TW200902674A - Green-emitting phosphors excited by vacuum ultraviolet radiation and a method for manufacturing the same - Google Patents

Green-emitting phosphors excited by vacuum ultraviolet radiation and a method for manufacturing the same Download PDF

Info

Publication number
TW200902674A
TW200902674A TW96124849A TW96124849A TW200902674A TW 200902674 A TW200902674 A TW 200902674A TW 96124849 A TW96124849 A TW 96124849A TW 96124849 A TW96124849 A TW 96124849A TW 200902674 A TW200902674 A TW 200902674A
Authority
TW
Taiwan
Prior art keywords
light
fluorescent material
wavelength
excited
primary radiation
Prior art date
Application number
TW96124849A
Other languages
Chinese (zh)
Other versions
TWI350305B (en
Inventor
Teng-Ming Chen
Chia-Chin Wu
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW096124849A priority Critical patent/TWI350305B/en
Publication of TW200902674A publication Critical patent/TW200902674A/en
Application granted granted Critical
Publication of TWI350305B publication Critical patent/TWI350305B/en

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

This invention discloses green-emitting phosphors excitable by vacuum ultraviolet radiation and a manufacturing method. The phosphor series can be represented as the following formula: (Zn1-xMnx)2(Ge1-ySiy)O4 wherein 0.002 ≤ x ≤ 0.01, 0 ≤ y ≤ 1, which could be applied for plasma display panels (PDPs), mercury-free backlighting, lamp or lighting device.

Description

200902674 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種真空紫外線激發之綠光螢光材料與 其製造方法,特別是關於適用於發光裝置或平面顯示元件 之綠光螢光材料。 【先前技術】 隨著多媒體時代的來臨,使得人類生活型態產生重大 的變革,而對於大畫面薄型之數位顯示裝置的需求也日益 增加,因此在薄型化顯示裝置中除了液晶顯示裝置外’電 漿顯示裝置是目前大畫面(40吋以上)薄型顯示裝置的主 要產品,而且其畫面效果、色溫、亮度與對比等特性亦已 接近傳統CRT顯示裝置的品質’特別是電漿顯示裝置的廣 視角特性,更是目前高階顯示市場之主流。 電漿顯示裝置之發光原理係與日光燈的發光原理相 似,都是利用在兩片前後玻璃基板所形成的真空中注入惰 性氣體、稀有氣體或水銀氣體,再施加電壓使該等氣體產 生電漿效應而放出短波長之真空紫外線(vacuum ultraviolet light),再藉由真空紫外線激發塗佈於玻璃基 板上阻隔壁所形成表面上之螢光材料,此時螢光材料就會 被激發出可見光,而可見光的顏色則取決於螢光材料的種 類。 而電漿顯示裝置則可想像成有數十萬個以上被縮小化 的螢光燈聚集在一起放電’每一個放電空間稱爲一個格體 (cell ),在這些放電空間中所封入的氣體通常包括氖氣 200902674 (Ne)、氙氣(Xe)與氣氦(He)等種類混合之惰性氣體。 這些氣體經施加高壓電後會產生放電現象(電漿效應), 此放電現象所釋放之真空紫外線波長爲14〇nm至200nm。 而在放電格體內側所塗佈的螢光材料經過紫外線的激發則 會發出可見光。而彩色電漿顯示裝置則是塗佈可發出紅、 藍與綠三原色光之不同螢光材料。將這三種不同顏色之螢 光材料配製成直線狀或馬賽克狀,當分別施加電壓於放電 格體上之顯示與定位電極時,就會造成放電效應而產生真 空紫外線,進而激發螢光材料產生三原色之可見光,這時 搭配驅動電路之設計與影像訊號處理則可將所發出之三原 色光加以混合產生各種顏色,以形成彩色的顯示畫面。 而該螢光材料,亦即所謂的螢光體(螢光轉換化合物; phosphors)係可將紫外光或藍色光轉換爲不同波長的可見 光。而其所產生的可見光顏色則取決於螢光體化合物的特 定成份。該螢光體化合物可能僅含有單一種螢光體組成物 或者兩種或兩種以上的螢光體化合物。而每一種螢光材料 在不同的波長激發下均可轉換爲不同的顏色的光’例如在 真空紫外光之140nm至200nm波長下’則可轉換爲可見光。 就人類的視覺觀點而言’感覺上同樣的色彩實際上卻 有可能是由不同波長的色光所混合產生的效果’而紅、藍、 綠三原色光按照不同比例的搭配’可以在視覺上感受不同 色彩的光,此乃三原色原理。國際照明委員會(CIE,BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum ultraviolet excitation green light fluorescent material and a method of fabricating the same, and more particularly to a green fluorescent material suitable for use in a light-emitting device or a flat display element. [Prior Art] With the advent of the multimedia era, the human life style has undergone major changes, and the demand for large-screen thin digital display devices is increasing. Therefore, in addition to the liquid crystal display device, the thin display device is electrically The slurry display device is the main product of the current large-screen (40-inch or larger) thin display device, and its picture effect, color temperature, brightness and contrast are also close to the quality of the traditional CRT display device, especially the wide viewing angle of the plasma display device. Features are the mainstream of the current high-end display market. The principle of illumination of the plasma display device is similar to that of the fluorescent lamp. The inert gas, rare gas or mercury gas is injected into the vacuum formed by the two front and back glass substrates, and the voltage is applied to cause the plasma to have a plasma effect. The short-wavelength vacuum ultraviolet light is emitted, and the fluorescent material coated on the surface of the barrier layer formed on the glass substrate is excited by the vacuum ultraviolet light, and the fluorescent material is excited to emit visible light, and the visible light is visible. The color depends on the type of fluorescent material. The plasma display device can be imagined as having hundreds of thousands of reduced fluorescent lamps gathered together to discharge 'each discharge space is called a cell, and the gas enclosed in these discharge spaces is usually Including inert gases such as helium 200902674 (Ne), helium (Xe) and gas (He). These gases generate a discharge phenomenon (plasma effect) after application of high voltage, and the vacuum ultraviolet light emitted by this discharge phenomenon is 14 〇 nm to 200 nm. The fluorescent material coated on the inside of the discharge cell emits visible light when excited by ultraviolet rays. The color plasma display device is coated with different fluorescent materials that emit red, blue and green primary colors. The three different color phosphor materials are arranged in a linear or mosaic shape, and when a voltage is applied to the display and positioning electrodes on the discharge cell, respectively, a discharge effect is generated to generate vacuum ultraviolet rays, thereby exciting the phosphor material. The visible light of the three primary colors, together with the design of the drive circuit and the image signal processing, can mix the three primary colors emitted to produce various colors to form a color display. The fluorescent material, also known as a phosphor (fluorescence conversion compound; phosphors), converts ultraviolet or blue light into visible light of different wavelengths. The color of the visible light produced depends on the specific composition of the phosphor compound. The phosphor compound may contain only a single phosphor composition or two or more phosphor compounds. Each of the phosphor materials can be converted to visible light by converting light of different colors under excitation of different wavelengths, for example, at a wavelength of 140 nm to 200 nm of vacuum ultraviolet light. As far as the human visual point of view is concerned, 'feeling the same color may actually be the result of mixing of different wavelengths of color light' and red, blue and green three primary colors of light according to different proportions' can be visually different. The color of light, this is the principle of the three primary colors. International Commission on Illumination (CIE,

Commission Internationale de I’Eclairage)確定了 原色當 量單位,標準的白光光通量比爲:φι": φ§: 200902674 4.5907 : 0.0601 原色光單位確定後,白光Fw的配色關係爲:Commission Internationale de I’Eclairage) determines the unit of primary color, the standard white light flux ratio is: φι": φ§: 200902674 4.5907 : 0.0601 After the primary light unit is determined, the color matching relationship of white light Fw is:

Fw= 1 [R] + 1 [G] + [B] 其中R代表紅光,G代表綠光,B代表藍光。 對任意一彩色光F而言,其配方程式爲Fw=r[R] + g[G]+b[B],其中r、g、b爲紅、藍、綠三色係數(可由 配色實驗測得),其對應的光通量(Φ)爲:Φ = 6 8 0(R + 4.5907G+ 0.060 1 B)流明(lumen,簡稱 lm,爲照度單位), 其中r、g、b的比例關係決定了所配色的光之色彩度(色彩 飽和程度),它們的數値則決定了所配成彩色光的亮度。 r[R]、g[G]、b[B]通稱爲物理三原色,三色係數間的關係, 可以利用矩陣加以表不,經過標準化(normalization)之後可 以寫成:F = X[X] + Y[Y] + Z[Z] = m{x[X] + y[Y] + z[Z]}, 其中 m=X+Y+Z 且 x=(X/m)、_y = (Y/m)、z = (Z/m)。每一 個發光波長都分別有對應的r、g、b値,將可見光區範圍 的合爲X,g値相加總合爲Y,b値相加總合爲Z,因此我 們可以使用直角座標來表示螢光粉發光的色度,這就 是我們所謂C.I.E.1931標準色度學系統,簡稱C.I.E.色度 座標。當光譜量測後,計算各個波長光線對光譜的貢獻, 找出X、y値後,在色度座標圖上標定出正確的座標位置, 也就可以定義出螢光粉所發出光之色度値。 通常電漿顯示裝置以全色域顯示時,其所需要的紅、 藍與綠三原色之螢光材料,包含Y、Gd、Β、Ο及活化劑 Eu之(Y,Gd)B03: Eu紅光螢光材料;包含Ba、Mg、A1、Ο 200902674 及活化劑Eu之BaMgAnOu: Eu藍光螢光材料;包含Zn、 Si、Ο及活化劑Eu之Zn2Si04 : Μη綠光螢光材料。其中, 綠光螢光材料中係以日本化成公司所合成之Zn2Si04:Mn2 + 螢光材料(型錄編號P1-G1S)最爲常用,但是其卻有殘光時 間過長與發光強度不足等缺點。 有鑑於此,若能提供一種可以改善光演色係數、殘光 時間短,同時達到高穩定、成本低廉之螢光材料,並使其 能應用於電漿電視、無汞背光源、照明燈具、發光裝置等, f 則可以用以取代現今常用之商品,且更能對其所顯示顏色 之色溫進行調控,並有效提升其演色性。 【發明內容】 本發明之應用亦不侷限於下列敘述或者在圖式中,所 舉例說明之化學式或組成等細節所作之說明中。本發明更 具有其他的實施例,且可以各種不同的方式予以實施或進 行。而且’在本發明中所使用之措辭和術語均爲了說明本 ,案爲目的’而不應視爲本案之限制。在本發明中所使用之” 包括”、”包含”、”具有”與”含有”,以及其他具有 類似涵義的字,其意指包含下述所列出的所有項目、同等 物以及其他的物。 本發明係揭露一種成本低廉、材料穩定,且具有新穎 化學配方之綠光螢光材料,其可供半導體光源、發光二極 體、雷射二極體、有機發光裝置或真空紫外線所激發,而 產生具有高演色性之綠光。其中該螢光材料係可由下列化 學式所表示: 200902674 (Zni_xMnx)2(Gei-ySiy)〇4 其中0.002Sx$〇.〇l’ OgySl,其可藉由—發光元件所發 射之一次輻射而激發該螢光材料產生二次輻射,且該發光 元件可爲半導體光源、發光二極體、雷射二極體、有機發 光裝置或真空紫外線,而發光元件所發射之一次輻射的波 長係在120nm〜180nm之間。該螢光材料被一次輻射所激 發產生之二次輻射之波長較該一次輻射之波長更長,該__ 次輻射所激發該螢光材料產生之二次輻射波長爲5 0 0 nm〜 600nm,主要的波長爲 5 1 Onm〜540nm,而產生之二次輻射 的 CIE 色度座標値爲 0.1〇SjcS〇.25,0.65$3;S〇.8〇, 落入綠光之範圍內。 此外,本發明更提供一種製造前述螢光材料之方法, 係包括下列步驟,先依化學劑量秤取氧化鋅、氧化鍺、二 氧化矽及氧化錳’並加入2〜8wt%之氯化銨粉末之助熔劑 後’將之硏磨並均勻混合後’置入坩鍋中放入高溫爐,於 1 000 °C〜1 3 00 °C予以固態熔融燒結反應6〜8小時後合成。 【實施方式】 爲使該所屬技術領域中具有通常知識者能更進一步瞭 解本發明之組成成分及其機械特性,茲配合具體實施例、 圖式與表格詳加說明,當更容易瞭解本發明之目的、技術 內容、特點及其所達成之功效。 本發明係提供一種螢光材料,且爲下列一般式所示: (Zni.xMnx)2(Gei.ySiy)〇4 其中〇.〇〇2SxS〇_〇l ’ OSySi,其可藉由一發光元件所發 200902674 射之一次輻射而激發該螢光材料產生二次轄射,且該發光元 件可爲半導體光源、發光二極體、雷射二極體、有機發光裝 置或真空紫外線,而發光元件所發射之一次輻射的波長係在 120nm〜180nm之間。該營光材料被一次輻射所激發產生之 二次輻射之波長較該一次輻射之波長更長,該一次輻射所激 發該螢光材料產生之二次輻射波長爲50〇nm〜 600nm,主要 的波長爲510nm〜540nm,而產生之二次輻射的CIE色度座 標(x,_y)値爲 〇·2500$χ$0_3000,0.6500$;;各 〇.7〇〇〇,落入 綠光之範圍內。 而該螢光材料係依據合成時,秤取1 · 6 1 8克氧化辞、 0.418克氧化鍺、0.361克二氧化矽及0.0086克氧化錳,並 加入0.0481至0.192克之氯化銨粉末爲助熔劑後,將之硏 磨並均勻混合後,置入坩鍋中放入高溫爐,於1 000 °c〜1300 °C予以固態高溫燒結反應6〜8小時後即可合成。 隨後將所合成之螢光材料,利用X光繞射儀(Bruker AXS D8 advance type)進行分析。此外,利用發光波長介 於120nm〜180nm進行測試本發明之螢光材料的發光特 性。而在本發明中係利用配備有450W的氙燈之 Spex Fluorolog-3 營光光譜儀(美國 Jobin-Yvon Spex S.A.公司) 進行其螢光光譜與激發光譜之測量’且利用U-3010紫外-可見光光譜儀(日本hitachi公司製造)以100至300nm 的波長掃瞄本發明之螢光材料’而得到其全反射光譜;再 利用色彩分析儀(DT-100 color Analyzer 日本LAIKO公 司製造)搭配螢光光譜儀及可測得螢光材料之輝度與色 -10- 200902674 度;而針對本發明之螢光材料所進行的上述測試,同樣將 市售之ZnSi〇4:Mn2+(化成光學股份有限公司製造,型錄編 號 P1-G1S ’ Kasei Optonix,LTD·,Japan)進行測試以作爲 對照比較。 在第1圖中係顯示本發明之一較佳實施例 Zn2(Ge,Si)〇4:Mn2 +之X光繞射圖譜,其可以得知所合成之 螢光材料具有相當良好結晶性且高純度之晶相。隨後將本 發明之螢光材料進行發光光譜與激發光譜測試,其所利用 之激發光波長較佳爲120nm〜1 80nm,實線部分係利用波長 147nm激發本發明之螢光材料所產生之光譜,虛線部分係 爲利用波長172nm激發本發明之螢光材料所產生之光譜, 而點虛線部分係爲本發明之螢光材料的發光光譜,請參見 第2圖。因此,從第2圖中可以得知,分別利用波長i 47nm 與波長172nm的光激發本發明之螢光材料時,其可以被激 發出500nm〜600nm波長的光。第3圖係爲本發明之螢光 材料與日本化成之商品的激發光譜之比較,其監控波長爲 530nm。然而,在第4圖中係利用波長爲I72nm的光激發 本發明之螢光材料(實線部份)與市售之ZnSi04:Mn2+ (虛 線部份)的發光光譜圖,其可以發現本發明之螢光材料的 發射光譜強度比市售之ZnSi04:Mn2 +發射光譜強度爲強。另 外,在第5圖中係利用波長爲147nm的光激發本發明之螢 光材料(實線部份)與市售之ZnSi04:Mn2+ (虛線部份)的 發光光譜圖,其可以發現本發明之蛋光材料的發射光譜強 度比市售之ZnSi04:Mn2 +發射光譜強度爲強。隨後,再分別 200902674 以波長爲172nm與147nm的紫外光激發本發明之螢 與市售之ZnSi04:Mn2 +的CIE色座標圖,從第6圖 得知,本發明之螢光材料不論是以波長爲1 72nm 1 4 7 n m的光激發時,其所得到的色飽和度均較市售 更爲優異。 因此,從前述之實施例中可以發現,本發明所 新穎螢光材料,其在1 20nm〜1 80nm波長的光的激 其所表現之強度’以1 47nm激發時放射強度爲市售 1 2 6 %,而利用1 7 2 n m激發時放射強度爲市售商品的 且色飽和度更佳。 惟以上所述者,僅爲本發明之較佳實施例,當 此限定本發明之實施範圍,而所屬技術領域中具有 識者依據本發明申請專利範圍及發明說明書內容所 飾與變化,皆應屬於本發明專利涵蓋之範圍。 在本發明說明書中所出現的任一數量、濃度、 他數値、參數等範圍、較佳之範圍、或較佳値的上 佳値的下限等,從任何一對範圍所得知的上限或 値’或範圍的下限或其較佳値,均應被視爲特定已 範圍’且不論該範圍是否被獨立的揭露。其中在本 所揭露的任何數値之範圍內,除非特別敘明,否則 係包含其所有端點數字以及在該範圍內之所有的整 數。而本發明之範疇並非限定於這些特定其所定義 範圍。 【圖式簡單說明】 光材料 中可以 的光或 之商品 揭露之 發下, 商品的 14 6%, 無法據 通常知 作之修 或者其 限與較 其較佳 揭露的 發明中 該範圍 數或分 之數値 -12- 200902674 第1圖 本發明之一較佳實施例的X光繞射圖譜。 第2圖 譜圖。 本發明之一較佳實施例的發光光譜與激發光 第3圖 譜圖的比較。 本發明之一較佳實施例的市售商品之激發光 第4圖 本發明之一較佳實施例的與市售商品發射光 譜強度之比較圖。 第5圖 本發明之一較佳實施例的與市售商品發射光 譜強度之比較圖。 第6圖 本發明之一較佳實施例的與市售商品CIE色 座標之比較。 【主要元件符號說明】 無。Fw = 1 [R] + 1 [G] + [B] where R stands for red light, G stands for green light, and B stands for blue light. For any color light F, the formula is Fw=r[R] + g[G]+b[B], where r, g, b are red, blue, and green three color coefficients (can be measured by color matching experiment) ()), the corresponding luminous flux (Φ) is: Φ = 6 8 0 (R + 4.5907G + 0.060 1 B) lumens (lumen, referred to as lm, is the unit of illumination), where the proportional relationship of r, g, b determines The color of the color of the color (the degree of color saturation), and their number determines the brightness of the colored light. r[R], g[G], and b[B] are commonly referred to as physical three primary colors. The relationship between the three color coefficients can be expressed by a matrix. After normalization, it can be written as: F = X[X] + Y [Y] + Z[Z] = m{x[X] + y[Y] + z[Z]}, where m=X+Y+Z and x=(X/m), _y = (Y/m ), z = (Z/m). Each of the illuminating wavelengths has a corresponding r, g, b 値, respectively, the combination of the visible light range is X, g 値 sums up to Y, b 値 sums up to Z, so we can use right angle coordinates Indicates the chromaticity of the fluorescent powder, which is what we call the CIE1931 standard colorimetric system, referred to as the CIE chromaticity coordinate. After the spectral measurement, calculate the contribution of each wavelength of light to the spectrum, find X, y値, and calibrate the correct coordinate position on the chromaticity coordinate map, then define the chromaticity of the light emitted by the fluorescent powder. value. Generally, when the plasma display device is displayed in the full color gamut, the fluorescent materials of the three primary colors of red, blue and green, including Y, Gd, yttrium, lanthanum and activator Eu (Y, Gd) B03: Eu red light Fluorescent material; BaMgAnOu: Eu blue fluorescent material containing Ba, Mg, A1, Ο 200902674 and activator Eu; Zn2Si04 : Μη green fluorescent material containing Zn, Si, lanthanum and activator Eu. Among them, the green fluorescent material is most commonly used in the Zn2Si04:Mn2 + fluorescent material synthesized by Nippon Kasei Co., Ltd. (catalog number P1-G1S), but it has disadvantages such as excessive afterglow time and insufficient luminous intensity. . In view of this, it is possible to provide a fluorescent material which can improve the color rendering coefficient and the residual afterglow time while achieving high stability and low cost, and can be applied to a plasma television, a mercury-free backlight, a lighting fixture, and a light-emitting device. Devices, etc., can be used to replace the commonly used products, and can better regulate the color temperature of the displayed colors, and effectively improve their color rendering. SUMMARY OF THE INVENTION The application of the present invention is not limited to the following description or the description of the illustrated chemical formula or composition. The invention has other embodiments and can be implemented or carried out in various different ways. Further, the words and terms used in the present invention are intended to be illustrative and not intended to be limiting. "including," and "including," and "containing," and "including," . The invention discloses a green light fluorescent material with low cost, stable material and novel chemical formula, which can be excited by a semiconductor light source, a light emitting diode, a laser diode, an organic light emitting device or a vacuum ultraviolet light. Produces green light with high color rendering. Wherein the fluorescent material is represented by the following chemical formula: 200902674 (Zni_xMnx)2(Gei-ySiy)〇4 wherein 0.002Sx$〇.〇l'OgySl, which can be excited by the primary radiation emitted by the light-emitting element The fluorescent material generates secondary radiation, and the light emitting element can be a semiconductor light source, a light emitting diode, a laser diode, an organic light emitting device or a vacuum ultraviolet light, and the wavelength of the primary radiation emitted by the light emitting element is 120 nm to 180 nm. between. The wavelength of the secondary radiation generated by the primary radiation of the fluorescent material is longer than the wavelength of the primary radiation, and the secondary radiation generated by the fluorescent material is excited to have a secondary radiation wavelength of 500 nm to 600 nm. The main wavelength is 5 1 Onm~540nm, and the CIE chromaticity coordinate 产生 of the generated secondary radiation is 0.1〇SjcS〇.25, 0.65$3; S〇.8〇, falling within the range of green light. In addition, the present invention further provides a method for manufacturing the foregoing fluorescent material, comprising the steps of: first weighing zinc oxide, cerium oxide, cerium oxide and manganese oxide according to a chemical dose and adding 2 to 8 wt% of ammonium chloride powder. After the flux is honed and uniformly mixed, it is placed in a crucible and placed in a high-temperature furnace, and solid-state melt-sintering reaction is carried out at 1 000 ° C to 1 300 ° C for 6 to 8 hours. [Embodiment] In order to further understand the constituents of the present invention and the mechanical characteristics thereof, those skilled in the art will be described in detail with reference to the specific embodiments, drawings and tables. Purpose, technical content, characteristics and the effects achieved. The present invention provides a fluorescent material and is represented by the following general formula: (Zni.xMnx)2(Gei.ySiy)〇4 wherein 〇.〇〇2SxS〇_〇l 'OSySi, which can be used by a light-emitting element The illuminating element is excited by a single radiation of 200902674 to generate a secondary ray, and the illuminating element may be a semiconductor light source, a light emitting diode, a laser diode, an organic light emitting device or a vacuum ultraviolet ray, and the illuminating element The wavelength of the primary radiation emitted is between 120 nm and 180 nm. The secondary radiation generated by the radiation of the camping material is longer than the wavelength of the primary radiation, and the secondary radiation generated by the primary radiation is generated by a secondary radiation having a wavelength of 50 〜 nm to 600 nm, and the main wavelength It is 510nm~540nm, and the CIE chromaticity coordinates (x, _y) of the generated secondary radiation are 〇·2500$χ$0_3000, 0.6500$;; each 〇.7〇〇〇, falling within the range of green light . The fluorescent material is based on the synthesis, weighing 1 · 6 1 8 grams of oxidation, 0.418 grams of cerium oxide, 0.361 grams of cerium oxide and 0.0086 grams of manganese oxide, and adding 0.0481 to 0.192 grams of ammonium chloride powder as a flux After that, it is honed and uniformly mixed, placed in a crucible and placed in a high-temperature furnace, and subjected to solid-state high-temperature sintering reaction at 1 000 ° c to 1300 ° C for 6 to 8 hours to be synthesized. The synthesized fluorescent material was then analyzed using an X-ray diffractometer (Bruker AXS D8 advance type). Further, the luminescent properties of the fluorescent material of the present invention were tested by using an emission wavelength of from 120 nm to 180 nm. In the present invention, the Spex Fluorolog-3 Camp Spectrometer (Jobin-Yvon Spex SA, USA) equipped with a 450 W xenon lamp is used to measure the fluorescence spectrum and the excitation spectrum' and U-3010 ultraviolet-visible spectrometer is used ( Japan's Hitachi Co., Ltd.) scans the fluorescent material of the present invention at a wavelength of 100 to 300 nm to obtain its total reflection spectrum; and then uses a color analyzer (DT-100 color Analyzer, manufactured by LAIKO Co., Ltd., Japan) with a fluorescence spectrometer and measurable The luminance and color of the fluorescent material are -10 to 02,02,674 degrees; and for the above-mentioned test of the fluorescent material of the present invention, the commercially available ZnSi〇4:Mn2+ (manufactured by Huacheng Optical Co., Ltd., catalog number P1) -G1S 'Kasei Optonix, LTD., Japan) was tested for comparison as a control. In Fig. 1, there is shown an X-ray diffraction pattern of Zn2(Ge,Si)〇4:Mn2+ which is a preferred embodiment of the present invention, which shows that the synthesized phosphor material has relatively good crystallinity and high Crystal phase of purity. Subsequently, the fluorescent material of the present invention is subjected to an emission spectrum and an excitation spectrum test, and the excitation light wavelength used is preferably 120 nm to 180 nm, and the solid line portion is excited by the wavelength of 147 nm to excite the spectrum generated by the fluorescent material of the present invention. The dotted line portion is a spectrum generated by exciting the fluorescent material of the present invention at a wavelength of 172 nm, and the dotted line portion is the luminescence spectrum of the fluorescent material of the present invention, see Fig. 2. Therefore, as can be seen from Fig. 2, when the fluorescent material of the present invention is excited by light having a wavelength of i 47 nm and a wavelength of 172 nm, respectively, it can be excited to emit light having a wavelength of 500 nm to 600 nm. Fig. 3 is a comparison of the excitation spectrum of the fluorescent material of the present invention and the product of the Japanese manufactured product, and its monitoring wavelength is 530 nm. However, in FIG. 4, the luminescent spectrum of the fluorescent material of the present invention (solid line portion) and commercially available ZnSi04:Mn2+ (dashed line portion) is excited by light having a wavelength of I72 nm, which can be found in the present invention. The emission spectrum intensity of the fluorescent material is stronger than the commercially available ZnSi04:Mn2 + emission spectrum intensity. In addition, in FIG. 5, the luminescent spectrum of the fluorescent material of the present invention (solid line portion) and commercially available ZnSi04:Mn2+ (dashed line portion) is excited by light having a wavelength of 147 nm, and the present invention can be found. The emission spectrum intensity of the egg light material is stronger than the commercially available ZnSi04:Mn2 + emission spectrum intensity. Subsequently, the CIE color map of the fluorescein of the present invention and the commercially available ZnSi04:Mn2 + is excited by ultraviolet light having a wavelength of 172 nm and 147 nm, respectively. From the sixth figure, the fluorescent material of the present invention is wavelength-dependent. When excited by light of 1 72 nm 1 4 7 nm, the color saturation obtained is superior to that of the commercially available one. Therefore, it can be seen from the foregoing embodiments that the novel fluorescent material of the present invention exhibits a intensity of light excited at a wavelength of from 1200 nm to 180 nm. The radiation intensity at a excitation of 1 47 nm is commercially available. %, and the radiation intensity when using the excitation of 172 nm is commercially available and the color saturation is better. However, the above is only the preferred embodiment of the present invention, and the scope of the present invention is defined by the scope of the invention, and the scope of the invention and the description of the invention are subject to change. The scope of the invention is covered. Any number, concentration, number, parameter, etc., preferred range, or preferred lower limit of preferred enthalpy appearing in the specification of the present invention, the upper limit or 値' from any pair of ranges Or the lower limit of the range or its preferred meaning should be considered as a specific range ' and whether or not the range is independently disclosed. Any range of endpoint numbers and all integers within the range are included in the scope of any number disclosed herein. The scope of the invention is not limited to the specific scope of the invention. [Simple description of the diagram] The light or the product in the light material can be exposed, and 146% of the product cannot be repaired according to the usual knowledge or the limit or the number of the invention in the invention disclosed by the better.値-12- 200902674 Fig. 1 shows an X-ray diffraction pattern of a preferred embodiment of the present invention. Figure 2 Spectrum. A comparison of the luminescence spectrum and the excitation light of the preferred embodiment of the present invention. Excitation light of a commercially available product according to a preferred embodiment of the present invention. Fig. 4 is a graph comparing the intensity of emitted light from a commercially available product of a preferred embodiment of the present invention. Figure 5 is a graph comparing the intensity of emission spectra of a preferred embodiment of the present invention with commercially available products. Figure 6 is a comparison of a preferred embodiment of the present invention with a commercially available CIE color coordinate. [Main component symbol description] None.

Claims (1)

200902674 十、申請專利範圍: 1 . 一種螢光材料,其由下列化學式所表示: (Ztii_xMnx)2(Gei-ySiy)〇4 其中 〇.〇〇2$χ$〇.〇1,Ogy^l。 2. 如申請專利範圍第丨項之螢光材料,其可藉由一發光元 件所發射之一次輻射而激發該螢光材料產生二次輻射。 3. 如申請專利範圍第2項之螢光材料,其中該發光元件可 爲半導體光源、發光二極體、雷射二極體、有機發光裝 置或真空紫外線。 4 _如申請專利範圍第丨項至第3項中任一項之螢光材料, 其中該發光元件所發射之一次輻射的波長係在12〇nm〜 180nm 或 250-400nm 之間。 5 ·如申請專利範圍第丨項至第3項中任—項之螢光材料, 其中該螢光材料被一次輻射所激發產生之二次輻射之 波長較該一次輻射之波長更長。 6. 如申請專利範圍第1項至第3項中任一項之螢光材料, 其中該營光材料被一次輻射所激發產生之二次輕射波 長爲 5 0 0 n m 〜6 0 〇 n m。 7. 如申請專利範圍第i項至第3項中任一項之螢光材料, 其中該蛋光材料被一次輻射所激發產生之二次_射之 CIE 色度座標(χ )値爲 〇.2500 $ 〇 3〇〇〇, 0.65 00 S S 0.7000。 8. 如申請專利範圍帛7項之螢光材料,其中“直的 0.2500 S xS 0.3 000。 M 9. 如申請專利範圍第7 Jg夕帶光Μ敗丨 β + ,* ήΑ. 闽弟/唄乙茧尤材枓,其中^値的範 0.65 00 S 0 0.7000。 爲 200902674 10.如申請專利範圍第6項之螢光材料,其中該營光材料被 一次輻射所激發產生之二次輻射主要波長係爲51〇nm〜 5 40nm ° 11_如申請專利範圍第6項之螢光材料,其中該螢光材料被 —次輻射所激發產生二次輻射係爲綠光。 12.如申請專利範圍第1項或第2項之螢光材料,其可供電 漿電視、綠色環保無汞背光源、無汞照明燈具或發光裝 置使用之螢光材料。 1 3 . —種製造如申請專利範圍第1項至第1 2項中任一項之 螢光材料的方法,係包括下列步驟: 依化學計量秤取氧化鋅、氧化鍺、二氧化矽及氧化錳, 並加入助熔劑後,將之硏磨並均勻混合後,置入坩堝中 放入高溫爐’於1000。(:〜13〇〇 °C予以固態熔融燒結合 成。 1 4 .如申請專利範圍第1 3項之方法,其中固態熔融燒結合 成時間需反應6〜8小時。 1 5 .如申請專利範圍第1 3項之方法’其中該助熔劑爲2〜 8wt%之氯化銨粉末。200902674 X. Patent application scope: 1. A fluorescent material, which is represented by the following chemical formula: (Ztii_xMnx) 2 (Gei-ySiy) 〇 4 where 〇.〇〇2$χ$〇.〇1, Ogy^l. 2. The phosphor material of claim 3, wherein the phosphor material is excited to generate secondary radiation by a primary radiation emitted by a light-emitting element. 3. The phosphor material of claim 2, wherein the light-emitting element is a semiconductor light source, a light-emitting diode, a laser diode, an organic light-emitting device, or a vacuum ultraviolet light. The fluorescent material according to any one of claims 3 to 3, wherein the primary radiation emitted by the light-emitting element has a wavelength of between 12 〇 nm and 180 nm or between 250 and 400 nm. 5. A fluorescent material as claimed in any one of the preceding claims, wherein the fluorescent material is excited by the primary radiation to produce a secondary radiation having a longer wavelength than the primary radiation. 6. The fluorescent material according to any one of claims 1 to 3, wherein the camping light material is excited by primary radiation to generate a secondary light-wavelength of 5 0 0 n m to 6 0 〇 n m. 7. The fluorescent material according to any one of the items 1-4 to 3, wherein the CIE chromaticity coordinate (χ) is 〇 generated by the primary ray of the egg light material. 2500 $ 〇3〇〇〇, 0.65 00 SS 0.7000. 8. For the fluorescent material of the patent scope 帛7, “straight 0.2500 S xS 0.3 000. M 9. If the patent application scope is 7 Jg, the light is defeated by β + , * ήΑ. 闽弟/呗茧 茧 茧 枓 其中 其中 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 The fluorescent material is in the range of 51 〇 nm 〜 5 40 nm ° 11 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Fluorescent material of 1st or 2nd, which can be used for power supply plasma TV, green mercury-free backlight, mercury-free lighting fixture or fluorescent material used in illuminating device. 1 3 . - Manufacturing as patent application scope 1 The method of the fluorescent material according to any one of the items 1 to 2, comprising the steps of: taking zinc oxide, cerium oxide, cerium oxide and manganese oxide by a stoichiometric scale, adding a flux, and honing it After mixing evenly, place it in a crucible and place it in a high temperature furnace at 1000. ~13〇〇°C is solid-state melt-sintered synthesis. 1 4. The method of claim 13 of the patent scope, wherein the solid-state melt sintering synthesis time needs to be reacted for 6 to 8 hours. 1 5 . The method 'wherein the flux is 2 to 8 wt% of ammonium chloride powder.
TW096124849A 2007-07-09 2007-07-09 Green-emitting phosphors excited by vacuum ultraviolet radiation and a method for manufacturing the same TWI350305B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096124849A TWI350305B (en) 2007-07-09 2007-07-09 Green-emitting phosphors excited by vacuum ultraviolet radiation and a method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096124849A TWI350305B (en) 2007-07-09 2007-07-09 Green-emitting phosphors excited by vacuum ultraviolet radiation and a method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200902674A true TW200902674A (en) 2009-01-16
TWI350305B TWI350305B (en) 2011-10-11

Family

ID=44721915

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096124849A TWI350305B (en) 2007-07-09 2007-07-09 Green-emitting phosphors excited by vacuum ultraviolet radiation and a method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI350305B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115717069A (en) * 2022-10-24 2023-02-28 兰州大学 Green germanate super-long afterglow luminescent material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115717069A (en) * 2022-10-24 2023-02-28 兰州大学 Green germanate super-long afterglow luminescent material and preparation method thereof
CN115717069B (en) * 2022-10-24 2023-12-22 兰州大学 Green germanate super-long afterglow luminescent material and preparation method thereof

Also Published As

Publication number Publication date
TWI350305B (en) 2011-10-11

Similar Documents

Publication Publication Date Title
EP2036968B1 (en) Phosphor, light source and LED
JP5361886B2 (en) Thermally stable oxynitride phosphor and light source having such a phosphor
US7026755B2 (en) Deep red phosphor for general illumination applications
TWI374178B (en) Novel aluminate-based green phosphors
TWI356507B (en) Yellow fluorescent body and white luminant device
CN113178514A (en) White light source
WO2007120216A2 (en) Charge compensated nitride phosphors for use in lighting applications
Piao et al. Acetate reduction synthesis of Sr2Si5N8: Eu2+ phosphor and its luminescence properties
JP4860578B2 (en) Plasma display device
CN106479489B (en) Light emitting device and image display device
TW200828386A (en) Blue luminance alkaline earth chlorophosphate fluorescence useful in cold cathode, cold cathode fluorescent lamp, and color liquid crystal dispaly
TWI655253B (en) Phosphor compositions and lighting apparatus thereof
CN109390453A (en) Light emitting device and image display device
TW200804567A (en) White color fluorescent substance and white color light emitting element, and device
KR20080100751A (en) A novel phosphor for white light-emitting diodes and fabrication of the same
TW200904949A (en) A novel phosphor and fabrication of the same
US8450922B2 (en) Luminophore and lighting system having such a luminophore
US7524476B2 (en) Vacuum ultraviolet excited green phosphor material and light-emitting device using the same
US8092714B2 (en) Phosphors and lighting apparatus using the same
US20100219376A1 (en) Red phosphor material and manufacturing method thereof
TW200902674A (en) Green-emitting phosphors excited by vacuum ultraviolet radiation and a method for manufacturing the same
JP2014189796A (en) Phosphor and light-emitting device
JP2007197661A (en) Red fluorescent material excited by vacuum ultraviolet ray and method for producing the same
JP4517783B2 (en) Rare earth boroaluminate phosphor and light emitting device using the same
WO2010010947A1 (en) Aluminate phosphor, method for producing the same, fluorescent lamp using the phosphor and liquid crystal display

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees