such that the incident surface 152 is positioned on the upper side and the emitting surface 154 is positioned on the lower side. The incident surface 152 of the projection lens 150 is incident on the light beam transmitted through the reticle 142. The projection lens 150 is composed of at least one or more kinds of lenses. In the inside of the projection lens 150, the cross-sectional size of the light beam incident on the incident surface 152 is converted into a desired size by the lens thereof, and then The converted beam is emitted from the exit surface 154. Thereby, the pattern formed on the pattern forming surface 144 of the reticle 142 to be described later is changed in size by the projection lens 150, and the pattern image is projected onto the exposure substrate 156, which will be described later, so as to be formed on the reticle. The pattern of sheet 142 can be transferred to exposed base 156 at a desired size. Further, the projection lens 15 () is preferably constituted by an equal magnification projection optical system. <Alignment Optical System 160> The alignment optical system 丨60 photographs a substrate reference mark formed on an exposure substrate 156 (156a, 156b, or 156c) or a reference substrate 158 (1583 or i58b) to be described later. The position for determining the substrate reference mark. The alignment optical system 16A is mounted on a moving stage (not shown) and is positioned at the retreat position and the measurement position. The retreat position and the measurement position will be described later. Further, the timing of the operation of the alignment optical system 丨60 is performed, and the table reference mark 179 of the turret (taMe) m formed on the substrate stage 17 (described later) is photographed to determine the table reference. When marking the location. 50 200907596 The μ alignment optical system 16G includes two microscopes 162a and 162b. The U-mirrors 162a and 162b each include a photographic element such as a ccd lens (not shown for photographing the substrate reference mark or the table reference mark. The photographic elements of the micro, brothers 162a and l62b are electrically connected to the image processing device (6). The image processing device 164 reads the image of the microscope 162 &amp; and (10) :: as image data, and applies image processing to the image data to extract the image of the substrate reference mark or the image of the table reference mark. To determine the position of the substrate reference ip &amp;# $ I . + 铋. The position of the own or the table reference mark and to save. 〃 者 ′′ In the example of Figure 1, there are only one alignment optical system 160, It is arranged in the projection lens! 5〇's station and #u Below the left side 'but' can also be equipped with 2 pre-systems to become the alignment optical system and secret. In the alignment optical system 16〇a盥The lower left system 160 of the month opening/projection lens is disposed in the same manner on the left side of the side, and the alignment optical system 160b is disposed on the lower right side (not shown) of the projection lens 15A. The alignment, the alignment optical system has Same composition Each of the two microscopes can have a shadow on the base reference mark of the substrate base mark. Further, the alignment optical system 16〇3 and the σ entrance pupil/a and 160b' are electrically connected to the image processing apparatus. It can be processed by the aligning optics "(10) &amp; and ... self-photographing. After using the above two alignments, the processing can be made more rapid. When the moon is shaped, such as <substrate loading station 170> As shown in Fig., the projection traverse 15 170. The configuration of the substrate loading table 170 is further loaded with the table 3, the X-direction moving cutting table 51 200907596, the direction moving stage 174, and the direction moving stage 176. In the figure of Figure 1, the direction of the inside of the circle of the six &amp; the direction of the circle to the right indicates the direction of +Χ, the direction of the ice to the surface of the figure is +Υ direction, Figure 7 is called the top of 07 In the direction of the 载-moving stage 176, the upper surface of the shape 水平1 is a table 177 (not shown) for loading the exposed substrate! Work:: It is in the upper part of the work ° 177, forming a working σ reference mark not shown] 79, used only m, 隹 (10) 俾 is used to form a reference mark formed on the reticle M2 for indicating the reticle reference mark, ...p position of the bar piece 42. When the reticle enters the 、~, machi image (below The position of the image called the base of the squad, and the position of the workbench + rank "W9" is aligned with the syllabus of the syllabus (10). The position of the storage table reference mark $HP is projected onto the exposure substrate by the pattern of the reticle 142. The use of the table reference for storing the first is defeated by the location of each other; the position of the position; The substrate reference pattern is formed on the desired exposure area of the reticle 142 to the exposure substrate 156. 'and the x-direction moving stage 172 and the Y-direction moving stage 174> Fig. 2(a) is a detailed front view of the X-direction moving stage 172 盥 γ square 74; Figure 2 (8) U-direction movement _ / 17-inch 2 ping front view. Further, in Figs. 2 (4) and (b), the figure shows the +X direction, and the upward direction of the figure shows the outer direction. The direction substrate loading table 170 has an elongated fixed plate ma and a fixed base portion (not shown). °疋盘 52 200907596 In the fixed plate 1 78a, with a linear motor stator! 8〇a and linear motor stator 1 82a. The linear motor stator 18 8a and the linear motor stator bore 82a are elongated. The linear motor stator 180a and the linear motor stator i 82a are disposed in parallel with each other and in the longitudinal direction of the fixed plate 178a, and are disposed on the fixed plate 178a. The fixed plate 1 78b is also provided with a linear motor stator 丨 8 〇 b and a linear motor stator 182 b. The linear motor stator 180b and the linear motor stator 18 are elongated. The linear motor stator 180b and the linear motor stator 1821) are disposed in the fixed plate 178b so as to be parallel to each other and to the longitudinal direction of the fixed plate 178b. Further, between the linear motor stator 18〇a and the linear motor die 182a in the fixed plate 178a, an elongated linear slider 188a is provided. Between the linear motor stator 180b and the linear motor stator 182b in the fixed plate 178b, an elongated linear slide 丨 88b is also provided. On the left side of the lower surface of the carriage table 74 for moving in the Y direction, a linear motor mover ma corresponding to the linear motor stator 18A is provided. Further, a linear motor mover 184b corresponding to the linear motor stator (10)b is provided on the right side of the lower surface of the γ-direction moving stage 174. The f-stream is supplied to the linear motor mover (4) or 184b, and the guide edge of the linear motor mover 184a is linearly slid along the linear motor stator 丨8Qa, and the linear motor mover 184b side is linearized. The leading edge of the slipper mb moves along the linear stator 1 8 0 b, and as a result of f φ shifting, the Y-direction moving stage 174 can be moved to the desired position in the ±Y direction. On the left side of the lower surface of the turbulent movement stage 174, a linear motor mover i86a is also provided corresponding to the linear 53 200907596 motor stator 182a. A signal indicating the position of the linear motor mover phase detector for the linear motor stator i 82a is emitted from the linear motor mover 186a. Further, on the right side of the lower surface of the γ-direction moving stage 174, a linear motor mover leg is provided corresponding to the linear motor stator 182b. From the linear motor mover, a signal indicating the position of the linear motor mover relative to the position of the linear motor stator is issued. * The γ-direction moving stage 174 is connected to the control device 199. The control ::199 can receive the signal from the linear motor mover and the signal from the linear horse 186b to obtain the gamma direction position or the moving distance of the Y-direction moving stage 174. When the ¥ direction movement stage 174 is moved in the ±Y direction, the control unit 199 receives the signal from the receiving line, and (4) issued by the Philippine V 5a i secret, according to the linear motor mover 186a and 186K. The position of +, to control the current supplied to the linear motor mover 184a or 184b. Further, when the linear motor mover 18 is moved in the Y direction, the movement in the Y direction is moved in the direction of (4), and even (4) is moved in parallel in the ±¥ direction. Further, the u movers 186a and 186b move at different distances, or the :Π:: square: the η: fly reverse clock direction has a certain degree of rotation. Fig. 2(b) shows the X-direction moving stage i 72 as shown in Fig. 2(b): #蒈古妗East The upper part of the Ganwan mobile station 174, the motor stator 190 and the linear motor stator 192. Soul | stator 19 〇 and linear motor; 1 192 192 ° linear motor sub-192 is elongated. The linear motor stator 19〇54 200907596 and the linear motor stator 1 9 9 # 2 are parallel to each other and move the longitudinal direction of the stage 174 in the γ direction from the initial use to the extension, and are placed in the γ direction. Taiwan] 74. In the moving square 1 74, an elongated linear slide 1 94 is provided between the linear motor fixed 1 90 and the linear motor stator 1 92. The lower side of the stage 172 is moved in the X direction, and the linear motor mover 196 is slid in a manner similar to the linear motor stator 19 &. The current is supplied to the linear motor mover 196' so that the linear motor mover 196 is guided by the linear slide 194, and moves along the line every ice, and as a result, the X direction can be moved. The stage 172 is moved to the desired position in the ±\ direction. A linear motor mover 198 is also provided on the lower surface of the X-direction moving stage 172 so as to correspond to the linear motor stator 192. From the linear motor: sub-198, a signal is generated indicating the position of the linear motor motion + 198 relative to the linear motor stator 192. The X-direction moving stage 172 is also connected to the control device 199. The control unit 199 can obtain the position or the moving distance of the direction shifting stage 172 by receiving the signal from the linear motor motion + 198. Further, as described above, since the Y-direction moving stage 174 can be rotated to some extent in the clockwise or counterclockwise direction, the signal 'supplied by the linear motor mover 198 indicates that it moves in the γ direction. The position of the stage m is moved in the X direction of the longitudinal direction of the carrier 174. When the 乂-direction moving stage 172 moves in the longitudinal direction of the γ-direction moving stage 174, the control device = 99 receives the signal sent from the linear motor material 198, according to the position of the linear motor mover 198. To control the current supplied to the linear motor mover 196. 55 200907596 The linear motor is activated by the signal from the gamma mover 186a and 186b as the home position of the 174 moving position. The position of the signal sent by the opposite party in the coordinate system. In addition, the start of the X-direction moving stage 1 72 by the linear motor mover-origin is used as the origin, and the coordinate system of the 乃^-Yimen mobile stage 174 which is fixed to γ as the origin. The position of the direction shifting stage 172 is 174 ^ e _ and the position is moved, and the position in the Y direction is: the position in the longitudinal direction. In view of the above, the "control device 19: = the upper part of the mobile stage 174" is issued by the '1', and the linear motor mover 1 86a and 1 86b are scared &amp; The position of the coordinate system of the | &amp; 178b can be converted to the position of the fixed load port 172. The control device 19 9 can receive the signal from the @ signal, the linear motor mover 186tH sub-speaker (9), and the linear motor movement "acquired in the fixed plate 17~ Or in the coordinate system of (10), v ^ a must be 4 ^ 1/50. 1 Use the stage 174 _ ¥ direction position or rotation position to obtain the coordinates fixed in the fixed plate 丨m turn ^ μ ί ι m ^ ^ or 178b In the system, the position of the gantry door 172 is moved in the direction of the direction of the stage 172. Fig. 3 is a side view of the Z-direction moving stage Α ^ , , θ coin battle α 176. Furthermore, in Fig. 3, the leftward direction of the drawing, γ^, 俜 Χ Χ Χ Χ a a ' ' 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深 深The position of the end position of the figure σ 4 is shifted in the direction of the position of the carrier 174 in the +Υ direction. σ system 56 200907596 The upper part of the stage 172 for moving in the X direction is provided with z-direction movement. The stage 176 is used. As described above, in the upper surface of the z-direction moving stage 176, a table-side moving load for breaking the exposure substrate 156 is formed. The micro-tilt drive motor (not shown) that can tilt the z-direction moving stage 176 horizontally is also possible to move in parallel in the ±z direction. The two directions can be controlled by the control of the micro-tilt drive motor. The table 177 of the moving stage 176 is inclined at a desired angle to the horizontal plane. As shown in Fig. 3 (4) and Fig. 3 (b), the working port 177 of the 纟Z direction moving stage 176 is loaded with the exposure substrate 156. The z-direction moving stage 176 is tilted by the above-described micro-tilt mechanism, so that the exposure substrate i56 of the table m mounted on the z-direction moving load 76 can be inclined at a desired angle to the horizontal plane. As shown in the items 3 (4) and _ 3 (8), the white arrow in the downward direction indicates that the beam is emitted by the emitting surface 154 of the projection lens 150 (not shown). The light beam emitted from the emitting surface 154 of the projection lens 150 is The "shot" exposes the substrate 156. The range of the arrows shown in Fig. 3 (4) and Fig. 3 (b) is the exposure area A which is exposed by the light beam emitted from the light source 110. It is preferable for the worker to use the flat table 177' of the stage 176 for the second t-moving stage 176. However, it is subject to the size of the work-light substrate 156, and the work has to be increased. The exposure of Taiwan 17^77. In this case, even if the work A 177 is in the shape of a work, there will still be a workbench; and 1J is well flattened. When the occurrence of the click, that is, the so-called deflection, as shown in the case where the table 177 of the Z-direction moving stage 176 is bent 57 200907596, when the exposure substrate 156 is loaded on the table I?? The substrate 156 is bent along the already curved table 177. In the case where the exposure substrate 150 is mounted on the upper blade σ丄77 in a curved state, as shown in FIGS. 3(a) and 3(b), it is possible to control the above-described ζ direction σ 76. The stage is tilted to drive the motor so that the table 丨 is inclined to a plane so that the exposure area eight in the exposure substrate 156 is horizontal. In addition, the control of the micro-tilt drive motor can also be performed by any of the closed-loop control circuit controls. Closed-circuit control means that /Kan AL does not move to the station = micro-tilt measurement sensor (not shown), and the micro-tilt drive is controlled according to the micro-tilt amount measured by the sensor in the micro-tilt. . On the other hand, the open circuit control means that the degree of the (fourth) curve generated by the table 177 of the Z-direction moving stage 176 is measured in advance, and the result is stored. When the exposure is performed, the pre-stored bending-end control micro-tilt drive is read. The motor is used to determine the inclination of the work 纟m. - The operation of mounting the exposure substrate 156 on the upper surface of the stage 176 for moving in the z direction as described above.

忭口 177,而Z方向移動用載A /,係設置在X方向移動用載台π的上部。因此,^ 二者對於上述X方向移動用载台172# γ方向移動用裁a 的驅動,而將工作自177定位在期望的X方向位置: γ方向位置。 〈阿貝(Abbe)誤差的發生〉 :上述,雖然可藉由使2方向移動用載台Μ傾斜, :將待曝光的曝光區域A保持於水平,然而,在使z 動用載纟176傾斜的情形時,絲著以向移動用^ 58 200907596 6的傾斜程度,而改變2方向移動用載纟μ :準位置、與曝光基板156的表面之間的距離(圖3所示之 二)。因此’會有隨該距離△“發生阿貝誤差的情形。 該阿貝誤差的情形時,會造成水平方向的位置之測 又,隨著被裝載於工作台177之曝光基板156的大小 不同’會有不得不加長上述X方向移動用载台172或^ 向移動用载台m的移動距離之情形。因此,必須要加長 X方向移動用載台172的線性滑軌194、《γ方向移動用 載台m的線性滑軌188&amp;及188b的水平方向長度而造 成線性滑軌194、或線性滑軌188a、im容易有z方向的 幫曲1線性滑軌194、或線性滑軌188a、⑽有發生z 方向彎曲’同樣會目z方向的彎曲程度而產生阿貝誤差, 造成水平方向的位置之測量誤差。 〈〈曝光基板1 56a及156b &gt; &gt; 圖4係曝光基板156a及156b之示例圖。在圖4⑷及 圖·自之示例甲’外側的長方形,表示曝光基板心 或156b的外形輪廓之線段。又,在外側的長方形之内侧, 圖示了橫向4個縱向3個共計12個正方形(eri〜eri2), 其係各自表示丨個曝光區域。係將形成於標線片Μ〗之圖 案分別轉印至該12個曝光區域ER1〜ER12。再者,用來表 示12個曝光區域ER1〜ER12各自之輪廓之正方形線段,係 用以示出曝光區域之假設性線段。 當该曝光基板156a或156b被裝載於工作台177時, 59 200907596 如圖4(a)及圖4(b)所示般,曝光基板156a或156b的縱向 成為基板裂載台170的X方向;曝光基板156a或156b的 橫向,成為基板裝載台170的Y方向。 以下,對於曝光基板156a與曝光基板156b無特別區 分之必要時,僅以曝光基板1 5 6稱之。 圖4(a)所示者,係以各在曝光區域形成2個基準標記 之曝光基板1 56a為例;圖4(b)所示者,係以各在曝光區域 形成4個基準標記之曝光基板1 56b為例。 如上述,圖4(a)所示者,係在12個曝光區域(ER1〜ER12) 各形成2個基準標記RM1及RM2之曝光基板156a。在該 圖4(a)所示之例中,在曝光區域ER1〜ER12所分別形成的 2個基準標記RM1及RM2,係位於正方形曝光區域的4個 邊當中彼此對向的邊之各自中點的附近。再者,2個基準 標記RM1及RM2之形成位置並不偈限於此,亦能以儘可 能的隔離2個基準標記RM1及RM2之方式,來形成2個 基準標記RM1及RM2 若以儘可能隔離之方式來形成之, 則可提高2個基準標記RM1及_的位置測定精度。 在圖4(a)所示之例中,在i片曝光基板15以内有ι2 個曝光區域(ER1〜ER12),其各自形成有2個基準標記細 與RM2 ’在i片曝光基板156a内共含24個基準標記。 在將形成於標線片】47 &gt; 什深月142之圖案轉印至該曝光基板156a 時’所使用的標線月中并ί +古〇 π 月中形成有2個標線片基準標記,其與 2個基準標記RMl及RM2各自對應。 如上述 圖4(b)所示之曝光基板156b,在 12個曝光 60 200907596 區域(ER1〜ER12)各形成有4個基準標記rmI〜RM4。在該 圖4(b)所示之例中,在曝光區域eri〜ER12所分別形成的 4個基準標記RM1〜RM4,係位在正方形曝光區域的4隅附 近。再者,4個基準標記RM1〜RM4的形成位置同樣並不 侷限於此,亦能以儘可能隔離4個基準標記RM1〜RM4之 方式來形成之。若以儘可能隔離之方式來配置,則能提高 4個基準標記RM1〜RM4的位置測定精度。 在圖4(b)所示之例中,在1片曝光基板156b中有12 個曝光區域(ER1〜ER12),其各自形成有4個基準標記 RM1 RM4,在1片曝光基板i56b内共含48個基準標記。 在將形成於標線片142之圖案轉印至該曝光基板156b 時,所使用的標線片中形成有4個標線片基準標記,其與 4個基準標記RM1〜RM4各自對應。 〈基準標記的位移〉 形成於上述曝光基板156a之基準標記RMl及、 或是形成於曝光基板156b之基準標記RM1〜RM4,本來在 形成時應位在期望的位置 '然而,其等基準標記的形成方 式γ係以雷射光溶融曝光基板156的表面而形成,或以鑽 頭等機械加工方式而形成。由於該基準標記的形成方法之 才月又所致會有基準標記的形成位置由原來設計時的位置 來到位移後位置之情形發生。 又亦有可能因為有熱加在曝光基板156、或在搬送 :有力量加在曝光基板156,而使曝光基板15ό的整體 或。卩刀發生變形。在該種情形時,基準標記的位置,將 61 200907596 會位在與本來預定之設計位置相異之處。The opening 177 and the Z-direction moving load A / are provided on the upper portion of the X-direction moving stage π. Therefore, both of them are driven by the above-described X-direction movement stage 172# γ direction movement cutting a, and the operation 177 is positioned at the desired X-direction position: γ-direction position. <Abbe occurrence of Abbe error>: Although the tilting of the two-direction moving stage Μ can be performed, the exposure area A to be exposed is kept horizontal, however, the z-moving load 176 is tilted. In the case, the distance between the two-direction moving load : μ : the quasi-position and the surface of the exposure substrate 156 (two shown in FIG. 3 ) is changed by the inclination of the movement direction of the movement. Therefore, there is a case where the Abbe error occurs with the distance Δ. In the case of the Abbe error, the position in the horizontal direction is measured, and the size of the exposure substrate 156 mounted on the table 177 is different. There is a case where the moving distance of the X-direction moving stage 172 or the moving stage m has to be lengthened. Therefore, it is necessary to lengthen the linear slide 194 of the X-direction moving stage 172 and the "γ-direction movement". The horizontal length of the linear slides 188 &amp; 188b of the stage m causes the linear slide 194, or the linear slide 188a, im easy to have the z-direction bundle 1 linear slide 194, or the linear slide 188a, (10) The occurrence of the z-direction bending 'also causes the Abbe error in the z-direction to cause a measurement error in the horizontal direction. <Exposure substrate 1 56a and 156b &gt;&gt; FIG. 4 is an example of exposure substrates 156a and 156b Fig. 4(4) and the rectangle from the outside of the example A', showing the line segment of the outline of the exposed substrate core or 156b. Further, on the inner side of the outer rectangle, four vertical and three vertical directions are shown. square Eri to eri2), each of which indicates an exposure area, and transfers the pattern formed on the reticle to the 12 exposure areas ER1 to ER12. Further, it is used to indicate 12 exposure areas ER1~ The square segments of the respective contours of the ER 12 are used to show the hypothetical line segments of the exposed areas. When the exposure substrate 156a or 156b is loaded on the table 177, 59 200907596 is shown in Figures 4(a) and 4(b). Generally, the longitudinal direction of the exposure substrate 156a or 156b is the X direction of the substrate cracking stage 170; the lateral direction of the exposure substrate 156a or 156b is the Y direction of the substrate loading stage 170. Hereinafter, there is no special distinction between the exposure substrate 156a and the exposure substrate 156b. If necessary, it is referred to only as the exposure substrate 156. As shown in Fig. 4(a), the exposure substrate 1 56a in which two reference marks are formed in the exposure region is taken as an example; as shown in Fig. 4(b) For example, the exposure substrate 1 56b in which four reference marks are formed in the exposure region is taken as an example. As shown in Fig. 4(a), two reference marks RM1 are formed in each of the twelve exposure regions (ER1 to ER12). And the exposure substrate 156a of RM2. In the example shown in Fig. 4(a), in the exposure The two reference marks RM1 and RM2 formed in the respective fields ER1 to ER12 are located in the vicinity of the respective midpoints of the sides opposite to each other among the four sides of the square exposure region. Further, the formation of the two reference marks RM1 and RM2 The position is not limited thereto, and the two reference marks RM1 and RM2 can be formed by isolating the two reference marks RM1 and RM2 as much as possible. If the two reference marks RM1 and RM2 are formed as much as possible, the two references can be improved. Mark the position measurement accuracy of RM1 and _. In the example shown in FIG. 4(a), there are 1 exposure areas (ER1 to ER12) in the i-sheet exposure substrate 15, each of which is formed with two reference marks and RM2' in the i-piece exposure substrate 156a. Contains 24 fiducial markers. When the pattern formed on the reticle 47 &gt; Shishen 142 is transferred to the exposure substrate 156a, the reticle month used and the reticle reference mark are formed in the 〇 〇 月 month It corresponds to each of the two reference marks RM1 and RM2. As shown in the above-mentioned exposure substrate 156b of Fig. 4(b), four reference marks rmI to RM4 are formed in each of the 12 exposure 60 200907596 regions (ER1 to ER12). In the example shown in Fig. 4 (b), the four reference marks RM1 to RM4 respectively formed in the exposure regions eri to ER12 are located near the 4 正方形 of the square exposure region. Further, the formation positions of the four reference marks RM1 to RM4 are also not limited thereto, and can be formed by isolating the four reference marks RM1 to RM4 as much as possible. If the arrangement is as isolated as possible, the position measurement accuracy of the four reference marks RM1 to RM4 can be improved. In the example shown in FIG. 4(b), there are 12 exposure regions (ER1 to ER12) in one exposure substrate 156b, each of which is formed with four reference marks RM1 to RM4, and is contained in one exposure substrate i56b. 48 benchmark marks. When the pattern formed on the reticle 142 is transferred to the exposure substrate 156b, four reticle reference marks are formed in the reticle used, and each of the four reference marks RM1 to RM4 is associated with each other. <Displacement of Reference Mark> The reference mark RM1 formed on the exposure substrate 156a or the reference marks RM1 to RM4 formed on the exposure substrate 156b should be placed at a desired position when formed. However, the reference mark is The formation method γ is formed by exposing the surface of the substrate 156 by laser light, or is formed by machining such as a drill. Due to the formation method of the fiducial mark, the formation position of the fiducial mark occurs from the position at the time of design to the position after the displacement. Further, it is also possible to apply heat to the exposure substrate 156 or to transfer: the force is applied to the exposure substrate 156, and the entire substrate 15 is exposed. The file is deformed. In this case, the position of the fiducial mark will be 61 200907596, which is different from the originally designed design position.

再者’如上述,亦有因為X γ方向移動用载台174、或2方向移動用動用,台172、或 所致,因而造成阿貝誤差之情形。 载口 176的構造 如上述,當基準標記由原來設 位置,$ θθ , 又冲時的位置來到位移後 世置或疋有發生阿貝誤差時,欲 圖宰確者使形成於標線片142的 固茱確只的轉印至曝光基板 動用截a , 就必須在定位X方向移 用載D 172、Y方向移動用載台 裁二176+卩*丄&amp; 4或Ζ方向移動用 口 之夺,有考慮基準標記的 關該定位容待後述。 實施定位。有 在本°兒明書中’基準標記由本來預定之設計位 :到位移後位置之情形,亦稱為基準標記的位置有發生 〈〈〈形成於標線片142之圖案的轉印順序〉〉〉 如上述,藉由光源m所發出的曝光用光,而使形成 於標線片M2之圖案轉印至曝光基板156。在本實施形態 W、光土板1 56具有複數個曝光區域,係將形成於標線 片142的圖案依序轉印至複數個曝光區域的每一者。 在使形成於標線片142之圖案轉印之前,必須實施上 述的預準備*Μ乍,使I線片基準標記的像之位置與工作台 基準標記179彼此位置一致。在工作台m的上面的一; 分,形成有工作台基準標記179,用來與形成於標線片Μ] 的標線片基準標記彼此位置重疊。係驅動χ方向移動用载 台172及Υ方向移動用載台m以使工作自177移動,而 62 200907596 使標線片基準標兮己 的位置-致。當伊線只 置’能與工作台基準標記179 準標記丨79的:二轻基準標記的像之位置、與工作台基 時之工作台基準標吃係、由對準光㈣、統⑽來對此 準標記179的位置。 心攝影’以預先儲存工作台基 在將形成於標線片 首先係移動X方圖案轉印至曝光基板156時, -以使期望:二::台17… 預準備階段所儲存之工:二基準標記的位置,與上述在 致。 作σ基準標記179的位置彼此一 例如,在將形成於標線片142 示的曝光區域156m s、, 圖案轉印至圖4⑷所 用載厶177命 ’光區域ER1時,係使X方向移動 用載台172與γ方向蒋 矽莉 光區域咖之基準h RM 74移動’以使形成於曝 時所儲存的工你 及助的位置,與上述處理 ::的工作台基準標記179的位置一致。再者,如上 ::2係 =案轉印至曝光基板,時,所使用之標線片 Φ成有2個標線片基準標記之標線片,並使 其專分別對應於2個基準標記刪與_。 又,同樣的,欲將形成於標線片142的 如圖4(b)所示之暖本| X方向移動用載台的曝光MER6時,係使 /、方向移動用载台174移動,以 ^ '曝光區域ER6的基準標記RM1〜RM4的位置 :述處理時所儲存的工作台基準標記179的位置彼此」 此情形’與上述相同的’在將圖案轉印至曝光基板 63 200907596 ⑽時,所使用之標線片142,係使用形成 基準標記之標線片,並使其等分別對應 = RM1〜RM4。 w悉早才示記 經移動X方向移動用載台172與¥方 174,而使期望的曝氺 门移動用載台 作台基準標記149彼此基準標記的位置與健存的工 發出曝光用光,以將=置’由光源110 基板156。 成於心線片142之圖案轉印至曝光 如所不’使期望的曝光區域之基準標記的位置盥儲存 的工作台基準標記i 的位置與錯存 出曝光用光,並且然後由光源U〇發 片⑷之圖案依序轉J 丁此步驟’則能將形成於標線 炊 ’、序轉印至複數個曝光區域的每一者。 而右疋在上述基準標記的位置發生誤差,在 形,必須使…方向移動用載台172與:移= 174對應於所生誤差來定位。 方向移動载台 〈 &lt; &lt;對準方式〉〉〉 使X方向移動用截a 應於誤差來定位之方::…方向移動用載台174對 ㈣叫方式。逐片=有逐片(diebydie)方式與整片 的瞀出方式係指,對於複數個曝光區域係分別Further, as described above, there is a case where the Abbe error is caused by the X γ-direction moving stage 174 or the two-direction moving operation, the stage 172 or . The configuration of the carrier 176 is as described above. When the reference mark is set from the original position, $ θθ, and the position at the time of the rush, the displacement or the occurrence of the Abbe error occurs, the image is formed on the reticle 142. It is true that only the transfer to the exposure substrate is used to cut a, and it is necessary to move the load D 172 in the positioning X direction, and to move the 176 in the Y direction to the 176+卩*丄&amp; 4 or the Ζ direction movement port. In the case of taking the reference mark, the positioning is to be described later. Implement positioning. In the case where the reference mark is originally designed by the original position: to the position after the displacement, the position of the reference mark also occurs. <<<Transfer order of the pattern formed on the reticle 142> As described above, the pattern formed on the reticle M2 is transferred to the exposure substrate 156 by the exposure light emitted from the light source m. In the present embodiment W, the earth-boring plate 1 56 has a plurality of exposure regions, and the pattern formed on the reticle 142 is sequentially transferred to each of the plurality of exposure regions. Before the pattern formed on the reticle 142 is transferred, the above-described pre-preparation *Μ乍 must be performed so that the position of the image of the I-line reference mark and the position of the table reference mark 179 coincide with each other. On the upper side of the table m, a table reference mark 179 is formed for overlapping the position of the reticle reference marks formed on the reticle Μ]. The yaw direction movement stage 172 and the Υ direction movement stage m are driven to move the operation from 177, and 62 200907596 causes the position of the reticle reference mark to be accurate. When the Iraqi line is only set to 'can be marked with the workbench reference mark 179 mark 丨79: the position of the image of the two light reference mark, the workbench reference mark of the workbench base, the alignment light (four), the system (10) The position of the mark 179 is marked. The heart photography 'before the storage table base is to be formed when the reticle is first moved to the X-side pattern to be transferred to the exposure substrate 156 - to make the desired: two:: stage 17... The work stored in the preparation stage: two The position of the fiducial mark is the same as above. The positions of the σ-reference marks 179 are, for example, used to move the X-direction when the pattern is transferred to the exposure area 156m s indicated by the reticle 142 and transferred to the 177-th light area ER1 used in Fig. 4 (4). The stage 172 and the gamma directional direction of the 矽 矽 光 区域 区域 区域 h 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Furthermore, as described above: when the 2 system is transferred to the exposure substrate, the reticle Φ used is a reticle having two reticle reference marks, and is specifically adapted to correspond to the two reference marks. Delete with _. In the same manner, when the exposure MER6 of the stage for moving the X-direction moving table shown in FIG. 4(b) is formed on the reticle 142, the direction/movement stage 174 is moved to ^ 'The position of the reference marks RM1 to RM4 of the exposure area ER6: the positions of the table reference marks 179 stored at the time of the process are the same as the above." In the case of transferring the pattern to the exposure substrate 63 200907596 (10), The reticle 142 used is a reticle that forms a fiducial mark, and is made to correspond to = RM1 to RM4, respectively. w. The moving X-direction moving stage 172 and the ¥ side 174 are displayed in the morning, and the desired exposure door moving stage is used as the reference mark 149 at the position of the reference mark and the stored work is exposed. To set = by 'light source 110 substrate 156. The pattern formed on the core piece 142 is transferred to the position where the exposure of the reference mark i of the position of the reference mark of the desired exposure area is not stored, and the exposure light is staggered, and then the light source U 〇 The pattern of the hair piece (4) is sequentially rotated, and this step 'can be formed on the reticle 、', and the sequence is transferred to each of the plurality of exposure areas. On the other hand, an error occurs in the position of the reference mark on the right side, and in the shape, the stage 172 and the shift = 174 must be positioned corresponding to the generated error. Directional movement of the stage < &lt;&lt;&lt;&lt; Alignment >> > The direction in which the X-direction movement is to be positioned in accordance with the error: :... The direction of movement of the stage 174 is (4). Piece-by-slice=die-die mode and whole-piece mode, for multiple exposure zones

方:㈣ 的位置誤差,然後按照該誤差,來校正X 万向移動用載a β Λ 進而使形成、] 移動用載台174的定位位置, 一方面,敕;枯線片142的圖案轉印至曝光基板156。另 出誤差。^ ^式係指,跨曝光基板156的整體而預先算 具出曝光基板156的整體之誤差,根據測得 64 200907596 之誤差對於X方 的定位位置實施:用载台172與Y方向移動載台174 成於標線片142的:’並預先儲存所校正之位置。在將形 向移動用載案轉印至曝光基板156時,係將Χ方 位置,依序將圖宰轉二方用載纟1 7 4定位在校正後 系轉印至曝光基板156。 〈〈逐片方式&gt; &gt; 曝光區域的每係指、,對於曝光基&amp; 156的複數個 基準;^己位罟3 W上述對準光學系統1 60來測定其 的位置Γ 根據其測定結果來校正基《載台 、广成於標線片142的圖案轉印至曝光基板156。 定Α準=Γ $逐片方式’係藉由對準光學系統16〇來測 的1置Ά的位置’按照其測定結果來校正基板裝載台170 位置是否妥當。由於並未以干涉計來用 :方向移動用载台172與γ方向移動用載台174的定位, =實的實施基板裝载台17。的定位,因此,能使投影 曝光凌置100較為廉價。 有關逐片方式,將進-步詳述如後。 再者’在下述逐片方式的步驟之第1態樣〜第3態樣, 有進行上述之預準備,係將標線片基準標記的像位置與工 作台基準標記179的位置—致時之工作台179的位置預先 儲存。 〈以逐片方式進行之步驟之第丨態樣〉 該第1態樣,係將形成於標線片U2的圖案,分別轉 Ρ至上述曝光基板15 6&amp;的12個曝光區域eri〜eri2的每 65 200907596 一者。如上述,在曝光基板 4、尤丞板156a的12個曝光區域 ER1〜ER12 ’分別有形成2個基準標記咖及助。在該 第^態樣中,係使用對準光學系統16〇來決定2個基準標 s己RM1及RM2的位置。如上述, I β對準光學系統16〇包 含2個顯微鏡1 62a及1 62b。利$ @ % # 〜用顯从鏡162a來檢測曝光 基板156a的基準標記RM1,·利 用,.、、員械鏡1 62b來檢測曝光 基板1 56a的基準標記rm2。 2個顯微鏡⑹…62b,各自包含CCD鏡頭等攝影 凡件(未圖示),其係以攝影元件來攝影包含基準標記RM1 或之曝光基板156a的表面,從所攝得的影像中,取 出基準標記RM1 A RM2之像’藉以決定基準標記咖或 RM2的位置。 圖5⑷〜圖5⑷’係表示以該第1態樣進行之基準桿記 的位置檢測、曝光基板156a的位置調整、及曝光至曝光基 板156a時的順序。再者,在圖5⑷〜圖5⑷所示之例中: 係以曝光基板156a的12個曝光區域ER1〜ERi2中的eri 為其代表。又,在目5(a)〜圖5(c)之例 + X方向,圖面的左方表示+Y方向。再者,在圖5(a): = 之不例中的大圓’表示由投影透们5G射出的光束之可昭 射範圍EA。 ‘ ' 圖5(a)所示之狀態,係藉由基板裝載台17〇的X方向 移動用載台172與γ方向移動用載台m之驅動,而將被 凌載於工作台177之曝光基板156a的曝光區域ERi定位 在可照射範圍EA0f。再者,在曝光基板156a的曝光區域 66 200907596 ER1〜ER12所分別形成的2個基準標記_及_,其設 计位置已被預先儲存,可根據其數值來移動χ方向移動用 載台172與Υ方向移動用載台174,藉以將曝光基板心 的曝光區域ERi〜ER12定位在可照射範圍ea。 在該圖5⑷的狀態時,對準光學系、统i6〇係位在 位置。再者,該對準光學系統16〇的退離位置,如圓 示般,係使對準光學系統16〇位在由投影透鏡15〇的下方 退離後之位置,以避免因對準 光基板心之曝光進行或各6〇而妨礙到對曝 ^種作業專。例如,對準光拏系 二 160的退離位置係位於,當光源,發出曝光用光而將 :成於標線片142之圖案轉印至曝光基板―,=1 子系統160所被定位的位置。 位置,較佳係在對準光學學系,统160的退離 ::)中為了簡化起見,而將其狀態圖示成,使::光: 系統160定位於由曝光 《對準先予 述,兑實4 ER1退離之位置,然而,如上 其實際位置係指對準光學系统〗60 退離後之位置。 ’、 由基板裝載台170 對準光學系統160,包含χ方向 不)。藉由X方向對準移動用載 動用載。(未圖 的白底箭頭ΑΧ1或ΑΧ2所…圖5(a)或圖5(c) 移動於±X方向。 不又,可使對準光學系統160 圖5(b)所示,係將對準 位置時之狀態。如上述,對準先::二1〇移動定位在測定 準移動用載台,藉由對言亥x方向;&quot;準1 多160包含X方向對 向對準移動用載台的驅動, 67 200907596 如圖5(a)的白底箭頭Αχι所+如 朝可使對準光學系統⑽ 朝X方向移動,而定位在測定位置。 該測定位置,乃是對準氺風 對A準俨q 仓 先予系統16〇能以顯微鏡162a 進二攝二 #^彡1顯微鏡_對基準標記職 進丁攝衫時之定位位置。該對準光學系統i6〇的測定位置, 確保位在-定位置者即可,無須使用位置檢測裝置 來:、疋對準光學系、统16〇被定位於測定位置時之位置。亦 即在使對準光學系統16〇由上述退離位置離開而定位至 ==標記RM1或RM2的測定位置時,該測定位 置要此持續位在一定位置即可。 在使對準光學系統16〇由退離位置移動至測定位置 夺可由以下方式來進行。首先,例如上述對準光學系統 6〇的退離位置係χ方向對準移動用載台的啟動原點時, 在用來㈣X方向對準移㈣載台的馬達之控制機構當 預先儲存一脈衝訊號之數,並使該脈衝訊號之數,對 應於由該退離位置算起直至測定位置之距離。 者 車杏與έ从 田對 予’、、、先160由退離位置離開而被定位在測定位Fang: (4) The position error, and then correct the X universal moving load a β Λ according to the error, thereby forming the positioning position of the moving carrier 174, on the one hand, the pattern transfer of the dead line 142 To the exposure substrate 156. Another error. ^ ^ means that the overall error of the exposed substrate 156 is pre-calculated across the entire substrate 156, and the error is measured for the position of the X side based on the error of 64 200907596: moving the stage with the stage 172 and the Y direction 174 is formed on the reticle 142: 'and the corrected position is stored in advance. When the transfer of the shape-moving carrier is transferred to the exposure substrate 156, the position of the crucible is sequentially positioned, and the carrier is transferred to the exposure substrate 156 after being positioned and corrected. <Paging method> &gt; Each finger of the exposure area, a plurality of references for the exposure base &amp;156; ^ 己 罟 3 W The alignment optical system 1 60 measures the position Γ According to the measurement As a result, the pattern of the "base" and the reticle 142 is transferred to the exposure substrate 156. The position of the substrate loading table 170 is corrected according to the measurement result by the measurement result of the position of the one placed by the alignment optical system 16A. Since the positioning of the directional movement stage 172 and the γ-direction movement stage 174 is not used by the interferometer, the substrate loading stage 17 is implemented. The positioning makes it possible to make the projection exposure 100 cheaper. For the piece by piece method, the details will be described later. Furthermore, in the first aspect to the third aspect of the step by piece method described below, the above-described pre-preparation is performed, and the image position of the reticle reference mark and the position of the table reference mark 179 are made. The position of the table 179 is stored in advance. <The third aspect of the step by slice method> The first aspect is to transfer the pattern formed on the reticle U2 to the 12 exposure areas eri to eri2 of the exposure substrate 15 6 &amp; Every 65 200907596 one. As described above, two reference marks are provided in the two exposure areas ER1 to ER12' of the exposure substrate 4 and the enamel plate 156a. In this first aspect, the alignment optical system 16A is used to determine the positions of the two reference numerals s1 and RM2. As described above, the I β alignment optical system 16 includes two microscopes 1 62a and 1 62b. The reference mark RM1 of the exposure substrate 156a is detected by the display mirror 162a, and the reference mark rm2 of the exposure substrate 1 56a is detected by the use of the mechanical mirror 1 62b. The two microscopes (6), 62b each include a photographic lens (not shown) such as a CCD lens, and the surface of the exposure substrate 156a including the reference mark RM1 or the photographic element is photographed, and the reference is taken from the captured image. Mark the image of RM1 A RM2 'to determine the position of the benchmark mark coffee or RM2. Figs. 5(4) to 5(4)' show the positional detection of the reference lever in the first aspect, the positional adjustment of the exposure substrate 156a, and the order of exposure to the exposure substrate 156a. Further, in the examples shown in Figs. 5(4) to 5(4), eri is represented by eri in the 12 exposure regions ER1 to ERi2 of the exposure substrate 156a. Further, in the example of the items 5(a) to 5(c) + the X direction, the left side of the drawing indicates the +Y direction. Further, the large circle ' in the example of Fig. 5(a): = indicates the illuminable range EA of the light beam emitted by the projection 5G. The state shown in Fig. 5(a) is driven by the X-direction moving stage 172 and the γ-direction moving stage m of the substrate loading table 17A, and is exposed to the exposure of the table 177. The exposure area ERi of the substrate 156a is positioned in the illuminable range EA0f. Further, the two reference marks _ and _ formed in the exposure areas 66 200907596 ER1 to ER12 of the exposure substrate 156a are stored in advance, and the y-direction movement stage 172 can be moved based on the numerical value. The rubbing direction moving stage 174 is positioned to expose the exposure areas ERi to ER12 of the exposure substrate core to the illuminable range ea. In the state of Fig. 5 (4), the alignment optical system and the system i6 are in position. Moreover, the retreating position of the alignment optical system 16〇, as shown by the circle, positions the alignment optical system 16 to be retracted from below the projection lens 15〇 to avoid alignment of the optical substrate. The exposure of the heart is carried out or each of them is obstructed to the exposure operation. For example, the retreat position of the alignment light system 260 is located, when the light source emits exposure light, the pattern formed on the reticle 142 is transferred to the exposure substrate ―, the subsystem 160 is positioned. position. The position, preferably in the Alignment Optics Department, is retracted from::) for simplicity, and its state is illustrated as: Light: System 160 is positioned by exposure "Alignment Said, the position where the 4 ER1 retreats, however, the actual position as above refers to the position after the optical system 60 is retracted. ', the substrate loading stage 170 is aligned with the optical system 160, including the x direction. The moving carrier is aligned by the X direction. (The white arrow ΑΧ1 or ΑΧ2 is not shown... Figure 5(a) or Figure 5(c) moves in the ±X direction. No, the alignment optical system 160 can be shown in Figure 5(b). In the state of the quasi-position, as described above, the alignment is first:: 2 〇 moving positioning is used to measure the quasi-moving stage, and by the symmetry of the x-direction; &quot; The drive of the stage, 67 200907596 The white arrow Αχι+ as shown in Fig. 5(a) can move the alignment optical system (10) in the X direction and is positioned at the measurement position. The measurement position is aimed at the hurricane. For the A 俨 先 先 系统 系统 系统 〇 〇 〇 〇 〇 〇 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜 显微镜It is only necessary to use the position detecting device: the 疋 alignment optical system, the position of the system 16 is positioned at the measurement position, that is, the alignment optical system 16 is rotated from the above-mentioned position. When leaving and positioning to the measurement position of the == mark RM1 or RM2, the measurement position should be continued at a certain position. The alignment optical system 16 is moved from the retracted position to the measurement position by the following method. First, for example, when the retreat position of the alignment optical system 6 is aligned with the start origin of the movement stage, The control unit for the motor for (4) X-direction alignment shift (four) stage pre-stores the number of pulse signals, and the number of the pulse signals corresponds to the distance from the retreat position to the measurement position. Apricot and scorpion from the field to the ',,, first 160 left from the retreat position and positioned in the measurement position

«7 I % 日召'、J 預先儲存之該脈衝訊號的數目,從控制機構將脈衝 號彳’、應至馬達,藉此,可使對準光學系統1 60從X方向 對準移動用載台的啟動原點離開後,持續被定位在—定^ 測定位置。 * 如圖5(b)所示般’將對準光學系統16〇移動定位在 置,而以顯微鏡162a來攝影基準標記RM1,以顯微 鏡162b來攝影基準標記RM2。將攝得之影像儲存於影像 68 200907596 儲存機構(未圖示),旦 處…取出基二二:f =構(未圖示)來進行影像 % ®丞早如圮RM1及RM2之像,|中 ί^ΜΙ的位置與基準標記顧的位置。再者,此時之^ 標記RM1的位置與基準標記RM2 土準 .,r J此1你衫像上的位署 例如’只要以晝素(像素)等為單位來定位即可, 米等一般所用之長度單位來定位。 ……、Μ毫 以上述方式而得到之基準標記咖的位置 _的位置,係X方向的位置(χ座標射方二= 於可得到該基準標記R…座標及Υ座桿、 二座標,如後述,可得到曝 之X偏離夏、Υ偏離量、旋轉度、及 的倍率,計4項之資訊。再者 向 後述。 再者,有關其等之4項資訊容待 的位収基準標記RM1的位置與基準標記咖 工作^準/斷,以了解其與預準備階段時所預先儲存之 口基準私§己179是否彼此位置—致。 存的工作台基準標記179的 …預先儲 俨绩Η其唯描 置係形成於標線片142的 ‘線片基準標記的像之位 基準標記⑽的位置,被㈣m^RMl的位置與 標記179的位置i不致成”預先儲存的工作台基準«7 I % Daily Call, J The number of the pulse signals pre-stored, from the control mechanism, the pulse number 彳', to the motor, thereby aligning the alignment optical system 1 60 from the X direction to the mobile load After the start point of the station leaves, it is continuously positioned at the position of the measurement. * As shown in Fig. 5 (b), the alignment optical system 16 is moved and positioned, and the reference mark RM1 is photographed by the microscope 162a, and the reference mark RM2 is photographed by the microscope 162b. Store the captured image in the image 68 200907596 Storage mechanism (not shown), at the end... take out the base 22: f = structure (not shown) to image % ® as early as 圮 RM1 and RM2, | The position of the ί^ΜΙ and the position of the reference mark. Furthermore, at this time, the position of the mark RM1 and the reference mark RM2 are accurate., r J. The position on your shirt image, for example, 'is only positioned in units of pixels (pixels), etc. The length unit used is used for positioning. ..., the position of the position _ of the reference mark coffee obtained in the above manner is the position in the X direction (the yoke mark square 2 = the reference mark R... the coordinates and the sill bar, the two coordinates, such as As will be described later, information on the deviation of the X from the summer, the amount of deviation, the degree of rotation, and the magnification can be obtained. The information of the four items will be described later. Further, the reference information mark RM1 for the four items of information waiting for it is further described. The location and benchmark mark coffee work ^ quasi / off, to understand whether it is pre-stored in the pre-preparation phase of the benchmark private § 179 whether they are in position to each other. Save the workbench benchmark mark 179 ... pre-reserved performance The drawing is formed at the position of the image reference mark (10) of the image of the line reference mark of the reticle 142, and the position of (4) m^RM1 and the position i of the mark 179 are not made "pre-stored table reference.

方向移動用: 則是驅動基板裝載台17。的X 々问移動用載台172盥γ太a 基板〗56沾s ” 向移動用载台174來定位曝光 :準俨二、光區域ERi ’以使基準標記咖的位置與 基準標記RM2的位置,能與預,辟直興 彼此位置-致。藉此,能以 作台基準標記179 巷羊^把RM1及基準標記rm2 69 200907596 的位置與形成於標線片丨42之其、、隹描 基準^記彼此位置—鉍夕士 式,來進行曝光基板156a的曝 致之方 +祀b域ER1之定位。至 若是根據基準標記RM1的&amp; 再者, 得到之X方向的倍率並不是 的位置所 疋,在此情形,亦可同眸宭姑 投影透鏡150的倍率變更之控制, 、貫施 h 又便X方向的倍率成為 圖5(C),係表示再度將對 ϋ雜你罢祌々仙作 予示、况160移動定位在 退離位置枯之狀悲。藉由對上 隹 _ . 万向對準移動用截/Λ的 驅動,如圖5(c)的白底箭 用戰口的 -Χ2所示般,可使對準# |会 統160朝_χ方向移動 ㈣旱先學系 秒動而疋位在退離位置。再者,竽银雜 位置與上述相同,俜,故石。亥退離 β 避免使對準光學系統1 60成為Μ 曝光基板156a實施曝光 成為對 ^ ^ &amp; 士裡邗蒹等之障礙,而使對準光 干糸統⑽位在離開投影透鏡15〇的下方之處。 的下式而使對準光學系統160自投影透鏡⑼ 的下方退離^复,tfc ' JS 1 1 Λ 發出曝光用光,使形成於m 的圖案轉印至曝光區域ER1。 Μ ΓΥ方=於基板裝載台m的X方向移動用載台 台17 〇 用載台174的驅動,而將被裝載於工作 白曝光基板156a之曝光區域ER2,定位在可昭射範 …圖⑷所示狀態,然後以相同於上述之步驟, $成於標線片142的同査絲c E s 7 ^ 的圖案轉印至曝光區域ER2。藉此, 咖〜£1112的每_^ 圖案轉印至12個曝光區域 〈逐片方式進行之順序之第2態樣〉 200907596 此第2態樣’係將形成於標線片丨42的圖案轉印至上 述曝光基板156b的12個曝光區域ER1〜ER12的每一者。 如上述,曝光基板156a的12個曝光區域ER1〜ER12,各 形成4個基準標記rmi〜RM4。在該第2態樣中,係使用 對準光學系統1 60來決定4個基準標記RM1〜rm4的位置。 在該第2態樣中的對準光學系統16〇,與第i態樣同樣包 含2個顯微鏡162a及162b。顯微鏡162a可檢測出曝光基 板156b的基準標記RM1或RM3,顯微鏡162b可檢測出 曝光基板156b的基準標記RM2或RM4。由於對準光學系 統160的構成與機能和第!態樣相同,因而在第2態2中 省略其說明。 2個顯微鏡162&amp;及162b,各自包含CCD鏡頭等攝影 元件(未圖示)’其係以攝影元件來攝影包含基準標2 RMUM4之曝光基板㈣的表面,從所攝得的影像7 取出基準標記RM1〜RM4之像,藉以決定基 RM1〜RM4的位置。 不° 圖6⑷〜圖6⑷,係表示以該第2態樣進行之基 的位置檢測、曝光基板156b的位置調整 '及曝光至:二 基板⑽時的順序。騎,在圖6⑷〜圖咐)所示之 係以曝光基板㈣的12個曝光區域阳〜咖2 為其代表。又,在圖6⑷〜圖6⑷之例中,圖面的 U方向,圖面的左方表示+Y方向。再者,在 : 之示例中的大圓’表示由投影透鏡15〇射出 ⑷ 射範圍EA。 尤束之可照 71 200907596 圖6(a)所示之狀態,係藉由基板裝載台17〇的χ方向 移動用載台172與Y方向移動用載台174之驅動,而將被 裝載於工作台177之曝光基板156b的曝光區域ER1定位 在可照射範圍EA時。再者,與第丨態樣相同,在曝光基 板156b的曝光區域ER1〜ER12所分別形成的4個基準標記 尺“丨〜尺河彳,其設計位置已被預先儲存,可根據其數值來移 動X方向移動用載台172與Y方向移動用載台174,藉以 將曝光基板156b的曝光區域ER1〜ER12定位在可照射範圍 EA。 在該圖6⑷的狀態中,對準光學系统16〇係位在退離 位置。再者,此退離位置亦與第丨態樣相同。 圖6(b)所示狀態,係將對準光學系統16〇移動定位在 測定位置’亦將曝光基板丨56移動至進出位置。 與第!態樣相同’對準光學系統16〇包含χ 移動用載台’藉著對該Χ方向對準移動用載台的驅動 圖6⑷的白底箭頭AX1所示般,可使對準光學系統 +方向移動,以定位在測定位置。該測定位 1態樣相較係位在相異之處(參照圖5⑽,然而,只二與弟 持在可使顯微鏡162a對基準標記RM1《犯維 亦可使顯微鏡162b對基準標記RM2或謂4進办、 定位置即可。 丁躡影之一 另-方面,藉由對上述乂方向移動用載台 θ 6(a)的黑底箭頭AX3所示般,可使χ方向移勤&quot;, 172朝-X方向移動,而從原來位置轉而被定 用栽台 、埯出位置。 72 200907596 再者,χ方向移動用載台172的原來位置,係圖叫 6(c)、或圖6(d)所示的位置。從原來位置 _ . 宅出位置的 移動,可由下述方式來進行。首先,在用來控制罝的 動用載台172的馬達之控制機構中,預先儲存有—脈=移 號之數,並使該脈衝訊號之數對應於由χ方向移動&amp; — 2 172的原來位置算起直至進出位置之距離。接著,::: 方向移動用載台172從原來位置轉而定位至進出 乃從控制機構中將脈衝訊號(按照先前儲存的脈衝訊號之齡、 供應至馬達,藉此,可使乂方向移動用載台 u 置轉而定位至進出位置。 丈原果位 使對準光學系統160移動至測定位置,並使X方向銘 動用載台172移動至推中&amp;番 ^ #可將對準光學系統160 ^ °動用載自172定位成圖6⑻所示般,亦即使基 其:Z RM1的整體被顯微鏡162a的攝影區域所包含,: 土準標記RM2的整體被顯微鏡祕的攝影區域所包含。 如圖(6b)所示般,將對準朵 子對旱先學系統160定位在測定位 將X方向移動用載台172定位在進出 _對基準標記RM1攝影,由顯微鏡162b對基 =將攝得之影像以影像儲存機構(未圖示)來:= :糟’“象處理機構(未圖示)來實施影像處理,取出基準標 二RM1及RM2的像,以算出基準標記腿i的位 二 標記RM2的位置。再者, ’、基旱 基準標記助^^二二之基準標記則的位置與 晝素(像素)等為單位來定立' i的位置,例如,只要能以 早位來疋位即可,無須使用毫米等—般所 73 200907596 使用之長度單位來定位。 將對準光學系统16〇維持 ’月况下使X方向移動用载 …立X在此 的朝方向移動而回到々 ⑷的黑色箭頭所示般 定位在測定位置,將/ 置。藉著將對準光學系統⑽ 置,則能藉顯對 ^ 對基準標記RM3攝影,蕻薜姆 鏡162b而對基準標記“错顯微 得之影像以影像儲存機&quot;。,月形,同樣是將攝 理機構(未圖亍t: ( )來儲存,然後藉影像處 _的Ϊ 處理,取出基準標記_及 的像,以算 入 的位置。再去,“的位置與基準標記編 此%之基準標記RM3的 的饭1亦是擊後… π位置與基準標記RM4 為單位來定位,、立置’例如,只要能以畫素(像素)等 位^即可’無須使用毫米等一般所使用之長度單 係述方式而得到之4個基準標記麵〜譲4的位置, ;°的位置(x座標)與Y S向的位置(γ座標)。由 料基準標記刪〜腿的位置,㈣得到曝光區 之X偏離量、γ偏離量、旋轉度、χ方向的倍率、 及γ方向的倍率’計5項之資訊。再者,有關其等之 育訊容待後述。 項 對於所得到之基準標記RM1〜RM4的位置作出判斷, 以了解其與預準備階段時所預先儲存之工作 179 θ 3 ^ 土千私舌己 疋金彼此位置—致。該預先儲存的工作台基準標 的位置,係拟+ ^ 係$成於標線片142的標線片基準標記的像之位 74 200907596 ,。若是基準標記讀〜趣的位置,被判 ;:::7:基準標記179的位置並不-致,則是驅= 4载.m的X方向移動用载台172與γ方向㈣ 174來定位曝光基板156b的曝光區域ε 口 —的位置,能與預先儲存的工作c二 彼此位置-致。藉此’係使基準標記RMI〜RM4的位 形成於標線片142之基準標記位置相對應,來進行= 板156b的曝光區域ER1之定位。再者,若是根據基準秩 的位置所得到之X方向的倍率及Y方向的; 革&quot;不疋1,在此情形,亦可同時實施投 率變更之控制,以使X方向的倍率及γ方向:的倍 …圖6⑷,係表示再度將對準光學系統⑽移動定V在 =位置時之狀態。藉由對上述χ方向對準移動用載 «’如圖6⑷的白底箭頭ΑΧ2所示般,可使對準光:系 、&quot;6〇朝-X方向移動,而定位在退離位置。再者,該退離 :置與上述相同’係為了避免使對準光學系統160成為對 广實施曝光或各種作業等之障礙,而使對準光 子糸統160位在離開投影透鏡15〇的下方之處。 ρ岐料光學“⑽自投 :下方退離後’由光源110發出曝光用光,使形成;: 片142的圖案轉印至曝光區域ER1。 、'線 接著,藉著對於基板裝載台 -與Y方向移動用載台174的驅動,而將被裝 口 177的曝光基板156b 、作 域ER2 ’定位在可照射範 75 200907596 二於:為:二:示狀態,然後以相同於上述之步驟, 可依序 2的圖案轉印至曝光區域ER2。藉此, 咖〜咖的每於片142之圖案轉印至12個曝光區域 〈'片方式進行之順序之第3態樣〉 3態樣’係將形成於標線片142的圖案轉印至上 述曝光基板⑽之12個曝光區域ER1〜ER12的每—者。 在曝光基板156a的12個曝光區域ER1〜ER12, 开;T 4個基準標記RM1〜RM4。在該第3態樣中,係使 檢測::準光學系統⑽與16〇b。係由顯微鏡162aa來 出土準標記RM1,由顯微鏡162ab來檢測出基準標記 :錢162ba來檢測出基準標記rm3,由顯微鏡 來檢測出基準標記RM4。對準光學系統⑽及祕 的構成與機能,相同於第1態樣或第2態樣之對準光學系 統160 ’因此,在該第3態樣中省略其說明。 4個顯微鏡I62aa及i62ab與162ba及162bb,各自包 含CCD鏡頭等攝影元件(未圖示),其係以攝影元件來攝影 包含基準標記RM卜趣之曝光基板⑽的表面,從所攝 得的影像中,取出基準標記RM1〜議之像,藉以決定基 準標記RM1〜RM4的位置。 圖7(a)’ 7⑷,係表示以該第3態樣進行之基準標記 的位置檢測、曝光基板156b ^立置調I、及冑光至曝光 基板156b時的順序。再者,在圖7⑷〜圖7(c)所示之例中, 係以曝光基板156b的12個曝光區域ER1〜ER12中的eri 76 200907596 為其代表。又,在圖7(a)〜圖7() 之例中,圖面的上方表示 +χ方向,圖面的左方表示+γ方 _ Π 再者,在圖7(a)〜圖7(c) 之示例中的大圓,亦表示由投影透^ 1 职〇 仅〜远鏡150射出的光束之可 照射範圍ΕΑ。 圖7(a)所示之狀態,係藉由其 尔稽田基板裝載台170的X方向 移動用載台172與γ方向移動 壯# 秒動用載台174之驅動,而將被 農載於工作台1 77之曝井其把 '、土板156b的曝光區域ER1定位 在可照射範圍EA時。再者,在蔽 ^在曝先基板156b的曝光區域 EIU〜ER12所分別形成的4個基準標記刪〜麵,直設計 :置已被預先儲存,可根據其數值來移動X方向移動用載 台1 72與Y方向移動用載a σ 74 ’藉以將曝光基板156b的 曝光區域ER1〜ER12 ^位在可照射^圍Μ。 在該圖7⑷的狀態中,對準光學系統驗與祕係 位在退離位置。此退離也署介 位置亦與第1態樣或第2態樣相同。 圖7(b)所示者,係將對 丁半光予系統16〇a與160b雙方 移動定位在測定位置睥夕仙 置時之狀悲。對準光學系統160a及 160b,各包含有X方向斟進 ^ ^準移動用載台。藉著對於對準光 學系統160a之X方向對準 τ+移動用載台之驅動,如圖 的白底箭頭AX5所示般,可 ^可使對準光學系統16〇a往_χ方 向移動而定位在測定位罟,ν , 一 又’如圖7(a)的白底箭頭ΑΧ6 所示般,可使對準光學系絲, 予糸統160b往+X方向移動而定位在 測定位置。 藉著將對举光學系統16〇a與祕雙方移動至測定位 置之方式’對準光學系統16〇aW雙方之定位狀態如 77 200907596 圖7(b)所示’基準標記RM1的整體被顯微鏡162aa的攝影 區域所包含;基準標記RM2的整體被顯微鏡1 62ab的攝影 區域所包含;基準標記RM3的整體被顯微鏡1 62ba的攝影 區域所包含;基準標記RM4的整體被顯微鏡1 62bb的攝影 區域所包含。 如圖7(b)所示般,將對準光學系統16〇a移動定位在測 定位置,而以顯微鏡162aa來攝影基準標記rmi,以顯微 '兄1 62ab來攝影基準標記RM2。同樣的,將對準光學系統 16〇b定位在測定位置,而以顯微鏡162ba來攝影基準標記 腹3 ’以顯微鏡162bb來攝影基準標記讓。將攝得之影 像儲存於影像儲存機構(未圖示),藉由影像處理機構(未圖 )來進行办像處理,以取出基準標記卜魏4之像 出基準標記RM1〜RM4的衍罟蔽土 士 RM…4 謂4的位置。再者,此時之基準標記 KM1〜RM4的位署役旦/ , 素)等A輩“ 一、衫象的位置,例如,只要以畫素(像 / .....定位即可,無須以毫米等一般所用之長产單 位來定位。 、贡沒早 係χ:=方式而得到之4個基準標記RM1〜RM4的位置, 係X方向的位置(x座標)與 第3態樣,同樣置(Y^)。藉由 , I、4基準標記RM1〜RM4的位罟 而可仔到曝光區域咖之X偏離量、γ偏離量置, X方向的倍率、月V+丄 γ偏離1、紅轉度、 右M 笙 向的倍率,計5項之資訊。再去 有關其等之5項資訊容待後述。 貧亿再者’ 對於所件到之基準標記 以了解其與預準備 Μ4的位置作出判斷, 谓+備階段時所預春 坏預先儲存之工作台基準標記 78 200907596 ^ 谓冗蹄仔的工作a其淮 標記179的位L係形成於標線片⑷的標線片基;二t :像之位置。若是基準標記咖〜圓的位置 ^己 與預先儲存的工作台基準標記179的位置並不 驅動基板裝載台170的X方向移動用載台172與¥方^ 動用載台174來定位暖伞盆^ 门移 木疋位曝先基板156b的曝光區域咖 二標§'麵〜rM4的位置’能與預先儲存的工作台基 ^己179彼此位置一致。藉此,能以使基準標記RM1〜RM4 方:置:形成於標線片142之基準標記彼此 者,若是根據基準^ 之定位。再 的倍率…向的:::二4的位置所…^ 施投影透鏡15〇的^^ 1 情形’亦可同時實 Y方向的倍率成羊變更之控制,以使x方向的倍率及 圖7⑷,係表*再度將對準光m術及 動-位在退離位置時之狀態。藉由對上述 : _的X方向對準移動用载台的驅動,如 :糸、= 頭AX7所示般,可使對準光學系統μ ^ ^箭 而定位在退離位置。同樣的,可藉由對上述::向移動, 160b的:^方向對準 “·準光學系統 頭似所示動’如圖7(c)的白底箭 而定位在退離1置再^光㈣統16Gb Μ方向移動, 了避免使對準光風季 °亥退離位置與上述相同,係為 實施曝光或各種二::及福成為對曝光基板W 種作業等之障礙’而使對準光學系統⑽3及 79 200907596 16〇b位在離開投影透鏡150的下方之處。 在以上述方式而使對準光學系統16〇自投影透鏡15〇 下方退離後,由光源110發出曝光用光,使形成於標線 片142的圖案轉印至曝光區域ER1。 丁、 17 ^者,错著對於基板裝载台170的X方向移動用载台 △ ” Y方向移動用載台174的驅動,而將被裝載於工作 的曝光基板156b之曝光區域ER2,定位在可照射範 圍A成為圖了⑷所示狀態’然後以相同於上述之步驟, 吏开/成於才不線片142的圖案轉印至曝光區域ER2。藉此, 可依序將形成於標線片142之圖案轉印至 域 ER1〜ER12的每—者。 九£域 在此之第3態樣,對於各曝光區域能分 =基準標記—”位置,因而能使檢測處 得二::1態樣與第3態樣中,對於各曝光區域能取 付X方向的倍率誤差與丫方向的倍率誤差此雙方H 因此,對於個別γ 權生x方向的倍率誤差與Y方向的倍率誤 差之知形,有明顯效果。 、 〈〈整片方式〉〉 如上述,整片方式係指, 而算出誤差,根據所測得 56的整體 …方向移動載:二 向移動用載台 蔣仰A動載口 174的定位位置預先施以校正,並 後的位置先予錯存,藉此,在將形成於標線片142 的圖案轉印至曝光基板156時,# 心線片142 吁你將X方向移動用载台1 72 200907596 與γ方向移動用載台174定位在校正後位置,並依序將圖 案轉印至曝光基板1 5 6。 〈曝光基板15 6c〉 圖8所不’係在整片方式之情形時所料曝光基板⑸〇 之示例。在該圖8所示之曝光基孝反156c,肖上述曝光基板 心及156b相同,外側的長方形,表示曝光基板15&amp;的 外形輪廓之線段。又,在外側的長方形之内側,圖示了橫 向4個縱向3個共計12個正方形(ER1〜ER12),其係各自 表示1個曝光區域。係將形成於標線片142之圖案分別轉 印至該12個曝光區域ER1〜ER12。再者,用來表示12個 曝光區域ERhERK各自之輪廓之正方形線段,係用以示 出曝光區域之假設性線段。 當该曝光基板156c被裝載於工作台ι77時,如圖8所 示般’曝光基板156c的縱向成為基板叢載台17〇的χ方 向;曝光基板156c的橫向,成為基板裝載台17〇的γ方 向。 圖8所示之曝光基板156c中’在4個曝光區域ER1、 ER4、ER9、及ER12分別形成2個基準標記RM1及rM2。 該4個曝光區域ER1、ER4、ER9、及ER12,乃是位在最 罪近曝光基板156c的四隅之曝光區域。在使用圖8所示之 曝光基板1 56c時’係使用上述對準光學系統丨6〇來決定2 個基準標記RM1及RM2的位置。該對準光學系統160包 含2個顯微鏡162a及162b。係以顯微鏡i62a來檢測曝光 基板156c的基準標記RM1 ’以顯微鏡1 62b來檢測曝光基 81 200907596 板156c的基準標 功能,和逐片方Π 對準光學系統16G的構成與 此省略其說明。X卩之順序的第1態樣相同’因而在 在將形成於標線片142的 時,所使用的標線片142„成=曝光基板加 者,俾與2個基準標記職及自:T片基準標記 的位置-致==::像位置與…基準標_ 作°基準標記⑺的位置預先储存。 者在曝光基板156c的4個曝光區域ER1、ER4、 删、及ER12所各自形成之基準標記麵之設計位置^ mark_deSl(n),Y mark—㈣⑷)、及基準標記請2之設計位 置(X mark_deS2(n),Y mark_des2(n)),已被預先儲存,可根 據該值來移動X方向移動用載台m肖γ方向移動用載台 以將曝光基板156ς的4個曝光區域er卜咖、咖、 及ER12^位至可照射範圍EA。再者,變數n容待詳述如 後0 〈基準標記RM 1及RM2的位置檢測〉 圖9所示,係使用該曝光基板15&amp;之整片方式的處理 流程圖。以下使用圖9的流程圖來說明。再者,圖9的流 程圖所示之變數η’表示上述4個曝光區域EIU、ER4、ER9、 及ER12。n=l ’係表示曝光區域為ER1時,將曝光區域ERi 稱為第1項之測定曝光區域。n=2表示曝光區域為ER4時, 將曝光區域ER4稱為第2項之測定曝光區域。n=3,係表 82 200907596 =曝光區域為ER12時,將曝光區域謝2稱為第3項之測 ,曝光區域。n=4,係曝光區域為ER9時,將曝光區域ER9 稱為第4項之測定曝光區域。 1·先,使對準光學系統丨6〇離開退離位置然後移動定 位在測^位置(步驟S11)。該對準光學系統160的退離位 或、!疋位置,係與逐片方式位在相同的位置。退離位置 之較佳^系在對準光學系、统16〇的啟動原點。X,測定位 f 置之設定,只要能確保位在可由顯微鏡162a來攝影基準標 。己RM1、亚由顯微鏡162b來攝影基準標記RM2之一定位 置即可。 接著驅動基板裝載台170的X方向移動用載台172 與γ方向移動用載台174而使工作台177移動使得被裝 載於工作台177的曝光基板156c的曝光區域咖,被定位 在可照射範圍EA,俾作為第1項之測定曝光區域㈣)(步 驟S12)。如上述,在4個曝光區域EIU、ER4、ER9、及ER12 、所各自形成之基準標記中,基準標記RM1的設計位置 (Xmark_desl(n),Ymark—㈤⑷)及基準標記rm2之設計位 置(Xmark_des2(n),Ymark_des2⑷),已被預先儲存,因此, 步驟S12的處理,可根據該儲存巾的設計位置來進行。 藉由上述步驟S11與S12的處理,可成為與上述圖 同樣的狀態。 + 乂對準光學系統16〇的顯微鏡W2a來攝影基準 標記RM1 ’以顯微鏡i62b來攝影基準標記RM2(步驟su)。 糟此,可對曝光區域ER1(第工項之測定曝光區域—⑶的 S3 200907596 基準標記RM1及RM2進行攝影。 〜其次,將攝得之料儲存於影像財機構(未圖示), 错衫像處理機構(未圖示)來進行影像處理,取 RMi及RM2的像,以算出土準軚記 干知β己RM1的位晉 (Xmark_l(l),Ymarkl(1)) 與基, RM2(X膽k_2⑴,Ymark_2⑴)的位置,然後將其:^ 區域eR1的基準標記RM1與基準標記職2的位置而 在未圖示之儲存機構(步驟S14)。此時之基準標記刪的 位置(Xmark_l(l),Ymark—丨⑴)及基準栌纪 RM2(X職k—2⑴,γ鑛k_2⑴)的位置,亦與逐片^時相己 同,係影像之位置,例如,只要以晝素(像素)等為單位來 定位即可,無須使用毫米等一般所用的長度單位來定位。 經上述方式而取得之曝光區域ER1的基準標記糊的位 置(ΧΠ1吹1(1)&gt;吹1(1)) &amp; S I 標記 RM2(Xmark_2⑴,Ymark_2(1))的位置]系X方向的位 座標)與Y方向的位置(γ座標)。 藉由上述步驟SU〜S14的處理,可檢測出曝光區域 ER1(第1項之測定曝光區域(n=1))的基準標記讀的位置 X露k—UDJmarkj⑴)及基準標記魏2的位置 (Xmark—2(l),Ymark—2(1))’ 然後儲存該位置。 接著’ #斷是否已對所有測定曝光區域(ERi、咖、 ER9、及咖2)的2個基準標記RM1及咖皆進行處理(步 驟S15)。經判別為否時,則再度實施上述步驟si2~sw的 處理,俾對次一測定曝光區域進行處理(步驟si6)。藉此, 84 200907596 在n=2之時,則檢測出曝光區域ER4的基準標記咖的 位置(Xmark—1(2),Y贿!〇⑺)及基準標記⑽的位置 (Xmark一2(2),Ymark_2(2))的位置,然後儲存其位置在 之時,定出曝光區域·的基準標記、则的位η置 (Xmark 一 l(3),Ymark一1(3)) 及 基準找 ^ RM2(X蘭k—2(3),Ymark_2(3))的位置,然後儲存^位置^ 在n=4之時’定出曝光區域ER9的基準標記顧的位置 (Xmark_l(4),Ymark_l(4)) 及基 準 产 &gt; RM2(Xmark_2(4),Ymark_2(4))的位置,然後儲存其:置。。己 假若在步驟S15,經判別對所有測定曝光區域_、 ER4、ER9、及ER12)皆已進行處理時,則使對準光學系統 1 60離開測定位置而移動定位在退離位置(步驟s 1 7)。 藉由上述處理,可檢測出4個曝光區域聰、现4、 ER9 、及ER12的基準標記譲丨的位置 (X丽k」⑷,Ymarkj⑻)及基準標記請2的位置 (Xmark一2(n),Ymark_2(n)) ’然後儲存其位置。如上述,在 步驟川將對準光學系統16G從退離位置而Μ在測定位 置後’對準光學M 16G係被維持成定位在敎位置的狀 [直到對所有曝光區域進行處理為止,因此,在步驟S12 將第η項之曝光區域定位在可照射範目ea日寺,可成為與 圖5⑻相同的狀態,直接由顯微鏡仙對基準標記伽 進行攝影’由顯微鏡162b對基準標記讀進行攝影。如 所不’採整片方式,則無須重複實施將對準光學系統⑽ 定位在退離位置與測定位置之動作,因而能節省處理所需 85 200907596 時間。 再者在上述不例中,係依照曝光域ER1~&gt;ER4—ER14 —ER9的順序,來決定且,佐1 木决疋基準標記RM1及RM2的位置。藉 此’可縮短X方向移動用番△, π杉動用載台172與γ方向移動用載台ι74 的移動距離,可進一舟始七办 ^ 步鈿紐處理所需時間。 j基準標記⑽1及咖的位置之座標轉換〉 藉由上述處理而取得之4個測定曝光區域⑽卜eR4、 咖、及_,其等各自之基準標RMi的位置 (X職k—1(n),Ymark_1(n))及基準標記隨2的位置 (Xma(2(n),Ymark—2(n)),_定在顯微鏡咖及㈣ 所攝得之影像之座標&quot;的位置。因A,欲算出X方向移 動用載台172與γ方向移動用載台174之校正位置,必須 要轉換成固定在定盤心與mb之座標系。以下說明該 座標系的轉換。 圖10所示,係將被裝載於工作台177之曝光基板156c 的二個曝光區域ER1、ER4、ER9、或ER14中任一者之曝 2區域,定位在可照射範圍EA,並將對準光學系統160 疋位在測疋位置,由顯微鏡丨62a對基準標記RM】進行攝 ^由顯微鏡162b對基準標記RM2進行攝影時之狀態。 在圖10中,同樣是以圖面的上方作為χ方向,以圖面的 左方作為+γ方向。 如上述,將曝光區域ER1稱為第〗項之測定曝光區域, 將曝光區域ER4稱為第2項之測定曝光區域,將曝光區域 ER9稱為第3項之測定曝光區域,將曝光區域丑尺14稱為 S6 200907596 第4項之測定曝光Μ,在表示其中—項之測定曝光區域 時’係以第η項之測定曝光區域來稱之。此處的η係卜4 中任一整數。 再者,本來所預定的位置’係將基準標記匪形成於 測定曝光區域的左側邊的大略中央處,將基準標記讀形 成於測定曝光區域的右側邊的大略中央處,然而,在圖ι〇 的示例中,基準標記RM1及RM2此雙方皆形成於由原來 位置位移後的位置。 如圖10所示般,將第打項之測定曝光區域定位在可照 射範圍EA時之X方向移動用載台172在乂方向的位置設 為Xstg⑷;Y方向移動用載纟m在以向的位置則設 為YStg(npxStg⑻,係以X方向移動用載台m的啟動 原點作為原點時,於固^在^盤心與咖之㈣系中 的X方向之位置(X座標)。同樣的,Ystg⑷係以γ方向移 動用載台174的啟動原點作為原點時,於以奴盤⑽ 與178b之座標系中的γ方向之位置(γ座標 xStg(n)及Ystg⑻’係為了要定位χ方向移動用載台1 υ 及Υ方向移動用載台174而預先定出的量。如上述,在曝 先基板B6c的4個曝光區域er1、er4、er9、及謝2 „的2個基準標記RM1及咖,其設計位置已 :預:儲存。根據於2個基準標記鎌…M2之設計位 v w、、 己179的位置,可算出xstg(n)及 sgn ’然後預先儲存在又方向移動用載台17 向移動用載台174的控制機構。由於乂方向移動用載台m 87 200907596 及*方向移動用載台1 74的驅動控制係藉由脈衝訊號來進 行,因此,XStg(n)及Ystg(n)係與該脈衝訊號的脈衝數相 對j。再者,此處之Xstg⑷及Ystg(n),係換算成以毫米 等實際長度為單位之量。 又,如圖10所示般,將第η項之測定曝光區域的中心 設為ER·0。Χ,將對準光學系統160的顯微鏡162a所能 攝影之攝影區域設為LSA,將對準光學“ 16Q _⑽ 162b所能攝影之攝影區域設為嶋。該攝影區域以的 中心為LSA-O,攝影區域RSA的中心為RSA_〇。 在第η項的測定曝光區域中,以測定曝光區域的中心 肌〇為原點,於固定在曝光基板156e的座標系中攝影 ^ LSA的中心LSA_〇在χ方向位置(χ座標)係為 。又,以測定曝光區域的中心ER_〇作為原點於 固定在曝光基板156c的座標系中,攝影區域LSA的中心 LSA_〇在Y方向位置(Y座標)係為YCCD—卜 —同樣的’以測定曝光區域的中心ER_〇作為原點,於 固定在曝光基板156e的座標系中,攝影區域心的中心 RS A-0在X方向位置(χ座標)係為XCCD一2。又,以測定 曝光區域的…R-Ο作為原點,於固定在曝光基板We 之座標系中,攝影區域RSA的中心RSA_〇在γ方向位置(γ 座標)係為YCCD-2。藉此,以測定曝光區域的中心ER_〇 作為原點,在固;t於曝光基板心的座㈣中,攝影區域 LSA的巾心' LSA-〇的座標係Xccd—uccd—i,攝影區域 RSA的中心RSA·0的座標係(XCCD—2,YCCD—2)。再者: 88 200907596 如上述,對準光學系統160的測定位置,係以能由顯微鏡 162a來攝影基準標記RM1並且能由顯微鏡i62b來攝影基 準標記RM2之處作為對準光學系統16〇的定位位置,該測 定位置係持續位在一定的位置。因此,攝影區域lsa的中 心LSA-0的座標(XCCD_1YCCD—2)、與攝影區域rsa的 中心RSA-O之座標(XCCD_2,YCCD-2),只要對準光學系 統160的測定位置固定,即是有一致性定義之座標。’、 又,其等之座標(xccd—Uccd—2)與座標 (XCCD—2, YCCD_2),肖樣換算成毫米等實際長度之單位。 再者’基準標記RM1的位置(Xmark—⑽) 及基準標記RM2(Xmark_2(n),Ymark_2(n)),如上述係以 影像上的晝素(像素)等作為單位之影像座標系統中的位 置’然而’在以下係、將基準標記RM1的位置與基準標記魏2 的位置,換算成毫米等實際养度單位。例如,可在工作台 177設置高精度之作為基準用之尺標(未圖示),藉對準: 學系統來對尺標攝影,即可得到晝素數目與實際長产 的關係。使用該關係、,即可從畫素的座標變更成實際長; 的座標。 &amp; 具體而言’以攝影區域LSA的中心lsa_〇作為原點, 固定於攝影區4 LSA的座標系中的χ座標,係基準標圮 則在X方向的位置Xmark—1(η)。又,以攝影區域^ 的中心LSA-0作為原點,固定於攝影區域[Μ之座 中的Y座標,係基準標記酬在γ #向的二 Ymark—1 (η) 〇 89 200907596 同樣的,以攝影區域RSA的中心RSA-O作為原點, 固定在攝影區域RSA的座標系之X座標,係基準標記RM2 的X方向之位置Xmark_2(n)。又,以攝影區域RSA的中 心RSA-0作為原點,固定在攝影區域RSA的座標系之Y 座標,係基準標記RM2的Y方向之位置Ymark_2(n)。 如上述所定出者,在將基準標記 RM1的位置 (Xmark_l (n), Ymark_l (η)) ’從固定於影像之座標系轉換成 固定於定盤178a與178b之座標系時,其轉換式可為: 'XM—l(n)、 、YM—1(吨For the direction movement: Then, the substrate loading table 17 is driven. X 々 移动 移动 移动 太 太 太 a a a 基板 基板 基板 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 、 、 、 、 、 It can be compared with the pre-existence, and it can be used to mark the position of the RM1 and the reference mark rm2 69 200907596 with the reference mark rm2 69 200907596. The reference is recorded in the position of the 铋 士 式 , , , 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 曝光 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 In this case, it is also possible to control the magnification change of the projection lens 150, and the magnification in the X direction is shown in Fig. 5(C), which means that you will be yelled again. 々 作 予 、 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , As shown in the mouth - Χ 2, it can be aligned # | will be transferred to the direction of _ 会 ( 四 四 四 四 四 四 四 旱 旱 旱 旱 旱 旱Further, the position of the silver and silver is the same as the above, 俜, so the stone is removed from the β to avoid the alignment optical system 1 60 becomes the exposure substrate 156a to expose the exposure to ^ ^ &amp; Shi Lijun et al. The obstacle is such that the alignment optical system (10) is located below the projection lens 15 。. The alignment optical system 160 is retracted from the lower side of the projection lens (9), tfc ' JS 1 1 Λ The exposure light is emitted, and the pattern formed in m is transferred to the exposure region ER1. Μ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = The exposure area ER2 of the white exposure substrate 156a is positioned in a state shown in Fig. (4), and then transferred in the same manner as the above-mentioned step, the pattern transfer of the reticle c s 7 ^ which is formed on the reticle 142 To the exposure area ER2. By this, each pattern of the coffee ~ £1112 is transferred to 12 exposure areas (the second aspect of the order by slice method) 200907596 This second aspect will be formed on the marking The pattern of the sheet 42 is transferred to each of the twelve exposure regions ER1 to ER12 of the exposure substrate 156b. As described above, the four exposure regions ER1 to ER12 of the exposure substrate 156a are formed with four reference marks rmi to RM4. In the second aspect, the alignment optical system 160 is used to determine the four reference marks RM1. The alignment optical system 16A in the second aspect includes two microscopes 162a and 162b as in the ith aspect. The microscope 162a can detect the reference mark RM1 or RM3 of the exposure substrate 156b, and the microscope 162b can detect the reference mark RM2 or RM4 of the exposure substrate 156b. Due to the composition and function of the alignment optical system 160 and the first! Since the aspects are the same, the description is omitted in the second state 2. The two microscopes 162 &amp; 162 and 162b each include an imaging element (not shown) such as a CCD lens. The surface of the exposure substrate (4) including the reference mark 2 RMUM4 is imaged by the imaging element, and the reference mark is taken out from the captured image 7 The image of RM1~RM4 is used to determine the position of the base RM1~RM4. 6(4) to 6(4) show the position detection of the base in the second aspect, the position adjustment of the exposure substrate 156b, and the order of exposure to the two substrates (10). Ride, as shown in Figure 6 (4) ~ Figure 系), to expose the substrate (four) of the 12 exposure areas yang ~ coffee 2 as its representative. Further, in the examples of Figs. 6(4) to 6(4), the U direction of the drawing surface and the left side of the drawing surface indicate the +Y direction. Further, the large circle ' in the example of : indicates that the projection range 15 is emitted by the projection lens 15 (4). In the state shown in Fig. 6(a), the drive unit 172 and the Y-direction moving stage 174 of the substrate loading table 17 are driven to be mounted. The exposure area ER1 of the exposure substrate 156b of the stage 177 is positioned at the illuminable range EA. Further, in the same manner as in the third aspect, the four reference markers "丨~尺河彳" formed in the exposure regions ER1 to ER12 of the exposure substrate 156b are designed to be previously stored and can be moved according to their values. The X-direction moving stage 172 and the Y-direction moving stage 174 are positioned to expose the exposure areas ER1 to ER12 of the exposure substrate 156b to the illuminable range EA. In the state of FIG. 6(4), the alignment optical system 16 is ligated. In the retreat position, the retreat position is also the same as the first embodiment. The state shown in Fig. 6(b) is that the alignment optical system 16 is moved and positioned at the measurement position 'the substrate 丨56 is also moved. To the entry and exit position. The same as the first aspect, the 'alignment optical system 16' includes the χ mobile stage', as shown by the white arrow AX1 of the drive figure 6 (4) for aligning the Χ direction with the movement stage. The alignment optical system + direction is moved to be positioned at the measurement position. The position of the measurement bit 1 is different from the line position (refer to FIG. 5 (10), however, only the second and the younger can make the microscope 162a to the reference mark RM1 "criminal dimension can also make the microscope 162b against the benchmark It is sufficient to set the position of RM2 or 4, and to set the position. In the other aspect, the direction of the 蹑 蹑 蹑 , , , , θ θ θ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 Shifting &quot;, 172 moves in the -X direction, and is switched from the original position to the station and the position. 72 200907596 Furthermore, the original position of the loading table 172 in the χ direction is called 6 (c Or the position shown in Fig. 6(d). From the original position _. The movement of the home position can be performed as follows. First, in the control mechanism of the motor for controlling the turret of the turret, Pre-stored the number of the pulse = shift number, and the number of the pulse signal corresponds to the distance from the original position of the moving direction &amp; - 2 172 up to the entry and exit position. Then: ::: direction moving stage The 172 is moved from the original position to the inbound and out, and the pulse signal is supplied from the control mechanism (to the motor according to the age of the previously stored pulse signal, thereby enabling the 乂-direction moving stage u to be rotated and positioned to the in-and-out position. The original fruit position moves the alignment optical system 160 to the measurement position, and In the X direction, the movement of the stage 172 is moved to the push-in &amp; the ^^ can be used to position the alignment optical system 160^° from the 172 as shown in Fig. 6(8), even if it is based on the whole: Z RM1 is the microscope 162a The photographing area includes: The whole of the soil mark RM2 is included in the photographed area of the microscope. As shown in (6b), the alignment of the buds to the drought system 160 is positioned at the measurement position to move the X direction. The stage 172 is positioned in and out of the reference mark RM1, and is imaged by the microscope 162b. The image to be captured is imaged by a video storage mechanism (not shown): = "bad" "image processing mechanism (not shown) In the image processing, the images of the reference numerals RM1 and RM2 are taken out to calculate the position of the bit mark RM2 of the reference mark leg i. Furthermore, 'the position of the reference mark of the base drought reference mark ^^2 and the pixel (pixel) etc. as the unit to determine the position of 'i, for example, as long as it can be used in the early position, it is not necessary Use millimeters, etc. - General Office 73 200907596 to use the length unit to locate. The alignment optical system 16 is maintained in the state of the month in which the X-direction movement is moved in the direction in which the vertical direction X is moved back to the 々 (4), and is positioned at the measurement position. By aligning the optical system (10), it is possible to use the pair of reference marks RM3 to photograph, the 镜m mirror 162b, and the reference mark "missing the image to the image storage machine". It is to store the camera (not shown 亍t: ( ), and then use the image processing _ Ϊ processing, take out the reference mark _ and the image to calculate the position. Go again, "The position and the reference mark are compiled this % The rice 1 of the reference mark RM3 is also after the hit... The π position is positioned in units of the reference mark RM4, and the stand-up 'for example, as long as the pixel (pixel) can be used as a ^, it is not necessary to use a millimeter or the like. The position of the four reference mark faces to 譲4 obtained by the length single description method, the position of the ° (x coordinate) and the position of the YS direction (γ coordinate). The position of the leg is marked by the material reference mark, (4) The X-displacement amount, the γ-deviation amount, the rotation degree, the magnification in the χ direction, and the magnification in the γ direction of the exposure region are obtained as information of five items. Further, the information about the information of the exposure region will be described later. Judging the position of the reference marks RM1 to RM4 to understand the pre-preparation stage The pre-stored work 179 θ 3 ^ The position of the pre-stored workbench reference mark is the reticle reference mark of the pre-stored reticle 142 The position of the image is 74 200907596. If the position of the reference mark is read, the position of the reference mark is judged;:::7: the position of the reference mark 179 is not - and it is the drive table of the X direction of the drive. The position of the exposure area ε of the exposure substrate 156b and the γ direction (4) 174 can be positioned with the pre-stored operation c. Thus, the bits of the reference marks RMI to RM4 are formed on the reticle. The position of the reference mark of 142 corresponds to the position of the exposure area ER1 of the plate 156b. Further, if it is the magnification in the X direction and the Y direction obtained from the position of the reference rank, the leather &quot; In this case, the control of the rate change can be simultaneously performed so that the magnification in the X direction and the γ direction are doubled. Fig. 6(4) shows the state in which the alignment optical system (10) is again moved to the V position. The above-mentioned χ direction is aligned with the moving load «' as shown in Figure 6 (4), the white arrow ΑΧ 2 In the same manner, the alignment light can be moved, and the system is moved in the direction of the retreat. In addition, the retreat is the same as described above in order to avoid making the alignment optical system 160 Obstacles to exposure or various operations, etc., so that the alignment photonic system 160 is located below the projection lens 15 。. ρ 光学 optical "(10) self-projection: after the lower retreat] is emitted by the light source 110 The pattern of the sheet 142 is transferred to the exposure region ER1 by using light. The line is followed by the exposure of the substrate loading stage to the Y-direction moving stage 174. 156b, the field ER2 'positioned in the illuminable van 75 200907596 II: is: two: shows the state, and then in the same step as above, can be transferred to the exposure area ER2 according to the pattern of the sequence 2. Thereby, the pattern of each of the sheets 142 of the coffee to coffee is transferred to the 12 exposure areas <the third aspect of the order in which the sheet method is performed> the third aspect 'transfers the pattern formed on the reticle 142 to Each of the twelve exposure regions ER1 to ER12 of the exposure substrate (10) is exposed. The twelve exposure areas ER1 to ER12 of the exposure substrate 156a are opened; and T are four reference marks RM1 to RM4. In this third aspect, the detection is made: quasi-optical system (10) and 16 〇 b. The reference mark RM1 is excavated by the microscope 162aa, and the reference mark rm3 is detected by the microscope 162ab to detect the reference mark rm3, and the reference mark RM4 is detected by the microscope. The alignment optical system (10) and the configuration and function of the secret are the same as the alignment optical system 160 of the first aspect or the second aspect. Therefore, the description of the third aspect will be omitted. Each of the four microscopes I62aa and i62ab and 162ba and 162bb includes a photographic element (not shown) such as a CCD lens, and the surface of the exposure substrate (10) including the reference mark RM is photographed by the photographic element, and the image is taken from the image. In the middle, the reference mark RM1 to the image of the object is taken out, thereby determining the positions of the reference marks RM1 to RM4. Fig. 7 (a)' (7) shows the procedure for detecting the position of the reference mark by the third aspect, the exposure of the substrate 156b, and the step of illuminating the substrate 156b. Further, in the examples shown in Figs. 7(4) to 7(c), eri 76 200907596 among the twelve exposure regions ER1 to ER12 of the exposure substrate 156b is represented. Further, in the examples of Figs. 7(a) to 7(), the upper side of the drawing indicates the +χ direction, and the left side of the drawing indicates the +γ square_ Π Π, in Fig. 7(a) to Fig. 7 ( c) The large circle in the example also indicates the illuminable range 光束 of the beam emitted by the projection through the lens. The state shown in Fig. 7(a) is driven by the X-direction moving stage 172 of the Ershitian substrate loading table 170 and the γ-direction moving tens of the second-stage moving stage 174. The exposure of the station 1 77 positions the exposure area ER1 of the earth plate 156b in the illuminable range EA. Furthermore, the four reference marks formed on the exposure areas EIU to ER12 of the exposure substrate 156b are respectively disposed, and the design is placed in advance. The X-direction moving stage can be moved according to the value. 1 72 and the Y-direction moving load a σ 74 ' are used to position the exposure regions ER1 to ER12 of the exposure substrate 156b to be illuminable. In the state of Fig. 7 (4), the alignment optical system is in the retracted position. This retreat is also the same as the first or second aspect. As shown in Fig. 7(b), both of the singular semi-lighting systems 16A and 160b are moved and positioned at the measurement position. The alignment optical systems 160a and 160b each include a X-direction advancement mobile stage. By aligning the driving of the τ+ moving stage with respect to the X direction of the alignment optical system 160a, as shown by the white arrow AX5 in the figure, the alignment optical system 16〇a can be moved in the _χ direction. Positioned at the measurement position ν, ν, and again, as shown by the white arrow ΑΧ6 in Fig. 7(a), the optical wire can be aligned, and the cymbal 160b is moved in the +X direction to be positioned at the measurement position. The positioning state of both the optical system 16〇aW is aligned by the method of moving the lifting optical system 16〇a and the secret side to the measurement position, such as 77 200907596. FIG. 7(b) shows the entirety of the reference mark RM1 by the microscope 162aa. The photographing area is included; the entirety of the fiducial mark RM2 is included in the photographing area of the microscope 1 62ab; the entirety of the fiducial mark RM3 is included in the photographing area of the microscope 1 62ba; and the entirety of the fiducial mark RM4 is included in the photographing area of the microscope 1 62bb . As shown in Fig. 7(b), the alignment optical system 16a is moved and positioned at the measurement position, and the reference mark rmi is photographed by the microscope 162aa, and the reference mark RM2 is photographed by the microscopic 'brother 1 62ab. Similarly, the alignment optical system 16〇b is positioned at the measurement position, and the reference mark belly 3' is photographed by the microscope 162ba, and the reference mark is photographed by the microscope 162bb. The captured image is stored in an image storage mechanism (not shown), and image processing is performed by an image processing mechanism (not shown) to extract the reference mark RM1 to RM4 of the reference mark weiwei 4 Tus RM...4 is the position of 4. In addition, at this time, the reference marks KM1 to RM4 are in the first place, and the other is "A", the position of the shirt, for example, as long as the pixel (like /... positioning, no need It is positioned in the long-term production unit generally used in millimeters, etc., and the position of the four reference marks RM1 to RM4 obtained by the method is the same as the position of the X direction (x coordinate) and the third aspect. Set (Y^). By the position of the I and 4 reference marks RM1 to RM4, the X deviation amount and the γ deviation amount of the exposure area can be set, and the magnification of the X direction and the month V+丄γ deviate from 1, red. The degree of rotation, the right M direction, and the information of 5 items. Go to the 5 items about it and let it be described later. The poorer ones will be in the position of the benchmark mark to understand its position with the preparation Μ4 To make a judgment, it is said that the pre-spring stage is pre-spring and the pre-stored workbench benchmark mark 78 200907596 ^ The work of the redundant hoof is a bit L of the Huai mark 179 formed on the reticle base of the reticle (4); t : like the position. If the position of the reference mark coffee ~ circle ^ and the position of the pre-stored workbench reference mark 179 does not drive the base The X-direction moving stage 172 of the loading table 170 and the ¥-moving stage 174 are used to position the umbrella basin. The exposure area of the erbium substrate 156b is exposed to the position of the front surface of the substrate 156b. The pre-stored table bases 179 are positioned at the same position. Thereby, the reference marks RM1 to RM4 can be set: the reference marks formed on the reticle 142 are mutually aligned, and the positioning is based on the reference. ...向::: The position of the second 4...^ The case of the projection lens 15〇^^ 1 can also be used to control the magnification of the Y direction at the same time, so that the magnification in the x direction and Fig. 7(4) are * Once again, the state of the light m and the movement position at the retracted position will be aligned. By aligning the X direction of the above _ with the drive of the moving stage, as shown by 糸, = head AX7, Positioning the optical system μ ^ ^ arrow in the retracted position. Similarly, by moving the above:: toward the movement, the direction of the 160b is aligned with "the quasi-optical system head is like the movement" as shown in Figure 7. (c) The white arrow is positioned to retreat from the 1st and then the light (4) to move in the direction of the 16Gb ,, so as to avoid the alignment of the light wind season. Similarly to the above, the exposure optical system (10) 3 and 79 200907596 16〇b are located below the projection lens 150 in order to perform exposure or various obstacles such as exposure to the substrate. After the alignment optical system 16 is retracted from the lower side of the projection lens 15 as described above, the exposure light is emitted from the light source 110, and the pattern formed on the reticle 142 is transferred to the exposure area ER1. D, 17 ^ In the X-direction moving stage Δ"Y-direction moving stage 174 of the substrate loading table 170, the exposure area ER2 of the exposed exposure substrate 156b is positioned in the illuminable range A. The state shown in (4) is shown. Then, in the same manner as the above-described steps, the pattern of the slab 142 is transferred to the exposure region ER2. Thereby, the pattern formed on the reticle 142 can be sequentially transferred to each of the domains ER1 to ER12. In the third aspect of the nine-field, for each exposure area can be divided into = reference mark - "position, so that the detection can be two: 1: 1 and the third aspect, for each exposure area can take X The magnification error of the direction and the magnification error of the 丫 direction are both significant. Therefore, there is a significant effect on the magnification error of the individual γ-weighted x-direction and the magnification error of the Y-direction. < <Whole film mode> As described above, The whole piece method refers to, and the error is calculated, and the load is moved according to the measured overall direction of 56: the positioning position of the two-way moving stage Jiang Yang A dynamic load port 174 is pre-applied, and the subsequent position is given a mistake. Therefore, when the pattern formed on the reticle 142 is transferred to the exposure substrate 156, the #心线片 142 calls for positioning the X-direction moving stage 1 72 200907596 and the γ-direction moving stage 174 at After the correction, the pattern is transferred to the exposure substrate 1 5 6 in sequence. <Exposure substrate 15 6c> Fig. 8 is an example of the substrate (5) which is exposed in the case of the whole film mode. The exposure base shown in Fig. 156c, the above exposed substrate core and 15 6b is the same, the outer rectangular shape indicates the line segment of the outer shape of the exposed substrate 15&amp; and, on the inner side of the outer rectangle, four horizontally three vertical squares (ER1 to ER12) are illustrated, which are respectively indicated. One exposure area is obtained by transferring the pattern formed on the reticle 142 to the 12 exposure areas ER1 ER ER12. Further, a square line segment for indicating the respective contours of the 12 exposure areas ERhERK is used to show When the exposure substrate 156c is loaded on the table ι77, as shown in FIG. 8, the longitudinal direction of the exposure substrate 156c becomes the χ direction of the substrate slab 17 ;; the lateral direction of the exposure substrate 156c, The gamma direction of the substrate loading table 17 is formed. In the exposure substrate 156c shown in Fig. 8, two reference marks RM1 and rM2 are formed in each of the four exposure areas ER1, ER4, ER9, and ER12. The four exposure areas ER1. ER4, ER9, and ER12 are the exposure areas of the four sinus exposure substrates 156c. When using the exposure substrate 1 56c shown in Fig. 8, the two alignment optical systems 丨6〇 are used to determine two. Benchmark mark R The position of M1 and RM2. The alignment optical system 160 includes two microscopes 162a and 162b. The reference mark RM1' of the exposure substrate 156c is detected by the microscope i62a. The reference mark function of the exposure base 81 200907596 board 156c is detected by the microscope 1 62b. The configuration of the alignment optical system 16G is the same as that of the optical system 16G. The first aspect of the sequence of X卩 is the same 'thus, the reticle 142 used when it is to be formed on the reticle 142形成 = exposure substrate adder, 俾 and 2 reference marks and positions: position of the T-plate reference mark - 致 ==:: image position and ... reference mark _ The position of the reference mark (7) is stored in advance. The design position of the reference mark surface formed by each of the four exposure areas ER1, ER4, ER4, and ER12 of the exposure substrate 156c is 0 mark_deSl(n), Y mark-(4)(4)), and the design position of the reference mark 2 (X) Mark_deS2(n) and Y mark_des2(n)) are stored in advance, and the X-direction moving stage m γ-direction moving stage can be moved according to the value to expose the exposure substrate 156 to the four exposure areas. , coffee, and ER12^ to the illuminable range EA. Further, the variable n is to be described in detail as 0. <Position detection of the reference marks RM1 and RM2> Fig. 9 is a flowchart showing the processing of the entire substrate using the exposure substrate 15 &amp; The following description will be made using the flowchart of Fig. 9 . Further, the variable η' shown in the flowchart of Fig. 9 indicates the above-described four exposure regions EIU, ER4, ER9, and ER12. When n = l ' indicates that the exposure area is ER1, the exposure area ERi is referred to as the measurement exposure area of the first item. When n=2, when the exposure area is ER4, the exposure area ER4 is referred to as the measurement exposure area of the second item. n=3, is a table 82 200907596 = When the exposure area is ER12, the exposure area X is called the third item, the exposure area. When n=4, when the exposure area is ER9, the exposure area ER9 is referred to as the measurement exposure area of the fourth item. 1. First, the alignment optical system 丨6〇 is moved away from the retracted position and then moved to the position of the measurement (step S11). The retreat position or the ? 疋 position of the alignment optical system 160 is at the same position as the slice-by-chip mode. The preferred position of the retreat position is in the alignment origin of the alignment optical system. X, the setting of the position f is set as long as it can ensure that the position can be photographed by the microscope 162a. It is sufficient to position one of the photographing reference marks RM2 by the microscope 162b. Then, the X-direction moving stage 172 and the γ-direction moving stage 174 of the substrate loading table 170 are driven to move the stage 177 so that the exposure area of the exposure substrate 156c mounted on the stage 177 is positioned in the illuminable range. EA, 俾 is the measurement exposure area (4) of the first item (step S12). As described above, among the four exposure areas EIU, ER4, ER9, and ER12, the design positions of the reference mark RM1 (Xmark_desl(n), Ymark-(5)(4)) and the design position of the reference mark rm2 (Xmark_des2) (n), Ymark_des2(4)), has been stored in advance, and therefore, the processing of step S12 can be performed according to the design position of the storage towel. The processing in the above steps S11 and S12 can be in the same state as the above-described figure. + 乂 Align the microscope W2a of the optical system 16〇 with the imaging reference mark RM1' to photograph the reference mark RM2 with the microscope i62b (step su). In this case, the exposure area ER1 (measurement exposure area of the first item - (3) S3 200907596 reference marks RM1 and RM2 can be photographed. ~ Secondly, the photographed material is stored in the video financial institution (not shown), wrong shirt Image processing is performed by a processing mechanism (not shown), and the images of RMi and RM2 are taken to calculate the position of the ground (Xmark_l(l), Ymarkl(1)) and the base, RM2 ( The position of the X-those k_2(1), Ymark_2(1)), and then the reference mark RM1 of the area eR1 and the position of the reference mark 2 are stored in a storage mechanism (step S14). The position of the reference mark at this time (Xmark_l) (l), Ymark—丨(1)) and the position of the reference period RM2 (X job k-2(1), γ mine k_2(1)) are also the same as the piece by piece, which is the position of the image, for example, as long as it is The pixel can be positioned in units of a unit, and it is not necessary to use a unit of length generally used for millimeters, etc. The position of the reference mark paste of the exposure region ER1 obtained by the above method (ΧΠ1 blows 1 (1)&gt; blows 1 (1) )) &amp; SI mark RM2 (position of Xmark_2(1), Ymark_2(1))] is a bit coordinate in the X direction) and Y The position of the direction (γ coordinate). By the processing of steps SU to S14 described above, it is possible to detect the position X of the exposure mark ER1 (the measurement exposure area of the first item (n=1)), the position of the reference mark x, k-UDJmarkj(1)), and the position of the reference mark (2) ( Xmark — 2 (l), Ymark — 2 (1)) ' Then store the location. Next, it is determined whether or not the two reference marks RM1 and cafés of all the measurement exposure areas (ERi, coffee, ER9, and coffee 2) have been processed (step S15). When it is judged as NO, the processing of the above steps si2 to sw is performed again, and the next measurement exposure region is processed (step si6). Thereby, 84 200907596, when n=2, the position of the reference mark coffee (Xmark-1 (2), Y bribe! (7)) and the position of the reference mark (10) of the exposure area ER4 (Xmark-2 (2) is detected. ), the position of Ymark_2(2)), and then store the position at which the reference mark of the exposure area is set, and then the bit η is set (Xmark-1(3), Ymark-1(3)) and the reference is found. ^ Location of RM2 (Xlan k-2(3), Ymark_2(3)), then store ^ position ^ When n=4', determine the position of the reference mark of the exposure area ER9 (Xmark_l(4), Ymark_l (4)) and the base product &gt; RM2 (Xmark_2 (4), Ymark_2 (4)) position, and then store it: set. . If it is determined in step S15 that all of the measured exposure areas _, ER4, ER9, and ER12 have been processed, the alignment optical system 160 is moved away from the measurement position and moved to the retracted position (step s 1 7). By the above processing, the positions of the reference marks 4 of the four exposure areas Cong, the current 4, the ER9, and the ER12 (X ray k (4), Ymarkj (8)) and the position of the reference mark 2 (Xmark 1-2 (n) can be detected. ), Ymark_2(n)) ' Then save its location. As described above, in the step of aligning the alignment optical system 16G from the retreat position to the measurement position, the alignment optical M 16G system is maintained in the position of being positioned at the 敎 position [until all the exposure regions are processed, therefore, In step S12, the exposure region of the nth item is positioned in the illuminating field ea jiji, and the same state as in Fig. 5 (8) can be obtained, and the reference mark gamma is directly photographed by the microscope. The reference mark reading is taken by the microscope 162b. If the whole method is not adopted, it is not necessary to repeatedly perform the operation of positioning the alignment optical system (10) at the retreat position and the measurement position, thereby saving the time required for processing 85 200907596. Further, in the above-described example, the positions of the reference marks RM1 and RM2 are determined in accordance with the order of the exposure fields ER1 to &gt; ER4 - ER14 - ER9. By this, it is possible to shorten the moving distance of the X-direction moving Δ, the π 杉 moving stage 172 and the γ-direction moving stage ι74, and it is possible to carry out the time required for the processing of the step 七. j Reference mark (10) 1 and coordinate conversion of the position of the coffee > The four measurement exposure areas (10) obtained by the above processing, eR4, coffee, and _, the positions of the respective reference marks RMI (X job k-1 (n ), Ymark_1(n)) and the position of the reference mark with 2 (Xma(2(n), Ymark-2(n)), _ is set at the position of the coordinates of the image taken by the microscope coffee and (4). A, in order to calculate the correction position of the X-direction moving stage 172 and the γ-direction moving stage 174, it is necessary to convert it into a coordinate system fixed to the fixed disk center and mb. The conversion of the coordinate system will be described below. The exposure area EA, which is mounted on the exposure area ER1, ER4, ER9, or ER14 of the exposure substrate 156c of the stage 177, is positioned in the illuminable range EA, and the alignment optical system 160 is disposed. At the position of the measurement, the microscope 丨62a is used to capture the reference mark RM] by the microscope 162b. The reference mark RM2 is photographed by the microscope 162b. In Fig. 10, the upper side of the figure is also referred to as the χ direction. The left side is referred to as the +γ direction. As described above, the exposure area ER1 is referred to as the measurement exposure area of the item The exposure area ER4 is referred to as the measurement exposure area of the second item, the exposure area ER9 is referred to as the measurement exposure area of the third item, and the exposure area 丑14 is referred to as the measurement exposure of the fourth item of S6 200907596, and is indicated therein. In the case of measuring the exposure area, the term "the area to be measured by the nth item is referred to as an integer of η 卜 4. Here, the originally predetermined position ' is formed by the reference mark 于 in the measurement exposure. At the center of the left side of the area, the fiducial mark is read at the approximate center of the right side of the measurement exposure area. However, in the example of the figure ι, the reference marks RM1 and RM2 are both formed at the original position. As shown in Fig. 10, when the measurement exposure area of the first shot is positioned in the illuminable range EA, the position of the X-direction moving stage 172 in the x-direction is set to Xstg (4); In the position of the orientation, it is set to YSDg (npxStg(8), and the origin of the X-direction moving stage m is used as the origin, and the position in the X direction in the (C) and the (4) system is fixed. Coordinates. Similarly, Ystg(4) When the starting point of the γ-direction moving stage 174 is used as the origin, the position in the γ direction (γ-coordinates xStg(n) and Ystg(8)' in the coordinate system of the slave discs (10) and 178b is to be positioned in the χ direction. The amount of the movement stage 1 υ and the Υ direction movement stage 174 is predetermined. As described above, the two exposure areas er1, er4, er9, and Xie 2 of the exposure substrate B6c are two reference marks RM1. And the coffee, its design position has been: pre-storage. According to the two reference marks 镰...M2 design bit vw, 179 position, xstg(n) and sgn ' can be calculated and then stored in the direction of movement The stage 17 is directed to the control mechanism of the movement stage 174. Since the driving control of the y-direction moving stage m 87 200907596 and the * directional moving stage 1 74 is performed by a pulse signal, XStg(n) and Ystg(n) are compared with the number of pulses of the pulse signal. j. Here, Xstg(4) and Ystg(n) here are converted into an amount in units of actual length such as millimeters. Further, as shown in Fig. 10, the center of the measurement exposure region of the nth term is ER·0. Χ, the photographic area that can be photographed by the microscope 162a of the alignment optical system 160 is set to LSA, and the photographic area that can be photographed by the alignment optical "16Q _(10) 162b is set to 嶋. The center of the photographic area is LSA-O, The center of the photographing region RSA is RSA_〇. In the measurement exposure region of the nth item, the center LPS of the LSA is photographed in the coordinate system of the exposure substrate 156e by measuring the middle myocardial ridge of the exposure region as the origin. In the χ direction position (χ coordinate), the center ER_〇 of the exposure area is measured as the origin in the coordinate system fixed to the exposure substrate 156c, and the center LSA_〇 of the photographic area LSA is in the Y direction (Y The coordinate is YCCD-Bu-the same as the origin ER_〇 of the exposure area is measured, and is fixed in the coordinate system of the exposure substrate 156e, and the center RS A-0 of the photographic area is in the X-direction position (χ) The coordinates are XCCD-2. Further, the R-Ο of the exposure area is measured as the origin, and is fixed in the coordinate system of the exposure substrate We, and the center RSA_〇 of the photographing area RSA is in the γ direction position (γ coordinate). It is YCCD-2. By this, to measure exposure The center of the area ER_〇 is used as the origin, in the solid; t in the seat (4) of the exposed substrate core, the coordinate center of the photographing area LSA 'LSA-〇 coordinate system Xccd-uccd-i, the center of the photographing area RSA RSA·0 Coordinate system (XCCD-2, YCCD-2). Further: 88 200907596 As described above, the measurement position of the alignment optical system 160 is such that the reference mark RM1 can be photographed by the microscope 162a and the reference mark can be photographed by the microscope i62b. RM2 is the positioning position of the alignment optical system 16A, and the measurement position is continuously at a certain position. Therefore, the coordinates of the center LSA-0 of the photographing area lsa (XCCD_1YCCD-2) and the center RSA of the photographing area rsa The coordinates of -O (XCCD_2, YCCD-2), as long as the measurement position of the alignment optical system 160 is fixed, that is, the coordinate with consistency definition. ', and its coordinates (xccd-Uccd-2) and coordinates ( XCCD—2, YCCD_2), the analog sample is converted into units of actual length such as millimeters. Further, the position of the reference mark RM1 (Xmark—(10)) and the reference mark RM2 (Xmark_2(n), Ymark_2(n)) are as described above. Take the image of pixels (pixels) on the image as a unit The position 'however' in the coordinate system is converted into an actual nutrient unit such as a millimeter, such as the position of the reference mark RM1 and the position of the reference mark Wei2. For example, the table 177 can be set with high precision as a reference. Scale (not shown), by aligning: Learn the system to measure the scale, you can get the relationship between the number of elements and the actual long-term production. Using this relationship, you can change from the coordinates of the pixel to the actual length; The coordinates of the coordinates. &lt; Specifically, the χ coordinate fixed to the coordinate system of the photographing area 4 LSA is the Xmark-1 (n) of the reference mark in the X direction, with the center lsa_〇 of the photographing area LSA as the origin. In addition, the center LSA-0 of the photographing area ^ is used as the origin, and is fixed to the photographing area [the Y coordinate in the seat of the skull, and the reference mark is paid by the Y mark-1 (η) 〇89 200907596 in the γ # direction, The X coordinate of the coordinate system fixed to the photographing area RSA is the center point RSA-O of the photographing area RSA, and is the position Xmark_2(n) of the reference mark RM2 in the X direction. Further, the Y coordinate of the coordinate system of the photographing region RSA is fixed to the center of the photographing region RSA as the origin, and is at the position Ymark_2(n) of the reference mark RM2 in the Y direction. As defined above, when the position (Xmark_l (n), Ymark_l (η)) ' of the reference mark RM1 is converted from the coordinate system fixed to the image to the coordinate system fixed to the fixed plates 178a and 178b, the conversion type can be For: 'XM-l(n), YM-1 (ton

Xstg ⑻ + XCCD一1 + Xmark_l ⑻、 Ystg(n) + YCCD_1 + Ymark_l(n)y …(1) 又,在將基準標記 RM2 的位置 (Xmark_2(n),Ymark_2(n)),從固定於影像的座標系轉換成 固定在定盤178a與178b之座標系時,其轉換式可為: ’XM一2 ⑻) f 、YM_2 ⑻ J \Xstg (8) + XCCD-1 + Xmark_l (8), Ystg(n) + YCCD_1 + Ymark_l(n)y (1) Further, the position of the reference mark RM2 (Xmark_2(n), Ymark_2(n)) is fixed from When the coordinate of the image is converted into a coordinate system fixed to the fixed plates 178a and 178b, the conversion type can be: 'XM-2 (8)) f, YM_2 (8) J \

Xstg(n) + XCCD_2 + Xmark_2(n)、 Ystg ⑻ + YCCD—2 + Ymark—2(nL …(2) 再者,本實施形態中的整片方式,係使用基準標記RM1 與基準標記RM2的中點位置。此基準標記RM1與基準標 記RM2的中點位置,可由下式算出: &quot;XM ⑻、 '[XM—1 (η) + XM一2(n)]/2、 、[YM_1 ⑻+ YM—2 ⑻]/2, …(3) 在上述式(1)〜式(3)所使用的變數,同樣是用以選定上 90 200907596 述測定曝光區域時之變數’在本實施形態中的n,係卜4 中的任一整數。 藉著上述式⑴〜式(3)的使用,可將基準標記麵與基 準標記RM2的中點位置,從固定於影像之影像座標系轉: 成固定於定盤178a與178b之座標系。 上述座標轉換之處理,係在圖9的處理順序的步驟s i 8 中實施。 又,本實施形態之整片方式,係使用上述基準標記RMl 的設計位置、與基準標記rM2的設計位置之中點位置。基 準標記RM1的設計位置、與基準標記RM2的設計位置之 中點’能以下式算出: XM—D ⑻、 ’Xmark_desl ⑼ + Xmark_des2(n)]/2、 (吨 ^Ymar^des^n) + Ymark_des2(n)]/2y ...(4) 〈6個參數Sx、Sy、0、ω、Οχ、及Oy的算出〉 在經過上述座標轉換後,可使用式(3)所得之 (XM(n),YM(n))、及式(4)所得之(XM—D(n),YMjD(n)),利 用最小平方法的2個下述鼻式’算出6個參數Sx、Sy、0、 ω、Ox、及 〇y : 91 …(5) 200907596 ZXM_D(n) Συμ—d ⑻ Σι 、 r 1 + Sx 、 X -Sy χ (θ + τπ) ) 、0χ &gt; ΣΧΜ_ϋ(η) ZYM_D(n) Σι '1 + Sx、 X SyxG ,Oy, (6) Σ XM—D ⑻2 Σ XNUXn) X YM—D ⑻ Σ XM—D⑻ x YM—D⑻ Σ ΥΙ^η)2 ΣΧΜ—D ⑻ ΣΥΜ一D(n) &quot;ΣΧΜ ⑻ xXM_D ⑻、 =ΣΥΜ ⑻ xYM_D@) ΣΥΜ(η) 及 Σ XM—D(n)2 SxM_D(n)xYM_D(n) YM一D(n) ΣΥΜ D⑻2 Σ XM_D(n) Σ YM_D(n) lYN^n)xXMJXn)、 =ΣΥΜ ⑻ xYM—D ⑻ ΣΥΜ(η) 在上述式(5)及(6)所使用的變數η,同樣是用以表示上 述測定曝光區域之變數,在本實施形態中的η係丨〜4中的 任一整數。Xstg(n) + XCCD_2 + Xmark_2(n), Ystg (8) + YCCD-2 + Ymark-2 (nL (2) Further, in the entire embodiment of the present embodiment, the reference mark RM1 and the reference mark RM2 are used. Midpoint position. The midpoint position of this reference mark RM1 and the reference mark RM2 can be calculated by: &quot;XM (8), '[XM-1 (η) + XM-2(n)]/2, [YM_1 (8) + YM—2 (8)]/2, (3) The variables used in the above equations (1) to (3) are also used to select the variable when measuring the exposure region in the above 90 200907596. n, any integer in the formula 4. By using the above formulas (1) to (3), the midpoint position of the reference mark surface and the reference mark RM2 can be rotated from the image coordinate system fixed to the image: The coordinate system fixed to the fixed plates 178a and 178b. The above-described coordinate conversion processing is carried out in the step si8 of the processing sequence of Fig. 9. Further, in the entire embodiment of the present embodiment, the design position of the reference mark RM1 is used. And the position of the design position of the reference mark rM2. The design position of the reference mark RM1 and the setting of the reference mark RM2 The midpoint of the position can be calculated as follows: XM-D (8), 'Xmark_desl (9) + Xmark_des2(n)]/2, (ton^Ymar^des^n) + Ymark_des2(n)]/2y ...(4) <Calculation of Six Parameters Sx, Sy, 0, ω, Οχ, and Oy> After the above coordinate conversion, (XM(n), YM(n)), and (4) obtained by the equation (3) can be used. (XM-D(n), YMjD(n)), using the following two formulas of the least squares method to calculate six parameters Sx, Sy, 0, ω, Ox, and 〇y: 91 ... ( 5) 200907596 ZXM_D(n) Συμ—d (8) Σι , r 1 + Sx , X -Sy χ (θ + τπ) ), 0χ &gt; ΣΧΜ_ϋ(η) ZYM_D(n) Σι '1 + Sx, X SyxG , Oy , (6) Σ XM—D (8)2 Σ XNUXn) X YM—D (8) Σ XM—D(8) x YM—D(8) Σ ΥΙ^η)2 ΣΧΜ—D (8) ΣΥΜ一D(n) &quot;ΣΧΜ (8) xXM_D (8), =ΣΥΜ (8) xYM_D@) ΣΥΜ(η) and Σ XM—D(n)2 SxM_D(n)xYM_D(n) YM_D(n) ΣΥΜ D(8)2 Σ XM_D(n) Σ YM_D(n) lYN^n)xXMJXn), =ΣΥΜ (8) xYM—D (8) ΣΥΜ(η) The variable η used in the above formulas (5) and (6) is also used to indicate the above-described variable of the measured exposure region. Aspect of system administration η ~ 4 in Shu any integer.

在式(5)及式(6)中,Sx表示χ方向的伸縮程度,如圖 1 1 Ο)所不般’曝光區域朝±χ方向之伸縮變形係以此程度 來表不。該Sx與上迷X方向的倍率相對應。Sy表示Υ方 向的伸縮程度’如圖11(b)所示般,曝光區域朝±Y方向之 伸縮變形係以此程度來表示。該與上述γ方向的倍率 相對應。6»表示旋轉的程度,如圖n(c)所示般,曝光區域 之紋轉係以此程度來表示。ω表示正交度,如圖丨1(d)所 不般’曝光區域之剪力變形係以此程度來表示。〇x表示X 92 200907596 方向的位移程度,如圖 之位移係以此程度來矣… 先&amp;域朝±x方向 此枉度來表不。〇y係γ方向 圖U(f)所示般,曝朵的位移程度,如 表示。 域朝坊方向之位移係以此程度來 所干9之步驟819的處理,係使用式(5)及式(6) 及0”取方法’算出6個參數Sx、sy、θ、ω、0χ、 Γ =其等6個參數8χ,、θ、&quot;χ、及0y的取 二二移動用載台172…向移動用載台…的定 月匕以一次式之近似來實施校 a加奋批如 亦即,使用以該 6個參數進行之座標校正^ ^ 動用載台m…向移:用二即可㈣X方向移 万向移動用載台174之定位位置: ’ Sx ~Sxx(e + ®))pCM_D_)「〇x ,一 Λ - + 、Syx0In the equations (5) and (6), Sx indicates the degree of expansion and contraction in the x-direction, as shown in Fig. 1 (1), and the expansion and contraction of the exposure region in the ±χ direction is expressed by this degree. This Sx corresponds to the magnification in the X direction. Sy indicates the degree of expansion and contraction of the Υ direction. As shown in Fig. 11 (b), the expansion and contraction deformation of the exposure region in the ±Y direction is expressed by this degree. This corresponds to the magnification in the above γ direction. 6» indicates the degree of rotation, as shown in Figure n(c), and the pattern of the exposure area is expressed by this degree. ω represents the degree of orthogonality, as shown in Fig. 1(d). The shear deformation of the exposed region is expressed by this degree. 〇x indicates the degree of displacement in the direction of X 92 200907596. The displacement of the figure is based on this degree... The first &amp; field is toward the ±x direction. 〇 y γ direction As shown in Fig. U(f), the degree of displacement of the exposure is as indicated. The displacement in the direction of the direction of the field is based on the processing of step 819 of this degree. The equations (5) and (6) and the method of 0" are used to calculate six parameters Sx, sy, θ, ω, 0χ. Γ 其 其 其 θ θ θ θ θ θ θ θ θ θ θ θ 取 取 取 取 取 取 取 取 取 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向For the batch, use the coordinate correction with the six parameters. ^ Use the stage m... to move: Use the two (4) X-direction shifting position of the universal moving stage 174: ' Sx ~Sxx(e + ®))pCM_D_) "〇x , one Λ - + , Syx0

Sy + = XM_le(m)YMJXmJ〔OyJIvMje㈣ (7) 在式⑺中的《 m,係表示曝光基板156〇的i2個曝 先區域ER1〜ER12之變數。此處之m=1,表示曝光區域為 紙…2表示曝光區域為動㈣表示曝光區域為则; —表示曝光區域為聊。又,…表示曝光區域為刪; ㈣表示曝光區域為跋7、= 7表示曝光區域為㈣㈣ 表不曝光區域為ER5 ; m=9表示曝光區域為咖。又,爪… 表示曝光區域為ER10;則1表示曝光區域為ER11;m=12 表示曝光區域為則。再者,在以下内容,欲表示其中任 -者之曝光區域時’係以第n項之曝光區域來稱之。此處 93 200907596 之m係1〜12中的任一整數。 上述式(7)的xM_D(m),係座標轉換前的χ座標,乃 是基準標記RM1與基準標記rm2之設計位置的中點之χ 方向位置。又’ YM_D(m),係座標轉換前的γ座標,乃是 基準標記RM1與基準標記RM2之設計位置的中點之γ方 向位置。 經使用上述式(7)算出XM—le(m)及YM_le(m),能以丄 次式來校正線性成分的誤差(以下稱線性誤差),將χ方向 移動用載台172與γ方向移動用載台174移動至 (XM_le(m),YM—le(m)),則能將第m項之曝光區域定位在 適當的位置。再者,在並未產生誤差之情形時, XMje(m)_XM_D(;mR γΜ—le(m)=YM—D(m),x 方向移動 用載台172貞Y方向移動用載台174,被定位在原本預定 之設計位置。 〈圖案之轉印〉 以下藉由該整片方式,以圖9之流程圖,來說明將形 成於標線Μ 142的圖案轉印分別至圖8所示曝光基板㈣ 之曝光區域ER1〜ER12時之轉印順序。 百先’使用式(7)算出XM—le⑴與YMje(i)(步驟s2〇)。 其次’驅動χ方向移動用载台172及丫方向移動用載台a# 以使工作台177移動,而定位在由步驟S2〇所算出的 ™Je⑴與顶Je⑴(步驟如)。藉由此項處理,可㈣ 1項之曝光區域定位在校正後的位置。 接著 由光源110發出曝光用光 而將形成於標線片 94 200907596 ⑷之圖案轉印至曝光基板156。的 ER1(步驟S22)。判斷出异曝先&amp;域 已全部實施圖案轉 at P(步騾S23),當判別處理未完全時, 則回到上述的步驟S2〇,俾推&gt; 丁 ^ , 處理。 俾進仃下一曝光區域(步驟S24)之 當判別的結果表明,12個曝光區域ε 施圖案轉印,則結束整片方式的處理。 々已實 如所示’在整片方式中,風 置之移動動作、以及如心 先0朝退離位 . 朝測疋位置之移動動作,無須在複數 轉區域逐-進行,因此,在將形成於標線片&quot; 案轉印至曝光基板l56c時,其處理時間可望縮短。 又’在整片方式巾,W、、# | m 储 減〉'用以決定基準標記的位置 二中=縮短檢測所需時間。又,在上述圖8所 '糸測疋4個曝光區域的基準標記的位置,作並 不侷限於此,亦能撰宁浐,v 仁並 的位置。藉此;τ 1 為多之曝光區域的基準標記 A 172及°猎平均化效果’提高X方向移動用載 = 移動用載台174之^位位置的校正精度。 纪的位詈文片Λ式中’係選定曝光基板的四隅附近之基準標 ;=’猎此’旋轉的參數θ以及X方向的伸縮參數Sx, i::縮參數sy’不容易受到形成基準標記時所產 生的線性誤差的影響。 才尸坏座 ^者’即使因為曝光基板在製造時發生損傷等原因, 而存有難以檢满丨ψ+# % 他基準標記的位署逢此種情形,亦能使用其 、置之檢测結果來推測其位置,而能穩定的 95 200907596 將形成於標線片142之圖案實施轉印。 :者’在上述實施形態令,曝光 —ER2,3H㈣―er7H移動係以謝 —ER1hER2之順序來進行。如所示係持 移動至相鄰的曝光區域,可因而縮短X方向移先?域 及Y方向移動用載台174的移 载° 172 所需時間。 此*縮紐整體之處理 〈〈使用基準基板之誤差校正〉〉 述正片方式,對於形成於曝光基板的基 置因曝光基板本身的變护 丰払记之位 良好效果… 由原本位置發生位移者,有其 ”72、Y方;^ 貝誤差’係由X方向移動用載 σ 172 丫方向移動用载台174、或7太士你去 的構造而產生者,有可妒僅一 °夕用载台176 b僅憑藉上述整片方式並不能接离 充份精度,而使圖案無法轉 ° 田A唯# + 丨王曝尤基板。因此’遂使 :基準基板來對x方向移動用載W方向移二 台174的定位實施校正。 杪勖用載 〈基準基板158a) 圖12(a)’係基準基板 1 A進其姑极1…的概略别視圖’係形成於 土準基&quot;的1個區域之基準標記的放大圖。 在圖12之不例中,外側的長方形,係表示基 的外形輪廓之線段。又,名土板158a 4個與縱向3個合二Γ 方形之内側,有橫向 。彳為12個之正方形(ER1〜ERI2),其各自 表示1個區域。®本 甘 &gt;-佐 者基準基板158a並非用來轉印圖幸 基板,在《叫中用以表示區域的正方形虛線Εβ,乃、是 96 200907596 假想性的線段,其作用係為了與曝光基板i56(l56a、i56b' 1 56c)之曝光區域的位置及大小有明確對應關係。再者,在 圖12(a)中,與曝光基板156(156&amp;、15訃、156勹的曝光區 域ER1〜ER12相對應之區域,係賦與同一表示符號。 基準基板158a’與上述曝光基板156具有大致相同的 大小。基準基板1 58a係由玻璃基板所構成。 如圖12(b)所示般,在12個區域ER1〜ER12中,各以 鉻來形成複數個基準標記。纟圖12(b)中,其等基準標記 係以白球來表示。各個基準標記,係以誤差在丨微米以下 之方式而形成於基準基板158a。亦即,基準標記被形成於 基準基板158a時,係位在以預定位置作為基準之i微米以 内的範圍。 圖12(b)所示之複數個基準標記’無須決定其全部的位 置,只要選擇其中的數個來使用即可。 圖13(a)所示者,係對於12個區域ER1〜eri2的每一 者,各由複數個基準標記令選擇18個基準標記來使用。 再者在本實施形態中,如圖13(a)所示般,係以黑球的2 個基準標記成為一對,將其等視為(個基準標記對,又將 9個基準標記對RRM1〜RRM9視為單一之基 理。該9個基準標記對RRM1〜RRM9,係位在12個區域 ER1〜ER12各自之中心、四隅的附近、及4個邊的中點附 近。 圖13(b)’係表示基準基板158a之所有基準標記對。 在基準基板158a中有12個區域ER1〜ER12,在12個區域 97 200907596 ER1〜ER12各有9個基準標記對。因此,在基準基板 的整體有108個基準標記。再者,在圖13(b)中,對於9 個基準標記對係各以i個黑色四角形來表示。 以下,將基準基板158&amp;所用之基準標記對之設計位置 先予儲存。具體而言,係將基準標記對之左側的基準標記 的設計位置(x_k—des—L(k),Ymark_des_L(k))、及右側的 基準標記之設計位置(Xmark—des_R(k),Ymark_des—R(k))先 予儲存。再者,k=1〜1〇8,如後述,k係用以選定基準標呓 對之變數。根據該基準標記對之設計位置來移動χ方向移 動用載台172與Υ方向移動用載台174 系統⑽縣準標記進賴f彡。 卩了由料先學 〈基準基板1 5 8 a的某攘濟0 i a , 幻巷半I圮對的位置檢測〉 7…係用以決定基準基板伽的基準標記對之位 二:程圖。在圖14的流程圖所示的變數k,係用以從圖 用=的了個基準標記對中選出特定基準標記對時所 基準^對仙準基板158&amp;的區域ER1〜ERU中,所有的 對_〜_共有1〇8個,變數“ 的數值。例如,若k=1,表 r 若表示區域二=幻的基準標記對RRM1; 〕的基準標記對RRM5。 起初,係使對準光學系統16〇 位在測定位置(步驟Μ”。 : :置而移動定 置或測定位置,係與逐片 先學系·统BO的退離位 係在對準光學“Μ&quot; A相同。退離位置之較佳者, +先子糸統l60的啟動原點。又 在成確保可由顧微鏡來攝影者 &quot;彳置-要位 亦即,只要該位置可 98 200907596 由顯微鏡162a來對基準標記對中位在左侧之基準標記進行 攝影,並可由顯微鏡162b來對基準標記對中位在右側之 基準標§己進行攝影即可。 其次’驅動基板裝載台17&quot;又方向移動用載台172 2方向移動用載台174而使工作台177移動,以將被裝 作台177之基準基板158a的第1項基準標記對定位 在可攝影位置(步驟S32)。 接著,由對準光學系統160的顯微鏡i62a對於基準$ 記對中位在左側的基準標記進行攝影,由顯微鏡i62&quot; 於基準標記對中位在右側的基準標記進行攝影(步驟叫。 —然後,將攝得的影像儲存在影像儲存機構(未圖示), 精由影像處理機構(未圖示)來進行影像處理,取出基準標 =對:位在左側與右側的基準標記之像,以算出基轉: 位在左側的基準標記的位置 (Xmark—L(k),Ymark_L(k))、及位在右側的基準標記的位置 H(k)’Ymai&gt;k—R〇〇) ’然後储存在未圖示之儲存 (步驟S34)。 、此時之基準標記對的位置,係影像上的位置,例如, 以晝素(像素)等作為單位之影像座標系的位置即可,無須 ,用毫米等-般所用的長度單位來定位。經上述方式而: 侍之基準標記對的位置’係X方向的位置(X座桿)與Y方 向的位置(Y座標)。 /、 藉由上述步驟S32〜S34的實施,可決定區域ER1〜ER12 中所有基準標記對RRM1〜RRM9的位置,然後儲存該位置。 99 200907596 其次,判斷是否p啦_ π + 找記斜RRM1 $已對所有區域ER卜ER12的所有基準 :、 〜RRM9皆已決定其位置(步驟S35)。若判別 為檢測未完全時,貞彳 一 則口到上述步驟S32的處理,以對於下 土準糕S己對進行處理(步驟S36)。 FRkt右在步驟S35的判別結果表明,已對12個區域 Κ12中所有基準標記對RRM1〜RRM9皆決定其位 置此時冑對準光學系統16()_開測定位置而移動定位 至退離位置(步驟S 3 7)。Sy + = XM_le (m) YMJXmJ [OyJIvMje (4) (7) The m in the formula (7) indicates the variables of the i2 exposure areas ER1 to ER12 of the exposure substrate 156A. Here, m=1, indicating that the exposure area is paper...2 indicates that the exposure area is moving (four) indicates that the exposure area is YES; and that the exposure area is Talk. Also, ... indicates that the exposure area is deleted; (4) indicates that the exposure area is 跋7, = 7 indicates that the exposure area is (4) (4) the exposure area is ER5; m=9 indicates that the exposure area is café. Further, the claw ... indicates that the exposure area is ER10; 1 indicates that the exposure area is ER11; and m = 12 indicates that the exposure area is YES. Furthermore, in the following, when the exposure area of any of them is to be expressed, it is referred to as the exposure area of the nth item. Here, 93 200907596 m is any integer from 1 to 12. The xM_D(m) of the above formula (7) is the χ coordinate before the coordinate conversion, and is the 方向 direction position of the midpoint of the design position of the reference mark RM1 and the reference mark rm2. Further, YM_D(m) is the γ coordinate before the coordinate conversion, and is the γ direction position of the midpoint of the design position of the reference mark RM1 and the reference mark RM2. By calculating XM_le(m) and YM_le(m) using the above equation (7), the error of the linear component (hereinafter referred to as linearity error) can be corrected by the 丄-order equation, and the y-direction moving stage 172 and the γ direction can be moved. By moving the stage 174 to (XM_le(m), YM-le(m)), the exposure area of the mth item can be positioned at an appropriate position. Further, when there is no error, XMje(m)_XM_D(;mR γΜ−le(m)=YM−D(m), the x-direction moving stage 172贞Y-direction moving stage 174, It is positioned at the originally designed design position. <Transfer of pattern> Hereinafter, the pattern transfer formed on the reticle 142 is separately illustrated by the flow chart of Fig. 9 by the whole film method to the exposure shown in Fig. 8. The transfer order of the exposure areas ER1 to ER12 of the substrate (4). By using the formula (7), XM-le(1) and YMje(i) are calculated (step s2〇). Next, the stage 172 for moving the χ direction and the 丫 direction are driven. The moving stage a# moves the stage 177 to be positioned at the TMJe(1) and the top Je(1) calculated by the step S2(step). By this processing, the exposure area of the (4) item can be positioned after the correction. Then, the light emitted from the light source 110 is used to transfer the pattern formed on the reticle 94 200907596 (4) to the ER1 of the exposure substrate 156 (step S22). It is judged that the different exposure & P (step S23), when the discrimination process is not complete, then return to the above step S2, 俾 push &gt; When the result of the discrimination is shown in the next exposure area (step S24), the 12 exposure areas ε are patterned and transferred, and the processing of the whole mode is ended. 々 has been as shown in the whole method In the middle, the movement action of the wind, and the movement of the heart to the first position, the movement to the position of the test, does not need to be carried out in the complex transfer area, therefore, will be formed in the reticle &quot; When the substrate l56c is exposed, the processing time is expected to be shortened. Further, 'in the whole film type, W, , # | m storage and subtraction>' is used to determine the position of the reference mark 2 = shorten the time required for detection. The position of the fiducial mark of the four exposure areas in Fig. 8 is not limited thereto, and the position of the nucleus is also embossed. Thus, τ 1 is a reference mark A 172 of the exposure area. And the hunting average effect 'improves the X-direction moving load = the correction accuracy of the position of the moving stage 174. The position of the film is selected as the reference mark near the four sides of the selected exposure substrate; Hunt this 'rotation' parameter θ and the X-direction expansion parameter Sx, i:: The number sy' is not easily affected by the linearity error generated when the fiducial mark is formed. It is difficult to check even if the exposed substrate is damaged during manufacturing, etc. #+# % In this case, the position of the mark can also be used to estimate the position of the test result, and the stable 95 200907596 will be formed on the pattern of the reticle 142 for transfer. Order, exposure - ER2, 3H (four) - er7H mobile system in the order of Xie - ER1hER2. If you move to the adjacent exposure area as shown, you can shorten the X direction first. The time required for the transfer of the stage 174 in the Y direction and the Y direction is 172. The processing of the whole of the stencils <The error correction using the reference substrate> The positive film method has a good effect on the position of the base substrate formed on the exposed substrate due to the exposure of the exposed substrate itself... The displacement occurs from the original position. There is a "72, Y square; ^ Bay error" is generated by the movement of the load σ 172 in the X direction, the stage 174, or the structure of the 7th, and you can only use it for one degree. The stage 176 b can not be separated from the charging accuracy by the above-mentioned whole piece method, and the pattern cannot be rotated. The field A + only # + 丨王 exposes the substrate. Therefore, the reference substrate is moved in the x direction. Correction is performed by positioning the two shifting units 174. The reference substrate 158a is shown in Fig. 12(a)' is a schematic view of the reference substrate 1A entering its abundance 1... An enlarged view of the reference mark of one area. In the example of Fig. 12, the outer rectangle is a line segment representing the outline of the base. Further, the inner plate 158a is four and the longitudinal direction is three squares, There is a horizontal direction. 彳 is a square of 12 (ER1 ~ ERI2), their respective tables One area. The ® 甘甘&gt;- 佐 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 In order to clearly correspond to the position and size of the exposure region of the exposure substrate i56 (l56a, i56b' 1 56c), in FIG. 12(a), the exposure substrate 156 (156 &amp; 15 讣, 156 勹) The regions corresponding to the exposure regions ER1 to ER12 are assigned the same reference numerals. The reference substrate 158a' has substantially the same size as the exposure substrate 156. The reference substrate 1 58a is composed of a glass substrate. In the same manner, in the 12 regions ER1 to ER12, a plurality of reference marks are formed by chrome. In Fig. 12(b), the reference marks are indicated by white balls. Each reference mark has an error of 丨 micron. The reference substrate 158a is formed in the following manner. That is, when the reference mark is formed on the reference substrate 158a, the reference mark is within a range of i micrometers based on a predetermined position. The plurality of reference marks shown in Fig. 12(b) 'No need to decide its full The position of each of them can be selected by using a plurality of them. As shown in Fig. 13 (a), for each of the twelve regions ER1 to eri2, 18 reference marks are selected by a plurality of reference marks to be used. In the present embodiment, as shown in Fig. 13(a), the two reference marks of the black ball are paired, and the reference marks are regarded as (one reference mark pair, and nine reference mark pairs are added. RRM1 to RRM9 are regarded as a single basis. The nine reference mark pairs RRM1 to RRM9 are located near the center of each of the 12 areas ER1 to ER12, the vicinity of the four turns, and the midpoint of the four sides. Fig. 13 (b)' shows all the reference mark pairs of the reference substrate 158a. There are 12 areas ER1 to ER12 in the reference substrate 158a, and there are nine reference mark pairs in each of the 12 areas 97 200907596 ER1 to ER12. Therefore, there are 108 reference marks on the entire reference substrate. Furthermore, in Fig. 13(b), the nine reference mark pairs are each represented by i black squares. Hereinafter, the design position of the reference mark used for the reference substrate 158 &amp; is stored first. Specifically, the design position (x_k_des_L(k), Ymark_des_L(k)) of the reference mark on the left side of the reference mark pair, and the design position of the reference mark on the right side (Xmark_des_R(k), Ymark_des —R(k)) is stored first. Further, k = 1 to 1 〇 8, and as will be described later, k is used to select a variable of the reference standard pair. The χ-direction moving stage 172 and the Υ-direction moving stage 174 system (10) are moved in accordance with the design position of the reference mark.卩 由 由 〈 〈 〈 〈 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准 基准The variable k shown in the flowchart of FIG. 14 is used to select a specific reference mark pair from among the reference mark pairs of the figure = the reference area ER1 to ERU of the sensible substrate 158 &amp; For _~_ there are 1〇8, the value of the variable “. For example, if k=1, the table r represents the region 2=phan of the reference mark pair RRM1;] the reference mark pair RRM5. At first, the alignment optics is made. The system 16 is clamped at the measurement position (step Μ". : : Set and move the fixed or measured position, and the retreat position of the system is the same as the alignment optical "Μ". The better one, + the starting point of the first son system l60. In addition to ensuring that the photographer can be photographed by Gu Microscope, the position is also as long as the position can be 98 200907596 by the microscope 162a to the reference mark The reference mark on the left side of the median is photographed, and the reference mark can be photographed by the microscope 162b on the right side of the reference mark. Next, the drive substrate loading table 17&quot; the direction shifting stage 172 Moving the stage 174 in the 2 direction to move the table 177 to The first reference mark pair of the reference substrate 158a of the mounting table 177 is positioned at the photographable position (step S32). Next, the reference mark of the center on the left side is photographed by the microscope i62a of the alignment optical system 160 for the reference $ By the microscope i62&quot; the reference mark is used to photograph the reference mark on the right side of the reference mark (step call. - Then, the captured image is stored in the image storage mechanism (not shown), and the image processing mechanism (not shown) To perform image processing, take out the reference mark = pair: the image of the reference mark on the left and right sides to calculate the base rotation: the position of the reference mark on the left side (Xmark_L(k), Ymark_L(k)), And the position of the reference mark on the right side is H(k) 'Ymai> k-R〇〇)' and then stored in a storage not shown (step S34). The position of the reference mark pair at this time is on the image. The position, for example, the position of the image coordinate system in units of pixels (pixels) or the like may be used, and is not required to be positioned in units of lengths such as millimeters. In the above manner: the position of the reference mark pair of the waiter X direction Position (X seat) and position in the Y direction (Y coordinate) /, By the implementation of the above steps S32 to S34, the positions of all the reference marks RRM1 to RRM9 in the areas ER1 to ER12 can be determined, and then the position can be stored. 99 200907596 Secondly, it is judged whether or not p _ π + finds the oblique RRM1 $ has all the benchmarks for all regions ER ER12:, ~RRM9 has determined its position (step S35). If it is judged that the detection is not complete, 贞彳At the same time, the process of the above step S32 is performed to process the pair of grounds (step S36). The result of the discrimination of FRkt right in step S35 indicates that all of the reference mark pairs RRM1 to RRM9 in the 12 regions Κ12 have determined their positions. At this time, the alignment optical system 16()_opens the measurement position and moves to the retreat position ( Step S 3 7).

再者,在上述的示例中,較佳係按照區域eri— EM 〜ER4—ER8~&gt;ER7.·—ER5〜ER9—ER10. · —ER12 的 順序,來決定基準標記對的位置。藉此,可縮短χ方向移 動用載台m#Y方向移動用載台m的移動距離,進一 步縮短處理所需時間。 〈座標轉換〉 接著,使用與上述式(1)〜式(3)相同的下式(11)〜〇3), 以從固定於影像之座標系,轉換成固定於定盤1783與17扑 之座標系。 再者,如上述,基準標記對中位在左側的基準標記的 位置(Xmark_L(k),Ymark_L(k))、及位在右侧的基準標記的 位置(Xmark—R(k),Ymark_R(k)),係影像上以畫素(像素)等 作為單位之影像座標系中的位置,但在以下係將其等位置 轉換成以毫米等實際長度為其單位。 100 200907596 XM—L(k)、 YM_L(kX : 'Xstg(k) + XCCD—L + Xmark_L(k)、 ^Ystg(k) + YCCDL + Ymark_L(k)/ …(11) XM_R(k)、 YM—R(k), _ f Xstg(k) + XCCD_R + Xmark_R(k)' &quot;[Ystg(k) + YCCD_R + Ymark_R(k)y …(12) XMJVl(k)〕 YM_M(k) J _ &quot;[XM_L(k) + XM_R(k)]/2&quot;| ~ JYM__L(k) + YM_R(k)]/2J …(13) 在式(11)及式(12)中的Xstg(k)及Ystg(k),與式(1)及 式(2)相同,係用以將X方向移動用載台172及γ方向移 動用載台174分別定位在12個區域ER1〜ER12所預先決定 之量。 式(11)中的 XCCD_L 與 YCCD—L,與式(1)的 XCCD 1 及YCCD_1相同’係顯微鏡1 62a的攝影區域之中心位置。 該XCCD—L,係以12個區域ER1〜ER12各自的中心作為原 點’固定在基準基板1 58a之座標系中之X方向位置(χ座 標)’ YCCD_L,則是同一座標系中的γ方向位置(γ座標)。 式(12)中的YCCD_R,與式⑴的XCCD_2 及YCCD—2相同’係顯微鏡i62b的攝影區域之中心位置。 該XCCD_R ’係以12個區域ER1〜ER12各自的中心作為原 點,固定在基準基板158a之座標系中之χ方向位置(χ座 標)’ YCCD—R,則是同一座標系中的γ方向位置(γ座標)。 藉由上述式(13),可算出基準標記對中位在左側之基 準標記與右側的基準標記之中點位置 (XM_M(k),YM_M(k))。在以下,係以該中點的位置作為基 準標記對的位置。 101 200907596 又,在本發明之實施形態中,在使用基準基板1 58a時, 係使用上述基準標記對中位在左侧之基準標記與右側之基 準標記的中點位置。左側之基準標記與右侧之基準標記的 中點,能以下式而算出:Further, in the above-described example, it is preferable to determine the position of the reference mark pair in the order of the areas eri - EM - ER4 - ER8 - &gt; ER7. - ER5 - ER9 - ER10. - ER12. As a result, the moving distance of the moving stage m#Y direction moving stage m can be shortened, and the time required for processing can be further shortened. <Coordinate conversion> Next, the following formulas (11) to 〇3) similar to the above formulas (1) to (3) are used to convert from the coordinate system fixed to the image to be fixed to the fixed plates 1783 and 17 Coordinate system. Furthermore, as described above, the position of the reference mark on the left side of the reference mark (Xmark_L(k), Ymark_L(k)), and the position of the reference mark on the right side (Xmark_R(k), Ymark_R( k)) is a position in the image coordinate system in which pixels (pixels) or the like are used as the unit, but in the following, the positions are converted into units of actual length such as millimeters. 100 200907596 XM—L(k), YM_L(kX : 'Xstg(k) + XCCD—L + Xmark_L(k), ^Ystg(k) + YCCDL + Ymark_L(k)/ ...(11) XM_R(k), YM—R(k), _ f Xstg(k) + XCCD_R + Xmark_R(k)' &quot;[Ystg(k) + YCCD_R + Ymark_R(k)y ...(12) XMJVl(k)] YM_M(k) J _ &quot;[XM_L(k) + XM_R(k)]/2&quot;| ~ JYM__L(k) + YM_R(k)]/2J (13) Xstg(k) in equations (11) and (12) And Ystg(k) are the same as equations (1) and (2), and are used to position the X-direction moving stage 172 and the γ-direction moving stage 174 in 12 areas ER1 to ER12, respectively. The XCCD_L and YCCD-L in the equation (11) are the same as the XCCD 1 and YCCD_1 of the equation (1). The center position of the imaging region of the microscope 1 62a. The XCCD-L is divided into 12 regions ER1~ The center of each of the ER12 as the origin 'in the X-direction position (χ coordinate) 'YCCD_L fixed in the coordinate system of the reference substrate 1 58a is the γ-direction position (γ-coordinate) in the same coordinate system. YCCD_R is the same as XCCD_2 and YCCD-2 of equation (1). It is the center position of the imaging area of microscope i62b. The XCCD_R ' The center of each of the 12 regions ER1 to ER12 is used as an origin, and the position (χ coordinate) 'YCCD-R in the coordinate direction fixed in the coordinate system of the reference substrate 158a is the γ-direction position (γ-coordinate) in the same coordinate system. According to the above formula (13), the point position (XM_M(k), YM_M(k)) of the reference mark on the left side of the reference mark pair and the reference mark on the right side can be calculated. In the following, the midpoint is used. The position is the position of the reference mark pair. 101 200907596 In the embodiment of the present invention, when the reference substrate 158a is used, the reference mark pair is used in the middle reference mark on the left side and the reference mark on the right side. The position of the point. The reference mark on the left side and the midpoint of the reference mark on the right side can be calculated as follows:

&lt;XRM_D(k)、 / ,YRM_D(k)y V&lt;XRM_D(k), / , YRM_D(k)y V

[Xmark-des—L(k) + Xmark-des_R(k)]/2) [Ymark一des—L(k) + Ymark—des—R(k)]/2 j …(14) 〈非線性誤差的取出〉 其次,使用式(13)所得到的(XM_M(k),YM_M(k))、及 式(14)所得到的(XRM_D(k),YRM_D(k)),使用下述之式(15) 及(16),利用最小平方法算出6個參數Sx、Sy、θ、ω、 Οχ、及 Oy(步驟 S39)。 r ZxRM_D(k)2 Σ XRM_D(k) x YRM_D(k) ExRM_D(k)N 'l + Sx 、 Σ XRM_D(k) x YRM_D(k) ZYRM_D(k)2 EYRM D(k) X -Sy χ (Θ + ¢5) 、 ZxRM_D(k) ZYRMJD(k) Σι ,Ox , f Σ XM_M(k) χ XRM_D(k) Σ XM_M(k) x YRM_D(k) ZXM_M(k) \ (15) 及 102 200907596[Xmark-des-L(k) + Xmark-des_R(k)]/2) [Ymark-des-L(k) + Ymark-des-R(k)]/2 j (14) <Nonlinear error Takeout > Next, using (XM_M(k), YM_M(k)) obtained by equation (13) and (XRM_D(k), YRM_D(k)) obtained by equation (14), use the following formula (15) and (16), the six parameters Sx, Sy, θ, ω, Οχ, and Oy are calculated by the least square method (step S39). r ZxRM_D(k)2 Σ XRM_D(k) x YRM_D(k) ExRM_D(k)N 'l + Sx , Σ XRM_D(k) x YRM_D(k) ZYRM_D(k)2 EYRM D(k) X -Sy χ (Θ + ¢5) , ZxRM_D(k) ZYRMJD(k) Σι , Ox , f Σ XM_M(k) χ XRM_D(k) Σ XM_M(k) x YRM_D(k) ZXM_M(k) \ (15) and 102 200907596

r ZXRM_〇(k)2 Σ XRM_D(k) x YRM_D(k) ZXRM_D(k)^ ’1 + Sx、 ZxRM_D(k) x YRM_D(k) ZYRM_D(k)2 ZYRM D(k) X Syx0 EXRM_〇(k) Zyrm_d〇c) Σι 1 Oy J Σ YM_M(k) χ XRM_D(k) Σ YM_M(k) x YRM_D(k) ZXM_M(k) (16) 在上述式(1 5)及(1 6)所使用的k,如上述,同樣係用來 選定108個基準標記對的每一者之變數。在式(15)及式(16) 中,同樣由Sx表示X方向的伸縮程度,Sy表示γ方向的 伸縮程度,Θ表示旋轉的程度,ω表示正交度,〇χ表示χ 方向的位移程度,〇y表示γ方向的位移程度。藉著其等6 個參數Sx、Sy、0、ω、0χ、及〇y的算出,可取出線性 誤差。 其次,使用下式算出由非線性成分所構成的誤差(以下 稱為非線性誤差)(XRM_nle(k),YRM_nle(k)): ’Sx 、Sy χθ -Sxx(0 + ©)YXRM_D(k)r ZXRM_〇(k)2 Σ XRM_D(k) x YRM_D(k) ZXRM_D(k)^ '1 + Sx, ZxRM_D(k) x YRM_D(k) ZYRM_D(k)2 ZYRM D(k) X Syx0 EXRM _〇(k) Zyrm_d〇c) Σι 1 Oy J Σ YM_M(k) χ XRM_D(k) Σ YM_M(k) x YRM_D(k) ZXM_M(k) (16) In the above formula (1 5) and (1) 6) The k used, as described above, is also used to select the variable for each of the 108 reference mark pairs. In the equations (15) and (16), Sx indicates the degree of expansion and contraction in the X direction, Sy indicates the degree of expansion and contraction in the γ direction, Θ indicates the degree of rotation, ω indicates the degree of orthogonality, and 〇χ indicates the degree of displacement in the χ direction. , 〇 y represents the degree of displacement in the γ direction. The linearity error can be taken by calculating the six parameters Sx, Sy, 0, ω, 0χ, and 〇y. Next, an error composed of nonlinear components (hereinafter referred to as nonlinear error) (XRM_nle(k), YRM_nle(k)) is calculated using the following equation: 'Sx, Sy χ θ - Sxx(0 + ©) YXRM_D(k)

Sy 人 YRM_D(k)Sy person YRM_D(k)

’XRM」e(k)) 、YRMJe(k)J …(17) (18) ^XRM_nle(k)&gt;| ^ f XRM_le(k) - XM_M(k)N L YRM-nle(k) J 一 URM_le(k) - YM:M(k), 藉由式(17) ’能使用在步驟S39之處理中所算出的6 個參數而以一次式實施近似,可據以算出校正線性誤差後 的基準標記對的中點位置。藉由式(18),可由已校正線性 103 200907596 誤f的位置當中,減去基準標 以异出非線性誤差 的中點之檢測位置,藉 接著,使用在 ⑽(邮咖乂―nle(k)〕,:行:^戶斤取得之 向移動用載台172肖γ方向移内插’對於X方 出非線性誤差’並將其結果圖載口 174的移動範圍算 經而儲存之(步驟S41;)。 、·工上述方式而取得之非線 外丄) 向移動用載台172、Y方吳差,可解釋成係因X方 動用载台動用载台174、或Ζ方向移 戰口 Η6的構造而產生 秒 方向移動用載台172&lt; ^所致者。在驅動Χ c 或 向移動用載台174時,可根櫨 ί:驟S41所儲存之非線性= 疋在有發生阿貝誤差的情形時二,异 台172月乃靶霄鉍又方向移動用载 2及Y方向移動用載台174之定位。 〈基準基板158b&gt; 系/圖l5(a) ’係基準基板158b的概略前視圖,圖15(b), ,、形成於基準基板⑽的&quot;固區域之基準標記的放大圖。 在圖15⑷之示例中,外側的長方形,係表示基準基板 生8b的外形輪廓之線段。χ,在外側的長方形之内側,有 ^向4個與縱肖3個合計為12個之正方形㈣〜腿2), 其各自表示1個區域。再者,基準基板158b亦與基準基 58a相同,並非是用來轉印圖案之基板在圖(勾中 用以表示區域的正方形虛線EB,乃是假想性的線段,其作 係為了與曝光基板156(156a、156b、156c)之曝光區域 的位置及大小有明禮對應關係。再者,在圖1 5(a)中,與曝 104 200907596 光基板156(1 56a、156b、156c)的曝光區域ER1〜ER12相對 應之區域,亦賦與同一表示符號。 基準基板158b’與上述曝光基板156具有大致相同的 大小。基準基板15 8b係由玻璃基板所構成。再者,為了 要如後述般的將形成於基準位置用標線片之基準圖案照射 於基準基板l58b,係在基準基板158b預先塗布有感光劑。 如圖15(b)所示般,在12個區域eri〜ER12分別以鉻 而形成複數個基準標記。在圖丨5(b)中,係以白色四角形 與黑色四角形來表出其等基準標記。各基準標記係以誤差 在1微米以下的方式而形成於基準基板158b。亦即,基準 標記形成於基準基板158b的位置,係位在以預定位置作 為基準之1微米以内的範圍。 無須對圖15(b)所示之所有複數個基準標記皆決定其名 置’只要選擇其中的數個來使用即可,在圖15⑻係^ 黑色四角形表示所使用的基準標記。如圖15⑷所示般,名 12個區域ER1〜ER12戶斤分別使用的基準標記職卜職丨 各有9個。因此,在基準基 個基準標記。 m有使用1〇; 圖16(a)’表示形成於基準位置用標線片之基準 基準位置用標線片係由玻璃基板所構成,基準圖案中由 白色=:分之:由鉻所覆蓋之被…。基準圖案中 白“線所不之部分’表示其並未 玻璃基板的狀態之非被覆部44。 覆盍係維持. 〈基準圖案在基準基板15扑之轉印處理〉 105 200907596 圖1 7所示,係基準圖案往基 再者,在基準A板158h &amp; 準基板M8b之轉印處理。 *基#基板⑽所用的基準標記,其設計 破預先儲存。根據該基準標記 動田°又叶位置來移動X方向移 動用载台!72與Y方向移動 门移 風么从, 戟α174’即可藉由對準光 予系,、充1 60來對基準標記進行攝影。 又,在圖1 7之流程圖所示的 所一^ 叩雯數J,係用以從圖15(a) 所不之所有1〇8個基準標記中 廼仃選疋時所用之變數。基 皁知把之數,在基準基板158b J所有區域ER1〜ER12之基 才示記刪1〜1RM9合計有108個,變數jw之值。 例如’若j=1,表示區域㈣的基準標記IRM1;若j=50, 表示區域ER5的基準標記IRM5。 首先,係將基準位置用標線片配置成與目丨所示之標 線片⑷㈣,並將基準基板咖裝载於基板裝載台17〇 的工作台177(步驟S51)。 \ 接著,驅動基板裝載台170的χ方向移動用載台172 與Υ方向移動用載台174而使工作台177移動,使得被裝 $於工作台177之基準基板158b之第i項基準標記,被 疋位在可供攝影的位置(步驟S52)。圖案轉印時(該圖案係 才曰與非被覆部44相對應者)之基準基板ι581)的定位方式, 係使形成於基準基板158b的IRM1〜IRM9各自的中心,位 在非被覆部44的中心。在此狀態下,由光源丨丨〇發出曝 光用光’則曝光用光可通過基準位置用標線片的非被覆部 44。通過非被覆部44之曝光用光,又照射在基準基板15此, 而使與非被覆部44對應的圖案受到轉印(步驟S53)。 106 200907596 接著,判斷是否p ~ 研疋否已對所有區域ER1〜ER12 標記IRM1〜IRM9皆推〜本 π百基準 U仃處理(㈣叫若判別為處理未 兀 ' 又貫轭上述步驟S52〜S53的處理,以進杆下一 基準標記的處理(步驟S55)。 藉由上述的處理,如 1 - .rt 圖16(b)所不般’與非被覆 對應之圖案嶋卜⑽⑽ &amp;覆部44 有區域ER1〜ER12 H 土 ^ 土板158b的所 右疋X方向移動用載台172或 移動用載台174並未產生 σ 不座生移動误差,在此情形, ORM1〜ORM9的轉印方碎〆 杀 轉Ρ方式,係使形成於基準基板158b的 IRM1 〜IRM9 之各個 φ、、 t + 谷個中〜,與圖案ORM1〜〇RM9(該圖幸 ORM1〜ORM9係盥非妯费如 ^ 、非被覆部44相對應)的各中心—致。然 右疋方向移動用载台172 4Y方向移動用載台174 、生移動誤差’在此情形’則會如圖16(c)所示般,在中 心位置偏移的情況下鏟Λ 下轉印圖案ORM1〜ORM9。逄此情形時, 乃測定圖16⑷所示的\方向位移Υ方向位移 Y_dev 。 〈基準基板158b的基準標記之位置檢測〉 以下,使用圖17的流程圖’來說明基準基板158b的 基準標記對之位置決定順序。又,在以下内容,係如圖16(b) 所示般的將IRM1〜IRM9與相對應的圖案〇则〜〇RM9予 以組合’併稱為基準標記rrmi〜rrm9。例如,將1謂1 與0請1併稱為職1。又,在圖η的流程圖所示之變數 如上述,係絲選定基準標記』·者,在基準基板㈣ 的區域ER1〜ER12的所有基準標記rrm1〜rrm9,合計有 107 200907596 1〇8個基準標記,變數j係之值。例如 示區域ER1的基準標記RRM1 ; J ,衣 基準標記麵5。 叶5〇,表示區域ER5的 =,係使對準光學系統16〇離開退離位 位在測定位置(步驟S56)。該對準光學系統 : 置:測定位置,係與逐片方式相同。退離位置之=位 準光學系、统160的啟動原點。又,測定位置,只要 二_來對基準標記 issh &amp;立置即可°再者,在使用基 土板158b時,無須同時檢測2個基準標記, 由顯微鏡162a或162b的任一方來其i ° 進行攝影。 方來對基準標記则卜抓膽 盘基板裝載台170的X方向移動用載台172 ” Y方向移動用载台174而使工 載移動,使得被裝 定α : 基準基板158a的第1項基準標記對,被 攝影位置(步驟S57)。接著,以對準光學系統⑽ 算=鏡162a或162b對基準標記進行攝影(步驟 二 =項㈣記在X方向的位移x—dev⑴與γ方向 移X d 儲存。此時之基準標記在χ方向的位 等作為p移-_ω ’以例如晝素(像素) 位來=置早位即可,無須使用毫米等一般所用的長度單 的所步驟叫59的處理,可對於區域咖〜則 有基4M示記RRM1〜RRM9算出其χ方向位移 200907596 與Y方位移Y—dev⑴,且予以錯存。 接著,判斷是否已對所有區域咖韻12的所有 =記對R圓〜RRM9皆施以處理(步驟 處理完全,㈣度f施步驟s )右為未 甘.A 7鄉S57〜S59的處理,以進行下一 基準標記對的處理(步騾S61)。 若是在步驟S60的判斷結果表 ER1-ER12 RR1U1 有區域 U卷礼,己RRM1〜RRM9皆施以處理 使對準光學系統160離開 (步驟S62)。 心位置而移動定位在退離位置 之後,精由步,驟S38〜S41來實施與上述非線性誤差的 取出時相同的處理’藉此,對於基準基板⑽亦能算出 由非線性誤差構成之座標,並將其結果圖形化且予以儲 存。再者,在上述® 17的流程圖中,步驟S38〜s4i的處 理與圖14所示者相同’因而賦與同一符號。 〈〈曝光基板的圖案轉印處理〉〉 如上述,藉由整片方式,可對於因為曝光基板 !^U56a、i56b、156c)的變形等而產生的基準標記的誤差 2以校正。又,使用基準基板158a或15肋來作成圖形化 資料可取出非線性誤差,而能校正X方向移動用載台1Μ 與Y方向移動用載台174的移動之非線性誤差。因此,在 將形成於標線片142的圖案轉印至曝光基板1 56時,係先 使用基準基板158a或158b,以實施圖形化資料的製作(圖 18的步驟S71)。該項處理,係藉由上述圖14或圖17之處 理來進行。 109 200907596 由整片方式,將形成於標線片i42的'XRM' e(k)) , YRMJe(k)J ...(17) (18) ^XRM_nle(k)&gt;| ^ f XRM_le(k) - XM_M(k)NL YRM-nle(k) J a URM_le (k) - YM: M(k), by using equation (17)', the approximation can be performed in one time using the six parameters calculated in the process of step S39, and the fiducial mark after correcting the linear error can be calculated accordingly The midpoint position of the pair. By using equation (18), the detection position of the midpoint of the nonlinear error can be subtracted from the position of the corrected linear 103 200907596 error f, and then used in (10) (mail curry - nle (k) )]:: Line: ^ 斤 取得 向 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动S41;).···························································· In the structure of the crucible 6, the second-stage moving stage 172 &lt; ^ is generated. When driving Χ c or moving to the stage 174, the nonlinearity stored in step S41 can be determined as follows: 有 When there is an Abbe error, the 172 is the target and the direction is moved. Positioning of the loading stage 174 for carrying the 2 and Y directions. <Reference Substrate 158b> Fig. 15(a) is a schematic front view of the reference substrate 158b, and Fig. 15(b) is an enlarged view of a reference mark formed in the &quot;solid area of the reference substrate (10). In the example of Fig. 15 (4), the outer rectangle is a line segment indicating the outline of the reference substrate 8b. χ, on the inner side of the outer rectangle, there are four squares (four) to two legs (four) which are four in total and four in the longitudinal direction, each of which represents one area. Further, the reference substrate 158b is also the same as the reference substrate 58a, and is not a substrate for transferring a pattern. The square dotted line EB for indicating a region in the hook is a hypothetical line segment for exposing the substrate. The position and size of the exposure area of 156 (156a, 156b, 156c) have a corresponding relationship. In addition, in Fig. 15 (a), the exposed area of the light substrate 156 (1 56a, 156b, 156c) is exposed to 104 200907596. The regions corresponding to ER1 to ER12 are also given the same reference numerals. The reference substrate 158b' has substantially the same size as the exposure substrate 156. The reference substrate 15 8b is composed of a glass substrate, and further, in order to be described later. The reference pattern is formed on the reference substrate 158b by the reference pattern formed on the reference position by the reticle, and the sensitizer is applied to the reference substrate 158b. As shown in FIG. 15(b), the eri to ER12 are respectively in the 12 regions. A plurality of reference marks are formed. In Fig. 5(b), the reference marks are indicated by a white square and a black square. Each of the reference marks is formed on the reference substrate 158b with an error of 1 μm or less. which is The reference mark is formed at the position of the reference substrate 158b, and the position is within a range of 1 micrometer or less based on the predetermined position. It is not necessary to determine the name of all the plurality of reference marks shown in FIG. 15(b). It can be used in a few places, and the black square in Fig. 15 (8) indicates the reference mark used. As shown in Fig. 15 (4), there are 9 reference marks for each of the 12 regions ER1 to ER12. Therefore, the reference mark is used as the reference mark. m is used for 1〇; Fig. 16(a)' shows that the reference position of the reticle formed at the reference position is formed of a glass substrate by the reticle, and the reference pattern is composed of White =: sub-divided: covered by chrome. In the reference pattern, the white "the portion of the line" indicates the non-covered portion 44 in a state where the glass substrate is not provided. The covering system is maintained. <The reference pattern is on the reference substrate. 15 Transfer processing> 105 200907596 Figure 17 shows the reference pattern to the base, and the transfer processing of the reference A board 158h &amp; quasi-substrate M8b. *Base #substrate (10) used for the reference mark, its design Broken pre-storage. According to The reference mark moves the field and the leaf position to move the X-direction moving stage! 72 and the Y-direction move the door to move the wind from, 戟α174' can be aligned with the light, and the charge is 1 60 to mark the reference In addition, the number J of the figure shown in the flow chart of Fig. 17 is used to select one of the 1 to 8 reference marks not shown in Fig. 15(a). The number of the base soap is determined by the number of all the regions ER1 to ER12 of the reference substrate 158b J, and the total number of the variables jw is 108. For example, if j = 1, it indicates the reference mark IRM1 of the area (4); if j = 50, it indicates the reference mark IRM5 of the area ER5. First, the reference position is arranged with the reticle to the reticle (4) (4) shown in the figure, and the reference substrate is loaded on the table 177 of the substrate loading table 17 (step S51). Next, the y-direction moving stage 172 and the Υ direction moving stage 174 of the substrate loading table 170 are driven to move the table 177 so that the i-th reference mark of the reference substrate 158b of the table 177 is loaded. It is placed at a position where photography is possible (step S52). The positioning method of the reference substrate ι 581 in the pattern transfer (the pattern corresponds to the non-covered portion 44) is such that the center of each of IRM1 to IRM9 formed on the reference substrate 158b is located at the non-covered portion 44. center. In this state, the light for exposure is emitted by the light source, and the exposure light can pass through the non-covered portion 44 of the reticle for the reference position. The exposure light of the non-covered portion 44 is irradiated onto the reference substrate 15, and the pattern corresponding to the non-covered portion 44 is transferred (step S53). 106 200907596 Next, it is judged whether or not p ~ 疋 已 已 所有 IR ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER ER The processing of the next reference mark is carried out (step S55). By the above processing, as in the case of 1 - .rt Fig. 16(b), the pattern corresponding to the non-covered pattern is (10) (10) &amp; 44 The area ER1 to ER12 H The earth plate 158b has a right 疋 X-direction moving stage 172 or a moving stage 174 which does not generate a σ non-stationary movement error. In this case, the transfer side of ORM1 to ORM9 The smashing and smashing method is such that each of φ, t + 谷 〜 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The center of the non-covered portion 44 corresponds to the center. The right-side direction moving stage 172 4Y-direction moving stage 174 and the raw movement error 'in this case' are as shown in Fig. 16(c). When the center position is shifted, the lower transfer patterns ORM1 to ORM9 are shovel. In this case, it is measured. The shift in the direction of the direction of the direction of the reference mark 16 is shown in Fig. 17 (4). The position detection of the reference mark pair of the reference substrate 158b will be described below using the flowchart of Fig. 17 . As shown in FIG. 16(b), the IRM1 to IRM9 are combined with the corresponding pattern 〇 〇 RM9 and are referred to as reference marks rrmi to rrm9. For example, 1 is 1 and 0 is 1 In addition, the variable shown in the flowchart of FIG. η is as described above, and the reference mark of the ray is selected, and all the reference marks rrm1 to rrm9 in the regions ER1 to ER12 of the reference substrate (4) have a total of 107 200907596. 1 〇 8 reference marks, the value of the variable j is, for example, the reference mark RRM1 of the display area ER1; J, the clothing reference mark surface 5. The leaf 5 〇, indicating the area ER5 =, causes the alignment optical system 16 to leave The off position is at the measurement position (step S56). The alignment optical system: set: the measurement position is the same as the piece by piece method. The position of the retreat position = the origin of the level optical system, the system 160. Further, the measurement position As long as the second _ comes to the benchmark mark issh &a Mp; stand up. Again, when using the base plate 158b, it is not necessary to simultaneously detect two reference marks, and one of the microscopes 162a or 162b will take a picture of i °. In the X-direction moving stage 172 of the disk substrate loading table 170, the Y-direction moving stage 174 is moved so that the first item reference mark pair of the α: reference board 158a is set, and the photographing position is set (step S57). ). Next, the reference mark is photographed by the alignment optical system (10) = mirror 162a or 162b (step 2 = item (4) is recorded in the X direction displacement x - dev (1) and γ direction shift X d is stored. At this time, the reference mark is in the χ direction The position of the bit etc. as the p shift - _ω ' can be set to the early position by, for example, the pixel (pixel) bit. It is not necessary to use the processing of the step 59 of the length sheet generally used for millimeters, etc. The 4M indications RRM1 to RRM9 calculate the χ-direction displacement 200907596 and the Y-direction displacement Y_dev(1), and the errors are stored. Next, it is judged whether all the fields of all the areas of the rhyme 12 = R rounds RRM9 are processed ( The step processing is complete, and the processing of the next reference mark pair is performed by the processing of the next reference mark pair (step S61). If it is the judgment result table ER1 in step S60, the processing is performed in the next step (step S61). The ER12 RR1U1 has a region U volume, and all of the RRM1 to RRM9 are processed to leave the alignment optical system 160 (step S62). After the heart position is moved and positioned at the retreat position, the step is performed by steps S38 to S41. The same processing as the above-mentioned nonlinear error is taken out The coordinates formed by the nonlinear error can also be calculated for the reference substrate (10), and the results can be graphically stored and stored. Further, in the flowchart of the above-mentioned ® 17, the processing of steps S38 to s4i is the same as that shown in FIG. 'There is the same symbol. <The pattern transfer process of the exposure substrate> As described above, the error of the reference mark due to the deformation of the exposed substrate, etc., U56a, i56b, 156c) can be obtained by the whole method. 2 to correct. Further, by using the reference substrate 158a or the ribs to form the pattern data, the nonlinear error can be extracted, and the nonlinearity error of the movement of the X-direction moving stage 1 Μ and the Y-direction moving stage 174 can be corrected. Therefore, when the pattern formed on the reticle 142 is transferred to the exposure substrate 156, the reference substrate 158a or 158b is used first to fabricate the pattern material (step S71 of Fig. 18). This processing is performed by the above-described Fig. 14 or Fig. 17 processing. 109 200907596 The whole piece will be formed on the reticle i42

曝先基156(圖18之步驟奶)。該項處理,能 圖9之處理來實施。再者,在此 )L 的處理時,X方向移動用載台172”方二7步驟S12 之定位位置,乃是在” S71 ㈣㈣台174 护化m 的處理中已預先製作並以圖 :化方式來儲存之位置。藉此,就算W向移動用载台172 二方向移動用載,m的移動有發生誤差,亦能在不受 =所影響的情況下,實施x方向移動用載台&quot;2與γ 方向移動用載台! 74的定位。 士藉此,可以不需為了決定x方向移動用載台m與γ 向移動用載台174之位置而使用干涉計等裝置,即能將 位=動用載台17…方向移動用載台m確實的定 置°又H是在曝光基板156有變形等情況 ★,而使基準標記的位置從本來預定之設計位置成為 位移後的位置,亦能確實的將圖案轉印至期望位置。 〈〈逐片方式與整片方式的加權處理〉〉 藉由上述圖18之處理的實施,就算有因曝光基板 广(lJ6a、156b、156c)的變形等而使基準標記的位置發生 '泉f生:差、或者是在x方向移動用载台172與γ方向移動 用=σ 1 74有發生定位誤差,仍能實施位置校正而將形成 於钴線片1 42之圖案轉印至曝光基板156。 — 然而,如上述,形成於曝光基板150之基準標記,係 精由雷射光來溶融曝光基板156的表面而形成,或經由鑽 、卞、機械方式加工而形成。由於該些基準標記的形成方 110 200907596 法之精度所致,亦有可能造成基準標記離開本來預定之設 計位置而形成於位移後位置。在此類情形,亦必須對 生誤差實施校正。 再者,印刷電路板係由玻璃纖維等而形成,在各步驟 有發生非線性誤差的情形亦不罕見。以下,將此類曝光基 板的非線性誤差,連同曝光位置的決定方法—併說明如 下。 以下,使用曝光基板156a,以使用形成於曝光基板i56a 的2個基準標記RM1與RM2之中點位置、與其等2個基 準標記RM1的位置與RM2的位置之差分。 實施與圖9之步驟S18相同的處理,使用上述式(1)〜 式(3),以取得基準標記與基準標記RM2的中點位置 (XM(n),YM(n))。又,可根據於其等之位置資料,算出X 方向的差分△ XM(n)與Y方向的差分△ ΥΜ(η)。如上述, 基準標記RM1的位置係(ΧΜ—1(η),ΥΜ_1(η)),基準標記rm2 的位置,係(XM_2(n),YM一2(n))。因此,差分△ χΜ(η),乃 是 ΧΜ_1(η)-ΧΜ_2(η);差分△ ΥΜ(η),乃是 ΥΜ_1(η)-ΥΜ_2(η)。 在上述圖9所示的處理,係使用曝光基板156(:來處理’ 基準標記RM1及RM2的檢測,係針對4個曝光區域eri、 ER4、ER9、及ER12而實施,然而’在使用曝光基板156a 的情形時,係對於12個曝光區域ER1〜ER12進行基準標記 RM1及RM2的檢測。因此,上述的變數n係1〜12之整數 值。在此情形’ η=1係曝光區域為ER1 ; 11=4係曝光區域 111 200907596 為ER4 ’· n = 5係曝光區域為ER8 ; n = 8係曝光區域為er5 ; n = 9係曝光區域為ER9 ; n=12係曝光區域為eri2。基準 ‘。己RM1及RM2的檢測,係由n=丨開始依序進行至【2 為止。藉由此項處理的實施,只要將χ方向移動用載台i72 與Y方向移動用載台174移動至相鄰的曝光區域即可,因 而能縮短其等载台的移動距離,可減少處理的時間。 再者,亦可不針對12個曝光區域ER1〜ERi2皆實施某 準標記刪及RM2的檢測,而是僅對選擇出來的複㈣ 曝先區域方進行基準標記RM1及RM2的檢測。 乂二!實施上述基準標記趣及讀2的檢測處理之 刖,先錯由上述基準基板158a 性莩羔,以猫土 &gt; 幻便用而取出非線 用#… 方向移動用載台172與”向移動 的移動之誤差’然後將X方向移動用載Α ί72 ^方向移動用載…位在已校正非線性誤差載二 置,以供檢測基準標記職及助。在以下,將=位 : 差並對X方向移動用載台⑺與” 台174實施定位之校正後的位置6移動用载 (X^or^^ n # ^i2 4 :Ί &amp; 域。亦即’以(X-C〇r(4),Y-c〇r(4))為例 不,將X方向移動用載台172與丫方向移 ^其係表 位在曝光㈣ER4時,已經過校正後的载台位置74定 在取得上述基準標記RM1與RM2 ⑽⑷,YM⑷)、χ方向的差分 的中點位置 Μ⑷後,實施圖19所示之處理。()Υ方向的差分△ 112 200907596 首先,使用基準標記RM1與RM2的中點位置 (ΧΜ(η),ΥΜ(η))、 及校正後的載台位置 (X_cor(n),Y—cor(n)),利用最小平方法之式(21)及(22),算 出 6 個參數 Sx、Sy、0、ω、〇x、及 〇y(步驟 S81)。 f Σ X_cor(n)2 Σ X_c〇r(n) x Y—cor(n) Σ X—cor⑻ &quot;l + Sx ) Σ X_cor(n) χ Y_cor(n) Σ Y_cor(n)2 Σ Y_cor(n) χ -Syx(0 + tj) Σ X_c〇r(n) Σ Y_cor(n) Σΐ ^ 、 Ox v J ZXM(n)xX_cor(n) Σ ΧΜ(η) χ Y_cor(n) Σχ一cor ⑻ Σ X_cor ⑻2 Σ X_cor(n) x Y_cor(n) Σ X一c〇r(n)、 &quot;l + Sx、 Σ X_cor(n) x Y_cor(n) Σ Y_c〇r ⑻2 Σ X一cor ⑻ X Syx0 、 Zx_cor(n) Συ一c〇r ⑹ Σΐ ,°y &gt; Σ YM(n) x X_cor ⑻、 Σ YM(n) x Y_cor(n) (21) …(22) Σ Y_cor(n) 在實施該步驟S81的處理後,使用式(23),以丨次式 算出2個基準標記RM1與RM2的中點之校正位置的近似 位置、即位置X_le(n)及Y_le(n)(步驟S82)。 &quot;Sx 、Syx0Precursor base 156 (step milk of Figure 18). This processing can be implemented by the processing of Fig. 9. Further, in the case of the processing of L, the positioning position of the X-direction moving stage 172"2, step S12, is pre-made and processed in the processing of "S71 (four) (four) table 174. Way to store the location. Therefore, even if W moves to the moving stage 172 in both directions, an error occurs in the movement of m, and the x-direction moving stage &quot;2 and γ-direction movement can be performed without being affected by ? Use the stage! 74 positioning. Therefore, it is not necessary to use an interferometer or the like in order to determine the position of the x-direction moving stage m and the γ-direction moving stage 174, that is, the position=moving stage 17 can be moved in the direction of the stage m. In the case where the exposure substrate 156 is deformed or the like, and the position of the reference mark is displaced from the originally designed design position, the pattern can be surely transferred to the desired position. <The weighting process of the slice-by-chip method and the whole-chip method> With the implementation of the process of FIG. 18 described above, the position of the reference mark is generated by the deformation of the exposure substrate (lJ6a, 156b, 156c). The difference is generated, or the positioning error occurs in the x-direction moving stage 172 and the γ-direction movement = σ 1 74, and the position correction can be performed to transfer the pattern formed on the cobalt wire sheet 142 to the exposure substrate 156. . — However, as described above, the reference mark formed on the exposure substrate 150 is formed by melting the surface of the exposure substrate 156 by laser light, or by drilling, boring, or mechanical processing. Due to the accuracy of the formation of the reference marks 110 200907596, it is also possible that the reference mark is formed at the post-displacement position away from the originally designed position. In such cases, corrections must also be made for errors. Further, the printed circuit board is formed of glass fiber or the like, and it is not uncommon for a nonlinear error to occur in each step. In the following, the nonlinearity error of such an exposure substrate, together with the method of determining the exposure position, is explained below. Hereinafter, the exposure substrate 156a is used to use the difference between the position of the two reference marks RM1 and RM2 formed on the exposure substrate i56a, the position of the two reference marks RM1 and the position of RM2. The same processing as that of step S18 of Fig. 9 is performed, and the midpoint positions (XM(n), YM(n)) of the reference mark and the reference mark RM2 are obtained using the above equations (1) to (3). Further, the difference Δ M η (η) between the difference ΔXM(n) in the X direction and the Y direction can be calculated from the position data of the same. As described above, the position of the reference mark RM1 is ΧΜ-1(η), ΥΜ_1(η), and the position of the reference mark rm2 is (XM_2(n), YM-2(n)). Therefore, the difference Δ χΜ(η) is ΧΜ_1(η)−ΧΜ_2(η); the difference Δ ΥΜ(η) is ΥΜ_1(η)−ΥΜ_2(η). In the process shown in FIG. 9 described above, the exposure substrate 156 is used to process the detection of the reference marks RM1 and RM2, and is performed for the four exposure regions eri, ER4, ER9, and ER12, however, the exposure substrate is used. In the case of 156a, the reference marks RM1 and RM2 are detected for the twelve exposure areas ER1 to ER12. Therefore, the above-described variable n is an integer value of 1 to 12. In this case, 'n=1 is an exposure area of ER1; 11=4 series exposure area 111 200907596 is ER4 '· n = 5 system exposure area is ER8; n = 8 system exposure area is er5; n = 9 system exposure area is ER9; n=12 system exposure area is eri2. The detection of RM1 and RM2 is performed sequentially from n=丨 to [2. By the implementation of this process, the y-direction moving stage i72 and the Y-direction moving stage 174 are moved to the phase. The adjacent exposure area is sufficient, so that the moving distance of the stage can be shortened, and the processing time can be reduced. Furthermore, it is also possible to perform detection of a certain mark and RM2 for the 12 exposure areas ER1 to ERi2, but Benchmark only for the selected complex (4) exposure area Detecting RM1 and RM2. 实施Second! After performing the above-mentioned test of the reference mark and reading 2, the wrong reference to the reference substrate 158a is used first, and the non-line is taken out by the cat soil. The moving stage 172 and the "error to the movement of the movement" and then the X-direction movement carrier Α 72 72 ^ direction of the mobile load ... position in the corrected nonlinear error carrier, for the detection of the reference mark job and help. In the following, the position of the shift position in the X direction (7) and the position in the X direction (6) and the position 6 after the positioning of the table 174 are moved (X^or^^n #^i2 4 : Ί &amp; '(XC〇r(4), Yc〇r(4)) is used as an example. When the X-direction moving stage 172 is moved in the direction of the 丫, the system is in the exposure (4) ER4, and the corrected stage is The position 74 is set to obtain the midpoint position Μ(4) of the difference between the reference marks RM1 and RM2 (10) (4), YM (4)) and the χ direction, and then the processing shown in Fig. 19 is performed. () The difference in the Υ direction Δ 112 200907596 First, the reference mark RM1 is used. With the midpoint position of RM2 (ΧΜ(η), ΥΜ(η)), and the corrected stage position (X_cor(n), Y-cor(n)), Using the equations (21) and (22) of the least squares method, six parameters Sx, Sy, 0, ω, 〇x, and 〇y are calculated (step S81). f Σ X_cor(n)2 Σ X_c〇r(n ) x Y—cor(n) Σ X—cor(8) &quot;l + Sx ) Σ X_cor(n) χ Y_cor(n) Σ Y_cor(n)2 Σ Y_cor(n) χ -Syx(0 + tj) Σ X_c〇 r(n) Σ Y_cor(n) Σΐ ^ , Ox v J ZXM(n)xX_cor(n) Σ ΧΜ(η) χ Y_cor(n) Σχ一cor (8) Σ X_cor (8)2 Σ X_cor(n) x Y_cor(n) Σ X_c〇r(n), &quot;l + Sx, Σ X_cor(n) x Y_cor(n) Σ Y_c〇r (8)2 Σ X-cor (8) X Syx0 , Zx_cor(n) Συ一c〇r (6) Σΐ , °y &gt; Σ YM(n) x X_cor (8), Σ YM(n) x Y_cor(n) (21) (22) Σ Y_cor(n) After performing the processing of step S81, use equation (23) The approximate positions of the correction positions of the midpoints of the two reference marks RM1 and RM2, that is, the positions X_le(n) and Y_le(n) are calculated in the order of the equation (step S82). &quot;Sx, Syx0

Sx X (Θ + ω)、 ^X_cor ⑻、 'Ox、 rX」e(n)、 Sy , 、Y—cor ⑻ J 、〇yJ 、YJe(n) …(23) 如上述,係將 174的移動之 此處之式(23)的 X_cor(n)及 方向移動用載台172與Y方向移動用章 113Sx X (Θ + ω), ^X_cor (8), 'Ox, rX" e(n), Sy , , Y-cor (8) J , 〇 yJ , YJe(n) (23) As described above, the movement of 174 Here, X_cor(n) of the formula (23) and the direction shifting stage 172 and the Y-direction moving chapter 113

X 200907596 非線性誤差予以校正後的載台位置。 其次使用式(24),對於2個基準標記RM1與RM2的 中點位置,算出其非線性誤差成分又_1116(11)與Y_nle(n)(步 驟 S83)。 ’Xnle(n)、 'XM(n)-X_le(n)、 、Y_nle@\ …(24) 接著使用式(25)及式(26),對於位置的差分算出6個參 數 Sx、Xy、6&gt;、ω、Ox、及 Oy(步驟 S84)。 Σ X_cor(n)2 Σ X一 cor(n) x Y—cor ⑻ Σ X_cor(n) '1 + Sx 、 Σ X_cor(n) x Y_cor(n) ΣΥ—cor ⑻2 Συ cor⑻ X -Sy χ (θ + ϊπ) Σχ cor(n) V _ Σ Y_cor(n) Σι / 、〇χ , 'ΣΑΧΜ(η)χΧ一cor(n)、 =Σ ΔΧΜ(η) χ Y_cor(n) (25) Σ X_cor(n) Σ X_cor(n)2 Σ X_cor(n) χ Y_cor(n) Σ X_cor(n) Σ X_cor(n) χ Y_cor(n) Σ Y_cor(n)2 Σ Y_cor(n) X SyxG Σ X—cor ⑼ Σ Y_cor(n) Σι 、〇y &gt; Σ ΑΥΜ(η) χ X_cor(n)、 =ΣΔΥΜ ⑼ xY_cor(n) ... (26) Σ Y_cor(n) 然後使用式(27),以1次式算出2個基準標記RM1與 RM2的位置之差分之近似位置△ X_le(n)與△ Y_le(n)(步驟 S85)。 114 …(27) 200907596 &quot;Sx ,δγχθX 200907596 The position of the stage after the nonlinear error has been corrected. Next, using the equation (24), the nonlinear error components _1116(11) and Y_nle(n) are calculated for the midpoint positions of the two reference marks RM1 and RM2 (step S83). 'Xnle(n), 'XM(n)-X_le(n), and Y_nle@\ (24) Next, using equations (25) and (26), six parameters Sx, Xy, and 6 are calculated for the difference in position. ;, ω, Ox, and Oy (step S84). Σ X_cor(n)2 Σ X-cor(n) x Y-cor (8) Σ X_cor(n) '1 + Sx , Σ X_cor(n) x Y_cor(n) ΣΥ—cor (8)2 Συ cor(8) X -Sy χ (θ + ϊπ) Σχ cor(n) V _ Σ Y_cor(n) Σι / , 〇χ , 'ΣΑΧΜ(η)χΧ一cor(n), =Σ ΔΧΜ(η) χ Y_cor(n) (25) Σ X_cor( n) Σ X_cor(n)2 Σ X_cor(n) χ Y_cor(n) Σ X_cor(n) Σ X_cor(n) χ Y_cor(n) Σ Y_cor(n)2 Σ Y_cor(n) X SyxG Σ X—cor (9) Σ Y_cor(n) Σι, 〇y &gt; Σ ΑΥΜ(η) χ X_cor(n), =ΣΔΥΜ (9) xY_cor(n) ... (26) Σ Y_cor(n) Then use equation (27) to 1 The approximate positions ΔX_le(n) and ΔY_le(n) of the difference between the positions of the two reference marks RM1 and RM2 are calculated in the following equation (step S85). 114 ...(27) 200907596 &quot;Sx ,δγχθ

Sx X (θ + ω)、 'X_cor ⑹、 〔Ox、 ,AX_le ⑻、 sy , 、Y_cor〇i)y 卞 、ΔΥ一 le(n), 根據式(27)所算出的△ X_le(n)與△ Y_le(n),透過式 (28) ’可對於2個基準標記與rm2的位置之差分, 异出其非線性誤差成分△ X_nle(n)與△ Y_nle(n)(步驟 S86)。 ’△X—nle ⑻、 '△ΧΜ(η)-ΔΧ—le ⑻、 、ΔΥ—nle(n)y 、ΔΥΜ ⑻-ΔΥχηχ …(28) 其-入’對於式(27)所具出的線性誤差成分△ xje(n)與 △ Y—le(n) ’以統計方法算出其3 σ —le(步驟S87)。此處之 σ 一le,係線性誤差成分△ X—ie(n)與△ γ—ie(n)的標準差。 在以下,將上述3 σ 一le設為S_le。接著,對於式(28)所算 出的非線性誤差成分△ X_nle(n)與△ Y—nle(n),以統計方法 v 算出其(步驟S8S)。此處之σ—nle ,係非線性誤差 成分△ X—nle(n)與△ Y_nle(n)之標準差。在以下,將上述的 3σ—nle設為S_nle。再者’ S_nle,係用以表示非線性誤差 成分的大小程度之誤差資訊。又,亦可對於由上述步驟 所算出的非線性誤差成分X—nle(n)與Y_nle(n)算出相同於 s_me時之誤差資訊’連肖S_nle在以下的步驟中一併使 用。 經使用在步驟SS2的處理所算出的χ le(n)&amp;Y “(η)、 在步驟S83的處理所算出的)〇(11)及Y_nIe(n)、-在步驟 115 200907596 S87的處理所算出的S一le、連同在步驟S88的處理所算出 的S_nle,藉由式(29)及(30)算出Xpos與YpOS(步驟S89)。 Xpos = (SJex(X_le + X_nle) + S_nlexX_le)/(S_le + S_nle) ... (2o\Sx X (θ + ω), 'X_cor (6), 〔Ox, , AX_le (8), sy , , Y_cor〇i)y 卞, ΔΥ_le(n), Δ X_le(n) calculated according to equation (27) Δ Y_le(n), the transmission equation (28)' differs from the difference between the positions of the two reference marks and rm2 by the nonlinear error components ΔX_nle(n) and ΔY_nle(n) (step S86). '△X—nle (8), '△ΧΜ(η)-ΔΧ—le (8), ΔΥ—nle(n)y, ΔΥΜ(8)-ΔΥχηχ (28) which is linear with respect to equation (27) The error components Δ xje(n) and Δ Y−le(n)′ are calculated by a statistical method to be 3 σ — le (step S87). Here, σ·le is the standard deviation of the linear error components Δ X —ie(n) and Δ γ—ie(n). In the following, the above 3 σ -le is set to S_le. Next, the nonlinear error components Δ X_nle(n) and Δ Y - nle(n) calculated by the equation (28) are calculated by the statistical method v (step S8S). Here σ-nle is the standard deviation of the nonlinear error components Δ X-nle(n) and Δ Y_nle(n). In the following, the above 3σ_nle is set to S_nle. Furthermore, 'S_nle' is used to indicate the error information of the magnitude of the nonlinear error component. Further, the error information 'the same as s_me calculated by the nonlinear error components X_nle(n) and Y_nle(n) calculated by the above steps may be used in the following steps. By using χ le(n) &amp;Y "(η) calculated by the processing of step SS2, 〇(11) and Y_nIe(n) calculated by the processing of step S83, - processing at step 115 200907596 S87 The calculated S_le, together with the S_nle calculated in the processing of step S88, calculates Xpos and YpOS by the equations (29) and (30) (step S89). Xpos = (SJex(X_le + X_nle) + S_nlexX_le)/ (S_le + S_nle) ... (2o\

Ypos = (SJe x (YJe + Y_nle) + S_nle x Y_le)/(S_le + S_nle) 將X方向移動用載台172與Y方向移動用載台174, 定位在以該式(29)及式(30)所算出的XpOS與Yp〇s。 在上述式(29)及(30)中的位置(x_ie,γ—le),係藉整片 方式所校正後的位置。另一方面,位置(x」e + x_nie Y—le + Y—nle) ’係藉逐片方式所校正後的位置 假若2個基準標記RM1及RM2在形成於曝光基板156 時的誤差偏大時(又’曝光基板156的變形,亦包含3次以 上的高次之情形時)’ S一nle趨於大值。再者 156的2次誤差小時,S_le=0。在此情形’ ’當曝光基板 可視為隨機所 產生的誤差’式(29)及(30)乃成以下所示,可藉整片方式將 圖案轉印至適當的位置。Ypos = (SJe x (YJe + Y_nle) + S_nle x Y_le) / (S_le + S_nle) The X-direction moving stage 172 and the Y-direction moving stage 174 are positioned in the equations (29) and (30). ) Calculated XpOS and Yp〇s. The positions (x_ie, γ - le) in the above equations (29) and (30) are positions corrected by the entire chip method. On the other hand, the position (x"e + x_nie Y-le + Y-nle) ' is the position corrected by the slice-by-chip method. If the two reference marks RM1 and RM2 are excessively large when formed on the exposure substrate 156, (In addition, when the deformation of the exposure substrate 156 also includes a high order of three or more times, 'S-nle tends to be large. Furthermore, the second error of 156 is small, S_le=0. In this case, when the exposure substrate can be regarded as a random error, the equations (29) and (30) are shown below, and the pattern can be transferred to an appropriate position in a one-piece manner.

Xpos=X le.·. (31)Xpos=X le... (31)

Ypos=Y_le··· (32) 另一方面,假若2個基準標記rm 1及 RM2在形成於 116 200907596 曝光基板156時的誤差較小時,S-nie=〇。又,當曝光基板 156的2次誤差大時,SJe超於大值。此情形的誤差,可 視為曝光基板156的2次之畸變誤差,式(29)及式(3〇)遂成 為以下所示,而能以逐片方式將圖案轉印至適當位置。 (33) …(34)Ypos=Y_le··· (32) On the other hand, if the two reference marks rm 1 and RM2 have a small error when formed on the exposure substrate 156 of 116 200907596, S-nie=〇. Further, when the secondary error of the exposure substrate 156 is large, SJe is superior to a large value. The error in this case can be regarded as the second-order distortion error of the exposure substrate 156, and the equations (29) and (3) are expressed as follows, and the pattern can be transferred to an appropriate position in a sheet-by-piece manner. (33) ...(34)

Xp〇s=X_le + x nieXp〇s=X_le + x nie

Ypos=Y_le+Y nie *又,虽S—nle及S-le皆為小值時,則藉由式(29)及式(30) 鼻出位置。 再者,在算出式(29)及式(30)時,亦可使用係數D而 使其成為s_nle = s—nlexDe係數D,係用以衫其係偏於 整片方式或偏於逐片方式者,乃是 ^ ^ 疋』由使用者的意思以決 定之係數。例如,設定成D &gt; 1砗,志-甘μ ^ 旰表不其偏於整片;設Ypos=Y_le+Y nie * Further, although both S-nle and S-le are small values, the nose position is obtained by the equations (29) and (30). Furthermore, when calculating equations (29) and (30), the coefficient D can be used to make s_nle = s-nlexDe coefficient D, which is used to bias the shirt to the whole piece or to the piece by piece method. The person is ^ ^ 疋 』 is determined by the user's meaning. For example, if it is set to D &gt; 1砗, the 志-甘μ^ 旰 table is not biased to the whole piece;

V 疋成D&lt; 1時,表示其偏於逐片方式。 〈〈誤差的代替〉〉 在上述處理中,於圖19的處 I呀,係取得X方向 的差分A XM(n)與γ方向的差分 J左刀Δ YM(n)而進行。由於2 個基準標記RM1及RM2係沿著χ 、 Χ方向而配置,因此,X 方向的差分△ ΧΜ(η),對應於表示χ λ, 万向的伸縮程度之Sx . Y方向的差分△ YM(n),對應於表 , 衣不紅轉程度之0。 因此,在上述步驟S84的處理而瞀山,, Q n 慝理而算出6個參數Sx、Sy、 、ω、Ox、及〇y後,亦可將 X置換成X方向的差分 117 200907596 △ XM⑻又,可將Θ換成γ方向的差分△ ΥΜ(η),以進 行圖19所示的處理。又’無須將Sx與Θ雙方一併置換, 亦可僅進行其中一方的置換處理。 藉由上述第1貫施开&gt; 態之控制裝i丄99,可構成第工 之位置校正機構、帛2之位置校正機構、基準基板位置控 制機構、基準基板位置儲存機構、基準基板曝光機構、基 準基板位置校正運瞀啟六θ 運#儲存機構、曝光基板位置控制機構、 曝光基板位置儲存機構、曝光基板基準標記位置儲存機 構、及線性誤差校正運算機構。 〈〈智慧型整片方式&gt; 〉 ,曝光基板有可能因為製造時的熱變形或受到既定大小 的剪力作用等,而變形成可由2次式或3次式等來近似之 片,例如圖24(a)所*,其係曝光基板的變形可由2次式 來之^月开乂,或圖24(b)所示,其係曝光基板的變形可 由3次式來近似之情形。曝光基板在其製造過程中發生圖 24⑷及(b)之類的變形衫在少數。因此,曝光基板上的基 準標記的位置,亦位移至可由2次式、3 :欠式等來近似的 位置。該位置的位移,由於可抓到基準標記的位置之誤差, 因此:對應於基準標記的位移之誤差,亦可由2次式、3 次式等來近似。一般而言,曝光基板的形狀之變形,有不 少情況係其位置誤差可由至三次式為止之項次來近似。在 以下說明之例,係對於曝光基板的形狀之變形以3次項(包 含2次項)來近似之情形。 另一方面,在曝光基板〗56上的基準標記,係藉雷射 118 200907596 光來〉谷融曝光基板1 56的表面而形成、或以鑽頭等施以機 械加工而形成。因此,有可能因為形成基準標記時的精度 所致,而使基準標記位移至與本來預計之設計位置相異之 處。該位移係隨機位移,而在基準標記的位置發生隨機誤 差。又,該基準標記的位置中的此類隨機誤差,與上述可 由3次式來近似之誤差相比,亦可看成是可由4次式以上 之尚項式來近似之誤差。在本實施形態中,係將基準標記 的位置所發生之誤差區分成,由上述曝光基板的變形所造 成的誤差、以及由基準標記之形成所造成之誤差,共分二 種類,對於前者,係當作可由3次式來近似之誤差(3次式 近似誤差);對於後者,則當作可由4次式以上之更高項式 來近似之誤差(隨機誤差)。 在本實施形態之智慧型整片方式中,在校正基準桴圮 的位置誤差時,係根據其係由3次式近似誤差或隨機誤差 來作為支配性誤差,進而在曝光時之曝光基板位置的最佳 、校正方法有所區Μ。亦艮P,在基準標記的位置之誤差整體 之2,以3次式近似誤差與隨機誤差的大小作為基準,來 判疋何者才是支配性誤差,並根據其結果,採取和上述逐 片方式與整片方式之加權處理時相同的方法,來校正曝光 位置的誤差。如上述,曝光時之曝光基板位置誤差的校正 二:,在此稱為「智慧型整片方式」。再者,智慧型整片 方式不僅限於3次式,芒 : 一 '右將此以咼於3次式(如4次式或5 -^、)的高項誤差來近似之位置誤差與隨機誤差的大小作 二判疋基準’來校正曝光時的曝光位置之誤差,亦可接受。 119 200907596 根據於該種智慧型整片方式的處理1以在曝光時跋載曝 光基板之裝載台’更能被精確的定位在目標位置。 圖25係$慧型整片方式的處理順序之流程圖。以下 係依循該圖而具體的說明智慧型整片方式。以下所示之智 慧型整片方式之示例中,係卩3次式近似誤差與隨機誤差 的大小作為判定基準。 首先,係檢測出曝光基板上的各曝光區域之基準標記 (曝光基板基準標記)。該項檢測,係以相同於圖9、圖Μ、 或圖17所述之方法來進行(步驟SHH)。® 26,係在智慧 型整片方式的處理時所用之曝光基板的—概略圖。曝光基 板156d’具有4個曝光區域现⑴丨)〜er(4,句。其等之曝 光區域:般以取⑽㈣〜4十1〜4之自然數)表示。各個 曝光區域,具有4個曝光基板基準標記ΚΜι(ί,』)、ΚΜ2(υ)、 則⑽、及RM4(i,j)。再者,本實施形態中的曝光基板 基準標記的檢測,係以2個曝光基板基準標記作為i組來 進行。 在檢測曝光基板基準標記的位置時,可依序檢測出所 有曝光區域的所有曝光基板基準標記。然:而,4 了要縮短 曝光基板基準標記的檢測時間,較佳方式係省略—部分的 曝光基板基準標記之檢測。在此情形之較佳作法,係將被 省略的曝光基板基準標記的位置以其附近的其他曝光基板 基準標記的位置來取代。以下以圖27的曝光基板加來 •兒月上述之取代例。在曝光基板丨56e中,對於省略檢測之 曝光基板基準標記並不予標示,或以虛線來標示之。如曝 120 200907596 光基板156e所示般,曝光區域ER(1,1)的曝光基板基準標 記RM3(1,1)及RM4( 1,1) ’已被省略了檢測處理。其等之曝 光基板基準標記的位置,係根據其附近的曝光基板基準標 記RM1(2,1)及RM2(2,1)的位置而算出。同樣的,在曝光基 板156e中’可省略對於其他曝光區域的曝光基板基準標記 之檢測。如圖26所示,在曝光基板i 56d的曝光基板基準 標記之檢測時’必須檢測出32組(64個)曝光基板基準標 §己,相對於此,在圖27所示的曝光基板i56e之曝光基板 基準標記的檢測時’只要進行20組(4〇個)之檢測即可, 可縮短檢測曝光基板基準標記所需時間。再者,在圖26 及圖27中’對於擬予檢測之曝光基準標記係以黑色四角 形來表示。 圖2 8所示’係曝光基板基準標記的檢測被進一步省略 時之示例。在曝光基板l56f中,曝光區域ER(1,2)的曝光 基板基準標記RM1(1,2)及RM2(1,2)的檢測被省略。其等之 曝光基板基準標記的位置,可根據曝光區域ER(丨,2)的曝 光基板基準標記RM2(1,1)及曝光區域ER(1,2)的RM1(1,3) 的位置算出。對於其他的曝光基板基準標記亦是相同,位 在曝光區域的交界之相鄰的據點中,若有對於至少一個曝 光基板基準標記進行檢測’位在其他曝光區域之前述曝光 基板基準標記附近的曝光基板基準標記,其檢測作業可以 省略。其結果,在曝光基板156e的情形,只需對於圖示中 以黑色四角形示出之15組(30個)曝光基板基準標記進行 檢測即可。如所述,藉著省略多數個曝光基板基準標記, 121 200907596 能縮短基 的產能, 而可減少對準光學系統的移動次數與停止次數, 準標記的檢測所需時間。因&amp;,可提高曝光處理 係較佳方式。 θ又,亦可對於—部分曝光區域的基準標記不進行檢測, 而是僅針對於選擇出的複數個曝光區域方進行基準標記的 檢測。在此情形’被省略檢測之曝光區域的位置,可根據 附近曝光區域的曝光基板基準標記的位置,以内插方式算 出近似位置。X ’就算有曝光區域因某些理由而不能進行 其基準標記之檢測’同樣的,能根據附近的曝光區域之曝 光基板基準標記的位置,以内插方式算出其等曝光區域的 近似位置。 ^又,1個曝光區域不見得需要有4個曝光基板基準標 記。例如圖4⑷所示般,在各個曝光區域具有2個曝光基 板基準標記之情形,亦能由本方式來處理。然而,為了使 ;取得之曝光位置已更為精確的將曝織板基準標記的位置 〇吳差實施技正,較佳之作法,係使各個曝光區域具有至少 4個曝光基板基準標記。 在貫施上述步驟S1〇1的處理後,從該曝光基板基準 標記的位置之檢測結果,據以算出曝光基板基準標記的位 置(步驟S 1 02)。「算出曝光基板基準標記的位置」之意涵, 在省略曝光基板基準標記的一部分之位置檢測時,亦有包 含根據其附近的其他曝光基板基準標記的位置算出已省略 的曝光基板基準標記之位置。又,曝光基板基準標記的位 置十鼻方法此以使用式(1)〜式(2)(亦即是從固定於影像 122 200907596 t座標系轉換成固定在定盤_與⑽之座標系之算式) %之相同方法來進行。 在算出曝光基板基準標記的位置之前,較佳 述般的基準基板來進行誤差校正以作為預處理。亦即,較 佳係使用與上述基準基板⑽或⑽相同的基準基板, 以預先對\方向移動用載台172與¥方向移動用載台m 的構造所產生之誤差施以校正處理。χ方向移動用載台⑺ …向移動用載台174’在被校正因為乂方向移動用載 〇 ”…方向移動用載台174的構造而產生之誤差後, 该校正後的位置在以下稱為(χ—c〇r(iJ),。此處之 1及J ’係1〜4的自然數,表示曝光區域。例如, (X-corhj)),Y_CGr(i,j))係表示,欲將χ方向移動用載台⑺ 舁Y方向移動用載台174定位至曝光區域ER(i,”時之校正 後的載台位置。 ^其次,跨曝光基板的整體,使用根據曝光基板基準標 '的位置之最小平方法’算出全區域誤差參數值,其特徵 之誤差值,乃是根據曝光基板基準標記的位移而取得(步驟 S1 〇3)此處之全區域誤差參數係表示,跨曝 而產生的整體性的誤差,具體而纟,乃是相同於 片^式處理而求出的6個參數Sx、Sy、θ、ω、〇χ'及〇y。 其等之參數’可根據由上述算出的曝光基板基準標記的位 置’施以與圖9的步驟S18纟S19相同的處理而算出。具 體而言’係使用與式(3)相同的^子,取得成對之基準標;己 的中點位置。X,使用最小平方法之式(21)及式⑽,以⑻) 123 200907596 來取代η,根據而以最小平方法來實 施近似,以算出全區域誤差參數。 接著,對於檢測區域的每一者,根據至少2個曝光基 板基準標記的位置,算出誤差特徵係根據曝光基板基準標 記的位移之檢測區域誤差參數值SxG,』)、巧^⑴、θχ(υ}、 =及Sy(i,j)(步驟S104)。此處之檢測區域係指,用以分別 算出檢測區域誤差參數值之各區域。再者,雖然檢測區域 亦可為與曝光區域相同之區域,但為了要提升本處理的精 度,可將各曝光區域予以細分而將細分後的複數個區域作 為檢測區域。X ’依情況不同’亦可使用在大小、位置、 形狀上與曝光區域相異之區域,來作為檢測區域。在上述 步驟咖的處理中的說明例,係省略了—部分的曝光基 板基準標記之檢測,然而,對於有省略曝光基板基準標記 之檢測之檢測區域,同樣能根據位在附近之其他曝光基板 基準標記的位置’算出被省略的曝光區域之曝光基板基準 標記的位置。在以下的說明例中,曝光區域與檢測區域為 °因此’檢測區域的記號係使用與曝光區域相同 的記號’而記載成檢測區域ER(i,j)。 以上述步驟S104的處理所算出的檢測區域誤差參數 2 ’其誤差特徵係根據各檢測區域的位移或變形,例如根 向/、丫方向的各檢測區域之伸縮程度、或X方向 、Y方向的各檢測區域的偏扭或旋轉程度等。以下使用圖 域誤差參數的—例°圖29中,對於檢測 i开乂别與變形後之檢測區域的形狀及曝光基板基準標 124 200907596 記的位置,分別以虛線及實線來表示。在此例中,RMi(i,j) 與RM3G,·))的位置並未位移,但RM4(i⑴的位 置則有發生位移。Dx及Dy係表示,在檢測區域的變形之 刖,於X方向及γ方向相鄰的二個曝光基板基準標記的中 心與中心間之距離。在X方向或γ方向相鄰的曝光基板基 準標記的X方向或γ方向之位置座標成分之差分,被去除 掉Dx或Dy後的長度,成為、 及Sy(i,j)(2)。可求出Sx(i,j)⑴與叫⑶⑺之平均值 Sx(i,j),及求出 Sy(i,j)(i)與 Sy(i,j)(2)之平均值 Sy(i,j)D 其 等之Sx(i,j)及Sy(i,j)係一種檢測區域誤差參數,其係表示, 在檢測區域ER(i,j)中於X方向或γ方向的伸縮之誤差程 度。 又,在X方向或Υ方向相鄰的曝光基板基準標記在γ 方向或X方向之位置座標成分的差分,係0 x(i,j)(i)、0 x(i,j)(2)、0 y(i,j)(l)、及 0 y(i,j)(2)。可求出 0 x〇,j)來作為 Θ x(i,j)(i)與β x(i,j)(2)的平均值,及求出θ y(i,j)來作為θ y(i,j)(i)與 0 y(i,j)(2)的平均值。其等之 0 x(i,j)及 0 y(i,j)係 一種檢測區域誤差參數’其表示之誤差,係在檢測區域 ER(i,j)中於X方向或Y方向的剪力變形程度,或是在0 χ(ί,】) 及Θ y(i,j)的大小相同時之旋轉程度。 一般而言,檢測區域誤差參數Sx(i,j)、sy(i,j)、0 x(i,j)、 及0 y(i,j),可由某檢測區域中複數個曝光基板基準標記的 位置座標的差分而算出。因此,檢測區域誤差參數值,係 相當於曝光基板基準標s己的位置之1次微分。所使用的檢 125 200907596 測區域誤差參數,並不侷限於Sx(iJ)、Sy(iJ)、0 、 及Θ y(i,j) ’ /、要其係相當於曝光基板基準標記的位置之^ 次微分、誤差的特徵係根據曝光基板基準標記的位移者, 則不拘於任何型式。 又,因為曝光基板的變形而成為可由2次式來近似之 情形時’檢測區域誤差參數,成為與該2次式的2次係數 相對應的值。 又,亦可不以上述之差分方式來求得,而是根據在檢 測區域ER(i,j)所包含的曝光基板基準標記的位置之座標, 使用相同於式(5)及式⑹之最小平方法,算出各檢測區域的 個參數 sx〇,j)、syo’m ⑹)、ω ⑹)、〇χ(υ)、及 〇州,』), 然後將其等視為檢測區域誤差參數。 接著’在各個檢測區域’根據檢測區域誤差參數值並 使用最小平方法,算出檢測區域誤差參數值的線性成分(步 )亦即’對於檢測區域ER(i,j)的中點位置與檢測 =域誤差參數 Sx(i,j)、SyW)、Θ X(i,j)、及 0 y(i,j),實施 :圖9之步驟s 19相同的處理,以取得檢測區域誤差參數 曰、·氣〖生成刀。具體而言’係與步驟S〖〇3的說明相同,乃 ^先取得檢測區域ER(i,j)的中點位置。其次使用與最小平 、缶之式(25)〜(26)相同的式子,以8?^」)來取代^:^]^11)、 、Ν1’〗)來代替△ YM(n)、以(i,j)來取代n ,以最小平方法 :近似方式算出6個參數Sx、Sy、θ、ω、Ox、及Oy。 x相同於式(27)之方式’可算出檢測區域誤差參數的 I&quot;成刀 sx〜le(1j)&amp; Sy—le(i,u。對 及 亦是 126 200907596 採行同樣的處理,而能曾山, 咐月b异出檢測區域誤差參數值的線性成 η 接者’算出相鄰的二個檢測區域之檢測區域誤差參數 值的至ν 1階以上之差分(步驟si〇6)。此處的「1階之差 刀」係丸,相鄰的二個檢測區域之檢測區域誤差參數值的 差刀又,「2階之差分」係指,由檢測區域誤差參數值 的1¾之差分又進一步算出其差分者。同樣的,對於差分 的算出已進行η次時,此差分稱為「n階之差分」。 再者,如上述的步驟s 1 〇4所述般,一般而言,檢測 區域誤差麥數,係根據曝光基板基準標記的位置座標之差 分而算出。因此,檢測區域誤差參數,係相當於曝光基板 基準払己的位置之i次差分(丨次微分)。又,檢測區域誤 差參數值的1階之差分(1次微分),同樣相當於曝光基板 基準標記的位置之2次差分(2次微分)。一般而言,檢測 區域誤差參數值的n階之差分(n次微分),係相當於曝光 基板基準標記的位置之η+1次差分(η+1次微分)。 在下述之情形’係僅對於相鄰的二個檢測區域算出檢 測區域誤差參數值之1階差分△ SxQj)、△ θ 以1,』)、及△ (9 y(ij)。 其次’根據1階差分並使用最小平方法,算出差分線 性成分 Δ Sx(i,j)Je、△ Sy(i,j)Je、△ Θ X(i,j)Je、及△ 0 yG’j)—le(步驟S107)。使用該最小平方法之差分線性成分 的計算’與上述在步驟S105中計算區域誤差參數值的線 性成分時相同,可使用與式(25)~(27)相同的式子來進行。 127 200907596 如上述,檢測區域誤差參數,係相當於曝光基板基準 標記的位置之1次微分,因此,檢測區域誤差參數值的差 分’係相當於曝光基板基準標記的位置之2次微分。因此, 在因曝光基板的變形而成為能以3次式來近似之形狀時, 差分線性成分,係與該3次式的3次係數相對應之值❶ 接著,對於各個檢測區域,根據Sx(i,j}等之檢測區域 誤差參數值、Sx_le(i,j)等之檢測區域誤差參數值的線性成 为、及△ Sx(i,j)Je等之差分線性成分的累積和,算出檢測 區域誤差參數值的誤差Sx—nle(iJ)等之誤差資訊、 S_Sy、S—θ x、及S j y(步驟sl〇8)。例如,對於&amp;的檢 測區域誤差參數值的誤i Sx—nle(iJ)之計算,係、由檢測區 域誤差參數值Sx(i,j)中,去除掉將差分線性成分△ δχ(Μ) je 的累積和加於檢測區域誤差參數值的線性成分SxJe(i,j}後 而知之Sx—le—totaihj)。亦即,可藉由式(35)及(3ό)算出 Sx_nle(i,j)。When V is set to D &lt; 1, it means that it is biased in a piece by piece manner. <Replacement of Error> In the above-described processing, the difference between the difference A XM(n) in the X direction and the difference J in the γ direction, J knives ΔYM(n), is performed in Fig. 19 . Since the two reference marks RM1 and RM2 are arranged along the χ and Χ directions, the difference Δ ΧΜ(η) in the X direction corresponds to S λ, the degree of expansion and contraction of the universal direction, and the difference Δ YM in the Y direction. (n), corresponding to the table, the degree of clothing is not red. Therefore, after the processing of the above-described step S84, the Q n is processed to calculate the six parameters Sx, Sy, ω, Ox, and 〇y, the X can be replaced with the difference in the X direction. 117 200907596 Δ XM(8) Further, the Θ can be changed to the difference Δ ΥΜ (η) in the γ direction to perform the processing shown in Fig. 19 . Further, it is not necessary to replace both Sx and Θ, and only one of them may be replaced. The position correcting mechanism of the first working position, the position correcting mechanism of the crucible 2, the reference substrate position control mechanism, the reference substrate position storage mechanism, and the reference substrate exposure mechanism can be configured by the first control unit of the first embodiment. The reference substrate position correction operation, the exposure substrate position control mechanism, the exposure substrate position storage mechanism, the exposure substrate reference mark position storage mechanism, and the linear error correction calculation mechanism. <Intelligent Whole Film Method> The exposure substrate may be formed into a sheet which can be approximated by a second-order or a third-order method due to thermal deformation during manufacturing or a shearing force of a predetermined size, for example, In the case of 24(a)*, the deformation of the exposure substrate can be opened by the second-order method, or as shown in Fig. 24(b), and the deformation of the exposure substrate can be approximated by the third-order equation. The exposed substrate in the manufacturing process has a few deformed shirts as shown in Figures 24(4) and (b). Therefore, the position of the reference mark on the exposure substrate is also shifted to a position which can be approximated by the second order, the 3: minus type, or the like. Since the displacement of the position is due to the error of the position of the reference mark, the error of the displacement corresponding to the reference mark can also be approximated by the second-order method, the third-order method, or the like. In general, the deformation of the shape of the exposed substrate is in many cases where the positional error can be approximated by the order of the cubic equation. In the following description, the deformation of the shape of the exposure substrate is approximated by a third term (including a second term). On the other hand, the reference mark on the exposure substrate 56 is formed by exposing the surface of the substrate 1 56 by laser light 118 200907596 or by mechanical processing with a drill or the like. Therefore, it is possible to shift the reference mark to a position different from the originally intended design position due to the accuracy in forming the reference mark. The displacement is a random displacement and a random error occurs at the position of the fiducial marker. Further, such a random error in the position of the reference mark can be regarded as an error which can be approximated by the term of the fourth-order or more, as compared with the error which can be approximated by the third-order expression. In the present embodiment, the error occurring in the position of the reference mark is divided into two types, namely, an error caused by the deformation of the exposure substrate and an error caused by the formation of the reference mark, and the former is divided into two types. It is regarded as an error that can be approximated by the third-order equation (the third-order approximation error); for the latter, it is treated as an error (random error) that can be approximated by the higher term of the fourth-order equation or more. In the smart overall method of the present embodiment, when the position error of the reference 桴圮 is corrected, the third-order approximation error or the random error is used as the dominant error, and the position of the substrate is exposed at the time of exposure. The best and corrective methods are different. Also, P, the error of the position of the reference mark is 2, and the magnitude of the approximation error and the random error are used as a reference to determine which is the dominant error, and according to the result, the above-mentioned piece by piece method is adopted. The same method as in the weighting process of the entire film method is used to correct the error of the exposure position. As described above, the correction of the position error of the exposure substrate during exposure is referred to as "smart whole film mode". Furthermore, the intelligent whole film method is not limited to the third-order type, and the mans: a 'right' approximates the position error and random error by the high-order error of the third-order (such as 4-time or 5-^). The size of the second criterion is used to correct the error in the exposure position during exposure, which is also acceptable. 119 200907596 According to the processing 1 of the above-described smart whole film method, the loading table of the substrate for carrying the exposure substrate during exposure can be more accurately positioned at the target position. Fig. 25 is a flow chart showing the processing sequence of the $hui type whole chip mode. The following is a detailed description of the smart whole film method according to the figure. In the example of the smart whole chip method shown below, the magnitude of the approximation error and the random error of the 次3 formula are used as the criterion for judgment. First, the reference mark (exposure substrate reference mark) of each exposure region on the exposure substrate is detected. This test is carried out in the same manner as described in Fig. 9, Fig. 17, or Fig. 17 (step SHH). ® 26 is an overview of the exposure substrate used in the processing of the smart whole film. The exposure substrate 156d' has four exposure areas (1) 丨) to er (4, sentences, etc. The exposure area is generally represented by a natural number of (10) (four) ~ 4:1 to 4). Each of the exposure regions has four exposure substrate reference marks ΚΜι (ί, 』), ΚΜ 2 (υ), then (10), and RM4 (i, j). Further, the detection of the exposure substrate reference mark in the present embodiment is performed by using two exposure substrate reference marks as the i group. When the position of the exposure substrate reference mark is detected, all of the exposure substrate reference marks of all the exposure areas can be sequentially detected. However, in order to shorten the detection time of the exposure substrate reference mark, the preferred method is to omit the detection of the partial exposure substrate reference mark. In this case, it is preferable to replace the position of the omitted exposure substrate reference mark with the position of the other exposure substrate reference mark in the vicinity thereof. In the following, the exposure substrate of Fig. 27 is added. In the exposure substrate 丨 56e, the exposure substrate reference mark for which the detection is omitted is not indicated, or is indicated by a broken line. As shown in the exposure 120 200907596 optical substrate 156e, the exposure substrate reference marks RM3 (1, 1) and RM4 (1, 1)' of the exposure region ER (1, 1) have been omitted from the detection process. The position of the exposure substrate reference mark is calculated based on the positions of the exposure substrate reference marks RM1 (2, 1) and RM2 (2, 1) in the vicinity thereof. Similarly, the detection of the exposure substrate fiducial mark for other exposure regions can be omitted in the exposure substrate 156e. As shown in Fig. 26, when detecting the exposure substrate reference mark of the exposure substrate i 56d, it is necessary to detect 32 sets (64) of exposure substrate reference marks, whereas the exposure substrate i56e shown in Fig. 27 is used. When the exposure substrate reference mark is detected, it is only necessary to perform detection of 20 sets (4 pieces), and the time required to detect the exposure substrate reference mark can be shortened. Further, in Fig. 26 and Fig. 27, the exposure reference marks to be detected are indicated by black squares. Fig. 28 shows an example in which the detection of the exposure substrate reference mark is further omitted. In the exposure substrate 156f, the detection of the exposure substrate reference marks RM1 (1, 2) and RM2 (1, 2) of the exposure regions ER (1, 2) is omitted. The position of the exposure substrate reference mark can be calculated from the positions of the exposure substrate reference mark RM2 (1, 1) of the exposure region ER (丨, 2) and the RM1 (1, 3) of the exposure region ER (1, 2). . The other exposed substrate reference marks are also the same, and the exposure of at least one of the exposed substrate reference marks is detected in the vicinity of the exposed substrate reference mark in the vicinity of the exposure area. The substrate reference mark can be omitted for the detection operation. As a result, in the case of exposing the substrate 156e, it is only necessary to detect 15 sets (30) of exposed substrate reference marks shown by black squares in the figure. As described above, by omitting a plurality of exposure substrate reference marks, 121 200907596 can shorten the base capacity, and can reduce the number of movements and stops of the alignment optical system, and the time required for the detection of the alignment mark. The &amp; can improve the exposure processing system in a preferred manner. θ, in addition, the reference mark of the partial exposure area may not be detected, but the detection of the reference mark may be performed only for the selected plurality of exposure areas. In this case, the position of the exposure region which is omitted is detected, and the approximate position can be calculated by interpolation based on the position of the exposure substrate reference mark of the vicinity of the exposure region. X ’ can detect the reference mark even if the exposure area is not used for some reason. Similarly, the approximate position of the exposure area can be calculated by interpolation based on the position of the exposure substrate reference mark in the vicinity of the exposure area. ^ Again, one exposure area does not necessarily require four exposure substrate reference marks. For example, as shown in Fig. 4 (4), in the case where two exposure substrate reference marks are provided in each exposure region, it can be handled by this method. However, in order to achieve a more accurate exposure position, the position of the exposure embossed plate fiducial mark is more precise. Preferably, each exposure area has at least 4 exposure substrate fiducial marks. After the processing of the above step S1〇1 is performed, the position of the exposure substrate reference mark is calculated from the detection result of the position of the exposure substrate reference mark (step S102). The meaning of "calculating the position of the exposure substrate reference mark" means that when the position detection of a part of the exposure substrate reference mark is omitted, the position of the omitted exposure substrate reference mark is calculated based on the position of the other exposure substrate reference mark in the vicinity thereof. . Moreover, the position of the substrate reference mark is exposed by using equations (1) to (2) (that is, from the coordinate system fixed to the image 122 200907596 t to the coordinate system fixed to the fixed plate _ and (10) ) The same method of %. Before the position of the exposure substrate reference mark is calculated, the reference substrate is preferably subjected to error correction as a pretreatment. In other words, it is preferable to use the same reference substrate as the reference substrate (10) or (10), and to correct the error caused by the structure of the \ directional movement stage 172 and the directional movement stage m in advance. The χ-direction moving stage (7) is corrected to the moving stage 174' after the error caused by the structure of the 移动-direction moving carrier ..."-direction moving stage 174 is corrected. (χ—c〇r(iJ), where 1 and J ' are natural numbers of 1 to 4, indicating the exposure area. For example, (X-corhj)), Y_CGr(i, j)) The χ-direction moving stage (7) 舁Y-direction moving stage 174 is positioned to the stage position after the correction of the exposure area ER(i,". ^Secondly, the entire substrate is over-exposed to the exposed substrate reference mark' The least square method of the position 'calculates the total area error parameter value, and the characteristic error value is obtained according to the displacement of the exposure substrate reference mark (step S1 〇 3), where the total area error parameter is expressed, The resulting overall error, specifically, is the same as the six parameters Sx, Sy, θ, ω, 〇χ', and 〇y obtained by the slice processing. The calculated position of the exposure substrate reference mark is the same as that of steps S18 and S19 of Fig. 9 Specifically, 'the same type as the formula (3) is used to obtain the paired benchmark; the midpoint position of the own. X, using the least squares method (21) and (10), (8) 123 200907596 Instead of η, the approximation is performed in a least squares method to calculate the full region error parameter. Next, for each of the detection areas, based on the position of at least two exposure substrate reference marks, the detection area error parameter value SxG of the error characteristic based on the displacement of the exposure substrate reference mark is calculated, 』), ^(1), θχ(υ }, = and Sy(i, j) (step S104). The detection area here refers to each area for separately calculating the detection area error parameter value. Further, although the detection area may be the same as the exposure area. Area, but in order to improve the accuracy of this process, each exposure area can be subdivided and the subdivided multiple areas can be used as detection areas. X 'depending on the situation' can also be used in size, position, shape and exposure area. The different area is used as the detection area. In the above-described example of the processing of the step coffee, the detection of the partial exposure substrate reference mark is omitted. However, the detection area in which the detection of the exposure substrate reference mark is omitted is also possible. The position of the exposure substrate reference mark of the omitted exposure area is calculated based on the position of the other exposure substrate reference mark located nearby. In the example, the exposure area and the detection area are °, so the symbol of the detection area is described as the detection area ER(i, j) using the same symbol as the exposure area. The detection area error calculated by the processing of the above step S104 The error characteristic of the parameter 2' is based on the displacement or deformation of each detection region, for example, the degree of expansion and contraction of each detection region in the direction of the root direction and the 丫 direction, or the degree of deflection or rotation of each detection region in the X direction and the Y direction. In the example of FIG. 29, the shape of the detection area after the detection and the deformation and the position of the exposure substrate reference mark 124 200907596 are indicated by a broken line and a solid line, respectively. In the middle, the positions of RMi(i,j) and RM3G,·)) are not displaced, but the position of RM4(i(1) is displaced. Dx and Dy are expressed in the X direction and γ after the deformation of the detection area. The distance between the center and the center of the two exposure substrate reference marks adjacent in the direction. The difference between the coordinate components in the X direction or the γ direction of the exposure substrate reference mark adjacent in the X direction or the γ direction is removed by Dx The length after Dy becomes and Sy(i,j)(2). The average value Sx(i,j) of Sx(i,j)(1) and (3)(7) can be obtained, and Sy(i,j) can be obtained. (i) an average value Sy(i,j)D with Sy(i,j)(2), and Sx(i,j) and Sy(i,j) are a detection region error parameter, which is indicated by The degree of error in the expansion or contraction in the X-direction or the γ-direction in the detection region ER(i,j). The difference between the coordinate components in the γ-direction or the X-direction of the exposure substrate reference mark adjacent in the X direction or the Υ direction, 0 x (i, j) (i), 0 x (i, j) (2), 0 y (i, j) (l), and 0 y (i, j) (2). X〇,j) is taken as the average of Θ x(i,j)(i) and β x(i,j)(2), and θ y(i,j) is obtained as θ y(i,j ) (i) and the average of 0 y(i,j)(2). The 0 x(i,j) and 0 y(i,j) are the errors of the detection area error parameter ', which is the shear force in the X direction or the Y direction in the detection area ER(i,j). The degree of deformation, or the degree of rotation when 0 χ (ί, 】) and Θ y (i, j) are the same size. In general, the detection region error parameters Sx(i,j), sy(i,j), 0 x(i,j), and 0 y(i,j) may be referenced by a plurality of exposure substrate reference marks in a certain detection region. The difference between the coordinates of the position is calculated. Therefore, the detection area error parameter value corresponds to the first derivative of the position of the exposure substrate reference mark s. The test 125 200907596 used to measure the area error parameter is not limited to Sx(iJ), Sy(iJ), 0, and Θ y(i,j) ' /, which is equivalent to the position of the exposure substrate reference mark. ^ The subdifferential and error characteristics are based on the displacement of the substrate reference mark, and are not limited to any type. In addition, when the exposure substrate is deformed and can be approximated by the second-order equation, the detection region error parameter is a value corresponding to the secondary coefficient of the second-order equation. Further, it is also possible to obtain the minimum flatness of the equations (5) and (6) based on the coordinates of the position of the exposure substrate reference mark included in the detection area ER(i, j) without using the difference method described above. In the method, the parameters sx〇, j), syo'm (6)), ω (6)), 〇χ (υ), and 〇州, 』) of each detection area are calculated, and then these are regarded as detection area error parameters. Then, in the respective detection areas, the linear component (step) of the detection region error parameter value is calculated according to the detection region error parameter value and using the least square method, that is, the midpoint position and detection for the detection region ER(i, j) = The domain error parameters Sx(i,j), SyW), Θ X(i,j), and 0 y(i,j) are implemented by the same process as step s 19 of FIG. 9 to obtain the detection region error parameter 曰, · Qi〗 〖Generation knife. Specifically, the description is the same as the description of step S 〇 3, and the midpoint position of the detection area ER(i, j) is obtained first. Secondly, instead of Δ YM(n), use the same formula as the least flat and 缶 (25) to (26), replacing ^:^]^11), Ν1') with 8?^"). Substituting (i, j) for n, the six parameters Sx, Sy, θ, ω, Ox, and Oy are calculated by the least square method: approximate method. x is the same as the method of equation (27) 'I can calculate the error parameter of the detection area. The knives sx~le(1j)&amp; Sy-le(i, u. and 126 200907596 are the same processing, and In the case of Neng Zeng, the linearity of the error parameter value of the 检测 b b 检测 区域 ' ' ' ' ' ' ' ' ' 算出 算出 算出 算出 算出 算出 算出 ' 算出 算出 ' ' 算出 算出 算出 算出 ' ' ' ' ' ' ' ' ' ' Here, the "1st-order difference knife" is the difference between the error value of the detection area of the two adjacent detection areas, and the "2nd order difference" means the difference of the error value of the detection area by 13⁄4. The difference is further calculated. Similarly, when the difference is calculated n times, the difference is referred to as "n-order difference". Further, as described in the above steps s 1 〇 4, in general, The detection area error mic is calculated based on the difference between the position coordinates of the exposure substrate reference mark. Therefore, the detection area error parameter corresponds to the i-order difference (丨 differential) of the position of the exposure substrate reference 。. 1st order difference of the regional error parameter value (1 The differential is also equivalent to the second difference (secondary differential) of the position of the substrate reference mark. Generally, the difference of n steps (n-differential) of the detection area error parameter value is equivalent to the exposure substrate reference mark. η+1 difference of position (η+1 subdifferential). In the following case, the first-order difference Δ SxQj) and Δ θ of the detection area error parameter value are calculated for only two adjacent detection areas. ), and △ (9 y(ij). Secondly, based on the first-order difference and using the least squares method, calculate the differential linear component Δ Sx(i,j)Je, △ Sy(i,j)Je, △ Θ X(i j)Je and Δ 0 yG'j)-le (step S107). The calculation of the difference linear component using the least square method is the same as the case of calculating the linear component of the regional error parameter value in the above step S105, and can be performed using the same equations as in the equations (25) to (27). 127 200907596 As described above, the detection area error parameter corresponds to the first differential of the position of the exposure substrate reference mark. Therefore, the difference of the detection area error parameter value corresponds to the second derivative of the position of the exposure substrate reference mark. Therefore, when the shape of the substrate can be approximated by the third-order equation due to the deformation of the exposure substrate, the difference linear component is a value corresponding to the third-order coefficient of the third-order equation. Next, for each detection region, according to Sx ( The detection region error parameter value such as i, j}, the linearity of the detection region error parameter value such as Sx_le(i, j), and the cumulative sum of the differential linear components of ΔSx(i, j)Je, etc., and the detection region is calculated. Error information of the error parameter value Sx_nle(iJ), etc., S_Sy, S_θ x, and S jy (step sl8). For example, the error of the detection region error parameter value of &amp; i Sx-nle (iJ) is calculated by subtracting the cumulative component of the differential linear component Δ δ χ(Μ) je from the detected region error parameter value Sx(i,j) by the linear component SxJe(i) added to the error value of the detection region error parameter , j} is known as Sx-le-totaihj. That is, Sx_nle(i, j) can be calculated by the equations (35) and (3ό).

Sx—le—totalG,』)=Sx_le(i,j) + (△SxRj)—u 的累積和)(35) Sx_nle(i,j) = Sx(i,j) - Sx_le_total(i,j) ...(36) 及 6· y_nle(i,j),亦能 Sy_le_t〇tal(i,j)、 Q 進而以相同於式(36) 對於 Sy_nle(ij)、x—nle(ij)、 以同樣於式(35)之方式算出 X」e-total(i,j)、及 Θ y_le_total(i,j), 之式子來計算。 128 200907596 由上述的計算過程可以明瞭,檢測區域誤差參數值的 線性成&gt; Sx_le(i,j)等係相當於位置的丨次微分。又,差分 線性成分等係相當於位置的2次微分,差分線 性成分的累積和係相當於其積分值。因此,將差分線性成 分的累積和加於檢測區域誤差參數值的線性成分後,所得 之Sx_le—totaiQj),係相當於根據位移的誤差中的3次式 近似誤差。再者,由於累積和相當於積分,在能以數式來 表現差分線性成分的情形時’可將該數式的積分值作為累 積和。 相對於此,檢測區域誤差參數值的誤差Sx—以…⑴等, 係攸根據位移的誤差整體當中去除掉3次式近似誤差者, 而能認為係相當於隨機誤差。 再者,在上述的步驟S 1 〇ό中,對相鄰的二個檢測區 域异出檢測區域誤差參數值的2階以上差分時,在算出差 =線性成分△SxGJ)—le的累積和時,必須根據差分的階數 算出次數的累積和。例如,在算出2階的差分之時,係算 出2階的差分線性成分的累積和,並且又進一步的算出該 累積和的累積和,然後將該累積和的累積和加至 Sx—le_total(i,j)。同樣的,在算出3階以上的n階之差分時, 係以同樣步驟將累積和反覆進行η次,然後加至 t〇tal(i,j)。可根據該Sx—算出檢測區域 决差參數值的誤差。對於△ Sy(i,j)Je、△ Θ x(i,jUe、及△ «9 y(i,j)_le 亦是相同。 X、 接著’以統計方法算出誤差資訊S_Sx、S_Sy、S 0 129 200907596 及S_ Θ y,其等係相當於檢測區域誤 等之不均—性。具體可舉例為,求出檢= ^參數值的誤差Sx—nle(i 之標準差⑷,據以^ 邊域誤差參數值的誤差之誤差資訊…亦可 2倍或:的3倍(3σ)等作為檢測區域誤差參數值的誤 差之二差貝成。舉一例而言,可將由s、等算出的 3',當作檢測區域誤差參數值的誤差之誤差資訊n 同樣的,可將由Sy_nle(i,j)等、等、或是θ yXM)等算出的3σ,當作檢測區域誤差參數值的誤差 之誤差資訊S_Sy、S—θχ、或Sjy。再者,誤差資訊中, 能相當於檢測區域誤差參數值的誤差之不均一性者並不 偏限於標準h只要能以統計方式來表示誤差的不均;_性 者,可使用各種型式。 其次,根據檢測區域誤差參數值的誤差之誤差資訊 S_Sx S_Sy、S- 0 X、及s_ 0 y,算出加權係數w,該加 權係數W係用以表示,對應於檢測區域誤差參數值的線性 成分及差分線性成分的累積和之誤差(相當於3次式近似誤 差)、與不對應其之誤差(相當於隨機誤差)所佔大小比值(步 驟S109)。此處所云「所佔大小比值」的意義在於,以相 當於3次式近似誤差之誤差與相當於隨機誤差之誤差的大 小作為基準’來了解何者係支配性的誤差。加權係數的一 例如下:對於在步驟S108所算出的檢測區域誤差參數值 的《吳差之誤差資訊’以檢測區域誤差參數值作為除數來求 其除值,例如使用式(37)來計算。 130 200907596 W-(S_Sx/Sx)x(S_Sy/Sy)x(s_0x/0x)x(s_ey/ey)...(3 7) 接者’根據曝光基板基準標記的位置、全區域誤差參 數值、及加權係數W,算出㈣台擬被定位之目標位置(步 驟 S110)。 例如’若是以式(37)所算出的加權係數w=〇,在此情 形,基準標記的位置之誤差僅相當於3次式近似誤差,基 板的位移及伴隨於此的曝光基板基準標記的位移並非隨 機。因此’在步驟S102所算出的曝光基板基準標記的位 置可謂確實。在此處,當加權係數w=〇時,係根據在步驟 S102所算出的曝光基板基準標記的位置算出擬對裝載台定 位之目標位置。經上述方法所算出的目標位置,設為⑽、 別)。在算出目標位置(Xd、Yd)時所用之計算方法,亦能 採行與上述藉逐片方式來校正位置時相同的方法。又,可 根據於與 、 Sy_le_tQtaiw) 、 Θ X—le—t〇taKi,D、及Θ y的三次式近似誤差相當 之值算出目標位置(Xd、Yd)。 另一方面’若是以式(37)所算出的加權絲W=1,在 此情形’係相當於基準標記的位置誤差僅有隨機誤差。因 此’在㈣S1〇2所算出㈣光基板基準標記的位置稱不 上正確。在此,可使用在㈣S1G3所算出的全區域 參數值,算出裝載台被定位至各曝光區域時的目標位置, 藉此’用以裝載曝光時的曝光基板之裝載台,其被定 的目標位置就可位在更精確之處。藉上述方法所算出的目 131 200907596 標位置,設為(Xg、Yg)。 一般而言,係使用加權係數W而對於上述二個曰描 ^ ^ TTR ^ 置計算方法施以加權。例如,可使用下式(38)及(39)算出 標位置(Xpos,Ypos)。 目 -..(38)Sx_le-totalG, 』) = Sx_le(i, j) + (△SxRj) - cumulative sum of u) (35) Sx_nle(i,j) = Sx(i,j) - Sx_le_total(i,j) . ..(36) and 6· y_nle(i,j), can also be Sy_le_t〇tal(i,j), Q and then be the same as equation (36) for Sy_nle(ij), x-nle(ij), and the same The equations of X"e-total(i,j) and Θy_le_total(i,j) are calculated by the equation (35). 128 200907596 It can be understood from the above calculation process that the linearity of the detection region error parameter value &gt; Sx_le(i, j) is equivalent to the differential differentiation of the position. Further, the differential linear component or the like corresponds to the second derivative of the position, and the cumulative sum of the differential linear components corresponds to the integral value. Therefore, after the cumulative sum of the differential linear components is added to the linear component of the error value of the detection region, the obtained Sx_le_totaiQj) corresponds to the third-order approximation error in the error according to the displacement. Further, since the accumulation and the equivalent are equivalent, when the differential linear component can be expressed in a mathematical expression, the integral value of the equation can be used as the cumulative sum. On the other hand, the error Sx of the detection region error parameter value is such that, in order to remove the third-order approximation error from the total error of the displacement, it is considered to be equivalent to the random error. Further, in the above-described step S1 ,, when the difference between the two adjacent detection regions is different from the second-order difference value of the detection region error parameter value, when the cumulative sum of the difference = linear component ΔSxGJ)_le is calculated The cumulative sum of the times must be calculated from the order of the difference. For example, when calculating the difference of the second order, the cumulative sum of the difference linear components of the second order is calculated, and the cumulative sum of the cumulative sums is further calculated, and then the cumulative sum of the cumulative sums is added to Sx_le_total(i , j). Similarly, when calculating the difference of the nth order of the third order or more, the cumulative and repeated steps are performed n times in the same step, and then added to t〇tal(i, j). The error of the detection area decision parameter value can be calculated based on the Sx. For Δ Sy(i,j)Je, Δ Θ x(i, jUe, and Δ «9 y(i,j)_le are also the same. X, then 'calculate the error information S_Sx, S_Sy, S 0 129 by statistical method. 200907596 and S_ Θ y, which are equivalent to the unevenness of the detection area error. For example, the error Sx-nle of the test = ^ parameter value (the standard deviation of i (4), according to the ^ domain The error information of the error of the error parameter value may be 2 times or 3 times (3σ) or the like as the error of the error value of the detection area error parameter. For example, 3' calculated by s, etc. As the error information of the error of the detection area error parameter value n, the 3σ calculated by Sy_nle(i,j), etc., or θ yXM) can be regarded as the error of the error of the detection area error parameter value. Information S_Sy, S_θχ, or Sjy. Furthermore, in the error information, the inhomogeneity of the error equivalent to the error value of the detection area is not limited to the standard h as long as the error can be expressed statistically; For the sexes, various types can be used. Secondly, the error information S_S based on the error of the detection area error parameter value x S_Sy, S-0 0, and s_ 0 y, and a weighting coefficient w is calculated, which is used to indicate an error of the cumulative sum of the linear component and the differential linear component corresponding to the detection region error parameter value (equivalent to 3 The sub-approximation error) and the size ratio of the error (corresponding to the random error) that does not correspond to it (step S109). The meaning of the "size ratio" of the cloud here is that the error corresponding to the approximation error of the third-order equation The error corresponding to the error of the random error is used as a reference to understand the error of which is dominant. An example of the weighting coefficient is as follows: the error information of the error value of the detection region error parameter calculated in step S108 is the detection region. The error parameter value is used as a divisor to divide it, for example, using equation (37). 130 200907596 W-(S_Sx/Sx)x(S_Sy/Sy)x(s_0x/0x)x(s_ey/ey).. (3 7) The receiver's calculation of the target position to be positioned (step S110) based on the position of the exposure substrate reference mark, the total area error parameter value, and the weighting coefficient W (for example, 'if the equation (37) The calculated weighting factor w=〇, here The shape and the error of the position of the reference mark correspond to only the third-order approximation error, and the displacement of the substrate and the displacement of the exposure substrate reference mark accompanying the substrate are not random. Therefore, the position of the exposure substrate reference mark calculated in step S102 can be determined to be true. Here, when the weighting factor w=〇, the target position to be positioned on the loading table is calculated based on the position of the exposure substrate reference mark calculated in step S102. The target position calculated by the above method is set to (10), do not). The calculation method used in calculating the target position (Xd, Yd) can also be the same as the method of correcting the position by the above-described borrowing and filming method. Further, the target position (Xd, Yd) can be calculated from values corresponding to the cubic approximation errors of S, Sy_le_tQtaiw), ΘX-le-t〇taKi, D, and Θ y. On the other hand, if the weighted filament W calculated by the equation (37) is 1, in this case, the position error corresponding to the reference mark has only a random error. Therefore, the position of the (4) optical substrate reference mark calculated in (4) S1〇2 is not correct. Here, the total position parameter value calculated by (4) S1G3 can be used to calculate the target position when the loading stage is positioned to each exposure area, thereby using the loading stage for loading the exposed substrate during exposure, and the predetermined target position. It can be located in a more precise place. The position of the target position of 2009, 200907596 calculated by the above method is set to (Xg, Yg). In general, the weighting coefficient W is used to apply weighting to the above two methods of calculating the ^ ^ TTR ^ setting. For example, the target position (Xpos, Ypos) can be calculated using the following equations (38) and (39). Head -..(38)

Xpos = (1-W) X Xd + W X XgXpos = (1-W) X Xd + W X Xg

Ypos = (1-W) x Yd + W x Yg …(39) 再者’加權係數及目標位置的計算方法,並不侷限於 上述之例,加權係數的意義在於,藉此係數,能以3次弋 近似誤差及隨機誤差的大小作為基準來判定何者為支配2 誤差’然後反映在曝光基板的目標位置之計算時,可根據 上述之意義所在而適當的變更計算方法。又,加權係數不 限於一個,可對各個檢測區域誤差參數值逐一算出加權係 數以供加權計算之用。 接著,將裝載台定位在以上述方式算出的目標位置, 以將圖案轉印至曝光基板(步驟Sill)。 以上,對於智慧型整片方式進行處理時之說明例,係 以3次式近似誤差及隨機誤差作為判定基準,然而,可將 步驟S106與步驟S107重複既定之次數,在步驟sl〇7算 出適當次數之差分的累積和,使得智慧型整片方式處理之 判斷基準成為,高於3次式(4次式或5次式等)的基板變 形導致之曝光基板基準標記的位置誤差、與隨機誤差的大 132 200907596 圖30⑷及⑻所示,係藉上述智慧型整片方式來處理 時之位置誤差的校正示例。_中的箭頭表示,以智慧型整 片方式來處理時所得到的校正方向與校i大小。由該圖示 可以明瞭,當曝光基板的變形產生能以2次式&lt; 3次式來 近似之位置誤差時’可得到極佳的誤差校正結果。又,如 圖3〇⑷所示般,藉由智慧型整片方式的處理,就算發生能 以:次式來近似之旋轉的大小之變化,同樣能在此情形施 以誤差的校正。 〈具體的方法&gt; 妾著說明智慧型對準之具體實現方法。在上述中, 求出微分值以獲得誤差的2次成分、3次成分,然而, 途中有無法檢測標記而發生誤差的情形時,或是曝光位 與標記位置完全相異之情形等,必須要根據標記之測量 果藉内插來求出曝光位置。其具體說明陳述如下。 印刷電路板之尺寸為繼mmx5Qmm左右;使用投影透 鏡時之曝光區域為透鏡徑長2〇〇mm〜3〇〇mm左右,遂成為 分割數3x2〜4x4 A右之步進式重複曝光。料,在習知之 對準光學系統係探用圖31所示之2種方法。 圖3 1 (a),係對於曝光區域有2個對準感測器的情形, 為了以2個對準感測器來測量位在曝光區域*隅之黑球標 =,係先測量上側之標記後,移動載台以使測量下方之標 2,使對準光學系統從曝光區域退離後,根據測量結果來 权正曝光位置以進行曝光。 133 200907596 好开另—方面’圖31(b)係對於曝光區域有4個對準感謂号 的情形H线行4隅之標記測#,使對準光學系统 宣止„ 禾术&amp;正曝光位置以進杆 t無論是何種情形,皆需在每-照射點之曝光前,先 進灯對準感測器的移動。 先 至目前為止所說明之方法,其 ==對準的最初與最後,係利用其等二準 感測器的整片式對準、智慧型對準方式者。此處十卓 置’在圖32(a)配置成4 ^位 型整片式對準。 登片式對準,在圖32(b)係智慧 另方面’當客戶有較高的φ Λ&gt; 所干之排别目丨 回的要求,如圖U⑷或圖32(d) 所不之排列,則不將標記 ; 小空隙,而倉t署於心 於本先£域内或該區域間的狹 置於外側或中心的較為廣k 形,無須將對準感測器插 在此情 圖33(b)所示將對準卜=内’而可如圖33⑷或 、* a 4器5又置在曝光區域外側。雖妙料 準感測器必須按照標記 =卜側雖然對 一次,在該批量間完全置驅動,但只要設定 統,因此可成為高度穩定之構造。亦即、,“有、:驅動系 測器,可取得丨個τ # ^ ^ Η固對準感 器時,…視,J (再者,常態地驅動感測 .、.、心視歷時變化等 平均的情形,並不少見)。 如功劂益之結果予以 在圖33(a),係使用2彻难上准a 位置之移動而取得16點之器的情形’進行8處 3個對準感測n的情形 又’在® 33(b),係使用 進订5處位置之移動而取得15點 134 200907596 載:進行之移動步驟分別如圖33⑷、圖33⑷之 對準動月知的移動距離,較短的處理時間來結束 藉此而測得之警% / ^ 貝枓,乃疋從印刷電路板周邊之標記設 十座‘取仟之位置偏離誤差值。印刷電路板之歪曲,原因 ί於包含玻璃材料之材質特性,由於係連續歪曲,因而 月b將心。己之;則里值連結成線,而可供預測中間之值。較佳 内插:式’係根據其連續性實施曲線之内插者。如上述般 之考里,至3次式為止,只要有4個測量結果即可。進而 可決定出通過其之曲線γ = Αχ3 + Βχ2 + cx + D。 又,若將標記設置成圖33(a)、圖33(b)之類的位置, :於並不依存於曝光位置’目而能設置更多的標記以供測 量。標記之個數越多,*能藉近似言十算使標記本身之描繪 决差因平均化效果而降低^進行曲線近似的方法為數頗 多’在本實‘態中’係、以平均化效果較高之最小平方近似法 來說明。 / 對於曲線之方程式F(X)取y個測量點後,成為 Τ =Σ (y - F(x))2 D)時 在求得使上述T為最小之函數係數(A、b、c、 係求出Ypos = (1-W) x Yd + W x Yg (39) Furthermore, the calculation method of the 'weighting coefficient and the target position is not limited to the above example. The significance of the weighting coefficient is that the coefficient can be 3 The sub-approximation error and the magnitude of the random error are used as a reference to determine which is the dominant 2 error' and then reflected in the calculation of the target position of the exposure substrate, and the calculation method can be appropriately changed according to the above meaning. Further, the weighting coefficient is not limited to one, and the weighting coefficients can be calculated one by one for each detection region error parameter value for weighting calculation. Next, the loading stage is positioned at the target position calculated as described above to transfer the pattern to the exposure substrate (step Sill). As described above, in the case of processing the smart whole mode, the third-order approximation error and the random error are used as the determination criteria. However, the predetermined number of times can be repeated in steps S106 and S107, and the appropriate calculation is performed in step sl7. The sum of the differences in the number of times makes the judgment criterion of the intelligent whole-chip processing become the position error and the random error of the exposure substrate reference mark caused by the deformation of the substrate of the third-order (four-time or five-time type, etc.). Large 132 200907596 Fig. 30 (4) and (8) show an example of correction of the position error when processed by the above-described smart whole chip method. The arrow in _ indicates the correction direction and the size of the school i obtained when processing in a smart whole chip mode. As is apparent from the above diagram, an excellent error correction result can be obtained when the deformation of the exposure substrate produces a positional error which can be approximated by the second-order &lt;3rd-order equation. Further, as shown in Fig. 3 (4), by the processing of the smart whole chip method, even if the change in the size of the rotation which can be approximated by the following equation occurs, the error can be corrected in this case as well. <Specific method> Next, explain the specific implementation of intelligent alignment. In the above, the differential value is obtained to obtain the second-order component and the third-order component of the error. However, when there is a case where the mark cannot be detected and an error occurs, or the exposure position is completely different from the mark position, it is necessary to The exposure position is obtained by interpolation based on the measurement result of the mark. The specific description is as follows. The size of the printed circuit board is about mmx5Qmm; when the projection lens is used, the exposure area is about 2 mm to about 3 mm, and the 遂 becomes the stepwise repeating exposure of the number of divisions 3x2 to 4x4 A right. In the conventional alignment optical system, the two methods shown in Fig. 31 were used. Figure 3 1 (a), in the case of two alignment sensors for the exposed area, in order to measure the black ball mark in the exposure area * with two alignment sensors, the upper side is measured first. After the marking, the stage is moved so that the lower target 2 is measured, and after the alignment optical system is retracted from the exposure area, the exposure position is right based on the measurement result to perform exposure. 133 200907596 Good to open another aspect - Figure 31(b) is a case where there are four alignment senses for the exposed area. The H line is marked with a mark of #4, so that the alignment optical system declares „禾术&amp; The exposure position is the advancement of the rod t. In either case, the advanced lamp is aligned with the movement of the sensor before the exposure of each illumination point. Firstly, the method described so far == the initial alignment of the alignment Finally, the use of its two quasi-sensing device for the whole-piece alignment, intelligent alignment method. Here, the ten Zhuo set 'in Figure 32 (a) is configured into a 4 ^-position full-piece alignment. Slice alignment, in Figure 32 (b) is another aspect of wisdom, when the customer has a higher φ Λ&gt; the requirements of the order of the order, as shown in Figure U(4) or Figure 32(d), Then there will be no mark; small gap, and the warehouse will be in the center of the field or between the areas of the narrower outside or the center of the wider k shape, without the need to insert the alignment sensor in this situation 33 ( b) will be aligned with bb = inner ' and can be placed outside the exposed area as shown in Figure 33 (4) or * a 4 . Although the sensor must be in accordance with the mark = side, although once, The drive is completely set up between the batches, but it can be a highly stable structure as long as it is set up. That is, when there is a drive detector, when a τ # ^ ^ 对准 alignment sensor is obtained, ...view, J (again, it is not uncommon for the average situation to drive sensing, .., and the duration of the mind to change). In the case of Fig. 33(a), the result of using a 2 difficulty to move the position of the a position to obtain a 16 point device is to perform 8 cases of 3 alignment sensing n. 33(b), using the movement of 5 positions to obtain 15 points 134 200907596 Load: The moving steps are as shown in Fig. 33 (4), Fig. 33 (4), and the moving distance of the moving moon is short, and the processing time is short. According to this, the measured % / ^ Bessie, from the mark on the periphery of the printed circuit board, set the position of the ten-seat's deviation from the error value. The distortion of the printed circuit board, the reason is that the material properties of the glass material are included, and since the system is continuously twisted, the moon b will be the heart. Self; the value is concatenated into a line, and the value in the middle can be predicted. Preferably, the interpolation is based on the interpolator of the curve according to its continuity. As in the above test, as long as there are four measurement results up to the third time. In turn, the curve γ = Αχ3 + Βχ2 + cx + D can be determined. Further, if the mark is set to a position such as Fig. 33 (a) or Fig. 33 (b), more marks can be set for measurement without depending on the exposure position. The more the number of markers, the more * can be used to approximate the delineation of the mark itself due to the averaging effect. The method of approximating the curve is quite a number of 'in the real' state, the system is averaged. A higher least square approximation is used to illustrate. / After taking y measurement points for the equation F(X) of the curve, when Τ = Σ (y - F(x)) 2 D), find the function coefficient (A, b, c, which minimizes the above T). System

F(x) ==A*x3 + b*x2 + c*x + D 135 200907596 此為最小平方近似 成為聯立方程式。由於 因此,乃看成是式τ= 成為最小之條件。 J次方程式。 T可视為係數(A、 (Y ' A * X3- B * T為最小之條件使 B、C、D)的函數, 使T為最小之條件 乃是 T之微分=〇之方程式 〇 占 丁/ 5 D = 〇 占 丁/ 5 c = 〇 &lt;5 T/ 5 B = 〇 占 丁/ 5 A = 〇 解上式而整理後 成為4元聯立方程式(下式)。 Σχ°, Σχ1, Σχ2, Σχ3、 ί 4 Ν / 一 η 、 Σχ1, Σχ2, Σχ3, Σχ4 Λ η Σχ°γ ) Σχ2, Σχ3, Σχ4, Σχ5 D η Ex'y V Σχ3, Σχ4, Σχ5, Σχ6 匕 、β J Σχ2γ / ^ Σχ3γ ,F(x) ==A*x3 + b*x2 + c*x + D 135 200907596 This is the least square approximation to become a simultaneous equation. Therefore, it is considered to be the condition that the formula τ = becomes the minimum. J equation. T can be regarded as a function of the coefficient (A, (Y ' A * X3- B * T is the minimum condition for B, C, D), and the condition that T is the minimum is the differential of T = the equation of 〇 / 5 D = 〇占丁 / 5 c = 〇&lt;5 T/ 5 B = 〇占丁 / 5 A = 〇解上式 and then become a 4-ary simultaneous equation (the following formula). Σχ°, Σχ1, Σχ2, Σχ3, ί 4 Ν / η η, Σχ1, Σχ2, Σχ3, Σχ4 Λ η Σχ°γ ) Σχ2, Σχ3, Σχ4, Σχ5 D η Ex'y V Σχ3, Σχ4, Σχ5, Σχ6 匕, β J Σχ2γ / ^ Σχ3γ,

解該行列式而算出係數A、 -A * X3 + η * 2 、D。又’將數式 -Α χ+Β*χ2 + 〇*χ + Γλ^ D予以儲存,則不僅只 記測量座標的測量值,亦 、匕有 的校正值。 了❹曲線内插來制位於其 圖34,係供說明該曲線近似計算之進行位置者 34(a)之標記配置之情形砗 θ ㈣時可得到印刷電路板上側之6 標έ己设计座標值Pu 1 (X ρ U’y)〜pu6(x,y)、與6個標記測量 136 200907596The determinant is solved to calculate the coefficients A, -A * X3 + η * 2 , D. In addition, the number - Α χ + Β * χ 2 + 〇 * χ + Γ λ ^ D is stored, and not only the measured values of the measured coordinates, but also the corrected values. The interpolation of the ❹ curve is shown in Fig. 34, which is used to describe the position of the position 34(a) of the approximate calculation of the curve 砗 θ (4), and the coordinate value of the 6 standard design on the printed circuit board side can be obtained. Pu 1 (X ρ U'y) ~ pu6 (x, y), with 6 markers measured 136 200907596

Qul(x,y)〜Qu6(x,y)(黑球)。然而,由於此係使用2個對準 感測器者’若有不安於對準感測器之穩定性之情形時,亦 可取2個資料之平均值,而成為3個標記設計座標值 Pu 12(x,y)~Pu5 6(x,y)、與 3 個標記測量值 Qul2(x’y)〜Qu56(x,y)(十字形狀)。該黑球與十字形狀在之 後的說明係以相同方法而算出,由於僅是在測量個數上相 異’因而在之後的說明以黑球為主。 採同樣之方法,在印刷電路板之下側亦得到6個標記 設計座標值?41(\,丫)〜?(16(\,7)、與6個標記測量值 Qdl(x,y)〜Qd6(x,y)(黑球)。另一方面,從印刷電路板左側 可得到3個標記設計座標值Pi1(x,y)〜P13(x,y)、與3個襟 記測量值Qll(X,y)〜Q13(x,y)(黑球);從右側可得到3個標 記設計座標值Prl(x,y)~Pr6(x,y)與3個標記測量值 Qrl(x,y)〜Qr3(x,y)(黑球)。 將經此而得之(PU,QU)、(Pd,Qd)、(P1,Q1)、(Pr、Qr)分 為各組’對各組依上述方法算出方程式的係數β 在上述行列式中之Pu、Pd ’於y方向係一定之值,因 此,在行列式的計算中Pul〜pu6=xl〜x6,Pdl〜Pd6=xl〜x6。 就Qu、Qd而言,由於X方向及Y方向同為變數,而成為 與各自方向相對應的2條近似曲線(QuX(X),QUy(x))、 (Qdx(x),Qdy(x))。另一方面,就P卜pr而言,由於χ方向 係一定之值,因此,在行列式的計算中P11〜Pl6=yl〜y6 ; Prl〜Pr6=yl〜y6。就Qu、Qd而言,在X方向及Y方向同 為變數,而成為與各自方向相對應的2條近似曲線 137 200907596 (Qlx(y),Qly(y))、(Qrx(y))、(Qry(y))。 如上述,在解上述行列式之後,得到圖34(c)及圖34(d) 所示之曲線資料。該曲線資料由於係方程式,就Pll、Pd 而言,只要在該座標軸上,無論何處皆能算出内插值。又, 就PI、Pr而言’只要在該座標軸上’無論何處皆能算出内 插值。 如所示,上述方程式可算出在1列或1行之固定軸上 的數值。然而,曝光座標係平面上的座標,為決定曝光座 標而必須有以下之步驟。 首先,對於彼此對向之曲線組Qu與Qd,以及和其正 交之彼此對向之曲線組Q1與Qr,將曝光位置座標(Εχ,^) 分別如圖35(a)、圖35(b)所示般地各代入其中。 上側組所得之值(Qux(Ex),Quy(Ex)) 下侧組所得之值(Qdx(Ex),Qdy(Ex)) 左側組所得之值(Qlx(Ey),Qly(Ey)) 右側組所得之值(Qrx(Ey)’Qry(Ey)) 其等之數值’若是曝光座標位在各曲線上之情形時, 係表示曝光位置須由曝光座標位置作多少程度校正之值。 =曝光位置近於上方,結果將成為近於上方組之資料, '光位置近於下方,則使成為近於下方組之資料之社 果即:。亦即’若是近於上方組,必須對上方組之資料: 若是近於下方組,必須對下方組之資料進行加權。 如上述’就Pll、pd -,.,, 而s,由於y方向係一定之值, 且之y座標設為Puy,將下側組之γ座標設為吻 138 200907596 後,(Puy-Ey)/(Puy-Pdy) : (Ey-Pdy)/(Puy-Pdy)成為曝光 座標的内分比。由於内分點越接近則有更大的加權,因此, 在曝光座標位置之校正值可由以下之計算式算出。 校正值 xl=(QUX(Ex) * (Ey-Pdy) + Qdx(Ex) * (Puy-Eyh/Ruy.pdy) 校正值 yl=(QUy(Ex) * (Ey_Pdy) + Qdy(Ex) * (Puy Ey))/(Puy_pdy) 此方法,雖然僅係求出曝光座標位置(Ex,Ey)之校正 已預先知曉,曝 但理所當然的,由於曝光區域的大小 光區域之4隅的座標位置亦能獲知。此處,如圖35(勾、圖 35(d)所示般,若將該4個座標以相同於上述之方法而代入 方程式中,則可得到在曝光區域4隅之校正值。 曝光區域由於係整體曝光之故,而無法有高次之校正,Qul (x, y) ~ Qu6 (x, y) (black ball). However, since the two alignment sensors are used, if the stability of the alignment sensor is unsatisfactory, the average of the two data can be taken to become the three marker design coordinates Pu 12 (x, y) ~ Pu5 6 (x, y), and three marker measurements Qul2 (x'y) ~ Qu56 (x, y) (cross shape). The description of the black ball and the cross shape is calculated in the same manner, and since it differs only in the number of measurements, the description will be based on black balls. In the same way, get 6 mark design coordinates on the underside of the printed circuit board? 41 (\, 丫) ~? (16 (\, 7), and 6 mark measurement values Qdl (x, y) ~ Qd6 (x, y) (black ball). On the other hand, three mark design coordinate values Pi1 can be obtained from the left side of the printed circuit board. (x, y) ~ P13 (x, y), and 3 note measurement values Qll (X, y) ~ Q13 (x, y) (black ball); from the right side can get 3 mark design coordinate value Prl ( x, y) ~ Pr6 (x, y) and three marker measurements Qrl (x, y) ~ Qr3 (x, y) (black sphere). The resulting (PU, QU), (Pd, Qd), (P1, Q1), (Pr, Qr) are divided into groups'. The coefficient β for calculating the equation for each group according to the above method. In the above determinant, Pu and Pd' are fixed values in the y direction. In the calculation of the determinant, Pul~pu6=xl~x6, Pdl~Pd6=xl~x6. In the case of Qu and Qd, since the X direction and the Y direction are the same variables, they become two approximations corresponding to the respective directions. Curves (QuX(X), QUy(x)), (Qdx(x), Qdy(x)). On the other hand, in the case of P pr, since the χ direction is a certain value, therefore, in the determinant In the calculation, P11~Pl6=yl~y6; Prl~Pr6=yl~y6. In the case of Qu and Qd, the X and Y directions are the same as the variables, and become the respective parties. To the corresponding two approximate curves 137 200907596 (Qlx(y), Qly(y)), (Qrx(y)), (Qry(y)). As described above, after solving the above determinant, Figure 34 is obtained ( c) and the curve data shown in Fig. 34(d). The curve data is based on the equation. For Pll and Pd, the interpolation value can be calculated anywhere on the coordinate axis. Also, for PI and Pr. The phrase 'as long as it is on the coordinate axis' can calculate the interpolation value anywhere. As shown, the above equation can calculate the value on the fixed axis of 1 column or 1 row. However, the coordinates on the plane of the exposure coordinate system are determined. The following steps must be taken to expose the coordinates. First, for the curve groups Qu and Qd that are opposite each other, and the curve groups Q1 and Qr that are orthogonal to each other, the exposure position coordinates (Εχ, ^) are respectively shown in the figure. Each of them is substituted as shown in Fig. 35(a) and Fig. 35(b). The value obtained by the upper group (Qux(Ex), Quy(Ex)) The value obtained by the lower group (Qdx(Ex), Qdy(Ex) The value obtained in the left group (Qlx(Ey), Qly(Ey)) The value obtained in the right group (Qrx(Ey)'Qry(Ey)) The value of the value is 'if the exposure coordinate position is on each curve In the case of shape, it indicates the degree to which the exposure position must be corrected by the position of the exposure coordinate. = The exposure position is close to the top, and the result will become the data of the upper group. The position of the light is close to the lower one, making it close to the lower group. The fruit of the information is: That is, if it is close to the upper group, it must be the data of the upper group: If it is close to the lower group, the data of the lower group must be weighted. As described above, 'for Pll, pd -, ., and s, since the y direction is a certain value, and the y coordinate is set to Puy, the γ coordinate of the lower group is set to kiss 138 200907596, (Puy-Ey) /(Puy-Pdy) : (Ey-Pdy)/(Puy-Pdy) becomes the internal division ratio of the exposure coordinates. Since the closer the internal points are, there is a larger weighting, and therefore, the correction value at the exposure coordinate position can be calculated by the following calculation formula. Correction value xl=(QUX(Ex) * (Ey-Pdy) + Qdx(Ex) * (Puy-Eyh/Ruy.pdy) Correction value yl=(QUy(Ex) * (Ey_Pdy) + Qdy(Ex) * ( Puy Ey)) / (Puy_pdy) This method, although only the correction of the exposure coordinate position (Ex, Ey) is known in advance, it is natural to expose, because of the size of the exposed area, the coordinate position of the light region of 4 隅 can also Here, as shown in Fig. 35 (hook and Fig. 35(d), if the four coordinates are substituted into the equation by the same method as described above, the correction value in the exposure region 4隅 can be obtained. Due to the overall exposure of the area, there is no high-order correction.

心、射點之線性誤差。 上述整片式對準之最小平方計算 正值即可。 可算出每一 又,至目 又’至目前為止的方法, 僅止於使用到上側組 之資料 139 200907596 « 與下側組之資料,然而,如圖35(a)、圖35(b)所示,利用 左側組與右側組之對亦可算出相同的校正值。 如上述,就Pl、pr而言,χ方向係一定之值,因此, 右將左側組之X座標設為ρ1χ,將右側組之χ座標設為Prx, 則 (Plx-Ex)/(pix_prx) : (Εχ·ρΓχ)/(ρ1χ_ρΓχ)為曝光座標 的内为比。藉此’在曝光座標位置之校正值可由以下之計 算式算出。 杈正值 xl=(Qlx(Ey) * (Ex-prx) + Qrx(Ey) * (Pix_Ex))/(plx_prx) 杈正值 yl=(Qly(Ey) * (EX-Prx) + Qry(Ey) * (ρΐχ_Εχ))/(ρΐχ prx) 然而,僅使用上下一對之資料之情形時,如圖36(甸所 不並無法校正X方向之2次以上的誤差。另一方面,僅使 用左右1對之資料之情形時,如圖36(b)所示並無法校正y 方向之2次以上的誤差。 在本實施形態中所取之方法,係先使用上下丨對之資 料以決定校正值,其次從左右丨對之資料中,削除與上下 1對之資料間之共通項、亦即偏離值與丨次成分的校正值, 而僅僅加入2次以上的校正值。藉此方法’對圖36(a)、圖 36(b)之任一形狀皆可予以校正。 然而,在上下與左右資料之測量標記不同之情形時, 或者是測量點之個數較多之情形,亦有偏離值與丨次成分 並非共通之可能。在此情形,亦可從雙方之資料中取出偏 140 200907596 離值與1次成分然後利用其平均值即可。 —若藉此方法,可藉由形成於外周之標記的測量結果, 算出位於其内部之所有曝光位置的校正值。 又,在上述係示出3次曲線之近似值,但3次曲線之 近似須有4點之資料。上下資料雖有6點,但左右資料僅 有3,點。在本實施形態中,在有4點以上資料之情形時係 進行3次曲線近似計算,但在3點之情料料行2次曲 線近料算,纟2點之情形時則可進行〗次方程切次人 之計算。亦即’若是在檢測6點資料時,有數點之標記&quot; 线測錯誤,亦能將此剔除,按照所餘諸數採取最佳: 』智慧型整片式對準,係供檢測對應於所有照射點之標 記’其中,有藉3次近似誤差與隨機誤差之差分來進一不 權之處理。將標記配置在外周之高速智慧型整片式對^ 疋相同、要以 T = E(Y-A*x3_B*x2_c*x_DhMa 之T值在既定值以上,可視為標記之描繪誤差的可能性古 在此情形,亦有因曲線近似校正之方式而惡化精 可能。又’上述之儘管上下左右資料之測量標記相同又之 偏離值與1次成分並非共通之情形,所陳述者可謂但 事項。在此情形,亦可無視於測量點之個數,而之 之值或偏離值與i次成分之不—致程度,而自動^ T 次近似曲線之校正、或直線近似之校正方法。X,若ί 2 事前已經了解,基板之歪曲傾向φ 2次曲線即可校正疋在 疋可由直線近似來校正時’亦能以參數輸人之方式來決f 141 200907596 近似方法。 相反的,對標記描繪而言,雖鈇 射描繪之情形時的铲产 *、、、β ’在鑽頭加工或雷 採平均化效果會有較佳的精 …,在標記形成之使用曝光時 描繪誤差。再者,當印刷雷踗把夕不1 丁个|發生“ Α*χ3_Β*χ2 路板之歪曲亦極小時,Τ = Σ(Υ_ C X-D)2之值將會非常的小。特別是,在 不具有3次成分之情形時,係數A近於0,亦不且 成分時,係數B亦近於〇。若是僅由c及 二有二人 誤差,則只須取得印刷電 ,、疋之線性 量點數較少,而可==Μ料即可,之測 進行設定亦包含按化。在本實施形態中所 钕’,、、Α Β之值而使同一批量之第2片 起之對準標記的测量點數減少。 如上述’藉由組内計算之近似方法,決 正之印刷電路板的誤差。如上述,若進行上下之组…广 則左右之組亦可實施同樣的說明: 簡要陳述如下。 對上下之組予以 &lt;直線近似平均值&gt; 在i對之組分別藉直線近似算出The linear error of the heart and the shot. The least square of the above-mentioned full-chip alignment is calculated as a positive value. It is possible to calculate the method of each of the above, and until now, only to use the data of the upper group 139 200907596 « The data with the lower group, however, as shown in Figure 35 (a), Figure 35 (b) It can be seen that the same correction value can be calculated by using the pair of the left side group and the right side group. As described above, in the case of P1 and pr, the χ direction is a certain value. Therefore, the X coordinate of the left group is set to ρ1 右, and the χ coordinate of the right group is set to Prx, then (Plx-Ex) / (pix_prx) : (Εχ·ρΓχ)/(ρ1χ_ρΓχ) is the ratio of the inside of the exposure coordinates. The correction value at the exposure coordinate position can be calculated by the following calculation formula.杈 positive value xl=(Qlx(Ey) * (Ex-prx) + Qrx(Ey) * (Pix_Ex))/(plx_prx) 杈 positive value yl=(Qly(Ey) * (EX-Prx) + Qry(Ey * (ρΐχ_Εχ))/(ρΐχ prx) However, when only one pair of data is used, as shown in Fig. 36 (Dian can't correct the error in the X direction twice or more. On the other hand, only use left and right In the case of a pair of data, as shown in Fig. 36 (b), it is not possible to correct the error of the y direction twice or more. In the embodiment, the method is to first use the data of the upper and lower 以 to determine the correction value. Secondly, from the data of the left and right pairs, the common term between the data of the upper and lower pairs, that is, the correction value of the deviation value and the order component, is removed, and only the correction value of more than 2 times is added. Any of the shapes of 36(a) and 36(b) can be corrected. However, when the measurement marks of the upper and lower and left and right data are different, or when the number of measurement points is large, there is also a deviation value. It is not possible to have a commonality with the 丨 component. In this case, the deviation from the data of both parties can also be taken out from the data of the two parties. By this method, the correction value of all the exposure positions located inside can be calculated by the measurement result of the mark formed on the outer circumference. Further, the above-mentioned system shows the approximate value of the third-order curve, but the third-order curve The approximation must have 4 points of data. Although there are 6 points for the upper and lower data, there are only 3 points for the left and right data. In this embodiment, when there are more than 4 points of data, the curve approximation is performed 3 times, but in the case of 3 points of the material line 2 times the curve near calculation, 纟 2 points can be used to calculate the sub-equation to the next person's calculation. That is, if the detection of 6 points of data, there are several points mark &quot; line If the error is measured, it can be eliminated, and the best is taken according to the remaining numbers: 』Intelligent whole-chip alignment is used to detect the mark corresponding to all the illumination points. Among them, there are 3 approximation errors and random errors. The differential is processed in a different way. The high-speed intelligent whole-chip pair of flags placed on the periphery is the same, and T = E (the value of T of YA*x3_B*x2_c*x_DhMa is above the predetermined value, which can be regarded as a mark. The possibility of depicting errors is ancient in this case, and there are also It may be deteriorated by the method of correction. In addition, although the above-mentioned measurement marks of the upper and lower left and right data are the same and the one-time component is not common, the stated person may be a matter. In this case, the measurement may be ignored. The number of points, and the value or deviation value is not the degree of the i-th order component, but the correction of the automatic ^ T approximation curve, or the correction method of the linear approximation. X, if ί 2 has been known beforehand, the substrate The distortion tendency φ 2 times curve can be corrected 疋 when 疋 can be corrected by straight line approximation ′ can also be determined by means of parameter input f 141 200907596 approximation method. On the contrary, in the case of mark drawing, the shovel production*, , and β' in the case of the smear drawing are better in the bit processing or the averaging effect of the slashing, and are drawn when the exposure of the mark is used. error. In addition, when the printing of the Thunder is not a singer | the occurrence of " Α * χ 3 Β * χ 2 road plate is also very small, Τ = Σ (Υ _ C XD) 2 value will be very small. In particular, in In the case of not having the third component, the coefficient A is close to 0, and when the component is not, the coefficient B is also close to 〇. If only two errors are caused by c and two, only the printed electricity must be obtained, and the linearity of the 疋The number of points is small, and the number of points can be ==, and the setting is also included. In the present embodiment, the second piece of the same batch is paired with the values of ',, and Β The number of measurement points of the quasi-marker is reduced. As described above, the error of the printed circuit board is determined by the approximation method in the group. As described above, if the group of the upper and lower groups is widened, the same description can be applied to the group: The statement is as follows. For the upper and lower groups, &lt;linear approximation average value&gt;

Bu ; Qd = Ad * (χ) + ua v V Au (χ) + 正 00心分別對1次成分之平均值予以修Bu ; Qd = Ad * (χ) + ua v V Au (χ) + 正 00 heart to repair the average of the first component

Qu =( Au + Ad)/2 * (X) + Bu Qd =( Au -t- Ad)/2 * (X) + Bd 142 200907596 ••偏離值X、偏離值Y、旋轉、正交度、倍 〇平X、俾 率γ(與整片式對準相同成分) &lt;直線近似&gt;Qu =( Au + Ad)/2 * (X) + Bu Qd =( Au -t- Ad)/2 * (X) + Bd 142 200907596 •• Offset value X, deviation value Y, rotation, orthogonality,倍〇平X, 俾 rate γ (same component as the whole slice alignment) &lt;Line Approximation&gt;

在1對之組分別藉直線近似算出1次式Q vu ^ Au * fx\ ,The first-order Q vu ^ Au * fx\ is calculated by a linear approximation in a pair of groups.

Bu ; Qd = Ad * (χ) + Bd。 .偏離值X、偏離值Y、旋轉、正交度、倍 率γ、梯形X、梯形γ “ ^ &lt;2次曲線近似&gt; 在1對之組分別藉2次曲線近似算出2次诖八 ,. 工、Qu = Au2 * X) + U * (χ) + Cu ; Qd = A(j2 * (χ) + Bd * (χ) + μ .偏離值χ、偏離值γ、旋轉、正交度、倍 率Υ、梯形X、梯形γ'ϋ字形x'u字形γ、 倍 形Υ、枕形X、枕形Y s ; X、筒 &lt;3次曲線近似&gt; 在1對之組分別藉3次曲線近似算出3次式 J;;AU3MX) + Bu2*^ + C-W + -^-Ad3,^ d (x) + Cd * (χ) + ) .相雕值X、偏離值Y、旋轉、正交度、仵 率Υ、梯形X、梯形Y、U字形χ、υ字形γ、、倍 :”、枕形X、枕形Υ、3次曲線誤差X、:二:、筒 3:欠倍率誤差Χ、3次倍率誤差γ 曲線誤差V、 在上述中’組内之數式所取用之方法,有最丨 束出之近似直線、2次之近似曲線、:最:平方法 程式,但其方法並不侷介 近㈣線之方 朽限於此’亦可由樣條(spUne)函數或 143 200907596 移動平均等來求出。再者,亦可將各資料進扞 如以直線連結成彎折的線段)而以複數仃:域之畫分⑽ 直線或曲線之内插。再者,亦可求出既之定數二來處理,行 圖案化方式來儲存曝光位置資料。在此=之先藉由 法全部予以統一語彙, 其等之類似方 資訊”作為說明之用語。 所求侍之曲線 炉又’如圖32⑷所示者,在中間部分亦存有與邊平行之 橾記組之情形時,係藉上 、千仃之 似所求得之曲線^ Λ 得到直線或近 “ 曲線貧机’使用内分資訊以決定曝光位置。且, 藉由中間之組盘下側之細γ 5丨丨古站山 ,、,付到直線或近似所求得之曲線資 ::使用内分資訊以決定曝光位置,此係亦為可能之示例。 係相田於將基板分割為2而將本實施形態作2次利用 者,當然屬於本發明的權利所及。 …如上述’若是使用智慧型整片方式來處理,就算曝光 區域中存有因某種理由而無法檢測其曝光基板基準標記 者’㈣使用全體區域誤差參數值算出裝載台被定位在各 曝光區域時之目標位置。又,就算存有無法檢測出一部分 曝光基板基準標記之情形’亦能根據在其周邊之可供檢測 的曝光基板基準標記的位置,對於不可檢測之曝光基板基 準‘ α己以近似方式來作位置内插。因此,對於曝光區域中 因任何理由而無法檢測出曝光基板基準標記者,同樣可實 施曝光。 藉由上述之智慧型整片方式之處理,用以曝光之曝光 位置’已有考慮到曝光基板基準標記的位置之隨機誤差。 144 200907596 • 又,因為可省略一部分的曝光基板基準標記的檢測,而能 提高曝光處理的產能。又,就算曝光區域中存有因為任何 理由而無法檢測曝光基板基準標記者,同樣能夠在此情形 實施曝光處理,而有更為確實的曝光處理。再者,肇因於 載台構造等之誤差,亦有許多情形並非隨機誤差,因此, 對於使用基準基板來校正肇因於載台構造等之誤差之情形 而言,同樣能藉由智慧型整片方式的使用,而能夠除了進 订曝光基板的誤差校正外,亦一併對於肇因於載台構造等 之誤差實施校正。亦即,使用基準基板來校正肇因於載台 構造等之誤差在此亦可省略。 〈〈〈〈第2實施形態〉〉〉&gt; 圖2 0係本發明之第2實施形態的投影曝光裝置2 〇 〇 的概略圖。投影曝光裝i細與投影曝光裝i 1⑽相同, 主要是用於製造印刷電路板。 技衫曝光裝置200,係使用數位式微反射鏡元件 r CDlgltaljvilcr〇mirror_Deviee)之投影曝光裝置乃是不使 用標線片即可將圖案轉印至曝光基板者。 〈〈投影光學系統〉〉 投影光學系統包含光源210、光纖212、及光學棒214。 光源2 1 〇具有複數個紫外線led光源(未圖示)。由光 原210射出的光束係射入光纖si?,由光纖si]會聚射入 光束然後由光纖2 12的射出部射出照明光束。由光纖 射出的fe明光束係射至光學棒214,光學棒214使射 入的照明光束之照度近於均-化然後射出。 145 200907596 〈數位式微反射鏡元件光學系統&gt; 在光學棒214所射出光束的行進方向,配置有照明中 繼光學系統222、偏向反射鏡224、及數位式微反射鏡元 件230。由光學棒214所射出的光束,藉由照明中繼光學 系統222與偏向反射鏡224而被調整成為數位式微反射鏡 元件230的反射面232的大小,然後照射於數位式微反射 鏡元件230。數位式微反射鏡元件23〇的反射面232,係 由可獨立驅動之複數個反射鏡所構成。藉著對於複數個反 射鏡的驅動,可改變複數個反射鏡的角度,使射至複數個 反射鏡的光反射至期望方向。複數個反射鏡係以2維方式 配置,例如配置成 800x600 個、1280x1024 個、1980x1080 個等方式 〈放大照明系統〉 在數位式微反射鏡元件230的下方配置有放大照明系 統240。放大照明系統24〇包含複數個透鏡。在放大照明 : 系統240中的光路存在著曈位置,在瞳位置配置有遮板 242 °在遮板242中形成了開口 244。 如上述,數位式微反射鏡元件230的複數個反射鏡可 改變角度。在本實施形態中,數位式微反射鏡元件23〇的 複數個反射鏡之角度,係以成為第1角度或第2角度之方 式而被驅動。第1角度,係使射至複數個反射鏡之光束朝 向遮板242㈣σ 244。當複數個反射鏡的角度成為該第 I角度時,由光源210所發出的光束將會通過遮板242的 開口 2 4 4而朝下古义„ 朝下方刖進。另一方面,第2角度係使射至複 146 200907596 數個反射鏡之光束射至並非遮板242的開口 244之處。當 複數個反射鏡的角度成為該第2角度時,由光源2 1 0所發 出的光束,會因遮板242而受遮蔽以致不能通過開口 244。 在放大照明系統240的下方,配置有微陣列透鏡250。 微陣列透鏡250 ’係由各與數位式微反射鏡元件23〇之複 數個反射鏡的每一者成對應關係之複數個微透鏡所構成。 當複數個反射鏡的角度成為第1角度時,由光源21〇所發 出的光束會通過遮板242的開口 244,而射至微陣列透鏡 250。微陣列透鏡250係使射至各個微透鏡的光會聚,進 而在微陣列透鏡250的下方位置LS形成光束點。光束點 具有數微米〜十餘微米之大小。 〈投影透鏡1 5 0、對準光學系統i 6〇、基板裝載台丨7〇〉 在微陣列透鏡250的下方,配置有投影透鏡丨5〇、對 準光學系統1 60、及基板裝載台i 7〇。投影透鏡丨5〇、對準 光學系統1 60、及基板裝載台i 7〇,具有與第j實施形態 之技衫曝光裝置1 00相同的構成及功能,而以同一符號來 表示。 基板裝載台170的工作台i 77 ,係與第j實施形態相 同而裝載有曝光基板156。再者,曝光基板156可為第J 實施形態所說明的曝光基板156a、156b、或i56c中的任 一者。在曝光基板i56巾,形成了在位置LS所形成的光 束點像。由於係將該光束點像形成於曝光基板156,而能 使有光束點像形成之處受到曝光。因此,藉著將複數個反 射鏡的各個角度控制成上述帛1肖度或帛2肖度之任一 147 200907596 者,使曝光基板156的表面位置成為,有點像形成之處與 無點像形成之處。由於可將曝光基板156作成有該點像形 成之處與未予形成之處,而使所進行者與圖案之轉印相 等。 圖21 ’係形成於曝光基板156之光束點像、與曝 光基板156之放大圖。再者,圖2卜係形成於曝光基板 之光束點像260中的一部分、與曝光基板156的部分之圖 不。圖21中,係以白球來表示光束點像26〇。 如圖2 1所不般’形成於曝光基板i 56之光束點像, 相鄰的像之位置係彼此分隔。因此,在曝光基才反工%所曝 光的位置亦呈離散分佈,難以將印刷電路板的連續之導體 圖案形成於曝光基板15^基於以上事 反射鏡元卩咖配置成如圖21所示般,使光束 的排列方向與曝光基板156的移動方向有若干傾斜(角度Θ t)。再者,在圖21中,係使曝光基板156移動於白色箭頭 所不的方向。該白色箭頭所示的方向,較佳係X方向或γ 方向的任—者。在此係使曝光基板156移動於X方向。又, 傾斜角度0 t,只要能按照形成於曝光基板丨之光束點像 之大小、或是光束點像之間隔來妥為設定即可。 〈在X方向之連續圖案的形成〉 圖22,係在X方向形成連續圖案時之順序圖。圖 22(a-i)〜圖22(a_4)’係曝光基板156與光束點像26〇之位 置關係圖;圖22(b-l)〜圖22(b-4)係表示,藉著曝光基板156 移動而受到曝光之處。圖22(a-l)〜圖22(a-4)及圖22(b-l)〜 148 200907596 圖22(b-4) ’同樣表示形成於曝光基板156的光束點像260 的一部分、與曝光基板156的一部分之圖。 在X方向形成連續圖案之時,係使用複數個光束點像 260中既定的1個光束點像260a。在圖22中,係以黑球來 表不該光束點像260a。亦即,來自光源210的光,僅在光 束點像260a的這一位置,方照射於曝光基板1 56。 如圖22(a-l)所示般’首先係將曝光基板156定位在期 望位置’在曝光基板156形成1個光束點像260a,因而如 圖22(b-l)所示般的在曝光基板156形成1個曝光點262a。 接著使曝光基板156朝-X方向移動既定距離,在該位 置使光束點像260a形成於曝光基板156,因而如圖22(b-2) 所示般的在曝光基板156形成1個曝光點262b。再者,朝 著-X方向移動之既定距離’只要按照形成於曝光基板1 56 的點像的大小、或點像的間隔來妥為設定即可。 採同樣方式’使曝光基板156依序朝-X方向移動既定 之距離’在這些位置將光束點像26〇a形成於曝光基板156, 因而能如圖22(b-3)及圖22(b-4)所示般,依序將丨個曝光 點262c及262d形成於曝光基板156。 如所示’邊使曝光基板156朝-X方向移動既定之距離, 邊將1個光束點像2 6 0 a形成於曝光基板1 $ 6,而能沿著X 方向連續將圖案形成於曝光基板156。 在上述圖22(b-l)〜圖22(b-4)中,為了要使形成於曝光 基板156之曝光點262a〜262d更為明確,乃使曝光基板156 的移動距離達到相當程度,然而,如上述,曝光基板156 149 200907596 1 56之點像的大 的移動距離’只要能按照形成於曝光基板 小、或點像的間隔來妥為設定即可。 〈在γ方向之連續圖案的形成〉 圖23 ’係在γ方向形成連續圖案時之順序圖。圖 23U-1)〜圖23(a-3),係曝光基板156與光束點像26〇之位 置關係圖’·圖〜圖23(b_3)係表示,藉著曝光基板156 的移動而受到曝光之處。圖23⑹)〜圖23㈣及圖23_〜 圖23(b-3),同樣表示形成於曝光基板156的光束點像· 的邛分、與曝光基板156的一部分之圖。 在Y方向形成連續圖案之時,係使用複數個光束點像 60中至夕2個以上的點像。在圖23中,係使用3個光束 點像260a〜260c之示例,係以黑球來表示之。亦即,來自 光源210的光,僅在光束點像26〇a〜26〇c之處,方照射於 曝光基板156。 如圖23(a-1)所示般,首先係將曝光基板156定位在期 望位置,在曝光基板156形成1個光束點像26〇a,因而如 圖23(b-l)所示般的在曝光基板156形成i個曝光點264^ 接著使曝光基板156在+X方向移動既定距離。該位 置,係光束點像260b沿+Y方向與曝光點264a成並排的位 置。在該位置,將光束點像26〇b形成於曝光基板156,而 能如圖23(b-2)所示般的在曝光基板ι56形成1個曝光點 264b。如上述,曝光基板156朝+X方向移動之既定距離, 係能使光束點像260b沿著+Y方向而與曝光點264a成並排 位置之距離。 150 200907596 採同樣方式’使曝光基板156在方向依序移動既定 距離,使光束點像沿+Y方向而與曝光點264a成並排,以 在曝光基板156形成光束點像,因而如圖23(b-3)所示般, 依序在曝光基板156形成1個曝光點26铋。 如所述,邊使曝光基板156在^方向移動既定之距 離,邊將2個以上之光束點像26〇形成於曝光基板⑸, 猎此,可沿著γ方向將連續圖案形成於曝光基板156。 在上述圖230M)〜圖23(b_3)中,為了使形成於曝光基 板W之曝光m264c更為明確,而使曝光基板156 的移動距離達到某種程度,然而,如上述,曝光基板156 的移動距離,係使點像能沿著+γ方向而成並排位置之距 離。 β在上述示例中,無論是在X方向形成連續圖案之情形, 或是在Υ方向形成連續圖案之情形,光源210發出的光在 既定之短時間内照射在曝光基板156纟,僅是複數個光束 點像中的i個,然而’亦能以在既定短時間内形成複 數個(2個以上)光束點像26〇的方式而使光源21〇發出的 光照射於曝光基板156。藉此’可達到處理的效率化,能 縮短形成圖案所需時間。 又,在圖20所示的投影曝光裝置2〇〇,其中包含丄個 數位式微反射鏡元件23〇、及對應於此的i個投影透鏡 150,然而,亦能由複數個數位式微反射鏡元件及複數個 對^於此之投影透鏡所構成,而在既定的時間點内藉複數 個投影透鏡來形成複數個光束點像26〇。藉此,可進一步 151 200907596 縮短形成圖案所需時間。 〈秩差的發生〉 如上述,在第2實施形態中的投影曝光裝置2〇〇,亦 有=用與第i實施形態之投影曝光裝置1〇〇相同的基板裝 載台170。因此,與投影曝光裝置1〇〇相同,會發生X方 向移動用載台172與γ方向移動用載台174的移動誤差。 又’亦同樣會發生阿貝誤差。 再者’曝光基板156(156a' 156b、及15叫亦使用相 同者。因此,因曝光基156的變形而造成之基準標記的 位移誤差、或是在形成基準標記時所產生的誤差,亦與投 影曝光裝置1〇〇的情形時相同而會發生。 ★ ^於此’在第2實施形態之投影曝純置2G0,對於 第1實施形態所說明之各種處理,例如以圖9的整片方式 進行之曝光處理、使用圖14或圖17所示之基準基板⑽ 或⑽之處理、使用圖18所示之基準基板仙或工湯 ^整片:式的曝光處理、圖19所示之對逐式方式與整片 κ施加推之定位處理、或是將χ方向的伸縮Sx置換成X 方向的差分△ XM(n)、將旋轉Θ置換成γ方向的差分△ XM⑻、乃至於圖25所示之智慧型整片方式之定位處理, 所有上述處理皆能以相同於第1實施形態之方絲進行。 在上述第2實施形態,亦藉由控制裝置】99 ,來構成 第1位置校正機構、第2位置校正機構、基準基板位置控 制機構、基準基板位置儲存機構、基準基板曝光機構、基 準基板位置校正運算儲在ing . w , 存機構、曝光基板位置控制機構、 152 200907596 曝光基板位置館存機構 構、及線性誤差校正 ’尤基板基準標記位置儲存機 &quot;&quot;万-構。 【圖式簡單說明】 圖i係本發明之第】實施 概略圖。 权办曝先裝置1 〇〇的 圖2⑷係X方向移動用载台172 ”4的詳細前視圖 -方向移動用载台 視圖。 X方向移動用載台172的詳細前 圖3係Z方向移動用 y , ^ ^ 载台176的詳細側視圖,U)孫脾 二ΓΓ 174定位在-γ方向的端部者;_=Bu ; Qd = Ad * (χ) + Bd. Deviation value X, deviation value Y, rotation, orthogonality, magnification γ, trapezoidal X, trapezoid γ " ^ &lt; 2nd curve approximation &gt; 2 pairs of curves are approximated by 2 times in a pair of pairs, . , Qu = Au2 * X) + U * (χ) + Cu ; Qd = A(j2 * (χ) + Bd * (χ) + μ. Deviation value χ, deviation value γ, rotation, orthogonality, Magnification 梯形, trapezoidal X, trapezoidal γ' ϋ shape x'u shape γ, shape Υ, pincushion X, pincushion Y s ; X, cylinder &lt;3rd curve approximation&gt; 3 times in 1 pair The curve approximates the third-order formula J;;AU3MX) + Bu2*^ + CW + -^-Ad3,^ d (x) + Cd * (χ) + ) . Phase-engraved value X, deviation value Y, rotation, orthogonal Degree, 仵 rate 梯形, trapezoidal X, trapezoidal Y, U-shaped χ, υ-shaped γ, 倍:”, Pincushion X, Pincushion Υ, 3 times curve error X,: 2:, tube 3: Undergrowth error Χ 3 times magnification error γ curve error V, the method used in the above-mentioned 'group', the most straight line, the approximate line, the second approximation curve, the most: the flat method, but the method Not limited to the (four) line of the square is limited to this 'can also be moved by the spline (spUne) function or 143 200907596 The average is obtained and so on. Furthermore, it is also possible to insert data into a line such as a straight line that is bent into a line, and to interpolate the line (10) of a line or a curve. Furthermore, it is also possible to find the fixed number two to process, and to pattern the exposure position data. In this case, the law is used to unify the vocabulary, and the similar information is used as a description. The curve furnace of the service is as shown in Figure 32 (4), and there is also a parallel with the side in the middle part. In the case of the group, the curve obtained by the likes and the thousands of points is obtained. Λ The straight line or near “curve lean machine” uses the internal information to determine the exposure position. Moreover, by using the fine γ 5丨丨古站山 on the lower side of the middle set plate, the curve is obtained by straight line or approximation:: using the internal information to determine the exposure position, this is also possible. Example. It is a matter of course that the present invention is divided into two, and the present embodiment is divided into two, and the present embodiment is used twice. ...If the above is handled by the smart whole chip method, even if there is a reason why the exposure substrate reference mark cannot be detected in the exposure area for some reason' (4), the load table is calculated in each exposure area using the total area error parameter value. The target location at the time. Moreover, even if there is a case where a part of the exposed substrate reference mark cannot be detected, the position of the exposure substrate reference mark which is detectable at the periphery thereof can be used, and the position of the undetectable exposure substrate reference 'α has been approximated. Interpolated. Therefore, exposure can be performed in the same manner in the exposure region where the exposure substrate reference mark cannot be detected for any reason. By the above-described processing of the smart whole film method, the exposure position for exposure 'has taken into account the random error of the position of the exposure substrate reference mark. 144 200907596 • Also, since the detection of a part of the exposure substrate reference mark can be omitted, the throughput of the exposure processing can be improved. Further, even if there is a case where the exposure substrate reference mark cannot be detected for any reason in the exposure region, the exposure processing can be performed in this case as well, and there is a more accurate exposure processing. Furthermore, there are many cases where the error of the stage structure is not a random error. Therefore, it is also possible to use a reference substrate to correct errors due to the structure of the stage, etc. In addition to the error correction of the exposure substrate, it is also possible to perform correction for errors due to the stage structure or the like. That is, the use of the reference substrate to correct errors due to the stage structure or the like may be omitted herein. <Second Embodiment>> FIG. 20 is a schematic view of a projection exposure apparatus 2 according to a second embodiment of the present invention. The projection exposure device is the same as the projection exposure device i 1 (10), and is mainly used for manufacturing a printed circuit board. The projection exposure apparatus 200 is a projection exposure apparatus using a digital micromirror element r CDlgltaljvilcr〇mirror_Deviee), which is a method of transferring a pattern to an exposure substrate without using a reticle. <Projection Optical System> The projection optical system includes a light source 210, an optical fiber 212, and an optical rod 214. The light source 2 1 〇 has a plurality of ultraviolet LED light sources (not shown). The light beam emitted from the optical source 210 is incident on the optical fiber si?, and is concentrated by the optical fiber si] into the optical beam, and then the illumination beam is emitted from the emitting portion of the optical fiber 212. The light beam emitted from the fiber is incident on the optical rod 214, and the optical rod 214 causes the illumination of the incident illumination beam to be nearly uniformized and then emitted. 145 200907596 <Digital Micromirror Element Optical System> An illumination relay optical system 222, a deflection mirror 224, and a digital micromirror element 230 are disposed in the traveling direction of the light beam emitted from the optical rod 214. The light beam emitted from the optical rod 214 is adjusted to the size of the reflecting surface 232 of the digital micromirror device 230 by the illumination relay optical system 222 and the deflecting mirror 224, and then irradiated to the digital micromirror device 230. The reflecting surface 232 of the digital micromirror element 23 is composed of a plurality of mirrors that can be independently driven. By driving a plurality of mirrors, the angle of the plurality of mirrors can be varied to reflect light incident on the plurality of mirrors to a desired direction. The plurality of mirrors are arranged in a two-dimensional manner, for example, 800x600, 1280x1024, and 1980x1080. <Enlarged illumination system> An enlarged illumination system 240 is disposed below the digital micromirror device 230. The magnified illumination system 24A includes a plurality of lenses. In the magnified illumination: the optical path in the system 240 has a 曈 position, and a shutter 242 is disposed at the 瞳 position to form an opening 244 in the shutter 242. As described above, the plurality of mirrors of the digital micromirror element 230 can change the angle. In the present embodiment, the angles of the plurality of mirrors of the digital micromirror device 23 are driven to be the first angle or the second angle. In the first angle, the beam incident on the plurality of mirrors is directed toward the shutter 242 (four) σ 244. When the angle of the plurality of mirrors becomes the first angle, the light beam emitted by the light source 210 will pass through the opening 2 4 4 of the shutter 242 and will fall downward toward the lower side. On the other hand, the second angle The beam of the plurality of mirrors is incident on the opening 244 which is not the shutter 242. When the angle of the plurality of mirrors becomes the second angle, the light beam emitted by the light source 2 10 will The mask 242 is shielded from passing through the opening 244. Below the magnified illumination system 240, a microarray lens 250 is disposed. The microarray lens 250' is comprised of a plurality of mirrors each of which is coupled to the digital micromirror element 23. Each of the plurality of microlenses is formed into a corresponding relationship. When the angle of the plurality of mirrors becomes the first angle, the light beam emitted by the light source 21 会 passes through the opening 244 of the shutter 242 and is incident on the microarray lens. 250. The microarray lens 250 converges light incident on each of the microlenses to form a beam spot at a position LS below the microarray lens 250. The beam spot has a size of several micrometers to ten micrometers. <Projection lens 150 Quasi-optical system i 6 〇, substrate loading table 7 〇 > Below the microarray lens 250, a projection lens 丨 5 〇, an alignment optical system 1 60, and a substrate loading table i 7 配置 are disposed. Projection lens 丨 5 〇 The alignment optical system 160 and the substrate loading table i 7 have the same configurations and functions as those of the first embodiment of the invention, and are denoted by the same reference numerals. The table i of the substrate loading table 170 77. The exposure substrate 156 is mounted in the same manner as in the jth embodiment. Further, the exposure substrate 156 may be any one of the exposure substrates 156a, 156b, or i56c described in the Jth embodiment. The beam spot image formed at the position LS is formed. Since the beam spot image is formed on the exposure substrate 156, the spot where the beam spot image is formed can be exposed. Therefore, by using each of the plurality of mirrors The angle is controlled to any of the above-mentioned 肖1 度 degree or 帛2 度 degree 147 200907596, so that the surface position of the exposure substrate 156 is made to be somewhat like where the formation and the dot formation are formed. Since the exposure substrate 156 can be formed The image formation The place where the person is not formed is equal to the transfer of the pattern and the pattern. Fig. 21' is an enlarged view of the beam spot image formed on the exposure substrate 156 and the exposure substrate 156. A part of the beam spot image 260 formed on the exposure substrate and a portion of the exposure substrate 156. In Fig. 21, the beam spot image 26 表示 is indicated by a white ball. The image is formed on the exposure substrate as shown in Fig. 21 The beam spot image of i 56 is separated from each other by the position of the adjacent image. Therefore, the position exposed by the exposure base is also discretely distributed, and it is difficult to form a continuous conductor pattern of the printed circuit board on the exposure substrate 15 . ^ Based on the above-described mirror elements, as shown in FIG. 21, the arrangement direction of the light beams is slightly inclined (angle Θ t) from the moving direction of the exposure substrate 156. Further, in Fig. 21, the exposure substrate 156 is moved in a direction in which the white arrow does not. The direction indicated by the white arrow is preferably any of the X direction or the γ direction. Here, the exposure substrate 156 is moved in the X direction. Further, the inclination angle 0 t may be appropriately set in accordance with the size of the beam spot image formed on the exposure substrate or the interval between the beam spot images. <Formation of Continuous Pattern in X Direction> Fig. 22 is a sequence diagram when a continuous pattern is formed in the X direction. 22(a) to 22(a_4)' are positional relationship diagrams of the exposure substrate 156 and the beam spot image 26A; and FIGS. 22(b1) to 22(b-4) show the movement by the exposure substrate 156. Subject to exposure. 22(a) to 22(a-4) and 22(b1) to 148200907596 Fig. 22(b-4)' also shows a part of the beam spot image 260 formed on the exposure substrate 156 and the exposure substrate 156. Part of the map. When a continuous pattern is formed in the X direction, a predetermined one of the beam spot images 260 is used. In Fig. 22, the beam spot image 260a is indicated by a black ball. That is, the light from the light source 210 is irradiated onto the exposure substrate 156 only at the position of the beam spot image 260a. As shown in Fig. 22(a1), "the exposure substrate 156 is first positioned at a desired position", and one beam spot image 260a is formed on the exposure substrate 156, so that the exposure substrate 156 is formed as shown in Fig. 22 (b1). Exposure point 262a. Next, the exposure substrate 156 is moved by a predetermined distance in the -X direction, and the beam spot image 260a is formed on the exposure substrate 156 at this position, so that one exposure point 262b is formed on the exposure substrate 156 as shown in Fig. 22 (b-2). . Further, the predetermined distance 'moved in the -X direction' may be appropriately set in accordance with the size of the dot image formed on the exposure substrate 1 56 or the interval of the dot image. In the same manner, the exposure substrate 156 is sequentially moved in the -X direction by a predetermined distance. At these positions, the beam spot image 26〇a is formed on the exposure substrate 156, so that it can be as shown in Fig. 22 (b-3) and Fig. 22 (b). As shown in FIG. 4, one exposure point 262c and 262d are sequentially formed on the exposure substrate 156. As shown in the drawing, while the exposure substrate 156 is moved by a predetermined distance in the -X direction, a beam spot image of 2 60 a is formed on the exposure substrate 1 $6, and the pattern can be continuously formed on the exposure substrate along the X direction. 156. In the above-mentioned Figs. 22(b1) to 22(b-4), in order to make the exposure points 262a to 262d formed on the exposure substrate 156 more specific, the moving distance of the exposure substrate 156 is made to be equivalent, however, As described above, the large moving distance ' of the spot image of the exposure substrate 156 149 200907596 1 56 may be set as appropriate in accordance with the interval formed on the exposure substrate or the dot image. <Formation of a continuous pattern in the γ direction> Fig. 23' is a sequence diagram when a continuous pattern is formed in the γ direction. 23U-1) to 23(a-3), the positional relationship between the exposure substrate 156 and the beam spot image 26A is shown in Fig. 23(b-3), and is exposed by the movement of the exposure substrate 156. Where. 23(6)) to 23(4) and Figs. 23_ to 23(b-3), similarly, a part of the beam spot image formed on the exposure substrate 156 and a part of the exposure substrate 156 are shown. When a continuous pattern is formed in the Y direction, two or more dot images of a plurality of beam spot images 60 are used. In Fig. 23, an example in which three beam spot images 260a to 260c are used is indicated by a black ball. That is, the light from the light source 210 is irradiated onto the exposure substrate 156 only at the point where the beam spot is 26 〇 a to 26 〇 c. As shown in Fig. 23 (a-1), first, the exposure substrate 156 is positioned at a desired position, and one beam spot image 26 〇 a is formed on the exposure substrate 156, so that exposure is as shown in Fig. 23 (b1). The substrate 156 forms i exposure points 264 and then the exposure substrate 156 is moved by a predetermined distance in the +X direction. This position is a position where the beam spot image 260b is side by side with the exposure point 264a in the +Y direction. At this position, the beam spot image 26 〇 b is formed on the exposure substrate 156, and one exposure dot 264b can be formed on the exposure substrate ι 56 as shown in Fig. 23 (b-2). As described above, the predetermined distance by which the exposure substrate 156 is moved in the +X direction enables the beam spot image 260b to be spaced apart from the exposure point 264a in the +Y direction. 150 200907596 In the same manner, the exposure substrate 156 is sequentially moved by a predetermined distance in the direction, so that the beam spot image is arranged side by side with the exposure point 264a in the +Y direction to form a beam spot image on the exposure substrate 156, thus, as shown in FIG. 23(b) As shown in -3), one exposure point 26 is formed on the exposure substrate 156 in sequence. As described above, while the exposure substrate 156 is moved by a predetermined distance in the ^ direction, two or more beam spot images 26 〇 are formed on the exposure substrate (5), and a continuous pattern can be formed on the exposure substrate 156 in the γ direction. . In the above-described FIGS. 230M) to 23(b-3), in order to make the exposure m264c formed on the exposure substrate W clearer, the moving distance of the exposure substrate 156 is made to some extent, however, as described above, the movement of the exposure substrate 156 is performed. The distance is such that the point image can be formed in a side-by-side position along the +γ direction. β In the above example, whether the continuous pattern is formed in the X direction or the continuous pattern is formed in the x direction, the light emitted from the light source 210 is irradiated on the exposure substrate 156 for a predetermined short time, only a plurality of Although i of the beam spot images, the light emitted from the light source 21 can be irradiated onto the exposure substrate 156 by forming a plurality of (two or more) beam spot images 26 既 in a predetermined short time. Thereby, the efficiency of the process can be achieved, and the time required for pattern formation can be shortened. Further, in the projection exposure apparatus 2 shown in FIG. 20, a plurality of digital micromirror elements 23A and i projection lenses 150 corresponding thereto are included, but a plurality of digital micromirror elements can also be used. And a plurality of pairs of projection lenses formed thereon, and a plurality of projection lenses are used to form a plurality of beam spot images 26 在 at a predetermined time point. By this, it is possible to further shorten the time required to form a pattern by 151 200907596. <Generation of Rank Difference> As described above, in the projection exposure apparatus 2 of the second embodiment, the same substrate mounting table 170 as that of the projection exposure apparatus 1 of the i-th embodiment is used. Therefore, similarly to the projection exposure apparatus 1A, a movement error between the X-direction moving stage 172 and the γ-direction moving stage 174 occurs. Also, Abe error will occur as well. Furthermore, the exposure substrate 156 (156a' 156b, and 15 is also the same. Therefore, the displacement error of the reference mark caused by the deformation of the exposure base 156 or the error generated when the reference mark is formed is also In the case of the projection exposure apparatus 1 相同, the same occurs. ★ This is the projection exposure of 2G0 in the second embodiment, and the various processing described in the first embodiment is, for example, the entire method of FIG. The exposure processing performed, the processing using the reference substrate (10) or (10) shown in FIG. 14 or FIG. 17, the exposure processing using the reference substrate sin or the soup shown in FIG. 18, and the alignment shown in FIG. The positioning method and the positioning process of the entire κ application push, or the displacement XY in the X direction is replaced by the difference ΔXM(n) in the X direction, and the rotation Θ is replaced by the difference ΔXM(8) in the γ direction, or as shown in FIG. In the above-described second embodiment, the first position correction mechanism is configured by the control device 99, and the above-described processing can be performed in the same manner as in the first embodiment. Second position correction mechanism, reference Plate position control mechanism, reference substrate position storage mechanism, reference substrate exposure mechanism, reference substrate position correction calculation stored in ing. w, storage mechanism, exposure substrate position control mechanism, 152 200907596 exposure substrate position library structure, and linear error correction [Embedded substrate reference mark position storage device &quot;&quot; 10,000-frame structure. [Simplified illustration of the drawings] Fig. 1 is a schematic diagram of the implementation of the present invention. Figure 2 (4) of the right-hand exposure device 1 is used for X-direction movement Detailed front view of the stage 172"4 - direction shift stage view. Detailed view of the X direction moving stage 172 is shown in Fig. 3 for moving in the Z direction, ^ ^ Detailed side view of the stage 176, U) Sun spleen The second 174 is positioned at the end of the -γ direction; _=

方向移動用載自Π4定位在+γ方向的端部者。㈠係將Y 圖4(a)、(b)係表示曝光基板〗56a及⑽之例。 圖5(a)、(b)、⑷係以逐片方式為進行步驟之第1 中,表示基準標*p的M @ ^ w樣 早榦。己的位置檢測、曝光基板〗 及對於曝光基板l56a之曝光之步驟圖。的位置調整、 熊;6⑷-(b)..、(C)、⑷係以逐片方式為進行步驟之第2 ,表不基準標記的位置檢測、曝光基板156b的位 置-整、及對於曝光基板156b之曝光之步驟圖。 中 整 圖7⑷、⑻、(c)係以逐片方式為進行步驟之第〕態樣 表不基準標記的位置檢測、曝光基板⑽的位置調 及對於曝光基板l56b之曝光之步驟圖。 圖8係以整片方式來檢測之曝光基板〗5心之例。 圖 圖9係使用曝光基板156c時之整片方式之處理流程 153 200907596 圖10係對於被裝載於工作台177之曝光基板156c的 4個曝光區域(ER1、ER4、ER9、或ER14)之基準標記rM1 與基準標記RM2進行攝影時之狀態圖。 圖 11(a)、(b)、(c)、(d)、(e)、(f)係 6 個參數 Sx、Xy、 β、ω、Ox、Oy各自之態樣圖。 圖12(a)係表示基準基板丨5 8a的概略前視圖;(b)係形 成於基準基板158a的丨個區域之基準標記之放大圖。 圖13(a)、(b)係於12個區域ER1〜ER12的每一者,分 別使用複數個基準標記中的1 8個基準標記。 圖14係表示用以決定基準基板158a的基準標記對的 位置之流程圖。 圖15(a)表示基準基板15扑的概略前視 fix 於基準基板158b的1個區域之基準標記的放大圖 圖16⑷係表示形成於基準位置用標線片之基準圖案; (b)係表不基準樟$ , +琛。己158b,其中,與非被覆部44對應之圖 粟ORM1〜ORM9,已祜鏟如φ並-准甘1 轉P至基準基板158b的所有區域 ER1-ER12 ; (C) ^ ± ^ ^ , )係表不當中心發生位移時,圖案 RM1〜0RM9的轉印狀態。 ’、 及將基準圖案轉印至基準基板_之處理、 圖。土 土板158b的基準標記對的位置之處理的流程 15 8b來校正X 174的移動誤差 方 u U係表示使用基準基板15{ 向移動用載台172 z興Y方向移動用 並以整片方式來推— 飞术進仃曝光處理的流身 154 200907596 方式與整片方式之加權,以決定 Y方向移動用载台174的位置之 圖19係表示進行逐片 X方向移動用載台ι72與 處理的流程圖。 圖 2 0係本發明之第 概略圖 2實施形態之投影曝光裝置 100的 圖21係形成於曝光其把1《a — | 土 友1暴扳156之光束點像260、及曝光 基板156之放大圖。 圖22(a 1)〜(a_4)、⑺…〜㈣)係形成連續圖案於X方 向時之順序圖。 圖23(a 1)〜(a_3)、(b-i)〜(b_3)係形成連續圖案於γ方 向時之順序圖。 圖24係表示曝光基板的變形之模樣,(a)表示曝光基 板的變形以2次式來近似時之情形,(b)表示以3次式來近 似時之情形。 圖25係智慧型整片方式的處理順序圖。 圖26係在智慧型整片方式的處理時所使用的曝光基板 的一例之概略圖。 圖27係一曝光基板之概略圖,表示將一部分的曝光基 板基準標記之檢測省略。 圖28係一曝光基板之概略圖,表示將一部分的曝光基 板基準標記之檢測省略。 圖29係檢測區域誤差參數值的一例之概略圖。 圖3 0(a)、(b)、(c)係以智慧型整片方式來處理時之位 置誤差的校正例之概略圖。 155 200907596 圖31(a)、(b)係習知之對準光學系統之概略圖。 圖32(a)、(b)、⑷、⑷係曝光區域之標記位置之概略 圖。 圖33(a)、(b)、(c)、⑷係曝光區域之其他標記位置配 置之概略圖。 圖34(a)、⑻、⑷、⑷係曝光區域中進行曲線近似計 算之位置之概略圖。 圖3 5(a) (b) (c)、(d)係曝光區域中彼此對向之曲線 組、與其正交之彼此對向之曲線組、及曝光位置座標的概 略圖。 圖36(a)、(b)係進行校正之曝光區域形狀之一例的概 略圖。 【主要元件符號說明】 100 :投影曝光裝置 11 〇 :光源 142 :標線片 150 :投影透鏡 156 156a ' 156b ' 156e ' Wd、156e、156f :曝光基板 158a、158b :基準基板 16〇、16〇a、16〇b:對準光學系統 162 :影像處理裝置 I70 :基板裝載台 172. X方向移動用載台 I74: γ方向移動用載台 156 200907596 176 : 177 : 199 : 200 : 210 : 230 : RM1 ER ·· Z方向移動用載台 工作台(裝載台) 控制裝置 投影曝光裝置 光源 數位式微反射鏡元件 、RM2、RM3、RM4 : 曝光區域、檢測區域 基準標記 157The direction of movement is carried from the end of the γ4 in the +γ direction. (1) Fig. 4 (a) and (b) show examples of exposure substrates [56a and (10). 5(a), (b), and (4) show the M @ ^ w sample of the reference mark *p in the first step of the step by piece method. The position detection of the position, the exposure of the substrate, and the step of exposure to the exposure substrate 156a. Position adjustment, bear; 6(4)-(b).., (C), (4) is the second step of the step by piece method, the position detection of the reference mark, the position of the exposure substrate 156b, and the exposure A step diagram of exposure of the substrate 156b. Fig. 7 (4), (8), and (c) show the positional detection of the reference mark in a slice-by-slice manner, the positional adjustment of the exposure substrate (10), and the exposure of the exposure substrate 156b. Fig. 8 is an example of an exposure substrate which is detected in a one-piece manner. FIG. 9 is a process flow 153 when a substrate 156c is exposed. FIG. 10 is a reference mark for four exposure regions (ER1, ER4, ER9, or ER14) of the exposure substrate 156c mounted on the stage 177. A state diagram when rM1 and the reference mark RM2 are photographed. Fig. 11 (a), (b), (c), (d), (e), and (f) are diagrams showing the respective states of six parameters Sx, Xy, β, ω, Ox, and Oy. Fig. 12 (a) is a schematic front view showing a reference substrate 丨 58 8a; and (b) is an enlarged view of a reference mark formed in a plurality of regions of the reference substrate 158a. 13(a) and (b) are each of the twelve regions ER1 to ER12, and one of the plurality of fiducial markers is used. Fig. 14 is a flow chart showing the position of the reference mark pair for determining the reference substrate 158a. 15(a) is an enlarged view showing a reference mark of one region of the reference substrate 158b, and FIG. 16(4) shows a reference pattern formed on the reference position reticle; (b) Not benchmark 樟$, +琛. 158b, wherein the maps ORM1 to ORM9 corresponding to the non-covered portion 44 have been shoveled like φ and -1 to P to all regions ER1-ER12 of the reference substrate 158b; (C) ^ ± ^ ^ , ) The transfer state of the pattern RM1 to 0RM9 when the center is displaced. ' and the process of transferring the reference pattern to the reference substrate _. The flow of the position of the fiducial mark pair of the earth plate 158b is corrected by the flow 15 8b to correct the movement error of the X 174. U U indicates that the reference substrate 15 is used to move to the moving stage 172 in the Y direction and in a one-chip manner. The flow body 154 200907596 The method and the weight of the whole film method are used to determine the position of the Y-direction moving stage 174. FIG. 19 shows the step-by-piece X-direction moving stage 127 and processing. Flow chart. Fig. 20 is a schematic view of the second embodiment of the present invention. The projection exposure apparatus 100 of the embodiment of Fig. 2 is formed by exposing a beam point image 260 of the "a" to the mate 1 and the exposure substrate 156. Figure. Fig. 22 (a 1) to (a_4), (7), ... (4) are sequential diagrams in which a continuous pattern is formed in the X direction. Fig. 23 (a 1) to (a_3) and (b-i) to (b_3) are sequence diagrams in which a continuous pattern is formed in the γ direction. Fig. 24 is a view showing a state in which the exposure substrate is deformed, (a) shows a case where the deformation of the exposure substrate is approximated by a quadratic formula, and (b) shows a case where the deformation is similar in the third-order equation. Fig. 25 is a processing sequence diagram of the smart whole chip mode. Fig. 26 is a schematic view showing an example of an exposure substrate used in the processing of the smart whole film method. Fig. 27 is a schematic view showing an exposure substrate, showing that the detection of a part of the exposure substrate reference mark is omitted. Fig. 28 is a schematic view showing an exposure substrate, and the detection of a part of the exposure substrate reference mark is omitted. Fig. 29 is a schematic diagram showing an example of a detection area error parameter value. Fig. 30 (a), (b), and (c) are schematic diagrams showing an example of correction of the position error when processed by the smart whole chip method. 155 200907596 Figures 31 (a) and (b) are schematic diagrams of conventional alignment optical systems. Fig. 32 (a), (b), (4), and (4) are schematic views of the mark positions of the exposure regions. Fig. 33 (a), (b), (c), and (4) are schematic views showing the arrangement of other mark positions in the exposure region. Fig. 34 (a), (8), (4), and (4) are schematic views showing positions where the curve is approximated in the exposure region. Fig. 3 5(a) (b) (c), (d) are a schematic diagram of a curve group facing each other in an exposure region, a curve group orthogonal thereto, and an exposure position coordinate. Fig. 36 (a) and (b) are schematic views showing an example of the shape of the exposure region to be corrected. [Main component symbol description] 100: Projection exposure device 11 〇: Light source 142: reticle 150: Projection lens 156 156a ' 156b ' 156e ' Wd, 156e, 156f: exposure substrate 158a, 158b: reference substrate 16 〇, 16 〇 a, 16〇b: alignment optical system 162: image processing apparatus I70: substrate loading stage 172. X-direction moving stage I74: γ-direction moving stage 156 200907596 176 : 177 : 199 : 200 : 210 : 230 : RM1 ER ·· Z-direction moving table (loading table) Control device Projection exposure device Light source digital micro-mirror element, RM2, RM3, RM4 : Exposure area, detection area reference mark 157

Claims (1)

200907596 十、申請專利範圓·· 1 種投影曝光方法,係使用投影曝光裝置,將曝光 用光照射於形成有圖案之標線片,以將該圖案像投影至裝 載於裝載台的該曝光基板; 該投影曝光裝置包含: 驅動載台,將用以裝載基板之裝载台移動定位在至小 9個既定位置; V /立置訊號輸出機構’設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; ,基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於基準基板之基準基板基準伊 記;以及 位置決定機構,根據該位置訊號所表示的位1,來決 定該装載台的位置; 卜 其特徵在於: 及曝光基板,具有供該圖案像投影之至少9個曝光 、域; °亥曝光基板,具有供檢測基板變形之至少9個檢測區 域; 及曝光基板基準標記’係表示該至少9個曝光區域之 基準位置,且表示該至少9個檢測區域之基準位置; 且包含以下步驟: 士曝光基板位置控制步驟,在該曝光基板被作為該基板 而衣載於該裝載台後,藉由該驅動載台,將該裝載台依序 158 200907596 私動疋位在至V 4個既定的曝光基板檢測位置; 曝光基板位置儲存步驟,係從該位置訊號取得在各該 曝光基板檢測位置之該裝載台的位置且予以儲存; &quot; #基準標記位置算出步驟,係在各料光基板檢測位置, 藉該基準標記檢測機構檢測該曝光區域基準標記,根據其 檢測結果與該裝載台的位置,算出該曝光基板基準標記^ 位置; 全區域誤差參數值算出步驟,係對於該曝光基板整體, 根據該曝光基板基準標記的位置,使用最小平方法,算出 以根據該曝光基板基準標記的位移之誤差為特徵之全區域 誤差參數值; 檢測區域誤差參數值算出步驟,係在各該檢測區域, 根據至少2個該曝光基板基準標記的位置,算出以根據該 曝光基板基準#記的位移之誤差為特徵之檢測區域誤差參 數值; 檢測區域誤差參數值線性成分算出步驟,係在各該檢 測區域,根據該檢測區域誤差參數值,使用最小平方法算 出該檢測區域誤差參數值的線性成分; 差分線性成分算出步驟,係對於相鄰的二個該檢測區 域算出該檢測區域誤差參數值之至少丨階的差分,根據該 差分,使用最小平方法算出差分線性成分; 加權係數算出步驟,係在各該檢測區域,根據該檢測 區域誤差參數值、該檢測區域誤差參數值的線性成分、以 及根據該差分線性成分之該差分階數的累積和,算出該檢 159 200907596 測區域誤差參數值的誤差資訊,根據該檢測區域誤差參數 值的誤差資訊算出加權係數,該加權係數用以表示,根據 該檢測區域誤差參數值的線性成分及該差分線性成分的誤 差、與未根據該等的誤差之大小比例;以及 曝光基板位置決定步驟,根據該曝光基板基準標記的 位置、該全區域誤差參數值、及該加權係數,算出定位該 裝載台之目標位置,將該裝載台定位在該目標位置。 2·如申請專利範圍第1項之投影曝光方法,其中該檢 測區域參數,係X方向的伸縮、γ方向的伸縮、χ方向的 旋轉、Υ方向的旋轉、又方向的剪力變形、及¥方向的剪 力變形中之至少一種。 如申請專利範圍第丨或2項之投影曝光方法,其中 對各該檢測區域算出該檢測區域誤差參數值的誤差資訊 係根據將該檢測區域誤差參數值的線性成 分線性成分的該差分階數的累積和之和, 差參數值減去後所得之值之標準差; 分、與根據該差 從該檢測區域誤 定位該裝載台之目標位置,係在該檢測區域誤差參數 值的線性成分及該差分線性成分的累積和之和、與該檢測 區域誤差參數值之間,根據該加權係數算出。 4. 一種投影曝光裝置,係將曝光用光照射於形成有圖 案之標線片,以將該圖案像投影至曝光基板; 其特徵在於,包含: 驅動載台 9個既定位置 將用以裝載基板之裝载台 移動定位在至少 160 200907596 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於基準基板之基準基板基準標 記;以及 ~ 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; f 該曝光基板,具有供該圖案像投影之至少9個曝光區 域; 忒曝光基板,具有供檢測基板變形之至少9個檢測區 域; 。 該曝光基板基準標記,係表示該至少9個曝光區域之 基準位置’且表不該至少9個檢測區域之基準位置; β亥位置決定機構,包含以下機構: 曝光基板位置控制機#,在該曝光基板被作為該基板 ❿裝載於該裝載台後,藉由該驅動載台,將該裝載台依序 移動定位在至少4個既定的曝光基板檢測位置; 曝光基板位置儲存機才冓,係從㈣置訊號取得在各該 曝光基板檢測位置之該職台的位置且予以儲存; 基準標記位置算出機構’係、在各該曝光基板檢測位置, 藉該基準標記檢測機構來檢測該曝光區域基準標記,然後 根據其檢測結果與該裝載台的位置,算出該曝光基板基準 標記的位置; 全區域誤差參數值 敬值异出機構,係對於該曝光基板整體, 161 200907596 法,算出 之全區域 根據該曝光基板基準標記的位置,使用最小、, 以根據該曝光基板基準標記的位移之誤差為 诚測區域誤差參數值算出機構,係在各該檢測區域, 根虞^ 2個该曝光基板基準標記的位置,算出以根據該 曝先基板基準標記的位移之誤差為特徵之檢測區域誤差參 數值; ^ 檢測區域誤差參數值線性成分I 现刀舁出機構,係在各該檢 測區域,根據該檢測區域誤差參數值,使用最小平方法算 出該檢測區域誤差參數值的線性成分; 檢測區 根據該 差刀線性成分算出機構,係對於相鄰的二個該 域算出其檢測區域誤差參數值之至少丨階的差分, 差分’使用最小平方法算出差分線性成分; 加權係數算出機構,係在各該檢測區域,根據該檢測 區域誤差參數值' 該檢測區域誤差參數值的線性成分、以 及對應該差分線性成分之該差分階數 測區域誤差參數值的誤差資訊,然後根據該檢測 參數值的誤差資訊算出加權係數,該加權係數用以表示, 根據該檢測區域誤差參數值的線性成分及該差分線性成分 的誤差、與未根據該等的誤差之大小比例;以及 曝光基板位置決定機構,根據該曝光基板基準標記的 位置、該整體誤差參數值、及該加權係數,算出定位該裝 載台之目私位置,將該裝載台定位在該目標位置。 5.如申請專利範圍第4項之投影曝光裝置,其中該檢 162 200907596 測區域參數,你γ ^ 、 方向的伸縮、γ方向的伸縮、χ方向的 方疋轉、Υ方向的旋趙 v ^ 疋轉、X方向的剪力變形、及γ方向的剪 力變形中之至少—種。 6.如申請專利範圍第4或5項之投影曝光裝置 ’ , 、, ,w 今、 B .¾ f | Μ , 對各5亥檢測區域算出該檢測區域誤差參數值的誤差資訊, 係根據將該I職域誤差參數值的線性成分、與根據該差 刀線性成分的該差分JJ皆童+ M g # 左刀P白數的累積和之和,從該檢測區域誤 差參數值減去後所得之值的標準差; 疋位°亥衷载台之目標位置,係在該檢測區域誤差參數 值的線性成分及該差分線性成分的累積和之和、與該 區域誤差參數值之間,根據該加權係數而算出。 7. 一種對準方法,在將光罩上之圖案透過投影光學系 統投影曝光至矩形印刷電路板時’檢測該印刷電路板上之 標記位置,並根據該標記位置資訊決定曝光位置,其特徵 在於,包含以下步驟: 將與矩形基板之1邊平行配置之複數個標記資訊,至 少劃分成與1對彼此對向的邊相對應的2組. 根據該組内之各標記之設計座標資訊、及各標記位置 的檢測資訊,來決定具有直線或利用近似所求得之曲線資 訊之數式; ' 對於在該2組所決定之各該數式,代入供進行曝光之 設計座標值’以算出2個位置資訊;及 使用曝光座標之與所算出之座標軸正交之軸方向之2 組標記座標相對的内分資訊,來決定曝光位置。 163 200907596 8.—種對準方法,在將光罩上之圖案透過投影光學系 統投影曝光至矩形印刷電路板時,檢測該印刷電路板上之 標記位置’並根據該標記位置資訊以決定曝光位置,其特 徵在於,包含以下步驟: 將與矩形基板之1邊平行配置之複數個標記資訊,至 少劃分成與1對彼此對向的邊相對應的2組; 根據該組内之各標記之設計座標資訊、及各標記位置 的檢測資,來決定具有直線或利用近似所求得之曲線資 訊之數式; ^ ' 組听決疋之各該數式.’丨〜八货遇仃曝 曝光區域對角繞^方^ 、、〇 至父2鈿的設計座標值,根據苴罢 分算出曝光區域之倍率及旋轉資訊丨及 八 使用曝光座禅$饱@ 铋之與所算出之座標軸正交之軸方向之9 組標記座標相對的内分眘 Π之2 1刀貧訊’來決定曝光位置。 9·如申請專利筋園筮 』乾固第7或8項之對準方法,Α 行配置於與該2細τ ^ 其係將平 .,,v 、、父之方向之邊的複數個標記資邙 少劃分成與1斜姑+ m人 τ &lt;貧讯,至 對彼此對向之邊相對應 的處理。 並進仃同樣 〗〇.如申請專利範圍第7或8項之對準方 組内所決定之該直線或利用 去,其中,在 標記之數所決定 /侍之曲線資訊,係以 …情形時係2二二=形時係—次式,標記為 式。 4點以上之情形時係3次 11 ·如申靖專利範圍第 戈8項之對準方法’其包含在 164 200907596 仃對準之前先以㈣於該標記點數之方式決定要計算至 :次式為止之步驟;該步驟’係選擇以直線近似所求出之 =對彼此對向之邊相對應之絲平均值《2次式或直線 似之1次式、或2次曲線近似之2次式。 A如申請專利範圍第7或8項之對準方法,其包含在 印刷電路板之處理批量之第i片,對各該組進行3點以上 的標記檢測之步驟;該步驟,係視進行直線近似或曲線近 似時之2次及3次之近似係數之值,使第2片以後之桿&amp; 檢測點數較第〗片之點數減少。 13.-種曝光裝置,係將光罩上之圖案透過投影光學系 統投影曝光至矩形印刷電路板之投影曝光裝置,其特徵在 於,包含: 驅動载台,用以進行供裝載該印刷電路板之裝載台之 移動及定位; 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 標記位置檢測機構,用以檢測形成於該印刷電路板之 標記位置;及 對準控制機構,根據藉該標記位置檢測機構所得之標 記位置的檢測資訊,以決定曝光位置,並根據所決定之該 曝光位置及該位置訊號來控制該驅動載台; 該對準控制機構包含: 標記資訊分類機構,用以將與矩形基板之i邊平行配 置之複數個標記資訊,至少劃分成與丨對彼此對向之邊相 165 200907596 對應的2組; 數式决疋機構’根據該組内之各標記之設計座標資气 及各標記位置的檢測資訊’來決定具有直線或利用近似斛 求得之曲線資訊之數式; 所 位置貝讯算出機構’對於由該2組所決定之各該數式, 代入仏進行曝光之設計座標值,以算出2個位置資訊;及 曝光位置決定機構,係使用曝光座標與算出之座標軸 之正父之轴方向之2組標記座標的相對内分資訊, 曝光位置。 水决疋 么丨4·一種曝光裝置,係將光罩上之圖案透過投影光學系 統投影曝光至矩形印刷電路板之投影曝光裝置,其特徵在 驅動載台 移動及定位; 用以進行供裝載該印刷電路板之裝載台之 位置訊號輸出機構,設置在該驅動載台,且 該裝载台的位置之位置訊號; 不 標記位置檢測機構,用以檢測形成於該印刷電路 標記位置;以及 “對準控制機構,根據藉該標記位置檢測機構所得之4 記位置的檢測資訊,以決定曝光位置,並根據所決定之H 曝光位置及該位置訊號來控制該驅動載台; 該對準控制機構包含: 標記資訊分類機構,將與矩形基板之i邊平行配置 複數個標記資訊,至少劃分成肖1對彼此對向之邊相對; 166 200907596 的2組; 數式決定機構,根據該組内之各標記之設計座標資訊、 及各標記位置的檢測資訊’來決定具有直線或利用近似所 求得之曲線資訊之數式; 倍率及旋轉資訊算出機構,對於在該2組所決定之各 该數式,代入供進行曝光之曝光區域對角線方向之至少2 端的設計座標|,藉由該差分算㈣光區域之倍率及 資訊;及 曝光位置決定機構,係使用曝光座標之與所算出之座 ‘軸正又之軸方向之2組標記座標相對的内分資訊,來決 定曝光位置。 ' 如申請專利範圍第13或14項之曝光裝置,其中, 將平行配置於與該2組正交之方向之邊的複數個標記資 訊,至少劃分成與i對彼此對向之邊相對應的2組,並進 行同樣的處理。 16 士申明專利範圍第13或14項之曝光裝置,其中, 在組内所決定之該直線或利用近似所求得之曲線資訊,係 以標記之數所決定,標記為2點之情形時係-次式,標,己 為3點之情形時係2次式,標記為4點以上之情形時:人 次式。 其包在 要計算 所求出 式或直 17.如申叫專利範圍第n或14項之曝光裝置, 實施該對準之前,以無關於該標記點數之方式決定 至何次式為止之步驟;該步驟,係選擇以直線近似 之與i對彼此對向之邊相對應之式取平均值之玉次 167 200907596 線近似之1次式、或2次曲線近似之2次式。 18.如申請專利範圍第13或14項之曝光裝置,其包含 在印刷電路板之處理批量之第丨片,對各該組進行3點以 上的標記檢測之步驟;該步驟,係視進行直線近似或曲線 近似時之2次及3次之近似係數之值,使第2片以後之標 記檢測點數較第1片之點數減少。 19 · 一種投影曝光裝置,係將曝光用光照射於形成有圖 案之標線片,以將該圖案像投影在曝光基板,其特徵在於, 包含: 驅動載台,將用以裝載基板之裝載台移動定位在至少 4個既定位置; 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於可供曝光之基準基板之基準 基板基準標記;以及 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 該曝光基板基準標記,係由用來表示該曝光基板的基 準位置之至少4個標記所構成; 該基準基板基準標記,係由用來表示該基準基板的基 準位置之至少4個標記所構成; 該位置決定機構包含: 第1位置枝正機構,用以校正在移動該裝載台時所產 168 200907596 生之該裝載台的位置誤差;以及 第2位置校正機構,用以校正該曝光基板基準標記的 位置誤差中的線性成分誤差; 該第1位置校正機構包含: 基準基板位置控制機構,在該基準基板被作為該基板 而裝載於該裝載台後,藉由該驅動載台,將該裝載台依序 移動定位在至少3個既定的基準基板檢測位置; 基準基板位置儲存機構’係從該位置訊號取得在各該 基準基板檢測位置之該裝載台的位置且予以儲存; 基準基板曝光機構,係在各該基準基板檢測位置,將 ;光用光,基準標線片,使形成於該基準標線片之標 該基準基板,以在該基準基板形成該 知線片基準標記之像;及 基準基板位置校正運算儲存機構,藉由該基準 :!機構,檢測形成於該基準基板之該標線 二 二基準基板基準標記,根據檢測結果算出該標線= “之像及忒基準基板基準標記的相對位置然二 丁位置…亥裝載台的位置,算出用以校 置誤差之裝載台位置校正資料且予以儲存; 的位 該第2位置校正機構包含: 曝光基板位置控制機構名 而裝載於該裝載^ 基板破作為該基板 、 载口後,猎由該驅動載台,將該裝載^ &amp; ㈣定位在根據該裝載台位置校正資料所定出之^少口 = 既疋的曝光基板檢測位置; 169 200907596 曝光基板位置儲存機構,係從該位置訊號取得在各該 曝光基板檢測位置之該裝載台的位置且 “曝光基減準標記位置儲存機構,係在各該曝光基板 松測位置藉該基準標記檢測機構來檢測該曝光基板基準 標記’然後根據其檢測結果與該裝載台的位置,算出該曝 光基板基準標記的位置且予以儲存;以及 ’在f生誤差校正運鼻機構,根據儲存在該曝光基板基準 標記位置儲存機構之該曝光基板基準標記的位置,使用最 小平方法算出用以校正該線性成分誤差之線性誤差校正 料。 20•—種投影曝光裝置,係將曝光用光照射於形成有圖 案之標線;1 ’以將該圖案像投影在曝光基板,其特徵在於, 包含: 驅動載台,將用以裝載基板之裝載台移動定位在至少 4個既定位置; 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 一基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於基準基板之基準基板基準標 έ己,以及 位置決定機構,根據該位置訊號所表示的位置,來決 疋該震載台的位置; 該曝光基板基準標記,係由用來表示該曝光基板的基 準位置之至少4個標記所構成; 170 200907596 »亥基準基板基準標, 準位置之至少’、用來表示該基準基板的基 、王y 4個標記所構成; 該位置決定機構包含: 第1位置校正機構,用 生之該穿載厶 父正在移動該裝裁台時所產 效在載台的位置誤差;以及 第2位置校正機構,用 位置誤差中的線性成分誤差 該曝光基板基準標記的 該第1位置校正機構包含: 基準基板位置控制機構, 而裂載於該裳载台後,藉由M =基準基板被作為該基板 移動定位在至少3個既定 動载;❹裝載台依序 扪暴旱基板檢測位置; 基準基板位置儲存機構, 其、隹# a L 係攸该位置訊號取得在夂哕 基準基板檢測位置之該裝載 取仔在各.亥 戒戰口的位置且予以儲存; 土準基板基準標記位置儲存 檢測位置,藉由兮甚 ’、各U基準基板 準^己㈣4 μ 檢測機構來檢測該基準基板基 旱標圯,然後根據其檢測钍 土极丞 基準基板基準f二與㈣載台的位置,算出該 丞早己的位置且予以儲存;及 基準基板位置校正運算儲. ^ , 锊存機構,根據該基準基;fe其 準標記的位置+基板基 仅止項裝載台的位置誤 口位置校正資料且予以儲存; 裝載 該第2位置校正機構包含: 曝光基板位置控制機構, 而裝载於該裝載台後’藉^ 先基板被作為該基板 移動定位在根據該裝載台位置校正資料所定出之至少Π 171 200907596 既疋的曝光基板檢測位置; €光基板位置儲存機帛’係從該&amp;置訊號取得在各該 曝光基板檢測位置之該裝载台的位置且予以儲存; 曝光基板基準標記位置儲存機構,係在各該曝光基板 檢測位置,藉該基準標記檢測機構來檢測該曝光基板基準 標記,然後根據其檢測結果與該裝載台的位置,算出該曝 光基板基準標記的位置且予以健存;以及 錄誤差校正運算機構,根據儲存在該曝光基板基準 標記位置儲存機構之該曝光基板基準標記的位置,使用最 小平方法算出用以校正該線性成分誤差之線性誤差校 料。 21·一種投影曝光裝置,包含:數位式微反射鏡元件, 具有複數個反射鏡,且能使射至該複數個反射鏡之光的反 射方向分別依該複數個反射鏡而定;以及微陣列透鏡,且 有與該複數個反射鏡分別對應之複數個微透鏡;將藉由該 :微陣列透鏡形成之點像投影至曝光基板,其特徵在於,包 含: 驅動載台,將用以裝載基板之裝载台移動定位在至少 3個既定位置; 位置訊號輸出機構’設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於可供曝光之基準基板之基準 基板基準標記;以及 172 200907596 位置決定機構, 定該裝載台的位置; 根據該位置訊號所表示的位置,來決 曝光基板基準標記,係由用來表示該曝光基板的 位置之至少3個標記所構成 基準基板基準標記,係由用來表示該基準基板的 位置之至少3個標記所構成 該位置決定機構包含: 第1位置校正機構, 生之該裝載台的位置誤差 用以校正在移動該裝載台時所產 :以及 弟2位置校正機構’用以校正該曝光基板基準標記的 位置誤差中的線性成分誤差; 該第1位置校正機構包含_· 基準基板位置控制機構,在該基準基板被作為該基板 裝載於-亥裝載台後’藉由該驅動載台將該裝載台依序 移動定位在至少3個既定的基準基板檢測位置,· 基準基板位置儲存機構,係從該位置訊號取得在各該 基準基板檢測位置之該裝载台的位置且予以儲存; 基準基板曝光機構,係在各該基準基板檢測位置,將 曝光用光照射於基準標線片,使形成於該基準標線片之標 線片基準標記投影在該基準基板,以在該基準基板形成該 才示線片基準標記之像;以及 基準基板位置校正運算儲存機構,藉由該基準標記檢 測機構,檢測形成於該基準基板之該標線片&amp;準標記之像 與該基準基板基準標記,根據檢測結果算出該標線片基準 173 200907596 標記之像及該基準基板基 相對位置與該裝载台的位置「算出用目立置’然後根據該 置誤差之裝載台位置校正㈣且予㈣存父;正該褒載台的位 该第2位置校正機構包含·· 曝光基板位置控舍丨撒播 ,在該曝光基板被作為該基板 藉由該驅動载台,將該裝載台依序 移動疋位在根據該裝载台位 既定的曝光基板檢懸置; ^所疋出之至少3個 摄光位置儲存機構’係從該位置訊號取得在各該 基板檢測位置之該裝載台的位置且予以儲存; 曝光基板基準標記位置 # 认、, 彳置储存機構,係在各該曝光基板 =位置’藉該基準標記檢測機構來檢測該曝光基板基準 “己’然後根據其檢測結果與該裝載台的位置,算出該曝 先基板基準標記的位置且予以儲存;以及 “線性誤差校正運算機構’根據儲存在該曝光基板基準 才“己位置館存機構之該曝光基板基準標記的位置,使用最 小平方法算出用以校正該線性成分誤差之線性誤差校正資 料0 、 22·—種投影曝光裝置,包含:數位式微反射鏡元件, 具有複數個反射鏡,且能使射至該複數個反射鏡之光的反 射方向分別依該複數個反射鏡而定;以及微陣列透鏡,具 有與該複數個反射鏡分別對應之複數個微透鏡;將藉由該 微陣列透鏡形成之點像投影至曝光基板,其特徵在於,包 含: 174 200907596 驅動載台’將用以裝載基板之裝載台移動定位在至少 3個既定位置; 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於基準基板之基準基板基 記;以及 π 位置決定機構,根據該位置訊號所表示的位置 定該裝載台的位置; 、 該曝光基板基準標記,係由用來表示該曝光基板的基 準位置之至少3個標記所構成; 該基準基板基準標記,係由用來表示該基準基板的基 準位置之至少3個標記所構成; 該位置決定機構包含: 第1位置校正機構,用以校正在移動該裝载台時所產 生之該裝載台的位置誤差;以及 第2位置校正機構,用以校正該曝光基板基準標記的 位置誤差中的線性成分誤差; 該第1位置校正機構包含: 基準基板位置控制機構,在該基準基板被作為該基板 而裝載於該裝載台》,藉由該驅動載台,將該裝栽么依序 移動定位在至少3個既;^的基準基板檢測位置;。 基準基板位置儲存機構,係從該位置訊號取得在各該 基準基板檢測位置之該裝載台的位置且予以儲存; 175 200907596 基準基板基準標記位置儲存機構,係在各該基準基板 檢測位置,藉由該基準標記檢剛機構來檢測該基準基板基 準標記,然後根據其檢測結果鱼 不/…亥裝載台的位置,算出該 基準基板基準標記的位置且予以儲存,·以及 基準基板位置校正運算儲存機構,根據該基準基板基 準標記的位置,算出用以校正該I載台的位置誤差之裝載 台位置校正資料且予以儲存; 該第2位置校正機構包含: 曝光基板位置控制機構,在 牧邊曝先基板被作為該基板 而裝載於該裝載台後,藓由访飾壬&amp; 精由該.¾動載台,將該裝載台依序 移動定位在根據該裝载台位置校 且仪止貢枓所定出之至少3個 既定的曝光基板檢測位置; 曝光基板位置儲存播;^ 仔機構係從該位置訊號取得在各該 曝光基板檢測位置之該梦恭Α μ , 茨褒戟台的位置且予以儲存; 曝光基板基準標記位置儲在 ^ ^ I爾存機構,係在各該曝光基板 檢測位置,藉該基準椤卸仏、、B, 不°檢測機構來檢測該曝光基板基準 標記,然後根據其檢測έ士婁4社 j…果與該裝載台的位置,算出該曝 光基板基準標記的位置且予以妙 i丑τ以儲存;以及 線性誤差校正運真機媒 , 异械構’根據儲存在該曝光基板基準 才示舌己位置儲存機構之該晚也宜 該曝先基板基準標記的位置,使用最 小平方法算出用以校正兮绐卜 線性成分誤差之線性誤差校正資 料。 23 ·如申請專利筋圚筮i 扼圍第19至22項中任一項之投影曝光 裝置,其包含投影光輋糸站 m 予糸統’用以將該曝光用光照射於該 176 200907596 曝光基板; 該基準標記檢測機構’包含配置在該投影光學系統與 裝載台間之對準光學系統; 忒對準光學系統,將非曝光用光照射於該曝光基板基 準標e或該基準基板基準標記,以檢測該曝光基板基準標 記或該基準基板基準標記; 忒對準光學系統,係在檢測該曝光基板基準標記或該 基準基板基準標記時,被定位在檢測位置;在結束該曝光 基板基準標記或該基準基板基準標記之檢測後,被定位在 從該檢測位置退離之退離位置。 ^ 24.如申凊專利範圍第19至22項中任一項之投影曝光 裝置,其中,該裝載台位置校正資料,係根據在複數個基 準基板檢測位置之該曝光基板基準標記的位置之平均值而 算出。 ^ 25.如申5月專利範圍第19至22項中任一項之投影曝光 液置’其中’該基準基板基準標記係形成於在該基準基 板中位在既定間隔的格子狀交點; ▲ »亥裝載台位置校正資料’係根據位在該格子狀交點之 该基準基板基準標記的位置而算出; 次及曝光基板位置控制機構,係使用該裝載台位置校正 貝料且利用曲線近似或内插法,算出要將該裝載台定位之 目標位置將該裝載台定位在該目標位置。 26.如申印專利範圍第19或2〇項之投影曝光裝置,其 包含: 177 200907596 投影光學系統,可變更該圖案像的投影倍率而將該圖 案投影至邊曝光基板;以及 〃投影倍率決定機構,根據該線性誤差校正運算機構所 异出的該線性誤差校正資料,來決定該投影倍率。 27·-種投影曝光裝置,係將曝光用光照射於形成有圖 案之標線片’以將該圖案像投影在曝光基板,其特徵在於, 包含: 、 驅動載台,將用以裝載基板之裝載台移動定位在至少 4個既定位置; 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 、土準‘口己檢測機構,用以檢測形成於該曝光基板之曝 光基板基準&amp; δ£、或是形成於基準基板之基準基板基準標 吕己,以及 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 、 該曝光基板,具有供該圖案像投影之至少4個曝光區 域; 匕 該曝光基板基準標記,係用以表示該至少4個曝光區 域的基準位置之曝光區域基準標記; °玄位置决疋機構’包含曝光位置校正機構,用以校正 該曝光基板基準標記的位置誤差; 該曝光位置校正機構包含: 曝光基板位置控制機構,在該曝光基板被作為該基板 178 200907596 而裝載於該裝葡a诒 , i 口灸,藉由該驅動載台,將該裝載台依序 移動定位在至少4個既定的曝光基板檢測位置; 曝光基板位置儲存機構,係從該位置訊號取得在各該 曝光基板檢測位置之該裝载台的位置且予以儲存; ι曝光區域基準標記位置館存機構,係在各該曝光基板 * J位置藉„亥基準標記檢測機構來檢測該曝光區域基準 ^己,然後根據其檢測結果與該裝載台的位置,算出該曝 光區域基準標記的位置且予以儲存; 位置誤差處理機構,根據儲存在該曝光區域基準標記 位置儲存機構之該曝光區域基準標記的位置,使用最小平 枝算出該曝光基板基準標記的位置誤差中非線性成分之 誤差資訊; 差分誤差處理機構,根據儲存在該曝光區域基準標記 位置儲存機構之該曝光區域基準標記的位置之差分,使用 最小平方法算出該曝光基板基準標記的位置之差分誤差中 非線性成分之誤差資訊;以及 曝光基板位置決定機構’根據2個該非線性成分令之 至少-誤差資訊來施以加權,以算出要將該裝載台定位之 目標位置,然後將該裝載台定位在該目標位置。 28.—種投影曝光裝置,係將曝光用光照射於形成有圖 案之標線片,以將該圖案像投影在曝光基板,其特徵在於, 包含: 、 驅動載台,將用以裝載基板之裝載台移動定位在 3個既定位置; 179 200907596 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記;以及 ' 位置決定機構’根據該位置訊號所表示的位置,來決 定該裝載台的位置; 該曝光基板,具有供該圖案像投影之至少3個曝 域; 個曝光區 用以校正 該曝光基板基準標記,係用以表示該至少 域的基準位置之曝光區域基準標記; 。亥位置决疋機構,包含曝光位置校正機構 該曝光基板基準標記的位置誤差; 战曝尤位置校正機構包含·· 曝光基板位置控制她描^ . _制,在料光基板被作為該基板 而裝載於該裝載台後,葬ά 土板 精由該驅動載台,將該裝載台依戽 移動定位在至少3彳固gjf 6, 序 個既疋的曝光基板檢測位置; 曝光基板位置儲存機構,係從該位置訊號取 曝光基板檢測位置之該裝裁台的位置且予以儲存.^ 曝光區域基準標記位置儲 , 檢測位置,藉該基準桿, ,糸在各該曝光基板 块^诚 己檢測機構來檢測該曝光區域基準 ^己然後根據其檢测結果與該褒载台的位晋,缺 光區域基準標記的位置且予以儲存. 鼻出忒曝 線性誤差校正運算機 標記位置儲存機構之該曝光區域基==區域基準 千知》己之位置’使用最 180 200907596 i平方法异出用以校正線性成分誤差 料; &amp;丨王决差技正資 1 f分算出機構’係用以算出儲存在該曝光 i己位置儲存機構夕 场基準標 k曝光區域基準標記的位置之八. 及 刀,以 重疊控制機構,係將利用該最小平方法所得 方疋轉、及正交中5 _ 伸縮、 ^種置換成該差分,將曝光用亦^ ^ 於該標線片,以箕屮月祕先.¾射 投影像與該曝光基板的重疊目標位置。 “板時的 2:·—種投影曝光方法’係使用投影曝光裝置,將 用光照射於形成有圖宰 ’ 載於裝載台的曝光基板; 至裝 該投影曝光裝置包含: 驅動載台,將用以裝載基板之裝載台移動定位在至少 3個既定位置; 位置訊號輸出機構’設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; &quot;基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標§己、或是形成於可供曝光之基準基板之基準 基板基準標記;以及 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 其特徵在於: 该曝光基板基準標記’係由用以表示該曝光基板的基 181 200907596 準位置之至少3個標記所構成; 该基準基板基準標記,係由 _ ^你田用以表不該基準基板的基 準位置之至少3個標記所構成; 且包含以下步驟: 基準基板位置控制步驟,在兮其 在该基旱基板被作為該基板 、載於該裝載台後,藉由該驅動載台,將該裝載台依序 移動定位在至少3個既定的基準基板檢測位置; 基準基板位置儲存步驟,俜 邱你從忒位置讯號取得在各該 基準基板檢測位置之該裝載台的位置且予以儲存丨 基準基板曝光步驟’係在各該基準基板檢測位置,將 曝光用光照射於基準標飨H ,, ^ L …片,使形成於該基準標線片之標 、'泉片基準標記投影在該其 汽…,隹挪 板,以在該基準基板形成該 線片基準標記之像; 基準基板位置校正運瞀蚀左 測擁m认、,… 建开儲存步驟’糟由該基準標記檢 “為構,榀測形成於該基準 * ^ ^ ^ 與該基準基板基iM“… 片基準標記之像 ^ ^ ’根據檢測結果算出該標線片基準 心5己之像及該基準基板 双丞g己的相對位, 相對位置與該裝載台的位置…卞f…、後根㈣ 置誤#夕_恭置异出用以校正該裝载台的位 置决差之裝載台位置校正資料且予以儲存; 曝光基板位置控制步驟, 在該曝光基板被作為兮其Μ 而裝載於該裝載台後,蘇“ 极稷作為》亥基板 浐叙— &gt; 藉由6亥驅動載台,將該裝載台依序 矛夕動疋位在根據該農載t π g Ρ 既定μ丄η 置校正資料所定出之至少3個 无疋的曝光基板檢測位置· 曝光基板位置儲存牛_ ^ 子步驟,係從該位置訊號取得在各該 182 200907596 曝光基板檢測位置之該裝载台的位置且予以儲存; 曝先基板基準標記位置儲存 檢測位詈,蕤呼复、、住加 妳你分成曝光基板 :亥基準標記檢測機構來檢測該曝光基板基準 ^記,然後根«檢測結果㈣ 光基板基準標記的位置且予以儲存;以及 …曝 線^差&amp;正運算步驟,根據在該曝光基板基準標記 :置儲子步驟所儲存之該曝光基板基準標記的位置,使用 最小平方法算“以校正線性成分誤差之線性 料。 貝 30.-種投影曝光方法,係使用投影曝光裝置,將曝光 用光’、、、射於形成有圖案之標線片,以將該圖案像投影至裝 載於裝載台的該曝光基板; 该投影曝光裝置包含: 驅動載σ ϋ字用以裝載基板之裝冑台移動定位在至少 3個既定位置; 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 一基準標記檢測機構,用以檢測形成於該曝光基板之曝 光基板基準標記、或是形成於基準基板之基準基板基準標 記;以及 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 其特徵在於: &quot;亥曝光基板基準標記,係由用以表示該曝光基板的基 183 200907596 準位置之至少3個標記所構成; 準位基板基準標記,係由用以表示該基準基板的美 皁位置之至少3個標記所構成; 土板的基 且包含以下步驟·· 基準基板位置控制步驟,在 、 而裝載於該裝載台後,藉由破作為該基板 移動定位在至幻㈣定的基準裝載台依序 基準基板位置儲存步驟,係 基準基板檢測位置之該裝載台的位置^置訊號取得在各該 基準基板基準標記位置儲存步::存; 檢測位置,H &amp; '、在各该基準基板 準桿圮,铁播iP i &amp; 機構來檢測該基準基板基 …後根據其檢測結果與該裝載A的付罢分 基準基板基準標記的位置且予以儲存· ° ,异出該 基準基板位置校正運算儲存 準卜己的位署% 存步驟,根據該基準基板基 台位置校正資料且予以健存; m載 曝光基板位置控制步驟,在 而裝載於該裝载台後,藉由該驅動c皮作為該基板 相印&amp; .動載台,將該裝么 ㈣定位在根據該裝載台位置校正資料所定出之至少口 3個 既疋的曝光基板檢測位置; =光基板位置儲存步驟,係從該位置訊號取得在各該 曝光基板檢測位置之該裝載台的位置且予以儲存; =純基準標記位置儲存步驟,係在各該曝光基板 精該基準標記檢測機構來檢測該曝光基板基準 184 200907596 载台的位置,算出該曝 ;以及 標記,然後根據其檢測結果與該裝 光基板基準標記的位置且予以儲存 位置儲在牛,$ # + *隹垓曝光基板基準標記 Γ Γ 所 該曝光基板基準標記的位置,使用 :法算出用以校正線性成分誤差之線性誤差校正資 ’係使用投影曝光裝置,將藉由 才又影至裝載於裝載台之曝光基 3 1. —種投影曝光方法 微陣列透鏡所形成之點像 板; 該投影曝光裝置包含: 之裝·載台’移動定位在至 驅動載台,將用以裝載基板 少3個既定位置; ▲位置訊號輸出機構’設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於曝光基板之曝光 基板基準標記、或是形成於可供曝光之基準基板之基準基 板基準標記; 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 數位式微反射鏡元件’具有複數個反射鏡,且能使射 至該複數個反射鏡之光的反射方向分別依該複數個反射鏡 而定;以及 微陣列透鏡’具有與該複數個反射鏡分別對應之複數 個微透鏡; 185 200907596 其特徵在於: 該曝光基板基準標記,係由用以表示該曝光基板的基 準位置之至少3個標記所構成; 該基準基板基準標記,係由用以表示該基準基板的基 準位置之至少3個標記所構成; 且包含以下步驟: 制步驟,在該基準基板被作為該基板 ,藉由該驅動載台’將該裴載台依序 既定的基準基板檢測位置; 基準基板位置控 而裝載於該裝载台後 移動定位在至少3個 基準基板位置儲存步驟, 基準基板檢測位置之該裝載台 係從该位置訊號取得在各該 的位置且予以儲存; 签平丞板曝光步 丞準基板位置校正運算儲在 測機構,檢測形成於驟,藉由該基準標記檢 基板基準標記,根據檢測結果算出二::: 相對位置:;:=ί:=標記的相對位置,根據該 置誤差之裝萤二仂番Ρ 又5玄裝載台的位 之4載口位置校正資料且予以儲存; 曝光基板位置控制步驟,在 而裝載於該裝載台H由㈣“基板被作為該基板 稍^由。玄*動裁会,|»^ j. j 移動定位在根據該裝載台 、I羞載台依序 位置奴正貧料所定出之至少3個 186 200907596 既定的曝光基板檢測位置; 曝光基板位置儲存步驟, ’ 係攸該位置訊號取得在久兮 曝光基板檢測位置之該梦恭A &amp; 现取侍在各5亥 茨裝载台的位置且予以儲存; 曝光基板基準標記位置儲农 直储存步驟,係在各該曝朵 =位標記檢測機構來檢測該曝光基板i準 払3己,然後根據其檢測結果 4, «-,c ^ ^ ^ 衣戰口的位置’异出該曝 先基板基準軲纪的位置且予以儲存·,以及 線性误差校正運算步 逆异乂驟,根據在該曝光基板基準 位置儲存步驟所儲存之*亥暖本,、 廿&lt; 4曝先基板基準標記的位置 最小平方法算出用以校正該綠 資料。 ^、友性成为誤差之線性誤差校正 I 一種投影曝光方法,係使用投影曝光裝置,將藉由 =列透⑽形成之點像,投影至«於之曝光 基板; ^ 該投影曝光裝置包含: 驅動載台,將用以震截其 扶戰暴板之裴載台,移動定位在至 少3個既定位置; ▲位置訊號輸出機構,設置在該驅動載台,且輸出表示 该裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於曝光基板之曝光 基板基準標記、或是形成於基準基板之基準基板基準標 §己 , 位置決定機構,根據該&amp;置訊號所㈣的位置,來決 疋έ亥裝載台的位置; 187 200907596 數位式微反射鏡元件,具有複數個反射鏡,且能使射 至该複數個反射鏡之光的反射方向分別依該複數個反射鏡 而定;以及 微陣列透鏡,具有與該複數個反射鏡分別對應之複數 個微透鏡; 其特徵在於: 該曝光基板基準標記,係由用以表示該曝光基板的基 準位置之至少3個標記所構成; 該基準基板基準標記,係由用以表示該基準基板的基 準位置之至少3個標記所構成; 且包含以下步驟: 基準基板位置控制步驟,在該基準基板被作為該基相 而裝載於該裝載台後,藉由該驅動載台,將該裝載台依片 移動定位在至少3個既定的基準基板檢測位置; 基準基板位置儲存步驟,传 ^ 你從該位置訊號取得在各寫 基準基板檢測位置之該择截A ^ 系裝载台的位置且予以儲存; 基準基板基準標記位晋蚀六止 ^ . t 置儲存步驟,係在各該基準基相 才双測位置,藉由該基準許a … 基旱軚把檢測機構來檢測該基準基板基 準‘圮,然後根據其檢測 Λ m ^ ^ ^ ^ 果與該裴载台的位置,算出言1 基卓基板基準標記的位置Μ以儲存; 基準基板位置校正運笪蚀 準h mm # 運异儲存步驟,根據該基準基板基 a w ,, τ 又正3亥羞載台的位置誤差之裝輩 〇位置杬正資料且予以儲存; 曝光基板位置控制步驟, 在5亥曝光基板被作為該基柄 188 200907596 而裝載於該裝載台後, 移動定位在根據該裝載 既定的曝光基板檢测位 藉由S亥驅動載台,將該裝载台依序 台位置校正資料所定出之至少3個 置; 曝光基板位置錯存步驟,係從該位置訊號取得在各兮 曝光基板檢測位置之該震載台的位置且予以儲存;Μ 人曝光基板基準標記位置儲存步驟,係在各該曝光基板 檢測位置’藉該基準標記檢測機構來檢測該曝光基板基準 標記,然後根據其檢測結果與該裝載台的位置,算出該曝 光基板基準標記的位置且予以儲存;以及 線性块產校正運算步驟,根據在該曝光基板基準標記 位置儲存步驟所儲存之該曝光基板基準標記的位置,使用 最小平方法算出用以校正線性成分誤差之線性誤差校正資 料0 33·如申請專利範圍第29至32項中任—項之投影曝光 方法’其中該投影曝光裝置,包含用以將該曝光用光照射 於該曝光基板之投影光學系統; 該基準標記檢測機構,包含配置在該投影光學系統與 裝載台間之對準光學系統,將非曝光用光照射於該曝光基 板基準標記或該基準基板基準標記,以檢測該曝光基板基 準標記或該基準基板基準標記; 在藉由該基準標記檢測機構來檢測該基準基板基準標 記或該曝光基板基準標記時,包含以下步驟: 在檢測該曝光基板基準標記或該基準基板基準標記 時’將該對準光學系統定位在檢測位置;以及 189 200907596 在結束該曝光基板基準標記或該基準基板基準標記之 檢測後’使該對準光學系統定位在從該檢測位置退離之退 離位置。 34.如申請專利範圍第29至32項中任一項之投影曝光 方法,其中該裝載台位置校正資料,係根據在複數個基準 基板檢測位置之該曝光基板基準標記的位置之平均值而算 出。 35·如申請專利範圍第29至32項中任一項之投影曝光 方法,其中該基準基板基準標記係形成於,在該基準基板 中位在既定間隔的格子狀交點; 忒裝載台位置校正資料,係根據位在該格子狀交點之 该基準基板基準標記的位置而算出; 且包含以下步驟: 使用該裝載台位置校正資料且利用曲線近似或内插 法算iU要將裝載台定位之目標位置,然後將該裝載台定 位在該目標位置。 勺人如申請專利範圍第29或32項之投影曝光方法,其 包3投影光學系、統,可變更該圖案像的投影倍率而將該 案投影至該曝光基板; 且包含以下步驟: 一根據該線性誤差校正運算步驟所算出的該線性誤差校 正貧料,來決定該投影倍率。 37'種投影曝光方法,係使用投影曝光裝置,將曝央 用光照射於形成有圖案之標線片,以將該圖案像投影至裝 190 200907596 載於裝載台的該曝光基板; 該投影曝光裝置包含: 驅動載台,將用以裝載基板之裝载台移動定位在至少 4個既定位置; 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於曝光基板之曝光 基板基準標記、或是形成於基準基板之基準基板基準標 記;以及 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 其特徵在於: 該曝光基板,具有供該圖案像投影之至少4個曝光區 違曝光基板基準標記,係用以表示該至少4個曝光區 域的基準位置之曝光區域基準標記; 且包含以下步驟: 士曝光基板位置控制步驟’在該曝光基板被作為該基板 而裝:於該裝載台|,藉由該驅動載台,將該裝載台依序 移動定位在至少4彳^ β 4個既疋的曝光基板檢測位置; 讦芡π w攸成叫置訊號取得在各該 曝光基板檢測位置t 夏之4裝載台的位置且予以儲存; 曝光區域基维;m 檢測位置,藉儲存步驟,係在各該曝光基板 土準^ 5己檢測機構來檢測該曝光區域基準 191 200907596 標記,然後根據其檢測結果與該裝載台的位置, 光區域基準標記的位置且予以儲存. Λ + 位置誤差處理步驟’根據在該曝光區域基準標吃 儲存步驟所儲存之該曝絲域基準標記的位置,使用 '方法算出該曝光基板基準標記的位置誤差中非線性:: 之誤差資訊; 差分誤差處理步驟,根據在該曝光區域基準標記位置 料步驟所儲存之該曝光區域基準標記的位置之差分,使 用最小平方法算出該曝光區域基準標記的位置之差分誤差 中非線性成分之誤差資訊;以及 、 曝光基板位置決定步驟,根據2個該非線性成分中之 至少-誤差資訊來施以加權’以算出要將該裝載台定位之 目標位置’然後將裝載台定位在該目標位置。 38.-種投影曝光方法,係使用投影曝光裝置,將曝光 用光照射於形成有圖案之標線片,以將該圖案像投影至裝 載於裝载台的該曝光基板; 、 έ亥投影曝光袭置包含·· 驅動載台,將用以裝載基板之裝載台移動定位在至少 3個既定位置; 位置訊號輸出機構,設置在該驅動載台,且輸出表示 該裝載台的位置之位置訊號; 基準標記檢測機構,用以檢測形成於曝光基板之曝光 基板基準標記、或是形成於基準基板之基準基板基準標 記;以及 192 200907596 位置決定機構,根據該位置訊號所表示的位置,來決 定該裝載台的位置; 其特徵在於: 該曝光基板,具有供該圖案像投影之至少 域; 3個曝光區 該曝光基板基準標記,係用以表示該至少 域的基準位置之曝光區域基準標記; 3個曝光區 且包含以下步驟: 曝光基板位置控制步驟,在該曝光基板被作為該基板 而裝載於該裝載台後,藉由該驅動載台,將該装載台依序 私動疋位在至少3個既定的曝光基板檢測位置; 曝光基板位置儲存步驟,係從該位置訊號取得在各該 曝光基板檢測位置之該裝載台的位置且予以儲存; 曝光區域基準標記位置儲存步驟,係在各該曝光基板 ::則位置藉6亥基準標記檢測機構來檢測該曝光區域基準 仏己’然後根據其檢測結果與該裝载台的位 光區域基準標記的位置且予財轉; &quot;'出該曝 線性誤差校正運算步驟, 位置儲存步料儲存之/ =在該曝純域基準標記 ::、平方法算出用以校正線性成分誤差之線性誤差校^ 差分算出步驟 置儲存步驟所儲存 以及 ’係用以算出在料光區域基準標記位 之該曝光區域基準標記的位置之差分; 193 200907596 重疊控制步驟,係將利用該最小平方法所得到之伸縮、 旋轉、及正交中至少—種置換成該差》,將曝光用光照射 於该標線片’以算出及控制該圖案像投影在曝光基板時的 投影像與該曝光基板的重疊目標位置。 十一、圈式: 如次頁 194200907596 X. Patent application: One projection exposure method is to use a projection exposure device to irradiate exposure light onto a patterned reticle to project the pattern image onto the exposure substrate loaded on the loading stage. The projection exposure apparatus comprises: a driving stage, wherein the loading stage for loading the substrate is moved and positioned at nine predetermined positions; the V/stand signal output mechanism is disposed on the driving stage, and the output indicates the loading a position signal of the position of the stage; a reference mark detecting means for detecting an exposure substrate reference mark formed on the exposure substrate or a reference substrate reference mark formed on the reference substrate; and a position determining means according to the position signal The position 1 is determined to determine the position of the loading platform; and the exposure substrate has at least 9 exposures and fields for projecting the pattern image; and the substrate is exposed to at least 9 for detecting the deformation of the substrate. a detection area; and an exposure substrate reference mark ' indicates a reference position of the at least nine exposure areas, and indicates the at least a reference position of the nine detection areas; and comprising the steps of: controlling the substrate position control step, after the exposure substrate is mounted on the loading stage as the substrate, the loading stage is sequentially driven by the driving stage 158 200907596 The private movement is clamped to the four predetermined exposure substrate detection positions to V; the exposure substrate position storage step is to obtain the position of the loading platform at each of the exposure substrate detection positions from the position signal and store it; &quot;# The reference mark position calculation step is performed at each of the material light substrate detection positions, and the reference mark detecting means detects the exposure area reference mark, and calculates the exposure substrate reference mark ^ position based on the detection result and the position of the loading stage; In the error parameter value calculation step, the total area error parameter value characterized by the error of the displacement according to the exposure substrate reference mark is calculated based on the position of the exposure substrate reference mark based on the position of the exposure substrate reference mark; The error parameter value calculation step is performed in each of the detection areas, according to at least The position of the two exposure substrate reference marks is calculated, and the detection area error parameter value characterized by the error of the displacement according to the exposure substrate reference # is calculated. The detection area error parameter value linear component calculation step is performed in each of the detection areas. The detection region error parameter value is calculated by using a least square method to calculate a linear component of the detection region error parameter value; and the differential linear component calculation step is to calculate at least two steps of the detection region error parameter value for two adjacent detection regions. Difference, based on the difference, using a least squares method to calculate a differential linear component; a weighting coefficient calculation step in each of the detection regions, based on the detected region error parameter value, a linear component of the detected region error parameter value, and a linearity according to the difference Calculating the error information of the difference parameter of the component 159 200907596, and calculating the weighting coefficient according to the error information of the error parameter value of the detection region, the weighting coefficient is used to represent the error according to the detection region The linear component of the parameter value and the difference And a ratio of an error of the linear component to the magnitude of the error not based on the error; and an exposure substrate position determining step of calculating the position of the loading platform based on the position of the exposure substrate reference mark, the total area error parameter value, and the weighting coefficient The target position, the loading station is positioned at the target position. 2. The projection exposure method according to claim 1, wherein the detection region parameter is an expansion and contraction in the X direction, an expansion and contraction in the γ direction, a rotation in the x direction, a rotation in the x direction, a shear deformation in the direction, and ¥ At least one of the shear deformations of the direction. The projection exposure method of claim 2 or 2, wherein the error information for calculating the detection region error parameter value for each of the detection regions is based on the difference order of the linear component linear component of the detection region error parameter value The sum of the cumulative sums, the standard deviation of the values obtained by subtracting the difference parameter values; the sub- and the target position of the loading station mislocated from the detection area according to the difference, the linear component of the error parameter value in the detection area and the The sum of the cumulative sums of the differential linear components and the error value of the detected region are calculated based on the weighting coefficients. 4. A projection exposure apparatus for irradiating exposure light onto a patterned reticle to project the pattern image onto an exposure substrate; and comprising: driving the carriage at a predetermined position for loading the substrate The loading station is positioned at least 160 200907596 position signal output mechanism, disposed on the driving stage, and outputs a position signal indicating a position of the loading station; a reference mark detecting mechanism for detecting the exposure substrate formed on the exposure substrate a reference mark or a reference substrate reference mark formed on the reference substrate; and a position determining unit that determines a position of the loading stage based on a position indicated by the position signal; f the exposure substrate has a projection image for the image At least 9 exposure areas; 忒 exposure substrate having at least 9 detection areas for detecting deformation of the substrate; The exposure substrate reference mark indicates a reference position of the at least nine exposure regions and indicates a reference position of the at least nine detection regions; and the β-home position determining mechanism includes the following mechanism: an exposure substrate position control device #, After the exposure substrate is loaded on the loading platform as the substrate, the loading stage is sequentially moved by the driving stage to at least four predetermined exposure substrate detecting positions; the exposure substrate position storage device is (4) The signal is obtained at the position of the job table at each of the exposure substrate detection positions, and is stored; the reference mark position calculation means is configured to detect the exposure area reference mark by the reference mark detection means at each of the exposure substrate detection positions Then, based on the detection result and the position of the loading table, the position of the exposure substrate reference mark is calculated; the total area error parameter value homing and dissipating mechanism is based on the entire exposure substrate, 161 200907596 method, and the calculated area is based on Exposing the position of the substrate reference mark, using the smallest, according to the exposure substrate reference The error of the displacement is the measurement unit error parameter value calculation mechanism, and in each of the detection areas, the position of the reference mark of the exposure substrate is calculated, and the error of the displacement according to the reference mark of the exposure substrate is calculated. Detection area error parameter value; ^ Detection area error parameter value Linear component I The current tool extraction mechanism is used in each detection area. According to the error value of the detection area, the linear component of the error parameter value of the detection area is calculated by the least square method. According to the differential knife linear component calculating means, the detection zone calculates a difference of at least the order of the detection region error parameter values for the two adjacent domains, and calculates a difference linear component using the least square method; the weighting coefficient calculation mechanism And in each of the detection regions, according to the detection region error parameter value 'the linear component of the detection region error parameter value, and the error information corresponding to the differential order component of the differential linear component, and then according to the detection The error information of the parameter value is used to calculate a weighting coefficient, and the weighting coefficient is used According to the linear component of the detection region error parameter value and the error of the differential linear component, and the magnitude of the error not based on the error; and the exposure substrate position determining mechanism, according to the position of the exposure substrate reference mark, the overall error The parameter value and the weighting coefficient are used to calculate a private position of the loading station, and the loading station is positioned at the target position. 5. The projection exposure apparatus of claim 4, wherein the inspection 162 200907596 measures the regional parameters, your γ ^ , the expansion and contraction of the direction, the expansion and contraction of the γ direction, the rotation of the χ direction, and the rotation of the Υ direction v ^ At least one of twirling, shear deformation in the X direction, and shear deformation in the γ direction. 6. If the projection exposure apparatus of the fourth or fifth patent application scope is applied, ',,,,,,, B.3⁄4 f | Μ, the error information of the error value of the detection area is calculated for each 5 hai detection area, The linear component of the I-domain error parameter value and the sum of the difference JJ of the linear component of the differential tool and the white number of the left knife P are subtracted from the error value of the detection region. The standard deviation of the value; the target position of the unit is the linear component of the error parameter value of the detection region and the sum of the sum of the difference linear components, and the value of the error parameter of the region, according to the weighting Calculated by the coefficient. 7. An alignment method for detecting a mark position on a printed circuit board when a pattern on a reticle is projected and exposed to a rectangular printed circuit board through a projection optical system, and determining an exposure position based on the mark position information, wherein The method includes the following steps: dividing a plurality of mark information arranged in parallel with one side of the rectangular substrate into at least two groups corresponding to one pair of opposite sides. According to design coordinates information of each mark in the group, and The detection information of each mark position determines the number of equations having a straight line or the curve information obtained by the approximation; 'For each of the two types determined by the two groups, substituting the design coordinate value for exposure to calculate 2 Position information; and the exposure position of the two sets of mark coordinates in the axial direction orthogonal to the calculated coordinate axis of the exposure coordinate is used to determine the exposure position. 163 200907596 8. The alignment method, when the pattern on the reticle is projected and exposed to the rectangular printed circuit board through the projection optical system, the mark position on the printed circuit board is detected and the exposure position is determined according to the mark position information. The method includes the following steps: dividing a plurality of pieces of mark information arranged in parallel with one side of the rectangular substrate into at least two groups corresponding to one pair of opposite sides; according to the design of each mark in the group Coordinate information, and the detection of each marked position, to determine the number of equations with a straight line or the approximated curve information; ^ ' group listening to each of the number. '丨 ~ eight goods encounter exposure area The design coordinate value of the diagonal winding ^^, 〇 to the parent 2钿, the magnification of the exposure area and the rotation information are calculated according to the 苴 苴 八 and the use of the exposure zen $ $ @ 铋 与 与 正交The direction of the 9 groups of markers is relative to the inner division of the 2 points of the knife to determine the exposure position. 9. If you apply for the alignment method of the 7th or 8th item of the patented gluten garden, the 配置 is arranged in a plurality of marks with the 2 thin τ ^ which will be in the direction of the flat, , v, and parent directions. Divided into less than 1 oblique aunt + m τ &lt;lean news, to the corresponding treatment of the side of each other. And enter the same 〗 〖. For example, the line or use determined in the alignment group of the 7th or 8th patent application scope, wherein the information of the curve determined by the number of the mark is in the case of the case 2 2 = Department - sub-type, marked as. In the case of 4 or more points, it is 3 times. 11 · For example, the alignment method of the 8th item of Shenjing Patent Range No. 2 is included in 164 200907596 仃 before the alignment is determined by (4) the number of points to be calculated: a step up to the formula; the step 'selects the mean value of the filaments corresponding to the sides opposite to each other as determined by the straight line approximation "2 times or a straight line like the first order, or 2 times the approximation of the 2nd curve formula. A aligning method according to claim 7 or 8, which comprises the step of detecting the mark of three or more points in each of the groups of the processing batch of the printed circuit board; The value of the approximation coefficient of the second and third times in the approximation or curve approximation reduces the number of points in the second and subsequent bars compared to the number of points in the slice. 13. An exposure apparatus for projecting and exposing a pattern on a reticle through a projection optical system to a rectangular printed circuit board, comprising: a drive stage for loading a loading platform for loading the printed circuit board Positioning and outputting; a position signal output mechanism disposed on the driving stage and outputting a position signal indicating a position of the loading stage; a mark position detecting mechanism for detecting a mark position formed on the printed circuit board; and aligning The control mechanism determines the exposure position according to the detection information of the mark position obtained by the mark position detecting mechanism, and controls the driving stage according to the determined exposure position and the position signal; the alignment control mechanism comprises: The information classification mechanism is configured to divide at least a plurality of mark information arranged in parallel with the i side of the rectangular substrate into at least two groups corresponding to the side 165 200907596 opposite to each other; the number determination mechanism 'based on the group The design coordinates of each mark and the detection information of each mark position 'to determine whether there is a straight line or profit The number of the curve information obtained by approximating the enthalpy; the position of the position calculation mechanism 'for each of the two types determined by the two groups, substituting the design coordinates of the exposure to calculate two position information; and exposure The position determining mechanism is a relative internal information of the two sets of mark coordinates of the exposure coordinate and the calculated direction of the axis of the coordinate axis, and the exposure position. Water exposure device 4. An exposure device is a projection exposure device that projects a pattern on a reticle through a projection optical system to a rectangular printed circuit board, and is characterized in that the drive stage is moved and positioned; a position signal output mechanism of the loading platform of the printed circuit board, a position signal disposed on the driving stage and at a position of the loading station; a position detecting mechanism is not marked for detecting a mark position formed on the printed circuit; and The quasi-control mechanism determines the exposure position based on the detection information of the four positions obtained by the mark position detecting mechanism, and controls the driving stage according to the determined H exposure position and the position signal; the alignment control mechanism includes : Marking the information classification mechanism, a plurality of mark information will be arranged in parallel with the i side of the rectangular substrate, at least divided into two pairs of opposite sides of each other; 166 200907596 two groups; the number determining mechanism, according to each of the groups Mark the design coordinate information, and the detection information of each mark position to determine the straight line or use the approximation The method of calculating the curve information; the magnification and rotation information calculation means, for each of the two types determined by the two groups, substituting the design coordinates of at least two ends of the exposure direction of the exposure region for exposure, by the difference Calculate the magnification and information of the (4) light area; and the exposure position determining mechanism determines the exposure position by using the internal coordinate information of the exposure coordinates and the two sets of coordinate coordinates of the calculated axis in the positive axis direction. The exposure apparatus of claim 13 or 14, wherein the plurality of marker information arranged in parallel to the side orthogonal to the two groups is divided into at least two groups corresponding to i facing each other. And the same treatment is applied. In the exposure apparatus of claim 13 or 14, wherein the straight line determined in the group or the curve information obtained by the approximation is determined by the number of the mark, the mark In the case of 2 o'clock, the system is a sub-type, a standard, and the case of 3 o'clock is a second-order type, and when it is marked as 4 or more points: the person's sub-form. The package is to be calculated or straight. For example, in the exposure apparatus of claim n or 14 of the patent range, before the alignment is performed, the step up to the order is determined in a manner irrelevant to the number of points of the mark; the step is to select a straight line approximation with the pair of i The average value of the corresponding equations on the opposite side of the jade 167 200907596 line approximation of the first-order formula, or the second-order curve approximation of the second-order formula. 18. An exposure apparatus according to claim 13 or 14, comprising a step of processing a batch of printed circuit boards, and performing a mark detection of more than three points for each of the groups; the step of performing a linear approximation or When the curve is approximated, the values of the approximation coefficients of the second and third times are such that the number of mark detection points after the second slice is smaller than the number of dots of the first slice. 19) A projection exposure apparatus that irradiates exposure light onto a patterned reticle to project the pattern image on an exposure substrate, comprising: a drive stage, a loading stage for loading the substrate Positioning at at least four predetermined positions; a position signal output mechanism disposed on the drive stage and outputting a position signal indicating a position of the loading stage; a reference mark detecting mechanism for detecting an exposure substrate reference formed on the exposure substrate a mark or a reference substrate reference mark formed on the reference substrate that can be exposed; and a position determining mechanism that determines a position of the loading table based on a position indicated by the position signal; the exposure substrate reference mark is used The reference substrate reference mark is composed of at least four marks indicating a reference position of the reference substrate; the position determining means includes: the first position branch a positive mechanism for correcting the loading station produced by the 168 200907596 when moving the loading platform a position error; and a second position correcting mechanism for correcting a linear component error in a position error of the exposure substrate reference mark; the first position correcting mechanism comprising: a reference substrate position control mechanism, the reference substrate being used as the substrate After being loaded on the loading platform, the loading stage is sequentially moved by the driving stage to at least three predetermined reference substrate detecting positions; and the reference substrate position storing mechanism is obtained from the position signal. The position of the loading table at the substrate detection position is stored; the reference substrate exposure mechanism is used for each of the reference substrate detection positions, and the light is used as a reference reticle to define the reference mark formed on the reference reticle. a substrate on which the image of the line reference mark is formed on the reference substrate; and a reference substrate position correction calculation storage means for detecting the mark 2 reference substrate reference mark formed on the reference substrate by the reference mechanism According to the detection result, the reticle = "the image and the relative position of the 忒 reference substrate reference mark are calculated... The position of the loading platform is calculated and stored in the loading position correction data for correcting the error. The second position correcting mechanism includes: an exposure substrate position control mechanism name mounted on the mounting substrate to be broken as the substrate, After the carrier port, the hunting platform is positioned by the driving stage, and the loading device is positioned at the exposure substrate detection position determined by the loading station position correction data; 169 200907596 exposure substrate position storage mechanism, Obtaining, from the position signal, a position of the loading table at each of the exposure substrate detection positions and an "exposure-based sub-marking mark position storage mechanism" for detecting the exposure substrate by the reference mark detecting mechanism at each of the exposed substrate release positions The reference mark 'then calculates the position of the exposure substrate reference mark according to the detection result and the position of the loading table and stores it; and 'in the error correction nose transport mechanism, according to the storage mechanism at the exposure substrate reference mark position storage mechanism The position of the exposure substrate reference mark is calculated using a least squares method to correct the linearity Linear error correction for compositional errors. 20: a projection exposure apparatus for exposing exposure light to a patterned line; 1 'projecting the pattern image on an exposure substrate, comprising: a drive stage for loading a substrate The loading station is positioned in at least four predetermined positions; a position signal output mechanism is disposed on the driving stage, and outputs a position signal indicating a position of the loading station; and a reference mark detecting mechanism for detecting the formed on the exposure substrate Exposing the substrate reference mark or the reference substrate reference mark formed on the reference substrate, and the position determining means for determining the position of the seismic stage based on the position indicated by the position signal; It is composed of at least four marks for indicating the reference position of the exposed substrate; 170 200907596 »Hai base substrate reference mark, at least 'quasi-position', used to indicate the base of the reference substrate; The position determining mechanism includes: a first position correcting mechanism, which is produced when the wearing father is moving the dressing table The positional error of the stage; and the second position correcting mechanism, the first position correcting mechanism for exposing the substrate reference mark by the linear component error in the position error includes: a reference substrate position control mechanism, and the crack is carried on the display After the stage, the M = reference substrate is moved as the substrate to be positioned at at least three predetermined dynamic loads; the loading platform sequentially picks up the dry substrate detecting position; the reference substrate position storage mechanism, and the 基板# a L system The position signal is obtained at the detection position of the 夂哕 reference substrate. The position of the sea battle port is stored and stored; the reference mark position of the ground reference plate stores the detection position, and the reference substrate base is detected by the U-substrate (4) 4 μ detection mechanism, and then Detecting the position of the buckling reference substrate reference f 2 and (4) the stage, calculating the position of the 丞 己 且 and storing it; and calculating the position of the reference substrate.   ^, the storage mechanism, according to the reference base; the position of the quasi-marking + the substrate base only stops the position misalignment position correction data of the loading station and stores it; loading the second position correction mechanism comprises: exposing the substrate position control mechanism After being loaded on the loading platform, the substrate is moved as the substrate to be positioned at least Π 171 200907596 according to the position correction data of the loading table; the position of the exposed substrate is detected; 'Acquiring and storing the position of the loading table at each of the exposure substrate detection positions from the &amp;signal; the exposure substrate reference mark position storage mechanism is at each of the exposure substrate detection positions by the reference mark detecting mechanism Detecting the exposure substrate reference mark, and calculating the position of the exposure substrate reference mark according to the detection result and the position of the loading stage, and storing the error; and recording error correction operation mechanism, storing according to the position of the exposure substrate reference mark stored The position of the exposure substrate reference mark of the mechanism is calculated using the least square method To correct the linear error correction of the linear component error. 21. A projection exposure apparatus comprising: a digital micromirror element having a plurality of mirrors, and wherein a direction of reflection of light incident on the plurality of mirrors is dependent on the plurality of mirrors; and a microarray lens And a plurality of microlenses corresponding to the plurality of mirrors respectively; and the point image formed by the microarray lens is projected onto the exposure substrate, wherein the method comprises: driving the stage, which is used for loading the substrate The loading station is positioned in at least three predetermined positions; the position signal output mechanism is disposed on the driving stage, and outputs a position signal indicating a position of the loading station; and a reference mark detecting mechanism for detecting the formed on the exposed substrate Exposing the substrate reference mark or the reference substrate reference mark formed on the reference substrate that can be exposed; and 172 200907596 position determining mechanism, determining the position of the loading table; and determining the exposure substrate reference mark based on the position indicated by the position signal a reference substrate base composed of at least three marks indicating the position of the exposed substrate The mark is formed by at least three marks indicating the position of the reference substrate. The position determining mechanism includes: a first position correcting mechanism, wherein the position error of the loading table is used to correct the production when the loading table is moved a second position correction mechanism for correcting a linear component error in a position error of the exposure substrate reference mark; the first position correction mechanism includes a reference substrate position control mechanism, and the reference substrate is mounted as the substrate After the loading platform, the loading table is sequentially positioned to move at least three predetermined reference substrate detecting positions by the driving stage, and the reference substrate position storage mechanism is obtained from the position signal and detected on each of the reference substrates. The position of the loading table is stored and stored; the reference substrate exposure mechanism is for each of the reference substrate detection positions, and the exposure light is irradiated onto the reference reticle to form a reticle reference formed on the reference reticle Marking a projection on the reference substrate to form an image of the reference mark on the reference substrate; and a reference substrate position The positive operation storage unit detects the image of the reticle &amp; mark and the reference mark formed on the reference substrate by the reference mark detecting means, and calculates the reticle reference 173 200907596 according to the detection result The relative position of the reference substrate and the position of the loading table are "calculated for the purpose of the calculation", and then the position of the loading table is corrected according to the error (4) and is given to the fourth parent; the second position of the position of the loading table The calibration mechanism includes: the exposure substrate is controlled to be spread, and the exposure substrate is used as the substrate by the drive stage, and the loading stage is sequentially moved and clamped to the exposure substrate according to the loading stage. The at least three light-receiving position storage mechanisms are obtained from the position signal to obtain the position of the loading table at each of the substrate detecting positions and stored; the exposure substrate reference mark position # 、, 彳 储存 储存The mechanism detects the exposed substrate reference "self" by using the reference mark detecting mechanism at each of the exposed substrate=positions, and then according to the detection result and the loading The position of the exposure substrate reference mark is calculated and stored; and the "linear error correction calculation mechanism" uses the least square position based on the position of the exposure substrate reference mark stored in the exposure substrate reference The method calculates a linear error correction data for correcting the error of the linear component. 0, 22· a projection exposure apparatus, comprising: a digital micromirror element, having a plurality of mirrors, and capable of emitting light to the plurality of mirrors The reflection direction is determined by the plurality of mirrors respectively; and the microarray lens has a plurality of microlenses corresponding to the plurality of mirrors respectively; and the point image formed by the microarray lens is projected onto the exposure substrate, The invention comprises the following features: 174 200907596 The drive stage 'positions the loading stage for loading the substrate in at least three predetermined positions; the position signal output mechanism is disposed on the driving stage, and outputs the position indicating the position of the loading stage a signal mark detection mechanism for detecting exposure formed on the exposure substrate a substrate reference mark or a reference substrate base formed on the reference substrate; and a π position determining means for determining a position of the loading stage based on a position indicated by the position signal; and the exposure substrate reference mark is used to indicate the Forming at least three marks of a reference position of the exposure substrate; the reference substrate reference mark is composed of at least three marks indicating a reference position of the reference substrate; and the position determining means includes: a first position correcting mechanism; a second position correction mechanism for correcting a linear component error in a position error of the exposure substrate reference mark; and a second position correction mechanism for correcting a position error of the loading table generated when the loading table is moved; The reference substrate position control mechanism is mounted on the loading table as the substrate, and the loading stage is sequentially positioned to move at least three reference substrates. Detection location; The reference substrate position storage mechanism acquires and stores the position of the loading table at each of the reference substrate detection positions from the position signal; 175 200907596 The reference substrate reference mark position storage mechanism is at each of the reference substrate detection positions by The reference mark detecting means detects the reference mark of the reference substrate, and based on the detection result, the position of the reference mark of the reference substrate is calculated and stored, and the reference substrate position correction calculation storage means Calculating and storing the loading table position correction data for correcting the position error of the I stage based on the position of the reference substrate reference mark; the second position correcting mechanism includes: an exposure substrate position control mechanism, which is exposed at the pastoral edge After the substrate is mounted on the loading platform as the substrate, the 藓 访 访 amp amp amp 精 3⁄4 moving stage, the loading stage is sequentially positioned to at least 3 predetermined exposure substrate detection positions determined according to the position of the loading station and the inspection of the Gongga; the exposure substrate position is stored; The position signal is obtained at the position of the exposure substrate of each of the exposure substrates, and is stored and stored; the exposure substrate reference mark position is stored in the detection mechanism, and the exposure substrate detection position is By using the reference 椤 仏 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , And the linear error correction of the real machine medium, the dissimilar structure is based on the position of the substrate on which the substrate is stored, and the position of the reference mark of the substrate is also suitable for the night. The linear error correction data used to correct the linear component error is calculated using the least squares method. A projection exposure apparatus according to any one of items 19 to 22, which comprises a projection light station m for illuminating the exposure light to the 176 200907596 exposure The reference mark detecting mechanism 'includes an alignment optical system disposed between the projection optical system and the loading stage; 忒 aligning the optical system, and irradiates the non-exposure light to the exposure substrate reference e or the reference substrate reference mark Detecting the exposed substrate reference mark or the reference substrate reference mark; the 忒 alignment optical system is positioned at the detection position when detecting the exposure substrate reference mark or the reference substrate reference mark; at the end of the exposure substrate reference mark Or after the detection of the reference substrate reference mark, it is positioned at a retreat position that is retracted from the detection position. ^ 24. The projection exposure apparatus according to any one of claims 19 to 22, wherein the loading position correction data is calculated based on an average value of positions of the exposure substrate reference marks at a plurality of reference substrate detection positions. . ^ 25. The projection exposure liquid according to any one of the items of the invention of the present invention, wherein the reference substrate reference mark is formed at a grid-like intersection in the reference substrate at a predetermined interval; ▲ » Hai loading station The position correction data is calculated based on the position of the reference substrate reference mark located at the grid-like intersection. The secondary and exposure substrate position control means corrects the material by using the stage position and calculates by curve approximation or interpolation. The target position at which the loading station is to be positioned positions the loading station at the target position. 26. A projection exposure apparatus according to the ninth or second aspect of the invention, comprising: 177 200907596 a projection optical system capable of changing a projection magnification of the pattern image and projecting the pattern to an edge exposure substrate; and a projection magnification determining mechanism, The projection magnification is determined based on the linear error correction data that is different from the linear error correction computing means. A projection exposure apparatus for irradiating exposure light onto a patterned reticle to project the pattern image on an exposure substrate, comprising: a driving stage for loading the substrate The loading station is positioned in at least four predetermined positions; a position signal output mechanism is disposed on the driving stage, and outputs a position signal indicating a position of the loading station; and a ground-based detection mechanism for detecting the formation Exposing the substrate substrate reference &amp; δ£, or the reference substrate reference mark formed on the reference substrate, and the position determining mechanism, determining the position of the loading table based on the position indicated by the position signal; a substrate having at least four exposure regions for projecting the image of the pattern; 曝光 the exposure substrate reference mark is an exposure region reference mark for indicating a reference position of the at least four exposure regions; a position correction mechanism for correcting a position error of the exposure substrate fiducial mark; the exposure position correction mechanism comprising: The light substrate position control mechanism is mounted on the substrate 178 200907596 on the substrate 178 200907596, and the mop moxibustion is used to sequentially position the loading table in at least four predetermined positions by the driving stage. Exposing the substrate detection position; and exposing the substrate position storage mechanism to obtain the position of the loading table at each of the exposure substrate detection positions from the position signal and storing the ITO exposure area reference mark position library, each exposure The substrate*J position is used to detect the exposure area reference by the hai reference mark detecting mechanism, and then the position of the exposure area reference mark is calculated and stored according to the detection result and the position of the loading stage; the position error processing mechanism is Storing the position of the exposure area reference mark in the exposure area reference mark position storage mechanism, and calculating the error information of the nonlinear component in the position error of the exposure substrate reference mark using the minimum flat branch; the differential error processing mechanism is stored according to the exposure The exposure area reference mark of the area reference mark position storage mechanism The difference in position, using the least square method to calculate the error information of the nonlinear component in the difference error of the position of the exposure substrate reference mark; and the exposure substrate position determining mechanism 'based on at least the error information of the two nonlinear components Weighting to calculate the target location at which the loading station is to be positioned, and then positioning the loading station at the target location. A projection exposure apparatus for irradiating exposure light onto a patterned reticle to project the pattern image on an exposure substrate, comprising: a driving stage, and a loading platform for loading the substrate Positioning in three predetermined positions; 179 200907596 position signal output mechanism, disposed on the driving stage, and outputting a position signal indicating the position of the loading stage; a reference mark detecting mechanism for detecting the exposure substrate formed on the exposure substrate a reference mark; and a 'position determining mechanism' determines a position of the loading stage according to a position indicated by the position signal; the exposure substrate has at least three exposure areas for projecting the pattern image; and an exposure area is used to correct the The exposure substrate reference mark is an exposure area reference mark indicating a reference position of the at least one field; The position-receiving mechanism of the home position includes an exposure position correction mechanism, and the position error of the exposure substrate reference mark; the war exposure position correction mechanism includes: · exposure substrate position control.   _, after the material light substrate is mounted on the loading platform as the substrate, the burial earth plate is driven by the driving stage, and the loading table is positioned to move at least 3 彳 g g jf6 The exposure substrate detecting position; the exposure substrate position storage mechanism is to take the position of the mounting table of the exposure substrate detection position from the position signal and store it. ^ Exposure area reference mark position storage, detection position, by the reference rod, 糸 in each of the exposure substrate blocks ^ 己 己 detection mechanism to detect the exposure area reference ^ and then according to the detection result and the position of the 褒 stage Jin, the location of the reference mark of the lack of light area and stored.  The nose area is exposed to the linear error correction computer to mark the position of the storage area of the exposure area base == area reference thousand knows the position of the 'use the most 180 200907596 i flat method is used to correct the linear component error material; &amp; The decision-making technique is used to calculate the position of the reference mark stored in the exposure field of the exposure field.   And the knives, with the overlap control mechanism, are obtained by using the least square method, and the 5 _ telescopic and orthogonal types are replaced by the difference, and the exposure is also applied to the reticle to Moon secret first. The overlapping target position of the 3⁄4 projection image and the exposure substrate. "2:---the projection exposure method" uses a projection exposure device to illuminate the exposed substrate formed on the loading table with light; the projection exposure device includes: a driving stage, The loading platform for loading the substrate is positioned and positioned in at least three predetermined positions; the position signal output mechanism is disposed on the driving stage, and outputs a position signal indicating a position of the loading station; &quot; a reference mark detecting mechanism for detecting a reference substrate reference mark formed on the exposure substrate or a reference substrate reference mark formed on the reference substrate that can be exposed; and a position determining mechanism that determines the position of the loading stage based on the position indicated by the position signal The exposure substrate reference mark 'is composed of at least three marks indicating the position of the base 181 200907596 of the exposed substrate; the reference substrate reference mark is used by the _ ^ field to indicate whether At least three marks of the reference position of the reference substrate; and the following steps: Reference substrate position control step After the base substrate is mounted on the substrate as the substrate, the loading stage is sequentially positioned to move at least three predetermined reference substrate detection positions by the driving stage; the reference substrate In the position storage step, Yu Qiu obtains the position of the loading table at each of the reference substrate detection positions from the position signal and stores it. The reference substrate exposure step is performed at each of the reference substrate detection positions, and the exposure light is irradiated. The reference mark H , , ^ L ... is such that the mark formed on the reference reticle, the 'spring slice reference mark is projected on the steam, and the plate is folded to form the line reference mark on the reference substrate Like; the reference substrate position correction 瞀 左 左 左 左 左 左 左 , , , , , 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左 左The image of the slice reference mark ^ ^ 'Based on the detection result, the relative position of the reticle reference center 5 and the reference substrate is calculated, the relative position and the position of the loading table... 卞f..., the rear root (4) Set #夕_Changing out the loading station position correction data for correcting the positional difference of the loading station and storing it; the exposure substrate position control step is performed after the exposure substrate is loaded on the loading table , Su “ 》 》 亥 亥 亥 — & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & 6 6 At least three innocent exposure substrate detection positions and exposure substrate positions are stored in a sub-step, and the position of the loading station at each of the 182 200907596 exposure substrate detection positions is obtained from the position signal and stored; First, the substrate reference mark position storage detection position 蕤, 蕤 复 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , And storing; and ... the exposure line difference &amp; positive operation step, according to the position of the exposure substrate reference mark stored in the exposure substrate reference mark: storage step The least squares method is used to calculate the linear material to correct the linear component error. Bay 30. a projection exposure method for projecting an exposure light ',, and a pattern onto a reticle formed with a pattern to project the pattern image onto the exposure substrate mounted on a loading stage; the projection exposure apparatus The device includes: a driving load σ ϋ word for loading the substrate, the mounting table is moved and positioned in at least three predetermined positions; a position signal output mechanism is disposed on the driving stage, and outputs a position signal indicating a position of the loading station; a mark detecting means for detecting an exposure substrate reference mark formed on the exposure substrate or a reference substrate reference mark formed on the reference substrate; and a position determining means for determining the loading stage based on the position indicated by the position signal Position; the feature is: &quot;Heil exposure substrate reference mark, which is composed of at least three marks indicating the position of the base 183 200907596 of the exposed substrate; the reference substrate reference mark is used to indicate the reference substrate At least 3 marks of the position of the beautiful soap; the base of the soil plate and the following steps·· The position control step is, after being loaded on the loading platform, the position of the loading platform of the reference substrate detecting position by breaking the reference loading position of the reference loading substrate in the reference loading stage. ^The signal acquisition step is performed at each of the reference substrate reference mark positions: the detection position, the H &amp; ', after each of the reference substrate alignments, the iron broadcast iP i &amp; mechanism to detect the reference substrate base... According to the detection result and the position of the load A of the load A, the reference mark of the reference mark is stored and stored, and the reference substrate position correction operation is stored and stored in accordance with the reference substrate base position. Correcting the data and storing it; the m-loading substrate position control step, after being loaded on the loading platform, is used as the substrate to print &amp; a moving stage, the mounting (4) is positioned at at least three exposed substrate detection positions determined according to the loading position correction data; = the optical substrate position storing step is obtained from the position signals at each of the exposures The position of the loading table of the substrate detection position is stored; = the pure reference mark position storing step is performed by detecting the position of the exposure substrate reference 184 200907596 by the reference mark detecting mechanism on each of the exposure substrates, and calculating the exposure; And the mark, and then according to the detection result and the position of the light-receiving substrate reference mark and the storage position is stored in the cow, $ # + * 隹垓 exposure substrate reference mark Γ Γ the position of the exposure substrate reference mark, using: The linear error correction used to correct the linear component error is to use the projection exposure device, which will be reflected to the exposure base loaded on the loading platform.  A projection image forming method of a micro-array lens; the projection exposure apparatus comprises: the loading and loading station 'moving and positioning on the driving stage, which is used for loading the substrate with three predetermined positions; ▲ position signal output The mechanism is disposed on the driving stage and outputs a position signal indicating a position of the loading stage; the reference mark detecting mechanism is configured to detect an exposure substrate reference mark formed on the exposure substrate or formed on the reference substrate for exposure a reference substrate reference mark; a position determining mechanism that determines a position of the loading stage based on a position indicated by the position signal; the digital micromirror element 'having a plurality of mirrors and capable of emitting light to the plurality of mirrors The reflection direction is determined by the plurality of mirrors respectively; and the microarray lens has a plurality of microlenses corresponding to the plurality of mirrors respectively; 185 200907596 is characterized in that: the exposure substrate fiducial mark is used to indicate At least three marks of the reference position of the exposure substrate; the reference substrate reference The method is composed of at least three marks for indicating a reference position of the reference substrate, and includes the following steps: a step of using the reference substrate as the substrate, and the driving stage a predetermined reference substrate detection position; the reference substrate is positionally controlled and loaded on the loading stage, and is moved and positioned in at least three reference substrate position storage steps, and the loading platform of the reference substrate detection position is obtained from the position signal Position and storage; signing the slab exposure step 丞 substrate position correction calculation stored in the measuring mechanism, the detection is formed at the step, the substrate reference mark is detected by the reference mark, and the second::: relative position is calculated according to the detection result: := ί:= The relative position of the mark, according to the error of the load, the load position of the loader and the position of the load of the 5 loader of the 5th load table is stored and stored; the exposure substrate position control step is loaded on the The loading table H is made up of (4) "the substrate is slightly used as the substrate. Xuan* will cut the meeting, |»^ j.  j Move positioning at least 3 186 200907596 according to the loading station, I shy station in the order position of the poor material, the predetermined exposure substrate detection position; exposure substrate position storage step, 'system position signal acquisition for a long time梦 Exposure substrate detection position of the Meng Gong A &amp; now take the position of each 5 Heitz loading station and store it; Exposure substrate reference mark position storage direct storage step, in each of the exposure = position mark detection The mechanism detects the exposure substrate i, and then according to the detection result 4, «-, c ^ ^ ^ the position of the clothing battleport' is different from the position of the substrate reference and is stored, and linear The error correction operation step is inversely different, according to the storage method stored in the exposure substrate reference position storage step, 廿 &lt; 4 The position of the substrate reference mark is measured by the least square method to correct the green data. ^, friendliness becomes the error linear error correction I A projection exposure method, using a projection exposure device, the point image formed by the column (10) is projected onto the exposure substrate; ^ The projection exposure device includes: The stage, which is used to intercept the platform of the support storm, is positioned in at least three predetermined positions; ▲ a position signal output mechanism is disposed on the drive stage, and the position indicating the position of the loading stage is output a reference mark detecting mechanism for detecting an exposure substrate reference mark formed on the exposure substrate or a reference substrate reference mark formed on the reference substrate, and a position determining mechanism according to the position of the &amp; signal (4) Position of the load platform; 187 200907596 Digital micromirror element having a plurality of mirrors, and the direction of reflection of light incident on the plurality of mirrors is determined by the plurality of mirrors; An array lens having a plurality of microlenses corresponding to the plurality of mirrors respectively; wherein: the exposure substrate reference The reference substrate reference mark is composed of at least three marks indicating a reference position of the reference substrate; and the following steps are included; : a reference substrate position control step of positioning the loading stage on at least three predetermined reference substrate detection positions by the drive stage after the reference substrate is mounted on the loading stage as the base stage; The reference substrate position storing step is performed, and the position of the selected A ^ loading station at each of the writing positions of the reference substrate is obtained from the position signal and stored; the reference substrate reference mark is raised to six times. The storing step is performed at each of the reference base phases, and the detection mechanism detects the reference substrate reference '圮 by the base, and then detects the Λ m ^ ^ ^ ^位置 The position of the stage, calculate the position of the reference mark of the base plate Μ to store; the reference substrate position correction h h mm # 异 储存 storage step, according to The quasi-substrate base aw , , τ is also the position error of the 3 haistation stage position and the data is stored; the exposure substrate position control step, the 5 hai exposure substrate is loaded as the base handle 188 200907596 After the loading stage, the mobile positioning position is at least three positions determined by the Shai driving stage according to the predetermined exposure substrate detection position of the loading table, and the exposure substrate position is inaccurate; The step of obtaining the position of the seismic stage at each of the exposure substrate detection positions from the position signal and storing the same; the exposure substrate reference mark position storage step is performed by detecting the reference mark at each of the exposure substrate detection positions The mechanism detects the exposure substrate reference mark, and then calculates and stores the position of the exposure substrate reference mark according to the detection result and the position of the loading stage; and the linear block production correction operation step, according to the position of the exposure substrate reference mark The position of the exposure substrate reference mark stored in the step is calculated using the least square method to correct the line Linear error correction data of the component error of the invention, wherein the projection exposure device includes a projection for irradiating the exposure light to the exposure substrate, wherein the projection exposure device of any one of claims 29 to 32 An optical system; the reference mark detecting mechanism includes an alignment optical system disposed between the projection optical system and the loading stage, and irradiates non-exposure light to the exposure substrate reference mark or the reference substrate reference mark to detect the exposure substrate a reference mark or the reference substrate reference mark; when the reference mark reference mark or the exposed substrate reference mark is detected by the reference mark detecting means, the method includes the following steps: when detecting the exposed substrate reference mark or the reference substrate reference mark 'Locating the alignment optical system at the detection position; and 189 200907596 after positioning the exposure substrate reference mark or the reference substrate reference mark to 'position the alignment optical system at a retreat position retreating from the detection position . The projection exposure method according to any one of claims 29 to 32, wherein the loading position correction data is calculated based on an average value of positions of the exposure substrate reference marks at a plurality of reference substrate detection positions. . The projection exposure method according to any one of claims 29 to 32, wherein the reference substrate reference mark is formed at a grid-like intersection in the reference substrate at a predetermined interval; 忒 loading table position correction data Calculated based on the position of the reference substrate reference mark located at the lattice intersection; and comprising the steps of: using the load station position correction data and using curve approximation or interpolation to calculate the target position of the iU to position the loading table And then position the loading station at the target location. A person who applies the projection exposure method of claim 29 or 32, and the package 3 projection optical system can change the projection magnification of the pattern image to project the case to the exposure substrate; and the following steps are included: The linear error corrected poor material calculated by the linear error correction operation step determines the projection magnification. The 37' projection exposure method uses a projection exposure device to illuminate the exposure center light onto the patterned reticle to project the pattern image onto the exposure substrate mounted on the loading station at 190 200907596; The device comprises: a driving stage, wherein the loading platform for loading the substrate is moved and positioned in at least four predetermined positions; a position signal output mechanism is disposed on the driving stage, and outputs a position signal indicating a position of the loading platform; a mark detecting means for detecting an exposure substrate reference mark formed on the exposure substrate or a reference substrate reference mark formed on the reference substrate; and a position determining means for determining the position of the loading stage based on the position indicated by the position signal The exposure substrate has at least four exposure areas for projecting the pattern image, and an exposure area reference mark for indicating a reference position of the at least four exposure areas; and the following steps are included; : The exposure substrate position control step 'in the exposure substrate is used as the substrate Loading: on the loading platform|, by the driving stage, the loading table is sequentially positioned to be at least 4 彳^β 4 曝光 exposure substrate detection positions; 讦芡π w攸 into a call signal obtained in Each of the exposed substrates detects the position of the load station t of the summer 4 and stores it; the exposure area base dimension; the m detection position, and the storage step, the detection area of each of the exposure substrates is used to detect the exposure area reference 191 200907596 mark, and then according to the detection result and the position of the loading station, the position of the light area reference mark is stored. Λ + position error processing step 'according to the exposure line stored in the exposure area reference storage step The position of the fiducial mark, using the 'method to calculate the non-linear:: error information in the position error of the exposure substrate fiducial mark; the differential error processing step, according to the exposure area fiducial mark stored in the exposure area reference mark position material step The difference of the position, using the least square method to calculate the nonlinearity of the difference error of the position of the reference mark of the exposure area Error information; and an exposure substrate position determining step of applying a weighting 'at at least one of the two nonlinear components to calculate a target position to position the loading station' and then positioning the loading station at the target position . 38. A projection exposure method, using a projection exposure device, irradiating exposure light onto a patterned reticle to project the pattern image onto the exposure substrate loaded on the loading platform; The drive includes a drive stage for positioning the loading stage for loading the substrate at at least three predetermined positions; a position signal output mechanism disposed on the drive stage and outputting a position signal indicating a position of the loading stage; a reference mark detecting means for detecting an exposure substrate reference mark formed on the exposure substrate or a reference substrate reference mark formed on the reference substrate; and 192 200907596 position determining means for determining the loading based on the position indicated by the position signal The position of the stage is characterized in that: the exposure substrate has at least a field for projecting the image of the pattern; the three exposure areas of the exposure substrate reference mark are used to indicate the exposure area reference mark of the reference position of the at least field; The exposure area includes the following steps: an exposure substrate position control step in which the exposure substrate is taken After the substrate is mounted on the loading stage, the loading stage is sequentially privately clamped to at least three predetermined exposure substrate detecting positions by the driving stage; and the exposure substrate position storing step is performed from the position signal Acquiring and storing the position of the loading stage at each of the exposed substrate detection positions; and exposing the exposure area reference mark position to detect the exposure area reference by using the 6-foot reference mark detecting mechanism at each of the exposed substrates: And then 'according to the detection result and the position of the positional light reference mark of the loading station and the fortune; &quot; 'Out of the linear error correction operation step, the position storage step storage / = in the exposure domain The reference mark::, the flat method calculates the linear error correction for correcting the linear component error. The difference calculation step is stored in the storage step and is used to calculate the difference between the position of the exposure region reference mark in the light-area reference mark position. ; 193 200907596 The overlap control step is to use at least one of the expansion, rotation, and orthogonal methods obtained by the least squares method; In the difference, the exposure light is applied to the reticle s to calculate and control the overlapping target position of the projection image when the pattern image is projected on the exposure substrate and the exposure substrate. Eleven, circle: as the next page 194
TW097116420A 2007-05-07 2008-05-02 Projecting exposure method, alignment method, and projecting exposure apparatus TW200907596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097116420A TW200907596A (en) 2007-05-07 2008-05-02 Projecting exposure method, alignment method, and projecting exposure apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2007/059466 WO2007129688A1 (en) 2006-05-10 2007-05-07 Projection exposure device and projection exposure method
TW96116441A TW200811604A (en) 2006-05-10 2007-05-09 Projection exposure device and projection exposure method
TW097116420A TW200907596A (en) 2007-05-07 2008-05-02 Projecting exposure method, alignment method, and projecting exposure apparatus

Publications (1)

Publication Number Publication Date
TW200907596A true TW200907596A (en) 2009-02-16

Family

ID=44723453

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097116420A TW200907596A (en) 2007-05-07 2008-05-02 Projecting exposure method, alignment method, and projecting exposure apparatus

Country Status (1)

Country Link
TW (1) TW200907596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI722454B (en) * 2018-08-14 2021-03-21 台灣積體電路製造股份有限公司 Method and system for improving critical dimension uniformity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI722454B (en) * 2018-08-14 2021-03-21 台灣積體電路製造股份有限公司 Method and system for improving critical dimension uniformity
US11055464B2 (en) 2018-08-14 2021-07-06 Taiwan Semiconductor Manufacturing Co., Ltd. Critical dimension uniformity
US11763057B2 (en) 2018-08-14 2023-09-19 Taiwan Semiconductor Manufacturing Co., Ltd. Critical dimension uniformity

Similar Documents

Publication Publication Date Title
TWI298428B (en) Lithographic apparatus, method of controlling projection of beams onto a substrate, and lithographic substrate focus control system
TWI237744B (en) Level sensor for lithographic apparatus
TW529172B (en) Imaging apparatus
TW200830055A (en) Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
TW200830360A (en) Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
TW201118508A (en) Exposure method, exposure apparatus, and device manufacturing method
TW200402089A (en) Exposure apparatus and stage device and device manufacturing method
US11169447B2 (en) Lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product
TW201042404A (en) Level sensor arrangement for lithographic apparatus and device manufacturing method
TW200811604A (en) Projection exposure device and projection exposure method
TW201015238A (en) Surface position detection device, exposure device, surface position detection method and device manufacturing method
JP2004327972A (en) Equipment and method of positioning wafer inside exposure device
CN101738873A (en) Exposure device
TW200540574A (en) Method of measurement, method for providing alignment marks, and device manufacturing method
CN107290943B (en) Coaxial mask alignment equipment, lithographic equipment and alignment methods
JP2018139010A (en) Mobile device and exposure device
US9989862B2 (en) Optical system for producing lithographic structures
CN106933055B (en) A kind of alignment device and alignment methods
TWI246114B (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
TW200907596A (en) Projecting exposure method, alignment method, and projecting exposure apparatus
TW201214056A (en) Lithographic apparatus and device manufacturing method
TWI294561B (en) Device and method for wafer alignment with reduced tilt sensitivity
CN109075185A (en) Micro- LED array is as irradiation source
TWI240850B (en) Projection aligner
CN101826454B (en) Manufacturing method for a semiconductor device