TW200905954A - Method of manufacturing zinc-calcium compound and zinc secondary electrode and use thereof - Google Patents

Method of manufacturing zinc-calcium compound and zinc secondary electrode and use thereof Download PDF

Info

Publication number
TW200905954A
TW200905954A TW096127732A TW96127732A TW200905954A TW 200905954 A TW200905954 A TW 200905954A TW 096127732 A TW096127732 A TW 096127732A TW 96127732 A TW96127732 A TW 96127732A TW 200905954 A TW200905954 A TW 200905954A
Authority
TW
Taiwan
Prior art keywords
zinc
electrode
powder
secondary electrode
compound
Prior art date
Application number
TW096127732A
Other languages
Chinese (zh)
Other versions
TWI353079B (en
Inventor
Chun-Cheng Yang
Jing-li WANG
Cheng-You Wu
Wen-Zhen Jian
Original Assignee
Taiwan Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Power Co filed Critical Taiwan Power Co
Priority to TW096127732A priority Critical patent/TW200905954A/en
Publication of TW200905954A publication Critical patent/TW200905954A/en
Application granted granted Critical
Publication of TWI353079B publication Critical patent/TWI353079B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

This invention is to provide a novel chemical process for preparing the active material of a zinc secondary electrode and for improving the composition of the electrode so as to address the issues of low capacity and shortened lifespan caused by zinc electrode deformation and the formation of needle zinc during the charging and discharging of the zinc secondary electrode, the root causes of which are that zinc-calcium compound has a low solubility in potassium hydroxide electrolyte solution and that active substances are not washed away easily. The zinc-calcium compound made of the chemical process of this invention can largely increase the charging and discharging cycles of the zinc secondary electrode when applied thereto. The active substance powder made by the chemical precipitation process has great reaction uniformity and can be prepared easily. This invention employs a novel chemical precipitation process for the preparation of zinc-calcium compound, and a zinc secondary electrode made by the zinc-calcium compound is highly reversible and durable.

Description

200905954 Λ ‘ 九、發明說明: 【發明所屬之技術領域】 此解決鋅二次電極在充/放電過程中鋅電極 ’這些問題會導鱗二次電容量下 本發明係一種新的化學方法製備鋅二次電極的活性 法並改良電極配方。藉 的變形和針狀鋅之生成 和循環壽命的減少。 【先前技術】 辞金屬燃料電池是-種非常環保的綠色乾淨能源,它社人了 广 鹼性電池中的鋅陽極技術和燃料電池中的空氣極技術組合^。 …鋅/空氣電池的主要優點是有很高的能量密度大約2〇〇呢/吆左 右,而功率密度大約100〜120W/kg,而鋅/空氣電池依其電極結構 又可以分為一次和二次電池。一次辞/空氣電池方面技術較成熟, 已經有商業化產品上市’主要應用在3C電子產品上,例如:助聽 器、行動電話、攜帶式電腦等;而二次鋅/空氣電池的開發較慢; 且技術較尚未成熟,不過’因其電池的原物料成本很低且沒有^ 何污染性,開發成功將是電池中的明日之星,主要可以應用在電 動機車、電動車、儲能設備、UPS、儲能等上。 “ 在以前許多的研究文獻上針對二次鋅陽極都放在如何降低或 % 減少鋅陽極的變形(Shape change)、避免針狀鋅(dendritic)的 幵>成,這兩個大問題上。一般在鋅空氣電池中,鋅陽極的主要成 份是高純度的氧化鋅及鋅(純度99· 5%以上)加上一些添加劑(Bi、 In、Pb等)、鐵氟隆添加劑(Tefi〇n binder)塗佈在鎳發泡網 (Ni-f〇am)或鎳網(Ni-SCreen)等製備成多孔性鋅電極,陰極是空 氣極’主要成分為高比表面積碳黑(carb〇n black)、活性碳 (activated carbon)或石墨(graphite)、貴重金屬或過度態金屬 氧化物觸媒、鐵氣隆添加劑等塗佈在錄發泡網(Ni-f〇am)或鎳網 (Ni-screen)基材上。電解質主要是K0H水溶液,K〇H濃度為重量 200905954 示: 百为比在20〜40%之間’而一般二次電池系統控制在3〜魏Κ0Η左右 為最理想,因為此濃度下,電解質的導電度最佳,—般在辞空氣 電池中理論上K0H電解質不會損耗,而只是鋅極氧化成氧化$ : 辞空氣二次電池在放電時,其陰、陽極電化學反應式如下所 (+ )陰極反應:1/2〇2+H2〇 + 2e — 20H—,ED=〇. 4〇 v (1) (-)陽極反應: Zn— Zn2+ + 2e_ E°=l. 25 V (2)200905954 Λ ' IX, invention description: [Technical field of invention] This solution solves the problem of zinc electrode in the process of charging/discharging of zinc secondary electrode. These problems are the secondary chemical capacity of the scale. The present invention is a new chemical method for preparing zinc. The secondary electrode is activated and the electrode formulation is modified. Deformation and generation of acicular zinc and reduction in cycle life. [Prior Art] The metal fuel cell is a kind of environmentally friendly green clean energy. It has a combination of zinc anode technology in a wide alkaline battery and air electrode technology in a fuel cell. ...The main advantage of zinc/air batteries is that they have a high energy density of about 2 吆 / 吆, and the power density is about 100~120W / kg, and the zinc / air battery can be divided into one and two according to its electrode structure. Secondary battery. The technology of one-word/air battery is relatively mature, and commercial products have been launched' mainly for 3C electronic products, such as hearing aids, mobile phones, portable computers, etc.; and the development of secondary zinc/air batteries is slow; The technology is not yet mature, but 'because the raw material cost of the battery is very low and there is no pollution, the development success will be the star of the battery in the future, which can be mainly applied to electric motor vehicles, electric vehicles, energy storage equipment, UPS, Energy storage and so on. “In many previous studies, the secondary zinc anodes were placed on how to reduce or reduce the zinc anode deformation and the dendritic enthalpy. Generally, in zinc-air batteries, the main components of zinc anodes are high-purity zinc oxide and zinc (purity of 99·5% or more) plus some additives (Bi, In, Pb, etc.) and Teflon additives (Tefi〇n binder). It is coated on a nickel foamed net (Ni-f〇am) or a nickel mesh (Ni-SCreen) to prepare a porous zinc electrode, and the cathode is an air electrode. The main component is a high specific surface area carbon black (carb〇n black). Activated carbon or graphite, precious metal or transition metal oxide catalyst, iron gas additive, etc. coated on a foamed mesh (Ni-f〇am) or nickel mesh (Ni-screen) On the substrate, the electrolyte is mainly K0H aqueous solution, the concentration of K〇H is 200905954, the ratio is: 20~40%, and the general secondary battery system is controlled at 3~WeiΚ0Η, because this is the best. At the concentration, the conductivity of the electrolyte is the best, in general, K0H electrolysis in the air battery It will not be depleted, but only the zinc pole will be oxidized to oxidize $: When the secondary battery is discharged, its cathode and anode electrochemical reactions are as follows: (+) Cathodic reaction: 1/2〇2+H2〇+ 2e — 20H —,ED=〇. 4〇v (1) (-) Anodic reaction: Zn— Zn2+ + 2e_ E°=l. 25 V (2)

Zn2++20H -> Zn(OH): Zn(0H)2— ZnO+H2〇 總反應 Zn + l/2〇2 — ZnO, E°=l. 65 V (3) 在許多鹼性電池系統中選擇鋅陽極做為負電極,主 極有下列許多項優點: 疋鋅電 (1) .辞電極有較低的可逆平衡電位(在鹼性溶液 中為-l.25Vvs.SHE)。 (2) .鋅電極有非常佳的電極動力行為(極化小)。 (3) ·鋅的原子量不高(Zn: 65 4 g/m〇1),即有高 的比能量密度。 (4) .鋅電極中的鋅價格便宜。 (5) .鋅電極的製備合成容易。 (6) .辞電極中的辞金屬沒有毒性,故具有環保性。 (7) .鋅電極有非常佳的安全性。 (8) ·鋅電極在鹼性溶液中有低的腐蝕速率。 (9) .在地球上鋅金屬的含量非常充裕。 而在文獻上有許多研究者㈣刊方法改善鋅電極的電性增 6 200905954 ΐ 加它的猶環壽命,研冑方法主要㈣ 技術改良,例如··鋅電極配方中加入^=電極,,配方 電解液中配方的改良;另外還有此方、、化物、虱氧化物,·在 電法、改呈隔離:ίΐ 使用脈衝(pulse)充 f振動鋅輯,躺触改善枝在改 2提昇了咖_,她 Γ Τί:應f的改善效能’尚未達到可以接收的程度。 要活性eaieium zineate粉末#作辞陽極的主 法製_纟eium zineate#絲性物肢由化學沉殿 峨法製備時是以2莫耳(以下簡_ _ 以二澱劑,加入不同莫耳比例的z_3>和 Ca,’並控制反應溫度在跳和pH值為n. 8小時之後,再熟化(咖)12小時,再經 ^應 以120〇C乾燥完成得六邊形紝曰〗%" 一 /月冼處理 ,..柳、,、°曰曰125 _大小左右的化合物粉末。 =,(calc麵Zlncate)活性物質粉末’以_及湯進行檢 t二^化0物製備成辞二次電極做電化學電性分析,分析時 放電法進行。他們製備的鋅二次電極中含有350呢 六 Γ 士即其中有 220 呢Zn0 +98 mg Ca⑽)2),10 wt.%Bi 粉末(主要是改善辞電極的導電性及減少氣氣的產生,降低 、的自放電率)及2 wt. %PVA高分子溶液。辞電極大小為2公 =x2公分(面積4 cm2),鋅電極厚度大約〇. 8麵左右。而他們的 ^驗結果發現,以鋅二次電極組合Ni娜正電極製成Ni/Zn二次 它的循環壽命可達約1〇〇次左右,而辞約化合物之放電電 容量為200〜300 mAh/g左右。 .另由文獻上其他研究者發現以化學法製備的鋅鋇(barium zincate)所做成的鋅二次電極其最佳的電性為4〇〇~2〇〇逢也5〇 cycles,然:而’以物理法製備的辞鋇粉末做成的鋅電極,則電性 200905954 表現稍差一點。他們又比較一般商業上(commercial)的ZnO和活 性(active)的ZnO所做成的鋅二次電極,結果鋅二次電極電性表 現都非常不理想’結果只有1〇 CyCles的充放電壽命’誠屬美中 不足之處。 因此’本發明的重點是以液相化學沉澱法製備鋅鈣化合物粉 末,應用在二次鋅陽極上,改善電極組成配方及製備方法,因二 次辞/空氣電池的循環壽命,主要受限於鋅陽極的嚴重極化和電極 變形。 本發明採用液相化學沉澱法製備鋅鈣化合物粉末,比較於機 ,研磨法,液相化學職法具有非常⑽反應均自性及製備操作 簡易性等優點。液相化學峨法製備完狀朗化合物粉末以励, 略〇-Raman及猶做材料分析。另外,製備完成的辞二次電極, 進订半電極電性檢測分析,電化學分析方法(触〇1此, model fhemie,Netheland):循環伏安法、定電流充/ Ό進行有系統分析,藉此提昇鋅二次電極的可逆電性, 活性㈣的化學組成、均勻性、_製備方法、 和提昇充/她’峰搞雜鱗、高能量效率 【發明内容】 備之合物之製備方法,其所製 方。$ 末可制在二次鋅陽極上,赠善雜組成配 組成、均勻性、雷細供+其中包括文善活性物質的化學 以達到高輪;極器材料,使其最佳化, 為了達到上ί目r,bfi4 k放電猶環壽命次數。 ’本發明之-種辞柳^物之製備方法, 200905954 其包括下列步驟:(一)分別配製〇. 〇l~l〇 Μ之Na〇n、〇. 〇ι〜5 Μ 之NILOH溶液,將上述兩水溶液倒入燒杯中,在水中,以均質機均 勻快速攪拌以得到溶液A,並測量其pH值;(二)配製〇. 〇1~5 ΜZn2++20H -> Zn(OH): Zn(0H)2—ZnO+H2〇 total reaction Zn + l/2〇2 — ZnO, E°=l. 65 V (3) in many alkaline battery systems The zinc anode is selected as the negative electrode, and the main pole has many advantages as follows: 疋Zn (1). The electrode has a lower reversible equilibrium potential (-l.25Vvs.SHE in an alkaline solution). (2) . Zinc electrodes have very good electrode dynamic behavior (less polarization). (3) • The atomic weight of zinc is not high (Zn: 65 4 g/m〇1), that is, it has a high specific energy density. (4) The zinc in the zinc electrode is cheap. (5) The preparation of the zinc electrode is easy to synthesize. (6) The metal in the electrode is not toxic, so it is environmentally friendly. (7) . Zinc electrodes have excellent safety. (8) • The zinc electrode has a low corrosion rate in an alkaline solution. (9) . The content of zinc metal on the earth is very abundant. In the literature, there are many researchers (four) published methods to improve the electrical increase of zinc electrodes. 6 200905954 ΐ Add its helium ring life, research methods mainly (four) technical improvements, such as · · zinc electrode formula added ^ = electrode, formula The formulation of the electrolyte is improved; in addition, the square, the compound, the bismuth oxide, and the electric method, and the isolation and isolation: ΐ ΐ use the pulse to charge the vibration of the zinc, and the improvement of the branch is improved. Coffee _, she Γ Τί: The improvement performance of f should not be acceptable. To be active eaieium zineate powder # _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Z_3> and Ca, 'and control the reaction temperature after jumping and pH value of n. 8 hours, then ripening (coffee) for 12 hours, and then should be dried at 120 ° C to complete the hexagonal 纴曰〗 〖%" One / month 冼 treatment, .. Liu,,, ° 曰曰 125 _ size of the compound powder. =, (calc surface Zlncate) active substance powder 'to test _ and soup t 2 ^ 0 preparations into two The secondary electrode was subjected to electrochemical analysis and the discharge method was carried out by analysis. The zinc secondary electrode prepared by them contained 350 Γ six 士, ie, 220 Zn0 +98 mg Ca(10)) 2), 10 wt.% Bi powder ( Mainly to improve the conductivity of the electrode and reduce the generation of gas, reduce the self-discharge rate) and 2 wt.% PVA polymer solution. The size of the electrode is 2 mm = x 2 cm (area 4 cm 2 ), and the thickness of the zinc electrode is about 8. And their test results found that the Ni-Zn secondary electrode made of zinc secondary electrode combined with Ni/Zn twice has a cycle life of about 1〇〇, and the discharge capacity of the compound is 200~300. mAh/g or so. In addition, other researchers in the literature found that the best electrical properties of zinc secondary electrodes made by chemically prepared barium zincate are 4〇〇~2〇〇5也cycles, then: And the zinc electrode made of the lexic powder prepared by the physical method, the electrical performance of 200,905,954 is slightly worse. They compared the zinc secondary electrodes made of general commercial ZnO and active ZnO. As a result, the electrical performance of the zinc secondary electrode is very unsatisfactory. The result is only 1〇CyCles charge and discharge life' It is a flaw in the United States. Therefore, the focus of the present invention is to prepare a zinc-calcium compound powder by a liquid phase chemical precipitation method, which is applied to a secondary zinc anode to improve the electrode composition formula and the preparation method, and the cycle life of the second word/air battery is mainly limited by Severe polarization and electrode deformation of the zinc anode. The invention adopts the liquid phase chemical precipitation method to prepare the zinc-calcium compound powder, and has the advantages of (10) reaction homogeneity and ease of preparation operation compared with the machine, the grinding method and the liquid phase chemical method. The liquid phase chemical hydrazine method was used to prepare the finished compound powder, and the material was analyzed by Raman and Raman. In addition, the completed secondary electrode, the semi-electrode electrical detection analysis, the electrochemical analysis method (touch f1, model fhemie, Netheland): cyclic voltammetry, constant current charge / Ό for systematic analysis, Thereby, the reversible electrical property of the zinc secondary electrode is enhanced, the chemical composition, uniformity, preparation method, and lifting charge/she-peak of the active (4), high energy efficiency [invention] preparation method of the compound , the party it produces. The end can be made on the secondary zinc anode, and the composition of the miscellaneous composition, uniformity, and thunder supply + including the chemical of Wenshan active material to achieve the high wheel; the electrode material is optimized to achieve ί目r, bfi4 k discharge the life of the ring. 'Preparation method of the invention of the invention, 200905954, which comprises the following steps: (1) preparing a NILOH solution of 〇l~l〇ΜNa〇n, 〇. 〇ι~5 分别, respectively The above two aqueous solutions are poured into a beaker, and uniformly stirred in a homogenizer in water to obtain a solution A, and the pH value thereof is measured; (2) Preparation of 〇. 〇1~5 Μ

之Ζη(Ν〇3)2和o.oi〜5 μ之Ca(N〇3>水溶液,將兩溶液依特定之比 例混合以得到溶液B;(三)配製0.01~10 M<Na〇H與〇 〇15 M 之nh4〇h,兩溶液同樣依特定之比例混合以得到溶液c;(四)將溶 液B及溶液C以滴定管緩緩滴入溶液a中,測量總混合液之邱值; 以及(五)將總混合液離心過濾並反覆水洗數次,後置於烘箱中乾 燥即得該舞辞化合物粉末。 / 為了達到上述目的,本發明之一種鋅二次電極之製備方法, 其包括下列步驟:㈠取適量以化學沉殿法製得之辞/飼化合物粉 末再加入適量鋅粉㈤、適量的金料體粉末或金屬氧化物°抑制 劑或安定劑和少量的導電材料,置於球磨機中研磨均勻攪拌卜1〇 小時;(二)將研磨之混合粉末加入適當溶劑、黏著劑和其他非離 子型界面活性繼玻璃燒杯巾,並魏杯置於超音波^器 拌混合,使其均勻分散於溶液中,再將溶液置於供箱中, 3溶劑使職財狀液體;(三)娜適量料狀溶液塗佈於錄 發泡網上、銅網、鈦網和細上,使職㈣巾以適當壓 =電極片;以及(四)將辞電極片放置高溫烘箱中燒結若 =辞電制後焊上金屬導線,並塗上環氧樹脂, 電極之製備工作。 人〒人 ^使貴審查委s能進-步瞭解本發狀結構、特徵及其目 的,錄附以圖式及較佳具體實施例之詳細說明如後。 、 【實施方式】 本^之—種鋅·^合物之製備方法,其包括下列步 =配製隨〜H)莫耳之_、Q. G1〜5 M之腦H ^ ) 兩水溶液倒入燒杯中,在水中,以均質機均勻 200905954 液A,並測量其ΡΗ值;(二)配製〇 〇1〜5mΖη(Ν〇3)2 and o.oi~5 μ Ca (N〇3> aqueous solution, mixing the two solutions in a specific ratio to obtain solution B; (3) preparing 0.01~10 M<Na〇H and 〇〇15 M of nh4〇h, the two solutions are also mixed in a specific ratio to obtain a solution c; (d) the solution B and the solution C are slowly dropped into the solution a as a titration tube, and the value of the total mixture is measured; (5) centrifugally filtering the total mixed solution and repeatedly washing with water several times, and then drying in an oven to obtain the compound powder of the dance. / In order to achieve the above object, a method for preparing a zinc secondary electrode of the present invention includes the following Steps: (1) Take appropriate amount of the compound/powder compound powder prepared by chemical sedimentation method and then add appropriate amount of zinc powder (5), appropriate amount of gold powder or metal oxide inhibitor or stabilizer and a small amount of conductive material, and place in a ball mill. Grind evenly for 1 hour; (2) Add the ground mixed powder to a suitable solvent, adhesive and other non-ionic interface-active glass beakers, and place the Wei cup in an ultrasonic mixer to make it evenly dispersed. In the solution, put the solution in the box 3, the solvent makes the liquid of the job; (3) the appropriate amount of the solution is coated on the foaming net, copper mesh, titanium mesh and fine, so that the (4) towel is properly pressed = electrode sheet; and (4) Place the electrode sheet in a high-temperature oven and sinter it. If it is smelted, the metal wire is welded and coated with epoxy resin. The preparation of the electrode is done. The person who makes the inspection can make a step-by-step understanding of the hairline structure. And the detailed description of the preferred embodiments are as follows. [Embodiment] The preparation method of the zinc compound is included in the following steps: H) Moer _, Q. G1~5 M brain H ^) Two aqueous solutions are poured into a beaker, in water, homogenizer uniform 200905954 liquid A, and its enthalpy value is measured; (2) preparation 〇〇 1~ 5m

而3亥有機驗鹽化合物則例如但不限於為 、LiOH、NH4〇H、 一其中,於該步驟(一)中,該㈣册係作為沉 為女定劑。該沉殿劑進一步例如但不限於為Κ0Η 尿素、有機驗鹽化合物,而該有機給_彳卜人札 基胺、三乙基胺、四三乙基胺鹽等或以上各種鹼金屬鹽混合 於該步驟(二)中,該水溶液中的鋅:妈莫耳比控制在ΐ5 ι至 1:1之間,而最佳配方在2. 5:1之間。此外,其前驅物之辞鹽及妈 鹽可為 Zn(N〇3)2、Zn(CH3⑽2、ZnS〇4、ZnQ〇4、Μ〇3 有機類鋅鹽,鈣鹽可為 Ca(N〇3>、Ca(CH3C00)2、CaS〇4、Ca〇)3、The 3H organic salt compound is, for example but not limited to, LiOH, NH4〇H, and wherein, in the step (1), the (4) is used as a sinking agent. The sinking agent is further, for example but not limited to, Κ0Η urea, an organic salt detecting compound, and the organic compound is mixed with the various alkali metal salts of the above or other alkali metal salts of succinylamine, triethylamine, tetratriethylamine salt or the like. In the step (2), the zinc in the aqueous solution is controlled between ΐ5 ι and 1:1, and the optimum formula is between 2. 5:1. In addition, the salt and mother salt of the precursor may be Zn(N〇3)2, Zn(CH3(10)2, ZnS〇4, ZnQ〇4, Μ〇3 organic zinc salts, and the calcium salt may be Ca(N〇3>;,Ca(CH3C00)2, CaS〇4, Ca〇)3,

Ca(C2〇4)、CaC12、有機類鈣鹽等,其中該有機類鋅鹽可為Zn(〇R)4, R=UWl ’ n = 1〜4等,該有機類鈣鹽則可為Ca(0R)ra,R=CnH2n+1,n =1〜4,m=l,2 等。 於該步驟(四)中,混合液的pH值應控制在9〜14±〇 2之間, 而最佳pH之值在11. 5〜12.5,之後,在隔絕空氣狀態下,持^攪 摔8小時以成核,再繼續攪拌12〜72小時,使之熟化。 於該步驟(五)中,烘箱中之溫度約l〇〇QC,且乾燥時間約6〜72 小時。 以下將詳細說明本發明之一種鋅鈣化合物之製備方法其可能 之實施例及其圖式: 實施例(一): 將以化學沉澱法所製備之鋅/鈣化合物,以電子顯微鏡 200905954 1 ,Ca(C2〇4), CaC12, organic calcium salt, etc., wherein the organic zinc salt may be Zn(〇R)4, R=UWl 'n=1~4, etc., and the organic calcium salt may be Ca (0R)ra, R=CnH2n+1, n=1~4, m=l, 2, and so on. In the step (4), the pH of the mixture should be controlled between 9 and 14 ± 〇 2, and the optimum pH value is 11. 5 to 12.5. After nucleation for 8 hours, stirring was continued for another 12 to 72 hours to ripen it. In the step (5), the temperature in the oven is about l〇〇QC, and the drying time is about 6 to 72 hours. Hereinafter, a possible embodiment of a method for preparing a zinc-calcium compound of the present invention and a schematic form thereof will be described in detail: Example (I): A zinc/calcium compound prepared by a chemical precipitation method, with an electron microscope 200905954 1 ,

Ohtachi 2_S SEM)及EM-mapping觀察分析其表面形態及化學 組成。而圖(四)是以化學沉澱法所製備之辞/飼化合物的識表面 分析圖,而粉末的化學沉;殿pH健制在14,由識圖中可看出其 為六方晶體片狀,顆粒較大。圖㈤是以歷腿卯⑽(丽孤, m腦analyse SyStem-Quantax,Germany)觀察分析 Zn Ca 和 〇 等元素分佈的分析結果圖,由實驗結果可以知道看出,有相當多 Ca元素與Ζη元素共沉殿出來。另外,圖(六)是以化學沉澱法所製 備之鋅/触合物# SEM圖,而粉末的化學沉澱時其邱值控制在 9 ’在圖㈤的猶圖中可明顯看出其為傾狀針狀結構具有非常 南的比表面積,其顆粒遠比ρΗ值為14的辞/妈化合物小(約12 μιη);而圖(七)是妈/辞化合物在ρΗ=9的舰分析圖結 果,也可看出其Ca、Zn兩元素的分佈也較pH值為14的辞/與化 合物為更為均勻’但舞含量明顯下降很多。在液相化學沉澱法製 備粉末時,pH值越低,粉末顆粒就越小,比表面積愈大⑽辞化 合物的密度在_時,密度為4.40 g Μ,然而在pH=14時, 密,為2.6。g cm3;騎售氧化鋅(ZnQ,Aldrid〇密度為5 cm,市售氳氧化舞(Aldrich)密度則是2. 2 g cm-3)。 此外,本發明亦提供-種辞二次電極之製備方法,其包括下 列步驟:㈠取適量以化學職法製得之鋅屬化合物粉末再加入 適量鋅粉(Zn)、適量的金屬導體粉末或金屬氧化物抑制劑或安定 劑和少量的導電材料,置於球磨機中研磨均勻授掉卜忉小時;(二) 將研磨之混合粉末加入適當溶劑、黏著劑和其他非離子型界面; 性劑於玻璃燒杯中,並將燒杯置於超音波震盪器中攪拌混合,使 其均勻分散於溶液中,再將溶液置於焕箱中,去除多餘的&劑使 形成鋅膏狀液體;(三)秤取適量鋅膏狀溶液塗佈於鎳發泡網上、 銅網、鈦網和鎳網上,使用壓片機中以適當壓力壓成鋅電極片. 以及(四)將鋅電極片放置高溫烘箱中燒結若干分鐘,後在鋅極 11 200905954 » ,* 片後焊上金屬導線,並塗上環氧樹脂,即完成鋅二次電極之製 工作。 肉 其中,於該步驟(一)中,該鋅/鈣化合物粉末之量為丨〜99 wt.’鋅粉(Zn)之量為卜15 wt· %、金屬導體粉末之量為12〇 Wt.%,金屬氧化物抑制劑之含量為^000 ppm,且該球磨機之轉 速為200〜2000 rpm間,研磨時間約M0小時。其中,該金屬導 體粉末可為_-Cu、Ni粉末、c〇粉末,該金屬氧化物抑制劑可 為 PbO、Bi2〇3、祕、Mg0、Ca〇,該安定劑可為 pEG、pEGBCME, 「該導電材料可為 CNTs、carb〇n black_Bp2〇〇〇 等。 * 於該步驟(二)中,該溶劑可為H2〇、methano卜IPA、ethanQl 等、该黏著劑可為PTFE binders,該非離子型界面活性劑可為 Triton-X或Tween 80,該烘箱之溫度可為1〇(rc。 於該步驟(三)中,該壓片機之壓力可為2〇() kgfcm2。 於該步驟(四)中,該高溫烘箱中之溫度約為375<t,燒結時間 約30分鐘。以下將以實施例二詳細說明本發明之一種鋅二次電極 之製法之原理。 實施例(二): I 將製備完成之鋅/鈣化合物粉末(鋅:鈣莫耳比=2. 5:1,而其 pH=9下)’再加入辞粉(Zn p〇wders)、合適金屬或金屬氧化物抑制 劑或安定劑和少量的金屬(Cu powders)導電材料,置於球磨機 (bal卜milled)中均勻研磨’轉速_ rpm,約卜2小時。將研磨 之此合粉末加入適當溶劑、黏著劑和其他非離子型界面活性劑於 玻璃燒杯中。賴杯置於超音波錄則咖⑻㈣帽拌混合, 使其均勻分散於溶液巾’捕驗置於刚τ的烘箱,去除多餘的 溶劑使形錢纽㈣(zine paste),之後,娜適量鋅膏狀液 體(zinc paste)塗佈於鎳發泡網上,使用壓片機中以·咕⑽2 壓力壓成料。將鋅極狀置高溫烘箱巾⑽375。〇燒結分鐘。 12 200905954 t灸在鋅電極#後焊上金屬⑽)導線,並塗上魏娜(epoxy), f個程序約2〜4小時,即完成鋅二次電極之製備。表㈠為鋅二 =電極(面積=4 cm2)充/放電測試實驗結果,而其中鋅電極的平均 效率和利用率約5G%,而能量效率大約左右,鋅電極循環次數 可達150次。Ohtachi 2_S SEM) and EM-mapping were used to observe the surface morphology and chemical composition. Figure (4) is a surface analysis of the word/feed compound prepared by chemical precipitation method, and the chemical sink of the powder; the pH of the temple is at 14 and can be seen as a hexagonal crystal sheet. The particles are larger. Figure (5) is a graph showing the analysis of the distribution of elements such as Zn Ca and yttrium by the scorpion 卯 (10) (Ligu, m brain analys SyStem-Quantax, Germany). It can be seen from the experimental results that there are quite a lot of Ca elements and Ζη. The elements are all coming out of the temple. In addition, Figure (6) is a zinc/contact compound #SEM image prepared by chemical precipitation method, and its sub-value is controlled at 9' during chemical precipitation of the powder. It can be clearly seen in the figure of Figure (5). The acicular structure has a very south specific surface area, and its particles are much smaller than the rhyme/mother compound with a ρΗ value of 14 (about 12 μιηη); and the figure (7) is the result of the ship analysis of the //辞 compound at ρΗ=9. It can also be seen that the distribution of the two elements of Ca and Zn is also more uniform than the value of the pH of 14 / and the compound is significantly reduced. When the powder is prepared by liquid phase chemical precipitation method, the lower the pH value, the smaller the powder particles and the larger the specific surface area. (10) When the density of the compound is _, the density is 4.40 g Μ, but at pH=14, the density is 2.6. g cm3; riding zinc oxide (ZnQ, Aldrid〇 density of 5 cm, commercially available 氲 oxidation dance (Aldrich) density is 2. 2 g cm-3). In addition, the present invention also provides a method for preparing a secondary electrode, which comprises the following steps: (1) taking an appropriate amount of a zinc compound powder prepared by a chemical method and then adding an appropriate amount of zinc powder (Zn), an appropriate amount of metal conductor powder or metal. Oxide inhibitor or stabilizer and a small amount of conductive material, placed in a ball mill to grind evenly to discard the hour; (2) Add the ground mixed powder to a suitable solvent, adhesive and other non-ionic interfaces; In a beaker, place the beaker in an ultrasonic oscillator and mix it to disperse it evenly in the solution, then place the solution in the box, remove excess & agent to form a zinc paste liquid; (3) Scale Apply an appropriate amount of zinc paste solution to the nickel foaming net, copper mesh, titanium mesh and nickel mesh, press the zinc electrode sheet with a suitable pressure in a tablet press. And (4) place the zinc electrode sheet in a high temperature oven. After sintering for several minutes, the metal wire is soldered on the zinc electrode 11 200905954 » , * and the epoxy resin is applied to complete the preparation of the zinc secondary electrode. In the meat, in the step (1), the amount of the zinc/calcium compound powder is 丨~99 wt. The amount of the zinc powder (Zn) is 15 wt.%, and the amount of the metal conductor powder is 12 〇Wt. %, the content of the metal oxide inhibitor is ^000 ppm, and the rotation speed of the ball mill is between 200 and 2000 rpm, and the grinding time is about M0 hours. Wherein, the metal conductor powder may be _-Cu, Ni powder, c 〇 powder, the metal oxide inhibitor may be PbO, Bi 2 〇 3, secret, Mg 0, Ca 〇, the stabilizer may be pEG, pEGBCME, The conductive material may be CNTs, carb〇n black_Bp2〇〇〇, etc. * In the step (2), the solvent may be H2〇, methano, IPA, ethanQl, etc., the adhesive may be PTFE binders, the non-ionic type The surfactant may be Triton-X or Tween 80, and the temperature of the oven may be 1 〇 (rc. In the step (3), the pressure of the tablet press may be 2 〇 () kgfcm 2 . The temperature in the high temperature oven is about 375 < t, and the sintering time is about 30 minutes. The principle of the method for preparing a zinc secondary electrode of the present invention will be described in detail below in the second embodiment. Example (II): I Prepared zinc/calcium compound powder (zinc: calcium molar ratio = 2. 5:1, and its pH = 9) 'Additional Zn p〇wders, suitable metal or metal oxide inhibitors or Stabilizer and a small amount of Cu (ceramics) conductive material, placed in a ball mill (bald) evenly ground Rotate _ rpm for about 2 hours. Add the ground powder to the appropriate solvent, adhesive and other non-ionic surfactants in a glass beaker. Place the ray cup on the ultrasonic recording (8) (4) cap mix. Disperse evenly in the solution towel's trap in the oven immediately after the τ, remove the excess solvent to make zine paste, and then apply a proper amount of zinc paste on the nickel foaming net. Use a tablet press to pressurize the material with a pressure of 咕(10)2. Place the zinc in a high-temperature oven towel (10) 375. Squeeze the minute. 12 200905954 t-moisturize the metal (10) wire after the zinc electrode # and apply it to Wei Na ( Epoxy), f procedures are about 2 to 4 hours, that is, the preparation of the zinc secondary electrode is completed. Table (1) is the result of the charge/discharge test of zinc two = electrode (area = 4 cm2), and the average efficiency and utilization of the zinc electrode therein The rate is about 5G%, and the energy efficiency is about the same, and the number of cycles of the zinc electrode can reach 150 times.

極(AExtreme (A

能量效率 放電速 率 充/放電次 數 平均效率及利用 率Energy efficiency discharge rate charge/discharge number average efficiency and utilization rate

5主.鋅二次電極中的理論電容量為120 mAh 實施例(三): 將以液相化學沉澱法所製備之鈣/鋅化合物所製備之鋅二次 電極做定電流充/放電性檢測分析。其實驗結果如圖(八)和圖(九) 所示’此鋅電極的辞約化合物活性物質是以化學沉澱法(chemical precipitation)製備而成的(ph=9);此鋅二次電極的卜1〇 cycies 定電流充/放電變化曲線圖。由圖(八)及圖(九)中可發現其充電 (charge curve)曲線非常的平穩(nat),即極化非常小,在前5 cycles 中平均充電電壓約 + 45V (vs. Hg/Hg〇),6 ~ 1〇 cycle 平 均充電工作電壓約-1.40V,此也表示鋅二次電極已經完成活化之 階段。另由表(三)是鋅電極效率(%)及利用率(%)測試結果,以化 學沉澱法製備之辞妈化合物(pH=9)應用在鋅二次電極的電流效率 和利用率,在前10次就以達到所設定的放電深度(8〇%)。除了進 行充/放電測試外,也有將以化學沉澱法製備之鋅鈣化合物粉末製 備成微小鋅二次電極(約含1 mg鋅活性物質),進行充/放電循環 伏安分析圖’圖(十)是以化學沉澱法所製備鈣/鋅氫氧化物之微小 鋅電極,經過50次之循環伏安(Cyclic votammetry,CV)圖測試 結果,由圖可以看出以化學沉澱法鋅#5化合物粉末所製備之微小 鋅電極其CV曲線較具有佳之對稱性,且經由其cv圖積分計算其 13 200905954 庫倫效率’也是幾乎都有達到9〇%以上。 表(二)、鋅二的亦y放電測詖钴果:The theoretical capacity of the main zinc permanent electrode is 120 mAh. Example (3): The zinc secondary electrode prepared by the liquid phase chemical precipitation method is used for constant current charge/discharge detection. analysis. The experimental results are shown in Figure (8) and Figure (9). The active compound of the zinc electrode is prepared by chemical precipitation (ph=9); the zinc secondary electrode Bu 1〇cycies constant current charge / discharge curve. From Fig. (8) and Fig. (9), the charge curve is very stable (nat), that is, the polarization is very small. The average charging voltage in the first 5 cycles is about +45V (vs. Hg/Hg). 〇), 6 ~ 1 〇 cycle The average charging working voltage is about -1.40V, which also indicates that the zinc secondary electrode has completed the activation phase. In addition, Table (3) is the zinc electrode efficiency (%) and utilization rate (%) test results, and the chemical efficiency and utilization rate of the zinc secondary electrode (pH=9) prepared by chemical precipitation method is applied. The first 10 times are used to reach the set discharge depth (8〇%). In addition to the charge/discharge test, a zinc-zinc compound powder prepared by chemical precipitation method is prepared as a micro-zinc secondary electrode (about 1 mg of zinc active material), and a charge/discharge cycle voltammetric analysis chart is shown. The micro zinc electrode prepared by chemical precipitation method is a tiny zinc electrode prepared by chemical precipitation method. After 50 cycles of Cyclic votammetry (CV), the chemical precipitation method zinc #5 compound powder can be seen from the figure. The prepared micro zinc electrode has a better symmetry of the CV curve, and its 13 200905954 Coulomb efficiency is calculated to be almost 9 % by its cv map integral. Table (2), Zinc II also y discharge test 詖Cobalt fruit:

註:效率(%)=[實際放電量(mAh)/實際充電量(mAh^xqoo,利用 率(%)=[實際放電電容量(mAh)/理論辞電容量(mAh)]*100 ;而此 鋅二次電極的理論電容量為115 mAh。 表(三)、鋅二次電極之微小電極的循環伏安法公析烚淛钴旲:Note: Efficiency (%) = [actual discharge amount (mAh) / actual charge amount (mAh ^ xqoo, utilization (%) = [actual discharge capacity (mAh) / theoretical capacity (mAh)] * 100; and The theoretical capacitance of the zinc secondary electrode is 115 mAh. Table (III), Cyclic Voltammetry of Tin Electrode of Zinc Secondary Electrode

Cycle Q+ (mC) Q (mC) CE ⑻ Ep.a (V) Kp. c (V) ΔΕ (V) "~ip. c (mA/cm2) lp. a (mA/cm2) R值 1 11.96 128.9 9.28 - -木 一 - — - 10 260.1 269.7 96,44 -1.169 -1.620 0.45 1.54 0.81 0.53 20 223.5 247.9 90.16 -1.184 -1.617 0.43 1.67 0. 75 0.45 30 192.2 211.2 91.00 -1.180 -1.621 0.44 167 64 0. 38 40 167.5 180.2 92.95 -1.184 -1.611 0.43 148 60 0.41 50 147.4 160.3 91.95 -1.190 -1· 605 0.42 139 57 0.41Cycle Q+ (mC) Q (mC) CE (8) Ep.a (V) Kp. c (V) ΔΕ (V) "~ip. c (mA/cm2) lp. a (mA/cm2) R value 1 11.96 128.9 9.28 - -木一- - - 10 260.1 269.7 96,44 -1.169 -1.620 0.45 1.54 0.81 0.53 20 223.5 247.9 90.16 -1.184 -1.617 0.43 1.67 0. 75 0.45 30 192.2 211.2 91.00 -1.180 -1.621 0.44 167 64 0. 38 40 167.5 180.2 92.95 -1.184 -1.611 0.43 148 60 0.41 50 147.4 160.3 91.95 -1.190 -1· 605 0.42 139 57 0.41

註:CE = Q+/Q- (Q+ discharge,Q : charge),ΔΕ = EPa - EPC,RNote: CE = Q+/Q- (Q+ discharge, Q : charge), ΔΕ = EPa - EPC, R

Ip.c/ Ιρ·ί 14 200905954 實施例(四): 以化學沉澱法所製備之鋅/鈣化合物,以X肋及拉曼(Raman) 光譜觀察分析其結晶位置和波峰位置及強度。圖(十一)為化學沉 澱法和現在原有方式所製備之鋅/鈣化合物XRD (phi lip)結構分 析比較結果®,由圖巾可看出以化學沉縣所製備轉/鮮化合物 有多出幾個結晶峰位置。圖(十二)則為化學沉澱法在不同pH值條 件下所製備出鋅/鈣化合物的拉曼光譜圖。圖(十三)則為不同莫耳 比的Ca(N〇3>與Zn(N〇3)2混合比例時,鋅/鈣化合物的拉曼光譜'(使 用 Renishaw inVia micro-Ramam 光譜分析儀,使用 HeNe 633 nm laser光源,50X的〇M下)分析結果圖。圖(十四)為鋅/鈣化合物 粉末在ΡΪΗ2時輸曼光譜圖,圖巾peaks位置在252 14 (w)、 356. 7 (s)、428. 67 (w)是鈣(Ca)的主要 peak 所在,另在 313.13 ϋ !?2. % (W)、437. 94 (S)貝,沒辞氧化(Zn0)的 Peak 所在, ,鋅化 σ 物中有-些新的 peak 是 281. 76(w)、3G2. 89(w)、483. 3〇 s) 十四)為化學沉殺法製備之辦、氧化約與氫氧化躺比 類似於氫氧簡,而圖(十五)化學峨法製備之鋅其 結構則與氧化鋅類似。 實施例(五): 將比較鋅一次電極在不同金屬基材(作為 。充 十六)為用錄發泡網作為基材,絕大部分鋅活性物質均分 =鎳^的最外層种間處活性物f ZnGa活 峨椒刚繼,目峨二u 土 用孔徑度較大的銅網(Cu-screen)和鈦網(Ti *’、、負微鏡(0M)表面分析圖,圖士、:搞甘_LL / Λ1 網 '銅網域咖ΛΕ輯織爾==== 15 200905954 E值是以金屬鈦網鋅電極明顯較其他兩者低,^^值小即極化小, 充放電的可逆性佳,而圖(二十)為三種基材的庫倫效率和鋅利用 率對充放電次數實驗結果變化圖,其實驗結果顯示金屬鈦網為電 流收集器基材的辞二次電極的庫偷效率較高,圖(二十一)則為能 ,效率(%)對充/放電次數變化圖,實驗結果也顯示金屬鈦網的能 量效率是比銅網鍍錫、鎳網鍵錫的要來的高。 實施例(六): 除了利用化學沉殿法製備約/鋅化合物製備鋅二次電極外,也 將添加鈣離子於4M Κ0Η電解質溶液配方中,圖(二十二)和圖(二 十三)為比較添加鈣離子於電解質溶液配方中前 Ϊ影響’圖(二十四)和圖(二十五麻加_子於質 办液配方巾錢鱗二次電極充放電性 s子容r方中,除了有助於保持辞== 於電辦二次電極在充/放魏_,鋅離子回鍵 實施例(七): 最佳的鋅二:欠雜配枝时屬朗( ^複合式™高分子隔離膜結構,在 進行⑽_ 液配方下, 其ΔΕ值對循環次數分析妹果·;平二月^效率為49. 75%, 效率和鋅利用率對循環次°數^ ’ =一=所示。另外,電流 量效率對循環次數分析果圖,如®^二十七)所示;能 本案所揭示者,乃較1 =®(—十八)所示。 佳實施例之一種,舉凡局部之變更或修 16 200905954 飾而源於本案之技術思想而為熟 倶不脫本案之專利權麟。^ 習該項技藝之人所易於推知者, 於習案ΐΐϊ目的、手段與功效,在細示其迴異 專利要侔μf首先發明合於實用,亦在在符合發明之 社會,實感德Ϊ/ 一委員明察,並析早日賜予專利,俾嘉惠 【圖式之簡單說明】 備4為嫩刪備水合骑氫氧化物製 圖一為辞二次電極製備流程圖。 圖二為辞二次電極搭配複合式pvA高分子隔離 膜示意圖。 圖四為化學沉澱法所製備之鋅/鈣化合物 值為14)SEM分析圖。 圖五為化學沉澱法所製備之鋅/舞化合物(邱 值為14)EDX mapping分析圖。 圖六為化學沉澱法所製備之鋅/鈣化合物(pH 值為9)SEM分析圖。 圖七為化學沉澱法所製備之辞/鈣化合物(pH 值為9)EDX mapping分析圖。 圖八為鋅二次電極(chemical precipitation)l-5 cycle 充/放電曲線圖。 圖九為鋅二次電極(chemical precipitation)6-10 cycle 充/放電曲線圖。 圖十為辞·—欠電極(chemical precipitation) 經過50次充/放電循環伏安圖。 圖十一為化學沉澱法和現在原有方式所製備 17 200905954 之鋅/舞化合物灘結構比較分析圖。 =十二為化學賴法在獨pH值條件下所製 備出鋅/鈣化合物的拉曼光譜圖。 =十三為不同(^⑽仏與如⑽〇2混合比例 砰,鋅/鈣化合物的拉曼光譜圖。 ^四為鋅/約化合物在pH 12時的拉曼光譜 氧化辞(市 圖 圖 cross-section) 十六為鋅二次電極SEM截面( 圖十七為銅網鍍錫的SEM圖。 圖十八為鈦網的光學顯微鏡圖(〇M)。 值:t為放-電種4材變(=析:網— *丄二和錄網)的能 以=:於電解編配方中 靖溶液配方中 纖方中 術溶液配方中 18 200905954 I ί 圖二十六為鋅二次電極的ΛΕ值對循環次數變 化分析圖。 圖二十七為鋅二次電極的電流效率和鋅利用 率對循環次數變化分析圖。 圖二十八為鋅二次電極的能量效率對循環次 數變化分析圖。 【主要元件符號說明】 無0 19Ip.c/ Ιρ·ί 14 200905954 Example (4): The zinc/calcium compound prepared by chemical precipitation method was analyzed for its crystal position and peak position and intensity by X-rib and Raman spectroscopy. Figure (11) shows the results of the chemical precipitation method and the zinc/calcium compound XRD (phi lip) structure analysis prepared by the original method. It can be seen from the towel that there are many trans-/fresh compounds prepared by Yishen County. Several crystallization peak positions are shown. Figure (12) shows the Raman spectrum of the zinc/calcium compound prepared by chemical precipitation at different pH conditions. Figure (13) shows the Raman spectrum of zinc/calcium compounds when Ca(N〇3> is mixed with Zn(N〇3)2 in different molar ratios (using the Renishaw inVia micro-Ramam spectrum analyzer, The results of the analysis were analyzed using a HeNe 633 nm laser source, 50X 〇M. Figure 14 shows the zinc/calcium compound powder at ΡΪΗ2, and the peaks are at 252 14 (w), 356. 7 (s), 428. 67 (w) is the main peak of calcium (Ca), and another is in 313.13 ϋ !? 2. % (W), 437. 94 (S) shell, and the oxidized (Zn0) Peak is located. , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The oxidized lay ratio is similar to that of hydrogen oxyhydroxide, while the zinc prepared by the chemical hydrazine method of Fig. 15 is similar to zinc oxide. Example (5): Comparing the zinc primary electrode on different metal substrates (as the filling of sixteen) is the recording foaming net as the substrate, and most of the zinc active substances are equally divided into the outermost species of nickel^ The active material f ZnGa is alive, and the copper mesh (Cu-screen) and titanium mesh (Ti *', negative micromirror (0M) surface analysis map, Tus, : 甘甘_LL / Λ1 network 'copper network domain coffee ΛΕ 织 = ==== 15 200905954 E value is based on metal titanium mesh zinc electrode is significantly lower than the other two, ^ ^ value is small, that is, small polarization, charge and discharge The reversibility is good, and the figure (20) is the change of the coulombic efficiency and the zinc utilization rate of the three substrates on the experimental results of the charge and discharge times. The experimental results show that the metal titanium mesh is the secondary electrode of the current collector substrate. The efficiency of the library stealing is higher. The figure (21) is energy, and the efficiency (%) shows the change of the charge/discharge times. The experimental results also show that the energy efficiency of the metal titanium mesh is better than that of the copper mesh tin and the nickel mesh tin. It is high. Example (6): In addition to the preparation of zinc/secondary electrode by chemical deposition method, it will also be added. Calcium ion in the 4M Κ0Η electrolyte solution formulation, Figure (22) and Figure (23) for the comparison of the addition of calcium ions in the electrolyte solution formulation before the impact of the figure (24) and the map (twenty-five hemp Adding _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Example (7): The best zinc II: when it is miscellaneously branched, it is a kind of composite polymer structure. Under the (10)_ liquid formula, its ΔΕ value is analyzed for the number of cycles. ^ Efficiency is 49. 75%, efficiency and zinc utilization rate are shown in the cycle number ^ ' = one =. In addition, the current quantity efficiency is shown in the cycle number, as shown in ®^27); The disclosed person is shown as 1 =® (-18). One of the best examples, the partial change or the repair of the technical ideas of the case is based on the technical idea of the case. ^ The person who learns the skill is easy to infer, and in the case, the means and the effect of the case,侔μf firstly became practical and practical, and also in the society in line with the invention, the real sense of Deyi / a member of the inspection, and analysis of the early patent, Zhai Jiahui [simple description of the schema] prepared 4 for the tender deletion of hydration riding hydrogen peroxide Figure 1 shows the schematic diagram of the secondary electrode with the composite pvA polymer separator. Figure 4 shows the zinc/calcium compound value prepared by chemical precipitation method. Figure 5 is an EDX mapping analysis of the zinc/dancing compound (Qiu 14) prepared by chemical precipitation. Figure 6 is a SEM analysis of the zinc/calcium compound (pH 9) prepared by chemical precipitation. The EDX mapping analysis of the word/calcium compound (pH 9) prepared by chemical precipitation method. Figure 8 is a graph of the charge/discharge curve of the zinc chemical secondary precipitation l-5 cycle. Figure 9 is a graph of the charge/discharge curve of a zinc chemical 6-10 cycle. Figure 10 is a speech - - chemical precipitation After 50 cycles of charge / discharge cycle voltammogram. Figure 11 is a comparative analysis of the zinc/dancing compound beach structure prepared by the chemical precipitation method and the current method. =12 is a Raman spectrum of a zinc/calcium compound prepared by chemical hydration at a unique pH. = thirteen is different (^(10)仏 and (10)〇2 mixed ratio 砰, Raman spectrum of zinc/calcium compound. ^ Four is the Raman spectral oxidation of zinc/about compound at pH 12 (City map cross) -section) Sixteen is the SEM cross section of the zinc secondary electrode (Figure 17 is the SEM image of the tin plating of the copper mesh. Figure 18 is the optical microscope image of the titanium mesh (〇M). Value: t is the discharge-electricity 4 Change (= analysis: net - * 丄 二 和录网) can be =: in the electrolytic formula formula Zhongjing solution formula in the medium formula solution in the solution 18 200905954 I ί Figure 26 is the zinc secondary electrode Figure 27 shows the analysis of the current efficiency and zinc utilization of the zinc secondary electrode on the cycle number. Figure 28 shows the analysis of the energy efficiency of the zinc secondary electrode versus the cycle number. [Main component symbol description] None 0 19

Claims (1)

200905954 十、申請專利範圍: (-其包括下列步驟: 均勻快速攪拌以得到溶液中,在水中’以均質機 (一 W制η Γ 及A並測量其PH值; 兩溶坪 中,>r*HB及溶液^較管緩緩滴入溶液A :別量總混合液之PH值;以及 批箱Φ五i將總混合液離心過遽並反覆水洗數次,後置於 /、相中乾燥即得該_化合物粉末。 置於 法,範Γ1項所述之雜化合物之製備方 係作為Ιΐ劑。 該_係作為沉澱劑該 π申請專利範圍第2項戶斤述之辞約化合物之製備 有機驗鹽m劑進一步可為K〇H、L i〇H、NH4〇H、尿素、 U申請專利範圍* 3賴述之辞合物之製備 四中該有機驗鹽化合物可為二乙基胺、三乙基胺、 一基胺鹽等或以上各種鹼金屬鹽混合物等。 法,】.d專利範Γ1項所述之脚匕合物之製備方 在如γΓΓΙϊ而if溶液中的軸莫耳比控制 至1.1之間’而最佳配方在2· 5:1之間。 6.如申請專利範圍帛1項所述之觸化合物之製備方 2〇 200905954 法,其中該步驟(四)中,混合液的pH值應控制在 9〜14±0. 2之間,而最佳pH之值在11. 5~12· 5,之後,在 隔絕空氣狀態下,持續攪拌8小時使之成核穩定,再繼 續攪拌12〜72小時,使之熟化。 7. 如申請專利範圍第1項所述之鋅鈣化合物之製備方 法’其中該步驟(五)中’烘箱中之溫度約1〇〇吒,且乾燥 時間約6〜72小時。 ’ 8. 如申請專利範圍第1項所述之辞鈣化合物之製備方 法,其中該步驟(二)中,其前驅物之辞鹽及鈣鹽可為 " Zn(N〇3)2、Zn(CH3COO)2、ZnS〇4、ZnC2〇4、ZnC〇3、ZnS〇4、 ZnCl2、有機類辞鹽,鈣鹽可為 Ca(N〇3)2、Ca(CH3C〇〇)2、 CaS〇4、CaC〇3 、Ca(C2〇4)、CaCl2、有機類#5 鹽等。 9. 如申請專利範圍第8項所述之鋅鈣化合物之製備方 法,其中該有機類鋅鹽可為Zn(0R)4, R=CnH2n+1,η =卜4 等,該有機類鈣鹽則可為Ca(0R)m,R=CnH2n+1,η = 1〜4 m=l,2,等。 ’ 10. —種鋅二次電極之製備方法,其包括下列步驟: ,(一)取適量以化學沉澱法製得之鋅/鈣化合物粉末 ^ 再加入適量鋅粉(Zn)、適量的金屬導體粉末或金屬氧化 物抑制劑或安定劑和少量的導電材料,置於球磨機中 磨均勻攪拌1〜10小時; (二) 將研磨之混合粉末加入適當溶劑、黏著劑和其 他非離子型界面活性劑於玻璃燒杯中,並將燒杯置於超 音波震盪器中攪拌混合,使其均勻分散於溶液中,再將 溶液置於烘箱中,去除多餘的溶劑使形成鋅膏狀液體. (三) 秤取適量鋅膏狀溶液塗佈於鎳發泡網上、銅, 網、鈦網和鎳網上,使用壓片機中以適當壓力壓成鋅電 21 200905954 極片;以及 鋅二次電極之製備工作。 F疋成 u·如申請專利範圍第10項所述之鋅二次電極剪 ,:公:步:广中—化合物粉末之量^ 刀(n)之量為1〜15 wt. %、金屬導體粉東 之量為卜20 wt.%,金屬氧化物抑_之含量為導 ppm ’且該球磨機之轉速為 約卜10小時。 rpm間,研磨時間 備方ΠΓ!專利範圍第11項所述之鋅二次電極之製 c〇 ί太:屬導體粉末可為咖_cu、Ni粉末、 末U金屬氧化物抑制劑可為pb0、Bi203、In必、 / m 該安定劑可為PEG、PEGBCME,該導電材料可 ’’、、 s、carbon black-BP2000 等。 借方沐專利範圍第10項所述之鋅二次電極之製 TPA \、中该步驟(二)中,該溶劑可為H2〇、methan〇l、 子型界e = 溫度可為loot 或Tween 80 ’該烘箱之 供士 ·如申叫專利範圍第10項所述之辞二次電極之製 kgfem2’其中該步驟(三)中,該壓片機之壓力可為200 備方Γ,.ϊΓΐϊΞ範圍第10項所述之鋅二次電極之製 O7rop ^ T涿步驟(四)中,該高溫烘箱中之溫度約為 ,燒結時間約30分鐘。 16·如申請專利範圍第ΗΜ5項中任一項所述之鋅 22 200905954 一-人電極之製備方法,其所製備之鋅二次電極可搭配使用 複合式固態PVA高分子隔離膜進行充/放電,此複合式固 態PVA高分子隔離膜具有高離子導電度(1(Γΐ〜1〇—35επΓΐ) 及多孔性,此高離子導電度特性可降低電極之電阻和電 阻降(ohmic drop)極化程度等,而多孔性特性可有效的 排出札氣体減少膨脹及提高庫倫效率,此複合式固態pvA 高分子隔離膜中含有奈米陶瓷填充(ceramic fin=s ) 粉末,表面積及大小不同之粉末以增加電解液之吸收量 並提昇改善機械與熱性質,其中該奈米陶瓷填充粉末可 為 TK)2, Zr〇2, Si〇2’ BaTi〇2, Mgo, Ce〇2, Fe2〇3, γ2〇3 17.如申請專利範圍第1〇〜15項中任一項所述之鋅 二次電f之製備方法,其所製備之鋅二次電極進一步含複 ^式固態PVA高分子藝膜電解f’在進行充/放電測試 y需先將鋅二次電極浸置在H2M之咖電解液中約 12〜72小時。200905954 X. Patent application scope: (- It includes the following steps: uniform rapid stirring to obtain a solution, in water 'to homogenize machine (one W system η Γ and A and measure its PH value; two melt ping, >r *HB and solution^ slowly drip into solution A: the pH value of the total mixture; and the batch Φ5 i, the total mixture is centrifuged and washed several times, then placed in /, phase dried That is, the _ compound powder is obtained. The preparation method of the hetero compound described in the method of the formula 1 is used as a sputum agent. The _ system is used as a precipitating agent, and the preparation of the compound of the second item of the π application patent range is described. The organic salt test agent may further be K〇H, L i〇H, NH4〇H, urea, U, and the preparation range of the compound of the above-mentioned 4th. The organic salt test compound may be diethylamine. a triethylamine, a monoamine salt, or the like, or a mixture of various alkali metal salts, etc. The method of preparing the ankle compound described in the patent formula 1 is in the axial solution of γ ΓΓΙϊ and if solution. The ratio is controlled to between 1.1 and the optimal formula is between 2: 5: 1. 6. If the patent application scope is 帛 1 item 5~12。 The pH value of the mixture is between 9 and 14 ± 0.2, and the optimum pH value is 11. 5~12 · 5, after that, in the air isolation state, stirring for 8 hours to make it nucleate stable, and then continue to stir for 12 to 72 hours to make it mature. 7. Preparation of zinc calcium compound according to claim 1 The method of the present invention, wherein the temperature in the oven is about 1 Torr, and the drying time is about 6 to 72 hours. 8. The preparation method of the calcium compound according to the first aspect of the patent application, wherein In the step (2), the salt and calcium salt of the precursor may be "Zn(N〇3)2, Zn(CH3COO)2, ZnS〇4, ZnC2〇4, ZnC〇3, ZnS〇4, ZnCl2, organic salt, calcium salt may be Ca(N〇3)2, Ca(CH3C〇〇)2, CaS〇4, CaC〇3, Ca(C2〇4), CaCl2, organic #5 salt, etc. 9. The method for preparing a zinc-calcium compound according to claim 8, wherein the organic zinc salt may be Zn(0R)4, R=CnH2n+1, η=Bu4, etc., the organic calcium Salt Ca(0R)m, R=CnH2n+1, η = 1~4 m=l, 2, etc. ' 10. A method for preparing a zinc secondary electrode, comprising the following steps: (1) taking an appropriate amount Zinc/calcium compound powder prepared by chemical precipitation method ^ Add appropriate amount of zinc powder (Zn), appropriate amount of metal conductor powder or metal oxide inhibitor or stabilizer and a small amount of conductive material, and place in a ball mill to evenly stir 1~10 (2) Add the ground mixed powder to a suitable solvent, adhesive and other non-ionic surfactant in a glass beaker, and place the beaker in an ultrasonic oscillator and mix and mix it evenly in the solution. Then place the solution in an oven to remove excess solvent to form a zinc paste-like liquid. (3) Apply an appropriate amount of zinc paste solution to the nickel foaming net, copper, mesh, titanium mesh and nickel mesh. The tablet press is pressed at a suitable pressure into a zinc electric 21 200905954 pole piece; and a preparation process of the zinc secondary electrode. F疋成u·Zinc secondary electrode shear as described in claim 10 of the patent scope: public: step: Guangzhong - amount of compound powder ^ knife (n) amount is 1~15 wt. %, metal conductor The amount of powder east is 20 wt.%, the content of metal oxide is 5%, and the rotation speed of the ball mill is about 10 hours. Between rpm, the grinding time is ready! The zinc secondary electrode system described in the eleventh patent is c〇ί too: the conductor powder can be coffee_cu, Ni powder, and the final U metal oxide inhibitor can be pb0 , Bi203, In, / m The stabilizer can be PEG, PEGBCME, the conductive material can be '', s, carbon black-BP2000, and the like. In the TPA of the zinc secondary electrode described in Item 10 of the patent scope, in the step (2), the solvent may be H2〇, methan〇l, subtype boundary e = temperature may be loot or Tween 80 'The oven of the oven, such as the application of the patent scope of the tenth item of the second electrode of the production of kgfem2', in this step (three), the pressure of the tablet press can be 200 Γ, ϊΓΐϊΞ range In the O7rop ^ T涿 step (4) of the zinc secondary electrode according to item 10, the temperature in the high temperature oven is about 30 minutes. The method for preparing a zinc-electrode 22 200905954-one human electrode according to any one of claims 5 to 5, wherein the prepared zinc secondary electrode can be used in combination with a solid solid PVA polymer separator for charging/discharging. The composite solid PVA polymer separator has high ionic conductivity (1(Γΐ~1〇—35επΓΐ) and porosity, and the high ionic conductivity property can reduce the resistance of the electrode and the ohmic drop polarization degree. Etc., and the porous property can effectively discharge the gas to reduce swelling and increase the coulombic efficiency. The composite solid pvA polymer separator contains ceramic ceramics (ceramic fin=s) powder, and the surface area and size of the powder are increased. The absorption of the electrolyte improves the mechanical and thermal properties, wherein the nano ceramic filled powder can be TK) 2, Zr〇2, Si〇2' BaTi〇2, Mgo, Ce〇2, Fe2〇3, γ2〇 The method for preparing a zinc secondary electricity f according to any one of claims 1 to 15, wherein the zinc secondary electrode further comprises a solid-state PVA polymer film electrolysis 'Charging/discharging Y need to first test zinc secondary counter electrode immersed in the coffee for about 12~72 hours H2M of the electrolyte. 18.如申請專利範圍第10〜15項中任一項所述之 二次電極之製備方法,其所製備之鋅二次電極在進行充電 過充10〜5〇%之理論電容量,另外在放電時,可 電深度在50〜95%之理論電容量,避免辞二次電 19·如申請專利範圍第1〇〜15項中任一項所述之 極之製備方法’其所製備之鋅二次電極可被製備成 各種大”同形狀、不同尺寸面積、不同電容量之電極成 雷;^ it 鋅電極之用途,其可配合其他各種不同的正 =同搭配使用’可以應用在一次及二次電池或燃料 23 200905954 21.如申請專利範圍第20項所述之鋅電極之用途, 其中該正電極可為空氣極、氫氧化鎳(正電極)、Ag或MnO 等。The method for preparing a secondary electrode according to any one of claims 10 to 15, wherein the prepared zinc secondary electrode is charged with a theoretical charge capacity of 10 to 5 % of charge, and When discharging, the electromagnetism can be electrically reversed at a theoretical capacity of 50 to 95%, and avoid the secondary electricity. The preparation method according to any one of claims 1 to 15 of the patent application The secondary electrode can be prepared into various large "the same shape, different size area, different capacitance of the electrode into a mine; ^ it zinc electrode use, it can be used with a variety of different positive = same use ' can be applied once and Secondary battery or fuel 23 200905954 21. The use of a zinc electrode according to claim 20, wherein the positive electrode can be an air electrode, nickel hydroxide (positive electrode), Ag or MnO, or the like.
TW096127732A 2007-07-30 2007-07-30 Method of manufacturing zinc-calcium compound and zinc secondary electrode and use thereof TW200905954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096127732A TW200905954A (en) 2007-07-30 2007-07-30 Method of manufacturing zinc-calcium compound and zinc secondary electrode and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096127732A TW200905954A (en) 2007-07-30 2007-07-30 Method of manufacturing zinc-calcium compound and zinc secondary electrode and use thereof

Publications (2)

Publication Number Publication Date
TW200905954A true TW200905954A (en) 2009-02-01
TWI353079B TWI353079B (en) 2011-11-21

Family

ID=44722919

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096127732A TW200905954A (en) 2007-07-30 2007-07-30 Method of manufacturing zinc-calcium compound and zinc secondary electrode and use thereof

Country Status (1)

Country Link
TW (1) TW200905954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931785A (en) * 2019-12-11 2020-03-27 河南创力新能源科技股份有限公司 Preparation method of zinc-nickel battery cathode silicate crystal material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931785A (en) * 2019-12-11 2020-03-27 河南创力新能源科技股份有限公司 Preparation method of zinc-nickel battery cathode silicate crystal material

Also Published As

Publication number Publication date
TWI353079B (en) 2011-11-21

Similar Documents

Publication Publication Date Title
CN105576209B (en) A kind of high-capacity lithium ion cell silicon based anode material and preparation method thereof, lithium ion battery
JP5719175B2 (en) Pasted nickel hydroxide electrode for rechargeable nickel-zinc battery
CN104885287B (en) Secondary zinc-manganese dioxide battery for high power applications
CN102024996B (en) High-performance rechargeable magnesium battery and manufacturing method thereof
TW557596B (en) The method of preparing the solid-state polymer Zn-air battery
CN104813521B (en) zinc electrode for battery
CN103441260B (en) A kind of aqueous alkaline electrochemical energy storing device
JP6436444B2 (en) Zinc-air secondary battery air electrode catalyst, Brown mirror light type transition metal oxide as zinc-air secondary battery air electrode catalyst, zinc-air secondary battery air electrode, zinc-air secondary Secondary battery, electrode catalyst for electrolysis, electrode for electrolysis and electrolysis method
CN104993109B (en) A kind of method that liquid phase Physical prepares graphene/nanometer silicon lithium ion battery cathode material
CN105633360B (en) Amorphous state ferroso-ferric oxide/graphene aerogel composite, preparation method and applications
CN103682303B (en) Lithium ion battery anode active material and preparation method thereof and lithium ion battery
CN107579219A (en) For graphene/zinc oxide negative material of secondary zinc base battery and its preparation
CN102263260A (en) Application of zinc based polynary hydrotalcite in preparation of zinc negative pole of zinc-nickel secondary battery
CN104167540A (en) Negative electrode active material and preparation method thereof and lithium ion battery
CN108206279A (en) High-nickel ternary cathode material of lithium ion battery, preparation method of high-nickel ternary cathode material and lithium ion battery
Zhao et al. The strategies of boosting the performance of highly reversible zinc anodes in zinc-ion batteries: recent progress and future perspectives
Im et al. Electrochemical performance of three shaped ZnO nanoparticles prepared in LiOH, NaOH and KOH alkaline solutions as anodic materials for Ni/Zn redox batteries
CN107394150A (en) A kind of mesoporous silicon copper composition electrode material and its preparation method and application
CN104538709A (en) Metal-air battery based on silver-copper catalysis and preparation method thereof
Li et al. Ultra-long KFeS 2 nanowires grown on Fe foam as a high-performance anode for aqueous solid-state energy storage
JP2010202455A (en) Modified carbon material, manufacturing method therefor and lithium ion secondary battery using the same as negative-electrode material
Mule et al. Designing of hierarchical lychee fruit-like cobalt-selenide heterostructures with enhanced performance for hybrid supercapacitors
CN113314770B (en) Alkaline secondary battery and preparation method thereof
JPH10255790A (en) Positive active material of nickel electrode for alkaline storage battery
Bui et al. Hydrothermal preparation of Fe2O3 nanoparticles for Fe-air battery anodes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees