TW200905210A - Built-in jitter measurement circuit - Google Patents

Built-in jitter measurement circuit Download PDF

Info

Publication number
TW200905210A
TW200905210A TW96125968A TW96125968A TW200905210A TW 200905210 A TW200905210 A TW 200905210A TW 96125968 A TW96125968 A TW 96125968A TW 96125968 A TW96125968 A TW 96125968A TW 200905210 A TW200905210 A TW 200905210A
Authority
TW
Taiwan
Prior art keywords
circuit
delay
signal
phase
logic
Prior art date
Application number
TW96125968A
Other languages
Chinese (zh)
Other versions
TWI333073B (en
Inventor
Jen-Chien Hsu
Hung-Wen Lu
Chau-Chin Su
Yeong-Jar Chang
Original Assignee
Faraday Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faraday Tech Corp filed Critical Faraday Tech Corp
Priority to TW96125968A priority Critical patent/TWI333073B/en
Publication of TW200905210A publication Critical patent/TW200905210A/en
Application granted granted Critical
Publication of TWI333073B publication Critical patent/TWI333073B/en

Links

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Manipulation Of Pulses (AREA)
  • Dc Digital Transmission (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

A jitter measurement circuit and the method to calibrate the jitter measurement circuit are disclosed. The jitter measurement circuit includes a synchronous dual-phase detector and a decision circuit. In the test mode, a probability distribution function (PDF) of the jitter of the clock under test is obtained. In the calibration mode, a random clock, which is externally-generated or generated from a free run voltage-controlled oscillator of a circuit under test, is used to calibrate the synchronous dual-phase detector. The decision circuit performs logic operations, data latching and counting on the detected phase relationship, for obtaining a counting value and a PDF indicative of the jitter of the test clock.

Description

200905210 P2006-017-TW-A 21681twf.doc/p 九、發明說明: 【發明所屬之技術領域】 本發明是有關於-種抖動制電路,且特 種内建之時脈抖動量測電路。 有關 【先前技術】 • 資料脈衝(Data在傳輸線路上傳輸時,如果信 號發生抖動的話,可能使時脈回復電路(Cloek C±lrcuit ’ CDR)或鎖相迴路(PLL)發生問題,甚至資料可能 a失。抖動可以定⑽:訊號之上升緣(或下降緣)相對於 其理想時間位置的時間偏移量。圖1顯示出抖動的定義。 抖動έ使得接收^的位元錯誤率(BitErr〇rRate,BER)提 高,低整個系統的服務品質(Quality〇fService)。 %間誤差(TIE ’ Time Interval Ε_)參㈣抖動的參 數之一,其意思是,在任一時間點,接收到的信號位元(或 脈衝)與參考時脈間的相位差。 般而。抖動可·^類為定量性抖動(Deterministic C Jitter,DJ)與隨機性抖動(Random Jitter,RJ)。隨機性抖 動為隨機產生的時序雜訊水平抖動。其分布情況通常為 尚斯分佈(Gaussian Distribution),亦可稱為正規分佈 (Normal Distribution)。 以目前來說,可利用外接的自動測試設備(ATE, automatic test equipment)來測量抖動。但是,因為要將信 號輸出至自動測試設備,所以信號得通過輸出/入接腳。 如此一來’所測量到的抖動可能未必是原先的抖動。此 外’自動測試設備所費不貲,也會額外增加測試成本。 200905210 P2006-017-TW-A 2l68ltwf.doc/p 故而’較好能有一種能 ^低測試成本、_時間,,,動的卿電路, 【發明内容】 乂列頁儀器的使用。 有鑑於此,本發明提一 精準測量抖動,又可降低測:建的抖動測量電路,其可 儀器的使用。 °成本、挪試時間與減少測量 本發明提供一種内建 相綱器内之延遲缓衝器,以梦準^路,其可校正同步雙 本發明提供—種内 抖動。 後’重置同步雙相偵測器^測量電路,其可在每次取樣 本發明的範例之一接^咸少磁滞效應。 用於測量待測時脈訊號種内建之抖動量測電路, -同步雙相偵測電路,對二該抖動量測電路包括: 訊號進行不同延遲時脈訊號與-參考時脈 對該同步雙相偵測位關係;以及—決定電路, 算、資料检鎖與計數’以的相位關係進行邏輯運 該抖動1一計數值與機率^佈有關於該待測時脈訊號之 測量供—種時間差量測電路,用於 訊號間之一時間待測電路所輸出之-待測時脈 時間差量“:;括,路至少包括-振畫源,該 待測電路, ^ ·:同步雙相_電路,輕接於該 元與第~v X目偵測電路包括—第-延遲缓衝單 時,單元’當繼源處於— 、♦脈减之-相位之一機率分佈圖,以 200905210 P2006-017-TW-A 2168ltwf.d〇c/p 根據該待測時脈訊號之該 =衝單元與第圖來㈣ 號所造成之1科間差; 考時脈訊 同步雙相偵測電路’對 =,路’轉接於該 相位麵行邏輯運算、資料路所_出的 於該牯間差之一計數值。 一、 以得到有關 本發明之又-範例提供—200905210 P2006-017-TW-A 21681twf.doc/p IX. Description of the Invention: [Technical Field] The present invention relates to a dithering circuit, and a built-in clock jitter measuring circuit. Related [Prior Art] • Data pulse (When the signal is transmitted on the transmission line, if the signal is jittery, the clock recovery circuit (Cloek C±lrcuit 'CDR) or phase-locked loop (PLL) may be problematic, even the data may be a The jitter can be determined by (10): the time offset of the rising edge (or falling edge) of the signal relative to its ideal time position. Figure 1 shows the definition of jitter. The jitter έ makes the bit error rate of receiving ^ (BitErr〇rRate , BER) improve, low overall service quality (Quality 〇 fService). Inter-error (TIE 'Time Interval Ε _) refers to (four) one of the parameters of the jitter, which means that at any point in time, the received signal bit (or pulse) and the reference clock phase difference. Generally, the jitter can be classified as Deterministic C Jitter (DJ) and Random Jitter (RJ). Random jitter is randomly generated. Timing noise level jitter. The distribution is usually Gaussian distribution, also known as Normal Distribution. At present, external automatic test can be utilized. ATE (automatic test equipment) is used to measure jitter. However, because the signal is output to the automatic test equipment, the signal passes through the output/input pin. As a result, the measured jitter may not necessarily be the original jitter. In addition, 'automatic test equipment is expensive, it will increase the test cost. 200905210 P2006-017-TW-A 2l68ltwf.doc/p Therefore, it is better to have a low test cost, _ time,,, move Circuit, [Summary] The use of the 页 page instrument. In view of this, the present invention provides an accurate measurement of jitter, and can reduce the measurement: built jitter measurement circuit, which can be used by the instrument. ° Cost, time of flight and reduction Measurement The present invention provides a delay buffer in a built-in phase diagram, which can be used to correct the synchronization of the present invention. The latter 'reset synchronous dual-phase detector ^ measurement circuit, It can be used to measure the hysteresis effect of one of the examples of the present invention at each sampling. The jitter measurement circuit built in the measurement of the pulse signal to be measured, the synchronous two-phase detection circuit, and the amount of the jitter The circuit includes: a signal for different delay clock signals and a reference clock to the synchronous biphasic detection bit relationship; and - determining a phase relationship between the circuit, the calculation, the data lock and the count, and the logic is used to perform the jitter The value and probability ^ cloth has a measurement about the clock signal to be measured for a time difference measurement circuit, which is used for one time between the signals to be measured by the circuit to be tested - the time difference of the clock to be measured ":; Including - vibrating source, the circuit to be tested, ^ ·: synchronous biphasic_circuit, lightly connected to the element and the vth target detecting circuit includes - the first delay buffer, the unit 'when the source is in —, ♦ pulse subtraction-phase probability distribution map, with 200905210 P2006-017-TW-A 2168ltwf.d〇c/p according to the clock signal of the signal to be measured and the figure (4) The difference between the 1 divisions; the test pulse synchronous dual-phase detection circuit 'pair=, the road' is transferred to the phase plane logical operation, the data path _ out of the one of the inter-turn difference value. I. In order to obtain the invention - the example is provided -

C 測參考時脈訊號與-待測電路所輸電路,用於 訊號間之i間差,該_電路至少包相時脈 時間差量測電路包括:_同步雙相制電ς振盪源,該 待測電路’該同步雙相_電路包括—,域於該 :與第二延遲緩衝單元,當該振盪源c單 …付到該待測時脈訊號之—相位之由振還 根據該待购脈訊號之該相 ^饰圖,以 弟ι物衝早凡與弟二延遲緩衝單元對 ^正该 號所造成之-延遲時間差;以及—決定'考日守脈訊C. The reference clock signal and the circuit to be tested are used for the difference between the signals. The _ circuit includes at least the clock time difference measurement circuit including: _ synchronous biphasic ς oscillation source, the The measuring circuit 'the synchronous two-phase _ circuit includes -, the domain: and the second delay buffering unit, when the oscillating source c is applied to the pulse signal to be tested, the phase is also oscillated according to the pulse to be purchased The phase of the signal is decorated with the image of the delay time difference caused by the younger brother and the second delay buffer unit to the positive number; and - the decision of the test day

L 同步雙相_電路,對該同步雙相偵測電路所^接於該 相位關係進倾輯運算、·㈣與賴 ^·!出的 於該時間差之一計數值。 Λ侍到有關 為讓本發明之上述和其他目的、特徵和 顯易懂,下文特舉本發明之較佳實關 ’人把更明 式,作詳細說明如下。 酉己合所附圖 【實施方式】 為了使本發明之内容更為明瞭,以下特舉數 > 為本發明確實能夠據以實施的範例。 貝、知例作 200905210 P2006-017-TW-A 21681twf.d〇c/p 圖2顯示fx據本發明第一實施例之内建的抖動測量 電路之方塊不意圖。此抖動測量電路主要包括:同步雙 相偵測翁23與決定電路25。此抖動測量電路用於偵測待 測電路21之待測時脈訊號仏以⑶士的抖動,也就是時脈 訊號CLKtest相對於參考時脈訊號CLKref的誤差。此待 測電路21可為PLL、CDR、DLL(延遲鎖相迴路),或其他 可根據參考時脈訊號而產生另一輸出時脈訊號的相類似 電路。 同步雙相偵測器23用於偵測此待測時脈訊號 CLKtest與參考時脈訊號cLKref間的相位關係,並輸出 兩訊號S1/S2至決定電路25。決定電路25計數訊號S1/S2 以得到計數值R1/R2,並送至後端的計算單元/計算軟體 (未示出)’以得到抖動值與其腿S值。 圖3顯示出同步雙相偵測器23與決定電路25之電 路方塊圖。同步雙相偵測器23包括:延遲緩衝器301〜303 與相位偵測單元304〜305。決定電路25包括邏輯電路 311〜312,栓鎖器313〜314,邏輯電路315〜31β,多工器 317與計數器318。 延遲緩衝器301與302延遲此參考時脈訊號 CLKref ’並產生延遲後參考時脈訊號])ΐ與D2。延遲缓衝 器303延遲此待測時脈訊號CLKtest,並產生延遲後輸出 時脈訊號D3。延遲缓衝器301〜303所造成的延遲不同, 而且其延遲量是可調整的。比如,延遲緩衝器301所造 成的延遲量最小,延遲緩衝器303所造成的延遲量略大, 而延遲緩衝器302所造成的延遲量最大。 200905210 P2006-017-TW-A 21681twf.doc/p 相位偵測單元304〜305比如是!)型正反哭 位偵:單元3。4:305具有:資料輸入端D,時:輸入上。相 重置端RST與資料輸出端q。相位偵測單元〜咖=」 D分別接受延遲後參考時脈訊號仍與的。‘ id05之時脈輸入端c接受延遲後輸出時脈 喊D3。相位偵測單元綱,之重置端RST接受 訊號RST。相位制單元,之資料輸_ q 出訊號S1與S2。 %The L-synchronous two-phase _ circuit, the synchronous two-phase detection circuit is connected to the phase relationship, and the count value of one of the time differences is obtained by the (4) and the λ^. The above and other objects, features and advantages of the present invention are set forth in the description of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS [Embodiment] In order to clarify the content of the present invention, the following specific examples are an example that can be implemented according to the present invention. FIG. 2 shows a block diagram of the built-in jitter measurement circuit of the fx according to the first embodiment of the present invention. The jitter measurement circuit mainly includes: a synchronous two-phase detection and a decision circuit 25. The jitter measurement circuit is configured to detect the jitter of the clock signal to be tested of the circuit 21 to be tested by (3), that is, the error of the clock signal CLKtest relative to the reference clock signal CLKref. The circuit under test 21 can be a PLL, CDR, DLL (Delayed Phase Locked Loop), or other similar circuit that can generate another output clock signal based on the reference clock signal. The synchronous two-phase detector 23 is configured to detect a phase relationship between the clock signal CLKtest to be tested and the reference clock signal cLKref, and output two signals S1/S2 to the decision circuit 25. The decision circuit 25 counts the signal S1/S2 to obtain the count value R1/R2 and sends it to the calculation unit/computing software (not shown) at the back end to obtain the jitter value and its leg S value. Figure 3 shows a block diagram of the circuit of the synchronous two-phase detector 23 and the decision circuit 25. The synchronous two-phase detector 23 includes delay buffers 301 to 303 and phase detecting units 304 to 305. The decision circuit 25 includes logic circuits 311 to 312, latches 313 to 314, logic circuits 315 to 31?, a multiplexer 317 and a counter 318. The delay buffers 301 and 302 delay the reference clock signal CLKref 'and generate a delayed reference clock signal]) D and D2. The delay buffer 303 delays the clock signal CLKtest to be tested, and generates a delay to output a clock signal D3. The delays caused by the delay buffers 301 to 303 are different, and the amount of delay is adjustable. For example, the delay buffer 301 causes the least amount of delay, the delay buffer 303 causes a slightly larger amount of delay, and the delay buffer 302 causes the largest amount of delay. 200905210 P2006-017-TW-A 21681twf.doc/p The phase detecting units 304 to 305 are, for example! Type positive and negative crying Position detection: Unit 3. 4: 305 has: data input D, hour: input. Phase reset terminal RST and data output terminal q. The phase detection unit ~ coffee = "D" accepts the delay and the reference clock signal is still connected. ‘The clock input terminal c of id05 accepts the delay and outputs the clock to call D3. In the phase detection unit, the reset terminal RST receives the signal RST. The phase system, the data input _ q signal S1 and S2. %

訊號S1(其值可能為i或0)代表延遲後參考時脈訊 號D1與延遲後輸出時脈訊號卯間之相位關係。訊號 S2(其值可能為1或〇)代表延遲後參考時脈訊號敗與延 遲後輪出時脈訊號D3間之相位關係。 、 此外,為解決磁滞效應,在第一實施例中,每當取 樣—筆(也就是產生一筆訊號S1/S2)時,重置訊號RST便 會將相位偵測單元304與305重置。 璉輯電路311與312接收相位偵測單元304與305 之輪出訊號S1與S2。栓鎖器313與314根據延遲後輸出 時脈訊號D3而栓鎖邏輯電路311與312之輸出訊號。邏 輯電路315與316接收栓鎖器313與314之輸出訊號、 延遲後輸出時脈訊號D3與致能訊號EN,其中致能訊號 由外部測試儀器所產生。栓鎖器313與314與邏輯電 路315與316的組合可以產生脈衝訊號。邏輯電路311 與312之輸出訊號為1,則邏輯電路315與316輸出脈衝 訊號;如邏輯電路311與312之輸出訊號為0,則邏輯電 路315與316不輸出脈衝訊號。 200905210 P2006-017-TW-A 21681twf.doc/p 多工器317根據選擇訊號SEL而選擇邏輯電路315 與316之輸出之一。計數器318則計數多工器3i7之輸 出而產生計數值R1/R2。計數器318比如為漣波計數器 (Ripple Counter)。利用栓鎖器 313/314 與 31 之組合可大幅加速抖動的測量。 第芦、把例之BIST電路具有兩種操作模式:測試模 模式。在賴模式下,制電路之缝源(如電 Ο ⑽)會正常操作;而在校正模式下,此振 盈源則處於自纟㈣(ftOe_mn)下。但在本發明之另一奋 Z以*外』輸人所需要的待測時脈訊號 Ktest來做权正模式。也就是說,當處於校正模式時, 所需要之隨機時脈鮮u可能料部輪、或者 訊號可由待測電路内部之處於自峨:振 ,制時脈訊號 dxstributi! f ^®(PDF'P-babil^y 3 stnbutw funetlQn)。在測試模式下 是正規分佈的。根據訊號Sl/S2 又叹+動里 _之相位0d可分為 於待測^ 介於0_與0+之間(當sl=1,J^-(虽㈣’ 0+(當 Sl=l , S2=1)。 S2=〇),以及大於 在圖4中,pi〜P3分別代丰 (Ρ1+Ρ2+Ρ3-Π , 弋表此二個區塊的面積 代表,當Sl=1與仏〇時,相位0d之^數)°付號τ 10 200905210 P2006-017-TW-A 21681twf.doc/p 請參考圖5 ’其顯示在校正模式τ ,制時脈訊號 CLKtest之相位0 d之機率分佈函數圖。由於待測電路之 振盪源處於自由振盪下,所以待測時脈訊號CLKtest會 隨機產生。也就是說,待測時脈訊號CLKtest;與參考時 脈訊號CLKref間並無關聯,而且待測時脈訊號CLKtest 之相位之機率分佈函數圖會呈現均勻分布。符號τ〇 代表參考%•脈號CLKref(也就是延遲後參考時脈訊號 D1)之周期。符號T代表延遲緩衝器3〇1與302之延遲時 間差。CLKrefdl與CLKrefd2分別代表圖3之延遲緩衝器 301與302所產生之延遲後參考時脈訊號]與])2。根據 待測電路之振盪源處於自由振盪時所產生的均句分布的 統計特性,可得到·· T=P2’ *T0。根據TO與P2’ ,可取 得延遲緩衝器301與302之延遲時間差。 圖6顯示相位《d之累加機率分佈函數圖(⑶f, cumulative distribiition function) ° 橫軸貝丨]為待湏iJb夺 脈訊號CLKtest之相位</>d,並以均方根(RMS)值(σ)為 單位。根據Π,Ρ2,利用圖6可查得相位誤差义_與χ+ (以 σ為單位)。更根據Ρ2’來計算Τ的值。再由τ與X—、 x+的關係,即可得到一個σ的所對應的相位大小。如果 用公式表示,則為: σ =Τ/(χ+-χ-) 比如,當Ρ1=0· 1100,Ρ2=0· 5414時,所對應出之χ 為 -1.23 而 χ+則為 +0.39 。 所以 , σ=0·04/(0. 39-(-1.23))=0. 025。 圖7顯示模擬結果。參考時脈訊號CLKref為 11 200905210 P2006-017-TW-A 21681twf.doc/p 2. 5GHz ’待測時脈訊號CLKtest之抖動之(j為i〇ps(即 為 0.025UI)。 請參考底下的2個抖動值誤差比較表,以更加了解 有無饋入重置訊號RST至相位偵測器之差別。 下表1顯示不饋入重置訊號RST至相位偵測器所得 到之抖動值誤差比較表。 于 表1 iPl P2 T 誤差 ~~~~ 理想校正狀 態 0. 0809 0. 5686 0. 0409 8.1% ^ 校正狀態1 0. 0809 0.5686 0. 0375 ------ 15.9% 狀態2 ------ 0. 0809 0.5686 0. 0380 14. 8%~~~~ 校正狀態3 0. 0809 0.5686 0. 0369 17. 2%~~The signal S1 (whose value may be i or 0) represents the phase relationship between the post-delay reference clock signal D1 and the delayed output clock signal. The signal S2 (which may be 1 or 〇) represents the phase relationship between the reference clock signal after the delay and the pulse signal D3 after the delay. Further, in order to solve the hysteresis effect, in the first embodiment, the reset signal RST resets the phase detecting units 304 and 305 every time the sample-pen (i.e., generates a signal S1/S2) is taken. The circuit circuits 311 and 312 receive the round-trip signals S1 and S2 of the phase detecting units 304 and 305. The latches 313 and 314 latch the output signals of the logic circuits 311 and 312 according to the output of the clock signal D3 after the delay. The logic circuits 315 and 316 receive the output signals of the latches 313 and 314, and output the clock signal D3 and the enable signal EN after the delay, wherein the enable signal is generated by an external test instrument. The combination of latches 313 and 314 and logic circuits 315 and 316 can generate pulse signals. The output signals of the logic circuits 311 and 312 are 1, and the logic circuits 315 and 316 output the pulse signals; if the output signals of the logic circuits 311 and 312 are 0, the logic circuits 315 and 316 do not output the pulse signals. 200905210 P2006-017-TW-A 21681twf.doc/p The multiplexer 317 selects one of the outputs of the logic circuits 315 and 316 according to the selection signal SEL. The counter 318 counts the output of the multiplexer 3i7 to generate a count value R1/R2. The counter 318 is, for example, a Ripple Counter. The combination of the latches 313/314 and 31 greatly accelerates the measurement of jitter. The second, BIST circuit has two modes of operation: test mode. In the Lai mode, the circuit source (such as the motor (10)) will operate normally; in the calibration mode, the vibration source will be at (4) (ftOe_mn). However, in another aspect of the present invention, the test signal Ktest to be tested is used to perform the right mode. That is to say, when in the calibration mode, the required random clock may be the material wheel, or the signal can be self-tuned by the circuit under test: vibration, clock signal dxstributi! f ^® (PDF'P -babil^y 3 stnbutw funetlQn). It is normally distributed in test mode. According to the signal Sl/S2, the phase 0d of the sigh + motion _ can be divided into 0 to be between 0_ and 0+ (when sl=1, J^-(although (4)' 0+ (when Sl=l , S2 = 1). S2 = 〇), and greater than in Figure 4, pi ~ P3 respectively, abundance (Ρ1 + Ρ 2+ Ρ 3-Π, 弋 table the area of the two blocks, when Sl = 1 and 仏〇, phase 0d^)°付号τ 10 200905210 P2006-017-TW-A 21681twf.doc/p Please refer to Figure 5 'which shows the probability of phase 0 d of the clock signal CLKtest in the calibration mode τ The distribution function graph. Since the oscillation source of the circuit to be tested is under free oscillation, the clock signal CLKtest to be measured is randomly generated. That is to say, the clock signal CLKtest to be tested is not associated with the reference clock signal CLKref, and The probability distribution function graph of the phase of the pulse signal CLKtest to be tested will be uniformly distributed. The symbol τ 〇 represents the period of the reference %•pulse CLKref (that is, the post-delay reference clock signal D1). The symbol T represents the delay buffer 3〇. The delay time difference between 1 and 302. CLKrefdl and CLKrefd2 respectively represent the delayed reference clock signals generated by the delay buffers 301 and 302 of FIG. 3] and ])2. According to the statistical characteristics of the distribution of the mean sentence generated when the oscillation source of the circuit under test is free to oscillate, T = P2' * T0 can be obtained. According to TO and P2', the delay time difference between the delay buffers 301 and 302 can be obtained. Figure 6 shows the phase "(3)f, cumulative distribiition function). The horizontal axis is the phase </>d of the iJb pulse signal CLKtest, and the root mean square (RMS) The value (σ) is the unit. According to Π, Ρ 2, the phase error _ and χ + (in σ) can be found using Figure 6. The value of Τ is calculated based on Ρ 2'. Then, by the relationship between τ and X-, x+, the phase size corresponding to σ can be obtained. If expressed by a formula, it is: σ = Τ / (χ + - χ -) For example, when Ρ1=0· 1100, Ρ2=0· 5414, the corresponding χ is -1.23 and χ+ is +0.39 . Therefore, σ=0·04/(0. 39-(-1.23))=0.025. Figure 7 shows the simulation results. The reference clock signal CLKref is 11 200905210 P2006-017-TW-A 21681twf.doc/p 2. 5GHz 'jitter of the clock signal CLKtest to be tested (j is i〇ps (ie 0.025UI). Please refer to the bottom Two jitter value error comparison tables to better understand whether there is a difference between the feed reset signal RST and the phase detector. Table 1 below shows the jitter value error comparison table obtained by not feeding the reset signal RST to the phase detector. Table 1 iPl P2 T error ~~~~ Ideal correction state 0. 0809 0. 5686 0. 0409 8.1% ^ Calibration state 1 0. 0809 0.5686 0. 0375 ------ 15.9% State 2 --- --- 0. 0809 0.5686 0. 0380 14. 8%~~~~ Calibration status 3 0. 0809 0.5686 0. 0369 17. 2%~~

在上表1中,理想校正狀態指的是,在校正模式下, 將圖2=待測時脈訊號CLKtest以可控制時脈訊號(由訊 戒產生益所產生)所取代。此可控制時脈訊號之相位^ ίίίίί函數圖會呈現均勻分布,且此可控制時脈訊 >考蚪脈間的相位差為均勻分佈。如此可以進行 =的校正。校正狀態卜校正狀態3則代表在校正模式中, 使用不同之自由振盪頻率所測出的結果。 下表2顯示饋入重置訊號RST 之抖動誤差比較表。 至相位偵測器所得到In the above Table 1, the ideal correction state means that in the calibration mode, Figure 2 = the clock signal to be tested CLKtest is replaced by a controllable clock signal (generated by the benefit of the signal). This can control the phase of the clock signal ^ ίίίίί function diagram will be evenly distributed, and the phase difference between the control pulse and the pulse is evenly distributed. This allows correction of =. The correction state 242 correction state represents the result measured using different free oscillating frequencies in the calibration mode. Table 2 below shows the jitter error comparison table fed to the reset signal RST. Obtained by the phase detector

12 200905210 P2006-017-TW-A 21681twf.doc/p 態 ---'— 校正狀態1 0.1100 0. 5414 0.0389 —---- 3.8% 校正狀態2 0. 1100 0.5414 0. 0392 3. 0% 校正狀態3 0. 1100 0. 5414 0.0379 — 6. 1°/〇 由表1與表2可看出,當饋入重置訊號RST至相位 偵測器時’所得到的抖動誤差的確比較小。12 200905210 P2006-017-TW-A 21681twf.doc/p State---'- Correction state 1 0.1100 0. 5414 0.0389 —---- 3.8% Calibration state 2 0. 1100 0.5414 0. 0392 3. 0% Correction State 3 0. 1100 0. 5414 0.0379 — 6. 1°/〇 It can be seen from Table 1 and Table 2 that the jitter error obtained when feeding the reset signal RST to the phase detector is indeed small.

圖8顯示本發明第二實施例之BIST電路之電路示意 圖。基本上,第二實施例之BIST電路之架構雷同於第— 實施例之BIST電路,只是將圖2之多工器317與計數器 318、替換成计數态318a與318b。至於第二實施例之運作 方式基本上可由第一實施例之描述内容得知,故於此不 重 ° 标上所述 ^ -本發明之上述實施例具有以下的 %路面積小’高操作速度與高準確性。 雖然本發明已以較佳實施例揭露如上,然直並非用 =?,__=者:本發明 【圖式間早說明】 圖1顯示出抖動的定義。 路之據本發明第—實施例之内建抖動測量電 方塊^顯示圖2之畔雙相_轉決定電路之電路 圖4顯示在測試模式下, 待’則日守脈訊號之相位之機 13 200905210 P2006-017-TW-A 21681twf.doc/p 率分佈函數圖。 圖5顯示在校正模式下,待測時脈訊號之相位之機 率分佈函數圖。 圖6顯示待測時脈訊號之相位之累加機率分佈函數 圖。 圖7顯示第一實施例之模擬結果。 圖8顯示本發明第二實施例之内建抖動測量電路之 電路示意圖。 【主要元件符號說明】 21 :待測電路 23 :同步雙相偵測器 25、25‘ :決定電路 301〜303 :延遲緩衝器 304〜305 :相位偵測單元 311〜312、315〜316 :邏輯電路 313〜314 :栓鎖器 317 :多工器 318、318a、318b :計數器 14Fig. 8 is a circuit diagram showing the BIST circuit of the second embodiment of the present invention. Basically, the architecture of the BIST circuit of the second embodiment is identical to the BIST circuit of the first embodiment except that the multiplexer 317 and counter 318 of FIG. 2 are replaced with the count states 318a and 318b. As for the operation mode of the second embodiment, it can be basically understood from the description of the first embodiment, so that the above embodiment of the present invention has the following % road area small 'high operation speed. With high accuracy. Although the present invention has been disclosed above in the preferred embodiment, it is not intended to use =?, __=: the present invention [early illustrated between the drawings] Fig. 1 shows the definition of jitter. According to the first embodiment of the present invention, the built-in jitter measurement electric block ^ shows the circuit of the two-phase _ turn decision circuit of FIG. 2, and FIG. 4 shows the phase of the phase signal of the day-to-day pulse signal in the test mode 13 200905210 P2006-017-TW-A 21681twf.doc/p rate distribution function graph. Figure 5 shows the probability distribution function of the phase of the pulse signal to be measured in the calibration mode. Figure 6 shows the cumulative probability distribution function of the phase of the pulse signal to be measured. Fig. 7 shows the simulation results of the first embodiment. Fig. 8 is a circuit diagram showing the built-in jitter measuring circuit of the second embodiment of the present invention. [Main component symbol description] 21: circuit under test 23: synchronous two-phase detector 25, 25': decision circuits 301 to 303: delay buffers 304 to 305: phase detecting units 311 to 312, 315 to 316: logic Circuits 313 to 314: latch 317: multiplexer 318, 318a, 318b: counter 14

Claims (1)

200905210 P2006-017-TW-A 21681twf.doc/p 十、申請專利範圍: 1. -種内建之抖動量測電路,用於 輸出之一待測時脈訊號相對 、“毛路所 動,該抖動量測電路包括 參考時脈訊號之1 同步雙相偵測電路,耦接於該 電路對該待測時脈訊號與;參考步 不同延遲,並彳貞測該延 T備訊遽進行 考時脈訊號間之相位關係;以及Μ訊號與該延遲後參 步雙相偵測電路所彳貞t該同步雙相偵測電路,對該同 料松鎖與魏,以:彳出的相位_進行運算、資 之-計數值。评到有關於該制時脈喊之該抖動 該同===:【丨項所述之抖動量測電路,其中 —第二==;=元,延賴參考時脈減以產生 -延遲該參考時脈訊號以產生 該延遲彳ί彳ϊί日ίί鱗元,延賴制日輪減以產生 中,今·楚一 該第严遲*條該第-與 該同二::項所述之抖動量測電路’其中 第相位偵測器,耦合於該第一延遲缓衝單元與 15 200905210 P2006-017-TW-A 21681twf.doc/p 該第三延遲緩衝單元,以偵測該第一延遲後參考時脈與 該延遲後待測時脈訊號間之相位關係;以及 一第二相位偵測器,耦合於該第二延遲緩衝單元與 該第三延遲緩衝單元,以偵測該第二延遲後參考時脈與 該延遲後待測時脈訊號間之相位關係; 其中,每取樣一次,該第一與第二相位偵測器會被 重置。 4. 如申請專利範圍第3項所述之抖動量測電路,其中 Γ' 該決定電路包括: 一第一邏輯電路,對該第一相位偵測器之一輸出信 號與該第二相位偵測器之一輸出信號進行邏輯運算;以 及 一第二邏輯電路,對該第一相位偵測器之該輸出信 號與該第二相位偵測器之該輸出信號進行邏輯運算。 5. 如申請專利範圍第4項所述之抖動量測電路,其中 該決定電路包括: , 一第一資料栓鎖器,根據該延遲後待測時脈訊號而 栓鎖該第一邏輯電路之一輸出信號;以及 一第二資料栓鎖器,根據該延遲後待測時脈訊號而 栓鎖該第二邏輯電路之一輸出信號。 6. 如申請專利範圍第5項所述之抖動量測電路,其中 該決定電路包括: 一第三邏輯電路,對該第一資料栓鎖器之一輸出信 號、該延遲後待測時脈訊號與一致能訊號進行邏輯運 算;以及 16 200905210 P2006-017-TW-A 21681twf.doc/p 禾四遴铒電路,對該第二 號、該延遲後待測時脈可产盥 L料、A °。之—輸出信 7‘如申請專利範圍第6項所述之馳旦'目 該決定電路包括: π边之抖動里測電路,其中 夕工為’從該第二邏親带 四邏輯電路之一輪出信號及之-輸出信號與該第 計數器,計數 δ.如申請專利範圍楚“。 輸出k就。 該決定電路包括: 員所述之抖動量測電路,其中 弟'*言十皇f 3& 號;以及 ’計㈣第三賴電路之—輸出信 軸“賴電路之―輪出信號。 一待,電路’用於測量—參考時脈訊號與 待測電略至少勺待測時脈訊號間之一時間差,該 〜同步心二,辦縣麵電路包括: 雙相偵_電路包拓^电路,耦接於該待測電路,該同步 單元,㉔振盪⑼第—延遲緩衝單元與第二延遲缓衝 訊號之〜相位之:於-正常運作時’得到該待測時脈 之該相饮巧機分佈圖,以根據該待測時脈訊號 第二延礎緩料:》佈51來校正該第—延遲緩衝單元與 間差;以及 該參考時脈訊號所造成之—延遲時 步雙相如㉘路—於該同步雙相制電路,對該同 料栓鎖輿計數,r,蜊出的相位關係進行邏輯運算、資 、、至]有關於該時間差之_計數值。、 17 200905210 P2006-017-TW-A 21681twf.doc/p 10. 如申請專利範圍第9項所述之時間差量測電路, 其中該第一延遲緩衝單元延遲該參考時脈訊號以產生一 第一延遲後參考時脈;該第二延遲缓衝單元延遲該參考 時脈訊號以產生一第二延遲後參考時脈;以及該同步雙 相偵測電路更包括:一第三延遲緩衝單元,延遲該待測 時脈訊號以產生該延遲後待測時脈; 其中,該第三延遲緩衝單元之延遲量介於該第一與 該第二延遲緩衝單元之延遲量之間。 11. 如申請專利範圍第10項所述之時間差量測電 路,其中該同步雙相偵測電路包括: 一第一相位偵測器,耦合於該第一延遲缓衝單元與 該第三延遲缓衝單元,以偵測該第一延遲後參考時脈與 該延遲後待測時脈訊號間之相位關係;以及 一第二相位偵測器,耦合於該第二延遲緩衝單元與 該第三延遲緩衝單元,以偵測該第二延遲後參考時脈與 該延遲後待測時脈訊號間之相位關係; 其中,每取樣一次,該第一與第二相位偵測器會被 重置。 12. 如申請專利範圍第11項所述之時間差量測電 路,其中該決定電路包括: 一第一邏輯電路,對該第一相位偵測器之一輸出信 號與該第二相位偵測器之一輸出信號進行邏輯運算;以 及 一第二邏輯電路,對該第一相位偵測器之該輸出信 號與該第二相位偵測器之該輸出信號進行邏輯運算。 18 200905210 P2006-017-TW-A 21681twf.doc/p 13. 如申請專利範圍第12項所述之時間差量測電 路,其中該決定電路包括: -第-資料栓鎖器,根據該延遲後待測時脈訊號而 栓鎖該第一邏輯電路之一輸出信號;以及 於鎖;鎖器’根據該延遲後待挪時脈訊號而 栓鎖該第一避輯電路之一輸出信號。 路 號 算 14. 如申請專利範圍第13項所述之 其中該決定電路包括: -第三邏輯電路,對該第一資料栓鎖器 =遲後待測時脈訊號與—致能,進行邏輯運 -第四邏輯電路’對該第二資料栓鎖 號、該延遲後_時脈減與紐能訊 =如申請專利範圍第14項所述之^^曰運^: 路,其中該決定電路包括: 日]差里測电 一多工器,從該第三邏輯雷 一 C 四邏輯電路之—輪出信號擇-;以及出信號與該第 ΓΛ—^數直器,計數該多工器之—輸出信號。 路,其中該決定電路包括:項紅之Μ差量測電 號;:二二計數器,計數該第三邏輯電格之一輸出信 171 tf,11 ’計數該第四邏輯電路 < ’出H .種時間差晋、、則輸出k 5虎。 與-待測電路 之 H則f 考時脈訊號 輪出之—待測時脈訊號間時間差, 19 200905210 P2006-017-TW-A 21681twf.d〇c/p 該待測電路至少包括—振盡源,該 一同步雙相_電路,差^電路包括: Ϊ相偵測電路包括-第-延遲緩衝路,該同步 皁兀,當該振盪源處於—自由 二弟一延遲緩衝 訊號之一相位之一機率分佈圖二J據;J該待娜時脈 之該相位之該機率分佈圖來校正,该相時脈訊號 ο Si衝單元對該參考時-號:以; 步雙所===偵測電路,對該同 认;:有關於該時間差之—計數值。 路,其中兮镇月-、圍S 17項所述之時間差量測電 生延遲緩衝單元延遲該參考時脈訊號以產 參者拉延遲後茶考時脈;該第二延遲緩衝單元延遲該 脈訊號以產生—第二延遲後參考時脈;以及該同 ο itr貞測電路更包括:—第三延遲緩衝單元,延遲該 、日守脈汛號以產生該延遲後待測時脈; 其中,該第三延遲緩衝單元之延遲量介於該第一與 〇弟一延遲緩衝單元之延遲量之間。 19.如申請專利範圍第18項所述之時間差量測電 路其中該同步雙相偵測電路包括: 4第一相位偵測器,耦合於該第一延遲緩衝單元與 。第二延遲緩衝單元,以偵測該第一延遲後參考時脈與 該^遲後待測時脈訊號間之相位關係;以及 一第二相位偵測器,耦合於該第二延遲緩衝單元與 20 200905210 P2006-017-TW-A 21681twf.doc/p 該第三延遲缓衝單元,以偵測該第二延遲後參考時脈與 該延遲後待測時脈訊號間之相位關係; 其中,每取樣一次,該第一與第二相位偵測器會被 重置。 20. 如申請專利範圍第19項所述之時間差量測電 路,其中該決定電路包括: 一第一邏輯電路,對該第一相位偵測器之一輸出信 號與該第二相位偵測器之一輸出信號進行邏輯運算;以 〇 及 一第二邏輯電路,對該第一相位偵測器之該輸出信 號與該第二相位偵測器之該輸出信號進行邏輯運算。 21. 如申請專利範圍第20項所述之時間差量測電 路,其中該決定電路包括: 一第一資料栓鎖器,根據該延遲後待測時脈訊號而 栓鎖該第一邏輯電路之一輸出信號;以及 一第二資料栓鎖器,根據該延遲後待測時脈訊號而 I 栓鎖該第二邏輯電路之一輸出信號。 " 22.如申請專利範圍第21項所述之時間差量測電 路,其中該決定電路包括: 一第三邏輯電路,對該第一資料栓鎖器之一輸出信 號、該延遲後待測時脈訊號與一致能訊號進行邏輯運 算;以及 一第四邏輯電路,對該第二資料栓鎖器之一輸出信 號、該延遲後待測時脈訊號與該致能訊號進行邏輯運算。 23.如申請專利範圍第22項所述之時間差量測電 21 200905210 P2006-017-TW-A 21681twf.doc/p 路,其中該決定電路包括: 一多工器,從該第三邏輯電路之一輸出信號與該第 四邏輯電路之一輸出信號擇一;以及 一第一計數器,計數該多工器之一輸出信號。 24.如申請專利範圍第22項所述之時間差量測電 路,其中該決定電路包括: 一第二計數器,計數該第三邏輯電路之一輸出信 號;以及 一第三計數器,計數該第四邏輯電路之一輸出信號。200905210 P2006-017-TW-A 21681twf.doc/p X. Patent application scope: 1. - Built-in jitter measurement circuit for outputting one of the clock signals to be tested relative to the "hair path" The jitter measurement circuit includes a synchronous two-phase detection circuit of the reference clock signal, coupled to the circuit for different time delays of the clock signal to be tested and the reference step, and measuring the delay T standby time for the test The phase relationship between the pulse signals; and the synchronous signal and the delayed phase-detected two-phase detection circuit 彳贞t the synchronous two-phase detection circuit, the same material loose lock and Wei, to: the phase _ Operation, capital-count value. It is judged that the jitter of the system is called the same ===: [the jitter measurement circuit described in [丨], where - second ==; = yuan, depends on the reference The clock is subtracted to generate - delay the reference clock signal to generate the delay 彳 彳ϊ 彳ϊ 日 , , , , , , , 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延 延The jitter measurement circuit of item 2: wherein the phase detector is coupled to the first delay buffer unit and 15 200905210 P2006-017-TW-A 21681twf.doc/p The third delay buffer unit detects the phase relationship between the reference pulse after the first delay and the clock signal to be measured after the delay; and a second a phase detector coupled to the second delay buffer unit and the third delay buffer unit to detect a phase relationship between the reference pulse after the second delay and the pulse signal to be measured after the delay; wherein each sampling The first and second phase detectors are reset once. 4. The jitter measurement circuit of claim 3, wherein the decision circuit comprises: a first logic circuit, the One output signal of the first phase detector is logically operated with one of the output signals of the second phase detector; and a second logic circuit, the output signal of the first phase detector and the second phase The output signal of the detector is logically operated. 5. The jitter measuring circuit of claim 4, wherein the determining circuit comprises: a first data latch, according to the delay, the time to be tested Pulse signal One of the first logic circuits outputs a signal; and a second data latch latches the output signal of one of the second logic circuits according to the pulse signal to be tested after the delay. 6. The jitter measuring circuit, wherein the determining circuit comprises: a third logic circuit, wherein the output signal of one of the first data latches, the pulse signal to be tested after the delay and the signal of the consistent energy are logically operated; 16 200905210 P2006-017-TW-A 21681twf.doc/p The fourth circuit, for the second number, after the delay, the time pulse to be measured can produce L material, A °. The output signal 7' is as described in claim 6 of the scope of the patent. The circuit of the decision includes: a π-side jitter measurement circuit, wherein the Xigong is 'from the second logic band with one of the four logic circuits The output signal and the output signal are compared with the first counter, and the count is δ. For example, the scope of the patent application is "". The output circuit is: The decision circuit includes: the jitter measurement circuit described by the member, wherein the brother '*言十皇 f 3& And the 'output (four) third circuit - the output signal axis "receives the circuit - the wheel out signal. As soon as the circuit is used for measurement, the time difference between the reference clock signal and the signal to be tested is at least one of the clock signals to be measured. The synchronization center 2, the county circuit includes: Biphase detection _ circuit package extension ^ a circuit coupled to the circuit to be tested, the synchronization unit 24 oscillating (9) the first delay buffer unit and the second delay buffer signal to phase: during normal operation, 'getting the phase of the pulse to be tested The machine map is configured to correct the first delay buffer unit and the difference according to the second delay of the clock signal to be tested: "the cloth 51"; and the delayed time step biphase caused by the reference clock signal For example, in the 28-way synchronous circuit, the phase-locking 舆 count, r, and the phase relationship of the enthalpy are logically operated, and the _count value is related to the time difference. 10. The time difference measuring circuit according to claim 9, wherein the first delay buffer unit delays the reference clock signal to generate a first After the delay, the second delay buffer unit delays the reference clock signal to generate a second delayed reference clock; and the synchronous two-phase detection circuit further includes: a third delay buffer unit, delaying the The clock signal to be tested is used to generate the clock pulse to be tested after the delay; wherein the delay amount of the third delay buffer unit is between the delay amount of the first and second delay buffer units. 11. The time difference measuring circuit according to claim 10, wherein the synchronous two-phase detecting circuit comprises: a first phase detector coupled to the first delay buffer unit and the third delay a unit for detecting a phase relationship between the reference pulse after the first delay and the pulse signal to be measured after the delay; and a second phase detector coupled to the second delay buffer unit and the third delay The buffer unit is configured to detect a phase relationship between the reference pulse after the second delay and the clock signal to be tested after the delay; wherein the first and second phase detectors are reset every time the sample is taken. 12. The time difference measuring circuit according to claim 11, wherein the determining circuit comprises: a first logic circuit, an output signal of the first phase detector and the second phase detector An output signal performs a logic operation; and a second logic circuit logically operates the output signal of the first phase detector and the output signal of the second phase detector. The method of claim 12, wherein the decision circuit comprises: - a data latch, according to the delay Measuring a clock signal to latch an output signal of the first logic circuit; and latching; the latcher latches an output signal of the first evasive circuit according to the delayed clock signal after the delay. The road number is calculated as described in claim 13 wherein the decision circuit comprises: - a third logic circuit, the first data latch = late test pulse signal and - enable logic The fourth logic circuit 'the second data latch number, the delayed _clock minus and the new energy signal = as described in claim 14 of the patent scope, the circuit, wherein the decision circuit The method includes: a day] measuring a multiplexer in the difference, from the third logic mine-C four logic circuit--taking the signal selection-; and outputting the signal and the first-----the number of the multiplexer - the output signal. The circuit, wherein the determining circuit comprises: a red peak difference metering number; a two-two counter, counting one of the third logical cells one output letter 171 tf, 11 'counting the fourth logic circuit < 'out H The time difference is Jin, and the output is k 5 tiger. And - H of the circuit to be tested, f test clock pulse - the time difference between the signals to be tested, 19 200905210 P2006-017-TW-A 21681twf.d〇c/p The circuit to be tested includes at least - The source, the synchronous two-phase _ circuit, the difference circuit includes: the Ϊ phase detecting circuit includes a -first delay buffer circuit, the synchronous saponite, when the oscillating source is in a phase of - a free two-one delay buffer signal A probability distribution map is shown in Fig. J; J is to be corrected by the probability distribution of the phase of the clock, and the phase clock signal ο Si punching unit refers to the time-number: to; step double === Measuring circuit, the same as the recognition;: There is a time difference - the count value. The road, wherein the time difference measured by the town of the town, and the time difference of the S17 item, the electric delay buffer unit delays the reference clock signal to delay the tea test clock; the second delay buffer unit delays the pulse The signal is generated to generate a reference clock after the second delay; and the same circuit further includes: a third delay buffer unit that delays the day sigma sigma to generate the delayed clock after the delay; The delay amount of the third delay buffer unit is between the delay amount of the first and the first delay buffer unit. 19. The time difference measuring circuit of claim 18, wherein the synchronous two-phase detecting circuit comprises: 4 a first phase detector coupled to the first delay buffer unit and . a second delay buffer unit for detecting a phase relationship between the reference pulse after the first delay and the clock signal to be measured after the delay; and a second phase detector coupled to the second delay buffer unit 20 200905210 P2006-017-TW-A 21681twf.doc/p The third delay buffer unit detects the phase relationship between the reference pulse after the second delay and the clock signal to be measured after the delay; Once sampled, the first and second phase detectors are reset. 20. The time difference measuring circuit of claim 19, wherein the determining circuit comprises: a first logic circuit, an output signal of the first phase detector and the second phase detector An output signal performs a logic operation; and the second logic circuit performs a logic operation on the output signal of the first phase detector and the output signal of the second phase detector. 21. The time difference measuring circuit of claim 20, wherein the determining circuit comprises: a first data latch, latching one of the first logic circuits according to the pulse signal to be tested after the delay And outputting a signal; and a second data latch, and latching the output signal of one of the second logic circuits according to the pulse signal to be tested after the delay. < 22. The time difference measuring circuit according to claim 21, wherein the determining circuit comprises: a third logic circuit, outputting a signal to one of the first data latches, and the time after the delay is to be tested The pulse signal is logically operated with the coincidence signal; and a fourth logic circuit performs logic operation on the output signal of one of the second data latches, the pulse signal to be tested after the delay, and the enable signal. 23. The time difference measurement device described in claim 22, wherein the decision circuit comprises: a multiplexer from the third logic circuit An output signal is selected from one of the output signals of the fourth logic circuit; and a first counter is used to count the output signal of one of the multiplexers. 24. The time difference measuring circuit of claim 22, wherein the determining circuit comprises: a second counter that counts an output signal of the third logic circuit; and a third counter that counts the fourth logic One of the circuits outputs a signal.
TW96125968A 2007-07-17 2007-07-17 Built-in jitter measurement circuit TWI333073B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96125968A TWI333073B (en) 2007-07-17 2007-07-17 Built-in jitter measurement circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96125968A TWI333073B (en) 2007-07-17 2007-07-17 Built-in jitter measurement circuit

Publications (2)

Publication Number Publication Date
TW200905210A true TW200905210A (en) 2009-02-01
TWI333073B TWI333073B (en) 2010-11-11

Family

ID=44722650

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96125968A TWI333073B (en) 2007-07-17 2007-07-17 Built-in jitter measurement circuit

Country Status (1)

Country Link
TW (1) TWI333073B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI474152B (en) * 2012-04-20 2015-02-21 Realtek Semiconductor Corp Estimation apparatus and method for estimating clock skew
TWI818521B (en) * 2021-05-11 2023-10-11 日商愛德萬測試股份有限公司 Measuring device and measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103376357B (en) * 2012-04-27 2015-10-14 瑞昱半导体股份有限公司 Device and method for estimating clock phase difference

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI474152B (en) * 2012-04-20 2015-02-21 Realtek Semiconductor Corp Estimation apparatus and method for estimating clock skew
US9274543B2 (en) 2012-04-20 2016-03-01 Realtek Semiconductor Corp. Estimation apparatus and method for estimating clock skew
TWI818521B (en) * 2021-05-11 2023-10-11 日商愛德萬測試股份有限公司 Measuring device and measuring method

Also Published As

Publication number Publication date
TWI333073B (en) 2010-11-11

Similar Documents

Publication Publication Date Title
US8385394B2 (en) Circuit and method for on-chip jitter measurement
US6295315B1 (en) Jitter measurement system and method
US7737739B1 (en) Phase step clock generator
TW200915727A (en) Adjustable digital lock detector
US9379714B1 (en) Circuits and methods of TAF-DPS vernier caliper for time-of-flight measurement
US9116204B2 (en) On-die all-digital delay measurement circuit
US6208169B1 (en) Internal clock jitter detector
US20070194824A1 (en) Digital DLL circuit
US20050111602A1 (en) Timing comparator, data sampling apparatus, and testing apparatus
JP5826246B2 (en) Apparatus and method for compensating injection locking
US6998889B2 (en) Circuit, apparatus and method for obtaining a lock state value
TW200905210A (en) Built-in jitter measurement circuit
US7459950B2 (en) Pulsed local clock buffer (LCB) characterization ring oscillator
JP5047187B2 (en) Calibration apparatus, calibration method, and test apparatus
US8436604B2 (en) Measuring apparatus, parallel measuring apparatus, testing apparatus and electronic device
Angeli et al. A scalable fully synthesized phase-to-digital converter for phase and duty-cycle measurement of high-speed clocks
Le Gall et al. High frequency jitter estimator for SoCs
US20090322311A1 (en) Method and Apparatus for On-Chip Testing of High Speed Frequency Dividers
Abdel-Hafeez et al. On-chip jitter measurement architecture using a delay-locked loop with vernier delay line, to the order of giga hertz
WO2005109019A1 (en) Timing generator and semiconductor testing apparatus
CN101359014A (en) Built-in jitter measuring circuit
KR101066543B1 (en) High Precision Clock Generator and Method for Standard Time Synchronization
JP2010019609A (en) Multi-strobe circuit and testing device
TWI269044B (en) A system and a method for determining processing speed of an integrated circuit
JP3847150B2 (en) Semiconductor integrated circuit and jitter measurement method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees