TW200906089A - A method of transmitting data to a receiver - Google Patents

A method of transmitting data to a receiver Download PDF

Info

Publication number
TW200906089A
TW200906089A TW97121472A TW97121472A TW200906089A TW 200906089 A TW200906089 A TW 200906089A TW 97121472 A TW97121472 A TW 97121472A TW 97121472 A TW97121472 A TW 97121472A TW 200906089 A TW200906089 A TW 200906089A
Authority
TW
Taiwan
Prior art keywords
receiver
antenna
communication system
subcarriers
transmission
Prior art date
Application number
TW97121472A
Other languages
Chinese (zh)
Inventor
xiao-ming Peng
Zhiwei Lin
Po Shin Francois Chin
Khiam Boon Png
Original Assignee
Agency Science Tech & Res
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency Science Tech & Res filed Critical Agency Science Tech & Res
Publication of TW200906089A publication Critical patent/TW200906089A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/08Transmission systems not characterised by the medium used for transmission characterised by the use of a sub-carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Abstract

A method of transmitting data to a receiver, wherein the data is transmitted using a plurality of sub-carriers, is provided. The method provided includes selecting, for each sub-carrier, an antenna of a plurality of antennas to be used for the transmission of the sub-carrier between the antenna and the receiver.

Description

200906089 九、發明說明: 【發明所屬之技術領域】 本發明之實施例係關於無線通訊系統的領域,諸如, 例如特定(ad hoc)無線超寬頻無線電通訊網路。經由實例, 本發明之實施例係關於一種傳送資料至一接收器的方法, 以及一相對應通訊裝置。 本發明係主張美國臨時申請案第60/929,022號(於 2007年6月8日提申)的權利,其之整個内容係爲^有目 的而以引用方式納入本文中。 【先前技術】 一般上已知的為:一訊號的傳輪範圍主要係由該訊號 之傳送功率所決定。在例如其中該訊號之傳送功率由於美 國聯邦通訊委員會(Federal communicati〇ns c〇mmissi〇n,、 FCC )的規定而被限制之情況下,該訊號的傳輸範圍因此 亦係被限制。例如,依據IEEE 8〇215 3a技術要求,由於 FCC 傳送功率頻譜密度(p〇wer Spectral Density,psD ) 遮罩,所期望的訊號傳輸範圍對於一 1〇〇 Mbps資料傳輸 來說僅係大約1 〇公尺,或是對於一 2〇〇 Mbps資料傳輸來 此僅係大約4公尺,或是對於一 48〇 Mbps資料傳輸來說 僅係大約2公尺。 此一短訊號傳輸範圍(例如如上文所討論者)對於一 通訊系統來說通常係在該通訊系統的潛在應用上強加嚴重 約束。因此係希望的為:例如增加對於此一通訊系統之訊 5 200906089 號傳輸範圍 制。 同時仍然遵守由於 FCC規定的傳輸功率限 【發明内容】 的在本發明-個實施例中,係提供一種傳送資料至一接 收:的方法,纟中該資料係使用複數個子载波來被傳送。 所提供之方法係包含對於每一個子載波挑選要被用於該子 載波傳輸之複數個天線中一天線,該挑選係基於在該天線 以及该接收器之間的一子載波傳輸之一傳輸特徵。 【實施方式】 作為說明用地,一具有一翠一天線之通訊裝置例如在 其功率被咖規定所限制時僅係可具有—短訊號傳輸範 圍而且係不可強固到足以克服例如室内屏蔽或是衰減。 爲要克服上述不利因數,經由複數個傳送天線之空間分集 (spatial diversity)係可被用在此一通訊裝置,其之傳送 功率係可例如被該等所謂Fee規定所限制。 在更細節裡,對於一其中要被傳送之資料可在複數個 子載波上被調變的通訊裝置來說,一介於該等子載波以及 該等天線之映射(mapping )係可依據一預定準則而被實 施。隨著一合適映射,透過該等複數個天線之空間分集係 可達成,並且對於該等傳送天線中每一者的傳送功率係亦 可被控制使得其符合該等所謂FCC規定。 依據本發明一個實施例,係提供一種傳送資料至一接 200906089 收器的方法’其中該資料係使用複數個子載波來被傳送。 所提供之方法係包含對於每一個子載波挑選要被用於該子 載波傳輸之複數個天線中一天線’該挑選係基於在該天線 以及5亥接收器之間的一子載波傳輸之一傳輸特徵。 依據本發明一個實施例,係提供一種用於傳送資料的 通訊系統,其中該資料係使用複數個子載波來被傳送。所 提供之通訊系統係包含一接收器,以及一挑選單元,該挑 選早凡係被組態成對於每一個子載波挑選要被用於該子載 波傳輸之複數個天線中一天線,其中該挑選係基於在該天 線以及該接收器之間的一子載波傳輸之一傳輸特徵。 該挑選係可被實施在該傳送器或是該接收器中。例如, 該接收器係選在該等要被使用之天線,並且係將該挑選發 訊至該傳送器。另或者,該傳送器係基於該傳輸特徵而自 己本身來實施該挑選。 ^該挑選已被實施時,該資料係可依據該挑選而自該 傳达盗被傳送至該接收器,#即,使用該等子載波以及對 :每:個子載波使用用於該子載波傳輸的經挑選天線(或 疋S亥等經挑選天線) 多個本發明實施例係顯露自該等依附中請專利範圍 t個實施财,使用料複數個子載波而要被傳送 資二二為一上通訊層之一通訊通道的資料。要被傳送之 如2為相同邏輯通道或是㈣輸料道的有㈣料。例 被傳送之資料係為其應該全部要被傳送至相同接收 7 200906089 為的貪料。使用該等子載波之傳輸係例如基於相同傳輸技 術(例如基於相同調變)。例如,該等子载波係為依據一 OFDM傳輸或是另一多载波傳輸技術的子載波。 在—個實施例令,該天線係基於針對該傳輸特徵之一 預定準則來被挑選。 在一個實施例中,所提供之方法進一步係藉由一傳送 器來接收一來自該接收器的訊號,並且係基於該經接收訊 號來決定該傳輸特徵。 广個實施例’’該要自該傳送器被傳送至該接收器 之資料以及該挑選係由該接收器所實施。在另一個實施例 中13亥接收器係將該挑選發訊至該傳送器。. 在-個實施例中,該傳輸特徵係為關於被使用於在該 天線以及該接收器之間傳送該子載波的通訊通道之一特性 的資訊。在另-個實施例中,該傳輸特徵係為關於該通訊 通道之品質的貧訊。在又一個營故七丨士 個貫施例中,該傳輸特徵係為 一通道狀態資訊。 ▲在-個實施例中,該資料係藉由該等複數個子載波之 調變而被傳送,並且传播用兮莖工Λ 係使用該4天線來傳送該等經調變子 載波。 在-個實施例中’該挑選係基於對於不同傳輪天線之 -子載波傳輸的該等傳輸特徵之—比“被實施。 在-個實施例中,對於該等複數個子載波中每一個子 载波來說’該等複數個天線中一天線係被挑選以被用於傳 送該子載波。 200906089 在一個實施例中,該挑選對於該等複數個子載波中每 一者係被個別地實施。 在一個實施例中,該預定準則係包含該等要被挑選以 用於該等子載波的天線,使得在該傳輸特徵中具有最高品 質之天線係被挑選用於每一個子載波。 在一個實施例中,該預定準則係包含要被分散給每一 個天線之最大數目的子載波。在另一個實施例中,該預定 準則係進一步包含該等要被挑選用於該等子載波的天線, 使得在該傳輸特徵中具有最高品冑之天線係被挑選以用於 每一個子載波。在又一個實施例中,該預定準則係進一步 包含該等要被挑選用於該等子載波的天線,使得對於每一 個天線來說,用於哪-個天線已被挑選之子载波數目係低 於或是等於該預定最大數目的子載波。 在一個實施例中,所提供之方法係進一步包含決定一 子載波自該接收器傳送至該天線的一傳輪特徵。在另一個 只施例中所&供之方法係進一步補償介於該子載波自該 接收器傳送至該天線的該等特性以及該子載波自該天線傳 送至該接收器的該等特性之間的差異。 在一個實施例中,所提供之通訊系統係進一步包含一 傳送器,該傳送^係包含-接收單元,其係被組態成接收 :來自該接收器的訊號,以及一第一決定單元,其係被組 態成基於該經接收訊號來決定該傳輸特徵。在另一個實施 例中,所提供之通訊系統係進一步包含一第二決定單元, 其係被組態成決定一子載波自該接收器傳送至該天線的一 200906089 傳輸特徵:、在ΐ —個實施例中,所提供之通訊系統係進- V Ο 3 # ^單;’其係被組態成補償介於該子載波自該 接收器傳送至該天線的該箄拉神 , 竦旳忑寻特性以及該子載波自該天線傳 送至該接收器的該等特性之間的差異。 /在只施例中,該通訊系統係為一特定無線電通訊 系統。 在個實施例中,該通訊系統係為一 w驗仙通訊系 統。在另-個實施例中,該通訊系統係為一藍牙 (Bluetooth )通訊系統。 在一個實施例中,該i南句j奂& Λ °孔系、先係為一火線(Firewire ) 通§fl系統。在另一個實施你I φ,咕、s — 乂 肩& 1歹J ΐ s亥通矾糸統係為一經認證200906089 IX. Description of the Invention: TECHNICAL FIELD Embodiments of the present invention relate to the field of wireless communication systems, such as, for example, an ad hoc wireless ultra-wideband radio communication network. By way of example, embodiments of the present invention are directed to a method of transmitting data to a receiver, and a corresponding communication device. The present invention claims the benefit of U.S. Provisional Application Serial No. 60/929,022, the entire disclosure of which is incorporated herein by reference. [Prior Art] It is generally known that the range of the transmission of a signal is mainly determined by the transmission power of the signal. In the case where, for example, the transmission power of the signal is limited by the provisions of the Federal Communications Commission (Federal communicati〇ns c〇mmissi〇n, FCC), the transmission range of the signal is therefore also limited. For example, according to the IEEE 8〇215 3a technical requirement, due to the FCC transmit power spectral density (psD) mask, the expected signal transmission range is only about 1 一 for a 1 Mbps data transmission. The meter is either about 4 meters for a 2 Mbps data transmission or about 2 meters for a 48 Mbps data transmission. This short signal transmission range (e.g., as discussed above) imposes severe constraints on the potential application of the communication system for a communication system. Therefore, it is desirable to add, for example, the transmission range of the communication system of the communication system. While still complying with the transmission power limit specified by the FCC [Invention], in one embodiment, a method of transmitting data to a reception is provided, wherein the data is transmitted using a plurality of subcarriers. The method provided includes selecting, for each subcarrier, one of a plurality of antennas to be used for the subcarrier transmission, the selection being based on a transmission characteristic of a subcarrier transmission between the antenna and the receiver . [Embodiment] As a description, a communication device having an antenna may have only a short signal transmission range and may not be strong enough to overcome, for example, indoor shielding or attenuation, for example, when its power is limited by coffee regulations. In order to overcome the above disadvantage factors, a spatial diversity via a plurality of transmitting antennas can be used in the communication device, the transmission power of which can be limited, for example, by such so-called Fee specifications. In more detail, for a communication device in which data to be transmitted can be modulated on a plurality of subcarriers, a mapping between the subcarriers and the antennas can be based on a predetermined criterion. Implemented. With a suitable mapping, spatial diversity through the plurality of antennas is achievable, and the transmit power for each of the transmit antennas can also be controlled such that it conforms to the so-called FCC regulations. In accordance with an embodiment of the present invention, a method of transmitting data to a receiver of 200906089 is provided, wherein the data is transmitted using a plurality of subcarriers. The method provided includes selecting, for each subcarrier, one of a plurality of antennas to be used for the subcarrier transmission. The selection is based on one of a subcarrier transmission between the antenna and the 5H receiver. feature. In accordance with an embodiment of the present invention, a communication system for transmitting data is provided, wherein the data is transmitted using a plurality of subcarriers. The communication system provided includes a receiver, and a selection unit configured to select, for each subcarrier, an antenna of a plurality of antennas to be used for the subcarrier transmission, wherein the selection A transmission feature is based on one of the subcarrier transmissions between the antenna and the receiver. The selection system can be implemented in the transmitter or the receiver. For example, the receiver is selected for the antenna to be used and the selection is sent to the transmitter. Alternatively, the transmitter implements the picking itself based on the transmission characteristics. ^ When the selection has been carried out, the data can be transmitted from the communication to the receiver according to the selection, ie, the subcarriers are used and the: each subcarrier is used for the subcarrier transmission. Selected antennas (or selected antennas such as 疋Shai) A plurality of embodiments of the present invention are disclosed in the scope of the patent application of the dependent claims, using a plurality of subcarriers and being transmitted as a second. Information on one of the communication channels of the communication layer. To be transmitted, if 2 is the same logical channel or (4) there is (4) material for the feed channel. The information transmitted is that it should all be transmitted to the same receiving 7 200906089. Transmissions using such subcarriers are for example based on the same transmission technique (e.g. based on the same modulation). For example, the subcarriers are subcarriers according to an OFDM transmission or another multicarrier transmission technique. In an embodiment, the antenna is selected based on a predetermined criterion for the one of the transmission characteristics. In one embodiment, the method provided further receives a signal from the receiver by a transmitter and determines the transmission characteristic based on the received signal. A wide embodiment'' is to be transmitted from the transmitter to the data of the receiver and the selection is performed by the receiver. In another embodiment, the 13-Hui receiver sends the selection to the transmitter. In one embodiment, the transmission characteristic is information about a characteristic of a communication channel used to transmit the subcarrier between the antenna and the receiver. In another embodiment, the transmission characteristic is a poor communication about the quality of the communication channel. In another example of a martial arts seven-person gentleman, the transmission feature is a channel status information. ▲ In one embodiment, the data is transmitted by modulation of the plurality of subcarriers, and the propagation uses the 4 antennas to transmit the modulated subcarriers. In an embodiment, the selection is based on "the transmission characteristics of the subcarrier transmissions for different transmitting antennas". In an embodiment, for each of the plurality of subcarriers In the case of a carrier, one of the plurality of antennas is selected to be used to transmit the subcarrier. 200906089 In one embodiment, the selection is performed individually for each of the plurality of subcarriers. In one embodiment, the predetermined criterion includes the antennas to be selected for the subcarriers such that the antenna having the highest quality among the transmission features is selected for each subcarrier. The predetermined criterion includes a maximum number of subcarriers to be distributed to each antenna. In another embodiment, the predetermined criterion further includes the antennas to be selected for the subcarriers such that The antenna with the highest quality among the transmission features is selected for each subcarrier. In yet another embodiment, the predetermined criteria further includes those to be selected An antenna for the subcarriers such that for each antenna, the number of subcarriers for which antenna has been selected is lower than or equal to the predetermined maximum number of subcarriers. In one embodiment, The method provided further includes determining a pass characteristic of a subcarrier transmitted from the receiver to the antenna. In another embodiment, the method is further adapted to transmit the subcarrier from the receiver. The characteristics to the antenna and the difference between the characteristics of the subcarrier from the antenna to the receiver. In one embodiment, the communication system provided further includes a transmitter, the transmission system An include-receive unit configured to receive: a signal from the receiver, and a first decision unit configured to determine the transmission characteristic based on the received signal. In another embodiment The communication system provided further includes a second determining unit configured to determine a 200906089 transmission characteristic of a subcarrier transmitted from the receiver to the antenna: In one embodiment, the communication system provided is -V Ο 3 # ^单; 'It is configured to compensate for the pull of the subcarrier from the receiver to the antenna, 竦The search characteristic and the difference between the characteristics of the subcarrier transmitted from the antenna to the receiver. / In the embodiment only, the communication system is a specific radio communication system. In one embodiment, the The communication system is a wireless communication system. In another embodiment, the communication system is a Bluetooth communication system. In one embodiment, the i-sentence j奂& First, it is a Firewire system. In another implementation, you I φ, 咕, s — 乂 shoulder & 1歹J ΐ s 矾糸 矾糸 为 is certified

無線通用串列匯流排(UniVflr<;a〗Q 讲、unlversai Senal Bus,USB)通訊 糸統。 圖Η系顯示-依據本發明一實施例的通訊系統ι〇〇。 在此明圖中’該通訊系統⑽係、可包含—第一通訊 扁置(Α) 1〇1、—第二通訊裝置(Β) 103以及一第三通 訊裝置(C) 105。 作為說明用地,能姑姜丨 此被看到的是:在該第一通訊裝置 (Α) 101以及該第-诵士壯 尸、 弟一通戒裝置(Β) 之間的傳輸範圍 係可被限制於例如說2八j?,、 . „ . 說2公尺(m)。在該傳輸範圍中的限 制係可為一由於例如Frr y·播、.,,士 *咖在傳^力率上的規定之存在限制 的結果。 在此說明圖中,噠诵4,Wireless universal serial bus (UniVflr <; a〗 Q speaking, unlversai Senal Bus, USB) communication system. The figure shows a communication system ι according to an embodiment of the present invention. In the drawings, the communication system (10) may include a first communication device (Α) 1, a second communication device (Β) 103, and a third communication device (C) 105. As a description of the land, what can be seen by Gu Jiang is that the transmission range between the first communication device (Α) 101 and the first gentleman corpse, the brother-one device (Β) can be restricted. For example, say 2 8 j?, . . . say 2 meters (m). The limit in the transmission range can be one due to, for example, Frr y· broadcast, ., The result of the existence of the restrictions. In this illustration, 哒诵4,

^ ^ / 通矾系統10〇係可代表一超寬頻I 線電通訊系統,其註&,, τ . … 、 如WlMedia通訊系統。該WiMedia 200906089 通訊系統係以一高資料速率傳輸來操作,其諸如,例如於 480 Mbps。隨後,該WiMedia通訊系統係可被用於進一步 說明本發明該等實施例。 再者’能被看到的是:在該第二通訊裳置(B) 1〇3以 及該第三通訊裝置(C ) 105之問的信认e W 之間的傳輸範圍係可被限制於 例如說4公尺(m)。此傳輸範圍係大約兩倍於在該第一 通訊裝置(A) 1〇1以及該第二通訊裝置(Β) 1〇3之間的 傳輸範圍。依據本發明一實施例,在該第二通訊裝置(B ) 103以及該第二通訊裝置(c) 1〇5之間的較大傳輸範圍係 可由於使用超過一個天線並配合著多個訊號處理技術的第 三通訊裝置(C) 105。 如一進一步說明,在反向(reverse )鏈路(亦即,自 該第二通訊裝置(B) 103至該第三通訊装置(c) 1〇5) 上的傳輸範圍係可藉由在該接收器端處使用一智慧型天線 陣列或是複數個天線而被延伸,以例如對於該經接收訊號 達成一經改善訊號至雜訊比(SNR )(以及因而達成一經 ' 延伸傳輸範圍)。在此前後文中,該最大比率結合(Maximum Ratio Combining,MRC )訊號處理技術係可被用來例如在 該接收器處採用該等複數個天線的空間分集。 在更細節中,在該最大比率結合(MRC )訊號處理技 術上’每一個個別地經調變接收訊號(對於每一個子載波) 係在該等化(equalizati〇n )過程被實施之前現被線性地結 合。就其本身而論’該最大比率結合(MRC )訊號處理技 術係有效地最佳化對於每一個子載波的訊號至雜訊比 11 200906089 (SNR)。 在另一方面上’在正向(forward )鏈路(亦即,自該 第三通訊裝置(C) 105至該第二通訊裝置(B) 1〇3)上 的傳輸範圍係可藉由運用該等複數個天線作為多重傳送天 線而被延伸。 在此前後文中,應該要被注意的是··對於各種理由來 說,大量的傳統傳送分集技術係不可在該第三通訊裝置 (C)105上被配合著該等複數個(傳送)天線—起來使用。 例如典型地被使用則專統窄頻系…统中之最佳化傳送波束形 成技術(特徵波束形成(eigen_beamf〇rming )或是填水 (water-filling)演算法)係不可被使用在該第三通訊裝置 (C) 1〇5上以延伸該傳輸範圍,其因為如此動作將造成例 如達反該等所謂FCC規定的傳送功率限制。 如一進一步實例,例如該空間時間編碼(Space Time^ ^ / The overnight system 10 can represent an ultra-wideband I-line communication system with a note of &, τ . . . , such as the WlMedia communication system. The WiMedia 200906089 communication system operates at a high data rate transmission such as, for example, 480 Mbps. Subsequently, the WiMedia communication system can be used to further illustrate the embodiments of the present invention. Furthermore, what can be seen is that the transmission range between the second communication device (B) 1〇3 and the communication device e of the third communication device (C) 105 can be limited to For example, 4 meters (m). This transmission range is approximately twice the transmission range between the first communication device (A) 1〇1 and the second communication device (Β) 1〇3. According to an embodiment of the invention, the larger transmission range between the second communication device (B) 103 and the second communication device (c) 1〇5 can be processed by using more than one antenna and cooperating with multiple signals. The third communication device (C) 105 of the technology. As further explained, the transmission range on the reverse link (ie, from the second communication device (B) 103 to the third communication device (c) 1〇5) can be received by The smart end antenna array or a plurality of antennas are used at the end to extend an improved signal to noise ratio (SNR) for the received signal (and thus achieve an 'extended transmission range'). In this context, the Maximum Ratio Combining (MRC) signal processing technique can be used, for example, to employ spatial diversity of the plurality of antennas at the receiver. In more detail, in the maximum ratio combining (MRC) signal processing technique, 'each individually modulated reception signal (for each subcarrier) is now before the implementation of the equalization process Linearly combined. For its part, the Maximum Ratio Binding (MRC) signal processing technique effectively optimizes the signal-to-noise ratio for each subcarrier 11 200906089 (SNR). On the other hand, the transmission range on the forward link (i.e., from the third communication device (C) 105 to the second communication device (B) 1〇3) can be utilized The plurality of antennas are extended as multiple transmit antennas. In this context, it should be noted that for a variety of reasons, a large number of conventional transmit diversity techniques are not compatible with the plurality of (transmitted) antennas on the third communication device (C) 105. Use it up. For example, the optimized transmit beamforming technique (eigen_beamf〇rming or water-filling algorithm) that is typically used in a proprietary narrowband system cannot be used in this The three communication devices (C) 1 〇 5 are used to extend the transmission range, which would cause, for example, a so-called FCC-defined transmission power limitation. As a further example, such as the space time coding (Space Time

Coding’ STC)技術係可配合著多重傳送天線—起被用來 達成傳送分集’以爲達成缚盖% At: η % 延攻、,士改善效旎以及一經延伸傳輸範 圍。然而…相對應編碼係可於該接收器端處該所需要的。 就其本身而論’使用該空間時間編碼(stc)㈣ 通訊裝置(C ) 105係不可唯捭斑一 J維持與一傳統通訊裝置(諸如, 例如該第-通訊裝置(A)1〇1以及該第二通訊The Coding's STC technology can be used in conjunction with multiple transmit antennas to achieve transmit diversity' as a result of achieving a bond % At: η % extension, improved efficiency, and extended transmission range. However, the corresponding coding system can be required at the receiver end. As far as it is concerned, 'using the space time code (stc) (4), the communication device (C) 105 is not capable of maintaining a conventional communication device (such as, for example, the first communication device (A) 1〇1 and The second communication

103 )的相互操作。 J 天線所一起使用之該等傳 1 〇 5係將關於圖3而更詳 隨後對於配合著該等複數個 送分集技術的第三通訊裝置(C) 細地被討論。 12 200906089 圖2係顯示一依據本發明一個實施例敘述被實施在該 通訊系統1 00中之資料傳輸的方塊圖200。 在此說明圖+,例如,節點A 201係可為在圖工中的 第三通訊裝置(C) 105 ’並且節點B 2〇3係可為在圖丄中 的第二通訊裝置(B)l〇3。再者,能被看到的是:節點Α2〇ι 係可使用該等多重傳送天線,而節點B 2〇3係可使用一單 一天線° 在一個實施例中’該傳輸範圍係可使用多重傳送天線 而在自節點A2G1至節點請3之正向傳輸鏈路上被延伸。 同時,該傳輸範圍係可在節點A 2G1處使用該最大比率結 合(MRC)訊號處理技術而在自節點b 2〇3至節點A训 之反向傳輸鏈路上被延伸,以爲達成—經改善訊號至雜訊 比(SNR)(以及因此亦達成一經延伸傳輸範圍)。如此, U A 2G1契節點B 2G3係可在該經延伸傳輸範圍上傳送 以及接收資料。 在此别後文中,節點B 203例如係可代表僅使用一個 天線的一標準WiMedia通訊裝置。再者,節點A 2〇1例如 係可代表可使用複數個天線以及可運用多個訊號處理技術 (諸如,例如最大比率結合(MRC))的—增強型wiMedia 通訊裝置。 圖3係顯示一依據本發明一個實施例之第三通訊裝置 (C ) 105的方塊圖300。 該第三通訊裝置(C) 1〇5係可包含一傳送單元3〇1以 及一接收單元303。 13 200906089 該傳送單元301係可被用來在該正向鍵路上傳送資料 至彳如多個其他通訊裝置。該傳送單元3〇1係可包含一編 石馬/交錯單元305、—星狀圖映射單元307、一多重頻帶空 間頻率傳送挑選(SFTS )單元3⑽、複數個串列至並列(s/^ 轉換器單it 311、複數個反快速傅立葉轉換(ifft)單元 313、稷數個並列至串列(p/s)轉換器單元%、複數個 射頻單元(RF ) 3 1 7、以及複數個天線3 19。 忒要被傳送之資料首先係可被該編碼/交錯單元以 及該星狀圖映射單元307處理。依據一個實施例,該多重 頻帶空間頻率傳送挑選(SFTS)單元3〇9係可配合著一接 收單元303之該等複數個參數估計單元321來實施傳送資 料至該接收器的方法。隨後該多重頻帶空間頻率傳送挑選 (SFTS)單元3〇9以及該等複數個參數估計單元321係將 更詳細地被討論。 應該要被注意的是:該等複數個串列至並列(S/p )轉 換益單元3 11、該等複數個反快速傅立葉轉換(ip ft )單 疋3 1 3、以及該等複數個並列至串列(p/s )轉換器單元3 j 5103) Interoperability. The transmissions used together with the J antenna will be discussed in more detail with respect to Figure 3 and subsequently discussed in detail for the third communication device (C) that cooperates with the plurality of diversity diversity techniques. 12 200906089 FIG. 2 is a block diagram 200 showing the transfer of data implemented in the communication system 100 in accordance with one embodiment of the present invention. Here, FIG. +, for example, the node A 201 may be the third communication device (C) 105 ' in the drawing, and the node B 2〇3 may be the second communication device (B) in the figure 〇 3. Furthermore, it can be seen that the node 〇2〇ι can use the multiple transmit antennas, while the Node B 2〇3 system can use a single antenna. In one embodiment, the transmission range can use multiple transmissions. The antenna is extended on the forward transmission link from node A2G1 to node 3. At the same time, the transmission range can be extended at the node A 2G1 using the maximum ratio combining (MRC) signal processing technique on the reverse transmission link from the node b 2〇3 to the node A, in order to achieve the improved signal To the noise ratio (SNR) (and therefore also the extended transmission range). Thus, the U A 2G1 node B 2G3 can transmit and receive data over the extended transmission range. In this context, Node B 203, for example, may represent a standard WiMedia communication device that uses only one antenna. Furthermore, node A 2〇1 can represent, for example, an enhanced wiMedia communication device that can use a plurality of antennas and can employ multiple signal processing techniques such as, for example, Maximum Ratio Binding (MRC). Figure 3 is a block diagram 300 showing a third communication device (C) 105 in accordance with one embodiment of the present invention. The third communication device (C) 1〇5 can include a transmitting unit 3〇1 and a receiving unit 303. 13 200906089 The transmitting unit 301 can be used to transmit data on the forward keyway to, for example, a plurality of other communication devices. The transmission unit 〇1 may include a sarcasm/interleave unit 305, a star map mapping unit 307, a multi-band spatial frequency transmission selection (SFTS) unit 3 (10), and a plurality of serial to parallel (s/^ Converter single it 311, a plurality of inverse fast Fourier transform (ifft) units 313, a plurality of parallel-to-serial (p/s) converter units, a plurality of radio frequency units (RF) 3 1 7 , and a plurality of antennas 3 19. The data to be transmitted is first processed by the encoding/interleaving unit and the star map mapping unit 307. According to one embodiment, the multi-band spatial frequency transfer selection (SFTS) unit 3〇9 is compatible The plurality of parameter estimation units 321 of a receiving unit 303 implement a method of transmitting data to the receiver. The multi-band spatial frequency transmission selection (SFTS) unit 3〇9 and the plurality of parameter estimation units 321 are then followed. It will be discussed in more detail. It should be noted that the plurality of serial to parallel (S/p) conversion benefits unit 3 11, the plurality of inverse fast Fourier transforms (ip ft ) single 疋 3 1 3 And the plurals Parallel to serial (p/s) converter unit 3 j 5

係可為傳統單元,其例如係可被一起使用以爲產生一 〇FDM 符號。 該經處理資料訊號(在該等複數個並列至串列(p/s ) 轉換器單元3 1 5之後)接著在使用該等複數個天線3 1 9來 被傳送之前係可被傳通至該等複數個射頻單元(RF ) 3 1 7 以用於進一步處理。 該接收單元303係可被用來在該反向鏈路上接收例如 14 200906089 來自多個其他通訊裝置的資料。該接收單元3〇3係可包含 複數個天線323、複數個射頻(RF)交換單元325、複數 個串列至並列(S/P)轉換器單元327、複數個快速傅立葉 轉換(FFT )單元329、複數個並列至串列(p/s )轉換器 單元33 1以及複數個參數估計單元32 1。 於該等複數個天線323處之經接收訊號在要被傳通至 該等複數個串列至並列(s/p)轉換器單元327之前首先係 可被該等複數個射頻(RF)交換單元325所處理。 應該要被注意的是:該等複數個串列至並列(s/p)轉 換器單元327、該等複數個快速傅立葉轉換(fft)單元、 以及該等複數個並列至串列(p/s)轉換器單元331係可為 傳統單元,其例如係可被一起使用以爲自—〇fdm符號中 提取資料或是資訊。 如早先所提到的,該等複數個參數估計單元321以及 該多重頻帶空間頻率傳送挑選(SFTS)單元係可實施 傳达資料卜接收器的方法。在此前後文中,$等複數個 參數估計單元321係可被用來獲得在該傳輪通道之一傳輸 特徵上的多個測量。 在個實施例中,該傳輸特徵係可為關於被使用於在 該天線以及該接收器 < 間傳送該子载波的it訊通道之-特 性的資訊。在另一個實施例巾,該傳輸特徵係可為關於該 通訊通道之品質的眘邙。+ π ° 在又一個貫施例中,該傳輸特徵 係可為該通道狀態資訊。 在此前後文中,該傳輪特徵係可為(但是沒有被限制 15 200906089 於)、該訊號振幅之一 /則量邊机號功率之一測量、或是兮· 訊號至雜訊比(SNR )之一測量。 如一說明性實例,該通道狀態資訊(CSI )之一測量 係可使用該等來自該反向鏈路的訓練引導(training pU〇t) 符號而被獲得,其中該通道狀態資訊係可在對於每一個天 線之每一個子頻帶處包含關於每一個子載波的通道頻率響 應。 再者,該多重頻帶空間頻率傳送挑選(SFTS)單元3〇9 係可包含一第一頻帶交換器單元333、複數個空間頻率傳 送挑選(SFTS)單元335、一第二頻帶交換器單元337、 一子載波分配單元339、一挑選準則單元341以及一校準 因數單元343。 該第一頻帶交換器單元333、該等複數個空間頻率傳 送挑選(SFTS)單元335、該第二頻帶交換器單元爪、 該子載波分配單元339係可被一起使用以將複數個子載 波映射或是分配至其在該等複數個天線319中的各別天 線0 巧"人二〜八 '咏心吹射或是分配係基 於由該等複數個參數估計單& 321所提供之傳輸通道的傳 輸特徵上之多個測量,而可由該挑選準則單元341所決定。 此外,該等由該校準因數單元343所提供之校準 係可被該挑選準貝丨J i Z , Α β 双 +、丨早兀341來使用,以補償例如在 複數個參數估外留-、 你田β寻 D 70 321所提供之該等測量中的測量不正 確。隨後該校準因I留__ 平u數早兀343之功能係將關於圖】〇、11 16 200906089 以及1 2而更詳細地被討論。 對於該等傳送資料至一接收器之方法的實施例之激發 係此採用多重路徑衰退之統計本質以及係降低深度衰退的 可能性,並且因而這樣動作以達成所希望分集。對於每一 個子頻▼之頻率可挑選衰退通道係可為不同的,並且因此 對於母個子頻帶之各別空間頻率傳送挑選(sftS )單元 335係可為不同的。基於該挑選準則單元341之該等各別 貫施,於是該SFTS子模組係可被控制,以在每一個子頻 帶中分配對於每一個天線的子載波 讓對於具有多重傳送天線之第三通訊裝置(c) 1〇5係 有ητ個天線以及nb個子通道。接下來,^0山=κ ) △ f) ( 1= 1,... ’ nb ;卜 1,...,nc ; k= 1,...,ητ)讓 代表對於在該第β個子頻帶上的第沙傳送天線之第广個 子載波的頻率響應,其巾f。係指該載波頻率係指該載波頻 率間隔、Δί·以及η。係指該載波頻率的總數目。 —就在㈣ϋ子頻帶上之第jtN固子載波來說,對於 母-個SFTS子模組之最佳天線接著係可被挑選為: =argmax4,(^:) k^{UnT) ’ (1) ,其例如係可為與該 個子頻帶的各別校準 訊(CSI )的功能。 Ai,j c k) = IHk(i^)j2 其中A;,j ( k )係代表該挑選準則 等對於該第jth個子載波以及該第ith 因數合併一起之該經調整通道狀態資 舉例來說,( k )係可基於例如諸如 17 200906089 之訊號功率而被決定,或是係可基於例如諸如A ( k)= SNRk(1’j)之訊號至雜訊比(SNR)而被決定。 該後續討論係將基於根據該訊號功率所要決定之A (k)的說明。然而,應該要被注意的是:該後續討論: 可容易地被延伸至該等決定Aij (k)的替代性方法。 圖4係顯示一依據本發明一個實施例傳送資料至一接 收器的方法之頻域表示的說明圖。 圖4中的說明係顯示傳送資料至一接收器之方法的一 個實施例如何地達成空間以及時間分集。 在更細節裡,該訊號流之數學式表示係可如下文所述。 讓S (f) 401係代表在頻域上於節點Α 2〇ι處之經傳 送正交分頻多I (0FDM)訊號。該訊號係可被表示為— 在該第jth個子載波的資料符冑d⑴,其係可被乘上一脈 衝函數(delta function)。 在此前後文+,應該要被注意的是:爲簡化並且沒有 失去-般性來說’該子頻帶指數“系可被省略自方程式⑴ 以及後續方程式中。 。亥經傳送OFDM訊號S ( f) 401接著係可被改寫成: (2) 接下來讓n (j)代表該相對應加成性白高斯雜訊 。(additive white Gaussian noise,AWGN)項。該經接收訊 5虎接著係可被寫為下: 18 200906089 «c-l j=0 *— ^best (3) 讓Fk (f)代表一對於在該第kth個傳送天線處之所有 經分配子載波的頻域中之理想濾波器,也就是: (4) 巧⑺= &Ά(/-Λ-7.Δ/) j=〇 其中The system can be a conventional unit that can be used together, for example, to generate a 〇FDM symbol. The processed data signal (after the plurality of parallel to serial (p/s) converter units 3 1 5) can then be passed to the plurality of antennas 3 1 9 for transmission. A plurality of radio frequency units (RF) 3 1 7 are used for further processing. The receiving unit 303 can be used to receive, for example, 14 200906089 data from a plurality of other communication devices on the reverse link. The receiving unit 3〇3 may include a plurality of antennas 323, a plurality of radio frequency (RF) switching units 325, a plurality of serial to parallel (S/P) converter units 327, and a plurality of fast Fourier transform (FFT) units 329. And a plurality of parallel to serial (p/s) converter unit 33 1 and a plurality of parameter estimation units 32 1 . The received signals at the plurality of antennas 323 are firstly multiplexed by the plurality of radio frequency (RF) switching units before being transmitted to the plurality of serial to parallel s/p converter units 327. 325 processed. It should be noted that the plurality of serial to parallel (s/p) converter units 327, the plurality of fast Fourier transform (fft) units, and the plurality of juxtaposed to the tandem (p/s) The converter unit 331 can be a conventional unit that can be used, for example, to extract data or information from the -fdm symbol. As mentioned earlier, the plurality of parameter estimation units 321 and the multi-band spatial frequency transmission selection (SFTS) unit can implement a method of communicating data receivers. In this context, a plurality of parameter estimation units 321 of $ may be used to obtain a plurality of measurements on one of the transmission characteristics of the transmission path. In one embodiment, the transmission feature may be information about the characteristics of the IT channel used to transmit the subcarrier between the antenna and the receiver < In another embodiment, the transmission feature can be a cautious about the quality of the communication channel. + π ° In yet another embodiment, the transmission characteristic can be the channel status information. In this context, the transmission characteristics can be (but not limited to 15 200906089), one of the signal amplitudes / one of the side machine power measurements, or the signal to noise ratio (SNR) One of the measurements. As an illustrative example, one of the channel state information (CSI) measurements can be obtained using the training pU〇t symbols from the reverse link, wherein the channel state information is available for each Each subband of an antenna contains a channel frequency response for each subcarrier. Furthermore, the multi-band spatial frequency transmission selection (SFTS) unit 3〇9 may include a first frequency band switch unit 333, a plurality of spatial frequency transmission selection (SFTS) units 335, a second frequency band switch unit 337, A subcarrier allocation unit 339, a selection criterion unit 341, and a calibration factor unit 343. The first band switch unit 333, the plurality of spatial frequency transfer selection (SFTS) units 335, the second band switch unit jaws, the subcarrier allocation unit 339 can be used together to map a plurality of subcarriers or Is the individual antennas assigned to the plurality of antennas 319 in the plurality of antennas 319. The "human two to eight" heart-blowing or distribution system is based on the transmission channels provided by the plurality of parameter estimation sheets & 321 A plurality of measurements on the transmission characteristics are determined by the selection criteria unit 341. In addition, the calibration systems provided by the calibration factor unit 343 can be used by the selection quasi-bes, J Z Z, Α β ++, 丨 兀 341 to compensate for, for example, in a plurality of parameters. The measurements in these measurements provided by your field beta D 70 321 are incorrect. This calibration is then discussed in more detail in the function of I _ _ _ _ _ _ 343 343 will be discussed in more detail with respect to Figure 〇, 11 16 200906089 and 12. The excitation of the embodiment of the method of transmitting data to a receiver employs the statistical nature of multipath fading and the likelihood of reducing deep fading, and thus acts to achieve the desired diversity. The selected fade channel system can be different for each of the sub-frequency ▼ frequencies, and thus the individual spatial frequency transmission pick (sftS) units 335 for the parent sub-bands can be different. Based on the respective adaptations of the selection criteria unit 341, the SFTS sub-module can then be controlled to allocate subcarriers for each antenna in each subband for a third communication with multiple transmit antennas. The device (c) 1〇5 has ητ antennas and nb subchannels. Next, ^0山=κ) △ f) ( 1= 1,... ' nb ; Bu 1,...,nc ; k= 1,...,ητ) Let the representative be on the βth The frequency response of the wider subcarrier of the terrestrial transmitting antenna on the frequency band, which is f. It means that the carrier frequency refers to the carrier frequency interval, Δί· and η. Refers to the total number of carrier frequencies. - For the (j)th jtN solid subcarrier on the dice band, the best antenna link for the parent-SFTS submodule can be chosen as: =argmax4,(^:) k^{UnT) ' (1 ), for example, may be a function of a separate calibration signal (CSI) with the sub-band. Ai, jck) = IHk(i^)j2 where A;, j ( k ) represents an example of the adjusted channel state for the selection of the jth subcarrier and the ith factor together with the selection criterion, ( k) may be determined based on, for example, signal power such as 17 200906089, or may be determined based on, for example, a signal-to-noise ratio (SNR) such as A(k) = SNRk(1'j). This follow-up discussion will be based on the description of A (k) to be determined based on the power of the signal. However, it should be noted that this follow-up discussion: can be easily extended to alternative methods of determining Aij (k). Figure 4 is an illustration of a frequency domain representation of a method of transmitting data to a receiver in accordance with one embodiment of the present invention. The illustration in Figure 4 shows how one embodiment of the method of transmitting data to a receiver achieves spatial and temporal diversity. In more detail, the mathematical representation of the signal stream can be as follows. Let S (f) 401 represent the transmitted orthogonal frequency division multiple I (OFDM) signal at the node Α 2〇 in the frequency domain. The signal can be represented as - the data symbol (d(1) on the jthth subcarrier, which can be multiplied by a delta function. In this context, it should be noted that the 'subband index' can be omitted from equation (1) and subsequent equations for simplicity and without loss of generality. The TEM transmits an OFDM signal S (f The 401 continuation can be rewritten as: (2) Next let n (j) represent the corresponding additive white Gaussian noise (AWGN) item. Written as follows: 18 200906089 «cl j=0 *— ^best (3) Let Fk (f) represent an ideal filter in the frequency domain for all allocated subcarriers at the kthth transmit antenna, That is: (4) Qiao (7) = & Ά (/-Λ-7.Δ/) j=〇

Fk{j) 0, otherwise (5) 於是,在該第kth個天線中之經傳送〇FDM訊號係可 被寫成: (6) 此外,在該頻域中之經接收訊號係可進—步被表示為: Η/)=ίχ(/Κ(/Μ/) k=\ = S[f)pkif)Hk(f)+Hf>s[fy^fhN[f)⑺Fk{j) 0, otherwise (5) Thus, the transmitted 〇FDM signal in the kth antenna can be written as: (6) In addition, the received signal in the frequency domain can be further stepped Expressed as: Η/)=ίχ(/Κ(/Μ/) k=\ = S[f)pkif)Hk(f)+Hf>s[fy^fhN[f)(7)

其中H0( f )4〇3係可被定義a兮,丄A 我马該經結合通道頻率響應 其如下: (8) 200906089 如圖4中所不’該經結合通道頻率響應h。(。4〇 於每-個子載波係可具有-經降低深度衰退特徵(例如, 當與該等各自的個別通道頻率響應&⑺4〇5以及Η 407相比較時)。因此,傳送資料至一接收器之方法2 施例係導致-具有對於每—個子载波之—經降低深度衰退 特徵的等效頻率可挑選通道hg (f) 403。 自方程式(8)中’該等來自所有傳送天線之經結合傳 送OFDM訊號的頻譜係可被表示為:Where H0(f)4〇3 can be defined as a兮, 丄A should be combined with the channel frequency response as follows: (8) 200906089 as shown in Figure 4, the combined channel frequency response h. (4 〇 each subcarrier system may have - reduced depth fading characteristics (eg, when compared to the respective individual channel frequency responses & (7) 4 〇 5 and 407 407). Therefore, transmitting data to a The method 2 method of the receiver results in the selection of the channel hg (f) 403 with the equivalent frequency of the reduced depth decay feature for each subcarrier. From equation (8), 'these are from all transmitting antennas The spectrum system combined with the transmission of OFDM signals can be expressed as:

Stotal{f) = (/) = Σ^(/)^ (/) 免=i k=\ (9) =4/)ίΧ(/Μ/) k=\ !丨: 其中由方程式(5)可得之ΣΧ/)=1。因此,傳送 資料至一接收器之方法的實施例係允許該等經結合傳送 OFDM訊號(S (f) ) 401的頻譜能被保持低於FCC所約 定的規定。 此外,對於傳送資料至一接收器之方法的實施例之時 域訊號表示係可被顯示如下。 讓sk ( t)係代表在時域上對於節點a 2〇丨處之第kth 個傳送天線的經傳送0FDM訊號。接下來,讓係 20 200906089 代表從卽點A 201處之第kth個傳送天線至節點b 203處之 訊號接收天線的多重路徑通道脈衝響應。 於節點B 203處之經接收訊號y (t)接著係可被代表 為: (10) 其中έ亥符號*表示摺積(convo[uti〇ri)運算。 於第kth個傳送天線處的經傳送〇FDM訊號係可由該 經傳送OFDM訊號s⑴之摺積以及該理想經挑選遽波器 f k (〇所代表,其如下: (11) sk (t) = s (t) * fk (t) 下: 於是’該經接收訊號y ( t )係可被改寫為如 ητ +n(t) (12) y⑴=外)*艺劝)*从)+咖=3⑴*h。⑴ 其中hG (t)係為具有一經降低深度衰退特徵 道脈衝響應。 寻效 在此前後文中,應該要被注意的是:傳送資料至一接 收器之方法係可使用如下文中所示之不同方法而被實施。 圖5係顯示一依據本發明一個實施例傳送資料至一接 收益的方法之一第一實施方式的說明圖。。 在該傳送資料至一接收器的方法之第一實施方式中 在該傳輸特徵(例如’諸如該最佳頻率響應)丨具^最高 21 200906089 口口貝之该等子裁減後 反1糸可爲每一個天線而被挑選。換句話 說’對於在該第、子頻帶中之第jth個子餘的最佳天 線係可依據下面準則而被挑選: 硪/)= arB max “{ι,μγ } Η [U) (13) 接著 寫成: δ玄等對於每—個天線之經挑選子載波係能被改 f-Stotal{f) = (/) = Σ^(/)^ (/) Free =ik=\ (9) =4/)ίΧ(/Μ/) k=\ !丨: where equation (5) is available After /) = 1. Thus, an embodiment of the method of transmitting data to a receiver allows the spectrum of the combined transmitted OFDM signal (S(f)) 401 to be kept below the specifications specified by the FCC. Moreover, the time domain signal representation for an embodiment of the method of transmitting data to a receiver can be displayed as follows. Let sk(t) be the transmitted 0FDM signal for the kth transmit antenna at node a 2〇丨 in the time domain. Next, let the system 20 200906089 represent the multipath channel impulse response from the kth transmit antenna at node A 201 to the signal receive antenna at node b 203. The received signal y (t) at node B 203 can then be represented as: (10) where the 符号 符号 symbol * represents a convolution (convo [uti 〇 ri) operation. The transmitted 〇FDM signal at the kth transmit antenna is represented by a product of the transmitted OFDM signal s(1) and the ideal selected chopper fk (represented by: (11) sk (t) = s (t) * fk (t) Bottom: Then 'the received signal y ( t ) can be rewritten as ητ + n(t) (12) y(1) = outside) * art advised * from) + coffee = 3 (1) *h. (1) where hG(t) is a characteristic impulse response with a reduced depth decay. Finding results In this context, it should be noted that the method of transmitting data to a receiver can be implemented using different methods as shown below. Figure 5 is an explanatory diagram showing a first embodiment of a method of transmitting data to a revenue in accordance with one embodiment of the present invention. . In the first embodiment of the method of transmitting data to a receiver, the transmission feature (eg, such as the optimal frequency response) is up to 21 200906089. Each antenna is selected. In other words, 'the best antenna system for the jthth sub-band in the first sub-band can be selected according to the following criteria: 硪/)= arB max “{ι,μγ } Η [U) (13) Next Written as: δ Xuan et al. For each antenna, the selected subcarrier system can be changed to f-

(14) 甘 φ, J 0 5^ ) ^ /、 “係指出對於在該第产個子頻帶中之每一個 天線的最佳子載波分配。 在如圖5中所示第一實施方式的說明圖裡,兩個天線 以及八個子載波被使用。 °亥第實施方式係可依據該等下文步驟而被實施。 對於该第产個子頻帶(也就是,|Hk(i,j)|2)之通道頻率 響應係可例如以—矩陣形式來被表示,其中該矩陣之該等 歹J係可由。亥子載波指數所代表,而該矩陣之該等行係可由 s亥天線指數所代表。 ,、 來基於方程式(13),對於每一個子載波的最 佳天線係可被挑選(如在圖5中以粗體字所指示)。在此 月)後文中圖5中能被看到的是:子載波4以及5係被分 配至天線2 ’而其餘的天線係被分配至天線1。 下文其中,對於該第沪個子頻帶(也就是,丨h/山丨” 22 200906089 之通道頻率響應係可依據方程式(14)而被轉換成對於每 一個天線(也就是,之子载波分配。 在該第一實施方式中,每個天線具有的子載波數目係 取決於該等各別天線之多重路徑衰退特徵,而可隨著不同 天線而不相同。如此說明圖中所示,係有6個子載波被分 配給天線1,但是僅2個子載波被分配給天線2。在該第 一實施方式提供每一個天線之一最佳子載波分配的同時, /、系亦對於不相同天線導致一不相同的峰值至平均值比率 (peak to average ratio,PAPR)值。 圖6係顯示一依據本發明一個實施例傳送資料至一接 收器的方法之一第二實施方式的說明圖。 、與=傳送資料至-接收器的方法之第一實施方式相比 較’該第二實施方式係在可被分配至每一個天線的子載波 =目上提供—約束。此約束係'允許該等子載波能均勻地被 刀放在該等複數個天線之間,以爲平衡對於該等複數個(傳 送)天線的峰值至平均值比率(PAPR )值。 係可有兩種不相同方法以在所有複數個(傳送)天線 ^間均勻地分散該等經挑選子載波。該第一方法係使用二 :佳方式以均勻地分配該等子載波,而該第二方法係使用 -經簡化方式來分配該等子載波以爲達成一經降低實施複 雜度。隨後該第二方法係將關於圖7而被更詳細地敘述。 假如可被=所除盡,那麼由每一個天線所傳送之 子裁波數目係可被^限制。假…可被4所除盡,那 23 200906089 η〇 麼每一個天線係被限制以僅傳送到 η τ 或是 -η Τ _ 個子載波。 以爲簡化後討論,所假設的是:ne係可被ητ所除盡。 能被看到的是:該第二實施方式係亦可被容易地擴展至其 中nc不可被ητ所除盡的情況。 在圖6中所示該第二實施方式的說明圖裡,兩個傳送 天線以及八個子載波係被使用。 該第二實施方式係可依據下文步驟而被實施。 該第一步驟係相似於被用在該第一實施方式的步驟, 其中)首先係依據方程式(1 4 )而被獲得。對於每一 個天線之經挑選子載波係如圖6之矩陣6 01中所示。 a亥弟一步驟係牽涉初使化對於每一個天線(nkmax )所 被分配之子載波的最大數目,其中nkmax = 。接下來,(14) 甘φ, J 0 5^ ) ^ /, "Describes the best subcarrier allocation for each of the antennas in the first subband. In the illustration of the first embodiment as shown in FIG. In this case, two antennas and eight subcarriers are used. The embodiment can be implemented according to the following steps. For the channel of the first subband (ie, |Hk(i,j)|2) The frequency response may be represented, for example, in a matrix form, wherein the 歹J of the matrix may be represented by a subcarrier index, and the rows of the matrix may be represented by an sei antenna index. Equation (13), the best antenna system for each subcarrier can be selected (as indicated by the boldface in Figure 5). This month, we can see in Figure 5: Subcarriers 4 and 5 are assigned to antenna 2' and the remaining antennas are assigned to antenna 1. Hereinafter, the channel frequency response for the first Shanghai sub-band (ie, 丨h/Hawthorn) 22 200906089 can be based on the equation (14) is converted to be for each antenna (ie, Subcarrier allocation. In this first embodiment, the number of subcarriers each antenna has depends on the multiple path degradation characteristics of the respective antennas, but may be different with different antennas. There are 6 subcarriers assigned to the antenna 1, but only 2 subcarriers are allocated to the antenna 2. In the first embodiment, one of the best subcarrier allocations of each antenna is provided, and the system is also different. The antenna results in a different peak to average ratio (PAPR) value.Figure 6 is an illustration of a second embodiment of a method of transmitting data to a receiver in accordance with one embodiment of the present invention. Comparing with the first embodiment of the method of transmitting data to the receiver, the second embodiment provides a constraint on the subcarriers that can be assigned to each antenna. This constraint is 'allowing such The subcarriers can be evenly placed between the plurality of antennas to balance the peak to average ratio (PAPR) values for the plurality of (transmitted) antennas. The method uniformly disperses the selected subcarriers among all of the plurality of (transmission) antennas. The first method uses two: good mode to evenly distribute the subcarriers, and the second method uses - A simplified way to allocate the subcarriers is to achieve a reduced implementation complexity. The second method will then be described in more detail with respect to Figure 7. If it can be divided by =, then the subdivision transmitted by each antenna The number of waves can be limited. If it is ... can be divided by 4, then each antenna system is limited to only transmit to η τ or -η Τ _ subcarriers. For the sake of simplicity of discussion, It is assumed that the ne system can be divided by ητ. It can be seen that this second embodiment can also be easily extended to the case where nc cannot be divisible by ητ. In the explanatory diagram of the second embodiment shown in Fig. 6, two transmitting antennas and eight subcarrier systems are used. This second embodiment can be implemented in accordance with the following steps. This first step is similar to that used in the first embodiment, where) is first obtained in accordance with equation (14). The selected subcarriers for each antenna are shown in matrix 6 01 of Figure 6. A step is involved in the maximum number of subcarriers assigned to each antenna (nkmax), where nkmax = . Next,

f i T 在該等經挑選子載波之間的傳輸特徵中具有最高品 枭的nk 子載波係被挑選以用於每一行(亦即,每一個天 線)。該等其餘經挑選子載波(也就是,子載波2以及3) 接著係被重設為〇 ’其如圖6之矩陣603 _所示。 在此前後文中,假如經挑選子載波人之數目少於 =max ’則對於該行之所有經挑選子載波y係將被選擇 其(其係為如圖6中所示對於天線2之情況)。 對於每一個天線所被分配之其餘子載波數目接著係可 依據方程式n max f v Λ nk ( s+ 1) =nkmax ( O - nkselected ( s)而 被更新’其中s係為步階指數(step index )。 24 200906089 在該第三步驟中,一對於該等其餘子 了戰/皮的新子載波 分配係可被獲得以用於每一個天線。例如 此係可藉由在 該等其餘子載波之間重複該第一步驟而被達成 接下來,於是對於每一個天線之數值ηΓ3χ接著係可被 更新。 該第三步驟接著係可重複地被實施,直到對於所有天 線之nkmax= 〇(如圖6之矩陣605中所示)。 最後,該等第一、第二以及第三步驟係可對於該〇 + 1) th個子頻帶而被實施,直到該等在所有子頻帶中的子載 波係已被分配。 圖7係顯示一依據本發明一個實施例傳送資料至一接 收器的方法之一第三實施方式的說明圖。 該第三實施方式係相似於傳送資料至一接收器之方法 的第二實施方式,除了該第三實施方式係使用一經簡化方 式來分配該等子載波以爲達成一經降低實施複雜度之外。 在更細節裡,此第三實施方式係例如可隨機地挑選 nk個子載波,而不是例如挑選在該傳輸特徵上具有最高 品質的該第一 η/3Χ個子載波,以爲避免在該第二實施方式 中所使用的排序運算。如此,此係導致一經簡化實施方式 以及一經降低實施複雜度。然而,此係造成一小的效能損 失0 在圖7中所示該第三實施方式的說明圖裡,兩個傳送 天線以及八個子載波係被使用。 該第三實施方式係可依據下文步驟而被實施。 25 200906089 該第一步驟係相似於被用在該第二實施方式的步驟, 其中·首先係依據方程式(14 )而被獲得。對於每一 個天線之經挑選子載波係如圖7之矩陣7 01中所示。 該第二步驟係牽涉初使化對於每一個天線(nkmax )所 、 π 被分配之子載波的最大數目,其中nkmax = 一。接下來, 在該等經挑選子載波之間的nkmax個子載波係例如隨 機地被挑選以用於每一行(亦即’每一個天線)。該等其 餘經挑選子載波(也就是,子載波2以及6 )接著係被重 設為0,其如圖7之矩陣703中所示。 在此前後文中,假如經挑選子載波之數目少於 nk iax,則對於該行之所有經挑選子載波人係將被選擇 其(其係為如圖7中所示對於天線2之情況)。 對於每一個天線所被分配之其餘子載波數目接著係可 依據方程式 nkmax ( s + 1 ) =: nkmax ( s ) _ n/elected ( s )而 被更新,其中S係為步階指數。 在該第三步驟中,一對於該等其餘子載波的新子載波 分配係可被獲得以用於每一個天線。例如,此係可藉由在 S亥等其餘子載波之間重複該第一步驟而被達成 接下來,於是對於每-個天線之數值nkmax接著係可被 更新。 該第三步驟接著係可重複地被實施,直到對於所有天 線之nkmax = 〇 (如圖7之矩陣7〇5中所示)。 最後,該等第-、第二以及第三步驟係可對於該… 1) th個子頻帶而被實施,直到該等在所有子頻帶中的子載 26 200906089 波係已被分配。 如一側邊備註,能被看到的是:此第三實施方式之第 一以及第三步驟係 '分別地等同於該第^實施方式之第_以 及第三步驟。 圖8係顯示一依據本發明一個實施例傳送資料至一接 收器的方法之一第四實施方式的說明圖。 與該等傳送資料至-接收器的方法之第二以及第三實 施方式相比較’此第四實施方式係亦在可被分配至每—個 天線的子載波數目上提供—約束。此約束係允許該等子載 波肊均勻地被分散在該等複數個天線之間,以爲平衡對於 該等複數個(傳送)天線的峰值至平均值比率(pApR)b 然而,在此第四實施方式中施加該約束的方法係使用 -組臨界值而被實施。#由如此動作,此第四實施方式係 避免该第二實施方式之高度複雜排序運算的使用,以及由 於在該第三實施方式中所使用之方法的效能損失。在此前 後文令,β亥組臨界值的使用僅係需要比較運算。 在圖8中所示該第四實施方式的說明圖裡,兩個傳送 天線以及八個子載波係被使用。 该第四實施方式係可依據下文步驟而被實施。 該第一步驟係涉及決定一組臨界值(屮,/=丨,...l ), 其中L係為臨界值的總數目而屮> 〇。接下來,a!以及該 數值nk "(其中= )係可被初始化。隨之在後 其中,旧/⑴丨2係可對於每一個子載波以及其分別的天線來 被比較於…。 27 200906089 假如經決定|Η/^2>31,則該所謂子載波以及其分別 的天線係可被挑選並且係如圖8之矩陣8〇1中所示的以粗 體字來指示。於是,nk_係可依據方程式η,” (s+1) = nknax (s) -1而被更新。 在該第二步驟中,所使用的臨界值係可被改變為 其$ ai。接下來’ |Η,’υ!2係可對於該等未經挑選子 載波以及其分別的天線來被比較於a2。 叙如經決定ΙΗ,’^Ι2 > 4,則該相對應子載波以及其分 別的天線係可被挑選並且係如圖8之矩陣8〇3中所示的以 粗體子來指示。於是,nkmax係可依據方程式njax ( s + 1 ) =nkmax ( s) -1而被更新。 隨之在後其中,該第二步驟係對於該等其餘臨界值… 而被實施,其爲1地所有數值直到=L。 在圖8中所不之說明圖裡,所挑選之林介質數目係為 4。该等在使用該第三臨界值(&3=1.4)以及該第四臨界 值(a4=〇.5)作處理之後的矩陣在圖8中係分別地被標示 為805以及807。 能被看到的是:所被實施之反覆數目係取決於所被挑 選之臨界值數目。如此該第四實施方式之效能以及效率 係取決於所被挑選之臨界值數目。 隨之在後其中,子載波之分配係可例如基於使用例如 每一個資料封包之前文(Preamble )所被實施的通道估計, 而爲每一個資料封包配更新。 現在轉向在傳送資料至一接收器之方法中所使用的傳 28 200906089 已知的是:對於一點對點分時雙工(time divisi〇n 輸特徵 duplexing,TDD)通訊系統(諸如,例如一 通訊系統) 來說,該正向鏈路的傳播通道係為該反向鏈路之傳播通道 的倒數(reciprocal),所提供之來回(r〇und_trip)延遲係 小於5亥傳播通道的相干(coherence )時間。 '、 J而,亦已知的是:此並不是用於射頻收發器(RF ) 的情況,其在該正向鏈路與該反向鏈路之間以及在跨於多 重天線上係表現出值得注意的振幅以及相位不匹配。因為 此等不匹配基本上可連累該通道狀態資訊(csi)的估計, 所以它們係可在傳送資料至一接收器之方法的實施例效能 上造成一嚴重降級。 在更細節裡,此些不匹配的影響係被敘述如下。 一理想的收發器係可被認為具有零相位之單位振幅的 一基頻帶等效通道響應。由於各種隨機過程變化,該收發 裔的實際通道響應係可表現一隨機通道響應,其係可近似 該理想頻率響應。纟自該理想頻率響應所表現之偏差強度 係取決於該隨機過程變化的強度。在此前後文中,該近似 理想響應係可被稱作& 一在肖纟向鍵路與豸&向鍵路之間 的不匹配。 圖9係顯示一在一依據本發明一個實施例的通訊系統 1 00中被實施之資料傳輸的訊號流程表示。 讓τ (〇係代表在該頻域中的傳送頻率響應函數,而 R (〇係代表在該頻域中的接收頻率響應函數。 在5亥傳送頻率響應函數中的不匹配係可使用該等複數 29 200906089 增益 Τ ( f) = |T f f、|eJarg ( τ ( f) ) 士 11 C ^ |C 來表示之,而相同地, 在該接收頻率響庫务數中的不匹gp及 只干音應凼聚T幻个L配係可使用該等複數增益 R ( f) = |R ( f) |ejarg(R(f))爽矣 +The nk subcarrier system with the highest quality among the transmission characteristics between the selected subcarriers is selected for each row (i.e., each antenna). The remaining selected subcarriers (i.e., subcarriers 2 and 3) are then reset to ’ ' as shown by matrix 603 _ in FIG. In this context, if the number of selected subcarriers is less than =max', then all selected subcarriers y for that row will be selected (this is the case for antenna 2 as shown in Figure 6). . The number of remaining subcarriers allocated for each antenna can then be updated according to the equation n max fv Λ nk ( s + 1) = nkmax ( O - nkselected ( s) where s is the step index 24 200906089 In this third step, a new subcarrier allocation for the remaining subfields can be obtained for each antenna. For example, this can be between the remaining subcarriers. This first step is repeated to be followed, and then the value ηΓ3χ for each antenna can be updated. This third step can then be performed repeatedly until nkmax = 〇 for all antennas (see Figure 6). Finally, the first, second and third steps can be implemented for the 〇 + 1) th sub-bands until the sub-carriers in all sub-bands have been allocated . Figure 7 is an explanatory view showing a third embodiment of a method of transmitting data to a receiver in accordance with one embodiment of the present invention. The third embodiment is a second embodiment similar to the method of transmitting data to a receiver, except that the third embodiment uses a simplified manner to allocate the subcarriers in order to achieve a reduced implementation complexity. In more detail, this third embodiment may, for example, randomly pick nk subcarriers instead of, for example, picking the first η/3 子 subcarriers having the highest quality on the transmission feature, in order to avoid this second embodiment. The sort operation used in . As such, this results in a simplified implementation and reduced implementation complexity. However, this causes a small performance loss. In the explanatory diagram of the third embodiment shown in Fig. 7, two transmitting antennas and eight subcarrier systems are used. This third embodiment can be implemented in accordance with the following steps. 25 200906089 This first step is similar to the steps used in this second embodiment, where is first obtained according to equation (14). The selected subcarriers for each antenna are shown in matrix 7 01 of Figure 7. This second step involves initializing the maximum number of subcarriers allocated for each antenna (nkmax), π, where nkmax = one. Next, nkmax subcarriers between the selected subcarriers are, for example, randomly selected for each row (i.e., 'each antenna'). The remaining selected subcarriers (i.e., subcarriers 2 and 6) are then reset to zero, as shown in matrix 703 of FIG. In this context, if the number of selected subcarriers is less than nk iax, then all selected subcarriers for that row will be selected (this is the case for antenna 2 as shown in Figure 7). The number of remaining subcarriers allocated for each antenna can then be updated according to the equation nkmax ( s + 1 ) =: nkmax ( s ) _ n/elected ( s ), where S is the step index. In this third step, a new subcarrier allocation for the remaining subcarriers can be obtained for each antenna. For example, this can be achieved by repeating the first step between the remaining subcarriers such as SH. Next, the value nkmax for each antenna can then be updated. This third step is then carried out repeatedly until nkmax = 〇 for all antennas (as shown in matrix 7〇5 of Figure 7). Finally, the first, second and third steps can be implemented for the 1) th subbands until the subcarriers 26 200906089 in all subbands have been assigned. As one side note, it can be seen that the first and third steps of the third embodiment are respectively equivalent to the first and third steps of the second embodiment. Figure 8 is an explanatory view showing a fourth embodiment of a method of transmitting data to a receiver in accordance with one embodiment of the present invention. This fourth embodiment also provides a constraint on the number of subcarriers that can be allocated to each antenna, as compared to the second and third embodiments of the method of transmitting data to the receiver. This constraint allows the subcarriers 肊 to be evenly dispersed between the plurality of antennas to balance the peak to average ratio (pApR) b for the plurality of (transmitted) antennas. However, in this fourth implementation The method of applying this constraint in the manner is implemented using a set of thresholds. By doing so, this fourth embodiment avoids the use of the highly complex sorting operation of the second embodiment, and the performance loss due to the method used in the third embodiment. In the previous slogan, the use of the β-Hui threshold only requires comparison operations. In the explanatory diagram of the fourth embodiment shown in Fig. 8, two transmission antennas and eight subcarrier systems are used. This fourth embodiment can be implemented in accordance with the following steps. The first step involves determining a set of critical values (屮, /=丨, ... l), where L is the total number of critical values and 屮 > 〇. Next, a! and the value nk "(where = ) can be initialized. Then, the old / (1) 丨 2 system can be compared to each subcarrier and its respective antenna. 27 200906089 If it is determined |Η/^2>31, the so-called subcarriers and their respective antenna systems can be selected and indicated in bold as shown in matrix 8〇1 of Fig. 8. Thus, the nk_ can be updated according to the equation η, "(s+1) = nknax (s) - 1. In this second step, the critical value used can be changed to its $ ai. ' |Η, 'υ! 2 can be compared to a2 for these unselected subcarriers and their respective antennas. If the decision is made, '^Ι2 > 4, then the corresponding subcarrier and its The respective antenna systems can be selected and indicated in bold as shown in matrix 8〇3 of Figure 8. Thus, the nkmax can be based on the equation njax ( s + 1 ) = nkmax ( s) -1 In the following, the second step is carried out for the remaining thresholds... which are all values of 1 until = L. In the illustration of Figure 8, the selected forest medium The number is 4. The matrix after processing using the third critical value (& 3 = 1.4) and the fourth critical value (a4 = 〇. 5) is labeled as 805 in Fig. 8, respectively. And 807. It can be seen that the number of responses to be implemented depends on the number of thresholds selected. Thus the effectiveness and effectiveness of the fourth embodiment The rate depends on the number of thresholds selected. In the following, the allocation of subcarriers can be packetized for each data, for example based on channel estimates implemented using, for example, each data packet (Preamble). The update is now directed to the transmission used in the method of transmitting data to a receiver. 28 200906089 It is known for a time-duplex time division duplex (TDD) communication system (such as, for example, In the case of a communication system, the propagation path of the forward link is the reciprocal of the propagation path of the reverse link, and the provided back-and-forth (r〇und_trip) delay is less than the coherence of the 5-Hai propagation channel ( Coherence) time. ', J, it is also known that this is not the case for radio frequency transceiver (RF), between the forward link and the reverse link and across multiple days The online system exhibits noteworthy amplitude and phase mismatch. Since these mismatches can basically accumulate the channel state information (csi) estimates, they can transmit data to a reception. Embodiments of the method of the method cause a severe degradation in performance. In more detail, the effects of such mismatches are described below. An ideal transceiver system can be considered to have a baseband equivalent of zero phase unit amplitude. Channel response. The actual channel response of the receiver can represent a random channel response due to various random process variations, which can approximate the ideal frequency response. The deviation strength from the ideal frequency response depends on the stochastic process. The strength of the change. In this context, the approximate ideal response system can be referred to as & a mismatch between the keyway and the 豸& Figure 9 is a flow chart showing the flow of data transmitted in a communication system 100 in accordance with one embodiment of the present invention. Let τ (the system represents the transmission frequency response function in the frequency domain, and R (the system represents the reception frequency response function in the frequency domain. The mismatch system in the 5 Hz transmission frequency response function can use these Complex 29 200906089 Gain Τ ( f) = |T ff, |eJarg ( τ ( f) ) ± 11 C ^ | C to represent it, and in the same way, in the receiving frequency, the cumber number is not gp and only The dry tone should be used to gather the T-magic L system to use these complex gains R ( f) = |R ( f) | ejarg (R (f)) cool +

v ; |e 木表不之,其中IT (f)丨以及|R (f) I係為該等不匹配的各自強度,而ejarg (T (n〕以及ejarg (R (f))係為該等不匹配的各自相位。 如先前所提及,因為用於傳送資料至一接收器的方法 之挑選準則可取決於該通道狀態資訊(CSI)的訊號功率, 所以係僅僅需要考慮不匹配的振幅。 在此鈾後文中,該等各自振幅I丁( f)丨以及jR ( f)丨係 可被杈型化為一真實高斯變數《如此,該等各自振幅的平 均數係可被表示為一單位值(其係為先前所討論之理想頻 率響應值),而該等各自振幅的變異數係可被表示為口2。 在此則後文中,應該要被注意的是:該高斯變數模型 係通常地被用來模型化射頻(RF)振幅誤差,並且其係典 型地假設該變異數σ 2係小的(例如,達4〇 % ),使得一 負實現之出現係為可忽略。 對於該等包含T(f) 、R(f)以及該通道響應H(f) 之各自正向以及逆向鏈路的經結合通道響應Cfwd ( f)以及 Crvs ( f)係可被定義如下:v ; |e The wood is not, where IT (f) 丨 and |R (f) I are the respective strengths of the mismatches, and ejarg (T (n) and ejarg (R (f)) are The respective phases of the mismatches. As mentioned previously, since the selection criteria for the method of transmitting data to a receiver may depend on the signal power of the channel state information (CSI), it is only necessary to consider the amplitude of the mismatch. In this uranium, the respective amplitudes I(f)丨 and jR(f)丨 can be transformed into a true Gaussian variable. Thus, the average of these respective amplitudes can be expressed as one. The unit value (which is the ideal frequency response value discussed previously), and the variance of the respective amplitudes can be expressed as port 2. Here, it should be noted later that the Gaussian variable model system Typically used to model radio frequency (RF) amplitude errors, and it is typically assumed that the variance σ 2 is small (eg, up to 4%) such that the occurrence of a negative implementation is negligible. Etc. including T(f), R(f) and the channel forward and reverse H(f) Passage through binding channel response Cfwd (f) and Crvs (f) lines may be defined as follows:

Cfwdk (f,t) =TAk (f) H^dk (f,t) Rb (f) ( 15)Cfwdk (f,t) =TAk (f) H^dk (f,t) Rb (f) ( 15)

Crvsk (f,t) =TB (f) ^ (f,t) (f) (16) 其中k= 1,…,>^係為對應於節點A處之傳送天線的天 線指數。該等項次Hfwdk (f,t)以及Hfvsk (f,〇係代表該 200906089 等各自正向以及逆向通道響應函數,其係可被假設以具有 時間不變倒數的特性,亦即,Hfwdk ( f,t ) = Hrvsk ( f,t )對 於 k 二 1,...,NT。 在此前後文中,該使用該等前文所被實施之實際估計 係為該經結合通道響應Crvs ( f)。然而,Cfwd ( f)係為兮· 通道響應,其係被用在決定傳送資料至一接收器之方法的 實施例中之子載波分配。 如此’在Crvs ( f)以及Cfwd ( f)之間的關係係可被敘 述如下:Crvsk (f,t) = TB (f) ^ (f, t) (f) (16) where k = 1, ..., > ^ is the antenna index corresponding to the transmit antenna at node A. The Hfwdk (f, t) and Hfvsk (f, 〇 represent the respective forward and reverse channel response functions of the 200906089, etc., which can be assumed to have a time-invariant reciprocal, that is, Hfwdk (f , t ) = Hrvsk ( f, t ) for k ii 1,..., NT. In this context, the actual estimate used to implement the above is the combined channel response Crvs (f). Cfwd (f) is a channel response that is used in the subcarrier allocation in the embodiment of the method of determining the method of transmitting data to a receiver. Thus the relationship between Crvs (f) and Cfwd (f) The system can be described as follows:

Cfwdk (f5t) (f,t) ( 17) 於是’該子載波分配準則係可被改寫為如下: 松2 二 argmax|H |2 = argmax 1 M kB{l,nT} 其中,+ jAf) ^ ri/> C (A = c fwdk τ0')Cfwdk (f5t) (f,t) (17) Then the subcarrier allocation criterion can be rewritten as follows: loose 2 argmax|H |2 = argmax 1 M kB{l,nT} where + jAf) ^ Ri/> C (A = c fwdk τ0')

rC〇·) )rvsk τϋ) (18)rC〇·) )rvsk τϋ) (18)

T 0)_ B —1 ,.··,T 0)_ B —1 ,.··,

TbUo + MO 、以及 0) = RB(f〇+Mf)對於 n, 假設該等跨於該等子載波之各自頻率響應tu)以及r Ο)保持不改變,則所有該等各自校準因數、及(;)、 心以及W)係可被考慮為獨立自該子载波指數二於 是,方程式(18)係可進一步被簡化為如下: 31 (19)200906089TbUo + MO and 0) = RB(f〇+Mf) for n, assuming that the respective frequency responses tu) and r Ο) across the subcarriers remain unchanged, then all of the respective calibration factors, and (;), heart, and W) can be considered to be independent of the subcarrier index. Then equation (18) can be further simplified as follows: 31 (19) 200906089

T A Rb a 該校準因數係可被決定如下。 圖1 〇係顯示一依據本發明一個實施例說明一用於決定 該等校準因數之第一方法的方塊圖。 在此第一方法中’—測試板1001係可使用如圖10中 所不之設置,而被用來獲得對於來自該通訊裝置丨〇〇3之 不相同傳送器及接收器的校準因數之測量。如 呈〇T A Rb a The calibration factor can be determined as follows. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram showing a first method for determining such calibration factors in accordance with one embodiment of the present invention. In this first method, the test board 1001 can be used to obtain a measurement of the calibration factor for different transmitters and receivers from the communication device 丨〇〇3, as set out in FIG. . Such as

RAk TB 中所不,該測試板1〇〇1係可為一該通訊裝置1〇〇3以外的 裝置。 遠等開關S! 1005以及s2 1〇〇7係可形成校準迴路,姐 且係可被用來控制從天線i至天線〜的測量序列。一二進 制相移鍵控(BPSK )訊號係可被用為該測試訊號。此外, 該通道估計係可在該測試板1〇〇1以及該通訊裝置1〇〇3上 之各自接收H處被實行以便以及‘之估計值係可被 獲得。 能被看見的是:如方程式⑺)中所示該# \個轉 換函數α至測量係亦可被獲得。當經由該直接規線連接來 作出該等連接日夺&於該纜線連接之傳輸損失係可被假設 以為一常數值Le。所獲得之測量接著係可被表示如: a M = TAlLcRBt ^ I,2 =TBtLcRAl 32 (20)200906089 aa ,,2In the RAk TB, the test board 1〇〇1 can be a device other than the communication device 1〇〇3. The remote switches S! 1005 and s2 1〇〇7 can form a calibration loop, which can be used to control the measurement sequence from antenna i to antenna~. A binary phase shift keying (BPSK) signal can be used as the test signal. In addition, the channel estimate can be implemented at the respective receiving H on the test board 101 and the communication device 1〇〇3 and the estimate of ‘ can be obtained. It can be seen that the #\ conversion function α to the measurement system can also be obtained as shown in equation (7). The transmission loss caused by the connection of the cable connection via the direct regulation connection can be assumed to be a constant value Le. The measurement obtained can be expressed as follows: a M = TAlLcRBt ^ I, 2 = TBtLcRAl 32 (20) 200906089 aa ,, 2

TAnTLcRBt _ TBtLcRAnT / 其中TB1以及RB1係表示對於該通訊裴置之該等 接著係可被定 -TAi R, 各自傳送以及接收頻率響應。該校準因數 義如下·· cfr RAt TB,TAnTLcRBt _ TBtLcRAnT / where TB1 and RB1 indicate that the following can be determined for the communication device - TAi R, each transmitting and receiving frequency response. The calibration factor is as follows: cfr RAt TB,

ΤΛ_ R (21) 因此該校準因數矩陣CF係能被形成如下: cfx ··· Ο — CF =ΤΛ_ R (21) Therefore, the calibration factor matrix CF can be formed as follows: cfx ··· Ο — CF =

·.· CfnT (22) 月b自方私式(22 )中所看見的是:該校準因數矩陣CF 為對角線矩陣。如此’其之數值係可例如被健存在該 快閃記憶體中,並且接著係在—初始化步驟期間中被載 在此則後文中•於該校準因數矩陣CF之該等數值 的載入係可被參看為一預先校準過程。 再者ϋ為該矩陣CF為一對角線矩陣,所以僅僅〜 個數值係可被儲存。如此,係可不需要用於該通訊裝置副 之附加的内建(built_in)的校準電路系統。 於是,方程式(19)係可被改寫為: 33 (23) 200906089 k(£t =argmax{|c(y) 2 cfkconst 2 其中係—獨立於k的常數,並且如此並 未影響分配該等子載波的過程。 圖11係顯示一依據本發明一個實施例說明一用於決定 該等校準因數之第二方法的方塊圖。 在此第一方法中,一額外校準電路11〇1係可使用如圖 11中所示之設置,而被用來獲得對於來自該通訊裝置11〇〇 之不相同傳送器及接收器的校準因數之測量。如圖11··· CfnT (22) What is seen in the monthly private mode (22) is that the calibration factor matrix CF is a diagonal matrix. Such a value can be, for example, stored in the flash memory, and then loaded during the initialization step, and the loading of the values in the calibration factor matrix CF can be It is referred to as a pre-calibration process. Furthermore, the matrix CF is a diagonal matrix, so only ~ values can be stored. As such, additional built-in calibration circuitry for the communication device pair may not be required. Thus, equation (19) can be rewritten as: 33 (23) 200906089 k(£t = argmax{|c(y) 2 cfkconst 2 where is the constant independent of k, and this does not affect the allocation of such children Figure 11 is a block diagram showing a second method for determining the calibration factors in accordance with an embodiment of the present invention. In this first method, an additional calibration circuit 11〇1 can be used as The arrangement shown in Figure 11 is used to obtain measurements of calibration factors for different transmitters and receivers from the communication device 11 as shown in Figure 11.

RAk TB 中所示,該額外校準電路1101係可為該通訊裝置1100的 一部分。 6亥等開關S1 1103以及S2 1105在該初始設置期間係形 成校準迴路,其被用來獲得對於來自該通訊裝置n 〇〇 之不相同傳送器及接收器的I九丛2之測量。The additional calibration circuit 1101 can be part of the communication device 1100 as shown in the RAk TB. During the initial setup, switches such as 6H and S1 1105 form a calibration loop that is used to obtain measurements of I 9 clusters 2 from different transmitters and receivers of the communication device n 。 .

TB 基於所獲得之測量,該校準因數矩陣CF係可依據方 程式(20)以及(21)而被形成。隨之在後其中,該等校 準口數係被用於補償對於該等傳送資料至一接收器的方法 之實施例的不匹配。再者,當該些校準因數在該初使設置 期間係可使用該内建額外校準電路u〇1而被獲得時,該 些數值並不會規律地被更新。 在此剛後文中,能被看到的是:該等校準因數(該校 準因數矩陣)係可被用在檢視該通道狀態資訊係使用來自 34 200906089 該逆向鏈路(反而不是該正向鏈路)之測量而 而,:通逼狀態資訊係亦使用如在下文所討論然 的測量而被估計。 Θ鍵路 施例中,藉由安排對於該傳送器處之每一個 "符號的方式來傳送通道估計符號(例如 诸如刖文錢並且接著在該接收器方實行對於每 傳送天線之通道料,對於(該傳送^之)每 正向鏈路通道頻率塑雇存π、+ 7丄, 八跟的 # 員羊響應係可被估計。在另-個實施例中, :由在相同時間傳送對於不相同傳送天線之正交通 付號序列’接著在該接收器方聯合地實行對於所有該等傳 运天線之通道估計,對於(該傳送器之)每-個天線的正 向鏈路通道頻率響應係可被估計。 隨之在後為此,用於對於每一個傳送天線之該等各自 正向鏈路頻率響應的經估計通道狀態資訊係可例如使用該 回杈(feedback )通道,而自該接收器方播傳送返回該傳 送器方。錢接收料通道狀態資訊接著係可仙在對於 子载波之天線的挑選。 然而,應該要被注意的是:自該接收器方至該傳送器 方之經估計通道狀態資訊(頻率響應)的傳輸對於該回授 通道係可牽涉可觀之傳輸管理負擔(〇verhead)。如此, 可為更合意的是:反而直接地係在該接收器方實施該天線 挑選過程,並且接著係經由該回授通道傳送對於每一個子 載波之天線挑選決定資訊。使用此方法’在其中使用兩個 傳送天線的情況中,每一個子載波僅係可需要丨個位元; 35 200906089 而在其中使用四個傳送天線的情況中,每一個子栽波僅係 可需要2個位元;並且以此類推。 在該等上文所討論之實施例中,其中該通道狀態資訊 之估計係使用來自該正向鏈路的測量而被實行以爲在該 接收器方實施該等上文所討論步驟,硬體及/或軟體的改變 係可需要的。此係可導致與現存通訊裝置的一不相容性(亦 即’該所謂接收器係不可例如適用於wiMedia )。 圖12係顯示一依據本發明一個實施例在天線以及子載 波之挑選過程中的不匹配補償係如何地基於該等校準因數 與该經估計通道狀態資訊而可被實施的說明圖。。 如圖12中所示,使用基於該經估計通道狀態資訊 (CSI )以及該等校準因數之經改良挑選準則,最佳天線 係可被挑選為用於每一個子载波,或者最佳子載波組係可 被分配為用於每一個天線。 接下來’對現存前文結構的可行設計修改以及此等修 改在傳送資料至一接收器的方法之該等實施例的效能上之 影響係被討論。 在每一個前文OFDM符號中,對於每一個天線之子載 波的分配係可跟隨如先前所敘述資料部分的相同特徵。基 於方程式(8)中所定義之等效頻率可挑選通道, 對於傳送貧料至一接收器的方法之該等實施例的前文 OFDM符號傳輸係可被用於例如自動增益控制(叫仂瓜以沁 gain control ’ AGC )、同步化以及通道估計而沒有任何修 改。 36 200906089 因為該等效頻率可挑選通道h〇 (f )被預期以在與一 傳統多重頻帶OFDM通道想比較時展現一平坦化頻譜,所 以對於自動增益控制(AGC )、同步化以及通道估計之少 訊號失真以及經改良強固係可被預期。此係可進一步降低 在一簡單通道反轉被施加至通道等化時雜訊放大的機率。 接下來,對於傳送資料至一接收器的方法之該等實施 例的封包錯誤率(Packet Err〇r Rate,pER )實行結果係可 使用多個模擬而被獲得。戶斤獲得之實行結果接著係與標準 1.0版WiMedia通訊裝置之實行結果相比較。在此前後文 ^中μ Θ IEEE 802.15.3a UWB冑内通道模型⑴係已被用在 該等模擬中。係有四種類型通道模型被列舉在如Η中所 示之表1300裡。 圖13係顯示一敘述被使用在本發明多個實施例上所實 施之該等模擬的表1 300。 例如H通道模型咖係代表—其中該輸範圍為 大約〇公尺至大約4公尺的傳輸通道。再者,視線㈤ 〇叫ht,LOS)係被假設介於該等通訊裝置之間,其係可 正破傳送在該所謂傳輸通道上。此卜,一 、 本说、敢大傳輸延遲8.92 毛私係被假設在該所謂傳輸通道上。 此外,於傳送資料至一接 全兒,掷“去 叹益的方法之該等實施例來 ° 對應夕重天線之三種不相同的通道實if 生,也就是, 的通道實現方式係被產 情況A :沒有屏蔽的獨立衰退通道 情況B :具有獨立屏蔽的獨立衰退通道 37 200906089 情況c:具有相關屏蔽的獨立衰退通道 情況A之通道實現方式係對應於其中假設具有非相關 多重路徑衰退之經適當被間隔天線的情況。情況B之通道 實現方式係對應於一其中假設具有非相關多重路徑衰退以 及非相關屏蔽之經適當被間隔天線的理想情況。情況c之 通道實Μ式係對應於其巾假設具有非相關多重路徑衰退 以及相關屏蔽之經適當被間隔天線的情況。再者,對於情 況C之通道模型的分佈係被調節於該等測量結果[2]。 在此前後文中,應該要被注意的是:圖14至16中所 示該等效能結果係基於情況Α之通道實現方式。 圖14係顯㈣於使“及沒有使用本發明—個實施例 的一通訊裝置就在CM3(4到1〇公尺)中之彻⑽以資 料傳輸率來說的封包錯誤率(PER) &能結果。 抑能在圖中被看到的是:藉由使用傳送資料至一接收 器的方法之一個實施例以及四個傳送天線,對於一桿準 WiMediaW通訊裝置之一 5.細增益係可被達成。再:, 亦能被看到的是:#由使用傳送資料至—接收器的方法之 一個實施例以及兩個傳送天線,對於—標#侧心】〇 通訊裝置之一 3 dB增益係可被達成。 該些效能增益係顯示傳送資料至一接收器的方法之該 等實施例當被用在高資料速率傳輸時的有效。此外,應該 要被注意的是:具有可被用在一標準WiMedia 1〇通訊裝 置中之高碼率(例如,諸如R,3/4)的通道編碼在高資 料速率傳輸上係傾向較差效果。 38 200906089 圖1 5係顯示對於使用 巾U及沒有使用本發明一個實施例 的-通訊裝置就在。叫4到1〇公尺)中之別叫資 枓傳輸率來說的封包錯誤率(服)效能結果。 能在圖15中被看到的县·益士找^ & 的疋.糟由使用傳送資料至一接收 器的方法之一個實施例以及四個傳送天線,對於一標準 —〇通訊裝置之_3 6dB增益係可被達成。再者, 亦能被看到的是:藉由使用傳送資料$社 1寻达貝科至—接收器的方法之 一個實施例以及兩個傳诸;括 ,,_ 得迗天線,對於一標準WiMedia 1.0 通訊裝置之一 2dB增益係可被達成。 在此情況中,應該要被音 ’ 的疋·藉由使用傳送資料 至一接收益的方法之該望香―>6:丨rttl vit 專貫施例所獲传的部分效能係已被 使用在'仏準WiMedia 1 〇 ;畜%驶嬰占 1.0通讯裝置中之有效通道編碼(例 如,諸如Re=5/8)所補償(〇ffset)。 圖1 6係顯示對於佶用 艿、、々 便用以及,又有使用本發明一個實施例 的一通訊装置就在CM3 C 4到10 & β ί + ^ ^ J A尺)中之480 Mbps資TB Based on the obtained measurements, the calibration factor matrix CF can be formed according to the equations (20) and (21). Subsequent to this, the number of calibration ports is used to compensate for a mismatch in the embodiment of the method of transmitting data to a receiver. Furthermore, these values are not regularly updated when the calibration factors are available during the initial setup period using the built-in additional calibration circuit u〇1. As you can see later, it can be seen that the calibration factors (the calibration factor matrix) can be used to view the channel status information using the reverse link from 34 200906089 (instead of the forward link) The measurement of the state information is also estimated using measurements as discussed below. In the Θ 施 施 施 施 施 施 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送 传送For each forward link channel frequency (for the transmission), the _, + 7 丄, eight-height # sheep response system can be estimated. In another embodiment, : by transmitting at the same time A positive traffic sign sequence of different transmit antennas' then performs channel estimation for all of the transport antennas jointly at the receiver side, for each link antenna's (for the transmitter) forward link channel frequency response Can be estimated. Accordingly, the estimated channel state information for the respective forward link frequency responses for each of the transmit antennas can be used, for example, by using the feedback channel, The receiver broadcasts the return to the transmitter side. The money receiving channel status information can then be selected in the antenna for the subcarrier. However, it should be noted that from the receiver to the transmission The estimated transmission of channel state information (frequency response) may involve a significant transmission management burden (〇verhead) for the feedback channel. Thus, it may be more desirable to directly attach to the receiver side. The antenna selection process is implemented, and then antenna selection decision information for each subcarrier is transmitted via the feedback channel. With this method, in the case where two transmit antennas are used, each subcarrier is only required. Single bit; 35 200906089 In the case where four transmit antennas are used, each subcarrier can only require 2 bits; and so on. In the embodiments discussed above, The estimation of the channel status information is performed using measurements from the forward link to perform the above discussed steps on the receiver side, hardware and/or software changes may be required. Resulting in an incompatibility with existing communication devices (ie, 'the so-called receiver is not applicable, for example, to wiMedia). Figure 12 shows an embodiment in accordance with an embodiment of the present invention. An illustration of how the mismatch compensation in the selection of the line and subcarriers can be implemented based on the estimated calibration factor and the estimated channel state information. As shown in FIG. 12, the estimated channel state is used based on the estimated channel state. Information (CSI) and improved selection criteria for such calibration factors, the best antenna system can be selected for each subcarrier, or the best subcarrier group can be assigned for each antenna. The effect of the possible design modifications of the existing prior art structures and the performance of such modifications on the method of transmitting data to a receiver is discussed. In each of the preceding OFDM symbols, for each subcarrier of the antenna The distribution system may follow the same features as the data section previously described. The channel may be selected based on the equivalent frequency defined in equation (8), and the prior OFDM symbol transmission for such embodiments of the method of transmitting the lean to a receiver It can be used, for example, for automatic gain control (called gain control 'AGC), synchronization, and channel estimation without any modification. 36 200906089 Because the equivalent frequency selectable channel h〇(f) is expected to exhibit a flattened spectrum when compared to a conventional multiband OFDM channel, for automatic gain control (AGC), synchronization, and channel estimation Less signal distortion and improved robustness can be expected. This system further reduces the chance of noise amplification when a simple channel inversion is applied to the channel equalization. Next, the results of the Packet Err〇r Rate (pER) implementation for the embodiments of the method of transmitting data to a receiver can be obtained using a plurality of simulations. The result of the implementation of the user is then compared with the results of the implementation of the standard version 1.0 WiMedia communication device. In this context, the IEEE 802.15.3a UWB internal channel model (1) has been used in these simulations. There are four types of channel models listed in Table 1300 as shown in Η. Figure 13 is a table 1 300 showing the simulations used to implement the various embodiments of the present invention. For example, the H-channel model is representative of the system—where the transmission range is from about 10,000 meters to about 4 meters. Furthermore, the line of sight (five) ht, LOS) is assumed to be between the communication devices, which can be transmitted on the so-called transmission channel. This, a, said, dare to transfer delay 8.92 Mao private system is assumed to be on the so-called transmission channel. In addition, in the case of transmitting data to the whole, the embodiments of the method of “snap to the sigh” are used to correspond to the three different channels of the antenna, that is, the channel implementation is produced. A: Independently degraded channel without shielding Case B: Independent decay channel with independent shielding 37 200906089 Case c: Independent decay channel with associated shielding Case A The channel implementation corresponds to the assumption that there is an uncorrelated multipath fading In the case of a spacer antenna, the channel implementation of Case B corresponds to an ideal case where a properly spaced antenna is assumed to have non-correlated multipath fading and uncorrelated shielding. The channel Μ of the case c corresponds to its towel. Assume that there is a non-correlated multipath fading and a properly masked antenna with associated shielding. Furthermore, the distribution of the channel model for Case C is adjusted for these measurements [2]. In this context, it should be Note that the equivalent energy results shown in Figures 14 through 16 are based on the channel implementation of the situation. Figure 14 shows (4) The packet error rate (PER) & can be the result of the data transmission rate of "a communication device that does not use the present invention - which is in the CM3 (4 to 1 m). What can be seen in the figure is that by using one embodiment of the method of transmitting data to a receiver and four transmitting antennas, a fine gain system can be achieved for one of the one-track WiMediaW communication devices. Again: what can also be seen is: # one embodiment of the method of transmitting data to the receiver and two transmitting antennas, one of the 3 dB gain systems of the communication device Achieved. The performance gains are shown to be effective when used to transmit data at a high data rate. In addition, it should be noted that channel coding with a high code rate (e.g., such as R, 3/4) that can be used in a standard WiMedia communication device tends to be less prone to high data rate transmission. 38 200906089 Figure 1 5 shows the communication device U and the communication device not using an embodiment of the present invention. The rate of packet error rate (service) in terms of transmission rate is called 4 to 1 meter. An example of a method for transmitting data to a receiver and four transmitting antennas for a standard-〇 communication device can be found in the county. A 3 6dB gain system can be achieved. Furthermore, it can also be seen that one embodiment of the method of finding the Becco-to-receiver by using the transmission data $1, and two transmissions, including, _, the antenna, for a standard A 2dB gain system for WiMedia 1.0 communication devices can be achieved. In this case, it should be used by the sound of the 疋························································· In the case of '仏WiMedia 1 〇; the animal % infants account for 1.0 (for example, Re=5/8) compensated by the effective channel code (〇 ffset). Figure 1 6 shows 480 Mbps in CM3 C 4 to 10 & β ί + ^ ^ J A 尺 for a 艿 艿, 々 以及, and a communication device using an embodiment of the present invention.

V 料傳輸率來說的封包錯誤率(PER )效能結果。 在更細節裡,該莖_奢偷方+ , 弟實施方式(標示為方法1 )、該 第二實施方式(標示為方法2a)、該第五實施方式(標示 為方法2b)以及該第四實施方式(標示為方法3)之一效 能比較係被顯示於圖1 6中。 能在圖16中被看到的是:該第-實施方式(方法η =所trr施方式之間顯示—最佳效能。亦能被看到 的疋:该第二實施方式(法2a) 、 」係顯不與該第四實施方 式(方法3)之一可比較效能。 39 200906089 當與該第一實施方式(方法1 )之效能結果相比較時, 由於使用該約束在對於該第二實施方式(方法2a)與該第 四實施方式(方法3)中之每一個天線所分配的子载波之 最大數目上而在效能方面的一降級係僅僅少於ldB。然而, 在该第二實施方式(方法2b )中效能方面的降級係由於使 用隨機挑選以爲達成一具有較低複雜度之實施方式而相當 可觀的。 整體而言,能自圖16中所示該等效能結果被看見的 是:該第一實施方式(方法丨)係提供該挑選準則之最佳 選擇》 如一侧邊註記,應該要被注意的是:圖17以及18中 所示該等效能結果係基於情況c之通道實現方式。 圖17係顯示對於使用以及沒有使用本發明一個實施例 之一通訊裝置就480 Mbps資料傳輸率來說的封包錯誤率 (PER)效能結果。 在更、,田命裡’具有以及不具有該校準過程之各種實施 方式的一效能比較係被顯示於圖丨7中。 能在圖17中被看到的是:藉由使用傳送資料至一接收 器的方法之一個實施例以及四個傳送天線,對於一標準 WiMediai.O通訊裝置之_ 4.6dB增益係可被達成。再:, 亦能被看到的ϋ於不匹配之效能降級在不實施校準時 係僅僅為大約2dB ’而該树能膝妨户者 成效此降級在實施校準時係被降低 至為僅僅〇.5dB。 藉由使用傳送資料至 一接收器的方法之一個實施例以 200906089 及兩個傳送天線’對於一標準WiM di uia通訊裝置之— 0.5dB增益係可被達成。 此外,要被注意的是:當該等經測量校準因數僅僅具 有大約10%錯誤時,該效能降級係可為忽略的。 、 能被看見的是:對於藉由使用傳送資料至—接收器的 方法之該等實施例與校準以補償該不匹配的—標準Packet Error Rate (PER) performance results for V material transfer rate. In more detail, the stem _ extravagant squad +, the younger embodiment (labeled as method 1), the second embodiment (labeled as method 2a), the fifth embodiment (labeled as method 2b), and the fourth A performance comparison of one embodiment (labeled as Method 3) is shown in Figure 16. What can be seen in Figure 16 is: the first embodiment (method η = display between trr modes) - best performance. can also be seen: the second embodiment (method 2a), The system does not compare performance with one of the fourth embodiment (method 3). 39 200906089 When compared with the performance result of the first embodiment (method 1), due to the use of the constraint in the second implementation In terms of the maximum number of subcarriers allocated by each of the antennas in the mode (method 2a) and the fourth embodiment (method 3), the degradation in performance is only less than ldB. However, in the second embodiment The degradation in performance in (Method 2b) is considerable due to the use of random selection in order to achieve a lower complexity implementation. Overall, the equivalent energy results that can be seen from Figure 16 are: The first embodiment (method 丨) provides the best choice of the selection criteria. As one side note, it should be noted that the equivalent energy results shown in Figures 17 and 18 are based on the channel c implementation of case c. Figure 17 A packet error rate (PER) performance result for a 480 Mbps data transfer rate using and not using a communication device of one embodiment of the present invention. In addition, Tian Mingli' has and does not have various calibration procedures. A performance comparison of an embodiment is shown in Figure 7. What can be seen in Figure 17 is an embodiment of a method of transmitting data to a receiver and four transmit antennas, for a standard The 4.6dB gain of the WiMediai.O communication device can be achieved. Again: the performance degradation that can be seen in the mismatch is only about 2dB when the calibration is not implemented. The result of this degradation is reduced to only 〇5dB when implementing the calibration. By using an embodiment of the method of transmitting data to a receiver with 200906089 and two transmit antennas for a standard WiM di uia communication device - A gain of 0.5 dB can be achieved. In addition, it should be noted that when the measured calibration factors only have about 10% error, the performance degradation can be ignored. They are: to transmit data for use by - Example of a calibration method for such a receiver to compensate for the embodiment mismatch - Standard

WiMedia K0通訊裝置所達成之整體效能增益係為二 4dB。 圖1 8係顯示對於使用以及沒有使用本發明一個實施例 之一通訊裝置就200 Mbps資料傳輪率來說的封包錯誤率 (PER)效能結果。 ' 類似於圖17,具有以及不具有該校準過程之各種實施 方式的一效能比較係被顯示於圖1 8中。 能在圖1 8中被看到的是:藉由使用傳送資料至一接收 斋的方法之一個實施例以及四個傳送天線,對於一標準 WiMedia 1_〇通訊裝置之一 3.3dB增益係可被達成。再者, 亦能被看到的是:由於不匹配之效能降級在不實施校準時 係僅僅為大約丨_6dB,而該效能降級在實施校準時係被降 低至為僅僅〇.4dB。 藉由使用傳送資料至一接收器的方法之一個實施例以 及兩個傳送天線,對於一標準WiMedia 1.0通訊裝置之一 0_5dB增益係可被達成。 此外’亦要被注意的是:當該等經測量校準因數僅僅 具有大約1 0%錯誤時,該效能降級係可為忽略的。 41 200906089 能被看見的是:對於藉由使用傳送資料至一接收器的 方法之該等實施例與校準以補償該不匹配的一標準The overall performance gain achieved by the WiMedia K0 communication unit is two 4dB. Figure 18 shows the results of packet error rate (PER) performance for a 200 Mbps data transfer rate for a communication device that uses and does not use one of the embodiments of the present invention. Similar to Figure 17, a performance comparison with and without various implementations of the calibration process is shown in Figure 18. What can be seen in Figure 18 is that by using one embodiment of the method of transmitting data to a receiving fast and four transmitting antennas, a 3.3 dB gain system for a standard WiMedia 1_〇 communication device can be Achieved. Furthermore, it can also be seen that the performance degradation due to mismatch is only about 丨6 dB when no calibration is performed, and the performance degradation is reduced to only 〇4 dB when performing calibration. By using one embodiment of the method of transmitting data to a receiver and two transmit antennas, a 0_5 dB gain system for a standard WiMedia 1.0 communication device can be achieved. In addition, it should also be noted that this performance degradation can be ignored when the measured calibration factors have only about 10% errors. 41 200906089 What can be seen is that for the embodiment and calibration by means of transmitting data to a receiver to compensate for a mismatch

WiMecha 1.0通訊|置所達成之整體效能增益係為大約 2.9dB。 圖19係顯示對於使用以及沒有使用本發明一個實施例 的一通訊裝置就在關於情況B之通道實現上的400 Mbps 貝料傳輸率來說之封包錯誤率(pER )效能結果。 類似於圖1 7以及1 8,具有以及不具有該校準過程之 各種實施方式的一效能比較係被顯示於圖丨9中。 能在圖19中被看到的是:藉由使用傳送資料至一接收 益的方法之一個實施例以及四個傳送天線,對於一標準 WiMedia 1.0通訊裝置之一 62dB增益係可被達成。在此 則後文中,當與圖17相比較時,在圖1 9所達成之較高效 能增益主要係由於該獨立屏蔽通道。此意謂著··可達成之 效成增益的上限在使用傳送資料至一接收器的方法之該等 實施例時甚至係可更高。 再者’亦能被看到的是:由於不匹配之效能降級在不 實施校準時係僅僅為大約2.8dB,而該效能降級在實施校 準時係被降低至為僅僅〇.8dB。 此外’亦要被注意的是:當該等經測量校準因數僅僅 具有大約10%錯誤時,該效能降級係可為忽略的。 能被看見的是:對於藉由使用傳送資料至一接收器的 方法之該等實施例與校準以補償該不匹配的一標準 WiMedia 1.〇通訊裝置所達成之整體效能增益係為大約 42 200906089 5.4dB。 本發明多個實施例係可具有下述效用。 本發明多個實施例係提供精確以及低成本方法,以達 成完全空間以及頻率分集、傳輸範圍的延伸以及增強型強 韌度。本發明多個實施例係亦維持其與目前多個通訊裝置 的可父互運作性,並且如此,係可被施加至多個增強型通 訊裝置或是多個次世代通訊裝置中。 儘官本發明已特別地參考多個特定實施例來被顯示以 及敘述热^本項技術人士係應該了解到:在形式以及細 節上之各種改變係可在其中被作出,@沒有悖離如由該等 附加申請專利範圍所定義之本發明的精神與範疇。本發明 範4因而係、由該等附加中請專利範圍所指#,並且所有來 自等效於u亥等申凊專利範圍之含義以及範圍内的改變係因 此打算被包括。 在此文件中,下述刊物係被引用: [1] J’Foerster,通道模型化小組研討會最終報告」 年 2 月’ 〇 [2] J_KUmSch and j· Pamp ’「用於 UWB 無線電通道 之測里、.α果以及模型化觀點」,IEEE有關U训(UWBST 2〇〇〇2)的國際研討會,巴爾地摩,2002年5月。 【圖式簡單說明】 在自亥專圖式中,相介从办上 ^ 似的參考符唬在整個該等不同圖中 係^^到相同部件。該尊[g|斗、么 圖式係不需依比例繪製,相反地通 43 200906089 常係強調說明本發明之原理。在上文說明巾,本發明各種 實施例係參照該等下文圖式而被敘述,其中: 圖1係顯示一依據本發明一實施例的通訊系統。 圖2係顯示—依據本發明一實施例敘述被實施在該通 訊系統中之資料傳輸的流程圖。 圖3係顯不—依據本發明一個實施例之一通訊裝置的 方塊圖。 圖4係顯示—依據本發明一個實施例傳送資料至一接 收器的方法之頻域表示的說明圖。 圖5係,,„員不—依據本發明一個實施例傳送資料至一 收器的方法之一第—眚竑士』认 、 乐 貫施方式的說明圖。 圖6係顯示—依據本發明一個實施例傳送資料至一 收器的方法之一第_ f 4 a 要 乐一實允方式的說明圖。 圖7係顯示—依據本發明一個實施例傳送資料至一接 收益的方法之-第三實施方式的說明圖。 圖8係顯不—依據本發明一個實施例傳送資料至一 收器的方法之-第四實施方式的說明圖。 圖9係顯不_依據本發明一個實施例被 系統中之諸傳輸的訊U録示。 圖H)係顯示_依據本發明一個實施例說 該等校準因數之第—方法的方塊圖。 心 圖11係顯示-依據本發明—個實施例說明 該專校準因數之第二方法的方塊圖。 决- 圖12係顯示—依據本發明-個實施例在天線以及子載 44 200906089 波之挑選過程中的不匹配補償係如何地基於該等校準因數 與該經估計通道狀態資訊而可被實施的說明圖。 圖1 3係顯示一敘述被使用在本發明多個實施例上所實 施之該等模擬的表。 圖14係顯示對於使用以及沒有使用本發明一個實施例 的一通訊裝置就在CM3 ( 4到10公尺)中之480 Mbps資 料傳輸率來說的封包錯誤率(packet err〇r rate,PER)效 月包結果。 圖1 5係顯示對於使用以及沒有使用本發明一個實施例 的一通訊裝置就在CM3 (4到10公尺)中之2〇〇 Mbps資 料傳輸率來說的封包錯誤率(PER )效能結果。 圖1 6係顯示對於使用以及沒有使用本發明一個實施例 的一通訊裝置就在CM3 (4到1〇公尺)中之48〇 Mbps資 料傳輸率來說的封包錯誤率(PER )效能結果。 圖1 7係顯示對於使用以及沒有使用本發明一個實施例 之通Λ裝置就480 Mbps資料傳輸率來說的封包錯誤率 (PER)效能結果。 圖18係顯示對於使用以及沒有使用本發明一個實施例 之通3fl裝置就200 Mbps資料傳輸率來說的封包錯誤率 (PER)效能結果。 圖19係顯示對於使用以及沒有使用本發明一個實施例 通訊裝置就在關於情況B之通道實現上的4〇〇 Mbps 貝料傳輸率來說之封包錯誤率(pER)效能結果。 45 200906089 【主要元件符號說明】 100 通訊系統 101 第一通訊裝置(A ) 103 第二通訊裝置(B ) 105 第三通訊裝置(C ) 200 實施在該通訊系統100中之資料傳輸 的方塊圖 201 節點A 203 節點B 300 第三通訊裝置(C) 105的方塊圖 301 傳送單元 303 接收單元 305 編碼/交錯單元 307 星狀圖映射單元 309 多重頻帶空間頻率傳送挑選單元 311, 327 串列至並列轉換器單元 313 反快速傅立葉轉換單元 315,331 並列至串列轉換器單元 317 射頻單元 319,323 天線 321 參數估計單元 325 射頻交換單元 329 快速傅立葉轉換單元 333 第—頻帶交換器單元 46 200906089 335 空間頻率傳送挑選單元 337 第二頻帶交換器單元 339 子載波分配 341 挑選準則 343 校準電路 401 經傳送正交分頻多工訊號 403 經結合通道頻率響應 405, 407 通道頻率響應 601, 603, 605 矩陣 701, 703, 705 矩陣 801, 803, 805, 807 矩陣 1001 測試板 1003, 1100 通訊裝置 1005, 1007, 1103, 1105 開關 1101 額外校準電路 1300 四種類型通道模型之列表 47WiMecha 1.0 Communications | The overall performance gain achieved by the device is approximately 2.9dB. Figure 19 is a graph showing the packet error rate (pER) performance results for a 400 Mbps beacon transmission rate for a channel implementation of Case B for use with and without a communication device of one embodiment of the present invention. A performance comparison similar to that of Figures 1 7 and 18 with and without the various embodiments of the calibration process is shown in Figure 9. What can be seen in Figure 19 is that a 62 dB gain system for a standard WiMedia 1.0 communication device can be achieved by using one embodiment of the method of transmitting data to a benefit and four transmit antennas. In this hereinafter, when compared with Fig. 17, the higher efficiency gain achieved in Fig. 19 is mainly due to the independent shielded channel. This means that the upper limit of the achievable gain can even be higher in the embodiments using the method of transmitting data to a receiver. Furthermore, it can be seen that the performance degradation due to mismatch is only about 2.8 dB when calibration is not performed, and the performance degradation is reduced to only 〇8 dB when performing calibration. In addition, it should also be noted that this performance degradation can be ignored when the measured calibration factors only have about 10% error. What can be seen is that the overall performance gain achieved by the embodiment of the method of transmitting data to a receiver and the calibration to compensate for the mismatch of a standard WiMedia 1. communication device is approximately 42 200906089 5.4dB. Various embodiments of the invention may have the following utilities. Embodiments of the present invention provide an accurate and low cost method for achieving full space and frequency diversity, extension of transmission range, and enhanced toughness. Embodiments of the present invention also maintain their interoperability with current multi-communication devices and, as such, can be applied to multiple enhanced communication devices or multiple next generation communication devices. The present invention has been specifically described with reference to a number of specific embodiments, and it should be understood by those skilled in the art that various changes in form and detail can be made therein, @不悖如如如The spirit and scope of the invention as defined by the scope of the appended claims. The invention is therefore intended to be included within the meaning and scope of the claims and the scope of the claims. In this document, the following publications are cited: [1] J'Foerster, Channel Modeling Group Seminar Final Report, February 2 〇 [2] J_KUmSch and j· Pamp '" for UWB radio channel testing Li, .α Fruit and Modeling Perspectives, IEEE International Symposium on U Training (UWBST 2〇〇〇2), Baltimore, May 2002. [Simple description of the schema] In the self-designed diagram, the reference symbols from the same figure are used to the same components throughout the different diagrams. The esteem [g|斗, 么图式" does not need to be drawn to scale, and vice versa 43 200906089 often emphasizes the principle of the invention. In the above description, various embodiments of the present invention are described with reference to the following drawings, in which: Figure 1 shows a communication system in accordance with an embodiment of the present invention. Figure 2 is a flow chart showing the transmission of data carried out in the communication system in accordance with an embodiment of the present invention. Figure 3 is a block diagram of a communication device in accordance with one embodiment of the present invention. Figure 4 is an illustration showing a frequency domain representation of a method of transmitting data to a receiver in accordance with one embodiment of the present invention. FIG. 5 is a diagram showing an example of a method for transmitting data to a receiver according to an embodiment of the present invention. FIG. 6 is a view showing a method according to the present invention. Embodiment of the method for transmitting data to a receiver _f 4 a diagram of the method of transmitting a real mode. FIG. 7 is a diagram showing a method for transmitting data to a receiving benefit according to an embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 8 is an explanatory view showing a fourth embodiment of a method for transmitting data to a receiver in accordance with an embodiment of the present invention. Fig. 9 is a diagram showing a system according to an embodiment of the present invention. Figure H) is a block diagram showing the first method of the calibration factors in accordance with one embodiment of the present invention. Figure 11 is a diagram showing - in accordance with an embodiment of the present invention - A block diagram of a second method of calibrating factors. Figure 12 shows how the mismatch compensation in the antenna and subcarrier 44 200906089 wave selection process is based on the calibration factors and in accordance with the present invention. Estimated channel status BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a table showing the simulations used in various embodiments of the present invention. Figure 14 is a diagram showing the use and non-use of an embodiment of the present invention. The packet err〇r rate (PER) efficiency monthly packet result for a communication device at 480 Mbps data rate in CM3 (4 to 10 meters). Figure 1 5 shows the use and no use. A packet error rate (PER) performance result for a communication device of 2 Mbps in CM3 (4 to 10 meters) according to an embodiment of the present invention. Figure 16 shows the use and non-use of the device. A packet error rate (PER) performance result for a 48 Mbps data transmission rate in a CM3 (4 to 1 megameter) in accordance with an embodiment of the present invention. Figure 1 7 shows the use and non-use of the device. The packet error rate (PER) performance result for the 480 Mbps data transfer rate of the overnight device of one embodiment of the present invention. Figure 18 shows the 200 Mbps resource for the use and without the use of an embodiment of the present invention. Packet Error Rate (PER) performance results in terms of transmission rate. Figure 19 shows the 4 Mbps hopper transmission rate for the channel implementation of Case B for use and without the use of an embodiment of the present invention. Packet error rate (pER) performance result 45 200906089 [Description of main component symbols] 100 Communication system 101 First communication device (A) 103 Second communication device (B) 105 Third communication device (C) 200 implemented in the communication Block diagram 201 of data transmission in system 100 Node A 203 Node B 300 Block diagram 301 of third communication device (C) 105 Transmission unit 303 Reception unit 305 Encoding/interleaving unit 307 Star map mapping unit 309 Multi-band spatial frequency transmission Selection unit 311, 327 serial to parallel converter unit 313 inverse fast Fourier conversion unit 315, 331 side by side to serial converter unit 317 RF unit 319, 323 antenna 321 parameter estimation unit 325 RF switching unit 329 Fast Fourier transform unit 333 First-band converter Unit 46 200906089 335 Space Frequency Transmission Selection Unit 337 Band Switcher Unit 339 Subcarrier Allocation 341 Selection Criteria 343 Calibration Circuit 401 Transmits Orthogonal Frequency Division Multiplex Signal 403 via Combined Channel Frequency Response 405, 407 Channel Frequency Response 601, 603, 605 Matrix 701, 703, 705 Matrix 801, 803, 805, 807 Matrix 1001 Test Board 1003, 1100 Communication Unit 1005, 1007, 1103, 1105 Switch 1101 Additional Calibration Circuit 1300 List of Four Types of Channel Models 47

Claims (1)

200906089 十、申請專利範圍: 種傳送貝料至一接收器的方法,其中該資料係使 用複數個子載波來被傳送,該方法係包含: 對於母一個子載波挑選要被用&amp;傳輸該子m波之複數 個天線中一天線’該挑選係基於在該天線以及該接收器之 門的子載波傳輸之一傳輪特徵。 2:如申印專利範圍f【項之方法,其中使用該等複數 個子載波而要被傳送之資料係為—上通訊層之—通訊通道 的資料。 3.如申請專利範 針對該傳輸特徵之一 圍第1項之方法,其中該天線係基於 預定準則來被挑選。 4.如申請專利範圍第1 — 步項之方法,其進一步係包含 藉由一傳送器來接收—來白 术自该接收器的訊號,以及 基於該經接收訊號來決定該傳輸特徵。 5.如申請專利範圍第4 器傳送至該接收器之資料 施。 項之方法,其中要被自該傳送 以及該挑選係由該傳送器所實 6. 如申請專利範圍第4 器傳送至έ亥接收器之資料 施。 7. 如申請專利範圍第6 該挑選發訊至該傳送器。 8. 如申請專利範圍第1 為關於被使用於在該天線以 項之方法,其中要被自該傳送 (及該挑選係由該接收器所實 項之方法,其中該接收器係將 項之方法,其中該傳輸特徵係 及該接收器之間傳送該子載波 48 200906089 的通訊通道之一特性的資訊。 其中該傳輪特徵係 其中該傳輸特徵係 其中該資料係藉由 且係使用該等天線 9.如申請專利範圍第8項之方法 為關於該通訊通道之品質的資訊。 1 0 ·如申請專利範圍第9項之方、、去 為一通道狀態資訊。 11·如申請專利範圍第1項之方法, 該等複數個子載波之調變而被傳送,並 來傳送該等經調變子載波。 項之方法,其中該挑選係基於 子载波傳輸的該等傳輸特徵之一 12 ·如申請專利範圍第 對於不相同傳輸天線之一 比較而被實施。 ιό. αν γ 、\々π,头甲對於該等複 數個子載波中每-個子載波來說,該等複數個天線中—天 線係被挑選以被用於傳送該子載波。 U.如申請專利範圍第12項之方法,1由孤 數個〃土 項之方★其中對於該等複 數们子載波中母一者之挑選係被個別地實施。 15·如中請專利範圍第3項之方法,其中該預定準則係 亥等要被挑選以用於該等子載波的天線,使得在該傳 :特徵中具有最高品質之天線係被挑選用於每_個子载 16.如申請專利範圍第3項之方法,其中該預定準則係 υ 3要被分散給每一個天線之最大數目的子載波。 】7·如巾請專利第16項之方法,其中該預定準則 係進一步包含: 49 200906089 該等天線係被挑選以用於該等子载波,使得在該傳輪 特徵中具有最高品質之天線係被挑選以用於每一個子載 波。 〃 18·如申請專利範圍帛17項之方法,纟中該預定準則 係進一步包含:該等天線係被挑選以用於該等子載波的, 使得對於每—個天線來說,料哪—個天線已被挑選之子 載波數目係低於或是等於該預定最大數目的子載波。 19. 如申請專利範圍第4項之方法,其係進一步包含: 決疋該子載波從該接收器至該天線之一傳輸的一傳輸 特徵。 20. 如申請專利範圍第19項之方法,其係進一步包含: 補仏&quot;於該子載波自該接收器傳送至該天線的該等特性以 及該子載波自該天線傳送至該接收器的該等特性之間的差 異。 ^ 21.一種用於傳送資料之通訊系統,其令該資料係使用 複數個子載波來被傳送,該通訊系统係包含: 一接收器; ,一挑選單元,其係被組態成對於每一個子載波挑選要 被用於該子載波傳輸之複數個天線中一天線,#中該挑選 係基於在該天線以及該接收器之間的一子載波傳輸之一傳 特徵。 U·如申請專利範圍第21項之通訊系統,係進一 含: 一接收單元,其係被組態成接收一來自該接收器的訊 50 200906089 號,以及 第一決定單元’其係被組態成基於該經接收訊號來 決定該傳輸特徵。 23 ·如申請專利範圍第22項之通訊系統,係進一步包 含: —第二決定單元’其係被組態成決定該子載波自該接 收器至s亥天線之一傳輸的一傳輸特徵。 24. 如申請專利範圍第23項之通訊系統,係進一步包 含: —補償單元’其係被組態成補償介於該子載波自該接 收器傳送至該天線的該等特性以及該子載波自該天線傳送 至3亥接收器的該等特性之間的差異。 25. 如申請專利範圍第22項之通訊系統,其中要被自 忒傳送器傳送至該接收器之資料以及該挑選係由該傳送器 所實施。 26. 如申請專利範圍第22項之通訊系統,其中要被自 該傳送器傳送至該接收器之資料以及該挑選係由該接收器 所實施。 27. 如申請專利範圍第26項之通訊系統,其中該接收 器係將該挑選發訊至該傳送器。 28·如申請專利範圍第21項之通訊系統,其中該通訊 系統係為一特定無線電通訊系統。 29.如申請專利範圍第28項之通訊系統,其中該通訊 系統係為一 WiMedia通訊系統。 51 200906089 30·如申請專利範圍第28項之通訊系統,其中該通訊 系統係為一藍牙通訊系統。 3 1 ·如申請專利範圍第28項之通訊系統,其中該通訊 系統係為一火線通訊系統。 32.如申請專利範圍第28項之通訊系統,其中該通訊 系統係為一經認證無線通用串列匯流排通訊系統。 Η*一、圖式: 如次頁。 52200906089 X. Patent application scope: A method for transmitting a billet to a receiver, wherein the data is transmitted by using a plurality of subcarriers, the method comprising: selecting a subcarrier for the parent to be used to transmit the subm One of the plurality of antennas of the wave' selection is based on one of the subcarrier transmissions at the antenna and the gate of the receiver. 2: The method of the patent application scope f [the item, wherein the data to be transmitted using the plurality of subcarriers is the data of the communication channel of the upper communication layer. 3. The method of claim 1, wherein the antenna is selected based on predetermined criteria. 4. The method of claim 1, wherein the method further comprises receiving, by a transmitter, a signal from the receiver, and determining the transmission characteristic based on the received signal. 5. If the patent application area 4 is transmitted to the receiver. The method of the item, wherein the transmission is to be carried out and the selection is carried out by the transmitter. 6. The information of the fourth application of the patent application is transmitted to the information receiver. 7. If the scope of the patent application is 6th, the selection is sent to the transmitter. 8. The scope of claim 1 is for a method for use in the antenna, wherein the method is to be transmitted from (and the selection is performed by the receiver, wherein the receiver is The method wherein the transmission characteristic and the receiver transmit information of a characteristic of one of the communication channels of the subcarrier 48 200906089. wherein the transmission characteristic is that the transmission characteristic is where the data is used and used Antenna 9. The method of claim 8 is information about the quality of the communication channel. 1 0 · If the application is in the scope of item 9, it is a channel status information. The method of claim 1, wherein the plurality of subcarriers are modulated and transmitted to transmit the modulated subcarriers, wherein the selecting is based on one of the transmission characteristics of the subcarrier transmission. The scope of the patent application is implemented for comparison of one of the different transmission antennas. ιό. αν γ , \々π, the head arm for each of the plurality of subcarriers, the complex Among the antennas, the antenna system is selected to be used to transmit the subcarriers. U. As in the method of claim 12, 1 is made up of a few orbits of the earthy items ★ where the mother carriers of the plurality of subcarriers The selection of one is carried out individually. The method of claim 3, wherein the predetermined criterion is an antenna to be selected for the subcarriers, such that in the transmission: feature The antenna with the highest quality is selected for each _ subcarrier. 16. The method of claim 3, wherein the predetermined criterion is 最大 3 to be distributed to the maximum number of subcarriers of each antenna. The method of claim 16, wherein the predetermined criterion further comprises: 49 200906089 the antennas are selected for the subcarriers such that the antenna having the highest quality among the transmission features is selected For each subcarrier. 〃 18. The method of claim 17, wherein the predetermined criterion further comprises: the antennas are selected for use in the subcarriers, such that for each In the case of a line, the number of subcarriers in which the antenna has been selected is lower than or equal to the predetermined maximum number of subcarriers. 19. The method of claim 4, further comprising: A transmission characteristic of a carrier transmitted from the receiver to one of the antennas. 20. The method of claim 19, further comprising: "complementing" the subcarrier from the receiver to the antenna The characteristics and the difference between the characteristics of the subcarrier transmitted from the antenna to the receiver. ^ 21. A communication system for transmitting data, the data being transmitted using a plurality of subcarriers, The communication system comprises: a receiver; a selection unit configured to select, for each subcarrier, an antenna of a plurality of antennas to be used for transmission of the subcarrier, wherein the selection is based on the A subcarrier transmission feature between the antenna and the receiver. U. The communication system of claim 21, comprising: a receiving unit configured to receive a signal from the receiver 50 200906089, and the first determining unit 'the system is configured The transmission feature is determined based on the received signal. 23. The communication system of claim 22, further comprising: - a second decision unit </ RTI> configured to determine a transmission characteristic of the subcarrier transmission from the receiver to the s antenna. 24. The communication system of claim 23, further comprising: - a compensation unit configured to compensate for the characteristics of the subcarrier transmitted from the receiver to the antenna and the subcarrier from The difference between the characteristics of the antenna transmitted to the 3H receiver. 25. The communication system of claim 22, wherein the material to be transmitted from the transmitter to the receiver and the selection are implemented by the transmitter. 26. The communication system of claim 22, wherein the data to be transmitted from the transmitter to the receiver and the selection are implemented by the receiver. 27. The communication system of claim 26, wherein the receiver sends the selection to the transmitter. 28. The communication system of claim 21, wherein the communication system is a specific radio communication system. 29. The communication system of claim 28, wherein the communication system is a WiMedia communication system. 51 200906089 30. The communication system of claim 28, wherein the communication system is a Bluetooth communication system. 3 1 · The communication system of claim 28, wherein the communication system is a firewire communication system. 32. The communication system of claim 28, wherein the communication system is a certified wireless universal serial bus communication system. Η*1, schema: such as the next page. 52
TW97121472A 2007-06-08 2008-06-09 A method of transmitting data to a receiver TW200906089A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US92902207P 2007-06-08 2007-06-08

Publications (1)

Publication Number Publication Date
TW200906089A true TW200906089A (en) 2009-02-01

Family

ID=40093933

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97121472A TW200906089A (en) 2007-06-08 2008-06-09 A method of transmitting data to a receiver

Country Status (3)

Country Link
CN (1) CN101765989B (en)
TW (1) TW200906089A (en)
WO (1) WO2008150244A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616477B (en) * 2018-02-08 2021-01-01 南京中感微电子有限公司 Wireless communication method, device and system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU666411B2 (en) * 1992-11-27 1996-02-08 Commonwealth Scientific And Industrial Research Organisation A wireless LAN
EP1207662B1 (en) * 2000-11-20 2003-09-17 Sony International (Europe) GmbH OFDM system with antenna diversity in the transmitter and pre-equalisation

Also Published As

Publication number Publication date
CN101765989B (en) 2013-04-24
CN101765989A (en) 2010-06-30
WO2008150244A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
US11160078B2 (en) Backhaul radio with adaptive beamforming and sample alignment
US8379751B2 (en) Method of transmitting data to a receiver
US9515788B2 (en) Originator and recipient based transmissions in wireless communications
JP2023071793A (en) System and method for distributed antenna wireless communications
JP4832087B2 (en) Radio base station apparatus and terminal apparatus
CN1757213B (en) Multicarrier transmission using a plurality of symbol lengths
US8634432B2 (en) System and method for subcarrier allocation in a multicarrier wireless network
WO2010067419A1 (en) Wireless communication system and wireless communication method
CN110176949A (en) Data transmission method for uplink, signaling method, apparatus and system
TW201014227A (en) Method and apparatus for generating feedback information for transmit power control in a multiple-input multiple-output wireless communication system
CN101582873A (en) Multi-mode terminal in a wireless mimo system with spatial multiplexing
CN107852614A (en) Wireless repeater with the channel equalizer based on FIR
JP2010028183A (en) Wireless communication apparatus, wireless communication method, and computer program
WO2010095429A1 (en) Base station apparatus, terminal device, and rank setting method
TW200906089A (en) A method of transmitting data to a receiver
Lin et al. Multi-cell aware opportunistic random access
Malik MIMO capacity convergence in frequency-selective channels
WO2011134187A1 (en) Method and device for selecting antenna data transmission mode
WO2011134190A1 (en) Method and device for selecting antenna data transmission mode
WO2011134188A1 (en) Method and device for selecting transmitting mode of antenna data
Roemer et al. Distributed MIMO systems with spatial reuse for high-speed-indoor mobile radio access
El-Absi et al. Reliability of MIMO-OFDM interference alignment systems with antenna selection under real-world environments
Lin et al. Achieving the optimal throughput scaling in multi-cell random access networks
Balachandran et al. Base station cooperation with non-ideal backhaul and non-full buffer traffic
Forck et al. Early Real-Time Experiments and Field Trial Measurements with 3GPP-LTE Air Interface Implemented on Reconfigurable Hardware Platform