200904778 九、發明說明 · 【發明所屬之技術領域】 本發明係關於一種製備第二丁基苯之方法,及將該第 二丁基苯轉化爲苯酚及甲基乙基酮的方法。 【先前技術】 苯酚及甲基乙基酮在化學工業中爲重要產品。舉例說 明之,苯酚可用於製造酚醛樹脂、雙酚A、ε -己內醯胺 、己二酸、烷基酚及增塑劑,而甲基乙基酮可作爲噴漆、 溶劑並用於潤滑油之脫蠟。 製造甲基乙基酮最普通的路徑係藉由使第二-丁醇( SBA)脫氫,而該醇係藉由對丁嫌進fj酸催化水合作用而 製得。舉例之,藉使丁烯與硫酸反應的商業規模之SBA 製造係已經由氣體/液體萃取而實施多年。 近來,製造苯酚的最普通路徑係Hock方法。此爲三 步驟方法,其中第一步驟包括使苯與丙烯進行烷基化而製 造枯烯,接著使枯烯氧化成相應之氫過氧化物,然後使氫 過氧化物斷裂而製造等莫耳量之苯酚及丙酮。然而,對苯 酚的世界需求比丙酮之需求還更快速成長。此外,相對於 丁烯,丙烯的成本也可能增加’此乃因爲丙烯正逐步地短 少。因此,對苯酚之製造而言’使用丁烯替代丙烯作爲進 料並且共同生成非丙酮之甲基乙基酮的的方法可能是吸引 人的替代路徑。 已知悉苯酚及甲基乙基酮可藉由變更Hock方法而共 -5- 200904778 同產生,其中係使第二丁基苯氧化而獲得第二-丁基苯氫 過氧化物,及使該過氧化物分解爲所欲之苯酚和甲基乙基 酮。此一方法之槪述係揭示於Process Economics Report No. 22B 113-421 頁及 261-263 頁,標題 “Phenol”’200904778 IX. INSTRUCTIONS OF THE INVENTION · FIELD OF THE INVENTION The present invention relates to a process for preparing a second butylbenzene, and a process for converting the butylbenzene to phenol and methyl ethyl ketone. [Prior Art] Phenol and methyl ethyl ketone are important products in the chemical industry. By way of example, phenol can be used in the manufacture of phenolic resins, bisphenol A, ε-caprolactam, adipic acid, alkylphenols and plasticizers, while methyl ethyl ketone can be used as a paint, solvent and lubricant. Dewaxing. The most common route for the manufacture of methyl ethyl ketone is by dehydrogenating a second butanol (SBA) which is produced by catalyzing hydration of butyl sulphonate. For example, a commercial scale SBA manufacturing line that reacts butene with sulfuric acid has been implemented for many years by gas/liquid extraction. Recently, the most common route for the production of phenol is the Hock method. This is a three-step process in which the first step comprises alkylating benzene with propylene to produce cumene, followed by oxidizing the cumene to the corresponding hydroperoxide, and then breaking the hydroperoxide to produce a molar amount. Phenol and acetone. However, the world demand for phenol is growing faster than the demand for acetone. In addition, the cost of propylene may increase relative to butenes. This is because propylene is gradually being reduced. Therefore, a method of using butene instead of propylene as a feed for the production of phenol and co-forming a non-acetone methyl ethyl ketone may be an attractive alternative route. It is known that phenol and methyl ethyl ketone can be produced by a modification of the Hock method, in which a total of -5,047,047,78 is produced, wherein the second butylbenzene is oxidized to obtain a second-butylbenzene hydroperoxide, and the The oxide is decomposed into the desired phenol and methyl ethyl ketone. A description of this method is disclosed in Process Economics Report No. 22B, pages 113-421 and 261-263, under the heading "Phenol"
Stanford Reserch Institute 1 977 年 12 月出版。 第二丁基苯可藉由在酸觸煤上使苯與正-丁烯進行烷 基化而製造。因此,國際專利公告 WO 06/ 1 5 826號揭示 一製造苯酚及甲基乙基酮的整合方法,其中係在烷基化條 件下將含有苯及C4烷基化試劑的進料與含有yS沸石或 MCM-22家族分子篩之觸煤接觸而產生含有第二丁基苯的 烷基化流出物。然後氧化該第二丁基苯而產生氫過氧化物 ,及使該氫過氧化物斷裂而產生所欲之苯酚及甲基乙基酮 〇 傳統上,Θ沸石或MCM-22家族物質之分子篩係藉由 在高溫下使二氧化矽來源或其他四價金屬氧化物、氧化鋁 來源或其他三價金屬氧化物及引位試劑(通常爲含氮有機 鹼)的水性混合物反應數小時至數天直到獲得結晶產物而 製造。舉例之,在WO 06/ 1 5 826號中說明的烷基化方法 中,使結晶產物自合成混合物的殘留物中分離並在作爲觸 煤之前進行各種修整步驟,如擠壓、離子交換及煅燒。一 般而言,觸煤製備的最終步驟係煅燒步驟或至少是在惰性 氣體存在下的13〇°C至220 °C乾燥步驟,以除去儲存期間 所吸附的水。因此,分子篩觸煤在第二丁基苯之製造方法 中用爲觸煤時,典型地是非常乾燥的。 -6- 200904778 當分子篩觸煤如/3沸石及MCM-2 2家族物質用於第二 丁基苯之製造時,通常會有線上輸出(line out )時間,緊 接著立即啓動,在此期間觸煤會產生高數量的二烷基化及 三烷基化產物。視觸煤如何製造及煅燒而定,第二丁基苯 選擇率在啓動期間及在穩態製造時會有相當大的變化。雖 然多烷基化產物可藉由轉烷基化作用而轉化回第二丁基苯 ,但此舉增添了額外步驟,因此在啓動期間及穩態條件時 使單烷基化選擇率達到最佳化有著很大的的興趣。 根據本發明,頃發現M C Μ - 2 2家族物質在啓動期間及 穩態條件時的第二丁基苯選擇率可被提高,其係在將分子 篩用於烷基化方法而製造第二丁基苯之前,藉由將該分子 篩與蒸氣或液體形式的水接觸。雖然增進選擇率的原因無 法完全明瞭,但29 Si MAS NMR數據提出,與水接觸可 促進A1再插入沸石的四面體框架內及/或減輕在沸石製 造中早先步驟(特別是煅燒及/或脫水)所引起之局部幾 何應變。若不考慮選擇率增進之原因,頃發現,即使沸石 在水接觸步驟之後及用於烷基化方法之前仍在約1 5 〇°C下 乾燥,此一增進還是可維持。 美國專利4,46 8,475號揭示使高二氧化矽結晶沸石( 如Z S Μ - 5 )之酸催化活性提高的水熱方法,其包含將沸石 與一活性量之氧化鋁混合;然後在可增加該沸石之催化活 性的條件及約1 〇 0 °C至約3 7 0 °C高溫下將此沸石與氧化鋁 之混合物與水性液體介質(典型地爲水)接觸。 美國專利5,077,445號揭示一製備院基苯(特別是乙 200904778 基苯)的方法,其中該方法包含在烷基化條件下將具有2 至6個碳原子之烯烴及液體苯與觸煤接觸,該觸煤含有水 合之合成多孔性結晶M C Μ - 2 2物質,當結晶物質先與該苯 及烯烴接觸時,該水合之結晶物質含有至少1 〇重量份液 體水包含在該結晶物質的孔空間內,其中烷基化條件包括 足以使該苯及該水維持在液態的溫度和壓力之組合,其中 該水合之結晶物質係藉由將此結晶物質放置於液體水中達 到其孔空間內足以吸附至少1 0重量%之水的時間而水合 。據說水的存在係抑制多烷基化反應,因此使不想要的副 產物(尤其是那些具有9或更多個碳原子者)之生成減至 最小。 【發明內容】 在一觀點中,本發明係關於一種製造第二丁基苯之方 法,該方法包含在烷基化條件下及含有至少一種MCM-22 家族分子篩之觸媒存在下使苯與至少一種C4烷基化試劑 反應而生成含有第二丁基苯之烷基化產物,其中,在該反 應之前,該觸媒係在能增進觸媒之第二丁基苯選擇率的條 件下與水接觸。 在另一觀點中,本發明係關於含有至少一種MCM-2 2 家族分子篩之觸媒在第二丁基苯之製造方法上的用途,該 製造方法係在烷基化條件下使苯與至少一種C4烷基化試 劑反應,其中該分子篩在使用前已與水接觸,以便增進該 觸煤之第二丁基苯選擇率。 -8 _ 200904778 在較佳之具體實施例中,如本發明方法所要求般,已 與水接觸之觸煤的第二丁基苯選擇率比在其他方法用相同 反應物、觸煤及方法條件但觸煤未與水接觸所獲得的第二 丁基苯選擇率高至少1重量%,以至少2重量%爲較佳, 甚而至少3重量%。 習知地’該與水接觸係在包括至少〇 〇c溫度之條件下 進行。與水接觸較佳地進行至少0.5小時。更佳的與水接 觸之溫度在約1 0 °C至約5 0。(:範圍內。更佳的與水接觸之 時間係約2小時至約24小時。 在一具體實施例中,該與水接觸係在四甲基矽烷( TMS)的-80至-120 ppm (更特別地TMS之範圍爲-90至 -100’ -94至-100或約-98Ppm)化學位移範圍內充分地使 觸媒之29Si MAS NMR光譜中至少一個峰之振幅或寬度產 生改變的條件下進行。 在一具體實施例中,該觸媒係與液體水接觸。在另一 具體實施例中,該觸媒係與水蒸氣接觸。 習知地’該觸媒係在與水接觸後及在該反應之前乾燥 。舉例之,乾燥溫度可在約100 °c至約200 °c範圍內。較 佳地,該乾燥進行約1小時至約5小時。 習知地’該C4烷基化試劑包含直鏈丁烯,例如丁烯 - 1、丁烯- 2、或彼等之混合物。較佳地,該直鏈丁烯係 在包括苯對丁烯之總莫耳比約1至約2 0 (以約3至約1 〇 較佳,約4至約9更佳)的該烷基化條件下添加到該方法 中〇 -9- 200904778 習知地,該烷基化條件也包括溫度爲約6(TC至約260 °C,及/或壓力爲7000 kPa或以下,及/或以C4烷基化 試劑爲基礎的進料每小時之重量空間速度(WHSV )爲約 0 · 1 至 5 0 h r ·1。 在一具體實施例中,該反應係在至少部份液相條件下 進行。 典型地,該MCM-22家族分子篩具有在12.4±0.25、 6.9±0.15、3·57±0·07及3.42±0.07埃有著d-間距最大値的 X-射線繞射圖。習知地,該分子篩係選自MCM-22、PSH-3、SSZ-25、ERB-1、IT Q -1、IT Q - 2、M C Μ - 3 6、M C Μ - 4 9 、MCM-56、UZM-8、及彼等之混合物。 在一具體實施例中,本發明方法進一步包含使該第二 丁基苯氧化而生成氫過氧化物,及使該氫過氧化物斷裂而 產生苯酚及甲基乙基酮。據此,在另一較佳觀點中,本發 明方法係關於一種製造苯酚及甲基乙基酮之方法,該方法 包含: (a)將含有至少一種MCM-22家族分子篩之觸媒與 水接觸; (b )( a )之後,在烷基化條件及該觸媒存在下使苯 與至少一種直鏈丁烯反應而生成含有第二丁基苯之烷基化 流出物; (c) 使來自(b)之第二丁基苯氧化而生成氫過氧化 物;及 (d) 使來自(c)之氫過氧化物斷裂而產生苯酚及甲 -10- 200904778 基乙基酮 習知地,該氧化[上述之較佳觀點的步驟(C )]係在 觸媒存在下進行,例如選自下述之觸媒:(i)含有錳之 酮基(羥基)橋聯四核金屬錯合物,(Π)具有混合型金 屬核心之酮基(羥基)橋聯四核金屬錯合物,該核心金屬 中之一者爲選自Zn、Cu' Fe、Co、Ni、Μη之二價金屬及 其混合物,及另一金屬爲選自In、Fe、Μη、Ga、Α1之三 價金屬及其混合物,(iii)單獨的或在自由基引發劑存在 下的N-羥基取代之環狀醯亞胺,及(iv)單獨的或在自 由基引發劑存在下之N,N’,N”_三羥基異氰尿酸。在一具 體實施例中,該氧化觸媒爲不勻相觸媒。 習知地,該氧化係在約70°C至約200°C之溫度,及/ 或約50至約2000 kPa(0.5至20大氣壓)之壓力下進行 〇 習知地,該斷裂[上述之較佳觀點的步驟(d )]係在 觸媒存在下進行。該觸媒可爲均相或不勻相觸媒。在一具 體實施例中,該觸媒爲均相觸媒,如硫酸。 習知地,該斷裂在約40°C至約12(TC之溫度,及/或 約100至約2 5 00 kPa之壓力,及/或以該氫過氧化物爲 基礎的每小時之液體空間速度(L H S V )爲約0 · 1至約 1 0 0 h r ·1下進行。 【實施方式】 本發明係關於在含有M CM-2 2家族沸石之觸媒存在下 -11 - 200904778 使苯與c4烷基化試劑反應而製造第二丁基苯的方法,其 中該沸石在以水處理前已完成。特定言之,本發明係以對 M C Μ - 2 2家族沸石進行水處理而提高啓動期間及穩態條件 時之第二丁基苯選擇率的此一發現爲基礎。令人驚訝地, 即使該經水處理之沸石進行隨後之乾燥步驟,此一增進仍 能維持,但其他已悉爲活性烷基化觸媒的沸石卻不能展現 此一增進。 除了增進第二丁基苯選擇率之外,頃發現水處理還可 減低在烷基化步驟以副產物產生之丁烯寡聚物及聚丁基苯 類的量。當第二丁基苯欲使用於苯酚及甲基乙基酮之製造 時,此寡聚物生成之減少(在低級烯烴進料如乙烯中並不 是問題)是特別重要,在苯酚及甲基乙基酮之製造中,最 初係使第二丁基苯氧化成相應之氫過氧化物,然後使所得 之氫過氧化物斷裂而產生所欲之苯酚及甲基乙基嗣(ΜΕΚ )。因此,第二丁基苯之氧化對雜質(特別是丁烯寡聚物 )的存在非常敏感,因此在整個苯酚/ΜΕΚ製造階段中, 任何增加第二丁基苯生產及減低丁烯寡聚物生產的烷基化 方法提供顯著的優點。 苯之烷基化 在製造第二丁基苯之烷基化步驟中所用的苯可爲任何 商品化之苯進料,但較佳地苯具有至少99重量%的純度 〇 C4烷基化試劑包含至少一種直鏈丁烯,亦即丁烯—1 -12- 200904778 、丁烯- 2、或彼等之混合物。烷基化試劑也可爲含有直 鏈丁烯之烯屬C4烴混合物,如那些可藉使乙烷、丙烷、 丁烷、LPG及輕質石腦油蒸氣裂解而獲得者 '使石腦油及 其他煉油進料催化裂解而獲得者、以及藉由使含氧化合物 (如甲醇)轉化爲低級烯烴而獲得者。 舉例之’下列之C4烴混合物通常係自任何利用蒸氣 裂解以製造烯烴的煉油廠中取得:粗製經蒸氣裂解之丁烯 流、萃餘液-1 (進行溶劑萃取或氫化而從粗製經蒸氣裂解 之丁烯流中除去丁二烯後殘留的產物)及萃餘液-2 (從粗 製經蒸氣裂解之丁烯流中除去丁二烯及異丁烯後殘留之產 物)。一般而言,這些流具有如下表1所示重量範圍內的 組成。 表1 組份 粗製 流 萃餘液1 萃餘液2 溶劑萃取 氫化 溶劑萃取 氫化 丁二烯 30-85 % 0-2 % 0-2 % 0-1 % 0-1 % C4 乙炔類 0-15 % 0-0.5 % 0-0.5 % 0-0.5 % 0-0.5 % 丁烯-1 1-30 % 20-50 % 50-95 % 25-75 % 75-95 % 丁烯-2 1-15 % 10-30 % 0-20 % 15-40 % 0-20 % 異丁烯 0-30 % 0-55 % 0-35 % 0-5 % 0-5 % 正丁烷 0-10 % 0-55 % 0-10 % 0-55 % 0-10 % _ 異丁烷 0-1 % 0-1 % 0-1 % 0-2 % 0-2 % 一 其他煉油廠之混合C4流,如那些藉由使石腦油及其 他煉油廠進料催化裂解所獲得者典型地具有下列組成: •13- 200904778 丙烯 =0-2重量% 丙烷 =0-2重量% 丁二烯 =0 - 5重量% 丁烯-1 =5-20重量% 丁烯-2 =1 0-50 重量 % 異丁烯 =5 -2 5重量% 異丁烷 =10-45 重量 % 正丁烷 =5 -2 5重量% 更典型地’從使含氧化合物如甲醇轉化爲低級烯烴中 所獲得的c4烴餾份具有下列組成: 丙稀 =0 -1 重量% 丙垸 =0-0.5重量% 丁二烯 =0-1重量% 丁儲-1 = 10-40 重量 % 丁烯-2 =50-85 重量 % 異丁稀 =〇-1〇重量% 正-+異丁烷 =0-10重量% 上述c4烴混合物中之任一者或任何混合物都可用於 本發明之烷基化方法。除了直鏈丁烯類及丁烷類外,這些 混合物典型地含有如異丁烯及丁二烯之組份,彼等對烷基 化程序有害。舉例說明之,異丁烯與苯的正常烷化產物爲 第三丁基苯,如先削所述,此第二丁基苯係作用爲隨後之 -14 - 200904778 氧化步驟的抑制劑。因此,在烷基化步 物較佳地係進行丁二烯去除及異丁烯去 烯可藉由選擇性二聚作用或與甲醇反應 ,而丁二烯可藉由萃取或選擇性氫化爲 較佳地,本發明所用之c4烷基化試劑 丁烯及小於〇. 1 %之丁二烯。 除了其他烴組份外,商業上之c4 有對烷基化程序有害的其他雜質。舉傾 烴流典型地含有氮及硫雜質,而由含氧 獲得之c4烴流典型地含有未反應之含 此,在烷基化步驟之前,除了丁二烯及 些混合物也可進行一或多次之硫去除、 物去除。硫、氮、含氧化合物雜質之去 性劑處理、水處理、蒸餾、利用分子篩 離中的一者或其組合而進行。典型地水 〇 合宜地,送進本發明之烷基化步驟 1 0 0 0 ppm,如小於500 ppm >例如小於 /或該總進料典型地含有小於1 00 ppm 例如小於3 ppm之硫;及/或該總進料 p p m,如小於1 p p m,例如小於〇. 1 p p m 雖然較不爲人所喜歡,但可行的美 烷基化試劑與C3烷基化試劑(如丙烯 發明之烷基化方法的烷基化試劑,如此 驟之前,這些混合 除。舉例之,異丁 生成MTBE而除去 丁稀一1而除去。 含有小於1 %之異 烴混合物典型地含 ΐ之,煉油廠之c 4 化合物之轉化法所 氧化合物及水。因 異丁烯之除外,這 氮去除及含氧化合 除習知地係藉由苛 之吸附及/或膜分 也可藉由吸附除去 的總進料含有小於 100 ppm的水;及 ,如小於3 0 p p m ’ 典型地含有小於1 〇 之氮。 ^使用如上述之C4 )之混合物作爲本 該烷基化步驟係生 -15- 200904778 成枯烯與第二丁基苯之混合物。然後該所得之混合物可透 過氧化及斷裂來處理,而製造丙酮與MEK及連同苯酚之 混合物,爲了符合雙酚-A製造之需求,其中較佳地丙酮 對苯酚之莫耳比爲〇. 5 : 1。 本發明所用之烷基化觸媒係爲MCM-22家族之結晶分 子篩。如本文所使用,“MCM-22家族物質”(或“MCM-22 家族之物質”或“MCM-22家族分子篩”或“MCM-22家族沸 石”)包括下列中之一或多者: • 由普通第一級結晶結構單位晶元製得的分子篩, 該單位晶元具有MWW之架構拓撲。(單位晶元係爲原子 之空間排列,其以三度空間鋪陳以便描述晶體結構。此類 晶體結構揭示於''Atlas of Zeolite Framework Types", Fifth edition, 200 1,其全部內容將倂入本文供參考); . 由普通第二級結構單元製得之分子篩,係爲此類 MWW架構拓撲單位晶元的二度空間鋪陳,而形成一個單 位晶元厚度之單層,較佳地爲一個c-單位晶元厚度; • 由普通% —級結構單兀製得之分子舖,爲一或一 個以上單位晶元厚度之層,其中該一個以上單位晶元厚度 之層係自堆疊、塡密、或結合至少兩個一單位晶元厚度之 單層中製造。此類第二級結構單元之堆疊可爲規則方式、 不規則方式、無規方式、或彼等之任何組合;及 • 由具有MWW架構拓撲之單位晶元經由任何規則 或無規之2度-空間或3度-空間之組合所製得的分子篩。 MCM-22家族分子篩包括那些具有在12.4±0.25、 -16- 200904778 6,9±0.15、3.5 7±0·07及3.42±0.07埃有著d-間距最大値之 X-射線繞射圖的分子篩。用來表現該物質之特徵的X-射 線繞射數據係經由標準技巧並使用銅之Κ- α雙値做爲入 射輻射及配備閃光計數器且又連結電腦作爲收集系統之繞 射儀而獲得。 MCM-22家族物質包括MCM-22 (揭示於美國專利 4,954,325號)、PSH-3 (揭示於美國專利4,439,409號) 、SSZ-25 (揭示於美國專利 4,826,667號)、ERB-1 (揭 示於歐洲專利 〇293032號)、ITQ-1 (揭示於美國專利 6,077,498號)、ITQ-2 (揭示於國際專利公告案 WO 9 7/17290 號)、MCM-36C 揭示於美國專利 5,250,277 號)、MCM-49 (揭示於美國專利5,23 6,5 7 5號)、MCM-56 (揭示於美國專利5,3 62,697號)、UZM-8 (揭示於美 國專利6,756,030號)、及彼等之混合物。MCM-22家族 分子篩係較佳的烷基化觸媒,頃發現,在與其他丁基苯異 構物比較時,MCM-22家族分子篩對第二丁基苯之製造有 很高的選擇率。較佳地,該分子篩係選自(a) MCM-49、 (b) MCM-56 及(c) MCM-49 與 MCM-56 之同型,如 ITQ-2。 烷基化觸媒可包括未經結合或自行結合形式之分子篩 ,或替代地,該分子篩可依習知方式與氧化物黏合劑(如 氧化鋁)組合,而使得最終之烷基化觸媒較佳地含有2至 8 〇重量%的篩目。 在一具體實施例中,觸媒是未經結合且具有比與黏合 -17- 200904778 劑調配之觸媒更優異的破碎强度。此類觸媒係藉由蒸氣相 結晶法而合宜地製備,特別是一種在蒸氣相結晶作用發生 時防止合成混合物中所使用的苛性劑殘留於沸石觸媒內的 蒸氣相結晶法。 已結合或未經結合形式之MCM-22家族沸石在用於本 發明之烷基化方法之前係在增進該沸石之第二丁基苯選擇 率的條件下與液態或蒸氣形式之水接觸。雖然與水接觸之 條件不用精密地控制,但第二丁基苯選擇率之增進通常卻 可藉由將沸石與至少〇 °c (如約1 〇。(:至約5 〇 r )的水接觸 而達成。較佳地此一接觸進行至少〇 · 5小時,例如約2小 時至約24小時。典型地,與水接觸係爲了使觸媒重量增 加以沸石之最初重量計20至80重量%,而以25至80重 量%較佳’ 30至75重量%更佳,例如40至60重量%。 雖然增進選擇率之原因並不完全明瞭,頃相信與水接 觸可促進三價金屬(通常爲鋁)再插入沸石的四面體框 架內及/或減輕在沸石製造中早先步驟(特別是煅燒及/ 或脫水)所引起的局部幾何應變。結果,該與水之接觸似 乎伴隨著在四甲基矽烷(TMS)之-80至-120 ppm化學位 移範圍內增加沸石之29Si MAS NMR光譜中至少一個峰的 振幅或寬度。特定言之,與水接觸似乎經常增進沸石之 29Si MAS NMR光譜在-90至-100 ppm化學位移範圍內一 個峰的解析度,該峰在沒有水處理的沸石中是不存在或未 能分辨。在此一關係中,本專利說明書內有關NMR化學 位移數値的所有參考値係以四甲基矽烷(TMS )的參考峰 200904778 之位移爲基礎而測量。 水處理後’ MCM-22家族沸石可直接用作爲製 丁基苯之烷基化觸媒。或者,在與水接觸之後及用 化觸媒之前’此沸石也可在空氣或惰性氣體(如氮 乾燥,例如在約1 〇 〇 °C至約2 0 0 °c溫度下約1小時 小時。令人驚訝地’頃發現此乾燥步驟不會顯著地 水接觸步驟所產生的第二丁基苯選擇率之增進。 烷基化方法係在有效之烷基化條件下使有機反 亦即可烷基化芳族化合物及烷基化試劑,與上述之 觸媒接觸而進行,該有效之烷基化條件係控制使第 苯之轉化率達最大値並使丁烯寡聚物之生成達至最 定言之,係將大量的化學計量過量之苯送進烷基化 ’及較佳地藉由分段添加烷基化試劑而使烷基化試 部濃度減少。此係藉由提供多個串聯接連之固定床 而合宜地達成。然後將大部份或所有的苯送進第一 中’然而院基化試劑係分成數個相等或不同之等份 每一份送進不同的反應區中。或者,烷基化反應也 化性蒸餾反應器中進行,並使烷基化試劑在反應過 續或分段地送進反應器內。在此二者情況下,送進 內之苯及烷基化試劑的總量合宜地係使苯對烷基化 總莫耳比約1至約2 0,以約3至約1 〇爲較佳,約 9更佳。 此外,烷基化條件方便地包括溫度爲約6 0 °C至 °C (例如約i〇(TC至約200 °C ),及/或壓力爲糸 造第二 爲烷基 氣)中 至約5 減損因 應物, 院基化 二丁基 小。特 反應中 劑之局 反應區 反應區 ,再將 可在催 程中連 反應器 試劑之 4至約 約260 3 7000 -19- 200904778 kPa或以下(例如約1000至約3500 kPa),及/或以C4 烷基化試劑爲基礎的每小時之重量空間速度(WHSV )爲 約〇.1至約50 hr·1 (例如約1至約10 hr·1 )。 反應物可爲蒸氣相或部份的或全部是液相,並可爲純 的,也就是說,沒有故意地以其他物質混合或稀釋,或是 該等反應物可藉助於載劑氣體或稀釋劑(如氫或氮氣)而 與沸石觸媒接觸。較佳地,反應物爲至少部份液相。 使用上述之觸媒及烷基化條件時,頃發現本發明方法 之烷基化步驟對第二丁基苯有很高的選擇性。特別地,頃 發現烷基化產物通常含有至少93重量% (以至少95重量 %爲較佳)之第二丁基苯,及/或在約0.01重量%與約1 重量%之間(以約〇·〇5重量%與約0.8重量%之間爲較 佳)的丁烯寡聚物,及/或小於0.5重量%之異丁基苯。 雖然烷基化步驟對第二丁基苯有高度選擇性,但來自 烷基化反應之流出物普通都含有某些多烷基化產物,及未 反應之芳族進料和所欲之單烷基化物質。未反應之芳族進 料通常係藉由蒸餾回收並再循環至烷基化反應器內。來自 苯蒸餾之底部產物將進一步蒸餾而使單烷基化產物與任何 多烷基化產物及其他重質份分離。視存在於烷基化反應流 出物之多烷基化產物的數量而定,可能需要使該等多烷基 化產物與額外的苯轉烷基化而使所欲之單烷基化物質的製 造達到最大。 以額外的苯進行轉烷基化典型地係在不同於烷基化反 應器的轉烷基化反應器內及在適當的轉烷基化觸媒(如 -20- 200904778 MCM-22家族分子飾、/5沸石、MCM-68(參考美國專利 6,014,018號)、沸石Y或發光沸石)上進行。MCM_22 家族分子篩包括MCM-22 (揭示於美國專利4,954,325號 )、PSH-3(揭示於美國專利 4,439,409 號)、SSZ-25( 揭不於美國專利4,826,667號)、ERB-1(揭示於歐洲專 利0293 03 2號)、ITQ-1 (揭示於美國專利6,077,498號 )、ITQ-2(揭示於國際專利公告案WO97/17290號)、 MCM-36C揭示於美國專利5,250,277號)、MCM-49(揭 示於美國專利5,236,575號)、MCM-56(揭示於美國專 利5,362,697號)、UZM-8(揭示於美國專利6,756,030 號)、及彼等之混合物。轉烷基化反應典型地係在至少部 份液相條件下進行,該條件適當地包括溫度爲1 0 0至3 0 0 °C,及/或壓力爲1000至約7000 kPa,及/或以總進料 計之每小時重量空間速度爲1至50 hr·1,及/或苯/多烷 基化苯之重量比率爲1至10。 第二丁基苯之氧化 爲了使第二丁基苯轉化爲苯酚及甲基乙基酮,第二丁 基苯在最初即被氧化爲相應之氫過氧化物。此可藉由將含 氧氣體(如空氣)導入含有第二丁基苯之液相中而達成。 和枯烯不同,第二丁基苯之大氣壓式空氣氧化作用在缺乏 觸媒下將非常難以達成。舉例說明之,在110 °c及大氣壓 力下第二丁基苯無法氧化,然而枯烯在此相同條件下卻氧 化得很好。在較高溫度下可改善第二丁基苯的大氣壓式空 -21 - 200904778 氣氧化速率;然而’較高的溫度也會產生顯著量的不想要 之副產物。 反應速率及選擇率之增進可藉由在觸媒存在下進行第 二丁基苯之氧化作用而達成。適當的第二丁基苯觸媒包栝 水溶性螯合化合物,其中多芽配位基係配位到至少一種來 自鈷、鎳、錳、銅、及鐵的金屬(參考美國專利 4,013,725號)。更佳地,係使用不勻相觸媒。適當的不 勻相觸媒係揭示於美國專利5,1 8 3,9 4 5號(其中該觸媒爲 酮基(羥基)橋聯四核錳錯合物),及美國專利 5,922,920號,其中該觸媒包含具有混合型金屬核心之酮 基(羥基)橋聯四核金屬錯合物,該核心的一個金屬係選 自Zn、Cu、Fe、Co、Ni、Μη之二價金屬及其混合物,及 另一金屬爲選自In、Fe、Mn、Ga、Α1之三價金屬及其混 合物。該專利之全部揭示內容將倂入本文供參考。 其他用於第二丁基苯氧化步驟之適當觸媒有N-羥基 取代之環狀醯亞胺類,其係揭示於美國專利6,720,462號 且將併入本文供參考,例如N -羥基苯二甲醯亞胺、4-胺基—N -羥基苯二甲醯亞胺、3 -胺基一 N —羥基苯二甲 醯亞胺、四溴基一 N —羥基苯二甲醯亞胺、四氯基一N -經基苯二甲酸亞胺、N-hydroxyhetimide、N-hydroxyhimimide、N —經基偏苯三酸醯亞胺 (N-hydroxytrimellitimide ) 、N-經基苯一 1,2,4 一三醯亞胺 、Ν,Ν’—二羥基(均苯二醯亞胺)、Ν,Ν’ —二羥基(二苯 甲酮—3,3’,4,4’)一二醯亞胺)、Ν-羥基馬來醯亞胺、 -22- 200904778 吡啶—2,3 -二醯亞胺、N—羥基琥珀醯亞胺、N一經基( 酒石醯亞胺)、N—羥基—5—原冰片烯一 2,3 —二醯亞胺 、外一N-羥基一7 —氧二環[2.2.1]庚一 5_烯一 2,3 —二醯 亞胺、N —羥基一順式—環己烷一 1,2-二醯亞胺、N-羥 基_順式一 4一環己輝一 1,2-二醯亞胺、N-經基萘醯亞 胺鈉鹽或N—羥基一鄰一苯二磺醯亞胺。較佳地’該觸媒 爲N—羥基苯二醯亞胺。另一適當之觸媒爲N,N’,N”—三 羥基異氰尿酸。 這些物質可單獨使用或在自由基引發劑存在下使用, 以及可使用作爲液相、均勻觸媒或受承載於固體載劑上而 供應爲不勻相觸媒。 第二丁基苯氧化步驟之適當條件包括溫度在約7 0 °C 至約2 0 0 °C之間(如約9 0 °C至約1 3 0 °C ),及壓力爲約5 0 至約2000 kPa (約0·5至約20大氣壓)。鹼性緩衝劑也 可加入而與氧化期間可能形成之酸性副產物反應。此外, 也可導入水相而幫助溶解鹼性化合物,如碳酸鈉。氧化步 驟中的單程轉化率較佳地係維持在5 0 %以下,以使副產 物之形成減至最低。氧化反應係在催化性蒸餾單元中合宜 地進行’且所生成之第二丁基苯氫過氧化物可在斷裂步驟 之前藉由餾出未反應之第二丁基苯而濃縮》 氫過氧化物之斷裂 在第二丁基苯轉換成苯酚及甲基乙基酮中的最終步驟 包含第二丁基苯氫過氧化物之斷裂,其係藉由在約20t -23- 200904778 至約l5〇t:溫度(例如約4〇°C至約120°c ),及約50至 約2500 kPa壓力(例如約100至約1000 kPa),及/或 以氫過氧化物爲基礎的每小時之液體空間速度(LHSV ) 約0.1至約100 h^1 (較佳地約1至約50 hr·1 )於液相中 使該氫過氧化物與觸媒接觸而合宜地達到。第二丁基苯氫 過氧化物係較佳地在對斷裂反應呈惰性的有機溶劑(例如 甲基乙基酮、苯酚或第二丁基苯)中稀釋,以便協助熱排 除。斷裂反應係在催化性蒸餾單元中合宜地進行。 斷裂步驟中所用之觸煤可爲均相觸煤或不勻相觸煤。 適當之均相斷裂觸媒包括硫酸、高氯酸、磷酸、鹽酸 及對苯磺酸。氯化鐵、三氟化硼、二氧化硫及三氧化硫也 是有效用之均相斷裂觸媒。較佳之均相斷裂觸媒爲硫酸。 用於第二丁基苯氫過氧化物之斷裂的適當不勻相斷裂 觸媒包括蒙脫石黏土,如揭示於美國專利4,870,2 1 7號之 酸性蒙脫石二氧化矽-氧化鋁黏土,該專利之全部揭示內 容將倂入本文中供參考。 下列實施例係基於解說目的,且不限制本發明之範圍 實施例1 (比較性) 在150°C乾燥之MCM-49/V3 00觸媒製造第二丁基苯 將一具有標稱組成爲80重量%沸石及20重量% Versal 3 00 ( V3 00 )氧化鋁的(新鮮MCM-22觸媒樣品) 擠壓成直徑 1.3公釐(1/20英吋)之四波瓣狀( -24- 200904778 quadralobe)形式並切割成1.3公釐(1/20英吋)長度。 將0.38公克該觸媒以砂稀釋至3立方公分,並裝塡在外 直徑爲4.76公釐(3/16英吋)之等溫、向下游的固定床 式管狀反應器中。在l5〇°C及101 kPa(l大氣壓),以 1〇〇立方公分/分鐘之流動氮氣乾燥觸媒達2小時。關掉氮 氣並在60立方公分/小時’將苯送進反應器內直到反應器 壓力達到2170 kPa ( 300 psig)爲止。然後,將苯流動減 少至 7.63立方公分/小時,並將溫度調節至16(TC。在 2.57立方公分/小時或4.2 WHSV,從注射器泵中導入2-丁 烯進料(57.1%順式-丁烯、37.8%反式-丁烯、2.5%正丁 烯、0.8%異丁烯和1-丁烯 '及1·8%其他物質)。在整個 運轉中使進料苯/ 丁烯之莫耳比維持在3:1。在160°C及 2 1 70 kPa ( 3 00 psig ),將液體產物收集於冷阱中並離線 分析。丁烯轉化率係藉由測量未反應丁烯相對於進料丁烯 而測定。在 160 °C、2170 kPa ( 300 psig )、及 3: 1 苯 /丁 烯莫耳比,在基於丁烯的14.4、25.2,接著4.2 WHSV收 集額外數據。第二丁基苯(s-BB )選擇率對生產時間係顯 示於圖1。二丁基苯(Di-BB ) /S-BB比率對生產時間係顯 示於圖2。在85%及97% 丁烯轉化率下的代表性數據各 別顯示於表2及表3。 實施例2 以潮濕之MCM-49/V3 00觸媒製造第二丁基苯 將0.38公克等份之如實施例1所述的相同MCM-49 -25- 200904778 觸媒(切割成1.3公釐(1/2 0英吋)長度)稱重在試樣盤 中。將具有該觸媒之盤放進底部含水之乾燥器內的收集盤 上。在觸媒與液體水之間並沒有直接接觸。將觸媒留置於 封閉的乾燥器內至過夜。觸媒最終重量是〇·51公克。利 用如實施例1所述之相同步驟將全部量的潮濕觸媒裝塡在 反應器中,但沒有觸媒乾燥步驟。在6〇立方公分/小時下 將苯送進反應器內直到反應器壓力達到2170 kPa( 300 psig ),及反應器溫度達到16〇°C (斜度爲5度c/分鐘) 爲止。然後,將苯流動減少至7.63立方公分/小時’及在 2.57立方公分/小時或4.2 WHSV,將如實施例1所用之相 同2-丁烯進料導入。在整個運轉中使進料苯/丁烯之莫耳 比維持在 3:1。在 16(TC、2l7〇kPa (300psig)、及 3 :1苯/丁烯莫耳比,在基於丁烯的12·6、25·2’接著4·4 WHSV,收集額外數據。s-BB選擇率對生產時間係顯示於 圖1。D i - B B / s - B B比率對生產時間係顯示於圖2 °線性輸 出之後在85%及97% 丁烯轉化率下的代表性數據各別顯 示於表2及表3。 -26- 200904778 表2.在85% 丁烯轉化率下之MCM-49性能的比較 乾燥觸媒(實施例1) 潮濕觸媒(實施例2) 生產天數 3.9 4.0 4.1 7.9 8.0 8.1 苯 WHSV,h-1 105.0 105.0 105.0 105.0 105.0 105.0 丁烯 WHSV^1 25.2 25.2 25.2 25.2 25.2 25.2 丁烯轉化率,% 84.6 83.3 83.5 87.4 84.3 85.1 產物選擇率,重量% 異丁烷 0.001 0.001 0.001 0.000 0.000 0.000 異丁烯+1-丁烯 0.411 0.413 0.416 0.280 0.373 0.310 c5-c7 0.079 0.077 0.066 0.061 0.105 0.057 1.285 1.332 1.255 0.969 1.083 1.031 C9-11 0.047 0.059 0.058 0.034 0.032 0.032 Ci2=+Ci〇-Cii 芳族 0.106 0.095 0.103 0.077 0.072 0.078 化合物 Ci3,15 0.085 0.091 0.092 0.076 0.066 0.069 枯烯 0.022 0.021 0.021 0.025 0.023 0.023 第三丁基苯 0.031 0.029 0.029 0.039 0.032 0.032 異丁基苯* 0.000 0.000 0.000 0.000 0.000 0.000 第二丁基苯 91.203 90.969 90.955 94.137 94.080 94.027 正丁基苯 0.007 0.011 0.008 0.007 0.011 0.010 二丁基苯類 6.418 6.588 6.682 4.101 3.973 4.174 三丁基苯類 0.291 0.304 0.303 0.181 0.140 0.150 重質份 0.014 0.010 0.011 0.014 0.011 0.005 總量 100.0 100.0 100.0 100.0 100.0 100.0 s-BB純度,% t-BB/所有 BB,% 0.034 0.032 0.032 0.042 0.034 0.034 i-BB"所有 BB,% 0.000 0.000 0.000 0.000 0.000 0.000 s-BB/所有 BB,% 99.959 99.957 99.960 99.951 99.955 99.955 n-BB/所有 BB,% 0.007 0.012 0.008 0.007 0.011 0.011 總量 100.0 100.0 100.0 100.0 100.0 100.0 Di-BB/s-BB重量比率 7.0 7.2 7.3 4.4 4.2 4.4 ,% 一級速率常數九1 46 49 所有試樣係在 160〇C , 2170kPa ( 300psig) ,及3 :1苯/ 丁烯莫耳比下收集。 *全部丁基苯中異丁基苯小於0.5%是無法以所用之GC 偵測到。 -27- 200904778 表3.在97% 丁烯轉化率下之MCM-49性能的比較 乾燥觸媒(實施例1) 潮濕觸媒(實施例2) 生產天數 4.8 5.8 6.8 8.8 9.8 10.8 苯 WHSV,h_1 17.5 17.5 17.5 17.5 17.5 17.5 丁烯 WHSVV 4.2 4.2 4.2 4.2 4.2 4.2 丁烯轉化率, 96.7 96.5 96.7 96.7 96.4 96.5 產物選擇率, 異丁烷 0.001 0.001 0.001 0.001 0.001 0.001 異丁烯+1- 0.000 0.000 0.000 0.000 0.000 0.000 c5-c7 0.063 0.061 0.060 0.057 0.055 0.047 c8= 0.715 0.691 0.690 0.469 0.458 0.501 C9-11 0.033 0.050 0.054 0.016 0.025 0.025 Cl2=+Cl〇-Cll 0.102 0.152 0.130 0.101 0.113 0.113 C13-15 0.101 0.215 0.101 0.105 0.076 0.130 枯烯 0.028 0.030 0.030 0.034 0.036 0.035 第三丁基苯 0.062 0.067 0.065 0.080 0.086 0.084 異丁基苯* 0.000 0.000 0.000 0.000 0.000 0.000 第二丁基苯 92.311 92.075 92.213 94.837 94.949 94.524 正丁基苯 0.007 0.011 0.011 0.008 0.009 0.008 二丁基苯類 5.933 5.910 6.029 4.046 3.966 4.273 三丁基苯類 0.475 0.575 0.426 0.239 0.220 0.251 重質份 0.170 0.161 0.188 0.005 0.005 0.009 總量 100.0 100.0 100.0 100.0 100.0 100.0 第二丁基苯 t-BB/所有 BB,% 0.068 0.073 0.071 0.084 0.091 0.088 i-BB*/所有 BB,% 0.000 0.000 0.000 0.000 0.000 0.000 s-BB/所有 BB,% 99.925 99.915 99.917 99.908 99.900 99.903 n-BB/所有 BB,% 0.008 0.012 0.012 0.008 0.009 0.008 總量,% 100.0 100.0 100.0 100.0 100.0 100.0 Di-BB/s-BB 重畺 6.4 6.4 6.5 4.3 4.2 4.5 一級速率 46 49 所有試樣係在 160°C,2170kPa ( 3 00psig ),及 3 : 1 苯 / 丁烯莫耳比下收集。 *全部丁基苯中異丁基苯小於0.5%是無法以所用之GC 偵測到。 -28- 200904778 參考圖1,可看出實施例1之乾燥觸媒在啓動時獲得 90%選擇率的s-BB,及在穩態操作下逐步增加選擇率至 92 %。對照下,實施例2之潮濕觸媒在啓動後馬上產生 94%選擇率的s-BB,且在整個運轉中都維持在94-95 %。 參考圖2,可看出在啓動時實施例1之乾燥觸媒產生2倍 於實施例2之潮濕觸媒的di-BB,且在穩態操作時實施例 1之di-BB都高出2重量%。因此,使用沒有乾燥之潮濕 MCM-49可排除產生較高di-BB的線上輸出期間,及在穩 態操作下供應多出2%的s-BB選擇率。 表2顯示,在8 5 % 丁烯轉化率,潮濕觸媒與乾燥 MCM-49比較時可產生多出3%的s-BB(94%對91%)及 更少的丁烯寡聚物和聚丁基苯類。一級速率常數(參閱表 2底部,其係以丁烯轉化率爲基礎計算)指出,潮濕作用 對觸媒活性並沒有任何影響。事實上潮濕觸媒具有比乾燥 觸媒些微較高的速率常數。 類似地,表3顯示,在9 7 % 丁烯轉化率,潮濕觸媒 與乾燥MCM-49比較時產生多出3%的s-BB(95%對92 % )及更少的丁烯寡聚物、聚丁基苯類和重質份。潮濕作 用顯然地使觸媒活性改質,排除線上輸出期間,減少副產 物生成,及增進s-BB選擇率。 實施例3 (比較性) 以沒有乾燥或潮濕之MCM-49/V300觸媒製造第二丁基苯 利用實施例1所述之相同步驟將〇·2〇公克等份之如 -29- 200904778 實施例1所述的相同MCM-49觸媒(切割成1.3公釐( 1/2 0英吋)長度)裝塡在反應器中。使用沒有乾燥之觸媒 。在60立方公分/小時,將苯送進反應器中直到壓力達到 2170 kPa(300 psig),及反應器溫度達到160°C (斜度 爲5度C/分鐘)爲止。然後,將苯流動減少至7.63立方 公分/小時。在2.57立方公分/小時或8.0 WHSV下將2-丁 烯導入。在 1 60°C、2170 kPa ( 3 00 psig )、及 3 : 1 苯 /丁 烯莫耳比,收集數據。在8 WHSV觀察到95% 丁烯轉化 率,在24 WHSV 丁烯轉化率爲73%,及在48 WHSV 丁 烯轉化率爲67%。以丁烯轉化率爲基礎之一級速率常數 爲51 。s-BB選擇率對生產時間係顯示於圖3a。Di- 比率對生產時間係顯示於圖3b 。爲了比較,實施 例1及2之數據也含括在內。這些數據顯示在啓動之前不 管MCM-49觸媒乾燥與否,都比潮濕型式提供較低的s-BB選擇率及較高的di-BB選擇率。 實施例4 以經水浸濕之MCM-49/V3 00觸媒製造第二丁基苯 在室溫下以去離子水浸泡0.20公克等份之如實施例1 所述的相同MCM-49觸媒(切割成1.3公釐(1/20英吋) 長度)達1小時,然後也在室溫風乾至過夜。觸媒最後重 量爲0.26公克。利用實施例1所述之相同步驟將全部量 之觸媒裝塡在反應器中。無需進一步乾燥即可使用觸媒。 在6 0立方公分/小時’將苯送進反應器中直到壓力達到 -30- 200904778 2170 kPa ( 3 00 psig),及反應器溫度達到160t:(斜度 爲5度C/分鐘)爲止。然後,將苯流動減少至7.63立方 公分/小時。在2.57立方公分/小時或8 WHSV下將2-丁 烯導入。在 160 °C、2170 kP a (300 psig)、及 3:1 苯/ 丁烯莫耳比,收集數據。在8 WHSV達成97% 丁烯轉化 率,在24 WHSV 丁烯轉化率爲83%,及在48 WHSV 丁 烯轉化率爲67%。以苯轉化率爲基礎之一級速率常數爲 45 1Γ1。s-BB選擇率對生產時間係顯示於圖4a。Di-BB/s-BB比率對生產時間係顯示於圖4b。爲了比較,實施例1 至3之數據也含括在內。這些數據顯示在使MCM-49改質 以達成高s-BB選擇率及低di-BB選擇率上經水浸濕也和 潮濕處理一樣有效。 實施例5 以潮濕然後接著乾燥之MCM-49/V300觸媒製造第二丁基 苯 利用實施例2所述之相同步驟使〇 · 2 〇公克等份之如 實施例1所述的相同MCM-49觸媒(切割成1 .3公釐( 1/2 0英吋)長度)潮濕。潮濕後觸媒之最後重量爲〇 3〇 公克。利用實施例1所述之相同步驟將全部量的潮濕觸媒 裝塡在反應器中。在l5〇r及1〇1 kPa ( i atm),以1〇〇 _LL方公分/分鐘之流動氮氣乾燥觸媒達2小時。關掉氮氣 並在60立方公分/小時,將苯送進反應器中直到壓力達到 2 170 kPa ( 3 00 psig)。將反應器溫度調節至16〇t並將 -31 - 200904778 苯流動減少至7· 63立方公分/小時。在2.57立方公分/小 時或 8 WHSV,將 2 -丁 稀導入。在 16〇t、217〇 kpa(300 psig)、及3: 1苯/丁烯莫耳比,收集數據。在8 WHS V 達成95% 丁稀轉化率’在24 WHS v 丁烯轉化率爲8〇%, 及在48 WHSV 丁烯轉化率爲66%。以丁烯轉化率爲基礎 之一級速率常數爲42 h·1。S_BB選擇率對生產時間係顯示 於圖5a。Di-BB/s-ββ比率對生產時間係顯示於圖5b。爲 了比較’實施例1至4之數據也含括在內。這些數據顯示 ’雖然在啓動之前此一潮濕觸媒係在1 5 〇 下乾燥,但其 s-BB選擇率仍維持很高且di_BB維持很低。 表4係比較在92-97% 丁烯轉化率及穩態條件下實施 例1至5之觸媒性能。當與未處理之MCM-49比較時,潮 濕/水處理可產生多出3%的S_BB( 95%對92%)及更少 的丁烯寡聚物、二丁基苯類、三丁基苯類及重質份。潮濕 作用顯然地使觸媒活性改質,排除線上輸出期間,減少副 產物生成,及增進s-BB選擇率。 -32- 200904778 表4. MCM-4 9/V3 00性能的比較 實施例 3 1 2 5 4 處理 te «Μ、、 te 潮濕 潮濕 水 在15(TC下乾燥 Μ j\\\ 有 有 Μ 生產天數 4.9 6.8 10.8 1.8 2.8 苯 WHSV,hf1 32.8 17.4 17.5 33.0 33.1 丁烯 WHSV,h-1 7.9 4.2 4.2 7.9 7.9 丁烯轉化率,% 92.4 96.7 96.5 94.2 96.4 產物選擇率,重量% 異丁烷 0.001 0.001 0.001 0.001 0.001 異丁烯+1-丁烯 0.023 0.000 0.000 0.039 0.000 c5-c7 0.099 0.093 0.079 0.066 0.056 c8= 0.755 0.690 0.501 0.413 0.500 C9-11 0.050 0.054 0.025 0.051 0.025 芳族化合物 0.115 0.130 0.113 0.114 0.090 Cl3_15 0.055 0.101 0.130 0.095 0.100 枯烯 0.023 0.030 0.035 0.022 0.026 第三丁基苯 0.042 0.065 0.084 0.083 0.051 異丁基苯* 0.000 0.000 0.000 0.000 0.000 第二丁基苯 91.682 92.183 94.493 94.377 94.430 正丁基苯 0.006 0.011 0.008 0.014 0.006 二丁基苯類 6.397 6.027 4.271 4.536 4.538 三丁基苯類 0.440 0.426 0.251 0.158 0.166 重質份 0.312 0.188 0.009 0.030 0.011 總量 100.0 100.0 100.0 100.0 100.0 第二丁基(BB) t-BB/所有 BB,% 0.045 0.071 0.088 0.088 0.054 i-BB"所有 BB,% 0.000 0.000 0.000 0.000 0.000 s-BB/所有 BB,% 99.948 99.917 99.903 99.897 99.939 n-BB/所有 BB,% 0.007 0.012 0.008 0.015 0.007 總量,% 100.0 100.0 100.0 100.0 100.0 Di-BB/s-BB重量比率,% 7.0 6.5 4.5 4.8 4.8 一級速率常數九1 52 46 49 42 45 所有試樣係在 160°C,2170kPa ( 3 00psig ),及 3 : 1 苯 / 丁烯莫耳比下收集。 *全部丁基苯中異丁基苯小於0.5%是無法以所用之GC 偵測到。 -33 200904778 實施例6 (比較性) 以乾燥之MCM-49/Condea觸媒製造第二丁基苯 將一具有標稱化學成分爲80重量%沸石及20重量% Condea氧化鋁的新鮮MCM-49觸媒試樣擠壓成直徑I-3 公釐(1/2〇英吋)之四波瓣狀(quadralobe )形式並切割 成1.3公釐(1/20英吋)長度。將0.40公克該觸媒以砂 稀釋至3立方公分,並裝塡在外直徑爲4.76公釐(3/16 英吋)之等溫、向下游的固定床式管狀反應器中。在150 °C及101 kPa(l大氣壓),以100立方公分/分鐘之流動 氮氣乾燥觸媒2小時。關掉氮氣並在60立方公分/小時’ 將苯送進反應器內直到反應器壓力達到2170 kPa ( 300 psig )爲止。然後,將反應器溫度調節至160°C並將苯流 動減少至7.63立方公分/小時。在2.57立方公分/小時或4 WHSV,將2-丁烯進料導入。在整個運轉中進料苯/ 丁烯 之莫耳比爲3 : 1。s-BB選擇率對生產時間係顯示於圖6a 。Di-BB/ s-BB比率對生產時間係顯示於圖6b。 實施例7 以潮濕之MCM-49/Condea觸媒製造第二丁基苯 利用實施例2所述之相同步驟使0.20公克等份之實 施例6所同的MCM-49/Condea觸媒潮濕。潮濕後觸媒之 最後重量爲〇. 3 5公克。利用實施例1所述之相同步驟將 全部量的潮濕觸媒裝塡在反應器中。無需乾燥即可使用觸 媒。在60立方公分/小時,將苯送進反應器中直到壓力達 -34- 200904778 到2170 kPa ( 3 00 psig ),及反應器溫度達到160°C (斜 度爲5度C/分鐘)爲止。將苯流動減少至7.63立方公分/ 小時。在2.57立方公分/小時或8.0 WHSV ’將2-丁烯導 入。在整個運轉中進料苯/ 丁烯莫耳比爲3: 1。s-BB選擇 率對生產時間係顯示於圖6a。Di-BB/ s-BB比率對生產時 間係顯示於圖6b。 參考圖6a及6b,數據顯示在潮濕處理之前,MCM-49/Condea觸媒具有非常低的s-BB選擇率及非常高的di-BB選擇率。大槪需花2週時間才終於達到穩態性能。相 較於實施例2所示之潮濕MCM-49/Versal 3 00觸媒,潮濕 處理後s-BB選擇率顯著地增加到94-95 %之數値。 表5係比較在95 -98 % 丁烯轉化率下實施例6及7之 觸媒性能。當與乾燥觸媒比較時,潮濕型式可產生多出6 %的s-BB ( 95%對89% ),使副產物(包括丁烯寡聚物 、二丁基苯類、及三丁基苯類)減至一半,使枯烯及重質 份之生成減低至零,以及顯著地減少t-BB及n-BB之生成 。潮濕作用顯然地使觸媒活性改質,排除線上輸出期間, 減少副產物生成,及顯著地增進s - B B選擇率。 -35- 200904778 表5. MCM-49/Condea性能的比較 乾燥觸媒(實施例6) 潮濕觸媒(實施例7) 實施例# 7 8 9 7 8 9 生產天數 7.1 8.1 9.1 6.8 7.8 8.8 苯 WHSV,!^1 16.7 16.7 16.7 33.2 33.2 33.2 丁烯 WHSV,!!·1 4.0 4.0 4.0 8.0 8.0 8.0 丁烯轉化率,% 95.4 95.3 96.3 97.7 95.9 96.4 產物選擇率,Wt% 異丁烷 0.005 0.006 0.005 0.000 0.000 0.000 異丁烯+1-丁烯 0.000 0.000 0.000 0.000 0.000 0.000 c5-c7 0.101 0.115 0.109 0.046 0.099 0.064 c8= 1.154 1.225 1.374 0.571 0.606 0.671 C9-11 0.091 0.088 0.098 0.018 0.007 0.038 c12=+c10-c„ 芳族化 0.283 0.276 0.272 0.074 0.074 0.052 合物 Ci3_15 0.373 0.327 0.320 0.076 0.084 0.060 枯烯 0.290 0.288 0.286 0.000 0.020 0.000 第三丁基苯 0.164 0.158 0.146 0.047 0.045 0.042 異丁基苯* 0.000 0.000 0.000 0.000 0.000 0.000 第二丁基苯 88.096 88.644 89.005 94.828 94.725 95.031 正丁基苯 0.019 0.017 0.025 0.002 0.001 0.000 二丁基苯類 8.583 8.124 7.597 4.280 4.291 4.002 三丁基苯類 0.767 0.669 0.599 0.059 0.049 0.039 重質份 0.075 0.063 0.163 0.000 0.000 0.001 總量 100.0 100.0 100.0 100.0 100.0 100.0 第二丁基苯(BB)純度 t-BB/所有 BB,0/〇 0.185 0.178 0.164 0.049 0.047 0.044 i-BB*/所有 BB,% 0.000 0.000 0.000 0.000 0.000 0.000 s-BB/所有 BB,% 99.794 99.803 99.808 99.949 99.952 99.956 n-BB/所有 BB,% 0.021 0.019 0.028 0.002 0.001 0.000 總量,% 100.0 100.0 100.0 100.0 100.0 100.0 Di-BB/s-BB重量比率 9.7 9.2 8.5 4.5 4.5 4.2 ,% 所有試樣係在 16 0。。 2 1 70kPa (3 OOpsig) ,及3 :1苯/ 丁烯莫耳比下收集。 *全部丁基苯中異丁基苯小於0.5%是無法以所用之GC 偵測到。 -36- 200904778 實施例8 經由29Si MAS NMR比較觸媒 經由29 Si MAS NMR進一步地各別描繪實施例1及2 所述之經1 50 T:乾燥及潮濕之觸媒的特徵。此兩種物質之 29Si MAS NMR數據示於圖7。這些29Si MAS NMR數據清 楚地顯示出可反映脫水或水合作用一發生後結構改變的差 異。特定言之,實施例2所述之潮濕觸媒的29 Si MAS NMR光譜在TMS之-90至-100 ppm化學位移範圍(更特 定地在約-94至-100 ppm之化學位移範圍)內展現一個峰 ,且此峰所示之高點係在TMS的-9 8 ppm附近。在實施例 1之乾燥觸媒的光譜中此峰通常無法分辨。NMR光譜中的 差異反映出Si局部環境中的變化,例如鍵角度及最近鄰 域群體,彼等係視水合程度而定。這些數據提出了使試樣 潤濕可促進A1再插入四面體框架內及/或減輕因脫水作 用所引起的局部幾何應變。這些微妙的結構變化可說明水 合觸媒增加的活性及選擇率。 實施例9 (比較性) 以乾燥及水合之0/氧化鋁觸媒製造第二丁基苯 將一具有標稱化學成分爲65重量%沸石及35重量% Versal 300氧化鋁的新鮮沒沸石觸媒擠壓成直徑1.3公釐 (1/20英吋)之四波瓣狀(quadralobe)形式並切割成2 公釐長度。 利用實施例1之步驟在實施例1之苯與2-丁烯進料 -37- 200904778 的烷基化作用中使用該θ沸石觸媒的一個試樣’在觸媒與 苯及丁烯進料接觸之前使該觸媒在150 °C及101 kPa(l大 氣壓)下以U0立方公分/分鐘之流動氮氣乾燥2小時。 在整個運轉中進料苯/丁烯之莫耳比維持3:1’並在160 °(:及2170 kPa( 300 psig)於冷阱中收集液體產物,再離 線分析。結果槪述於表6中。 利用實施例2之步驟在實施例1之苯與2-丁烯進料 的院基化作用中使用該3沸石觸媒的另一試樣,在觸媒與 苯及丁烯進料接觸之前於封閉乾燥器中使該觸媒潮濕至過 夜。在整個運轉中進料苯/丁烯之莫耳比再次維持3:1, 並在160°C及2170 kPa(3〇0 psig)於冷阱中收集液體產 物’再離線分析。其結果也槪述於表6中。 -38- 200904778 表6 . /3沸石性能的比較 乾燥觸媒 潮濕觸媒 生產天數 0.83 1.83 2.83 0.79 1.79 2.79 苯 WHSVV 33.2 33.2 33.2 33.0 33.0 33.0 丁烯 WHSV^1 8.0 8.0 8.0 7.9 7.9 7.9 丁烯轉化率,% 91.21 60.23 44.64 82.79 49.49 41.88 產物選擇率,wt% 異丁烷 0.004 0.003 0.000 0.006 0.000 0.003 異丁烯+1-丁烯 0.211 3.478 9.208 0.812 6.065 9.301 c5-c7 0.159 0.250 0.346 0.139 0.321 0.398 Cg= 1.039 8.652 12.575 2.721 11.460 12.393 C9-11 0.198 0.670 0.284 0.445 0.470 0.341 C12=+C1()-C„芳族化合 0.226 0.813 0.271 0.795 0.352 0.408 物 Ci3_15 0.361 0.088 0.025 0.587 0.025 0.021 枯烯 0.019 0.000 0.000 0.024 0.000 0.002 第三丁基苯 0.255 0.077 0.012 0.288 0.025 0.010 異丁基苯* 0.000 0.000 0.000 0.000 0.000 0.000 第二丁基苯 85.316 80.627 74.829 81.370 76.713 73.999 正丁基苯 0.006" 0.017 0.000 0.093 0.113 0.000 二丁基苯類 10.361 5.052 2.390 10.974 4.240 2.902 三丁基苯類 1.174 0.194 0.011 1.422 0.114 0.105 重質份 0.672 0.079 0.049 0.325 0.103 0.116 總量 100.0 100.0 100.0 100.0 100.0 100.0 s-BB純度,% t-BB/所有 BB,% 0.298 0.095 0.016 0.352 0.033 0.013 i-BBV所有 BB,% 0.000 0.000 0.000 0.000 0.000 0.000 s-BB/所有 BB,% 99.696 99.884 99.984 99.534 99.821 99.987 n-BB/所有 BB,% 0.007 0.021 0.000 0.113 0.147 0.000 總量,% 100.0 100.0 100.0 100.0 100.0 100.0 Di-BB/s-BB重量比率,% 12.14 6.27 3.19 13.49 5.53 3.92 所有試樣係在16(TC, 2 1 70kPa (300psig) ,及3 : 1苯/ 丁烯莫耳比下收集。 *全部丁基苯中異丁基苯小於0.5%是無法以所用之GC 偵測到。 -39- 200904778 從表6之結果中可看出,在試驗所用之3 : 1的苯/丁 烯莫耳比,乾燥及潮濕之兩種^沸石觸媒在整個寡聚物生 成中快速地減活化。而且不像實施例1及2中所用之 MCM-49觸媒,0沸石觸媒之潮濕作用並沒有導致起始的 s-BB選擇率增高加及起始的di-BB選擇率減少。相反地 ,/3沸石觸媒之潮濕作用與所欲之觸媒比較時,一啓動就 導致較低的s-BB選擇率及較高的di-BB選擇率。 雖然本發明已參考特定具體實施例而描述解說,但熟 諳此藝者將明瞭的是,本發明可遭到本文無必要性解說的 變異。基於此一原因,爲了決定本發明真正的範圍應單獨 地參考隨附之申請專利範圍。 【圖式簡單說明】 圖1係實施例1之乾燥MCM-49/V300觸媒及實施例 2之潮濕MCM-49/V3 00觸媒的第二丁基苯選擇率對生產 時間之圖。其顯示潮濕作用增進SBB選擇率。 圖2係實施例1之乾燥MCM-49/V3 00觸媒及實施例 2之潮濕MCM-49/V3 00觸媒的二丁基苯對第二丁基苯之 重量%對生產時間之圖。其顯示潮濕作用減少二烷基化作 用。 圖3(a)及(b)係實施例1至3之MCM-49/V300 觸媒的第二丁基苯選擇率及二丁基苯對第二丁基苯之重量 %對生產時間的比較圖。 圖4(a)及(b)係實施例1至4之MCM-49/V300 -40- 200904778 觸媒的第二丁基苯選擇率及二丁基苯對第二丁基苯之重量 %對生產時間的比較圖。 圖5(a)及(b)係實施例1至5之MCM-49/V300 觸媒的第二丁基苯選擇率及二丁基苯對第二丁基苯之重量 %對生產時間的比較圖。圖3(a) 、4(a)及5(a)顯 示潮濕作用增進SBB選擇率,而圖3(b) 、4(b)及5 (b )顯示潮濕作用減少二烷基化作用。 圖6 ( a)及(b)係實施例6及7之MCM-49/Condea 觸媒的第二丁基苯選擇率及二丁基苯對第二丁基苯之重量 %對生產時間的比較圖。圖6(a)顯示在啓動時及生產 數曰後,潮濕作用導致比乾燥觸媒所獲得者還更佳的SBB 選擇率。圖6(b)顯示在啓動時及生產數日後,潮濕作 用導致比乾燥觸媒所獲得者還低的二烷基化作用。 圖7係比較實施例1之乾燥MCM-49/V3 00觸媒及實 施例2之潮濕MCM-49/V3 00觸媒在-70至-140 ppm化學 位移範圍內的29Si MAS NMR光譜。 -41 -Stanford Reserch Institute was published in December 1977. The second butylbenzene can be produced by alkylating benzene with n-butene on acid contact coal. Thus, International Patent Publication No. WO 06/158,826 discloses an integrated process for the manufacture of phenol and methyl ethyl ketone in which a feed comprising benzene and a C4 alkylating agent is combined with a yS-containing zeolite under alkylation conditions. Or contacting the coal of the MCM-22 family of molecular sieves to produce an alkylated effluent containing the second butylbenzene. The second butylbenzene is then oxidized to produce a hydroperoxide, and the hydroperoxide is cleaved to produce the desired phenol and methyl ethyl ketone. Traditionally, zeolites of the cerium or MCM-22 family are molecular sieves. By reacting an aqueous mixture of ceria source or other tetravalent metal oxide, alumina source or other trivalent metal oxide and a priming reagent (usually a nitrogen-containing organic base) at elevated temperatures for several hours to several days until Manufactured by obtaining a crystalline product. By way of example, in the alkylation process described in WO 06/158,826, the crystalline product is separated from the residue of the synthesis mixture and subjected to various finishing steps such as extrusion, ion exchange and calcination prior to use as a coal touch. . In general, the final step in the preparation of the coal strike is a calcination step or a drying step of at least 13 ° C to 220 ° C in the presence of an inert gas to remove water adsorbed during storage. Therefore, the molecular sieve coal is typically very dry when used as a coal touch in the manufacturing process of the second butylbenzene. -6- 200904778 When molecular sieves such as zeolite 3 and MCM-2 2 are used in the manufacture of second butyl benzene, there is usually a line out time, followed immediately by the start, during which time Coal produces high amounts of dialkylated and trialkylated products. Depending on how the coal is made and calcined, the second butylbenzene selectivity will vary considerably during startup and during steady state manufacturing. Although the polyalkylated product can be converted back to the second butylbenzene by transalkylation, this adds an extra step, thus maximizing the monoalkylation selectivity during startup and steady state conditions. There is a great interest in chemistry. According to the present invention, it has been found that the second butylbenzene selectivity of the MC Μ 2 2 family species during startup and steady state conditions can be improved by using molecular sieves for the alkylation process to produce the second butyl group. Prior to benzene, the molecular sieve is contacted with water in vapor or liquid form. Although the reasons for increasing the selectivity are not fully understood, the 29 Si MAS NMR data suggests that contact with water promotes the re-insertion of the A1 into the tetrahedral framework of the zeolite and/or mitigates earlier steps in the manufacture of the zeolite (especially calcination and/or dehydration). The local geometric strain caused by it. If the selectivity is not taken into account, it has been found that this enhancement can be maintained even after the zeolite is dried at about 15 ° C after the water contacting step and before the alkylation process. U.S. Patent No. 4,46, 475, the disclosure of which is incorporated herein incorporated by reference in its entirety the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire portion The catalytic activity conditions and the mixture of zeolite and alumina are contacted with an aqueous liquid medium (typically water) at a temperature of from about 1 °C to about 370 °C. U.S. Patent No. 5,077,445 discloses a process for the preparation of a benzene based base (particularly ethylene 200904778 benzene) wherein the process comprises contacting an olefin having from 2 to 6 carbon atoms and liquid benzene with a catenary under alkylation conditions. The contact coal contains a hydrated synthetic porous crystalline MC Μ 2 2 substance. When the crystalline substance is first contacted with the benzene and the olefin, the hydrated crystalline substance contains at least 1 part by weight of liquid water contained in the pore space of the crystalline substance. Wherein the alkylation conditions comprise a combination of temperature and pressure sufficient to maintain the benzene and the water in a liquid state, wherein the hydrated crystalline material is at least 1 in the pore space by placing the crystalline material in liquid water 0% by weight of water is hydrated at the time. It is said that the presence of water inhibits the polyalkylation reaction, thus minimizing the formation of unwanted by-products, especially those having 9 or more carbon atoms. SUMMARY OF THE INVENTION In one aspect, the present invention is directed to a method of making a second butylbenzene comprising benzene and at least under alkylation conditions and in the presence of a catalyst comprising at least one MCM-22 family molecular sieve A C4 alkylating agent reacts to form an alkylated product containing a second butylbenzene, wherein prior to the reaction, the catalyst is in contact with water under conditions which increase the selectivity of the second butylbenzene of the catalyst contact. In another aspect, the invention relates to the use of a catalyst comprising at least one molecular sieve of the MCM-2 2 family in a process for the manufacture of a second butylbenzene, the method of making benzene and at least one under alkylation conditions The C4 alkylating agent is reacted, wherein the molecular sieve has been contacted with water prior to use to increase the second butylbenzene selectivity of the coal. -8 _ 200904778 In a preferred embodiment, as required by the process of the present invention, the second butylbenzene selectivity of the coal contacted with water is the same as that of other processes using the same reactants, coal and process conditions. The second butylbenzene selectivity obtained by contacting the coal with water is at least 1% by weight, preferably at least 2% by weight, and even at least 3% by weight. Conventionally, the contact with water is carried out under conditions including a temperature of at least 〇c. Contact with water is preferably at least 0. 5 hours. More preferably, the temperature of contact with water is between about 10 ° C and about 50 °. (In the range. More preferably, the time of contact with water is from about 2 hours to about 24 hours. In a specific embodiment, the contact with water is between -80 and -120 ppm of tetramethyl decane (TMS) ( More particularly, the TMS ranges from -90 to -100'-94 to -100 or about -98 Ppm. The chemical shift range is sufficient to substantially change the amplitude or width of at least one peak in the 29Si MAS NMR spectrum of the catalyst. In one embodiment, the catalyst is in contact with liquid water. In another embodiment, the catalyst is in contact with water vapor. Conventionally, the catalyst is after contact with water and at the Drying before the reaction. For example, the drying temperature may range from about 100 ° C to about 200 ° C. Preferably, the drying is carried out for about 1 hour to about 5 hours. Conventionally, the C4 alkylating agent comprises a straight a chain butene, such as butene-1, butene-2, or a mixture thereof. Preferably, the linear butene is in a total molar ratio of from about 1 to about 20 inclusive of benzene to butene ( Adding to the method under the alkylation conditions of from about 3 to about 1 Torr, preferably from about 4 to about 9, preferably -9-200904778, conventionally, The alkylation conditions also include a temperature of about 6 (TC to about 260 ° C, and/or a pressure of 7000 kPa or less, and/or a weight space velocity of the feed per hour based on the C4 alkylating agent (WHSV) ) is from about 0 · 1 to 50 hr · 1. In a specific embodiment, the reaction is carried out under at least a portion of the liquid phase. Typically, the MCM-22 family molecular sieve has at 12. 4±0. 25, 6. 9±0. 15, 3·57±0·07 and 3. 42±0. The 07 angstrom has an X-ray diffraction pattern with the largest d-spacing. Conventionally, the molecular sieve system is selected from the group consisting of MCM-22, PSH-3, SSZ-25, ERB-1, IT Q-1, IT Q-2, MC Μ - 3 6 , MC Μ - 4 9 , MCM-56 , UZM-8, and a mixture of them. In a specific embodiment, the process of the present invention further comprises oxidizing the second butylbenzene to form a hydroperoxide, and cleavage of the hydroperoxide to produce phenol and methyl ethyl ketone. Accordingly, in another preferred aspect, the method of the present invention is directed to a method of making phenol and methyl ethyl ketone, the method comprising: (a) contacting a catalyst comprising at least one MCM-22 family molecular sieve with water (b) after (a), reacting benzene with at least one linear butene in the presence of the alkylation conditions and the catalyst to form an alkylated effluent containing the second butylbenzene; (b) oxidizing the second butylbenzene to form a hydroperoxide; and (d) cleavage of the hydroperoxide from (c) to produce phenol and methyl-10-10,047,7878-ethyl ethyl ketone, which is conventionally known Oxidation [Step (C) of the above preferred viewpoint] is carried out in the presence of a catalyst, for example, a catalyst selected from the group consisting of: (i) a keto-based (hydroxyl) bridged tetranuclear metal complex containing manganese, (Π) a keto (hydroxy) bridged tetranuclear metal complex having a mixed metal core, one of which is a divalent metal selected from the group consisting of Zn, Cu' Fe, Co, Ni, Μη and The mixture, and another metal, is a trivalent metal selected from the group consisting of In, Fe, Μη, Ga, Α1, and mixtures thereof, (iii) either alone or in freedom N-hydroxy substituted cyclic quinone imine in the presence of a base initiator, and (iv) N,N',N"-trihydroxyisocyanuric acid alone or in the presence of a free radical initiator. In one embodiment, the oxidation catalyst is a heterogeneous catalyst. Conventionally, the oxidation system is at a temperature of from about 70 ° C to about 200 ° C, and / or from about 50 to about 2000 kPa (0. It is conventionally carried out under a pressure of 5 to 20 atm. The fracture [step (d) of the above preferred viewpoint] is carried out in the presence of a catalyst. The catalyst can be a homogeneous or heterogeneous phase catalyst. In a specific embodiment, the catalyst is a homogeneous catalyst such as sulfuric acid. Conventionally, the fracture is at a temperature of from about 40 ° C to about 12 (TC, and/or a pressure of from about 100 to about 2 500 kPa, and/or an hourly liquid space based on the hydroperoxide). The speed (LHSV) is from about 0. 1 to about 1000 hr · 1. [Embodiment] The present invention relates to the presence of a catalyst containing M CM-2 2 zeolite in the presence of a catalyst - 11 - 200904778 to make benzene and c4 A method for producing a second butylbenzene by reacting an alkylating agent, wherein the zeolite is completed before being treated with water. In particular, the present invention is characterized in that the MC Μ - 2 2 family zeolite is subjected to water treatment to increase the startup period and This finding based on the selectivity of the second butylbenzene in steady state conditions is surprising. Even though the water treated zeolite is subjected to a subsequent drying step, this enhancement can be maintained, but others have been known to be active. The zeolite of the alkylation catalyst does not exhibit this improvement. In addition to improving the selectivity of the second butylbenzene, it has been found that water treatment can also reduce butene oligomers and poly-polymers produced as by-products in the alkylation step. The amount of butylbenzene. When the second butyl benzene is intended for phenol and methyl b The reduction of oligomer formation (not a problem in lower olefin feeds such as ethylene) is particularly important in the manufacture of ketones. In the manufacture of phenol and methyl ethyl ketone, the first butyl benzene is initially produced. Oxidation to the corresponding hydroperoxide, and then the resulting hydroperoxide is cleaved to produce the desired phenol and methyl ethyl hydrazine (ΜΕΚ). Therefore, the oxidation of the second butyl benzene to impurities (especially butene The presence of the polymer) is very sensitive, so any alkylation process that increases the production of the second butylbenzene and reduces the production of butene oligomers provides significant advantages throughout the phenol/ruthenium manufacturing stage. The benzene used in the alkylation step to produce the second butylbenzene can be any commercial benzene feed, but preferably the benzene has a purity of at least 99% by weight. The 〇C4 alkylating agent comprises at least one linear butene. , that is, butene-1-12-200904778, butene-2, or a mixture thereof. The alkylating agent may also be a mixture of olefinic C4 hydrocarbons containing linear butenes, such as those which can be ethane, Propane, butane, LPG and light naphtha vapour The winners are those who obtain catalytic cracking of naphtha and other refinery feeds, and are obtained by converting oxygenates such as methanol to lower olefins. For example, the following C4 hydrocarbon mixtures are usually Any refinery that utilizes steam cracking to produce olefins: crude steam cracked butene stream, raffinate-1 (solvent or hydrogenation to remove butadiene from the crude steam cracked butene stream) The product) and raffinate-2 (products remaining after removal of butadiene and isobutylene from the crude steam cracked butene stream). Generally, these streams have compositions within the weight ranges shown in Table 1 below. Table 1 Component crude raffinate 1 Raffinate 2 Solvent extraction hydrogenation solvent extraction hydrogenated butadiene 30-85 % 0-2 % 0-2 % 0-1 % 0-1 % C4 Acetylene 0-15 % 0-0. 5 % 0-0. 5 % 0-0. 5 % 0-0. 5 % Butene-1 1-30 % 20-50 % 50-95 % 25-75 % 75-95 % Butene-2 1-15 % 10-30 % 0-20 % 15-40 % 0-20 % Isobutylene 0-30 % 0-55 % 0-35 % 0-5 % 0-5 % n-butane 0-10 % 0-55 % 0-10 % 0-55 % 0-10 % _ Isobutane 0- 1 % 0-1 % 0-1 % 0-2 % 0-2 % A mixed C4 stream from other refineries, such as those obtained by catalytic cracking of naphtha and other refinery feeds, typically has the following Composition: • 13- 200904778 Propylene = 0-2 wt% Propane = 0-2 wt% Butadiene = 0 - 5 wt% Butene-1 = 5-20 wt% Butene-2 =1 0-50 wt% Isobutylene = 5 - 2 5 wt% isobutane = 10-45 wt% n-butane = 5 - 2 5 wt% More typically 'c4 hydrocarbon fraction obtained from converting an oxygen-containing compound such as methanol to a lower olefin Has the following composition: propylene = 0 -1% by weight 垸 垸 = 0-0. 5 wt% butadiene = 0-1 wt% butyrate - 1 = 10-40 wt% butene-2 = 50-85 wt% isobutadiene = 〇 -1 〇 wt% positive - + isobutane = 0 -10% by weight Any one or any mixture of the above c4 hydrocarbon mixtures can be used in the alkylation process of the present invention. In addition to linear butenes and butanes, these mixtures typically contain components such as isobutylene and butadiene which are detrimental to the alkylation procedure. By way of example, the normal alkylation product of isobutylene and benzene is a third butylbenzene which, as previously described, acts as an inhibitor of the subsequent oxidation step of -14 - 200904778. Thus, the alkylation step is preferably subjected to butadiene removal and isobutene dealkylation by selective dimerization or reaction with methanol, while butadiene can be preferably extracted or selectively hydrogenated. The c4 alkylating agent butene used in the invention is less than 〇. 1% butadiene. In addition to other hydrocarbon components, commercial c4 has other impurities that are detrimental to the alkylation process. The decanted hydrocarbon stream typically contains nitrogen and sulfur impurities, while the c4 hydrocarbon stream obtained from oxygen typically contains unreacted, and may be carried out in addition to butadiene and mixtures prior to the alkylation step. Secondary sulfur removal, material removal. Sulfur, nitrogen, oxygenate impurity treatment, water treatment, distillation, one of molecular sieves, or a combination thereof. Typically, the hydrazine is conveniently fed to the alkylation step of the invention at a ppm of 100 ppm, such as less than 500 ppm > for example less than/or the total feed typically contains less than 100 ppm, such as less than 3 ppm sulfur; And/or the total feed ppm, such as less than 1 ppm, such as less than 〇. 1 ppm, although less preferred, a viable alkylating agent and a C3 alkylating agent (such as an alkylating agent for the alkylation process of the propylene invention), such a mixture is removed. For example, The isobutylene is formed by removing the MTBE and removing the dilute-1. The oxygen-containing compound containing less than 1% of the mixture of isohydrocarbons typically contains hydrazine, the conversion of the c4 compound of the refinery, and water. Except for isobutylene, this nitrogen removal And the total amount of oxygen-containing oxides which are conventionally removed by adsorption by harsh adsorption and/or membrane fractions contains less than 100 ppm of water; and, if less than 30 ppm 'typically contains less than 1 〇 Nitrogen. Using a mixture of C4 as described above as a mixture of the present alkylation step -15-200904778 cumene and second butylbenzene. The resulting mixture can then be treated by oxidation and cleavage to produce a mixture of acetone and MEK and phenol. Preferably, the molar ratio of acetone to phenol is 〇 in order to meet the requirements for bisphenol-A production. 5 : 1. The alkylation catalyst used in the present invention is a crystalline molecular sieve of the MCM-22 family. As used herein, "MCM-22 family material" (or "MCM-22 family material" or "MCM-22 family molecular sieve" or "MCM-22 family zeolite") includes one or more of the following: A molecular sieve prepared by a common first-order crystalline structure unit wafer having a structural topology of MWW. (The unit cell is a spatial arrangement of atoms, which is laid out in a three-dimensional space to describe the crystal structure. Such crystal structure is disclosed in ''Atlas of Zeolite Framework Types", Fifth edition, 200 1, all of which will be included in this article. for reference); . The molecular sieve prepared by the common second-stage structural unit is a two-dimensional space of the topological unit of such MWW architecture, and forms a single layer of unit crystal thickness, preferably a c-unit wafer thickness. • A molecular shop made from a common %-level structure unit, a layer of one or more unit cell thicknesses, wherein the layer of one or more unit cell thicknesses is self-stacked, densely bonded, or combined with at least two Manufactured in a single layer of one unit wafer thickness. The stack of such second-level structural units may be in a regular manner, an irregular manner, a random manner, or any combination thereof; and • a unit cell having a MWW architecture topology via any regular or random 2 degree-space Or a molecular sieve prepared by a combination of 3 degrees and space. MCM-22 family molecular sieves include those with a 4±0. 25, -16- 200904778 6,9±0. 15, 3. 5 7±0·07 and 3. 42±0. 07 angstroms have a d-spacing maximum X-ray diffraction pattern of molecular sieves. The X-ray diffraction data used to characterize the material was obtained using standard techniques and using copper Κ-α double 値 as the radiation for the incident radiation and equipped with a flash counter and connected to the computer as a collection system. MCM-22 family materials include MCM-22 (disclosed in U.S. Patent No. 4,954,325), PSH-3 (published in U.S. Patent No. 4,439,409), SSZ-25 (published in U.S. Patent No. 4,826,667), and ERB-1 (disclosed in European Patent) 〇 293 032), ITQ-1 (disclosed in U.S. Patent No. 6,077,498), ITQ-2 (disclosed in International Patent Publication No. WO 9 7/17290), MCM-36C disclosed in U.S. Patent No. 5,250,277, and MCM-49 ( It is disclosed in U.S. Patent No. 5,23,5,5,5, the disclosure of U.S. Patent No. 5,362,697, the disclosure of U.S. The preferred alkylation catalysts of the MCM-22 family of molecular sieves have found that the MCM-22 family of molecular sieves has a high selectivity for the manufacture of second butylbenzene when compared to other butylbenzene isomers. Preferably, the molecular sieve is selected from the group consisting of (a) MCM-49, (b) MCM-56 and (c) MCM-49 and MCM-56, such as ITQ-2. The alkylation catalyst can comprise a molecular sieve in an unbound or self-bound form, or alternatively, the molecular sieve can be combined with an oxide binder (e.g., alumina) in a conventional manner such that the final alkylation catalyst is compared Preferably, the ground contains 2 to 8 % by weight of mesh. In one embodiment, the catalyst is unbonded and has a superior crush strength than the catalyst formulated with the adhesive -17-200904778. Such a catalyst is suitably prepared by a vapor phase crystallization method, particularly a vapor phase crystallization method which prevents the caustic agent used in the synthesis mixture from remaining in the zeolite catalyst when vapor phase crystallization occurs. The MCM-22 family zeolite in bound or uncombined form is contacted with water in liquid or vapor form prior to use in the alkylation process of the present invention under conditions which promote the selectivity of the second butylbenzene of the zeolite. Although the conditions of contact with water are not precisely controlled, the increase in the selectivity of the second butylbenzene can usually be achieved by contacting the zeolite with at least 〇°c (e.g., about 1 〇. (: to about 5 〇r) of water. Preferably, the contacting is carried out for at least 〇 5 hours, for example from about 2 hours to about 24 hours. Typically, the contact with water is such that the catalyst weight is increased by 20 to 80% by weight based on the initial weight of the zeolite, More preferably, from 25 to 80% by weight, more preferably from 30 to 75% by weight, such as from 40 to 60% by weight. Although the reason for increasing the selectivity is not entirely clear, it is believed that contact with water promotes trivalent metals (usually aluminum). Reinserting into the tetrahedral framework of the zeolite and/or alleviating local geometric strains caused by earlier steps in the manufacture of the zeolite (especially calcination and/or dehydration). As a result, the contact with water appears to be accompanied by tetramethyl decane. (TMS) increases the amplitude or width of at least one peak in the 29Si MAS NMR spectrum of the zeolite in the range of -80 to -120 ppm chemical shift. In particular, contact with water appears to increase the 29Si MAS NMR spectrum of the zeolite at -90 to -100 ppm chemical position The resolution of a peak in the shift range, which is absent or unresolved in the zeolite without water treatment. In this relationship, all references to the NMR chemical shift number in this patent specification are Based on the displacement of the reference peak of the decane (TMS) of 200,904,778. After the water treatment, the 'MCM-22 family zeolite can be directly used as the alkylation catalyst for butylbenzene. Or, after contact with water, Before the catalyst, this zeolite can also be dried in air or an inert gas (such as nitrogen, for example, at about 1 ° C to about 200 ° C for about 1 hour. It is surprisingly found that this drying step There is no significant increase in the selectivity of the second butylbenzene produced by the water contacting step. The alkylation process is an alkylation of the aromatic compound and the alkylating agent under effective alkylation conditions. In contact with the above-mentioned catalyst, the effective alkylation condition is to control the conversion of the benzene to a maximum 値 and to achieve the formation of the butene oligomer, which is a large amount of stoichiometry. Excess benzene is fed to the alkylation' and Preferably, the concentration of the alkylation moiety is reduced by the addition of an alkylating agent in stages. This is conveniently accomplished by providing a plurality of fixed beds in series. Then, most or all of the benzene is fed. In the first part, however, the laboratory reagent is divided into several equal or different aliquots and each is fed into a different reaction zone. Alternatively, the alkylation reaction is carried out in a chemical distillation reactor and the alkylation is carried out. The reagent is fed to the reactor either continuously or in stages. In both cases, the total amount of benzene and alkylating agent fed therein is conveniently such that the total molar ratio of benzene to alkylation is about 1 Preferably, it is from about 3 to about 1 Torr, preferably about 9. Further, the alkylation conditions conveniently include a temperature of from about 60 ° C to about ° C (e.g., about i 〇 (TC to about 200) °C), and / or pressure is the second to the alkyl gas) to about 5 to reduce the cause, the hospitalized dibutyl is small. The reaction zone of the reaction zone of the specific reaction medium may be further reacted to 4 to about 260 3 7000 -19-200904778 kPa or less (e.g., about 1000 to about 3500 kPa) of the reactor reagent during the process, and/or to C4. The alkylation reagent-based hourly weight space velocity (WHSV) is about 〇. 1 to about 50 hr·1 (for example, about 1 to about 10 hr·1). The reactants may be in the vapor phase or in part or all of the liquid phase and may be pure, that is, not intentionally mixed or diluted with other materials, or the reactants may be diluted by means of a carrier gas or The agent (such as hydrogen or nitrogen) is contacted with the zeolite catalyst. Preferably, the reactant is at least a portion of the liquid phase. The alkylation step of the process of the invention was found to be highly selective for the second butylbenzene using the catalyst and alkylation conditions described above. In particular, it has been found that the alkylation product typically contains at least 93% by weight (preferably at least 95% by weight) of the second butylbenzene, and/or at about 0. Between 01% by weight and about 1% by weight (about 5% by weight of 〇·〇) and about 0. Between 8 wt%, preferably a butene oligomer, and/or less than 0. 5 wt% isobutylbenzene. Although the alkylation step is highly selective for the second butylbenzene, the effluent from the alkylation reaction typically contains certain polyalkylated products, as well as unreacted aromatic feeds and desired monoalkanes. Base material. Unreacted aromatic feed is typically recovered by distillation and recycled to the alkylation reactor. The bottoms product from the benzene distillation will be further distilled to separate the monoalkylated product from any polyalkylated product and other heavy components. Depending on the amount of polyalkylated product present in the alkylation reaction effluent, it may be desirable to transalkylate the polyalkylated product with additional benzene to produce the desired monoalkylated material. to reach maximum. Transalkylation with additional benzene is typically carried out in a transalkylation reactor other than an alkylation reactor and in a suitable transalkylation catalyst (eg -20-200904778 MCM-22 family molecular decoration) , /5 zeolite, MCM-68 (refer to U.S. Patent No. 6,014,018), zeolite Y or mordenite). The MCM_22 family of molecular sieves includes MCM-22 (disclosed in U.S. Patent No. 4,954,325), PSH-3 (disclosed in U.S. Patent No. 4,439,409), SSZ-25 (not disclosed in U.S. Patent No. 4,826,667), and ERB-1 (disclosed in European Patent No. 0293) 03 No. 2), ITQ-1 (disclosed in U.S. Patent No. 6,077,498), ITQ-2 (disclosed in International Patent Publication No. WO97/17290), MCM-36C disclosed in U.S. Patent No. 5,250,277, and MCM-49 (disclosed in U.S. Patent No. 5,236,575, issued to U.S. Patent No. 5,362,697, issued to U.S. Pat. The transalkylation reaction is typically carried out under at least a portion of the liquid phase conditions, suitably including a temperature of from 1 to 30 ° C, and/or a pressure of from 1,000 to about 7,000 kPa, and/or The total feed meter has an hourly weight space velocity of from 1 to 50 hr·1, and/or a benzene/polyalkylated benzene weight ratio of from 1 to 10. Oxidation of the second butylbenzene In order to convert the second butylbenzene to phenol and methyl ethyl ketone, the second butylbenzene is initially oxidized to the corresponding hydroperoxide. This can be achieved by introducing an oxygen-containing gas such as air into the liquid phase containing the second butylbenzene. Unlike cumene, atmospheric pressure air oxidation of dibutyl benzene is very difficult to achieve in the absence of a catalyst. For example, dibutylbenzene cannot be oxidized at 110 ° C and atmospheric pressure, whereas cumene oxidizes well under the same conditions. At higher temperatures, the atmospheric pressure of the second butylbenzene is increased from 21 to 200904778; however, 'higher temperatures also produce significant amounts of unwanted by-products. The increase in reaction rate and selectivity can be achieved by the oxidation of the dibutylbenzene in the presence of a catalyst. A suitable second butyl benzene catalyst comprises a water soluble chelating compound wherein the multi bud ligand is coordinated to at least one metal from cobalt, nickel, manganese, copper, and iron (refer to U.S. Patent No. 4,013,725) ). More preferably, a heterogeneous catalyst is used. Suitable heterogeneous phase catalysts are disclosed in U.S. Patent No. 5,1,8,9, 594, wherein the catalyst is a keto (hydroxy) bridged tetranuclear manganese complex, and U.S. Patent No. 5,922,920, wherein The catalyst comprises a keto (hydroxy) bridged tetranuclear metal complex having a mixed metal core, one metal of the core being selected from the group consisting of Zn, Cu, Fe, Co, Ni, 二η divalent metals and mixtures thereof And another metal is a trivalent metal selected from the group consisting of In, Fe, Mn, Ga, and ruthenium 1, and a mixture thereof. The entire disclosure of this patent is incorporated herein by reference. Other suitable catalysts for the second butyl benzene oxidation step are N-hydroxy substituted cyclic quinone imines, which are disclosed in U.S. Patent No. 6,720,462, the disclosure of which is incorporated herein by reference, for example, N- hydroxy phthal Yttrium imine, 4-amino-N-hydroxyphthalimide, 3-amino-N-hydroxyphthalimide, tetrabromo-N-hydroxyphthalimide, tetrachloro Base-N-methionimide, N-hydroxyhetimide, N-hydroxyhimimide, N-hydroxytrimellitimide, N-based benzene-1,2,4-13 Yttrium imine, hydrazine, Ν'-dihydroxy (pyromodiimide), hydrazine, Ν'-dihydroxy (benzophenone-3,3',4,4') bisquinodiimine), Ν-hydroxymaleimide, -22- 200904778 pyridine-2,3-diimine, N-hydroxysuccinimide, N-carbyl (tartarium imine), N-hydroxy-5-origin Borneene- 2,3-diimine, external N-hydroxy-7-oxybicyclo[2. 2. 1] Glycine-5-ene-2,3-diimine, N-hydroxy-cis-cyclohexane-1,2-diimine, N-hydroxy-cis- 4-cyclohexyl-1 , 2-diimine, N-naphthyridinium sodium or N-hydroxy-o-phenylenedisulfonimide. Preferably, the catalyst is N-hydroxyphenylenediamine. Another suitable catalyst is N, N', N"-trihydroxyisocyanuric acid. These materials can be used alone or in the presence of a free radical initiator, and can be used as a liquid phase, a homogeneous catalyst or supported on The solid carrier is supplied as a heterogeneous catalyst. Suitable conditions for the second butyl benzene oxidation step include a temperature between about 70 ° C and about 200 ° C (eg, about 90 ° C to about 1). 30 ° C), and a pressure of about 50 to about 2000 kPa (about 0. 5 to about 20 atmospheres). Alkaline buffer can also be added to react with acidic by-products that may form during oxidation. The aqueous phase is introduced to help dissolve the basic compound, such as sodium carbonate. The single pass conversion in the oxidation step is preferably maintained below 50% to minimize the formation of by-products. The oxidation reaction is carried out in a catalytic distillation unit. It is desirable to carry out 'and the second butylbenzene hydroperoxide formed can be concentrated by distilling off unreacted second butylbenzene before the cleavage step." Hydroperoxide cleavage in the second butyl benzene The final step in conversion to phenol and methyl ethyl ketone comprises a second butyl group Hydrogen peroxide cleavage by a pressure of from about 20t -23 to 200904778 to about 15 Torr: a temperature (e.g., about 4 ° C to about 120 ° C), and a pressure of about 50 to about 2500 kPa (e.g., about 100 to about 1000 kPa), and/or hydroperoxide based hourly liquid space velocity (LHSV) of about 0. From 1 to about 100 h^1 (preferably from about 1 to about 50 hr·1) is conveniently achieved by contacting the hydroperoxide with a catalyst in the liquid phase. The second butyl benzene hydroperoxide is preferably diluted in an organic solvent inert to the cleavage reaction (e.g., methyl ethyl ketone, phenol or second butyl benzene) to assist in heat removal. The cleavage reaction is conveniently carried out in a catalytic distillation unit. The coal used in the fracture step may be a homogeneous coal or a heterogeneous coal. Suitable homogeneous phase breaking catalysts include sulfuric acid, perchloric acid, phosphoric acid, hydrochloric acid and p-benzenesulfonic acid. Ferric chloride, boron trifluoride, sulfur dioxide and sulfur trioxide are also effective homogeneous fracture catalysts. A preferred homogeneous phase breaking catalyst is sulfuric acid. Suitable heterogeneous fracture catalysts for the cleavage of the second butyl benzene hydroperoxide include smectite clays such as the acidic smectite ceria-alumina clay disclosed in U.S. Patent 4,870,271. The entire disclosure of this patent is incorporated herein by reference. The following examples are based on illustrative purposes and do not limit the scope of the invention. Example 1 (Comparative) The production of a second butylbenzene from a MCM-49/V3 00 catalyst dried at 150 ° C will have a nominal composition of 80. 9% by weight of zeolite and 20% by weight of Versal 3 00 (V3 00) alumina (fresh MCM-22 catalyst sample) extruded into a diameter of 1. 3 mm (1/20 inch) of the four-lobed (-24-200904778 quadralobe) form and cut into 1. 3 mm (1/20 inch) length. Will be 0. 38 grams of the catalyst was diluted to 3 cubic centimeters with sand and mounted to an outer diameter of 4. 76 mm (3/16 inch) isothermal, downstream fixed bed tubular reactor. The catalyst was dried at 1 〇 ° C and 101 kPa (l atm) at a flow rate of 1 〇〇 cubic centimeter per minute for 2 hours. Nitrogen gas was turned off and benzene was fed into the reactor at 60 cubic centimeters per hour until the reactor pressure reached 2170 kPa (300 psig). Then, reduce the benzene flow to 7. 63 cubic centimeters per hour and adjust the temperature to 16 (TC. in 2. 57 cubic centimeters per hour or 4. 2 WHSV, 2-butene feed was introduced from the syringe pump (57. 1% cis-butene, 37. 8% trans-butene, 2. 5% n-butene, 0. 8% isobutylene and 1-butene 'and 1.8% other substances). The molar ratio of the feed benzene/butene was maintained at 3:1 throughout the run. The liquid product was collected in a cold trap at 160 ° C and 2 1 70 kPa (300 psig) and analyzed off-line. The butene conversion was determined by measuring unreacted butene relative to the feed butene. At 160 ° C, 2170 kPa (300 psig), and 3: 1 benzene / butene molar ratio, based on butene 14. 4, 25. 2, then 4. 2 WHSV collects additional data. The second butylbenzene (s-BB) selectivity versus production time is shown in Figure 1. The production time of the dibutylbenzene (Di-BB) / S-BB ratio is shown in Figure 2. Representative data at 85% and 97% butene conversion are shown in Tables 2 and 3, respectively. Example 2 Preparation of second butylbenzene from a wet MCM-49/V3 00 catalyst. 38 g aliquots of the same MCM-49 -25-200904778 catalyst as described in Example 1 (cut into 1. The 3 mm (1/2 0 inch) length is weighed into the sample pan. Place the disk with the catalyst into the collection tray in the bottom water-containing dryer. There is no direct contact between the catalyst and the liquid water. Leave the catalyst in a closed desiccator until overnight. The final weight of the catalyst is 〇·51 grams. The entire amount of wet catalyst was mounted in the reactor using the same procedure as described in Example 1, but without the catalyst drying step. The benzene was fed into the reactor at 6 〇 cubic centimeters per hour until the reactor pressure reached 2170 kPa (300 psig) and the reactor temperature reached 16 〇 ° C (5 degrees c/min). Then, reduce the benzene flow to 7. 63 cubic centimeters per hour’ and at 2. 57 cubic centimeters per hour or 4. 2 WHSV, the same 2-butene feed as used in Example 1 was introduced. The molar ratio of the feed benzene/butene was maintained at 3:1 throughout the run. Additional data were collected at 16 (TC, 2l7 kPa (300 psig), and 3:1 benzene/butene molar ratio, based on butene-based 12.6, 25·2' followed by 4·4 WHSV. s-BB The selectivity versus production time is shown in Figure 1. The D i - BB / s - BB ratio versus production time is shown in Figure 2 ° After the linear output, the representative data at 85% and 97% butene conversion are shown separately. In Table 2 and Table 3. -26- 200904778 Table 2. Comparison of MCM-49 performance at 85% butene conversion Dry catalyst (Example 1) Moist catalyst (Example 2) Production days 3. 9 4. 0 4. 1 7. 9 8. 0 8. 1 benzene WHSV, h-1 105. 0 105. 0 105. 0 105. 0 105. 0 105. 0 Butene WHSV^1 25. 2 25. 2 25. 2 25. 2 25. 2 25. 2 Butene conversion, % 84. 6 83. 3 83. 5 87. 4 84. 3 85. 1 product selectivity, weight % isobutane 0. 001 0. 001 0. 001 0. 000 0. 000 0. 000 isobutylene+1-butene 0. 411 0. 413 0. 416 0. 280 0. 373 0. 310 c5-c7 0. 079 0. 077 0. 066 0. 061 0. 105 0. 057 1. 285 1. 332 1. 255 0. 969 1. 083 1. 031 C9-11 0. 047 0. 059 0. 058 0. 034 0. 032 0. 032 Ci2=+Ci〇-Cii aromatic 0. 106 0. 095 0. 103 0. 077 0. 072 0. 078 compound Ci3,15 0. 085 0. 091 0. 092 0. 076 0. 066 0. 069 cumene 0. 022 0. 021 0. 021 0. 025 0. 023 0. 023 Tert-butylbenzene 0. 031 0. 029 0. 029 0. 039 0. 032 0. 032 isobutylbenzene* 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 second butylbenzene 91. 203 90. 969 90. 955 94. 137 94. 080 94. 027 n-butylbenzene 0. 007 0. 011 0. 008 0. 007 0. 011 0. 010 Dibutylbenzene 6. 418 6. 588 6. 682 4. 101 3. 973 4. 174 Tributylbenzene 0. 291 0. 304 0. 303 0. 181 0. 140 0. 150 heavy parts 0. 014 0. 010 0. 011 0. 014 0. 011 0. 005 Total 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 s-BB purity, % t-BB/all BB, % 0. 034 0. 032 0. 032 0. 042 0. 034 0. 034 i-BB"All BB,% 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 s-BB/all BB, % 99. 959 99. 957 99. 960 99. 951 99. 955 99. 955 n-BB/all BB, % 0. 007 0. 012 0. 008 0. 007 0. 011 0. 011 Total 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 Di-BB/s-BB weight ratio 7. 0 7. 2 7. 3 4. 4 4. twenty four. 4, % First-order rate constant IX 1 46 49 All samples were collected at 160 ° C, 2170 kPa (300 psig), and 3:1 benzene / butene molar ratio. *All isobutylbenzene in butylbenzene is less than 0. 5% is not detected by the GC used. -27- 200904778 Table 3. Comparison of MCM-49 performance at 97% butene conversion Dry catalyst (Example 1) Moist catalyst (Example 2) Production days 4. 8 5. 8 6. 8 8. 8 9. 8 10. 8 benzene WHSV, h_1 17. 5 17. 5 17. 5 17. 5 17. 5 17. 5 Butene WHSVV 4. twenty four. twenty four. twenty four. twenty four. twenty four. 2 Butene conversion, 96. 7 96. 5 96. 7 96. 7 96. 4 96. 5 product selectivity, isobutane 0. 001 0. 001 0. 001 0. 001 0. 001 0. 001 isobutylene+1- 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 c5-c7 0. 063 0. 061 0. 060 0. 057 0. 055 0. 047 c8= 0. 715 0. 691 0. 690 0. 469 0. 458 0. 501 C9-11 0. 033 0. 050 0. 054 0. 016 0. 025 0. 025 Cl2=+Cl〇-Cll 0. 102 0. 152 0. 130 0. 101 0. 113 0. 113 C13-15 0. 101 0. 215 0. 101 0. 105 0. 076 0. 130 cumene 0. 028 0. 030 0. 030 0. 034 0. 036 0. 035 Third butylbenzene 0. 062 0. 067 0. 065 0. 080 0. 086 0. 084 isobutylbenzene* 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 second butylbenzene 92. 311 92. 075 92. 213 94. 837 94. 949 94. 524 n-butylbenzene 0. 007 0. 011 0. 011 0. 008 0. 009 0. 008 Dibutylbenzene 5. 933 5. 910 6. 029 4. 046 3. 966 4. 273 Tributylbenzene 0. 475 0. 575 0. 426 0. 239 0. 220 0. 251 heavy weight 0. 170 0. 161 0. 188 0. 005 0. 005 0. 009 Total 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 second butylbenzene t-BB/all BB,% 0. 068 0. 073 0. 071 0. 084 0. 091 0. 088 i-BB*/all BB, % 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 s-BB/all BB, % 99. 925 99. 915 99. 917 99. 908 99. 900 99. 903 n-BB/all BB, % 0. 008 0. 012 0. 012 0. 008 0. 009 0. 008 total, % 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 Di-BB/s-BB Repeat 6. 4 6. 4 6. 5 4. 3 4. twenty four. 5 Primary rate 46 49 All samples were collected at 160 ° C, 2170 kPa (300 psig), and 3: 1 benzene / butene molar ratio. *All isobutylbenzene in butylbenzene is less than 0. 5% is not detected by the GC used. -28- 200904778 Referring to Figure 1, it can be seen that the drying catalyst of Example 1 achieved 90% selectivity for s-BB at startup and gradually increased the selectivity to 92% under steady state operation. In contrast, the wet catalyst of Example 2 produced a 94% selectivity s-BB immediately after start-up and maintained at 94-95% throughout the run. Referring to Figure 2, it can be seen that the drying catalyst of Example 1 produced twice the di-BB of the wet catalyst of Example 2 at startup, and the di-BB of Example 1 was higher than 2 in steady state operation. weight%. Therefore, the use of moisture-free MCM-49 eliminates the need for a higher di-BB on-line output and an additional 2% s-BB selectivity during steady state operation. Table 2 shows that at 85% butene conversion, the wet catalyst produces an additional 3% s-BB (94% vs. 91%) and less butene oligomers when compared to dry MCM-49. Polybutylbenzenes. The first order rate constant (see bottom of Table 2, which is based on butene conversion) indicates that the moisture effect has no effect on the activity of the catalyst. In fact, the wet catalyst has a slightly higher rate constant than the dry catalyst. Similarly, Table 3 shows that at 9 7 % butene conversion, the wet catalyst produced an additional 3% s-BB (95% vs 92%) and less butene oligomerization when compared to dry MCM-49. , polybutylbenzenes and heavy parts. The wet action apparently improves the catalytic activity, eliminates on-line output, reduces by-product formation, and increases s-BB selectivity. Example 3 (Comparative) The production of second butylbenzene from a MCM-49/V300 catalyst which was not dried or wet was carried out by the same procedure as described in Example 1 using a 1/2 gram aliquot such as -29-200904778. The same MCM-49 catalyst as described in Example 1 was cut into 1. 3 mm (1/2 0 inch) length is mounted in the reactor. Use a catalyst that is not dry. At 60 cubic centimeters per hour, benzene was fed to the reactor until the pressure reached 2170 kPa (300 psig) and the reactor temperature reached 160 ° C (5 degrees C/min). Then, reduce the benzene flow to 7. 63 cubic centimeters per hour. at 2. 57 cubic centimeters per hour or 8. 0 2-butene was introduced under WHSV. Data were collected at 1 60 ° C, 2170 kPa (300 psig), and 3: 1 benzene / butene molar ratio. A 95% butene conversion was observed at 8 WHSV, a conversion of buttene at 24 WHSV of 73%, and a conversion of 48% at 48 WHSV. The one-step rate constant is 51 based on the butene conversion. The s-BB selectivity versus production time is shown in Figure 3a. The Di- ratio versus production time is shown in Figure 3b. For comparison, the data for Examples 1 and 2 are also included. These data show that the MCM-49 catalyst is dry or not, providing a lower s-BB selectivity and a higher di-BB selectivity than the wet version. Example 4 Preparation of second butylbenzene from water-soaked MCM-49/V3 00 catalyst. Soak in deionized water at room temperature. 20 g aliquots of the same MCM-49 catalyst as described in Example 1 (cut into 1. 3 mm (1/20 inch) length) for 1 hour and then air dried to room temperature overnight. The last weight of the catalyst is 0. 26 grams. The entire amount of catalyst was mounted in the reactor using the same procedure as described in Example 1. The catalyst can be used without further drying. The benzene was fed to the reactor at 60 cubic centimeters per hour until the pressure reached -30-200904778 2170 kPa (300 psig) and the reactor temperature reached 160t: (the slope was 5 degrees C/min). Then, reduce the benzene flow to 7. 63 cubic centimeters per hour. at 2. 2-butene was introduced at 57 cubic centimeters per hour or 8 WHSV. Data were collected at 160 °C, 2170 kP a (300 psig), and 3:1 benzene/butene molar ratio. A conversion of 97% butene was achieved at 8 WHSV, a conversion of butene at 24 WHSV of 83%, and a conversion of 48% at 48 WHSV. The one-step rate constant based on the benzene conversion rate is 45 1Γ1. The s-BB selectivity versus production time is shown in Figure 4a. The Di-BB/s-BB ratio versus production time is shown in Figure 4b. For comparison, the data of Examples 1 to 3 are also included. These data show that water soaking is also as effective as wet treatment in upgrading MCM-49 to achieve high s-BB selectivity and low di-BB selectivity. Example 5 Preparation of a second butylbenzene from a MCM-49/V300 catalyst wetted and then dried. The same procedure as described in Example 2 was used to make the same MCM as described in Example 1 in the same manner as in Example 1. 49 catalyst (cut into 1 . 3 mm (1/2 0 inch) length) wet. The final weight of the catalyst after dampening is 〇 3〇 gram. The entire amount of moisture catalyst was mounted in the reactor using the same procedure as described in Example 1. The catalyst was dried for 2 hours at a flow rate of 1 〇〇 LL square centimeters per minute at 15 Torr and 1 〇 1 kPa (i atm). Nitrogen was turned off and at 60 cubic centimeters per hour, benzene was fed to the reactor until the pressure reached 2 170 kPa (300 psig). The reactor temperature was adjusted to 16 〇t and the -31 - 200904778 benzene flow was reduced to 7·63 cubic centimeters per hour. at 2. 57 cubic centimeters per hour or 8 WHSV, introducing 2 - butyl. Data were collected at 16 〇t, 217 〇 kpa (300 psig), and 3: 1 benzene/butene molar ratio. 95% butyl conversion at 8 WHS V was achieved at 24 WHS v butene conversion of 8〇%, and at 48 WHSV butene conversion was 66%. Based on the butene conversion rate, the first-order rate constant is 42 h·1. The S_BB selection rate versus production time is shown in Figure 5a. The Di-BB/s-ββ ratio versus production time is shown in Figure 5b. For comparison, the data of Examples 1 to 4 are also included. These data show that although this wet catalyst was dried at 15 〇 before start-up, its s-BB selectivity remained high and di_BB remained low. Table 4 compares the catalyst properties of Examples 1 to 5 under 92-97% butene conversion and steady state conditions. When compared to untreated MCM-49, the wet/water treatment produced an additional 3% S_BB (95% vs. 92%) and less butene oligomers, dibutylbenzenes, tributylbenzene Class and heavy weight. The moist action apparently improves the catalytic activity, eliminating the on-line output, reducing by-product formation, and increasing the s-BB selectivity. -32- 200904778 Table 4. Comparison of MCM-4 9/V3 00 performance Example 3 1 2 5 4 Processing te «Μ,, te Wet moist water At 15 (drying under TC Μ j\\\ There are Μ production days 4. 9 6. 8 10. 8 1. 8 2. 8 benzene WHSV, hf1 32. 8 17. 4 17. 5 33. 0 33. 1 Butene WHSV, h-1 7. 9 4. twenty four. 2 7. 9 7. 9 Butene conversion, % 92. 4 96. 7 96. 5 94. 2 96. 4 product selectivity, weight% isobutane 0. 001 0. 001 0. 001 0. 001 0. 001 isobutylene+1-butene 0. 023 0. 000 0. 000 0. 039 0. 000 c5-c7 0. 099 0. 093 0. 079 0. 066 0. 056 c8= 0. 755 0. 690 0. 501 0. 413 0. 500 C9-11 0. 050 0. 054 0. 025 0. 051 0. 025 aromatic compound 0. 115 0. 130 0. 113 0. 114 0. 090 Cl3_15 0. 055 0. 101 0. 130 0. 095 0. 100 cumene 0. 023 0. 030 0. 035 0. 022 0. 026 Tert-butylbenzene 0. 042 0. 065 0. 084 0. 083 0. 051 isobutylbenzene* 0. 000 0. 000 0. 000 0. 000 0. 000 second butylbenzene 91. 682 92. 183 94. 493 94. 377 94. 430 n-butylbenzene 0. 006 0. 011 0. 008 0. 014 0. 006 Dibutylbenzene 6. 397 6. 027 4. 271 4. 536 4. 538 Tributylbenzene 0. 440 0. 426 0. 251 0. 158 0. 166 heavy weight 0. 312 0. 188 0. 009 0. 030 0. 011 Total 100. 0 100. 0 100. 0 100. 0 100. 0 second butyl (BB) t-BB/all BB, % 0. 045 0. 071 0. 088 0. 088 0. 054 i-BB"All BB,% 0. 000 0. 000 0. 000 0. 000 0. 000 s-BB/all BB, % 99. 948 99. 917 99. 903 99. 897 99. 939 n-BB/all BB, % 0. 007 0. 012 0. 008 0. 015 0. 007 total, % 100. 0 100. 0 100. 0 100. 0 100. 0 Di-BB/s-BB weight ratio, % 7. 0 6. 5 4. 5 4. 8 4. 8 Primary rate constants 9 1 52 46 49 42 45 All samples were collected at 160 ° C, 2170 kPa (300 psig), and 3: 1 benzene / butene molar ratio. *All isobutylbenzene in butylbenzene is less than 0. 5% is not detected by the GC used. -33 200904778 Example 6 (Comparative) Production of a second butylbenzene from a dried MCM-49/Condea catalyst A fresh MCM-49 having a nominal chemical composition of 80% by weight zeolite and 20% by weight Condea alumina The catalyst sample was extruded into a quadlolobe of diameter I-3 mm (1/2 inch) and cut into 1. 3 mm (1/20 inch) length. Will be 0. 40 grams of the catalyst was diluted to 3 cubic centimeters with sand and mounted at an outer diameter of 4. 76 mm (3/16 inch) isothermal, downstream fixed bed tubular reactor. The catalyst was dried at 150 ° C and 101 kPa (l atm) at a flow rate of 100 cubic centimeters per minute for 2 hours. Nitrogen was turned off and benzene was fed into the reactor at 60 cubic centimeters per hour until the reactor pressure reached 2170 kPa (300 psig). Then, the reactor temperature was adjusted to 160 ° C and the benzene flow was reduced to 7. 63 cubic centimeters per hour. at 2. The 2-butene feed was introduced at 57 cubic centimeters per hour or 4 WHSV. The molar ratio of benzene/butene fed during the entire run was 3:1. The s-BB selectivity versus production time is shown in Figure 6a. The Di-BB/s-BB ratio versus production time is shown in Figure 6b. Example 7 Preparation of a second butylbenzene using a moist MCM-49/Condea catalyst The same procedure as described in Example 2 was used to make 0. 20 gram aliquots The same MCM-49/Condea catalyst as in Example 6 was wet. The final weight of the catalyst after damp is 〇. 3 5 grams. The entire amount of wet catalyst was mounted in the reactor using the same procedure as described in Example 1. Use the catalyst without drying. At 60 cubic centimeters per hour, benzene was fed to the reactor until the pressure reached -34-200904778 to 2170 kPa (300 psig) and the reactor temperature reached 160 °C (5 degrees C/min). Reduce benzene flow to 7. 63 cubic centimeters per hour. at 2. 57 cubic centimeters per hour or 8. 0 WHSV 'Introduced 2-butene. The benzene/butene molar ratio was 3:1 throughout the run. The s-BB selectivity versus production time is shown in Figure 6a. The Di-BB/s-BB ratio versus production time is shown in Figure 6b. Referring to Figures 6a and 6b, the data shows that the MCM-49/Condea catalyst has a very low s-BB selectivity and a very high di-BB selectivity before moisture treatment. Daxie took 2 weeks to finally reach steady state performance. Compared to the moist MCM-49/Versal 3 00 catalyst shown in Example 2, the s-BB selectivity after the wet treatment was significantly increased to 94-95 %. Table 5 compares the catalyst properties of Examples 6 and 7 at 95-98% butene conversion. When compared to dry catalysts, the wet form produces an additional 6% s-BB (95% vs. 89%), making by-products (including butene oligomers, dibutylbenzenes, and tributylbenzene) Reduction to half, the production of cumene and heavy fractions is reduced to zero, and the formation of t-BB and n-BB is significantly reduced. The moist action apparently modifies the catalytic activity, eliminates on-line output, reduces by-product formation, and significantly increases the s-B B selectivity. -35- 200904778 Table 5. Comparison of MCM-49/Condea Performance Dry Catalyst (Example 6) Moist Catalyst (Example 7) Example # 7 8 9 7 8 9 Production Days 7. 1 8. 1 9. 1 6. 8 7. 8 8. 8 benzene WHSV,!^1 16. 7 16. 7 16. 7 33. 2 33. 2 33. 2 Butene WHSV,!!·1 4. 0 4. 0 4. 0 8. 0 8. 0 8. 0 Butene conversion, % 95. 4 95. 3 96. 3 97. 7 95. 9 96. 4 product selectivity, Wt% isobutane 0. 005 0. 006 0. 005 0. 000 0. 000 0. 000 isobutylene+1-butene 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 c5-c7 0. 101 0. 115 0. 109 0. 046 0. 099 0. 064 c8= 1. 154 1. 225 1. 374 0. 571 0. 606 0. 671 C9-11 0. 091 0. 088 0. 098 0. 018 0. 007 0. 038 c12=+c10-c„ Aromatization 0. 283 0. 276 0. 272 0. 074 0. 074 0. 052 Compound Ci3_15 0. 373 0. 327 0. 320 0. 076 0. 084 0. 060 cumene 0. 290 0. 288 0. 286 0. 000 0. 020 0. 000 third butylbenzene 0. 164 0. 158 0. 146 0. 047 0. 045 0. 042 isobutylbenzene* 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 second butylbenzene 88. 096 88. 644 89. 005 94. 828 94. 725 95. 031 n-butylbenzene 0. 019 0. 017 0. 025 0. 002 0. 001 0. 000 dibutyl benzene 8. 583 8. 124 7. 597 4. 280 4. 291 4. 002 Tributylbenzene 0. 767 0. 669 0. 599 0. 059 0. 049 0. 039 Heavy part 0. 075 0. 063 0. 163 0. 000 0. 000 0. 001 Total 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 Second butylbenzene (BB) purity t-BB/all BB,0/〇 0. 185 0. 178 0. 164 0. 049 0. 047 0. 044 i-BB*/all BB, % 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 s-BB/all BB, % 99. 794 99. 803 99. 808 99. 949 99. 952 99. 956 n-BB/all BB, % 0. 021 0. 019 0. 028 0. 002 0. 001 0. 000 total, % 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 Di-BB/s-BB weight ratio 9. 7 9. 2 8. 5 4. 5 4. 5 4. 2,% All samples are at 16 0. . 2 1 70 kPa (3 OOpsig), and 3:1 benzene / butene molar ratio collected. *All isobutylbenzene in butylbenzene is less than 0. 5% is not detected by the GC used. -36- 200904778 Example 8 Comparison of Catalysts via 29Si MAS NMR The characteristics of the 150 T:dried and wet catalysts described in Examples 1 and 2 were further depicted separately by 29 Si MAS NMR. The 29Si MAS NMR data for these two materials are shown in Figure 7. These 29Si MAS NMR data clearly show differences in structural changes after dehydration or hydration. In particular, the 29 Si MAS NMR spectrum of the wet catalyst described in Example 2 is exhibited in the range of -90 to -100 ppm chemical shift of TMS (more specifically, in the chemical shift range of about -94 to -100 ppm). A peak, and the high point indicated by this peak is near -9 8 ppm of TMS. This peak is usually indistinguishable in the spectrum of the dry catalyst of Example 1. Differences in NMR spectra reflect changes in the local environment of Si, such as bond angles and nearest neighbor populations, depending on the degree of hydration. These data suggest that wetting the sample promotes A1 reinsertion into the tetrahedral framework and/or mitigates local geometric strain caused by dehydration. These subtle structural changes can indicate the increased activity and selectivity of the hydration catalyst. Example 9 (Comparative) Production of a second butylbenzene from a dry and hydrated 0/alumina catalyst. A fresh zeolite-free catalyst having a nominal chemical composition of 65% by weight of zeolite and 35% by weight of Versal 300 alumina. Squeeze into a diameter of 1. A 4 mm (1/20 inch) quadralobe form and cut to a length of 2 mm. Using the procedure of Example 1 in the alkylation of the benzene of Example 1 with the 2-butene feed -37-200904778, a sample of the θ zeolite catalyst was used in the catalyst with benzene and butene feed. The catalyst was dried under flowing nitrogen at U0 cubic centimeters per minute for 2 hours at 150 ° C and 101 kPa (1 atm) prior to contact. The molar ratio of the feed benzene/butene was maintained at 3:1' throughout the run and the liquid product was collected in a cold trap at 160 ° (: and 2170 kPa (300 psig) and analyzed off-line. The results are summarized in Table 6. Using the procedure of Example 2, another sample of the 3 zeolite catalyst was used in the densification of the benzene and 2-butene feed of Example 1, in contact with the benzene and butene feed. The catalyst was previously allowed to damp overnight in a closed desiccator. The molar ratio of benzene/butene fed during the entire run was again maintained at 3:1 and was cold at 160 ° C and 2170 kPa (3 〇 0 psig). The liquid product was collected in the trap and analyzed offline. The results are also summarized in Table 6. -38- 200904778 Table 6. /3 Zeolite performance comparison Dry catalyst Humidity catalyst Production days 0. 83 1. 83 2. 83 0. 79 1. 79 2. 79 benzene WHSVV 33. 2 33. 2 33. 2 33. 0 33. 0 33. 0 Butene WHSV^1 8. 0 8. 0 8. 0 7. 9 7. 9 7. 9 Butene conversion, % 91. 21 60. 23 44. 64 82. 79 49. 49 41. 88 product selectivity, wt% isobutane 0. 004 0. 003 0. 000 0. 006 0. 000 0. 003 isobutylene+1-butene 0. 211 3. 478 9. 208 0. 812 6. 065 9. 301 c5-c7 0. 159 0. 250 0. 346 0. 139 0. 321 0. 398 Cg= 1. 039 8. 652 12. 575 2. 721 11. 460 12. 393 C9-11 0. 198 0. 670 0. 284 0. 445 0. 470 0. 341 C12=+C1()-C„Aromatic compounding 0. 226 0. 813 0. 271 0. 795 0. 352 0. 408 objects Ci3_15 0. 361 0. 088 0. 025 0. 587 0. 025 0. 021 cumene 0. 019 0. 000 0. 000 0. 024 0. 000 0. 002 third butylbenzene 0. 255 0. 077 0. 012 0. 288 0. 025 0. 010 isobutylbenzene* 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 second butylbenzene 85. 316 80. 627 74. 829 81. 370 76. 713 73. 999 n-butylbenzene 0. 006" 0. 017 0. 000 0. 093 0. 113 0. 000 dibutylbenzenes 10. 361 5. 052 2. 390 10. 974 4. 240 2. 902 Tributylbenzene 1. 174 0. 194 0. 011 1. 422 0. 114 0. 105 heavy parts 0. 672 0. 079 0. 049 0. 325 0. 103 0. 116 Total 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 s-BB purity, % t-BB/all BB, % 0. 298 0. 095 0. 016 0. 352 0. 033 0. 013 i-BBV all BB,% 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 s-BB/all BB, % 99. 696 99. 884 99. 984 99. 534 99. 821 99. 987 n-BB/all BB, % 0. 007 0. 021 0. 000 0. 113 0. 147 0. 000 total, % 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 Di-BB/s-BB weight ratio, % 12. 14 6. 27 3. 19 13. 49 5. 53 3. 92 All samples were collected at 16 (TC, 2 1 70 kPa (300 psig), and 3:1 benzene/butene molar ratio. * All butylbenzene in isobutylbenzene was less than 0. 5% is not detected by the GC used. -39- 200904778 It can be seen from the results in Table 6 that the 3:1 benzene/butene molar ratio used in the test, the dry and wet two zeolite catalysts are rapidly reduced throughout the oligomer formation. activation. Moreover, unlike the MCM-49 catalyst used in Examples 1 and 2, the moist action of the 0 zeolite catalyst did not result in an increase in the initial s-BB selectivity and a decrease in the initial di-BB selectivity. Conversely, when the dampening effect of the /3 zeolite catalyst is compared to the desired catalyst, a start-up results in a lower s-BB selectivity and a higher di-BB selectivity. Although the invention has been described with reference to the specific embodiments thereof, it is understood that the invention may be susceptible to variations that are not described herein. For this reason, in order to determine the true scope of the invention, reference should be made to the accompanying claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing the selectivity to the second butylbenzene of the dried MCM-49/V300 catalyst of Example 1 and the wet MCM-49/V3 00 catalyst of Example 2. It shows that the moist effect enhances the SBB selection rate. Figure 2 is a graph of the % by weight of dibutylbenzene to dibutylbenzene of the dried MCM-49/V3 00 catalyst of Example 1 and the wet MCM-49/V3 00 catalyst of Example 2 versus production time. It shows that the moist action reduces dialkylation. 3(a) and (b) are comparisons of the second butylbenzene selectivity of the MCM-49/V300 catalysts of Examples 1 to 3 and the weight % of dibutylbenzene to the second butylbenzene versus production time. Figure. 4(a) and (b) are the second butylbenzene selectivity of the catalyst and the weight % of the dibutylbenzene to the second butylbenzene of the MCM-49/V300-40-200904778 of Examples 1 to 4. Comparison chart of production time. 5(a) and (b) are comparisons of the second butylbenzene selectivity of the MCM-49/V300 catalysts of Examples 1 to 5 and the weight % of dibutylbenzene to the second butylbenzene versus production time. Figure. Figures 3(a), 4(a) and 5(a) show that the moist action enhances the SBB selectivity, while Figures 3(b), 4(b) and 5(b) show that the damp action reduces dialkylation. Figure 6 (a) and (b) are the comparison of the second butylbenzene selectivity of the MCM-49/Condea catalysts of Examples 6 and 7 and the weight % of dibutylbenzene to the second butylbenzene versus production time. Figure. Figure 6(a) shows that the wetness results in a better SBB selectivity than the dry catalyst when starting and after several turns of production. Figure 6(b) shows that the wet action resulted in a lower dialkylation than the dry catalyst obtained at startup and after several days of production. Figure 7 is a comparison of 29Si MAS NMR spectra of the dried MCM-49/V3 00 catalyst of Example 1 and the wet MCM-49/V3 00 catalyst of Example 2 over a chemical shift range of -70 to -140 ppm. -41 -