TW200903974A - Electrode and actuator using it - Google Patents

Electrode and actuator using it Download PDF

Info

Publication number
TW200903974A
TW200903974A TW097110912A TW97110912A TW200903974A TW 200903974 A TW200903974 A TW 200903974A TW 097110912 A TW097110912 A TW 097110912A TW 97110912 A TW97110912 A TW 97110912A TW 200903974 A TW200903974 A TW 200903974A
Authority
TW
Taiwan
Prior art keywords
ionic liquid
polymer
electrode
actuator
solid electrolyte
Prior art date
Application number
TW097110912A
Other languages
Chinese (zh)
Inventor
Taketoshi Okuno
Nozomu Sugoh
Toshinori Kato
Hiroyuki Ohgi
Masayoshi Watanabe
Original Assignee
Kuraray Co
Univ Yokohama Nat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co, Univ Yokohama Nat filed Critical Kuraray Co
Publication of TW200903974A publication Critical patent/TW200903974A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/006Motors

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manipulator (AREA)

Abstract

An electrode containing alkali-activated carbon as an active material and used in an actuator using a polymer solid electrolyte comprising an ionic liquid and a polymer ingredient as constituents; and an actuator comprising a polymer solid electrolyte and two electrodes and capable of being deformed by giving a potential difference between the electrodes, the polymer solid electrolyte comprising an ionic liquid and a polymer ingredient as constituents, and the two kinds of electrodes being located putting the polymer solid electrolyte between them, not contacting with each other and meeting the above condition. The electrode preferably meets the conditions that the Ip/Io ratio, the BET specific surface area, and the ratio of the total volume of micro pores/ the total volume of meso pores of the activated carbon, and the total amount of functional groups on the surface of the activated carbon, are within specific ranges, respectively. The actuator is actuated stably in the air and inexpensive, and can display a large displacement amount and a large generated stress.

Description

200903974 九、發明說明: 【發明所屬之技術領域】 本發明關於致動器’其由以離子液體及高分子成分當 作構成成分的高分子固體電解質'及以活性碳當作活性物 質的一方之電極及另一方之電極所成,藉由電刺激而變形 ,在空氣中可工作;及關於使用它的電極。 【先前技術】 近年來,於醫療機器或微型機器等的領域中,小型且 輕量的致動器之必要性係正在升高。又,於產業用機器人 或個人機器人等的領域中,輕量且柔軟的致動器之必要性 亦正在升高。 若將致動器小型化,則與慣性力相比,摩擦力或黏性 力更成爲支配因素,因此如馬達或引擎等之利用慣性力將 能量轉換成運動態機構,用作爲超小型機械用的致動器, 一般認爲係困難的。作爲迄今所提案的超小型致動器之作 動原理’已知有靜電引力型、壓電型、超音波式、形狀記 億合金等。 然而,由於此等致動器以金屬、陶瓷等的無機物質當 作材料,故在柔軟化及輕量化係有限度,而且由於構造複 雜,故有小型化不容易的問題點。 作爲能克服上述問題點的致動器,高分子致動器係近 年來受到注目。例如,想出一種利用含水高分子凝膠的溫 度變化、pH變化或電場印加等的刺激所致的形態變化之高 分子致動器(參照專利文獻1)。然而,含水高分子凝膠經 200903974 由各種刺激所致的形態變化一般非常緩慢,而且起源於含 水筒分子凝膠的不均勻父聯構造,力學強度亦低,實際利 用作爲致動係需要進一步的改良。 爲了克服上述問題,想出一種高分子致動器,其特徵 爲由離子父換樹脂膜及接合於其兩面的電極所構成,於前 述離子交換樹脂膜的含水狀態下,對前述離子交換樹脂膜 施加電位差,使產生彎曲等的變形(參照專利文獻2)。然 而,上述咼分子致動器在工作時需要水,於空氣中使用時 隨著水的蒸發,壽命有問題。 爲了克服此問題,有報告一種高分子致動器,其係在 由離子液體與氟系結晶性筒分子所成的高分子固體電解質 之兩面’黏貼由離子液體、結晶性闻分子及單層碳奈米管 所成的電極(非專利文獻1)。又,有報告一種高分子致動 器’其係在藉由混合離子液體、單體及交聯劑及使硬化而 製作的固體電解質上’黏貼當作電極的金箔(參照專利文獻 3)。然而’於此等致動器中,作爲電極所使用的碳奈米管 或金箔有成本高的問題。 爲了克服上述問題,作爲使用廉價電極材料的致動器 ,有報告一種高分子致動器,其係將由活性碳粉末、離子 液體及氟系結晶性高分子所成的電極黏貼於由離子液體與 氟系結晶性高分子所成的高分子固體電解質之兩面(非專利 文獻2)。然而此等致動器之位移量小,而希望位移量的進 一步提高。 再者,已知將X射線繞射強度曲線之(0 0 2 )面的繞射峰 200903974 之石墨結晶性構造參數Ip/10設定在特定範圍內,經鹼活 化的活性碳(專利文獻4)。 專利文獻1 :特開昭63 -3 092 5 2號公報 專利文獻2 :專利1 96664 5號公報 非專利文獻1 :未來材料,第5號,第1 0卷,第1 4頁, 2005 年 專利文獻3:特開20〇5-51949號公報 非專利文獻2 :文部科學省科學硏究費補助金特定領域硏 究「產生突破的下一世代致動器硏究」第2次公開座談會資 料,151頁,2005年12月1-2日 專利文獻4 :特開2 0 0 4 - 3 1 1 7 9 0號公報 【發明內容】 發明所欲解決的問顆 本發明之目的爲提供位移量大的致動器及使用其的電 極’該致動器係由以離子液體及高分子成分當作構成成分 的高分子固體電解質、及以廉價的活性碳當作活性物質的 一方之電極與另一方之電極所構成。 解決問題的手段 本發明人們進行精心檢討,結果發現於以離子液體及 高分子成分當作構成成分的高分子固體電解質、及以活性 碳當作活性物質的一方之電極與另一方之電極所構成致動 器中,若使用經鹼活化的活性碳,較佳爲使用經鹼活化且 滿足特定要件的活性碳,則可提高致動器的位移量以及所 產生的應力,終於完成本發明。 -7- 200903974 即,本發明係關於電極及致動器,該電極係使用以離 子液體及高分子成分當作構成成分的高分子固體電解質的 致動器中所用的電極,其以經鹼活化的活性碳當作活性物 質,該致動器包括以離子液體及高分子成分當作構成成分 的高分子固體電解質,及用於夾持該高分子固體電解質且 位置互相不接觸的皆以經鹼活化的活性碳當作活性物質的 一方之電極與另一方之電極,藉由在電極間給予電位差可 產生變形。關於上述活性碳,X射線繞射強度曲線之(002) 面的繞射峰之石墨結晶性構造參數Ip/Io比,較佳爲0.001 〜〇. 8。上述活性碳表面的總官能基量,對於每1克活性碳 而言,較佳爲在0.6 m e q / g〜1 · 5 m e q / g的範圍內。上述活性 碳的BET比表面積,較佳爲在800m2/g〜3500m2/g的範圍 內。相對於上述活性碳的中間孔(細孔徑1 nm以上、5〇nm 以下)的總容積而言,微孔(細孔徑小於1 nm)的總容積之比 (微孔總容積/中間孔總容積)較佳爲1 . 〇〜1 2。離子液體較 佳爲取代咪唑鎗鹽。較佳爲該高分子固體電解質含有離子 液體、以及具有與該離子液體相溶的聚合物嵌段(Pa)及與 該離子液體不相溶的聚合物嵌段(Pb)之共聚物(P)、或與該 離子液體相溶的聚合物(Q)當作構成成分’該共聚物或該聚 合物係成爲被該離子液體含浸的狀態’更佳爲含有該離子 液體與共聚物(P)當作構成成分,該共聚物係成爲被該離子 液體含浸的狀態。 發明的效果 於本發明的致動器中,以離子液體及高分子成分當作 200903974 構成成分的高分子固體電解質,同時使用夾持該高分子固 體電解質且位置互相不接觸的皆經鹼活化的活性碳,較佳 經鹼活化且滿足特定要件的活性碳當作活性物質的一方之 電極與另一方之電極。藉此’例如提供能適用於人造肌肉 等的致動器之多樣用途的位移量、產生應力大,柔軟且輕 量,而且在空氣中可以低電壓安定地驅動之致動器。 【實施方式】 實施發明的最佳形熊 本發明所使用的活性碳’只要由將碳質材料以鹼活化 而形成者即可’並沒有特別的限制。作爲碳質材料,例如 可舉出椰子殼、石油系瀝青、石碳系瀝青、焦炭、苯酚系 樹、聚氯乙嫌等。以驗來活化此等碳質材料而使活性化 ’可得到活性碳,但作爲鹼活化法,例如可以使用DENKI KAGAKU, 1 2 ( 1 9 9 8),第 131 1-1317 頁、碳,1 77( 1 997),第 7 6 - 7 9頁等中所具體顯示的眾所周知之方法。 以下顯示具體的處理方法之一例。從活化產率的觀點 來看’希望於鹼活化前’在氮氣等的惰性氣體之環境中, 對碳質材料進行惰性氣體的碳化處理。又,於鹼活化前, 對所得到的碳化物進行粉碎處理,可提高活化效率。於粉 碎處理中,可以使用球磨機、噴射硏磨機、錐形壓碎機、 旋轉壓碎機、高速旋轉硏磨機(例如實驗切割硏磨機)等的 粉碎機。粉碎後的碳質材料之平均粒徑較佳爲設定在 〇·1 μιη〜ι00μιη的範圍內,更佳爲設定在! μιη〜5〇μπ1的範 圍內。平均粒徑若超過〗〇 〇 μ m,則鹼活化變成難以進行到 200903974 粒子的內部,而平均粒徑若小於〇 . 1 μπι,則 控制有變難的傾向。再者,粉碎處理亦可在 。作爲鹼活化處理所用的處理劑,可例示氫 化鉀等的鹼金屬氫氧化物、氫氧化鈣、氫氧 類金屬氫氧化物等,特佳爲氫氧化鈉及氫氧 劑的使用量,對於碳化物的質量比較佳爲1 .( 佳爲1.2〜2.5倍。該質量比若低於1.0倍, 性碳之細孔形成效率有降低的傾向,另一方 若超過3.0倍,也得不到添加效果的更提高 守性及安全性的觀點來看亦不宜。又,鹼活 如上述的質量比之碳化物與處理劑均勻混合 的惰性氣體之環境中進行。混合時所使用的 係沒有特別的限制,可以使用眾所周知的旋 機或固定容器型混合機,但從容易進行均勻 ,較佳爲使用旋轉容器型混合機。鹼活化時 佳爲 600 °c 〜1000°c,更佳爲 650°c 〜950°c 低於6 0 0 °C,則活化所形成的細孔係不足, 超過1 000 °C,結晶化係過度地進行,活化所 收縮,致動器性能會降低。又,從活化所致 成及碳骨架構造的安定化之觀點來看,鹼活 時間較佳爲設定在0.5小時〜1 0小時,更佳 時〜8小時’到保持溫度的升溫時間較佳爲 1 00 °C /小時左右。作爲進行上述鹼活化處理 爲分批式或連續式,例如可以使用箱爐、帶 驗活化反應的 鹼活化後進行 氧化鈉、氫氧 化鎂等的驗土 化鉀。該處理 )〜3 · 0倍,更 則所得到的活 面,該質量比 ,從裝置的保 化處理,係將 後’在氮氣等 混合機之種類 轉容器型混合 混合之點來看 的加熱溫度較 。加熱溫度若 另一方面,若 形成的細孔會 的安定細孔形 化處理的保持 爲設定在1小 5 0 °C /小時〜 的反應爐,可 爐、推進爐、 -10- 200903974 旋轉窯爐等。如此所得之鹼活化活性碳’較佳爲在冷卻到 常溫後,例如以溫水及/或溫鹽酸水等洗淨,以去除未反應 的鹼金屬氫氧化物等之處理劑、及有混入可能性的從裝置 而來的重金屬粉。 本發明所使用之經鹼活化的活性碳’ X射線繞射強度 曲線之(002)面的繞射峰之石墨結晶性構造參數Ip/ίο較佳 爲0.001〜0.8,更佳爲0.005〜0.6,尤更佳爲0.01〜0.4。 1 p /1 〇若超過0.8,則由於結晶性高,故鹼活化不太能進行 ,能吸附離子液體之有機陽離子或陰離子的細孔之形成係 不足,比表面積比較小,結果致動器的位移量會降低。又 ,相對於中間孔(細孔徑lnm以上、50 nm以下)的總容積而 言,微孔(細孔徑小於1 nm)的總容積之比(微孔總容積/中間 孔總容積)有變過大的傾向。結果,離子液體的有機陽離子 或陰離子的吸附在物理上變困難,致動器的位移量會降低 。若Ιρ/Ιο小於0.001,則由於石墨結晶性構造未發達,容 易爲過活化狀態,難以進行均勻的鹼活化。 此處,Ip係指在X射線繞射強度曲線中,於(〇〇2)面的 繞射峰之兩下擺繪製切線,該切線之上方部分的強度之最 大値;10係指從(002)面的繞射強度扣除空氣的散射強度後 之剩餘強度。作爲Ip/Io的算出方法,可以使用特開2005- 2 1 8 5 1號公報中所具體顯示的眾所周知之方法。 本發明中所使用之經鹼活化的活性碳,其表面官能基( 例如羧基、內酯基、羥基、醌基等)的總量若太少,則離子 液體的有機陽離子或陰離子對活性碳表面的靜電引誘不足 -11- 200903974 ’吸附量會減少,另一方面,若太多則表面官能基的分解 導致在致動器內產生氣體。因此,本發明的活性碳之表面 官能基(竣基 '內酯基、羥基及醌基)的總量,對於每1克 活丨生^而㈡’較佳爲在〇.6meq/g〜l_5meq/g的範圍內,更 佳爲在〇.7meq/g〜1.2meq/g的範圍內。 再者’活性碳的表面官能基量之定量,係可藉由一般 已知的方法來進行(例如參照表面V 〇 1 _ 3 4,N 〇 2 ( 1 9 9 6))。具 體地’在1 00毫升的錐形燒瓶中分別取得活性碳試料各2 克’添加50ml的N/10之鹼試藥((a)碳酸氫鈉、(b)碳酸鈉 、(c)氫氧化鈉或(d)乙醇鈉),搖動24小時後液體分離,以 N/10鹽酸來滴定未反應的鹼試藥。由於羧基係與鹼試藥(a) 〜(d)全部進行反應,內酯基係與鹼試藥(b)〜(d)進行反應 ’羥基係與鹼試藥(c)〜(d)進行反應,且醌基係與鹼試藥(d) 進行反應,故從各滴定量扣除重複的滴定量,可將各官能 基量及進而將總官能基量定量。 本發明所使用之經鹼活化的活性碳,其BET比表面積 較佳爲在 800m2/g〜3 500m2/g的範圍內,更佳爲在 1000m2/g〜3500m2/g的範圍內。本發明中的BET比表面積 係指由液態氮溫度的氮氣吸附等溫線的BET法(例如參照 株式會社富士科技系統發行,「超微粒子手冊」,第138-141頁,1990年9月5日)所求得的比表面積。BET比表面 積若小於800m2/g,則由於離子液體的有機陽離子或陰離 子對活性碳表面的吸附量減少’故致動器的位移量會降低 。另一方面,若超過3 5 0 0 m2 / g,於每質量的活性碳中,雖 -12- 200903974 然離子液體的有機陽離子或陰離子的吸附量有增加的傾向 ,但反而由於每容積的吸附量減少’使每體積的致動器之 位移量降低。 於本發明所使用之經鹼活化的活性碳中’爲了增加離 子液體的有機陽離子或陰離子對活性碳表面的吸附量’增 加盡可能微小的細孔以得到大的比表面積係有效。然而’ 細孔若太微小,由於離子液體的有機陽離子或陰離子的吸 附在物理上變困難,造成致動器的性能降低。因此,必須 將細孔徑及細孔容積設定在恰當的範圍內。根據此觀點, 相對於活性碳的中間孔(細孔徑Inm以上、50nm以下)之總 容積而言,微孔(細孔徑小於1 nm)的總容積之比(微孔總容 積/中間孔總容積)較佳爲1 · 〇〜1 2.0,更佳爲 1 . 2〜1 1 · 0, 特佳爲1 . 5〜1 0.0。再者,於本發明中,活性碳的微孔及中 間孔係使用日本BEL公司製的「BELSORP 18」,以氮氣當 作探針氣體所得之吸附等溫線爲基礎,微孔係藉由MP法 (Micro Pore Method)(例如參照 R. S. Mikhail,S. Brunauer, E. E. Bodor,J. Colloid Interface Sci·,26, 45( 1 968))來算 出,中間孔的測定係藉由 DH法(Dollimore & Heal Method)(例如參照 DD. Dollimore,G. R. Heal, J. Applied Chem. 14·,1 09- 1 1 4(1 964))來算出。 本發明所使用之經鹼活化的活性碳之形狀係沒有限定 ’例如可爲粒狀、(微)粉狀、面狀等。作爲面狀,可舉出 不織布狀、織布狀、氈狀等的織物狀;紙狀、薄膜狀、膜 狀、片狀等。 200903974 本發明所使用的電極係致動器中所用的電極’該致動 器使用以離子液體及高分子成分當作構成成分的高分子固 體電解質,較佳爲由使用以離子液體及高分子成分當作構 成成分的高分子固體電解質、及夾持該高分子固體電解質 且位置互相不接觸的一方之電極與另一方之電極(由成爲正 極的電極與成爲負極的電極所構成的至少一對電極)所構成 ,藉由在電極間給予電位差可產生變形。 該電極之一方的電極與另一方的電極,可爲皆係由經 鹼活化的活性碳及對於該活性碳而言,添加1〜3 0質量% 左右的聚四氟乙烯等之眾所周知的黏結劑所構成的電極, 以經鹼活化的活性碳、離子液體及作爲高分子成分的共聚 物(P)或聚合物(Q)當作構成成分的電極等等,但從離子液 體的溶解性之觀點來看,較佳爲以經鹼活化的活性碳、離 子 '液體及作爲高分子成分的共聚物(P)或聚合物(Q)當作構 成成分的電極。於此較佳的態樣之電極中,3者的質量分 $係沒有大的限制,但從所得到的致動器之位移量及產生 ^ Λ t觀點來看’經鹼活化的活性碳較佳爲5質量%以上 ’更佳爲1 0質量%以上,從電極成形性之觀點來看,較佳 爲9〇質量%以下,更佳爲80質量%以下。又,從離子傳導 率之觀點來看’離子液體較佳爲5質量。/。以上,更佳爲i 〇 質量%以上’高分子成分較佳爲80質量%以下,更佳爲70 質量%以下。又’從電極強度的觀點來看,離子液體較佳 爲9〇質量%以下’更佳爲80質量%以下,高分子成分較佳 爲5質量%以上,更佳爲1 0質量%以上。 -14- 200903974 又,於本發明所使用的電極中,在該電極的製造階段 ,除了上述成分,從確保電極活性物質間的導電性之觀點 來看’視需要亦可添加金屬微粒子、碳黑、碳奈米管、氣 相成長碳纖維等的導電性碳材料等之導電性物質。於添加 時,對於上述電極構成成分(例如經鹼活化的活性碳、離子 液體及高分子成分)的合計質量而言,導電性物質的添加量 ,從導電性的觀點來看,較佳爲0.1質量%以上,更佳爲 0 · 5質量%以上,另一方面,從電極成形性的觀點來看,較 佳爲6 0質量%以下’更佳爲5 0質量%以下。 於上述電極中,亦可使經鹼活化的活性碳分散於其它 電極材料中,也可爲不均勻的構成。作爲後者之例,例如 可舉出使成形爲面狀的經鹼活化的活性碳至少部分含浸成 形爲含浸有離子液體的膜狀、薄膜狀、片狀、板狀 '織物 狀、桿狀、立方體狀或長方體狀等的共聚物(P)或聚合物(Q) 而成爲的電極。本發明所使用的電極之形狀係沒有特別的 限制,例如可爲膜狀、薄膜狀、片狀、板狀、織物狀、桿 狀、立方體狀或長方體狀等。 以本發明所使用之經鹼活化的活性碳當作活性物質的 電極之製造方法,係沒有特別的限制,例如可舉出於經鹼 活化的活性碳中,視需要添加1〜3 0質量%左右的聚四氟 乙烯等之當作黏結劑的已知物質,充分地混合後,置入模 具內,進行加壓成形或壓延片化的成形方法;將經鹼活化 的活性碳、離子液體、及具有與離子液體相溶的聚合物嵌 段(Pa)和與離子液體不相溶的聚合物嵌段(Pb)之共聚物(P) -15- 200903974 或與離子液體相溶的聚合物(Q)充分混合後,置入模具內, 進行加壓成形或壓延片,以得到凝膠狀電極的方法;使成 形爲面狀(不織布狀、織布狀、氈狀等的織物狀;紙狀、薄 膜狀、膜狀、片狀等)之經鹼活化的活性碳與成爲爲膜狀、 薄膜狀、片狀、板狀、織物狀、桿狀、立方體狀或長方體 狀等的離子液體所含浸的共聚物(P )或聚合物(Q ),經由熱 壓機等來貼合,使該活性碳至少部分地含浸離子液體而成 爲電極之方法;將經鹼活化的活性碳、離子液體、給予共 κ 聚物(P)或聚合物(Q)的單體、及聚合引發劑混合及成形後 ,進行共聚合或聚合反應以得到凝膠狀電極的方法;使成 形爲面狀(不織布狀、織布狀、氈狀等的織物狀;紙狀、薄 膜狀、膜狀、片狀等)的經鹼活化的活性碳含浸離子液體、 給予共聚物(P)或聚合物(Q)的單體及聚合引發劑的混合液 後’進行共聚合或聚合反應以得到凝膠狀電極的方法;使 經鹼活化的活性碳含浸由離子液體與共聚物(P)或聚合物(Q) 所成的凝膠狀物之方法等,此等可按照目的而適宜地選擇 -。 本發明所用的高分子固體電解質係以離子液體及高分 子成分當作構成成分。離子液體與高分子成分亦可如上述 地成爲本發明所用的電極之構成成分。 本發明所用的離子液體,亦稱爲常溫熔融鹽或僅稱爲 熔融鹽等,依照Science, 302號,第792頁,2003年,定 義爲在1 00 °C以下具有流動性,完全由離子所成的液體。 於本發明中,可以使用習知的各種離子液體,但較佳爲在 -16- 200903974 常溫(室溫)或在可及的接近常溫的狀態下呈現液體狀態而 安定者。於本發明中,較佳爲使用常溫爲液體狀態,常溫 的離子傳導率爲0.001S/cm以上者。離子液體由於幾乎沒 有蒸氣壓,故引燃性低,熱安定性優異。於本發明中,藉 由使用離子液體當作高分子固體電解質的構成成分,而可 回避當使用水或有機溶劑於電解液時所擔心的電解液之蒸 發的問題。又,離子液體,由於與水或有機溶劑比較下, 一般電位範圍廣,故可提高設定致動器的驅動電壓,可由 致動器引出高的位移量或產生的應力。 作爲構成本發明中所用的合適離子液體之有機陽離子 的例子,可舉出下述通式(I)〜(V)。。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The electrode and the other electrode are formed by deformation by electrical stimulation, working in air; and about the electrode using it. [Prior Art] In recent years, in the field of medical equipment, micromachines, and the like, the necessity of a small and lightweight actuator is increasing. Moreover, in the field of industrial robots or personal robots, the necessity of lightweight and flexible actuators is also increasing. If the actuator is miniaturized, the frictional force or the viscous force becomes a dominant factor compared with the inertial force. Therefore, the inertial force such as a motor or an engine converts energy into a motion state mechanism, and is used as an ultra-small machine. Actuators are generally considered to be difficult. As an operating principle of the ultra-small actuator proposed so far, an electrostatic attraction type, a piezoelectric type, an ultrasonic type, a shape type, and the like are known. However, since these actuators are made of an inorganic material such as metal or ceramics, they are limited in flexibility and weight reduction, and since the structure is complicated, there is a problem that miniaturization is not easy. As an actuator that can overcome the above problems, polymer actuators have been attracting attention in recent years. For example, a high molecular actuator that utilizes a morphological change due to a temperature change, a pH change, or an electric field imprint of a water-containing polymer gel has been devised (see Patent Document 1). However, the morphological changes of aqueous polymer gels caused by various stimuli in 2000903974 are generally very slow, and the heterogeneous parent-linked structure originating from the molecular gel of aqueous cylinders has low mechanical strength, and the actual utilization as the actuating system needs further Improvement. In order to overcome the above problems, a polymer actuator is disclosed which is characterized in that an ion-exchange resin film and electrodes bonded to both surfaces thereof are used, and the ion exchange resin film is applied to the ion exchange resin film in a water-containing state. A potential difference is applied to cause deformation such as bending (see Patent Document 2). However, the above-mentioned helium molecular actuator requires water during operation, and when used in air, life is problematic as water evaporates. In order to overcome this problem, a polymer actuator has been reported which is attached to an ionic liquid, a crystalline smear, and a single layer of carbon on both sides of a polymer solid electrolyte composed of an ionic liquid and a fluorine-based crystalline cylinder molecule. Electrode formed by a nanotube (Non-Patent Document 1). Further, there has been reported a polymer actuator which is a gold foil which is adhered to an electrode by mixing an ionic liquid, a monomer and a crosslinking agent, and a solid electrolyte produced by hardening (see Patent Document 3). However, in such actuators, the carbon nanotube or gold foil used as the electrode has a problem of high cost. In order to overcome the above problems, as an actuator using an inexpensive electrode material, there has been reported a polymer actuator in which an electrode made of activated carbon powder, an ionic liquid, and a fluorine-based crystalline polymer is adhered to an ionic liquid. Both sides of the polymer solid electrolyte formed of the fluorine-based crystalline polymer (Non-Patent Document 2). However, the displacement of these actuators is small, and it is desirable to further increase the amount of displacement. Further, it is known that the graphite crystal structure parameter Ip/10 of the diffraction peak of the (0 0 2 ) plane of the X-ray diffraction intensity curve is set to a specific range, and the alkali-activated activated carbon (Patent Document 4) . Patent Document 1: JP-A-63-3 092 5 No. 2 Patent Document 2: Patent 1 96664 No. 5 Non-Patent Document 1: Future Materials, No. 5, Vol. 0, No. 1, p. Document 2: Special Report No. 20〇5-51949 Non-Patent Document 2: The second public symposium of the Ministry of Education, Culture, Sports, Science and Technology 151, pp. 1-2, December 1-2, Patent Document 4: JP-A-2002-2003-A. Large actuator and an electrode using the same. The actuator is a polymer solid electrolyte having an ionic liquid and a polymer component as a constituent component, and an electrode using an inexpensive activated carbon as an active material. The electrode of one side is composed. Means for Solving the Problems The inventors of the present invention conducted a thorough review and found that a polymer solid electrolyte having an ionic liquid and a polymer component as a constituent component, and an electrode having one side of activated carbon as an active material and the other electrode are formed. In the actuator, if an alkali-activated activated carbon is used, and it is preferred to use an activated carbon which is activated by a base and satisfies a specific requirement, the amount of displacement of the actuator and the stress generated can be improved, and the present invention has finally been completed. -7-200903974 That is, the present invention relates to an electrode used in an actuator of a polymer solid electrolyte having an ionic liquid and a polymer component as a constituent component, which is activated by a base. The activated carbon is used as an active material, and the actuator includes a polymer solid electrolyte having an ionic liquid and a polymer component as constituent components, and a base for holding the polymer solid electrolyte and not contacting each other with a base. The activated activated carbon acts as one of the electrodes of the active material and the other electrode, and deformation can be caused by giving a potential difference between the electrodes. With respect to the above activated carbon, the graphite crystal structure parameter Ip/Io ratio of the diffraction peak of the (002) plane of the X-ray diffraction intensity curve is preferably 0.001 to 〇. The total functional group amount of the above activated carbon surface is preferably in the range of 0.6 m e q /g to 1 · 5 m e q / g per 1 g of activated carbon. The BET specific surface area of the above activated carbon is preferably in the range of from 800 m 2 /g to 3,500 m 2 /g. The ratio of the total volume of the micropores (the pore diameter is less than 1 nm) relative to the total volume of the intermediate pores (the pore diameter of 1 nm or more and 5 〇 nm or less) of the above activated carbon (the total volume of the micropores / the total volume of the intermediate pores) ) is preferably 1. 〇~1 2. The ionic liquid is preferably a substituted imidazole gun salt. Preferably, the polymer solid electrolyte contains an ionic liquid, and a copolymer (Pa) having a polymer block (Pa) compatible with the ionic liquid and a polymer block (Pb) incompatible with the ionic liquid (P) Or the polymer (Q) which is compatible with the ionic liquid is regarded as a constituent component 'the copolymer or the polymer is in a state of being impregnated with the ionic liquid', more preferably containing the ionic liquid and the copolymer (P) As a constituent component, the copolymer is in a state of being impregnated with the ionic liquid. Advantageous Effects of Invention In the actuator of the present invention, a polymer solid electrolyte in which an ionic liquid and a polymer component are used as a constituent of 200903974 is simultaneously activated by alkali using a polymer solid electrolyte sandwiching and not in contact with each other. Activated carbon, preferably an electrode activated by a base and satisfying a specific element, is used as an electrode of one side of the active material and the other electrode. In this way, for example, an actuator capable of being applied to various uses of an artificial muscle or the like, an amount of displacement, a large stress, a soft and lightweight, and an actuator that can be stably driven at a low voltage in the air can be provided. [Embodiment] The best-shaped bear for carrying out the invention The activated carbon used in the present invention is not particularly limited as long as it is formed by activating a carbonaceous material with a base. Examples of the carbonaceous material include coconut shell, petroleum pitch, stone carbon-based pitch, coke, phenol-based tree, and polychloroethylene. Activated carbon can be activated by activation of these carbonaceous materials, but as an alkali activation method, for example, DENKI KAGAKU, 1 2 (1 9 9 8), pages 131 1-1317, carbon, 1 can be used. 77 (1 997), the well-known method specifically shown in pages 7 6 - 7 9 et al. An example of a specific processing method is shown below. From the viewpoint of the activation yield, it is desirable to carry out carbonization treatment of the carbonaceous material with an inert gas in an atmosphere of an inert gas such as nitrogen before the activation of the base. Further, the obtained carbide is pulverized before the activation of the alkali to improve the activation efficiency. In the pulverization treatment, a pulverizer such as a ball mill, a jet honing machine, a conical crusher, a rotary crusher, or a high-speed rotary honing machine (for example, an experimental cutting honing machine) can be used. The average particle diameter of the pulverized carbonaceous material is preferably set within the range of 〇·1 μιη to ι00 μιη, and more preferably set at! Within the range of μιη~5〇μπ1. If the average particle diameter exceeds 〇 〇 μ m, the alkali activation becomes difficult to proceed to the inside of the 200903974 particles, and if the average particle diameter is less than 〇 1 μπι, the control tends to be difficult. Furthermore, the pulverization process can also be used. The treatment agent used for the alkali activation treatment may, for example, be an alkali metal hydroxide such as potassium hydride, calcium hydroxide or a hydroxide metal hydroxide, and particularly preferably a sodium hydroxide or a hydroxide. The mass of the material is preferably 1. (goodly 1.2 to 2.5 times. If the mass ratio is less than 1.0 times, the pore formation efficiency of the carbon tends to decrease, and if the other exceeds 3.0 times, the addition effect is not obtained. It is also not preferable from the viewpoint of improving the defensiveness and safety. Further, the alkali activity is carried out in an environment in which the mass is more inert than the inert gas in which the carbide and the treating agent are uniformly mixed. The system used for mixing is not particularly limited. A well-known rotary or fixed-tank type mixer can be used, but it is easy to carry out uniformity, and it is preferable to use a rotary container type mixer. When the alkali is activated, it is preferably 600 ° C to 1000 ° C, more preferably 650 ° C ~ When 950 ° C is lower than 600 ° C, the pore system formed by activation is insufficient, and when it exceeds 1 000 ° C, the crystallization system is excessively carried out, the activation shrinks, and the performance of the actuator is lowered. Formation and carbon skeleton structure From the viewpoint of the alkalinity, the alkali activity time is preferably set to 0.5 hour to 10 hours, more preferably to 8 hours 'the temperature rise time to the holding temperature is preferably about 100 ° C / hour. The treatment is a batch type or a continuous type. For example, it is possible to use a box furnace and an alkali activated with an activation reaction to carry out a soil-calculated potassium such as sodium oxide or magnesium hydroxide. The treatment is 〜3 · 0 times, and more is obtained. The living surface, the mass ratio, from the chemical treatment of the device, is based on the heating temperature at the point of mixing and mixing the type of the mixer such as nitrogen. On the other hand, if the pores formed are stable, the pore formation process is maintained at a temperature of 1 small 50 ° C / hr ~, furnace, propulsion furnace, -10-200903974 rotary kiln Furnace, etc. The alkali activated activated carbon 'obtained in this manner is preferably a treatment agent which removes unreacted alkali metal hydroxide or the like after being cooled to normal temperature, for example, by washing with warm water and/or warm hydrochloric acid water, and may be mixed. Severe heavy metal powder from the device. The graphite crystal structure parameter Ip/ί of the diffraction peak of the (002) plane of the alkali-activated activated carbon 'X-ray diffraction intensity curve used in the present invention is preferably 0.001 to 0.8, more preferably 0.005 to 0.6, particularly More preferably 0.01 to 0.4. When 1 p /1 〇 exceeds 0.8, since the crystallinity is high, the alkali activation is not performed, and the formation of pores of the organic cation or anion capable of adsorbing the ionic liquid is insufficient, and the specific surface area is relatively small, and as a result, the actuator is The amount of displacement will decrease. Further, the ratio of the total volume of the micropores (the pore diameter is less than 1 nm) (the total volume of the micropores/the total volume of the intermediate pores) is excessively large with respect to the total volume of the intermediate pores (the pore diameter is 1 nm or more and 50 nm or less). Propensity. As a result, the adsorption of the organic cation or anion of the ionic liquid becomes physically difficult, and the displacement amount of the actuator is lowered. If Ιρ/Ιο is less than 0.001, since the graphite crystal structure is not developed, it is easily activated, and it is difficult to perform uniform alkali activation. Here, Ip means that in the X-ray diffraction intensity curve, a tangential line is drawn at two hem of the diffraction peak of the (〇〇2) plane, and the intensity of the upper portion of the tangent is the largest 値; 10 means the (002) plane The diffraction intensity is the residual strength after subtracting the scattering intensity of the air. As a method of calculating Ip/Io, a well-known method specifically shown in Japanese Laid-Open Patent Publication No. 2005- 2 1 85 1 can be used. In the case of the alkali-activated activated carbon used in the present invention, if the total amount of surface functional groups (for example, a carboxyl group, a lactone group, a hydroxyl group, a thiol group, etc.) is too small, the organic cation or anion of the ionic liquid is on the surface of the activated carbon. Insufficient electrostatic attraction-11- 200903974 'The amount of adsorption will decrease. On the other hand, if too much, the decomposition of surface functional groups will cause gas to be generated in the actuator. Therefore, the total amount of surface functional groups (fluorenyl 'lactone group, hydroxyl group and sulfhydryl group) of the activated carbon of the present invention is preferably 1 to 2 meq/g to 1 to 5 meq per 1 gram of active hydrazine. In the range of /g, it is more preferably in the range of 〇.7meq/g to 1.2 meq/g. Further, the quantification of the amount of surface functional groups of the activated carbon can be carried out by a generally known method (for example, reference surface V 〇 1 _ 3 4, N 〇 2 (1 9 9 6)). Specifically, '2 kg of activated carbon samples were respectively taken in a 100 ml Erlenmeyer flask'. Add 50 ml of N/10 base reagent ((a) sodium hydrogencarbonate, (b) sodium carbonate, (c) hydroxide Sodium or (d) sodium ethoxide), the liquid was separated after shaking for 24 hours, and the unreacted alkali reagent was titrated with N/10 hydrochloric acid. Since the carboxyl group reacts with all of the alkali reagents (a) to (d), the lactone group reacts with the alkali reagents (b) to (d) 'hydroxyl and base reagents (c) to (d) Since the reaction proceeds and the thiol system reacts with the alkali reagent (d), the amount of each functional group and further the total functional group amount can be quantified by subtracting the repeated titration from each titer. The alkali activated activated carbon used in the present invention preferably has a BET specific surface area in the range of 800 m 2 /g to 3 500 m 2 /g, more preferably in the range of 1000 m 2 /g to 3500 m 2 /g. The BET specific surface area in the present invention is a BET method using a nitrogen adsorption isotherm of a liquid nitrogen temperature (for example, referred to Fuji Technology Co., Ltd., "Ultrafine Particles Handbook", pp. 138-141, September 5, 1990 The specific surface area obtained. If the BET specific surface area is less than 800 m2/g, the amount of displacement of the actuator is lowered because the amount of adsorption of the organic cation or anion of the ionic liquid on the surface of the activated carbon is reduced. On the other hand, if it exceeds 3,500 m2 / g, the amount of adsorption of organic cations or anions of ionic liquids tends to increase in the amount of activated carbon per mass of -12-200903974, but instead of adsorption per volume The amount reduction 'decreases the displacement of each volume of actuator. It is effective to increase the fine pores as small as possible in order to increase the adsorption amount of the organic cation or anion of the ionic liquid to the surface of the activated carbon in the alkali-activated activated carbon used in the present invention to obtain a large specific surface area. However, if the pores are too small, the adsorption of organic cations or anions of the ionic liquid is physically difficult, resulting in deterioration of the performance of the actuator. Therefore, the pore size and pore volume must be set to an appropriate range. From this point of view, the ratio of the total volume of the micropores (the pore diameter is less than 1 nm) relative to the total volume of the intermediate pores (the pore diameters of Inm or more and 50 nm or less) of the activated carbon (the total volume of the micropores / the total volume of the intermediate pores) Preferably, it is 1 · 〇~1 2.0, more preferably 1. 2~1 1 · 0, especially preferably 1. 5~1 0.0. Further, in the present invention, the micropores and the intermediate pores of the activated carbon are based on "BELSORP 18" manufactured by BEL Co., Ltd., and the adsorption isotherm obtained by using nitrogen as a probe gas, and the microporous system is MP. The Micro Pore Method (for example, see RS Mikhail, S. Brunauer, EE Bodor, J. Colloid Interface Sci., 26, 45 (1 968)). The calculation of the intermediate hole is performed by the DH method (Dollimore & Heal Method) (for example, refer to DD. Dollimore, GR Heal, J. Applied Chem. 14·1 09-1 1 4 (1 964)). The shape of the alkali-activated activated carbon used in the present invention is not limited to, for example, a granular form, a (micro) powder form, a planar form or the like. Examples of the surface shape include a woven fabric shape such as a non-woven fabric, a woven fabric, and a felt; a paper shape, a film shape, a film shape, and a sheet shape. 200903974 Electrode used in an electrode system actuator used in the present invention. The actuator uses a polymer solid electrolyte having an ionic liquid and a polymer component as constituent components, preferably an ionic liquid and a polymer component. a polymer solid electrolyte as a constituent component, and an electrode that does not contact each other with the polymer solid electrolyte interposed therebetween, and another electrode (at least one pair of electrodes composed of an electrode serving as a positive electrode and an electrode serving as a negative electrode) According to this configuration, deformation can be caused by giving a potential difference between the electrodes. One of the electrodes of the electrode and the other electrode may be a well-known binder such as activated carbon which is activated by alkali and polytetrafluoroethylene which is added in an amount of about 1 to 30% by mass for the activated carbon. The electrode is composed of an alkali-activated activated carbon, an ionic liquid, a copolymer (P) or a polymer (Q) as a polymer component, and the like, but from the viewpoint of solubility of the ionic liquid In view of the above, an alkali-activated activated carbon, an ion 'liquid, and a copolymer (P) or a polymer (Q) as a polymer component are preferable as an electrode. In the electrode of the preferred aspect, the mass fraction of the three is not greatly limited, but from the viewpoint of the displacement of the actuator obtained and the viewpoint of the generation, the activated carbon activated by alkali is more It is preferably 5% by mass or more, and more preferably 10% by mass or more. From the viewpoint of electrode formability, it is preferably 9% by mass or less, and more preferably 80% by mass or less. Further, the ionic liquid is preferably 5 mass from the viewpoint of ion conductivity. /. The above is more preferably i 〇 mass% or more. The polymer component is preferably 80% by mass or less, more preferably 70% by mass or less. Further, from the viewpoint of the electrode strength, the ionic liquid is preferably 9% by mass or less, more preferably 80% by mass or less, and the polymer component is preferably 5% by mass or more, and more preferably 10% by mass or more. Further, in the electrode used in the present invention, in addition to the above-described components, in the production stage of the electrode, metal fine particles or carbon black may be added as needed from the viewpoint of ensuring conductivity between the electrode active materials. A conductive material such as a conductive carbon material such as a carbon nanotube or a vapor-grown carbon fiber. In the total amount of the electrode constituent components (for example, alkali-activated activated carbon, ionic liquid, and polymer component), the amount of the conductive material added is preferably 0.1 from the viewpoint of conductivity. The mass % or more is more preferably 0.5% by mass or more. On the other hand, from the viewpoint of electrode formability, it is preferably 60% by mass or less and more preferably 50% by mass or less. In the above electrode, the alkali-activated activated carbon may be dispersed in other electrode materials or may have a non-uniform structure. Examples of the latter include, for example, a film-like, film-like, sheet-like, plate-like fabric-like shape, rod-shaped, and cubic shape in which an alkali-activated activated carbon molded into a planar shape is at least partially impregnated with an ionic liquid. An electrode formed by a copolymer (P) or a polymer (Q) such as a rectangular or rectangular parallelepiped. The shape of the electrode used in the present invention is not particularly limited, and may be, for example, a film form, a film form, a sheet form, a plate form, a woven form, a rod shape, a cubic shape or a rectangular parallelepiped shape. The method for producing the electrode using the alkali-activated activated carbon used in the present invention as the active material is not particularly limited, and may be, for example, an alkali-activated activated carbon, and if necessary, 1 to 30% by mass. A known method of using a known material such as a polytetrafluoroethylene or the like as a binder, and then placing it in a mold to perform press forming or calendering; activating activated carbon, an ionic liquid, And a copolymer (P) -15-200903974 having a polymer block (Pa) which is compatible with the ionic liquid and a polymer block (Pb) which is incompatible with the ionic liquid or a polymer which is compatible with the ionic liquid ( Q) After thoroughly mixing, placing in a mold, press-forming or rolling a sheet to obtain a gel-like electrode, and molding into a planar shape (woven fabric such as a non-woven fabric, a woven fabric, a felt, or the like; a paper-like shape) Alkali-activated activated carbon in the form of a film, a film, a sheet, or the like, and is impregnated with an ionic liquid such as a film, a film, a sheet, a plate, a fabric, a rod, a cube, or a rectangular parallelepiped. Copolymer (P) or polymer (Q), a method in which the activated carbon is at least partially impregnated with an ionic liquid to form an electrode by a hot press or the like; an activated carbon activated by an alkali, an ionic liquid, a co-kappaomer (P) or a polymer (Q) After the monomer and the polymerization initiator are mixed and formed, a copolymerization or polymerization reaction is carried out to obtain a gel-like electrode; and the surface is formed into a planar shape (a fabric shape such as a non-woven fabric, a woven fabric, a felt, or the like; a paper-like shape) , a film-like, film-like, sheet-like, etc., alkali-activated activated carbon impregnated with an ionic liquid, a copolymer of a copolymer (P) or a polymer (Q), and a polymerization initiator, followed by 'copolymerization or a method of polymerizing to obtain a gel-like electrode; a method of impregnating an alkali-activated activated carbon with a gel formed of an ionic liquid and a copolymer (P) or a polymer (Q), etc., etc. And choose - as appropriate. The polymer solid electrolyte used in the present invention contains an ionic liquid and a high molecular component as constituent components. The ionic liquid and the polymer component may also be constituent components of the electrode used in the present invention as described above. The ionic liquid used in the present invention is also referred to as a room temperature molten salt or simply as a molten salt. According to Science, No. 302, page 792, 2003, it is defined as having a fluidity below 100 ° C, completely by ion. Into the liquid. In the present invention, various conventional ionic liquids can be used, but it is preferred to be in a liquid state at a normal temperature (room temperature) of -16 to 200903974 or at a state close to normal temperature. In the present invention, it is preferred to use a liquid state at normal temperature and an ionic conductivity of 0.001 S/cm or more at normal temperature. Since the ionic liquid has almost no vapor pressure, it has low ignitability and excellent thermal stability. In the present invention, by using an ionic liquid as a constituent component of the polymer solid electrolyte, it is possible to avoid the problem of evaporation of the electrolyte which is feared when water or an organic solvent is used in the electrolyte. Further, since the ionic liquid generally has a wide potential range in comparison with water or an organic solvent, the driving voltage of the setting actuator can be increased, and a high displacement amount or a generated stress can be extracted by the actuator. Examples of the organic cation constituting a suitable ionic liquid used in the present invention include the following general formulae (I) to (V).

[式中,R1、R2及R3各自獨立地表示氫原子、碳數1-10的 直鏈狀或支鏈狀烷基、碳數2〜10的直鏈狀或支鏈狀烯基 、碳數6〜15的芳基、碳數7〜20的芳烷基或碳數2〜30 的聚氧化烯基] -17- 200903974In the formula, R1, R2 and R3 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched alkenyl group having 2 to 10 carbon atoms, and a carbon number. 6 to 15 aryl groups, 7 to 20 carbon atoms of aralkyl groups or polyoxyalkylene groups having 2 to 30 carbon atoms] -17- 200903974

e [式中,R4表示氫原子、碳數1〜10的直鏈狀或支鏈狀烷 基、碳數2〜10的直鏈狀或支鏈狀烯基、碳數6〜15的芳 基、碳數7〜20的芳烷基或碳數2〜30的聚氧化烯基,R 表示碳數1〜6的直鏈狀或支鏈狀院基,η表示〇以上、5 以下的整數。於η爲2以上時,各R可爲相同的基或不同 的基。e [wherein R4 represents a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched alkenyl group having 2 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms; An aralkyl group having 7 to 20 carbon atoms or a polyoxyalkylene group having 2 to 30 carbon atoms, R is a linear or branched group having 1 to 6 carbon atoms, and η is an integer of 〇 or more and 5 or less. When η is 2 or more, each R may be the same group or a different group.

(III) [式中’ R5、R6、R7及R8各自獨立地表示氫原子 '碳數1 〜10的直鏈狀或支鏈狀烷基、碳數2〜10的直鏈狀或支鏈 狀烯基、碳數6〜15的芳基、碳數7〜2〇的芳烷基、碳數 2〜30的聚氧化嫌基’或r5〜r8中2個基共同形成環構造 -18- 200903974(III) [wherein R5, R6, R7 and R8 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, or a linear or branched chain having 2 to 10 carbon atoms. An alkenyl group, an aryl group having 6 to 15 carbon atoms, an aralkyl group having 7 to 2 carbon atoms, a polyoxygen group having a carbon number of 2 to 30 or two groups of r5 to r8 together form a ring structure -18 - 200903974

ώ!Π;: [式中,R9、R1()、R11及R12各自獨立地表示氫原子、碳數 1〜10的直鏈狀或支鏈狀烷基、碳數2〜10的直鏈狀或支 鏈狀烯基、碳數6〜15的芳基、碳數7〜20的芳烷基、碳 數2〜30的聚氧化烯基,或R9〜R12中2個基共同形成環 構造]式!Π;: [wherein, R9, R1(), R11 and R12 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, or a linear chain having 2 to 10 carbon atoms; Or a branched alkenyl group, an aryl group having 6 to 15 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a polyoxyalkylene group having 2 to 30 carbon atoms, or 2 groups of R9 to R12 together form a ring structure]

[式中,R13、R14及R15各自獨立地表示氫原子、碳數1〜 10的直鏈狀或支鏈狀烷基、碳數2〜10的直鏈狀或支鏈狀 烯基、碳數6〜15的芳基、碳數7〜20的芳烷基、碳數2 〜30的聚氧化烯基,或R13〜R15中2個基共同形成環構造] 於上述有機陽離子之例示的R1〜R15之定義中,作爲碳 數1〜10的直鏈狀或支鏈狀烷基,較佳爲碳數1〜6者, 更佳爲碳數1〜4者,具體地可舉出甲基、乙基、丙基、 丁基等。於R1〜R15之定義中,作爲碳數2〜10的直鏈狀 或支鏈狀烯基,較佳爲碳數2〜6者,更佳爲碳數2〜4者 ,具體地可舉出乙烯基、丙烯基、丁烯基等。於R1〜R15 -19- 200903974 之定義中’作爲碳數6〜15的芳基’可舉出苯基、萘基等 。於R1〜R15之定義中,作爲碳數7〜20的芳烷基,可舉 出苯甲基、苯乙基等。於R1〜R15之定義中,作爲碳數2 〜30的聚氧化嫌基’可舉出聚氧化乙烯基、聚氧化丙烯基 等。於R的定義中,作爲碳數1〜6的直鏈狀或支鏈狀烷 基,可舉出甲基、乙基、丙基、丁基等。於R5〜R15之定 義中,作爲2個基共同形成環構造的情況,例如可舉出與 中心原子的N共同形成吡咯啶環或哌啶環的情況等。 ( 其中,從離子液體的離子傳導性及取得容易性之觀點 來看,較佳爲通式(I)所示之未取代或取代咪唑鑰陽離子, 更佳爲取代咪唑鎗陽離子。於此等之中,從離子液體的熔 點及黏度之觀點來看,較佳爲通式(I)中的R1及R2各自獨 立地係碳數1〜6的直鏈狀或支鏈狀烷基,更佳爲Ri及R2 各自獨立地係碳數1〜6的直鏈狀或支鏈狀烷基,R3係氫 原子,而且於此等情況下,R1與R2較佳爲不同的基。作 爲最佳的有機陽離子之例,可舉出3 -乙基-1-甲基咪唑鎗陽 ) 離子(EMI + )。 作爲構成本發明所用的合適離子液體的陰離子之例, 可舉出含鹵素陰離子、礦酸陰離子、有機酸陰離子等。作 爲含鹵素陰離子或礦酸陰離子之例,具體地可舉出PF〆、 C104— 、CF3S03- 、C4F9S03- 、BF4- 、(CF3S〇2)2N 、 (C2F5S02)2N_ 、(CF3S02)3C_、AsF6 -、s 〇42 _、(CN)2N 一 、NO厂等。又,作爲有機酸陰離子之例,可舉出rs〇3-、 11(:02_等。其中’R表示碳數1〜4的烷基、碳數2〜4的 -20- 200903974 烯基、碳數7〜20的芳烷基、碳數8〜20的芳烯基、碳數 2〜8的院氧基院基、碳數3〜80的醯氧基院基、碳數1-4 的磺院基、碳數6〜15的芳基或碳數3〜7的芳香族雑環 基。於此等之中,從離子液體的離子傳導率及取得容易性 之觀點來看,較佳爲 PF6_、cio4-、CF3S03_、C4F9S03 — 、bf4_、(cn)2n-及(cf3so2)2n—、(c2f5so2)2n-等的磺 醯亞胺系陰離子,特佳爲(CF3S02)2N-、(C2F5S〇2)2N-等 的磺醯亞胺系陰離子。 作爲本發明所適用的離子液體之例,可舉出上述有機 陽離子與陰離子之組合所成的離子液體。此等可單獨使用 ’也可組合複數個來使用。作爲本發明所用的離子液體, 特佳爲取代咪唑鑰鹽,作爲具體例,可舉出乙基甲基咪唑 鑰雙(三氟甲烷磺醯基)醯亞胺(EMITFSI)、乙基甲基咪唑鑷 雙(六氟甲烷磺醯基)醯亞胺(EMIPFSI)、丁基甲基咪唑鑰雙 (三氟甲烷磺醯基)醯亞胺(BMITFSI)、丁基甲基咪唑鑷雙( 五氟甲烷磺醯基)醯亞胺(BMIPFSI)等。於此等之中,從離 子液體的離子傳導率之觀點來看,更佳爲 EMITFSI及 EMIPFSI ’而且從取得容易性的觀點來看,更佳爲 EMITFSI 。 作爲構成本發明所用的高分子固體電解質之高分子成 分,可舉出具有與構成該高分子固體電解質的離子液體相 溶的聚合物嵌段(Pa)及與該離子液體不相溶的聚合物嵌段 (Pb)之共聚物(P)、以及與該離子液體相溶的聚合物(Q)當 作合適者。上述共聚物(P)可具有各1個或2個以上的聚合 -21- 200903974 物嵌段(Pa)及聚合物嵌段(Pb)。 於本發明中,判斷離子液體與聚合物嵌段(pa)是否相溶 ’及判斷離子液體與聚合物嵌段(Pb)是否不相溶,係由以 下的判疋基準來進行。就嵌段共聚物(P )的動態黏彈性測定 或DSC測定所測定的各成分之Τα(α分散溫度)、Tg(玻璃 轉移溫度)等的相轉移溫度中任一個而言,將從pa成分而 來者當作Tpa ’將從Pb成分而來者當作Tpb。另一方面, 就含有嵌段共聚物(P)與離子液體當作必要成分的高分子固 體電解質之動態黏彈性測定或DSC測定所測定的相轉移溫 度而言,將從相(X)(由聚合物嵌段(Pa)與離子液體所成的 相)而來者當作T X ’將從相(Y )(由聚合物嵌段(p b )所成的相) 而來者當作Ty,ATpa及ΛΤρΙ)分別如下式所定義。再者 ,於上述中,Tpa、Tpb、Τχ及Ty係由同樣的測定方法來 測定,例如需要α分散溫度或玻璃轉移溫度。 △ Tpa=| Tpa-TX | Δ T p b = I T p b - T y | 就此兩個指標ATpa及ATpb而言,ATpaSlATpb時 ’可見到離子液體與聚合物嵌段(Pa)相溶,而且與聚合物 嵌段(Pb)不相溶。 作爲與構成共聚物(P)的離子液體相溶的聚合物嵌段(Pa) 之例,可舉出醋酸乙烯酯、聚乙烯醇、聚乙烯縮丁醛等的 醋酸乙烯酯系聚合物嵌段,聚偏二氟乙烯、聚六氟丙烯等 之含鹵素的乙烯系聚合物嵌段,聚(2-羥乙基)(甲基)丙烯酸 酯等的(甲基)丙烯酸之碳數2〜4的羥烷基酯之聚合物嵌段 -22- 200903974 ,聚(甲基)丙烯酸甲酯等的(甲基)丙烯酸之碳數1〜4的烷 基酯之聚合物嵌段等(甲基)丙燒酸酯系聚合物嵌段,聚甲 基乙烯醚、聚乙基乙烯醚等的乙燒醚系聚合物嵌段,聚甲 基乙烯基酮、聚甲基異丙嫌基酮等的乙烯酮系聚合物嵌段 ,聚環氧乙烷等的聚醚系聚合物嵌段,聚(甲基)丙烯醛等 的丙烯醛系聚合物嵌段’聚(甲基)丙烯醯胺等的(甲基)丙 烯醯胺系聚合物嵌段’聚對酞酸乙二酯等的聚酯系聚合物 嵌段,聚醯胺-6、聚醯胺- 6,6、聚醯胺_6,12等的聚醯胺系 {' 聚合物嵌段’聚二甲基砂氧院等的较氧院系聚合物嵌段’ 聚丙烯腈等的丙烯腈系聚合物嵌段等。又’雖然在此處沒 有列舉,但亦可以使用如上述之聚合物嵌段的構成成分所 共聚合構成的聚合物嵌段。 作爲與構成共聚物(P)的離子液體不相溶的聚合物嵌段 (Pb)之例’可舉出聚乙烯、聚丙稀、聚丁烯、聚辛嫌、聚 異丁烯等之碳數2〜8的鏈烯之聚合物嵌段等的烯烴系聚 合物嵌段’聚苯乙烯嵌段、聚(4_甲基苯乙烯)等的苯環或 ί./ 。位的碳數1〜4之院基合計經1或2個取代的苯乙稀之聚 合物嵌段等的苯乙烯系聚合物嵌段等。又,雖然在此處沒 有列舉,但亦可以使用如上述之聚合物嵌段的構成成分與 其它單體共聚合構成的聚合物嵌段’例如苯乙烯-丁二嫌聚 合物嵌段等的未取代或苯環或α-位的碳數1〜4之烷基合 計經丨或2個取代的苯乙烯等的苯乙烯系單體與碳數4〜8 的共_二烯的共聚物嵌段。 共聚物(P)中的聚合物嵌段(Pa)與聚合物嵌段(Pb)之結 -23- 200903974 η檢式係沒有特別的限制,只要共聚物(p)含有聚合物嵌段 (Pa)及聚合物嵌段(pb)各1個以上即可,可爲嵌段共聚物 或接枝共聚物。於此等之中,從製造容易性的觀點來看, 較佳爲嵌段共聚物’從所得到的高分子固體電解質之機械 強度的觀點來看,較佳爲具有2個以上的聚合物嵌段(pb) 之嵌段共聚物。 共聚物(P)的分子量係沒有特別的限制,但數量平均分 子量較佳爲1,000〜2,〇〇〇,〇〇〇,更佳爲5,000〜1,000,000 ,特佳爲10,000〜500, 〇〇〇。數量平均分子量若低於looo ’則共聚物(P)以及所得到的高分子固體電解質之機械強度 有變差的傾向’而數量平均分子量若超過2,000,000,則共 聚物(P)以及所得到的高分子固體電解質之黏度會變大,操 作性有變差的傾向。 共聚物(P)中的聚合物嵌段(Pa)之質量分率係沒有特別 的限制’但從所得到的高分子固體電解質之機械強度的觀 點來看,較佳爲9 5質量%以下,更佳爲9 0質量%以下,特 佳爲8 0質量%以下。另一方面,從所得到的高分子固體電 解質之離子傳導率的觀點來看,聚合物嵌段(Pa)的質量分 率較佳爲1 〇質量%以上,更佳爲2 0質量%以上,特佳爲 30質量%以上。 作爲本發明所使用的共聚物(P)之製造方法,並沒有特 別的限制,可舉出活性聚合法,從作爲前驅物而準備的聚 合物之末端或側鏈來聚合單體的方法,使在末端具有可互 相反應的官能基之聚合物彼此進行反應的方法等。此等可 按照目的之共聚物(P)的構造來適宜選擇。 -24- 200903974 嵌段共聚物(p)可爲聚胺甲酸酯,作爲該情況下的聚合 物嵌段(Pa)之例’可舉出以高分子多元醇成分當作主成分 的聚合物嵌段。作爲高分子多元醇之例,可舉出聚酯多元 醇、聚醚多元醇、聚碳酸酯多元醇、聚酯聚碳酸酯多元醇 等。其中,從與離子液體的相溶性及離子傳導性之觀點來 看,較佳爲聚酯多元醇嵌段及聚醚多元醇嵌段。 於嵌段共聚物(P)爲聚胺甲酸酯時,作爲聚合物嵌段(Pb) 之例,可舉出以二官能異氰酸酯或二官能異氰酸酯當作主 體的異氰酸酯與鏈延長劑之反應生成物成分的聚合物嵌段 〇 作爲此時所用的二官能異氰酸酯,並沒有特別的限制 ,例如可舉出4,4’-二苯基甲烷二異氰酸酯、伸甲苯基二異 氰酸酯、伸苯基二異氰酸酯等的芳香族二異氰酸酯等。此 等二官能異氰酸酯可單獨使用,亦可倂用2種以上。 又,作爲所用的鏈延長劑,並沒有特別的限制,較佳 爲使用在分子中具有2個以上的可與異氰酸基反應的活性 氫原子之分子量3 0 0以下的低分子化合物,例如可舉出乙 二醇、丙二醇、1,4 -丁二醇等的二醇類等。此等低分子化 合物可單獨使用,也可倂用2種以上。 於上述之中,當嵌段共聚物(P)爲聚胺甲酸酯時,作爲 聚合物嵌段(Pb),從與離子液體的不相溶性及高分子固體 電解質的形狀保持性之觀點來看,更佳爲4,4 '-二苯基甲烷 二異氰酸酯與1,4-丁二醇的反應生成物嵌段。 於嵌段共聚物(P)爲聚胺甲酸酯時’數量平均分子量或 -25- 200903974 共聚物(P)中的聚合物嵌段(Pa)之質量分率可與已經陳述的 範圍同樣。 聚胺甲酸酯的製造方法係沒有特別的限制,可以使用 前述高分子多元醇、二官能異氰酸酯及鏈延長劑,利用眾 所周知的胺甲酸酯化反應技術,藉由預聚物法及一步(one-shot)法中任 一 種方法 來製造 。其中 ,較 佳爲 在實質 上溶劑 的不存在下進行熔融聚合,特佳爲使用多軸螺桿型擠壓機 的連續熔融聚合。 作爲能構成本發明所用的高分子固體電解質之高分子 成分,即與離子液體相溶的聚合物(Q)之例’可舉出聚偏二 氟乙嫌-六氟丙稀共聚物,聚偏二氟乙烯等之含鹵素的乙烯 酯系聚合物,聚(2_羥乙基)(甲基)丙烯酸酯、聚(甲基)丙烯 酸甲酯等的(甲基)丙烯酸酯系聚合物,聚環氧乙烷等之聚 醚系聚合物,聚丙烯腈等的丙烯腈系聚合物等。於此等之 中,從所得到的高分子固體電解質之離子傳導率的觀點來 看,較佳爲聚偏二氟乙烯-六戴丙烯共聚物’聚偏二氟乙稀 等之含鹵素的乙烯酯系聚合物’及聚(2·羥乙基)(甲基)丙烯 酸醋、聚(甲基)丙烯酸甲酯等之(甲基)丙烯酸酯系聚合物 〇 聚合物(Q)的分子量係沒有特別的限制’但數量平均分 子量較佳爲1,000〜2,000,00’更佳爲5,000〜1,〇〇〇,0〇〇’ 特佳爲1〇,〇〇〇〜5〇〇,〇〇〇。於數量平均分子量低於1,0〇〇時 ,聚合物(Q)以及所得到的高分子固體電解質之機械強度有 變差的傾向’而數量平均分子量超過2,000,000時’共聚 -26- 200903974 物(p)以及所得到的高分子固體電解質之黏度會變大,操作 性有變差的傾向。 聚偏二氟乙烯-六氟丙烯共聚物中的六氟丙烯單位之質 量分率係沒有特別的限制,但從所得到的高分子固體電解 質之機械強度的觀點來看,較佳爲95質量%以下,更佳爲 90質量%以下,特佳爲80質量%以下。另一方面,從所得 到的高分子固體電解質之柔軟性的觀點來看,六氟丙烯單 位的質量分率較佳爲5質量%以上,更佳爲1 0質量%以上 (. ,特佳爲15質量%以上。 作爲構成本發明所用的高分子固體電解質之高分子成 分,更佳爲共聚物(P)、聚偏二氟乙烯-六氟丙烯共聚物、 聚偏二氟乙烯、聚(2-羥乙基)(甲基)丙烯酸酯及聚(甲基)丙 烯酸甲酯,從所得到的高分子固體電解質之機械強度及離 子液體的保液性之觀點來看,更佳爲具有1個以上之與離 子液體相溶的聚合物嵌段(Pa)、具有2個以上之與離子液 體不相溶的聚合物嵌段(Pb)的共聚物(P)。 U 本發明所用的高分子固體電解質係由離子液體與高分 子成分所構成,成爲在高分子成分所成的骨架中含浸有離 子液體的形態。該高分子固體電解質中的離子液體與高分 子成分的質量比率係沒有特別的限制,但從高分子固體電 解質的離子傳導率及機械強度的觀點來看,較佳爲〇. 1:1〜 1 0:1左右。又,該高分子固體電解質的形狀亦沒有特別的 限制,例如可爲膜狀、薄膜狀、片狀、板狀、織物狀、桿 狀、立方體狀、長方體狀等。 -27- 200903974 本發明所用的高分子固體電解質之製造方法係沒有特 別的限制,例如可舉出在加熱下機械地捏合離子液體與高 分子成分,接著進行成形之方法;使離子液體及高分子成 分溶解於適當的溶劑中後,去除溶劑,接著進行成形之方 法;使高分子成分含浸離子液體,接著進行成形之方法; 於離子液體中,在聚合引發劑的存在下,使高分子成分之 製造時所用的單體進行反應,接著進行成形之方法等。此 等可按照目的來適宜選擇。於上述中,作爲將離子液體及 r 高分子成分溶解在適當的溶劑後,去除溶劑的方法中之溶 劑,例如可以使用四氫呋喃、甲基乙基酮、N-甲基-2-吡咯 陡酮等。 本發明的致動器係由以離子液體及高分子成分當作構 成成分的高分子固體電解質、及以皆經鹼活化的活性碳當 作活性物質的一方之電極與另一方之電極(正極與負極)所 構成。此等電極係以夾持該高分子固體電解質且將其密著 、不互相接觸的方式而設置。此等電極可各自獨立地一體 化’也可不一體化,即當作複數的固體,個別地成爲電極 而構成。作爲不一體化的形態,例如可舉出特開昭63-3 0 9 2 5 2號公報的第8圖等所示的形態等。在該高分子固體 電解質與電極的重疊方向中,該高分子固體電解質厚度與 任一方的電極厚度之比例係沒有特別的限制,但從有效地 發揮本發明的特徴之觀點來看,較佳爲0.01:1〜1〇:1左右 〇 本發明的致動器之形狀係沒有特別的限制,例如可舉 -28- 200903974 出膜狀、薄膜狀、片狀、板狀、織物狀、桿狀、立方體狀 或長方體狀等,此等可按照使用目的來適宜選擇。又,致 動器的厚度亦沒有特別的限制,例如於形狀爲膜狀時,較 佳爲在膜的兩面形成電極,從膜本身的電阻之觀點來看, 厚度較佳爲在1〇-6〜lO^m的範圍內。 於製造本發明的致動器時,對高分子固體電解質,形成 夾持其且位置不互相接觸的2種電極之方法係沒有特別的 限制’例如可舉出於高分子固體電解質的兩面,藉由壓接 ' 及/或熔接而貼合電極’例如電極片的方法;於高分子固體 電解質的兩面’塗佈一種在聚偏二氟乙烯-六氟丙烯共聚物 、聚四氟乙烯等的黏結劑中,分散有活性碳或活性碳與視 需要的其它導電性物質之組成物的方法;於高分子固體電 解質的兩面’塗佈一種具有與離子液體相溶的聚合物嵌段 (Pa)及與離子液體不相溶的聚合物嵌段(pb)之共聚物(p)或 與離子液體相溶的聚合物(Q)、經鹼化活的活性碳及視需要 的其它導電性物質分散在離子液體中的分散液之方法等。 7 本發明的致動器,係可藉由在空氣中、水中、真空中 、有機溶劑中等,於2種電極間給予電位差,而使作動/驅 動。又’按照使用環境,亦可施予適當的密封。作爲密封 材料之例’並沒特別的限制,可以使用各種樹脂或金屬等 〇 實施例 以下舉出參考例、實施例及比較例來更具體說明本發 明’惟本發明完全不受此等所限定。又,以下顯示以下的 -29- 200903974 參考例、實施例及比較例中所用的測定機器、測定方法及 使用材料。 (1) 藉由核磁共振光譜Ch-nmr)來解析共聚物(P)及離子液 體的分子構造 機器·日本電子公司製核磁共振裝置(JNM-LA 400) 溶劑:重氯仿(共聚物)或重二甲亞颯(離子液體) (2) 藉由凝膠滲透層析術(GPC)來測定數量平均分子量(Μη) 及分子量分佈(Mw/Mn) 機器:東曹公司製凝膠滲透層析儀(HLC- 8 020) 管柱:皆東曹公司製TSKgel的GMHXL、G4000HXL及 G5 00 0HXL經串聯連連結者 洗提液:四氫呋喃,流量1.0毫升/分鐘 校正曲線:使用標準聚苯乙烯來作成 檢測方法:差示折射率(RI) (3 )X射線繞射強度曲線的(002)面之繞射峰的石墨結晶性構 造參數Ip/Io 裝置:RIGAKU 製「RINT-2400」 算出方法:使用特開2005-21851號公報中所具體顯示的 方法。即,於X射線繞射強度曲線中,在(0 0 2 )面的繞射 峰之兩下擺繪製切線。以該接線之上方部分的最大強度 値當作Ip,從(〇〇2)面的繞射強度扣除空氣的散射強度後 ,以剩餘強度當作Ιο,算出Ip/Io。 (4)活性碳表面的總官能基量之算出 在1 0 0毫升的錐形燒瓶中分別取得活性碳試料各2克 -30- 200903974 ,添加50ml的N/10之鹼試藥((a)碳酸氫鈉、(b)碳酸鈉、 (c)氫氧化鈉或(d)乙醇鈉),搖動24小時後液體分離’以 N/10鹽酸來滴定未反應的鹼試藥。由於羧基係與鹼試藥(a) 〜(d)全部進行反應,內酯基係與鹼試藥(b)〜(d)進行反應 ,羥基係與鹼試藥(c)〜(d)進行反應,且醌基係與鹼試藥(d) 進行反應,故從各滴定量扣除重複的滴定量’可將各官能 基量及進而將總官能基量定量。 (5) 活性碳的BET比表面積之測定 使用日本 BEL公司製的「BELSORP 18」,以氮氣當作 探針氣體所得之吸附等溫線爲基礎,藉由BET法來測定。 (6) 算出對於活性碳的中間孔(lnm以上、50nm以下)之總容 積而言,微孔(細孔徑小於1 nm)的總容積之存在比 使用日本BEL公司製的「BELSORP 18」,以氮氣當作 探針氣體所得之吸附等溫線爲基礎,微孔係藉由 MP法 (Micro Pore Method)來算出,中間孔的測定係藉由DH法 (Dollimore & Heal Method)來算出。 (7) 致動器的位移量之測定 對切割成15mm X 5mm之大小的致動器,依照第1圖, 在長度方向中以銅製電極夾持10mm,以致動器長度突出 空氣中的5 mm部分當作測定單元。以銅製電極分別當作陽 極、陰極,使用電池充放電裝置(北斗電工製「HJ201-B」), 在3 m A的恒定電流條件下,於電位爲〇v至1 V的範圍內 ,進行工作試驗,以雷射位移計(KEYENCE製「LK-G1 55」) 來計測自致動器的電極固定端起4 m m的地方之動作,進行 -3 1- 200903974 的位移量的測定。 (8)致動器的產生應力之測定 對與(7)同樣地切割成15mmx5mm之大小的致動器,在 長度方向以銅製電極夾持10mm,以致動器長度突出空氣 中的5mm部分當作測定單元。以銅製電極分別當作陽極、 陰極,使用電池充放電裝置(北斗電工製「HJ201-B」),在 3 m A的恒定電流條件下,於電位爲〇V至1 V的範圍內,進 行工作試驗,藉由測力器(MINEBEA製「UL-2GR」)來計測 致動器的前端部之動作,進行產生應力的測定。 參考例1 聚苯乙烯-b-聚丙烯酸甲酯-b-聚苯乙烯(共聚物P-1)的製造 所使用的材料,溴化銅(I)、氯化銅(I)氯化銅(II)係自和 光純藥工業公司購入,照原樣地使用。1,1,4,7,10,10-六甲 基三伸乙四胺(HMTETA)係自ALDRICH購入,照原樣地使 用。三(2-二甲胺基乙基)胺(Me6-TREN)係將三(2-胺乙基) 胺、甲酸及甲醛的混合水溶液進行回流而得之生成物,在 減壓下蒸餾而使用。二乙基-內消旋-2,5 -二溴己二酸酯係 自 ALDRICH購入,照原樣地使用。苯乙烯及丙烯酸甲醋 係自KISHIDA化學公司購入,使用前與沸石及氧化錦接觸 以去除聚合抑制劑,接著以乾燥氮氣進行充分冒泡以去除 溶存的氧,而被使用者。乙腈係自KISHIDA化學公司購入 ,使用與沸石接觸以去除水分,接著以乾燥氮氣進行充分 冒泡以去除溶存的氧者。其它材料係按照目的進行精製而 使用。 -32- 200903974 (1) 於2L的3 口燒瓶中,投入磁性攪拌子、7.17克(50 毫莫耳)溴化銅(I)、3.6克(10毫莫耳)二乙基-內消旋-2,5_ 二溴己二酸酯後’以乾燥氮氣來充分置換燒瓶內。於其中 加入955毫升的乙腈及785毫升的丙烯酸甲酯,在室溫攪 拌3 0分鐘。然後升溫到5 0 °C,添加另途所調製的8 . 3 3毫 升(HMTETA爲1 6.7毫莫耳)的HMTETA之乙腈溶液(濃度 0.3mol/L)’開始聚合。聚合開始2小時後,添加2.08毫 升(HMTETA爲0.62毫莫耳)的HMTETA之乙腈溶液(濃度 0.3mol/L),再進行6小時聚合。 (2) 6小時後’將燒瓶置入冰水中以冷卻聚合溶液,將 聚合停止。聚合停止時的聚合率爲38%,數量平均分子量 Μη 爲 28700,分子量分佈 Mw/Mn=1.04。 (3) 以蒸發器來濃縮所得到的聚合溶液後,以甲苯來稀 釋’接著以水來重複洗淨’去除殘留的觸媒。洗淨後,再 度以蒸發器進行濃縮後,以大量過剩的甲醇進行再沈澱, 將所得到的黏稠液狀物在7 0 °C進行一夜真空乾燥,得到兩 末端溴化聚丙烯酸甲酯。 (4) 於2L的3 口燒瓶中’投入170克兩末端溴化聚丙稀 酸甲酯及磁性攪拌子,以乾燥氮氣進行充分置換。接著, 添加1 5 2毫升的苯乙烯,以溶解兩末端溴化聚丙烯酸甲醋 。將此溶液升溫到4 0 °C,添加另途所調製的〇 · 5 8 6毫克 (5.92毫莫耳)的氯化銅(1)、0.239毫克(178毫莫耳)氯化銅 (II)及 29.6 毫升的 Me6-TREN 的乙腈溶液(濃度 0.3m〇l/L)(Me6-TREN爲8_89毫莫耳)的混合物,開始聚合 -33- 200903974 (5) 進行8小時聚合後,將燒瓶置入冰水中以冷卻聚合 溶液,將聚合停止。聚合停止時的聚合率爲1 0%,數量平 均分子量Μη爲72000,分子量分佈Mw/Mn=l_31。 (6) 以大量過剩的甲醇對所得到的聚合溶液進行再沈澱 ’在室溫乾燥後,使再溶解於甲苯中,重複水洗以去除殘 留的觸媒後’以大量過剩的甲醇進行再沈澱,將所得到固 體在7 0 °C進行一夜乾燥。 (7) 如以上地,得到聚合物嵌段(Pa)爲聚丙烯酸甲酯 (PMA)且聚合物嵌段(Pb)爲聚苯乙烯(PSt)的共聚物(P-1)。 進行1H-NMR測定,結果共聚物(P-1)中的PSt含量爲46% ,PMA含量爲54%。 参考例2 乙基甲基咪嗖鐵雙(三氟甲烷磺醯基)醯亞胺(離子液體)的 製造 關於所使用的材料,錐雙(二氟(甲基釀基)酸亞胺係自 東京化成工業公司購入,照原樣地使用。環己院係自 KIS ΗID A化學公司購入,照原樣地使用。其它材料係按照 目的進行精製而使用。 (1)於5 00毫升的可分離式燒瓶中,安裝附有攪拌翼的 機械攪拌器、三個旋塞及冷卻管。於其中投入250毫升的 環己烷及50毫升(〇.58mol)的1-甲基咪哗。甲基咪唑係 不完全溶解在環己烷中,成爲二相分離的狀態。邊將此液 攪拌,邊在室溫費1小時滴下1 3 0毫升(1 · 7 4 m 0〖)的溴乙烷 -34- 200903974 。滴下結束後,加熱到8 0 °C ’進行2 4小時回流。與反應 之進行的同時,白色固體析出。 (2) 對所得到的懸浮液,減壓蒸餾去除過剩的溴乙院及 環己烷,從醋酸乙酯/異丙醇混合溶劑(1/1 v/v)中使所得白 色固體再結晶而精製。過濾分離所得到的結晶,以正己烷 來洗淨,在5〇°C進行一夜真空乾燥。產量爲91克,產率 爲8 3 %。由所得到的白色固體之1 Η - N M R測定,確認生成 目的之3-乙基-1-甲基咪唑鑰溴化物(EMIBr)。 (3) 將45克(2 36毫莫耳)上述所得之ΕΜΙΒι•投入裝有攪 拌翼、機械攪拌器及三個旋塞的500毫升之可分離式燒瓶 內。於其中投入120毫升的蒸餾水,使EMIBr完全溶解。 (4) 使68克(23 6毫莫耳)鋰(雙三氟甲烷磺醯基)醯亞胺 溶解在 240毫升的蒸餾水中,以製作水溶液。在上述 EMIBr水溶液中邊攪拌邊滴下該水溶液。滴下結束後,在 7 0 °C繼續反應1小時。反應液成爲二相分離。 (5) 取該反應液的下層相,用二氯甲烷稀釋,以蒸餾水 洗淨3次。洗淨後,在8 〇 〇c進行3小時的減壓蒸餾去除, 以去除二氯甲烷及一部分的水分。藉由在1 2 0 t對所得到 的無色透明液體進行3日真空乾燥,以完全去除系內的水 。產量爲6 1克,產率爲6 7 %。由所得到的無色透明液體之 W-NMR測定’確認生成目的之3_乙基-丨_甲基咪唑鎗雙( 二氟甲院磺醯基)醯亞胺(EMITFSI)。 參考例3 用聚苯乙烯-b-聚丙烯酸甲酯-b — 聚苯乙烯共聚物ρ_ι的高分 -35- 200903974 子固體電解質(E-l)之製造 使10克共聚物(P-1)完全溶解在500毫升的四氫呋喃中 。於此溶液中,加入1 6 . 1克 Ε ΜIT F S I以得到均勻溶液。 將此溶液在玻璃上展開以使乾燥。在5 0 °C對所得到的透明 、柔軟固體進行真空乾燥,得到高分子固體電解質(E-1)。 參考例4 用聚偏二氟乙烯-六氟丙烯無規共聚物的高分子固體電解質 (E-2)之製造 { (1)量取1 〇克聚偏二氟乙烯-六氟丙烯無規共聚物 (P(VDF-HFP), ARKEMA 公司製,「C a i n a # 2 8 0 1」)’於其中 加入5 0克Ε ΜIT F S I,充分混合以得到漿體狀的混合物。 藉由在1 3 0 t加熱所得到的混合物1小時’混合物成爲均 句液狀。藉由在室溫冷卻所得到的液狀物’得到無色透明 的凝膠狀高分子固體電解質(E·2)。 (2)在100°C對所得到的高分子固體電解質進行熱壓成 形’使成爲指定大寸’得到高分子固體電解質片(E_2)。 ( 眚施例卜6及比較例1 - 6 表1中顯示依照參考例所製作的闻分子固體電解貢之 組成。 -36- 200903974 [表l] 高分子固 體電解質 共聚物 (Ρ) 共聚物 (Q) 離子 液體 離子液體/共聚 物(p)或聚合物 (Q) (質量比) 實施例 1 ' 3、5 Ε-1 Ρ-1 — EMITFSI 1.61 比較例 1、3、5 實施例 2、4、6 Ε-2 — Caina #2801 EMITFSI 5 比較例 2、4、6 實施例1 電極的製造、及致動器的製造以及性能試驗 (1) 於乳鉢中取得〇 · 1克用氫氧化鉀所活化的活性碳 (Ip/Io比= 0.33,表面總官能基量= 〇_70meq/g,BET比表面 積1 2 1 0m2/g,微孔總容積/中間孔總容積比=9 . 1,平均粒徑 = 10μπι)、0.06克乙炔黑(電氣化學公司製「Denka Black」)、 〇·〇4 克 PVDF-HFP(ARKEMA 公司製「Caina#2 8 0 1 )」及 0.3 克EMITFSI,藉由乳鉢來搗碎,成爲塊狀的電極材料。 (2) 以PET薄膜來夾持所得到的塊狀電極材料,在130 °C進行熱壓以得到碳電極薄膜。 (3) 接著,以(2)所得之碳電極薄膜(去掉PET薄膜者)來 夾持高分子固體電解質(E-1)的膜(膜厚約之兩側’ 在1 0 5 Ό進行熱壓,以得到由碳電極薄膜-高分子固體電解 -37- 200903974 質-碳電極薄膜的構成所積層而成的致動器。 (4) 由此致動器切出寬度5mm、長度1 5mm,以測試器 來確認兩側的電極之不接觸。 (5) 對此致動器,進行工作試驗。 實施例2 致動器的製造及性能試驗 除了高分子固體電解質爲(E - 2)以外,與實施例1同樣 地製作致動器,進行工作試驗。 ( 實施例3 致動器的製造及性能試驗 除了活性碳爲鹼活化碳(B ) (I ρ /1 〇比=0 · 〇丨,表面總官能 基量=1.13meq/g ’ BET比表面積= 3317m2/g,微孔總容積/ 中間孔總容積比=4.2 ’平均粒徑=14μιη)以外,與實施例^ 同樣地製作致動器,進行工作試驗。 實施例4 致動器的製造及性能試驗 U 除了活性碳爲鹼活化碳(Β)以外,與實施例2同樣地製 作致動器,進行工作試驗。 實施例5 致動器的製造及性能試驗 除了活性碳爲藉由與特開20〇4-3 1 1 790號公報之實施 例3同樣的方法所調製的鹼活化碳(C ) (I p /1 0比=〇 6 4,表 面總官能基量=0.93meq/g ’ ΒΕΤ比表面積=980m2/g,微孔 總容積/中間孔總容積比=6.4,平均粒徑=10μιη)以外,與實 -38- 200903974 施例1同樣地製作致動器’進行工作試驗。 實施例6 致動器的製造及性能試驗 除了活性碳爲藉由與特開20〇4-3 1 1 7 9 0號公報之實施 例3同樣的方法所調製的驗活化碳(C)以外,與實施例2同 樣地製作致動器,進行工作試驗。 比較例1In the formula, R13, R14 and R15 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched alkenyl group having 2 to 10 carbon atoms, and a carbon number. An aryl group of 6 to 15 , an aralkyl group having 7 to 20 carbon atoms, a polyoxyalkylene group having 2 to 30 carbon atoms, or 2 groups of R 13 to R 15 together form a ring structure] R1 to exemplified in the above organic cation In the definition of R15, the linear or branched alkyl group having 1 to 10 carbon atoms is preferably a carbon number of 1 to 6, more preferably a carbon number of 1 to 4, and specifically, a methyl group, Ethyl, propyl, butyl, and the like. In the definition of R1 to R15, the linear or branched alkenyl group having 2 to 10 carbon atoms is preferably a carbon number of 2 to 6, more preferably a carbon number of 2 to 4, and specific examples thereof. Vinyl, propylene, butenyl and the like. In the definition of R1 to R15 -19-200903974, 'the aryl group having a carbon number of 6 to 15' may, for example, be a phenyl group or a naphthyl group. In the definition of R1 to R15, examples of the aralkyl group having 7 to 20 carbon atoms include a benzyl group and a phenethyl group. In the definition of R1 to R15, examples of the polyoxyalkylene group having a carbon number of 2 to 30 include a polyoxyethylene group and a polyoxypropylene group. In the definition of R, a linear or branched alkyl group having 1 to 6 carbon atoms may, for example, be a methyl group, an ethyl group, a propyl group or a butyl group. In the case of the formation of the ring structure in the two groups, the case where the pyridyl ring or the piperidine ring is formed together with the N of the central atom, etc., may be mentioned. (In view of the ionic conductivity of the ionic liquid and the ease of availability, the unsubstituted or substituted imidazolium cation represented by the formula (I) is preferred, and the imidazole gun cation is more preferred. In view of the melting point and viscosity of the ionic liquid, it is preferred that R1 and R2 in the formula (I) are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, more preferably Ri and R2 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, and R3 is a hydrogen atom, and in these cases, R1 and R2 are preferably different groups. Examples of the cation include 3-ethyl-1-methylimidazolium cation (EMI + ). Examples of the anion constituting the suitable ionic liquid used in the present invention include a halogen-containing anion, a mineral acid anion, an organic acid anion, and the like. Specific examples of the halogen-containing anion or the mineral acid anion include PF〆, C104—, CF3S03-, C4F9S03-, BF4-, (CF3S〇2)2N, (C2F5S02)2N_, (CF3S02)3C_, and AsF6- , s 〇 42 _, (CN) 2N one, NO factory, etc. Further, examples of the organic acid anion include rs〇3-, 11(:02_, etc., wherein 'R represents an alkyl group having 1 to 4 carbon atoms, and a -20-200903974 alkenyl group having 2 to 4 carbon atoms, An aralkyl group having 7 to 20 carbon atoms, an alkenyl group having 8 to 20 carbon atoms, an alcoxy group having 2 to 8 carbon atoms, a decyl group having a carbon number of 3 to 80, and a carbon number of 1-4 a sulfonate group, an aryl group having 6 to 15 carbon atoms or an aromatic anthracene ring group having 3 to 7 carbon atoms. Among these, from the viewpoint of ionic conductivity of the ionic liquid and ease of availability, it is preferably Sulfonimide anions such as PF6_, cio4-, CF3S03_, C4F9S03-, bf4_, (cn)2n-, and (cf3so2)2n-, (c2f5so2)2n-, etc., particularly preferably (CF3S02)2N-, (C2F5S〇 2) a sulfonimide-based anion of 2N- or the like. Examples of the ionic liquid to which the present invention is applied include an ionic liquid obtained by combining the above organic cation and an anion. These may be used alone or in combination. The ionic liquid used in the present invention is particularly preferably a substituted imidazolium salt, and specific examples thereof include ethylmethylimidazolium bis(trifluoromethanesulfonyl) quinone imine (E). MITFSI), ethylmethylimidazolium bis(hexafluoromethanesulfonyl) quinone imine (EMIPFSI), butylmethylimidazolium bis(trifluoromethanesulfonyl) quinone imine (BMITFSI), butylmethylimidazolium double (pentafluoromethanesulfonyl) quinone imine (BMIPFSI), etc. Among these, from the viewpoint of ionic conductivity of ionic liquid, EMITFSI and EMIPFSI are more preferable, and from the viewpoint of ease of availability More preferably, it is EMITFSI. The polymer component constituting the polymer solid electrolyte used in the present invention includes a polymer block (Pa) which is compatible with the ionic liquid constituting the polymer solid electrolyte, and the ionic liquid. The copolymer (P) of the incompatible polymer block (Pb) and the polymer (Q) compatible with the ionic liquid are suitable. The above copolymer (P) may have one or two each. The above polymerization-21-200903974 block (Pa) and polymer block (Pb). In the present invention, it is judged whether the ionic liquid is compatible with the polymer block (pa) and the ionic liquid and the polymer are embedded. Whether the segment (Pb) is incompatible, is determined by the following criteria Any one of the phase transition temperatures of Τα (α dispersion temperature) and Tg (glass transition temperature) of each component measured by dynamic viscoelasticity measurement or DSC measurement of the block copolymer (P) will be carried out. The component of the pa component is regarded as Tpa 'from the Pb component as Tpb. On the other hand, the dynamic viscoelasticity measurement of the polymer solid electrolyte containing the block copolymer (P) and the ionic liquid as essential components Or the phase transition temperature measured by the DSC measurement, the phase (X) (the phase formed by the polymer block (Pa) and the ionic liquid) is regarded as the TX 'phase (Y) (by The phase formed by the polymer block (pb) is defined as Ty, ATpa and ΛΤρΙ, respectively, as defined in the following formula. Further, in the above, Tpa, Tpb, yttrium and Ty are determined by the same measurement method, and for example, an α dispersion temperature or a glass transition temperature is required. △ Tpa=| Tpa-TX | Δ T pb = IT pb - T y | For the two indicators ATpa and ATpb, ATpaSlATpb 'is visible that the ionic liquid is compatible with the polymer block (Pa), and the polymer The block (Pb) is incompatible. Examples of the polymer block (Pa) which is compatible with the ionic liquid constituting the copolymer (P) include a vinyl acetate polymer block such as vinyl acetate, polyvinyl alcohol or polyvinyl butyral. a halogen-containing vinyl polymer block such as polyvinylidene fluoride or polyhexafluoropropylene, or a carbon number of 2 to 4 of (meth)acrylic acid such as poly(2-hydroxyethyl) (meth)acrylate. Polymer block of hydroxyalkyl ester-22-200903974, polymer block of alkyl ester of 1 to 4 carbon atoms of (meth)acrylic acid such as poly(methyl) acrylate (methyl) A propionate polymer block, an ethene ether polymer block such as polymethyl vinyl ether or polyethyl vinyl ether, or an ethylene such as polymethyl vinyl ketone or polymethyl isopropyl ketone. a ketone polymer block, a polyether polymer block such as polyethylene oxide, an acrolein polymer block such as poly(meth)acrolein, or a poly(meth) acrylamide. a polyester-based polymer block such as a methyl acrylamide-based polymer block, such as polyethylene terephthalate, polyamido-6, polyamine-6,6, polyfluorene _6,12 like polyamide-based { 'polymer block' polydimethyl sand oxygen homes and other than oxygen faculties polymer block 'polyacrylonitrile-based polymer block such as acrylonitrile and the like. Further, although not enumerated here, a polymer block composed of a polymer component of the above polymer block may be used. Examples of the polymer block (Pb) which are incompatible with the ionic liquid constituting the copolymer (P) include carbon numbers of polyethylene, polypropylene, polybutene, polyoctane, polyisobutylene, and the like. An olefin-based polymer block such as a polymer block of 8 or a benzene ring such as polystyrene block or poly(4-methylstyrene) or ί./. The styrene polymer block or the like having a carbon number of 1 to 4 in total is a styrene polymer block such as a polymer block of 1 or 2 substituted styrene. Further, although not enumerated here, a polymer block such as a styrene-butadiene polymer block in which a constituent component of the above polymer block is copolymerized with another monomer may also be used. a copolymer block of a styrene monomer having a benzene ring or an α-position having a carbon number of 1 to 4 and a styrene monomer such as fluorene or 2 substituted styrene and a copolydiene having 4 to 8 carbon atoms; . The polymer block (Pa) in the copolymer (P) and the polymer block (Pb) are not particularly limited as long as the copolymer (p) contains a polymer block (Pa). And one or more of the polymer blocks (pb) may be a block copolymer or a graft copolymer. Among these, from the viewpoint of easiness of production, the block copolymer 'preferably has two or more polymer embeddings from the viewpoint of mechanical strength of the obtained polymer solid electrolyte. Block copolymer of the segment (pb). The molecular weight of the copolymer (P) is not particularly limited, but the number average molecular weight is preferably 1,000 to 2, 〇〇〇, 〇〇〇, more preferably 5,000 to 1,000,000, particularly preferably 10,000 to 500. Hey. If the number average molecular weight is lower than the looo', the copolymer (P) and the obtained polymer solid electrolyte tend to have a poor mechanical strength, and if the number average molecular weight exceeds 2,000,000, the copolymer (P) and the obtained high are obtained. The viscosity of the molecular solid electrolyte tends to increase, and the workability tends to be deteriorated. The mass fraction of the polymer block (Pa) in the copolymer (P) is not particularly limited, but from the viewpoint of the mechanical strength of the obtained polymer solid electrolyte, it is preferably 95% by mass or less. More preferably, it is 90% by mass or less, and particularly preferably 80% by mass or less. On the other hand, the mass fraction of the polymer block (Pa) is preferably 1% by mass or more, and more preferably 20% by mass or more, from the viewpoint of the ionic conductivity of the obtained polymer solid electrolyte. It is particularly preferably 30% by mass or more. The method for producing the copolymer (P) used in the present invention is not particularly limited, and examples thereof include a living polymerization method in which a monomer is polymerized from a terminal or a side chain of a polymer prepared as a precursor. A method in which a polymer having a functional group capable of reacting with each other at the terminal is reacted with each other. These can be suitably selected in accordance with the structure of the copolymer (P) for the purpose. -24- 200903974 The block copolymer (p) may be a polyurethane, and as an example of the polymer block (Pa) in this case, a polymer having a polymer polyol component as a main component may be mentioned. Block. Examples of the polymer polyol include polyester polyols, polyether polyols, polycarbonate polyols, and polyester polycarbonate polyols. Among them, a polyester polyol block and a polyether polyol block are preferred from the viewpoint of compatibility with an ionic liquid and ion conductivity. When the block copolymer (P) is a polyurethane, examples of the polymer block (Pb) include the reaction of an isocyanate mainly composed of a difunctional isocyanate or a difunctional isocyanate with a chain extender. The polymer block of the component is not particularly limited as the difunctional isocyanate used at this time, and examples thereof include 4,4'-diphenylmethane diisocyanate, tolyl diisocyanate, and phenyl diisocyanate. An aromatic diisocyanate or the like. These difunctional isocyanates may be used singly or in combination of two or more. Further, the chain extender to be used is not particularly limited, and a low molecular compound having a molecular weight of 300 or less of an active hydrogen atom reactive with an isocyanate group in the molecule is preferably used, for example. Examples thereof include glycols such as ethylene glycol, propylene glycol, and 1,4-butanediol. These low molecular weight compounds may be used singly or in combination of two or more. Among the above, when the block copolymer (P) is a polyurethane, the polymer block (Pb) is incompatible with the ionic liquid and the shape retention of the polymer solid electrolyte. More preferably, it is a reaction product block of 4,4 '-diphenylmethane diisocyanate and 1,4-butanediol. When the block copolymer (P) is a polyurethane, the number average molecular weight or the mass fraction of the polymer block (Pa) in the copolymer (P) of -25 to 200903974 may be the same as that already stated. The method for producing the polyurethane is not particularly limited, and the polymer polyol, the difunctional isocyanate, and the chain extender may be used, and a well-known urethanation reaction technique may be used, by a prepolymer method and a step ( One-shot method of any method to manufacture. Among them, it is preferred to carry out melt polymerization in the absence of a substantial solvent, and it is particularly preferable to use a continuous melt polymerization of a multiaxial screw type extruder. The polymer component which can constitute the polymer solid electrolyte used in the present invention, that is, the polymer (Q) which is compatible with the ionic liquid, can be exemplified by a polyvinylidene fluoride-hexafluoropropylene copolymer. A halogen-containing vinyl ester polymer such as difluoroethylene, or a (meth) acrylate polymer such as poly(2-hydroxyethyl) (meth) acrylate or poly(methyl) acrylate. A polyether polymer such as ethylene oxide or an acrylonitrile polymer such as polyacrylonitrile. Among these, from the viewpoint of the ionic conductivity of the obtained polymer solid electrolyte, a halogen-containing ethylene such as a polyvinylidene fluoride-hexa-propylene copolymer, polyvinylidene fluoride or the like is preferable. The molecular weight of the (meth)acrylate polymer 〇 polymer (Q) such as ester polymer 'and poly(2 hydroxyethyl) (meth) acrylate vinegar or polymethyl (meth) acrylate is not A special limitation 'but the number average molecular weight is preferably 1,000 to 2,000, 00' is preferably 5,000 to 1, 〇〇〇, 0 〇〇' is preferably 1 〇, 〇〇〇 〜 5 〇〇, 〇〇〇. When the number average molecular weight is less than 1,0 Å, the mechanical strength of the polymer (Q) and the obtained polymer solid electrolyte tends to be deteriorated, and when the number average molecular weight exceeds 2,000,000, the copolymerization -26-200903974 ( p) and the viscosity of the obtained polymer solid electrolyte tend to increase, and the workability tends to be deteriorated. The mass fraction of the hexafluoropropylene unit in the polyvinylidene fluoride-hexafluoropropylene copolymer is not particularly limited, but is preferably 95% by mass from the viewpoint of mechanical strength of the obtained polymer solid electrolyte. Hereinafter, it is more preferably 90% by mass or less, and particularly preferably 80% by mass or less. On the other hand, the mass fraction of the hexafluoropropylene unit is preferably 5% by mass or more, more preferably 10% by mass or more, from the viewpoint of flexibility of the obtained polymer solid electrolyte. 15% by mass or more. The polymer component constituting the polymer solid electrolyte used in the present invention is more preferably a copolymer (P), a polyvinylidene fluoride-hexafluoropropylene copolymer, a polyvinylidene fluoride or a poly(2). - hydroxyethyl) (meth) acrylate and poly (methyl methacrylate), more preferably one from the viewpoint of the mechanical strength of the obtained polymer solid electrolyte and the liquid retention property of the ionic liquid The above polymer block (Pa) which is compatible with the ionic liquid, and a copolymer (P) having two or more polymer blocks (Pb) which are incompatible with the ionic liquid. U The polymer solid used in the present invention The electrolyte is composed of an ionic liquid and a polymer component, and is impregnated with an ionic liquid in a skeleton formed of a polymer component. The mass ratio of the ionic liquid to the polymer component in the polymer solid electrolyte is not particularly limited. , However, from the viewpoint of ionic conductivity and mechanical strength of the polymer solid electrolyte, it is preferably about 1:1 to 1 0: 1. Further, the shape of the polymer solid electrolyte is not particularly limited, for example, The method for producing a polymer solid electrolyte used in the present invention is not particularly limited, and for example, it may be a film, a film, a sheet, a plate, a woven fabric, a rod, a cube, a rectangular parallelepiped, etc. -27- 200903974 The method of mechanically kneading the ionic liquid and the polymer component under heating, followed by molding; dissolving the ionic liquid and the polymer component in a suitable solvent, removing the solvent, and then performing the forming method; impregnating the polymer component with ions a method of forming a liquid followed by molding; a method of reacting a monomer used in the production of a polymer component in the presence of a polymerization initiator in an ionic liquid, followed by a method of forming, etc. These may be appropriately selected according to the purpose. In the above, the solvent in the method of removing the solvent after dissolving the ionic liquid and the r polymer component in an appropriate solvent, for example, Tetrahydrofuran, methyl ethyl ketone, N-methyl-2-pyrrole, and the like. The actuator of the present invention is a polymer solid electrolyte containing ionic liquid and a polymer component as constituent components, and The alkali-activated activated carbon is used as one electrode of the active material and the other electrode (positive electrode and negative electrode). These electrodes are used to sandwich the polymer solid electrolyte and adhere them to each other without contacting each other. In addition, these electrodes may be integrated independently of each other or may be integrated, that is, they may be formed as a plurality of solids, and may be individually formed as electrodes. As a form of non-integration, for example, JP-A-63-3 The form shown in Fig. 8 and the like of the publication No. 9 2 5, etc., in the direction in which the polymer solid electrolyte and the electrode are stacked, the ratio of the thickness of the polymer solid electrolyte to the thickness of one of the electrodes is not particularly limited. However, from the viewpoint of effectively exerting the features of the present invention, the shape of the actuator of the present invention is preferably from 0.01 to 1 〇:1, and is not particularly limited. For example, -28-200903974 can be used. shape A film, a sheet, a plate, fabric-like, rod-like, cubic or rectangular shape or the like, these may be suitably selected according to the purpose of use. Further, the thickness of the actuator is not particularly limited. For example, when the shape is a film, it is preferable to form electrodes on both surfaces of the film. From the viewpoint of the electric resistance of the film itself, the thickness is preferably 1 〇 6 ~lO^m range. In the manufacture of the actuator of the present invention, there is no particular limitation on the method of forming the polymer solid electrolyte into two kinds of electrodes which are not in contact with each other at the position of the polymer solid electrolyte. For example, it may be exemplified by both sides of the polymer solid electrolyte. a method of bonding an electrode such as an electrode sheet by crimping and/or welding; coating a bond of polyvinylidene fluoride-hexafluoropropylene copolymer, polytetrafluoroethylene, etc. on both sides of the polymer solid electrolyte a method of dispersing a composition of activated carbon or activated carbon and optionally other conductive substances; coating a polymer block (Pa) having an ionic liquid compatibility on both sides of the polymer solid electrolyte; a copolymer (p) of a polymer block (pb) incompatible with an ionic liquid or a polymer (Q) compatible with an ionic liquid, an alkali-activated activated carbon, and optionally other conductive substances dispersed in A method of dispersing a liquid in an ionic liquid or the like. 7 The actuator of the present invention can be actuated/driven by giving a potential difference between two kinds of electrodes in air, water, vacuum, or an organic solvent. Also, depending on the environment of use, an appropriate seal can be applied. The example of the sealing material is not particularly limited, and various resins, metals, and the like may be used. Examples Hereinafter, the present invention will be more specifically described by reference to the examples, examples, and comparative examples. However, the present invention is not limited at all. . Further, the following measurement apparatus, measurement method, and materials used in the reference examples, the examples, and the comparative examples are shown in the following -29-200903974. (1) Molecular structure machine for analyzing copolymer (P) and ionic liquid by nuclear magnetic resonance spectrum (Ch-nmr) · Nuclear magnetic resonance apparatus (JNM-LA 400) manufactured by JEOL Ltd. Solvent: heavy chloroform (copolymer) or heavy Dimethyl hydrazine (ionic liquid) (2) Determination of number average molecular weight (Μη) and molecular weight distribution (Mw/Mn) by gel permeation chromatography (GPC) Machine: Gel Permeation Chromatograph made by Tosoh Corporation (HLC-8 020) Pipe column: GSKXL, G4000HXL and G5 00 0HXL of TSKgel manufactured by Tosoh Corporation, Eluent by series connection: Tetrahydrofuran, flow rate 1.0 ml/min Calibration curve: Using standard polystyrene for detection Method: Differential refractive index (RI) (3) Graphite crystal structure parameter of the diffraction peak of the (002) plane of the X-ray diffraction intensity curve Ip/Io Device: RIGAKU system "RINT-2400" Calculation method: Use special The method specifically shown in the publication No. 2005-21851 is issued. That is, in the X-ray diffraction intensity curve, a tangent is drawn at two hem of the diffraction peak of the (0 0 2 ) plane. The maximum intensity 値 of the upper portion of the wiring is taken as Ip, and the scattering intensity of the air is subtracted from the diffraction intensity of the (〇〇2) plane, and Ip/Io is calculated by taking the remaining intensity as Ιο. (4) Calculation of the total functional group amount on the surface of the activated carbon In the 90 ml Erlenmeyer flask, each of the activated carbon samples was obtained in an amount of 2 g to 30-200903974, and 50 ml of the N/10-base reagent was added ((a) Sodium bicarbonate, (b) sodium carbonate, (c) sodium hydroxide or (d) sodium ethoxide), liquid separation after shaking for 24 hours 'Titration of unreacted alkali reagent with N/10 hydrochloric acid. Since the carboxyl group reacts with all of the alkali reagents (a) to (d), the lactone group reacts with the alkali reagents (b) to (d), and the hydroxyl group and the alkali reagents (c) to (d) are carried out. The reaction is carried out, and the thiol group reacts with the alkali reagent (d), so that the amount of each functional group and further the total functional group amount can be quantified by subtracting the repeated titer from each titer. (5) Measurement of BET specific surface area of activated carbon The "BETSORP 18" manufactured by BEL Co., Ltd., Japan, was measured by the BET method based on the adsorption isotherm obtained by using nitrogen as a probe gas. (6) Calculating the total volume of the intermediate pores (lnm or more and 50 nm or less) of the activated carbon, the total volume of the micropores (the pore diameter is less than 1 nm) is more than that of the "BELSORP 18" manufactured by BEL Co., Ltd. Based on the adsorption isotherm obtained by using nitrogen as a probe gas, the micropores were calculated by the MP method (Micro Pore Method), and the measurement of the mesopores was calculated by the DH method (Dollimore & Heal Method). (7) Measurement of the displacement amount of the actuator For an actuator cut to a size of 15 mm X 5 mm, according to Fig. 1, the electrode is clamped by 10 mm in the longitudinal direction with the copper electrode, and the length of the actuator protrudes 5 mm in the air. Part of it is used as a measurement unit. The copper electrode was used as an anode and a cathode, and a battery charge and discharge device ("HJ201-B" manufactured by Hokuto Electric Co., Ltd.) was used to operate at a potential of 〇v to 1 V under a constant current of 3 m A. In the test, a displacement of 4 mm from the fixed end of the actuator was measured by a laser displacement meter ("LK-G1 55" manufactured by KEYENCE), and the displacement amount of -3 - 200903974 was measured. (8) Measurement of Stress Generated by Actuator An actuator cut into a size of 15 mm x 5 mm in the same manner as (7) was held by a copper electrode 10 mm in the longitudinal direction, and a 5 mm portion in the air was protruded as the length of the actuator. Measuring unit. The copper electrode was used as an anode and a cathode, and a battery charge and discharge device ("HJ201-B" manufactured by Hokuto Electric Co., Ltd.) was used to operate at a potential of 〇V to 1 V under a constant current of 3 m A. In the test, the operation of the tip end portion of the actuator was measured by a load cell ("UL-2GR" manufactured by MINEBEA) to measure the stress. Reference Example 1 Materials used for the production of polystyrene-b-polymethyl acrylate-b-polystyrene (copolymer P-1), copper (I) bromide, copper (I) chloride chloride ( II) It is purchased from Wako Pure Chemical Industries Co., Ltd. and used as it is. 1,1,4,7,10,10-hexamethyltrimethylenetetramine (HMTETA) was purchased from ALDRICH and used as it is. Tris(2-dimethylaminoethyl)amine (Me6-TREN) is a product obtained by refluxing a mixed aqueous solution of tris(2-aminoethyl)amine, formic acid and formaldehyde, and is used by distillation under reduced pressure. . Diethyl-meso-2,5-dibromoadipate was purchased from ALDRICH and used as it is. Styrene and acrylic acid vinegar were purchased from KISHIDA Chemical Co., Ltd., and contacted with zeolite and oxidized bromine before use to remove the polymerization inhibitor, followed by sufficient bubbling with dry nitrogen to remove dissolved oxygen, and was used by the user. Acetonitrile was purchased from KISHIDA Chemical Co., using contact with zeolite to remove moisture, followed by bubbling with dry nitrogen to remove dissolved oxygen. Other materials were used for purification according to the purpose. -32- 200903974 (1) In a 2-L 3-neck flask, a magnetic stir bar, 7.17 g (50 mmol) of copper (I) bromide, and 3.6 g (10 mmol) of diethyl-meso After the -2,5-dibromoadipate, the flask was thoroughly replaced with dry nitrogen. 955 ml of acetonitrile and 785 ml of methyl acrylate were added thereto, and stirred at room temperature for 30 minutes. Then, the temperature was raised to 50 ° C, and polymerization was started by adding another 8.3 wt of HMTETA in an acetonitrile solution (concentration: 0.3 mol/L) prepared by another route of HMTETA (1 6.7 mmol). Two hours after the start of the polymerization, 2.08 ml (HMTETA: 0.62 mmol) of HMTETA in acetonitrile (concentration: 0.3 mol/L) was added, and polymerization was further carried out for 6 hours. (2) After 6 hours, the flask was placed in ice water to cool the polymerization solution, and the polymerization was stopped. The polymerization rate at the time of stopping the polymerization was 38%, the number average molecular weight Μη was 28,700, and the molecular weight distribution Mw/Mn was 1.04. (3) The obtained polymerization solution was concentrated by an evaporator, and then diluted with toluene, followed by repeated washing with water to remove residual catalyst. After washing, it was concentrated again by an evaporator, and reprecipitated with a large excess of methanol, and the obtained viscous liquid was vacuum dried at 70 ° C overnight to obtain a brominated polymethyl acrylate at both ends. (4) 170 g of both ends of brominated polymethyl acrylate and a magnetic stirrer were placed in a 2-L 3-neck flask, and sufficiently substituted with dry nitrogen. Next, 15 2 ml of styrene was added to dissolve the brominated polyacrylic acid vinegar at both ends. The solution was warmed to 40 ° C, and copper chloride (1), 0.239 mg (178 mmol) copper chloride (II) prepared by another route was added. And 29.6 ml of a mixture of Me6-TREN in acetonitrile (concentration: 0.3 m〇l/L) (Me6-TREN is 8_89 mmol), starting polymerization -33-200903974 (5) After 8 hours of polymerization, the flask was placed. The polymerization solution was cooled in ice water to stop the polymerization. The polymerization rate at the time of stopping the polymerization was 10%, the number average molecular weight Μη was 72,000, and the molecular weight distribution Mw/Mn = l_31. (6) Reprecipitating the obtained polymerization solution with a large excess of methanol. After drying at room temperature, re-dissolving in toluene, repeating water washing to remove residual catalyst, and then reprecipitating with a large excess of methanol. The resulting solid was dried overnight at 70 °C. (7) As described above, a copolymer (P-1) in which the polymer block (Pa) is polymethyl acrylate (PMA) and the polymer block (Pb) is polystyrene (PSt) is obtained. When 1H-NMR measurement was performed, the PSt content in the copolymer (P-1) was 46%, and the PMA content was 54%. Reference Example 2 Production of ethylmethylimidazolium bis(trifluoromethanesulfonyl) quinone imine (ionic liquid) Regarding the material used, the cone-bis(difluoro(methyl-bromide) acid imide was self-derived. It is purchased from Tokyo Chemical Industry Co., Ltd. and used as it is. The Cyclo-Hospital system is purchased from KIS ΗID A Chemical Co., Ltd. and used as it is. Other materials are refined according to the purpose. (1) Separable flask in 500 ml In the middle, a mechanical stirrer with agitating blades, three cocks and a cooling tube were installed, and 250 ml of cyclohexane and 50 ml (〇.58 mol) of 1-methylimidazole were placed therein. The methylimidazole system was incomplete. The mixture was dissolved in cyclohexane to be in a two-phase separated state, and while stirring this solution, 1 30 ml (1·7 4 m 0 ) of ethyl bromide-34-200903974 was added dropwise at room temperature for 1 hour. After the completion of the dropwise addition, the mixture was heated to 80 ° C. and refluxed for 24 hours. Simultaneously with the progress of the reaction, a white solid precipitated. (2) The obtained suspension was distilled under reduced pressure to remove excess bromine and cyclohexane. Alkane, resulting from white acetate/isopropanol mixed solvent (1/1 v/v) The solid was recrystallized and purified, and the obtained crystal was separated by filtration, washed with n-hexane, and dried under vacuum overnight at 5 ° C. The yield was 91 g, and the yield was 83 %. Η-NMR measurement confirmed the formation of 3-ethyl-1-methylimidazolium bromide (EMIBr). (3) 45 g (2 36 mmol) of the above-mentioned ΕΜΙΒι• was charged with a stirring blade, A mechanical stirrer and a three-plug 500 ml separable flask were charged with 120 ml of distilled water to completely dissolve the EMIBr. (4) Make 68 g (23 6 mmol) of lithium (bistrifluoromethanesulfonate) The hydrazine imine was dissolved in 240 ml of distilled water to prepare an aqueous solution. The aqueous solution was dropped while stirring in the above EMIBr aqueous solution. After the completion of the dropwise addition, the reaction was continued at 70 ° C for 1 hour. The reaction liquid became two-phase separation. (5) The lower phase of the reaction solution was taken, diluted with dichloromethane, and washed three times with distilled water. After washing, it was distilled off under reduced pressure at 8 ° C for 3 hours to remove dichloromethane and a portion. Moisture. By the one obtained at 1 2 0 t The transparent liquid was vacuum dried for 3 days to completely remove the water in the system. The yield was 61 g, and the yield was 67%. The W-NMR measurement of the obtained colorless transparent liquid confirmed the purpose of the 3-ethyl group. -丨_Methylimidazole gun bis(difluoromethanesulfonyl) quinone imine (EMITFSI). Reference Example 3 High score of polystyrene-b-polymethyl acrylate-b-polystyrene copolymer ρ_ι -35- 200903974 Subsolid electrolyte (El) was produced by completely dissolving 10 g of the copolymer (P-1) in 500 ml of tetrahydrofuran. To this solution, 16.1 g of Μ Μ IT F S I was added to obtain a homogeneous solution. This solution was spread on glass to dry. The obtained transparent and soft solid was vacuum dried at 50 ° C to obtain a polymer solid electrolyte (E-1). Reference Example 4 Production of a polymer solid electrolyte (E-2) using a polyvinylidene fluoride-hexafluoropropylene random copolymer { (1) 1 g of polyvinylidene fluoride-hexafluoropropylene random copolymer (P (VDF-HFP), manufactured by ARKEMA, "C aina # 2 8 0 1")' was added 50 g of Μ IT FSI, and mixed well to obtain a slurry-like mixture. The mixture was heated to a uniform liquid state by heating the obtained mixture at 130 ° for 1 hour. The gel-like polymer solid electrolyte (E·2) was obtained by cooling the obtained liquid material at room temperature. (2) The obtained polymer solid electrolyte was hot-pressed at 100 ° C to form a polymer solid electrolyte sheet (E 2 ). (Example 6 and Comparative Example 1 - 6 Table 1 shows the composition of the molecular solid electrolyte produced according to the reference example. -36- 200903974 [Table 1] Polymer solid electrolyte copolymer (Ρ) copolymer ( Q) Ionic liquid ionic liquid/copolymer (p) or polymer (Q) (mass ratio) Example 1 '3, 5 Ε-1 Ρ-1 - EMITFSI 1.61 Comparative Examples 1, 3, 5 Examples 2, 4 6 Ε-2 — Caina #2801 EMITFSI 5 Comparative Examples 2, 4, and 6 Example 1 Electrode fabrication, actuator manufacturing, and performance test (1) 〇·1 g of potassium hydroxide was obtained from chyle Activated activated carbon (Ip/Io ratio = 0.33, total surface functional group amount = 〇_70 meq/g, BET specific surface area 1 2 1 0 m2/g, total pore volume/total pore volume ratio = 9.1, average Particle size = 10μπι), 0.06g acetylene black ("Denka Black" by Electric Chemical Co., Ltd.), 〇·〇4g PVDF-HFP ("Caina#2 8 0 1" by ARKEMA) and 0.3g EMITFSI, by chyle It is smashed into a block-shaped electrode material. (2) The obtained block electrode material is sandwiched by a PET film and hot pressed at 130 ° C to obtain a carbon electrode electrode. (3) Next, the film of the polymer solid electrolyte (E-1) is sandwiched between the carbon electrode film (the PET film removed) obtained in (2) (the thickness of both sides of the film is about 1 5 Ό heat) The pressure was applied to obtain an actuator formed by laminating a carbon electrode film-polymer solid electrolytic-37-200903974 mass-carbon electrode film. (4) The actuator was cut out to have a width of 5 mm and a length of 15 mm. The tester confirms that the electrodes on both sides are not in contact. (5) Perform an operation test on the actuator. Example 2 Manufacturing and performance test of the actuator Except that the polymer solid electrolyte is (E - 2), Example 1 An actuator was fabricated in the same manner to carry out a work test. (Example 3 Production and performance test of the actuator except that the activated carbon was an alkali activated carbon (B) (I ρ /1 〇 ratio = 0 · 〇丨, total surface An actuator was produced in the same manner as in Example ^ except that the amount of the functional group was 1.13 meq/g ' BET specific surface area = 3317 m 2 /g, the total volume of the micropores / the total volume ratio of the intermediate pores = 4.2 'average particle diameter = 14 μm η. Working test. Example 4 Manufacturing and performance test of actuator U In addition to activated carbon is alkali activated carbon An actuator was produced in the same manner as in Example 2, and an operation test was performed. Example 5 Production and performance test of the actuator In addition to the activated carbon, it is disclosed in Japanese Unexamined Patent Publication No. Hei. Example 3: Alkali activated carbon (C) prepared by the same method (I p /10 ratio = 〇6 4, total surface functional group amount = 0.93 meq/g ' ΒΕΤ specific surface area = 980 m 2 /g, total micropores An actuator test was performed in the same manner as in the first embodiment of the present invention, except that the total volume ratio of the volume/intermediate hole was 6.4, and the average particle diameter was 10 μm. [Embodiment 6] The production of the actuator and the performance test were carried out except that the activated carbon was an activated carbon (C) prepared by the same method as that of Example 3 of JP-A No. 20-31-1978. An actuator was produced in the same manner as in Example 2, and an operation test was performed. Comparative example 1

電極的製造、及致動器的製造以及性能試驗 f 除了活性碳爲(可樂麗化學公司製的氣體活化碳「Y D 1 7 D 」,Ip/Ip比=0.19,表面總官能基量=0.35meq/g,BET比表 面積=1 760m2/g,微孔總容積/中間孔總容積比=6.1,平均 粒徑=6 μιη)以外,與實施例1同樣地製作致動器,進行工 作試驗。 比較例2 致動器的製造及性能試驗 除了活性碳爲(可樂麗化學公司製的氣體活化碳「YD17D I 」)以外,與實施例2同樣地製作致動器,進行工作試驗。 比較例3 致動器的製造及性能試驗 除了活性碳爲氣體活化碳(Ε)(Ιρ/Ιο比=〇. 1 1,表面總官 能基量=〇.38meq/g,BET比表面積= 1 994m2/g,微孔總容積 /中間孔總容積比=2.3,平均粒徑=9 μιη)以外,與實施例1 同樣地製作致動器,進行工作試驗。 比較例4 -39- 200903974 致動器的製造及性能試驗 除了活性碳爲氣體活化碳(E)以外’與實施例2同樣地 製作致動器,進行工作試驗。 比較例5 致動器的製造及性能試驗 除了代替活性碳、乙炔黑’使用碳奈米管(Carbolex公 司製AP等級,Ip/Io比=〇·83,表面總官能基量=0.〇2meq/g ,BET比表面積=270m2/g ’微孔總容積/中間孔總容積比 ί = 0 · 4 8)以外,與實施例1同樣地製作致動器’進行工作試 驗。 比較例6 致動器的製造及性能試驗 除了代替活性碳、乙炔黑,使用碳奈米管(Carbolex公 司製A P等級)以外,與實施例2同樣地製作致動器’進行 工作試驗。 表2中顯示實施例1〜6及比較例1〜6的致動器之進 U 行工作試驗的結果。 -40- 200903974 [表2] 電極 高分子 固體電 解質 位移量 (μιη) 產生應力 (mgf/mm3) 活性物質 Ιρ/Ιο 比 官能基 (meq/g) 比表面 積 (m2/g) 微孔冲 間孔總 容積比 實施例1 經鹼活化的 活性碳(Α) 0.33 0.7 1210 9.1 E-1 120 8.9 實施例3 經鹼活化的 活性碳(Β) 0.01 1.13 33Π 1.13 108 8.0 實施例5 經鹼活化的 活性碳(C) 0.64 0.93 980 6.4 80 6.9 比較例1 經氣體活化 的活性碳 YP17D 0.19 0.35 1760 6.1 70 5.8 比較例3 經氣體活化 的活性碳 (Ε) 0.11 0.38 1994 2.3 65 5.2 比較例5 碳奈米管 0.83 0.02 270 0.48 15 0.6 實施例2 經鹼活化的 活性碳(Α) 0.33 0.7 1210 9.1 E-2 90 4.4 實施例4 經鹼活化的 活性碳(Β) 0.01 1.13 3317 1.13 83 4.1 實施例6 經鹼活化的 活性碳(C) 0.64 0.93 980 6.4 58 3.2 比較例2 經氣體活化 的活性碳 YP17D 0.19 0.35 1760 6.1 20 1.3 比較例4 經氣體活化 的活性碳 (Ε) 0.11 0.38 1994 2.3 18 1.2 比較例6 碳奈米管 0.83 0.02 270 0.48 12 0.3 由以上的結果可知,本發明的致動器,與使用經氣體 活化的活性碳或碳奈米管當作電極的活性物質之情況比 較下,除了提高位移量,亦提高產生應力,可利用作爲 致動器。 【圖式簡單說明】 第1圖係致動器工作試驗時所用的裝置之示意圖。 【主要元件符號說明】 4ρη~ 。 -41-The manufacture of the electrode, the manufacture of the actuator, and the performance test f except that the activated carbon was (gas-activated carbon "YD 1 7 D" manufactured by Kuraray Chemical Co., Ltd., Ip/Ip ratio = 0.19, total surface functional group amount = 0.35 meq. An actuator was produced in the same manner as in Example 1 except that BET specific surface area = 1 760 m 2 /g, total pore volume / intermediate pore volume ratio = 6.1, average particle diameter = 6 μm, and an operation test was performed. Comparative Example 2 Production and performance test of the actuator An actuator was produced in the same manner as in Example 2 except that the activated carbon was (gas activated carbon "YD17D I" manufactured by Kuraray Chemical Co., Ltd.), and an operation test was performed. Comparative Example 3 Manufacturing and performance test of the actuator except that the activated carbon was a gas activated carbon (Ε) (Ιρ/Ιο ratio = 〇.1 1, total surface functional group amount = 38.38 meq/g, BET specific surface area = 1 994 m2 An actuator was produced in the same manner as in Example 1 except that the total volume of the micropores/total volume ratio of the intermediate pores was 2.3 and the average particle diameter was 9 μm. Comparative Example 4 - 39 - 200903974 Actuator manufacturing and performance test An actuator was produced in the same manner as in Example 2 except that the activated carbon was gas-activated carbon (E), and an operation test was performed. Comparative Example 5 Manufacturing and performance test of actuators In addition to replacing activated carbon and acetylene black, carbon nanotubes (AP grade by Carbolex, Ip/Io ratio = 〇·83, total surface functional group amount = 0.1 〇 2meq) /g, BET specific surface area = 270 m 2 /g 'The total volume of the micropores / the total volume ratio of the intermediate pores ί = 0 · 4 8) The actuators were produced in the same manner as in Example 1 to carry out an operation test. Comparative Example 6 Production and performance test of the actuator An actuator was produced in the same manner as in Example 2 except that carbon nanotubes (A P grade manufactured by Carbolex Co., Ltd.) were used instead of activated carbon and acetylene black. Table 2 shows the results of the operation tests of the actuators of Examples 1 to 6 and Comparative Examples 1 to 6. -40- 200903974 [Table 2] Electrode polymer solid electrolyte displacement (μιη) Stress (mgf/mm3) Active material Ιρ/Ιο Specific functional group (meq/g) Specific surface area (m2/g) Microporous perforation Total volume ratio Example 1 Activated carbon activated by alkali (Α) 0.33 0.7 1210 9.1 E-1 120 8.9 Example 3 Activated carbon activated by alkali (Β) 0.01 1.13 33Π 1.13 108 8.0 Example 5 Activity activated by alkali Carbon (C) 0.64 0.93 980 6.4 80 6.9 Comparative Example 1 Activated carbon activated by gas YP17D 0.19 0.35 1760 6.1 70 5.8 Comparative Example 3 Activated carbon activated by gas (Ε) 0.11 0.38 1994 2.3 65 5.2 Comparative Example 5 Carbon Nano Tube 0.83 0.02 270 0.48 15 0.6 Example 2 Activated carbon activated by alkali (Α) 0.33 0.7 1210 9.1 E-2 90 4.4 Example 4 Activated carbon activated by alkali (Β) 0.01 1.13 3317 1.13 83 4.1 Example 6 Alkali-activated activated carbon (C) 0.64 0.93 980 6.4 58 3.2 Comparative Example 2 Activated carbon activated by gas YP17D 0.19 0.35 1760 6.1 20 1.3 Comparative Example 4 Activated carbon activated by gas (Ε) 0.11 0.38 1994 2.3 18 1.2 Comparative Example 6 carbon nanotubes 0.83 0.02 270 0.48 12 0.3 From the above results, it is understood that the actuator of the present invention can be used as an active material using a gas-activated activated carbon or a carbon nanotube as an electrode, in addition to increasing the displacement amount, and also increasing the stress generated. Actuator. [Simple description of the drawing] Fig. 1 is a schematic view of the apparatus used in the operation test of the actuator. [Main component symbol description] 4ρη~ . -41-

Claims (1)

200903974 十、申請專利範圍: 1. 一種電極,係使用以離子液體及高分子成分當作構成成 分的高分子固體電解質的致動器中所用的電極,其以經 鹼活化的活性碳當作活性物質。 2. 如申請專利範圍第1項之電極,其中活性碳的X射線繞 射強度曲線之(002)面的繞射峰之石墨結晶性構造參數 Ip/Ιο比爲0.00 1〜0.4 ;但是Ip係在X射線繞射強度曲 線中,於(002)面的繞射峰的兩下擺繪製切線,爲該切線 之上方部分的強度之最大値,1〇係自(002)面的繞射強度 扣除空氣的散射強度後之剩餘強度。 3 ·如申請專利範圍第1項之電極,其中活性碳表面的總官 能基量,對於每1克活性碳而言,係在 0.6meq/g〜 1.5meq/g的範圍內。 4.如申請專利範圍第1項之電極,其中活性碳的BET比表 面積係在800m2/g〜3500m2/g的範圍內。 5 ·如申請專利範圍第1項之電極,其中相對於活性碳的中 間孔(細孔徑1 nm以上、50nm以下)的總容積而言,微孔 (細孔徑小於1 nm)的總容積之比(微孔總容積/中間孔總容 積)爲1 . 0〜1 2。 6 .如申請專利範圍第1項之電極,其中離子液體係取代咪 唑鐵鹽。 7.如申請專利範圍第1項之電極,其中高分子固體電解質 含有離子液體、以及當作筒分子成分的具有與該離子液 -42- 200903974 體相溶的聚合物嵌段(P a)及與該離子液體不相溶的聚合 物嵌段(Pb)之共聚物(P)、或與該離子液體相溶的聚合物 (Q)當作構成成分’該共聚物或該聚合物係成爲被該離子 液體含浸的狀態。 8.如申請專利範圍第7項之電極,其中高分子固體電解質 含有該離子液體及該共聚物(P)當作構成成分。 9 ·如申請專利範圍第1項之電極,其中電極係以離子液 體、高分子成分、及經鹼活化的活性碳當作構成成分。 10.—種致動器,係由以離子液體及高分子成分當作構成成 分的高分子固體電解質、及夾持該高分子固體電解質且 位置互相不接觸的申請專利範圍第1至9項中任一項記 載的一方之電極與另一方之電極所構成,藉由在電極間 給予電位差可產生變形。 1 1 _如申請專利範圍第1 0項之致動器,其中離子液體係取 代咪唑鑰鹽。 I2·申請專利範圍第10項之致動器,其中高分子固體電解 質含有離子液體、以及與該離子液體相溶的聚合物嵌段 (pa)及與該離子液體不相溶的聚合物嵌段(Pb)之共聚物 (P)、或與該離子液體相溶的聚合物(Q)當作構成成分, 該共聚物或該聚合物係成爲被該離子液體含浸的狀態。 1 3 .如申請專利範圍第1 2項之致動器,其中高分子固體電 解質含有該離子液體及該共聚物(p)當作構成成分。 -43-200903974 X. Patent application scope: 1. An electrode used in an actuator using a polymer solid electrolyte having an ionic liquid and a polymer component as a constituent component, which is activated by an alkali activated activated carbon substance. 2. The electrode of claim 1, wherein the ratio of the graphite crystalline structural parameter Ip/Ιο of the diffraction peak of the (002) plane of the X-ray diffraction intensity curve of activated carbon is 0.001 to 0.4; In the X-ray diffraction intensity curve, a tangent is drawn at the two hem of the diffraction peak of the (002) plane, which is the maximum intensity of the upper portion of the tangent, and the diffraction intensity of the (002) plane is deducted from the air. The residual strength after the scattering intensity. 3. The electrode of claim 1, wherein the total functional amount of the surface of the activated carbon is in the range of 0.6 meq/g to 1.5 meq/g per 1 gram of activated carbon. 4. The electrode of claim 1, wherein the BET specific surface area of the activated carbon is in the range of 800 m2/g to 3500 m2/g. 5. The ratio of the total volume of the micropores (the pore diameter is less than 1 nm) with respect to the total volume of the intermediate pores (fine pore diameters of 1 nm or more and 50 nm or less) of the active carbon as in the first application of the patent scope. (total volume of micropores / total volume of intermediate holes) is 1.0 to 1 2. 6. The electrode of claim 1, wherein the ionic liquid system replaces the imidazole iron salt. 7. The electrode of claim 1, wherein the polymer solid electrolyte contains an ionic liquid, and a polymer block (P a) having a molecular composition of the electrolyte and having a compatibility with the ionic liquid - 42 - 200903974 a copolymer (P) of a polymer block (Pb) which is incompatible with the ionic liquid, or a polymer (Q) which is compatible with the ionic liquid is regarded as a constituent component 'the copolymer or the polymer system becomes The state in which the ionic liquid is impregnated. 8. The electrode according to claim 7, wherein the polymer solid electrolyte contains the ionic liquid and the copolymer (P) as a constituent component. 9. The electrode of claim 1, wherein the electrode is composed of an ionic liquid, a polymer component, and an alkali activated activated carbon. 10. The actuator is a polymer solid electrolyte having an ionic liquid and a polymer component as a constituent component, and a range of claims 1 to 9 in which the polymer solid electrolyte is sandwiched and the positions are not in contact with each other. The electrode of one of the electrodes described above is formed by the other electrode, and deformation is generated by applying a potential difference between the electrodes. 1 1 _ The actuator of claim 10, wherein the ionic liquid system replaces the imidazole salt. I2. The actuator of claim 10, wherein the polymer solid electrolyte comprises an ionic liquid, and a polymer block (pa) compatible with the ionic liquid and a polymer block incompatible with the ionic liquid The copolymer (P) of (Pb) or the polymer (Q) which is compatible with the ionic liquid is used as a constituent component, and the copolymer or the polymer is in a state of being impregnated with the ionic liquid. An actuator according to claim 12, wherein the polymer solid electrolyte contains the ionic liquid and the copolymer (p) as a constituent component. -43-
TW097110912A 2007-03-29 2008-03-27 Electrode and actuator using it TW200903974A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007087007 2007-03-29
PCT/JP2008/054962 WO2008123064A1 (en) 2007-03-29 2008-03-18 Electrode and actuator using the electrode

Publications (1)

Publication Number Publication Date
TW200903974A true TW200903974A (en) 2009-01-16

Family

ID=39830565

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097110912A TW200903974A (en) 2007-03-29 2008-03-27 Electrode and actuator using it

Country Status (3)

Country Link
JP (1) JPWO2008123064A1 (en)
TW (1) TW200903974A (en)
WO (1) WO2008123064A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094172A (en) * 2021-11-12 2022-02-25 华东理工大学 Preparation method and application of covalent organic framework-based ionic gel electrolyte

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5290055B2 (en) * 2009-06-02 2013-09-18 株式会社クラレ Polymer transducer
US20120177923A1 (en) * 2012-03-20 2012-07-12 Haycarb PLC Low ash activated carbon and methods of making same
JP7462014B1 (en) 2022-11-16 2024-04-04 関西熱化学株式会社 Electrode material for aqueous electric double layer capacitors
JP7427849B1 (en) 2023-03-01 2024-02-05 関西熱化学株式会社 Activated carbon for water treatment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2502986B2 (en) * 1986-10-14 1996-05-29 株式会社クラレ Activated carbon
CA2334240C (en) * 1998-06-26 2005-08-09 Sanyo Electric Co., Ltd. Lithium secondary battery using gelled polymeric electrolyte
JP4877441B2 (en) * 2000-07-25 2012-02-15 株式会社クラレ Activated carbon, manufacturing method thereof, polarizable electrode, and electric double layer capacitor
JP2002128514A (en) * 2000-10-16 2002-05-09 Nisshinbo Ind Inc Carbonaceous material, polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP4266711B2 (en) * 2003-05-30 2009-05-20 株式会社カナック Method and apparatus for producing activated carbon by microwave heating
JP4619716B2 (en) * 2003-07-23 2011-01-26 イーメックス株式会社 Actuator element manufacturing method and actuator element
JP2005347517A (en) * 2004-06-03 2005-12-15 Nisshinbo Ind Inc Method of manufacturing activated charcoal for electric double layer capacitor electrode
JP4628707B2 (en) * 2004-06-29 2011-02-09 イーメックス株式会社 Conductive polymer electrode and actuator using the same
JP2006050780A (en) * 2004-08-04 2006-02-16 Japan Carlit Co Ltd:The Conductive high-polymer actuator
JP4717400B2 (en) * 2004-09-13 2011-07-06 イーメックス株式会社 Air-driven polymer actuator element
JP2006151784A (en) * 2004-11-30 2006-06-15 Fumihiko Yazaki Method for manufacturing active carbon by alkali activation method using microwave plasma heating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094172A (en) * 2021-11-12 2022-02-25 华东理工大学 Preparation method and application of covalent organic framework-based ionic gel electrolyte
CN114094172B (en) * 2021-11-12 2023-02-03 华东理工大学 Preparation method and application of covalent organic framework-based ionic gel electrolyte

Also Published As

Publication number Publication date
JPWO2008123064A1 (en) 2010-07-15
WO2008123064A1 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
Li et al. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors
TW200832778A (en) Polymer solid electrolyte, electrochemical device and actuator
Shi et al. Nanostructured conducting polymer hydrogels for energy storage applications
JP6220124B2 (en) Carbonaceous composition for supercapacitor cell electrode, electrode, manufacturing process of the electrode, and cell incorporating the electrode
JP4956733B2 (en) Porous material, method for producing the same, and use thereof
CN109565020B (en) Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, and method for producing electrode for nonaqueous secondary battery
TWI711647B (en) Composition for colloidal electrolyte
TW200903974A (en) Electrode and actuator using it
CN108172897B (en) Solid electrolyte, preparation method thereof and all-solid-state battery
CN101925793A (en) Flexible deformation sensor
JP2008252958A (en) Actuator and electrode for use in the actuator
US8946971B2 (en) Actuator
KR101542839B1 (en) Organic-inorganic composite anion exchange membrane containing polyvinylidene fluoride polymer for non-aqueous redox flow battery and method for preparing the same
Shi et al. Promising and reversible electrolyte with thermal switching behavior for safer electrochemical storage devices
Zhang et al. Thermoreversible and self-protective sol–gel transition electrolytes for all-printed transferable microsupercapacitors as safer micro-energy storage devices
JP2013229327A (en) Binder for battery electrode, composition containing binder and electrode
JP2009258008A (en) Transparent flexible deformation sensor
KR20210142120A (en) Binder for all-solid secondary battery, binder composition for all-solid secondary battery, slurry for all-solid secondary battery, solid electrolyte sheet for all-solid secondary battery and manufacturing method thereof, and all-solid secondary battery and manufacturing method thereof
JP5286646B2 (en) Method for polymerizing sulfone group-containing monomers
JP5317511B2 (en) Actuator and its electrodes
KR102536022B1 (en) Self-healable conductive binder for anode of lithium ion battery and the preparation method thereof
JP2018160400A (en) Binder for power storage device electrodes
JP5876327B2 (en) Electrolyte material and battery material and secondary battery using the same
JP2013256590A (en) Deformable material and actuator
JP2020510953A (en) Gel (crosslinked) polymer binder for high performance lithium ion batteries