TW200902339A - Micro-optic security and image presentation system - Google Patents

Micro-optic security and image presentation system Download PDF

Info

Publication number
TW200902339A
TW200902339A TW96123997A TW96123997A TW200902339A TW 200902339 A TW200902339 A TW 200902339A TW 96123997 A TW96123997 A TW 96123997A TW 96123997 A TW96123997 A TW 96123997A TW 200902339 A TW200902339 A TW 200902339A
Authority
TW
Taiwan
Prior art keywords
image
micro
lens
plane
array
Prior art date
Application number
TW96123997A
Other languages
Chinese (zh)
Other versions
TWI527714B (en
Inventor
Richard A Steenblik
Mark J Hurt
Gregory R Jordan
Original Assignee
Nanoventions Holdings Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanoventions Holdings Llc filed Critical Nanoventions Holdings Llc
Publication of TW200902339A publication Critical patent/TW200902339A/en
Application granted granted Critical
Publication of TWI527714B publication Critical patent/TWI527714B/en

Links

Landscapes

  • Credit Cards Or The Like (AREA)

Abstract

A synthetic micro-optic system and security device is disclosed including an in-plane image formed of an array or pattern of image icons and an array of focusing elements, the system producing at least two different synthetic images whereby one synthetic image operates to modulate or control the extent of the appearance of another synthetic image. In an exemplary form, the array of image icons forms an in-plane synthetic image, while the interaction of the array of focusing elements with the array of image icons forms a separate synthetically magnified image that serves to control the field of view of the in-plane image and, thus, serves to modulate or control the extent of appearance of the in-plane image. The appearance of the in-plane image, thus, visually appears and disappears, or turn on and off, depending upon the viewing angle of the system.

Description

200902339 九、發明說明 【發明所屬之技術領域】 本發明關於一種微光學影像呈現系統,其在示範實施 例中係由聚焦元件之陣列及聚合物膜中影像圖示元件之陣 列形成。本發明亦關於一種合成放大微光學系統,其在示 範實施例中係形成爲聚合物膜。所揭露各式實施例提供之 不尋常效果可用做安全裝置,進行貨幣、文件及商品的公 然及隱蔽鑑別,以及商品、包裝、印刷材料及消費者商品 的視覺增強。 【先前技術】 先前已嘗試各式影像呈現系統。典型的影像呈現系統 包含傳統的列印技術。一些影像呈現系統包含全像攝影影 像顯示及/或凸版影像特徵。該些系統均具有有關所顯示 影像之性質或品質的缺點。較具體地,渠等均具有不利條 件’即其可被快速地複製,因而無法用做鑑別或安全裝置 〇 已使用各式光學材料提供用於貨幣及文件之鑑別的影 像系統’而從仿冒的商品識別及區別可靠的產品,及提供 製造的物件及包裝的視覺增強。範例包括全像攝影顯示, 及包含雙凸透鏡狀結構及球面微透鏡之陣列的其他影像系 統。全像攝影顯示已普遍用於信用卡、駕照及衣服標籤。 用於文件安全之雙凸透鏡狀結構的範例於Kaule等人 的美國專利4,8 92,3 3 6中揭露,其指向嵌入文件以提供防 200902339 僞措施的安全執行緒。該安全執行緒爲透明的,其一端具 有印刷型樣’另一端爲與該印刷型樣一致的雙凸透鏡狀透 鏡結構。該雙凸透鏡狀透鏡結構被描述爲包含複數平行圓 柱透鏡’或替代地爲球面或蜂巢狀透鏡。 德林克沃特等人的美國專利5,712,731揭露一種安全 裝置’其包括與實質上球面微透鏡之陣列結合的微影像之 陣列。該透鏡亦可爲散光透鏡。該透鏡各爲典型的5 〇_ 250μηι並具典型的200μιη之焦距。 該些方法均遭遇類似的缺點。其產生特別不適用於文 件鑑別的極厚結構。圓柱形或球面透鏡的使用提供窄的檢 視範疇’其產生模糊影像,並需要具相關影像之透鏡的焦 點的精確及困難的校正。此外’其並未驗證爲特別有效的 安全或防僞措施。 在該些及其他缺點的檢視中,產業中需要可促進貨幣 、文件、製造的物件及商品之公然鑑別的安全及視覺上獨 特的光學材料,及提供製造的物件、商品及包裝之視覺增 強的光學材料。 【發明內容】 本發明關於一種影像呈現系統,例如微光學影像呈現 系統。例如’可提供一種合成光學影像系統,其包括聚焦 兀件的陣列’及一種影像系統’其如下列所描述的,包括 或由影像圖示元件的陣列或型樣形成,其中該圖示元件經 設g十以共同地形成一影像或某些所需的資訊,且其中該聚 -6- 200902339 焦元件的陣列及該影像系統相符,例如經由光學結合,而 形成至少部分該影像圖示的至少一合成光學影像,其中合 成光學影像可選擇地放大。在所提供的另一種影像呈現系 統中’其如下列所描述的,包括或由微結構之圖示元件的 陣列或型樣形成’其中該微結構之圖示元件經設計以共同 地一影像或某些所選擇的資訊,且其中該影像系統經設計 而單獨存在,並藉使用所提供之獨立於該影像系統的放大 裝置而檢視影像或讀取資訊,例如放大鏡或顯微鏡。 本發明亦關於一膜材料’其使用規律之非圓柱形透鏡 的二維陣列以放大微影像,文中稱爲影像圖示或或簡單的 圖不’並經由個別透鏡/圖示影像系統之多重性的聯合性 能而形成一合成放大影像。該合成放大影像及其周圍的背 景可爲正或負、無色的或彩色的,且該影像或其周圍的背 景或二者可爲透明的、半透明的、著色的、螢光的、憐光 的、顯示光學可變的顏色、金屬化的或實質上向後反射的 。於透明的或者色的背景上顯7Π:彩色的影像之材料特別適 用於與其下的印刷資訊相結合。當一項材料應用於印刷杳 訊時,該印刷資訊及該影像二者均可同時於空間中或彼此 動態移動的關係下被看見。該類材料亦可置於印刷之上, 即具有應用於材料之最上(透鏡)表面的印刷。另—方面, 於半透明的或實質上不同顏色之不透明背景上顯示彩色( 或任何顏色,包括白色及黑色)影像的材料,特別適用於 卓獨使用或與其上印刷資訊相結合,但不與其下印刷杳訊 相結合。 200902339 所獲得之合成影像的放大量可藉由大量因子的選擇而 予控制,包括透鏡陣列之對稱軸與圖示陣列之對稱軸之間 |偏斜1的程度。規則的週期陣列擁有對稱軸,其定義型樣 可環繞反射且不改變型樣之基本幾何的線路’及範圍爲無 限之理想陣列的線路。例如,方形陣列可環繞任何方形之 對角線反射反射而不改變該陣列的相對方位··若方形的各 邊係以平面的X及y軸校正,那麼方形的各邊於反射後將 仍以該些軸校正,假設各邊是相同而無法區別的。吾人稱 該陣列具有旋轉的對稱性,或爲旋轉地對稱。 並非映照方形陣列,該陣列可經由等於同類對稱軸之 間的角度而旋轉。在方形陣列的狀況下’該陣列可經由9 0 度旋轉,即對角線之間的角度’而抵達無法與原始陣列區 別的陣列方位。同樣地,規則的六角形陣列可映照或繞大 量對稱軸旋轉,包括六角形的"對角線"(連接相對頂點的 線路)或”中點除數"(連接六角形相對邊之各面中點的線路) 。任一類對稱軸之間的角度爲六十度(60° ),產生了無法 與原始方位區別的陣列方位。等邊三角形的陣列具有1 2 0 度的對稱軸之間角度。因而,在示範實施例中,影像圖示 聚焦元件的平面陣列可具有至少3組旋轉對稱。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micro-optical image presentation system which, in the exemplary embodiment, is formed by an array of focusing elements and an array of image-representing elements in a polymer film. The invention also relates to a synthetic magnification micro-optic system which, in the exemplary embodiment, is formed as a polymeric film. The unusual effects provided by the various embodiments are disclosed as security devices for the public and covert identification of currency, documents and merchandise, as well as visual enhancement of merchandise, packaging, printed materials and consumer merchandise. [Prior Art] Various image presentation systems have been tried previously. A typical image rendering system includes traditional printing techniques. Some image rendering systems include holographic photographic image displays and/or relief image features. These systems all have the disadvantage of being related to the nature or quality of the displayed image. More specifically, the channels and the like have disadvantages 'that they can be quickly copied, and thus cannot be used as an authentication or security device, and various optical materials have been used to provide an image system for the identification of currency and documents' from counterfeiting. Product identification and the identification of reliable products, as well as visual enhancement of the manufactured items and packaging. Examples include holographic imaging displays, as well as other imaging systems that include lenticular structures and arrays of spherical microlenses. Full-image photography has been commonly used for credit card, driver's license and clothing labels. An example of a lenticular structure for file security is disclosed in U.S. Patent No. 4,8,92,336, the entire disclosure of which is incorporated herein by reference. The security thread is transparent and has a printed pattern at one end. The other end is a lenticular lens structure conforming to the printed pattern. The lenticular lens structure is described as comprising a plurality of parallel cylindrical lenses ' or alternatively a spherical or honeycomb lens. U.S. Patent No. 5,712,731, the entire disclosure of which is incorporated herein by reference to the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all The lens can also be an astigmatic lens. The lenses are each typically 5 〇 _ 250 μηι and have a typical focal length of 200 μηη. These methods all suffer from similar disadvantages. It produces an extremely thick structure that is particularly unsuitable for document authentication. The use of cylindrical or spherical lenses provides a narrow range of inspections that produce blurred images and require precise and difficult correction of the focal point of the lens with the associated image. In addition, it has not been verified as a particularly effective safety or anti-counterfeiting measure. In these and other shortcomings, the industry needs safe and visually unique optical materials that promote the open identification of currency, documents, manufactured objects and goods, and provide visual enhancement of manufactured objects, goods and packaging. Optical material. SUMMARY OF THE INVENTION The present invention is directed to an image rendering system, such as a micro-optical image rendering system. For example, 'a synthetic optical imaging system can be provided that includes an array of focusing elements' and an imaging system that, as described below, includes or is formed from an array or pattern of image-capturing elements, wherein the illustrated elements are Setting g to collectively form an image or some desired information, and wherein the array of poly-6-200902339 focal elements is consistent with the image system, for example, via optical bonding, to form at least a portion of the image representation A synthetic optical image in which the synthetic optical image is selectively magnified. In another image presentation system provided, 'which, as described below, includes or is formed from an array or pattern of graphic elements of the microstructure, wherein the graphical elements of the microstructure are designed to collectively an image or Certain selected information, and wherein the imaging system is designed to exist separately, and to view images or read information, such as a magnifying glass or microscope, by using an amplification device provided independently of the imaging system. The present invention also relates to a film material 'which uses a two-dimensional array of regular non-cylindrical lenses to magnify the micro image, which is referred to herein as an image representation or a simple image and does not pass through the individuality of the individual lens/illustrated image system. The combined performance forms a synthetically magnified image. The synthetically magnified image and the surrounding background may be positive or negative, colorless or colored, and the image or the surrounding background or both may be transparent, translucent, colored, fluorescent, and pitiful. Displaying an optically variable color, metallized or substantially retroreflective. Displayed on a transparent or colored background: the material of the color image is particularly suitable for use in conjunction with the printed information below it. When a material is applied to a print message, both the print information and the image can be viewed simultaneously in space or in a dynamically moving relationship with each other. Such materials can also be placed on top of the printing, i.e., have a print applied to the uppermost (lens) surface of the material. On the other hand, materials that display color (or any color, including white and black) images on translucent or substantially different opaque backgrounds are particularly suitable for use alone or in combination with printed information, but not with The next print is combined with the news. The amount of magnification of the composite image obtained in 200902339 can be controlled by the selection of a number of factors, including the degree of skew 1 between the axis of symmetry of the lens array and the axis of symmetry of the illustrated array. The regular periodic array has an axis of symmetry that defines the line that can surround the reflection and does not change the basic geometry of the pattern and the line of the ideal array that is infinite. For example, a square array can reflect reflections around any square diagonal without changing the relative orientation of the array. If the sides of the square are corrected by the X and y axes of the plane, then the sides of the square will still These axis corrections assume that the sides are identical and indistinguishable. I call the array have rotational symmetry or rotational symmetry. Rather than mapping a square array, the array can be rotated through an angle equal to the axis of symmetry of the same type. In the case of a square array, the array can be rotated through 90 degrees, i.e., the angle between the diagonals, to an array orientation that is indistinguishable from the original array. Similarly, a regular hexagonal array can be mirrored or rotated around a large number of axes of symmetry, including the hexagonal "diagonal" (the line connecting the opposite vertices) or the "midpoint divisor" (connecting the opposite sides of the hexagon) The line between the midpoints of each face. The angle between any type of symmetry axis is sixty degrees (60°), resulting in an array orientation that cannot be distinguished from the original orientation. The array of equilateral triangles has an axis of symmetry of 120 degrees. Thus, in an exemplary embodiment, the image illustrates a planar array of focusing elements that can have at least 3 sets of rotational symmetry.

若透鏡陣列及圖示陣列最初係以定義其各個x-y平面 之平面維數加以配置,對稱軸之一被選爲代表第一陣列的 X軸,對稱軸的相應類型(例如,對稱的對角線軸線)被選 爲代表第二陣列的X軸,該二陣列實質上沿z軸方向相隔 均勻的距離,當沿z軸方向檢視各陣列時,若各陣列的X -8- 200902339 軸顯現爲彼此平行,那麼便稱各陣列具有零偏斜。在六角 形陣列的狀況下,一陣列經由6 0度或其倍數之角度的旋轉 ,使該陣列再次校正,所以沒有偏斜,正如在方形陣列的 狀況下,以90度或其倍數之角度的旋轉而沒有偏斜。任何 X軸之間的角度不重合,其與"零偏斜旋轉”不同,被稱爲 偏斜。小偏斜,例如0.0 6度,可製造大的放大,超過1 0 〇 〇 倍,而夫偏斜,例如2 0度,產生小的放大,可能小至1倍 。其他因子,例如二陣列的相對縮放及透鏡的F#,可影 響合成影像的放大及其旋轉,正視差移動及表面視覺深度 〇 有許多明顯的視覺效果可由本材料(隨後通常稱爲材 料的”一致”,或將代表各效果的一致材料稱爲下列名稱, ”—致移動”、"一致深"、"一致超深”、"一致浮動"、"一致 超浮動"、"一致飄浮”、"一致形態"及"一致3 -D")提供,且 其各式實施例產生每一效果,通常描述如下: 一致移動呈現顯示正視差移動(OPM)的影像-當材料傾 斜時,影像便以顯現爲垂直於正常視差的預期方向之傾斜 方向移動。一致深及超深呈現顯現爲置於視覺上較材料之 厚度深的空間平面上的影像。一致浮動及超浮動呈現顯m 爲置於材料之表面上方的空間平面上的影像;及當材料,經 由特定角度(例如90度)旋轉,一致飄浮呈現從一致深(或 超深)擺動至一致浮動(或超浮動)的影像,接著當材料進 〜步以相同的量旋轉時,便再次返回一致深(或超深)。钱 材料從不同檢視點旋轉或檢視時,一致形態呈現改變形$ 200902339 、形狀或大小的合成影像。一致3-D呈現顯示大縮放三維 結構的影像,例如面的影像。 多路一致效果可結合於一膜中,例如結合形式、顏色 、移動方向及放大不同之多路一致移動影像平面的膜。其 他膜可結合一致深影像平面及一致浮動影像平面’同時其 他膜可經設計而結合相同顏色或不同顏色之一致深、一致 移動及一致浮動的各層,該些影像具有相同或不同的圖形 元件。多路影像平面之顏色、圖形的設計、光學效果、放 大及其他視覺元件大部分獨立’幾無例外’該些視覺元件 的平面可以任意方式結合。 對於許多貨幣、文件及產品安全應用而言,膜的總厚 度需小於5 0微米(文中亦稱爲” μ "或” μ m "),例如約小於4 5 微米,且如進一步範例,則處於約1 〇微米至約4 〇微米的範 圍內。此可予以完成,例如經由使用具小於5〇微米之有效 基礎直徑的聚焦元件,如進一步範例爲小於3 〇微米’且又 如進一步範例,爲約微米至約30微米。關於另一範例’ 可使用具小於約4 0微米之焦距的聚焦元件’且如進一步範 例,可使用具約1 〇至小於約3 0微米之焦距的聚焦元件。在 特定範例中,可使用具35微米之基礎直徑及30微米之焦距 的聚焦元件。另一方面,混合折射/繞射實施例可製成8微 米薄的膜。 由於文中之膜的複雜多層結構及其無法經由一般製^ 系統再製的高外觀比元件,所以其爲高度防僞。 因而,本系統較佳地提供一種微光學系統,其中當以 -10- 200902339 裸眼檢視反射或發射光投射下列一或多個影像時,爲具有 厚度之聚合物膜的形式: i·顯示正視差移動(一致移動); ii.顯現爲置於較聚合物膜之厚度深的空間平面上(一 致深及一致超深); iii·顯現爲置於聚合物膜之表面上方的空間平面上(一 致浮動及一致超浮動); iv.當膜爲方位角旋轉時,較聚合物膜之厚度深的空 間平面與該膜之表面上方的空間平面之間的擺動(一致飄 浮); V.從一種形式、形狀、大小、顏色(或該些屬性的若 干結合)轉換爲不同形式、形狀、大小、或顏色(或該些屬 性的若干結合)(一致形態);及/或If the lens array and the illustrated array are initially configured with a plane dimension defining their respective xy planes, one of the symmetry axes is selected to represent the X-axis of the first array, the corresponding type of symmetry axis (eg, a symmetric diagonal) The axis is selected to represent the X-axis of the second array, the two arrays being substantially separated by a uniform distance along the z-axis direction, and when the arrays are viewed along the z-axis, if the X -8-200902339 axes of the arrays appear to each other Parallel, then each array is said to have a zero skew. In the case of a hexagonal array, an array is rotated again at an angle of 60 degrees or a multiple thereof, so that the array is corrected again, so there is no skew, as in the case of a square array, at an angle of 90 degrees or multiples thereof. Rotate without skewing. The angle between any X axes does not coincide, which is different from "zero skew rotation." It is called skew. Small skew, such as 0.06 degrees, can make a large magnification, more than 10 times, and The skew, for example 20 degrees, produces a small amplification, which may be as small as 1. The other factors, such as the relative scaling of the two arrays and the F# of the lens, can affect the magnification and rotation of the composite image, the positive parallax movement and the surface vision. Depth 〇 There are many obvious visual effects that can be called by the material (which is often referred to as the "consistent" of the material, or the consistent material that represents each effect), "--moving", "consistently deep", " Consistently ultra-deep, "consistent floating", "consistent super-floating", "consistent floating", "consistent form" and "consistent 3-D"), and various embodiments thereof Each effect is usually described as follows: Consistent movement presentation shows an image of positive parallax movement (OPM) - when the material is tilted, the image moves in an oblique direction that appears to be perpendicular to the expected direction of normal parallax. Consistent deep and ultra deep Appears as an image placed on a spatial plane that is visually deeper than the thickness of the material. Uniformly floating and super-floating appears to be an image placed on a spatial plane above the surface of the material; and when the material passes through a particular angle (eg 90 Degree) Rotating, consistently floating from a consistent deep (or ultra-deep) swing to a consistent floating (or super-floating) image, then when the material is rotated in the same amount, it returns to the same depth (or super deep) When the money material is rotated or viewed from different viewpoints, the consistent form presents a composite image with a shape of $200902339, shape or size. Consistent 3-D rendering displays images of large scaled three-dimensional structures, such as images of faces. Incorporating into a film, such as a combination of form, color, direction of movement, and magnification of different multiplexed moving image plane films. Other films can be combined with a uniform deep image plane and a uniform floating image plane while other films can be designed to combine the same Layers of consistent or deep, consistent movement, and uniform floating of colors or different colors, the images having the same or different graphics Multi-channel image plane color, graphic design, optical effects, magnification and other visual components are mostly independent 'with few exceptions'. The planes of these visual components can be combined in any way. For many currency, document and product security applications. The total thickness of the film is less than 50 microns (also referred to herein as "μ " or "μ m "), such as less than about 45 microns, and, as further examples, from about 1 〇 microns to about 4 〇. This can be done, for example, via the use of focusing elements having an effective base diameter of less than 5 〇 microns, as further exemplified by less than 3 〇 microns and, as further examples, from about microns to about 30 microns. With respect to another example, a focusing element having a focal length of less than about 40 microns can be used and, as a further example, a focusing element of about 1 〇 to a focal length of less than about 30 microns can be used. In a particular example, a focusing element having a base diameter of 35 microns and a focal length of 30 microns can be used. On the other hand, the hybrid refraction/diffraction embodiment can be made into a film of 8 micrometers thin. Due to the complex multilayer structure of the film in the text and its high aspect ratio elements which cannot be remanufactured by the general system, it is highly anti-counterfeiting. Thus, the present system preferably provides a micro-optic system in which when one or more of the following images are projected with -10-200902339 naked-eye viewing reflections or emitted light, it is in the form of a polymer film having a thickness: i. Displaying a positive parallax Move (consistent movement); ii. appear to be placed on a spatial plane deeper than the thickness of the polymer film (consistent deep and consistently super deep); iii. appear to be placed on the spatial plane above the surface of the polymer film (consistent Floating and uniform super-floating); iv. When the film is rotated azimuthally, the oscillation between the spatial plane deeper than the thickness of the polymer film and the spatial plane above the surface of the film (consistent floating); V. From a form , shape, size, color (or combinations of such attributes) are converted into different forms, shapes, sizes, or colors (or combinations of the attributes) (consistent form); and/or

Vi.顯現爲具有現實的三維性(一致3-D)。 所揭露的合成放大微光學系統例如可做爲安全或鑑別 裝置,包含: (a) 影像圖示的平面陣列,該平面陣列具有其平面內 對稱軸,且該影像圖示具有其平面陣列內重複期間;及 (b) 影像圖示聚焦元件的平面陣列,該平面陣列具有 其平面內對稱軸,且該影像圖示聚焦元件具有其平面陣列 內重複期間, 其中,該影像圖示聚焦元件的平面陣列係以關於該影 像圖示之平面陣列的方式配置,並以與影像圖示聚焦元件 的足夠距離而形成至少一部分該影像圖示的至少一合成放 -11 - 200902339 大影像,及 其中,安全裝置具有小於50微米的厚度,或影像圖示 聚焦元件具有小於50微米的有效直徑,或二者皆然。 在另一實施例中,製造合成放大微光學系統的方法及 製造文件安全裝置的方法,各包含以下步驟: (a) 提供具有其平面內對稱軸之影像圖示的平面陣列 ,該影像圖示具有該陣列內的重複期間; (b) 提供具有其平面內對稱軸之影像圖示聚焦元件的 平面陣列,該影像圖示聚焦元件具有該陣列內的重複期間 ,其中該系統包含該影像圖示的平面陣列,且該影像圖示 聚焦元件的平面陣列具有小於50微米的厚度,或影像圖示 聚焦元件具有小於50微米的有效直徑,或二者皆然;及 (c) 以關於該影像圖示之平面陣列的方式配置該影像 圖示聚焦元件的平面陣列,並以與該影像圖示聚焦元件的 足夠距離而形成至少一部分該影像圖示的至少一合成放大 影像。 在又另一實施例中,揭露合成放大微光學系統或安全 或鑑別裝置中控制光學效果的方法,該光學效果包括移動 效果 '放大、視覺深度效果或該效果的合成,該方法包含 以下步驟: (a) 提供具有其平面內對稱軸之影像圖示的平面陣列 ’該影像圖示具有該陣列內的重複期間; (b) 提供具有其平面內對稱軸之影像圖示聚焦元件的 平面陣列’該影像圖示聚焦元件具有該陣列內的重複期間 -12- 200902339 ,其中該系統包含該影像圖示的平面陣列,且該影像圖示 聚焦元件的平面陣列具有小於50微米的厚度,或影像圖示 聚焦元件具有小於50微米的有效直徑,或二者皆然;及 (c) 實質上平行該影像圖示之平面陣列而配置該影像 圖示聚焦元件的平面陣列,並以與該影像圖示聚焦元件的 足夠距離而形成至少一部分該影像圖示的至少一合成放大 影像; (d) 其中該影像圖示之重複期間與該影像圖示.聚焦元 件之重複期間的比例,係選自下列群組,包含小於1、實 質上等於1及大於1,並選擇該影像圖示之平面陣列的對稱 軸及相應影像圖示聚焦元件之平面陣列的對稱軸係經校正 或方向偏離。 在進一步示範實施例中,揭露合成微光學系統中使用 的影像圖示,該合成放大微光學系統包括: U)影像圖示的平面陣列;及 (b)影像圖示聚焦元件的平面陣列,其中以關於該影 像圖示之平面陣列的方式配置該影像圖示聚焦元件的平面 陣列,並以與該影像圖示聚焦元件的足夠距離而形成至少 一部分該影像圖示的至少一合成影像; 該影像圖示包括形成爲基底中凹處的影像圖示,形成 空隙的該凹處選擇地以提供與該基底對比之材料塡充。 亦揭露合成放大微光學系統或文件安全裝置及其製造 方法,包含: U)影像圖示的平面陣列;及 -13- 200902339 (b)影像圖示聚焦元件的平面陣列,該聚焦元件包括 多邊形底座的多帶狀聚焦元件。 此外’揭露安全或鑑別執行緒,包含: (a) 具有包含其中所形成塡充的凹處之微影像或影像 圖示的週期陣列的材料; (b) 配置於與該聚焦元件的足夠距離而形成至少一部 分該微影像或影像圖示的至少一合成放大影像之非圓柱形 、平坦、非球狀或多邊形底座多帶狀微聚焦元件的週期陣 歹IJ ’該微聚焦元件包括具有範圍從約2〇至約3〇微米之基礎 直徑的聚焦元件;及 (c) 覆蓋該微影像或影像圖示之陣列的著色的或金屬 的密封或掩蔽層。 揭露特別用於貨幣的文件安全裝置或安全執行緒,包 含: (a) 具有其平面內對稱軸之影像圖示的平面陣列,該 影像圖示具有該陣列內的重複期間;及 (b) 具有其平面內對稱軸之影像圖示聚焦元件的平面 陣列’該影像圖示聚焦元件具有該陣列內的重複期間,實 質上平行於該影像圖示之平面陣列而配置之該影像圖示聚 焦元件的平面陣列,以與該影像圖示聚焦元件的足夠距離 而形成至少一部分該影像圖示的至少一合成放大影像,其 中該系統包含該影像圖示的平面陣列,且該影像圖示聚焦 元件的平面陣列具有小於5 〇微米的厚度,或影像圖示聚焦 元件具有小於50微米的有效直徑,或二者皆然。 -14 - 200902339 及揭露合成放大光學及安全系統,包含一影像及一複 數影像聚焦元件,該聚焦元件及該影像係配置於彼此相關 的平面中,其中當該系統於實質上平行該系統之平面的軸 線附近傾斜時,形成至少一合成放大影像,其顯現爲沿平 行於該傾斜軸線的方向移動。 本發明進一步提供一種合成放大微光學系統及其製造 方法,包含: u)—或多個光學隔片; (b) 由影像圖示之平面陣列組成的微影像,該影像圖 示具有位於至少其軸線之一附近的一對稱軸,並定位於該 光學隔片上或附近;及 (c) 具有位於至少其平面軸線之一附近的一對稱軸的 影像圖示聚焦元件之平面陣列,該對稱軸與該微影像陣列 之平面軸線相同,每一聚焦元件爲多邊形底座多帶狀聚焦 元件,或提供超出相關影像圖示寬度之放大視場的透鏡, 使得該相關影像圖示的周邊不落於視場之外,或非球狀聚 焦元件具有小於50微米的有效直徑。 該系統可包括一或多項上述效果。提供一種方法,藉 此可選擇地將效果包括於系統內。 本發明進一步提供適於至少部分公司的安全裝置,及 用於結合安全文件、標籤、易撕帶、竄改指示裝置、密封 裝置或其他鑑別或安全裝置,其如上述地包含至少一微光 學系統。較具體地,本發明提供文件安全裝置及其製造方 法,包含: -15- 200902339 (a) —或多個光學隔片; (b) 由影像圖示之平面陣列組成的微影像,該影像圖 示具有位於至少其軸線之一附近的一對稱軸,並定位於該 光學隔片上或附近;及 (c) 具有位於至少其平面軸線之一附近的一對稱軸的 影像圖示聚焦元件之平面陣列,該對稱軸與該微影像平面 陣列之平面軸線相同,每一聚焦元件爲多邊形底座多帶狀 聚焦元件,或提供超出相關影像圖示寬度之放大視場的透 鏡,使得該相關影像圖示的周邊不落於視場之外,或非球 狀聚焦元件具有小於5 0微米的有效直徑。 在任一或多個上述實施例中,該影像圖示聚焦元件可 具有等於4或較少的F數,例如等於2或較少,或甚至等於 1或較少。此外,該影像圖示聚焦元件可包括非圓柱形透 鏡或非圓柱形聚焦反射鏡,或二者皆然。 此外,本發明提供一視覺增強裝置,其如上述地包含 至少一微光學系統,並具有上述效果,用於衣服的視覺增 強、護膚產品、文件、印刷素材、製造的商品、商品拓銷 系統、包裝、採購呈現點、出版品、廣告裝置、運動商品 、財務文件及交易卡、及所有其他商品。 在又進一步實施例中’揭露一種合成微光學系統及安 全裝置,包括由影像圖示之陣列或型樣及聚焦元件之陣列 所形成的平面內影像’該系統製造至少二不同的合成影像 ,藉此一合成影像作業以調變或控制另一合成影像之出現 的長度。在一示範的形式中’該影像圖示之陣列的特徵在 -16- 200902339 於點綴亮彩色的圖示之區域或不具圖示之區域的暗或彩色 的圖示之區域。該影像圖示之陣列形成一平面內合成影像 ’同時該聚焦元件之陣列與該影像圖示之陣列的互動形成 個別的合成放大影像’用以控制該平面內影像的視場,且 因而用以調變或控制該平面內影像之出現的長度。因而, 該平面內影像之出現依據該系統的檢視角度而視覺上出現 或消失,或開啓或關閉。 在更進一步實施例中,揭露一種微光學系統,包括: (a) —平面內影像,具有邊界及該邊界內影像區域, 視覺上置於基底的實質平面中,在該基底上配置該平面內 影像; (b) 該平面內影像之邊界內所包含之圖示的一或多個 控制型樣;及 (c) 圖示聚焦元件的陣列,其定位以形成至少一部分 該圖示之一或多個控制型樣的至少一合成放大影像,該合 成放大影像提供有限的視場以檢視調變該平面內影像之出 現的該平面內影像。 該合成放大影像可藉本身之移動進、出與該平面內影 像之影像區域的該合成放大影像的視覺相交’而提供檢視 該平面內影像的視場。因而,該平面內影像於該合成放大 影像視覺上與該平面內影像之影像區域相交時爲可見的’ 並於該合成放大影像視覺上未與該平面內影像之影像區域 的任何部分相交時爲不可見的。該平面內影像之所見的量 可由該合成放大影像視覺上與該平面內影像之影像區域相 -17- 200902339 交的量來決定。 如上述所定義的,亦提供具有至少一安全裝置的安全 文件或標籤’其係至少部分嵌入其中或裝置於其上。 在下列附圖及申請專利範圍的檢查下,對於熟悉本技 藝之人士而言,其他系統、裝置、方法、特徵及優點將變 得顯而易見。期望所有其餘系統、方法、特徵及優點均包 括於本描述中,處於本發明的範圍內,並受申請專利範圍 的保護。 除非另外定義,文中所使用的所有技術及科學名詞與 對於熟悉本發明所屬技藝之人士所共同理解者具有相同意 義。所有文中所提及之出版品、專利申請案、專利及其他 參考資料均以參考的方式倂入。在衝突的狀況下,本說明 書包括定義將予控制。此外,材料、方法及範例僅係描繪 而不希望予以限制。 【實施方式】 現在詳細參考附圖中所描繪之實施例的描述。雖然結 合附圖而描述許多實施例,但不希望將本發明侷限於文中 所揭露的實施例。相反地’希望涵蓋所有的替代、修改及 相等內容。 關注於簡潔以及避免重複說明,對於下列名詞的所有 後續參考,將理解爲文中之定義、說明及詳述。爲求便利 ’所定義的名詞隨後於特定實施例之描述的首例中將明顯 印刷。 -18- 200902339 圖示塡 。圖示塡充 膠、懸浮體 提供一些可 。該些不同 觸檢測或鑑 示塡充材料 圖示塡 括但不限於 射屬性,珍 ,反射性、 Rayleigh 屬 效果,熱化 、電致變色 爲混合物、 該些屬性。 可產生 的材料屬性 離、電氣反 、冷光、磷 度、折射率 虹色、顏色 圓的極化屬 性作用、光 充材料-用於塡充微結構圖示元件的任一材料 材料可爲氣體、液體、凝膠、粉末、固體、乳 、合成物材料及其組合。圖示塡充材料典型地 測量或可檢測之不同於周圍圖示層材料的屬性 屬性可提供光學效果’或其可提供材料的非接 別之屬性’或二者皆然。材料的組合可用於圖 ’而提供所需圖示元件屬性的多重性。 充材料的材料屬性可產生所需的光學效果,包 :透明度、不透明度、折射率、著色分佈、散 珠粉、蛋白光、彩虹色、顏色反射及顏色吸收 線性、圓形的及權圓的極化屬性,Raman或 性’光學旋轉、螢光性、冷光、磷光、二光子 學、壓力變色、光變色、摩擦發光、電致發光 及磁致變色。圖示塡充材料可爲單純材料,或 組合、懸浮體或多重性材料的其他組合而獲得 所需的非接觸檢測或鑑別屬性之圖示塡充材料 包括但不限於:磁性反應、磁化作用、電荷分 應、導電性、熱傳導性、電介質力量、螢光性 光、二光子效果、核磁共振、透明度、不透明 、著色分佈、散射屬性,珍珠粉、蛋白光、彩 反射及顏色吸收,反射性、線性、圓形的及橢 性,Raman或Rayleigh屬性,放射性、放射 學旋轉,熱化學、壓力變色、光變色、摩擦發 -19- 200902339 光、電致發光、電致變色及磁致變色。 圖示塡充材料可較佳地包括載子材料,例如單體、寡 體或聚合物材料及其組合,其爲溶劑固化、熱固化、氧化 固化、反應固化、或輻射固化。不範的輻射固化光聚合物 爲 Lord Industries 的 U107光聚合物。 圖示塡充載子材料的光學、非接觸檢測及非接觸鑑別 屬性可經由下列材料(例如但不限於該些材料)的混合或組 合而予修改:染料、著色劑、顏料、粉末材料、墨水、粉 末礦物、磁性材料及顆粒、磁化材料及顆粒、磁性反應材 料及顆粒、磷光劑、液晶、液晶聚合物、碳黑或其他光吸 收材料、二氧化鈦或其他光散射材料、光子晶體、非線性 晶體、奈米顆粒、奈米管、布基球、布基管、有機材料、 珍珠光彩材料、粉末珍珠、多層干擾材料、乳白色材料、 彩虹色材料、低折射率材料或粉末、高折射率材料或粉末 、鑽石粉末、結構顏料、極化材料、極化旋轉材料、螢光 的材料、磷光的材料、熱變色材料、壓力變色材料、光變 色材料、摩擦發光材料、電致發光材料、電變色材料、磁 變色材料及顆粒、放射性材料、可放射性材料、電荷分離 材料及其組合。示範圖示塡充材料包括例如L〇rd Industries的U107之光聚合物載子,其係以次微米顏料粉 末爲底,而形成厚11墨水"。 對於熟悉本技藝的工作人員而言,文中未明確地提及 之其他屬性、材料、方法、機構及其組合,顯然被理解爲 包括在本發明的範圍內。 -20- 200902339 包覆材料-任一用於包覆圖示層或圖示塡充材料,或 包覆波紋放大系統之任一層的材料,包括但不限於透鏡、 圖示平面、圖示層、微結構圖示元件、圖示塡充材料,或 配置、層壓或應用於透鏡、圖示層之材料的任一層,或透 鏡、圖示層'基底或透明基底之內部或外部的任一層。 包覆材料典型地提供一些屬性,其可檢測地不同於圖 不層、圖示塡充材料、基底、透明基底或透鏡層中其他材 料的屬性。該些不同屬性可提供光學效果,或其可提供啓 動材料的非接觸檢測或鑑別之屬性,或二者皆然。材料的 組合可用於包覆材料,而提供所需包覆材料屬性的多重性 0 可產生所需光學效果之包覆材料的材料屬性包括但不 限於:透明度、不透明度、折射率、著色分佈、散射屬性 ’珍珠粉、蛋白光、彩虹色、顏色反射及顔色吸收,反射 性、線性、圓形的及橢圓的極化屬性,Raman或Rayleigh 屬性,光學旋轉、螢光性、冷光、磷光、二光子效果,熱 化學、壓力變色、光變色、摩擦發光、電致發光、電致變 色及磁致變色。包覆材料可爲單純材料,或爲混合物、組 合、懸浮體或多重性材料的其他組合而獲得該些屬性。 應用包覆材料的適當方法取決於許多因子,包括材料 屬性及材料的所需功能或效果。藉濕式還原反應(如同濕 式鍍銀)、無電電鍍、電氣電鍍、蒸汽沈積、噴濺、電漿 噴塗、分子束磊晶、熱壓印、箔轉印、層壓及其他適當與 知名方式及其組合,可應用金屬、金屬氧化物、半導體包 -21 - 200902339 覆及其組合。藉濕式包覆、噴塗、印刷、層壓、圖示表面 的化學反應、噴墨、電氣印刷、浸染、新月形包覆、波形 包覆、反應包覆及其他適當與知名方式及其組合,可應用 結合液體載子材料的包覆材料。藉熱壓印、箔轉印、層壓 及其他適當與知名方式及其組合,可應用以膜或箔爲主的 包覆材料。 包覆材料可較佳地爲蒸發或噴濺金屬,例如銘、金或 銀,或金屬氧化物,例如銦-錫氧化物或鐵氧化物。結合 塡充材料的包覆材料可較佳地包括載子材料,例如單體、 寡體或聚合物材料及其組合,其係溶劑固化、熱固化、氧 化固化、反應固化或輻射固化。示範輻射固化光聚合物爲 Lord Industries 的 U107 光聚合物。 包覆載子材料的光學、非接觸檢測及非接觸鑑別屬性 可藉與下列任一材料(例如但不限於該些材料)混合或組^ 而予修改:染料、著色劑、 礦物、磁性材料及顆粒、磁 及顆粒、磷光劑、液晶 '液 材料、二氧化鈦或其他光散 體、奈米顆粒、奈米管、布 珠光彩材料、粉末珍珠、多 虹色材料、低折射率材料或 鑽石粉末、結構顏料、極化 材料、磷光的材料、熱變色 材料、摩擦發光材料、電致 顏料、粉末材料、墨水、粉末 化材料及顆粒、磁性反應材料 晶聚合物、碳黑或其他光吸收 射材料、光子晶體、非線性晶 基球、布基管、有機材料、珍 層干擾材料、乳白色材料、彩 粉末、高折射率材料或粉末、 材料、極化旋轉材料、螢光的 材料、壓力變色材料、光變色 發光材料、電變色材料、磁變 -22- 200902339 色材料及顆粒、放射性材料、可放射性材料、電荷分離材 料及其組合。範包覆材料包括例如 Lord Industries的 U1 07之光聚合物載子,其係以次微米顏料粉末爲底,而 形成厚"墨水"。 包覆材料亦可加以選擇而提供物理、化學、機械、底 漆或附著促進屬性。 對於熟悉本技藝的工作人員而言,文中未明確地提及 之其他屬性、材料、方法、機構及其組合,顯然被理解爲 包括在本發明的範圍內。 正圖示元件-圖示設計或型樣的圖形元件,其中該圖 示元件的物件型樣,例如字元或標誌,爲著色的、彩色的 、金屬化的’或與該圖示元件之背景區別。通常,在製造 的過程中,正圖示元件的物件型樣將於獲得任一區別屬性 或應用於正圖示元件的背景之前,獲得本身的區別屬性。 正影像-正圖示元件所形成的影像或合成影像。 負圖不兀件-圖不設計或型樣的圖形元件,其中該圖 示元件的背景爲著色的、彩色的、金屬化的,或與該圖示 元件之物件型樣有所區別,例如字元或標誌。通常,在製 造的過程中’負圖示元件的背景將於獲得任一區別屬性或 應用於負圖示元件的物件型樣之前,獲得本身的區別屬性 〇 負影像-負圖示元件所形成的影像或合成影像。 圖示元件的物件型樣-圖示設計或型樣之離散的及有 界線的圖形兀件’例如字兀或標誌。通常,圖示元件的物 -23- 200902339 件型樣較佳地以一、二、或三個圖示元件或型樣之內爲界 ,但可以更多個爲界。 圖示元件的背景-圖示設計或型樣之無界線的區域圍 繞物件型樣。通常,圖示元件或型樣的背景連續橫跨多路 圖示元件或型樣。 圖示層-微印刷的實質平面層可應用於基底或透明基 底的面,或可爲獨立層。廣泛的材料可用於圖示層,包括 但不限於熱固聚合物、熱成型聚合物、澆鑄聚合物、反應 澆鑄聚合物、輻射固化聚合物、生物聚合物、凝膠、澱粉 、糖、矽聚合物、多層電介質聚合物膜、溶劑澆鑄聚合物 '壓縮鑄模聚合物、注入鑄模聚合物、凸版聚合物、玻璃 、金屬氧化物、鑽石、鋁氧化物、光聚合物、光阻、印刷 墨水或定型的包覆、噴墨印刷包覆、電印刷包覆及其組合 示範圖示層材料爲光聚合物,例如Lord Industries的 u 107光聚合物。圖示層可爲單—材料或可結合染料、著 色劑、顏料、粉末材料、墨水、粉末礦物、磁性材料及顆 粒、磁化材料及顆粒、磁性反應材料及顆粒、磷光劑、液 曰曰液θθ # 1=1物、碳黑或其他光吸收材料、二氧化鈦或其 他光散射材料、光子晶體 '非線性晶體、奈米顆粒、奈米 管、布基球、布基管、有機材料、珍珠光彩材料、粉末珍 擾材料、乳白色材料、彩虹色材料、低折射率 、 次粉末、鑽石松末、結構顏料 、極化材料、極化旋轉材 虫允的材枓、磷光的材料、 ~ 24 - 200902339 熱變色材料、壓力變色材料、光變色材料、摩擦發光材料 、電致發光材料、電變色材料、磁變色材料及顆粒、放射 性材料、可放射性材料、電荷分離材料及其組合,及可增 強或改變其光學、電氣、磁性'核磁共振或其他物理屬性 的其他適當材料。 不範圖示層材料爲Lord Industries的U107光聚合物 。對於熟悉本技藝的工作人員而言,文中未明確地提及之 其他屬性、材料、方法、機構及其組合,顯然被理解爲包 括在本發明的範圍內。 微結構圖示影像元件-具有物理凸版印刷或可藉許多 適當機構而於圖示層中形成之微結構的圖示元件,該些機 構包括熱成型、澆鑄、壓縮鑄模、注入鑄模、凸版、定型 的輻射曝光及顯影、雷射曝光及顯影、噴墨印刷、電氣印 刷、印刷、雕刻、電鑄、畫線、攝影、全像攝影,及與知 名固化及蝕刻或膨脹過程、遮罩及沈澱過程、遮罩及化學 飽刻、遮罩及反應蝕刻、遮罩及離子硏磨、微機械、雷射 機械及雷射熔損、光聚合物曝光及顯影與其他適當機構及 其組合結合之光敏乳膠的雷射曝光。 微結構圖示影像元件較佳地藉澆鑄聚合物基底(通常 爲PET)與鍍鎳微結構圖示影像元件工具之間液體光聚合 物、輻射固化該光聚合物及以附著的固化光聚合物從鍍鎳 微結構圖示影像元件工具剝落該聚合物基底而形成。 對於熟悉本技藝的工作人員而言,文中未明確地提及 之其他屬性、材料、方法、機構及其組合,顯然被理解爲 -25- 200902339 包括在本發明的範圍內。 微結構圖示影像元件工具及方法-用於在圖示層中形 成微結構圖示影像元件的工具及方法’其係藉熱成型、澆 鑄、壓縮鑄模、注入鑄模、凸版、定型的輻射曝光及顯影 、電鑄及光聚合物曝光與顯影。該工具可由許多類似及適 當的機構製造,包括熱成型、澆鑄、壓縮鑄模、注入鑄模 、凸版、定型的輻射曝光及顯影、雷射曝光及顯影、噴墨 印刷、電氣印刷、印刷、雕刻、電鑄、畫線、攝影、全像 攝影,及與知名固化及蝕刻或膨脹過程、遮罩及沈澱過程 、遮罩及化學鈾刻、遮罩及反應蝕刻、遮罩及離子硏磨、 微機械、雷射機械及雷射熔損、光聚合物曝光及顯影及其 他適當的機構及其組合結合之光敏乳膠的雷射曝光。 微結構圖示影像元件工具較佳地藉於堅硬基底或堅硬 透明基底上光阻材料之光學曝光及顯影而產生原始微結構 、微結構光阻表面的傳導金屬化及於傳導表面鍍鎳電鑄等 知名方法而產生。 對於熟悉本技藝的工作人員而言,文中未明確地提及 之其他屬性、材料、方法、機構及其組合,顯然被理解爲 包括在本發明的範圍內。 透明基底-任一實質上平面及實質上光學透明的材料 ’包括但不限於玻璃 '金屬氧化物、聚合物、合成物材料 、生物聚合物、糖、纖維素、澱粉、凝膠及其組合,其係 用於支撐一致波紋放大系統的光學元件,該光學元件選擇 地包括微透鏡陣列及一或多個圖示影像陣列。PET聚合物 -26- 200902339 膜爲本發明之圖示層及波紋放大系統的示範基底。 ΐ寸於熟悉本技藝的工作人員而言,文中未明確地提及 之其他屬性、材料、方法、機構及其組合,顯然被理解爲 包括在本發明的範圍內。 基底-任一實質上平面材料,包括但不限於玻璃、金 屬、合成物材料、金屬氧化物、聚合物、生物聚合物、糖 、纖維素、澱粉、凝膠、紙、纖維材料、非纖維材料、箔 、不織布紙代用品及其組合。ΡΕΤ聚合物膜爲本發明的示 範基底。 對於熟悉本技藝的工作人員而言,文中未明確地提及 之其他屬性、材料、方法、機構及其組合,顯然被理解爲 包括在本發明的範圍內。 保角的包覆材料-符合所應用之表面形狀的包覆材料 。噴灘金屬包覆典型地爲保角的-其包覆垂直表面、微結 構側壁、浮雕區域以及水平表面。 非保角的包覆材料-不符合所應用之表面形狀的包覆 材料。蒸發金屬包覆典型地爲非保角的-其優先包覆水平 表面’但不足地包覆垂直表面及微結構側壁,且不包覆浮 雕區域。 指向性包覆材料-一種包覆材料其優先包覆水平表面 及具指向包覆源一般方向之垂直表面的表面,但不包覆具 指向遠離包覆源一般方向之垂直表面的表面。補償或妨礙 的蒸發金屬包覆爲指向性包覆材料的一範例:金屬蒸汽的 流動係指向實質上不在垂直上之角度的表面,使得微結構 -27- 200902339 的|,近”表面將被包覆,但微結構的”遠”表面將被遮蔽及未 包覆。 現在參考附圖,圖1 a描繪微光學系統1 2的實施例, 其提供該系統的一或多個影像的正視差移動。 該系統12微透鏡1具有至少二對稱軸,其實質上相等 並配置於二維週期陣列中。透鏡2的直徑較佳地小於50μ, 且透鏡3之間的空隙空間較佳地爲5 μ或更小。(吾人交替 地使用名詞"μ"及"μηι" ’表示相同的尺寸。)微透鏡1聚焦 圖示元件4的影像,並將該影像1 〇投影於觀看者。該系統 通常用於具有正常位準之周遭照明的情況,所以圖示影像 的照度從反射或傳輸周遭光線而產生。圖示元件4爲具有 實質上類似於包括透鏡1之透鏡陣列的期間及尺寸之圖示 元件的週期陣列的一元件。該透鏡1與該圖示元件4之間爲 光學隔片5,其可與該透鏡1材料連續,或可選擇地爲個別 基底8 -在本實施例中,該透鏡9與基底分離。該圖示元件4 可選擇地以密封層6保護,其較佳地爲聚合物材料。密封 層6可爲透明的、半透明的、著色的、染色的、不透明的 、金屬製的、磁性的、光學可變的及其任一組合,其提供 所需的光學效果及/或用於安全及鑑別目的的其餘功能, 包括自動化的貨幣鑑別、核實、追蹤、計數及檢測系統的 支援,其係依賴光學效果、導電性或電容、磁場檢測。 該系統的總厚度7典型地小於5〇μ ;實際厚度取決於該 透鏡1的F#與該透鏡2的直徑,及其餘安全特徵或視覺效 果層的厚度。該圖示元件4的重複期間11實質上與該透鏡1 -28- 200902339 的重複期間相同;”縮放比”即圖示之重複期間與透鏡之重 複期間的比例,係用於製造許多不同視覺效果。當透鏡及 圖示的對稱軸方向偏離時,縮放比的軸向對稱値實質上等 於1.0000 ’導致一致移動正視差效果,當透鏡及圖示的對 稱軸實質上校正時,縮放比的軸向對稱値小於1.0000,導 致一致深及一致超深效果,及當透鏡及圖示的對稱軸實質 上校正時,縮放比的軸向對稱値大於1.0000,導致一致浮 動及一致超浮動效果。縮放比的軸向非對稱値例如X方 向0.995及Y方向1.005,導致一致飄浮效果。 藉透鏡重複期間或圖示重複期間或二者的縮放變形, 或藉結合空間改變資訊至圖示型樣中,可獲得一致形態效 果。藉結合空間改變資訊至圖示型樣中,亦可製造一致3 · D效果,但在本實施例中,如同從實質上相應於圖示之位 置的特定位置所見,該資訊代表三維物件的不同檢視點。 圖1 b呈現本系統的等尺寸檢視,如同圖1 a中截面所 描繪的,具有透鏡1的方形陣列型樣及重複期間1 1及光學 隔片厚度5的圖示4 (圖1 a並非特定方形陣列型樣’但爲所 有規則的週期陣列型樣之代表截面)。該圖示元件4顯示爲 "$ "影像,清晰地見於前端截去段中。雖然透鏡1與圖示元 件4之間存在實質上一對一的對應’但透鏡陣列的對稱軸 將不然,其確實地與圖示陣列的對稱軸校正。 在具1.0000之縮放比的圖la-b之一致(正視差移動)材 料實施例的狀況下’當透鏡1軸線與圖不兀件4軸線係實質 上校正時,圖示元件的結果合成影像(本範例中爲大” $ " -29- 200902339 攝影放大”,並藉理論上接近無限的因子放大。透鏡1軸線 及圖示元件4軸線的輕微角度不重合降低了圖示元件之合 成影像的放大因子,並使放大的合成影像旋轉。 由透鏡、光學隔片及圖示之特定組合所產生之移動合 成影像,以檢視角度移動一致量進行特定改變,且該一致 量爲合成影像重複距離的一部分。例如,若產生呈現具 0.25英吋重複距離之合成影像的一致移動材料,且當檢視 角度改變1 0度時,該些合成影像顯現爲具0 · 1英吋的正視 差移動,那麼用於製造具1.0英吋之合成影像重複距離之 一致的相同透鏡、圖示及隔片,當檢視角度改變1 〇度時, 將成比例地呈現較大正視差移動-0.4英吋。正視差影像移 動的量縮放以符合所產生之合成影像的重複距離。檢視角 度中改變與縮放的正視差移動之間的關係取決於所使用透 鏡的F #。對於所選擇檢視角度的改變,低F #透鏡比較大 的F#透鏡產生更小的正視差移動量。 用於一致移動材料的示範透鏡可具有0.8的F#。其爲 所需F#的一個理由爲其使觀察者左眼所見影像與右眼所 見影像之間的垂直不同最小化。垂直不同爲左眼與右眼影 像之間的垂直不重合-一影像顯現爲相對於其他影像而被 垂直替換。水平影像不同爲常見及正常現象•其爲眼-腦 系統所使用以感知二維深度的因子之一。垂直影像不同通 常不爲人們所遭遇-若其光學不重合,則有時見於雙筒望 遠鏡或雙目顯微鏡中。雖然水平影像不同連續發生於人們 的雙眼視覺,但在自然界則從未發生垂直影像不同,所以 -30- 200902339 人們調適垂直影像不同的能力極有限。該調適需要一眼相 對於另一眼略微向上或向下看。此係不自然的經驗,雖然 其將不致傷害人們,但由於不習慣的眼睛肌肉動作,而在 觀看者的眼睛產生立即的物理知覺。此物理知覺已以各種 方式描述,從"它讓我的眼睛感覺怪怪的"到’'這對我而言 不容易看"。此效果呈現,不論檢視的方位角方向(即’該 一致移動材料可在其平面內以任一角度旋轉,而不會漏失 該效果)。任一種類的傳統印刷均不致引發觀看者的該物 理知覺。 一致移動材料可經設計,藉提升影像的垂直不同,而 於觀看者中引發該知覺。由於觀看者的眼睛係置於水平平 面,所以一致移動材料中呈現垂直影像不同。從左眼檢視 與從右眼檢視係不同的水平角度,所以左眼所見合成影像 係相對於右眼所見合成影像而於垂直方向正視差地替換, 因而製造垂直影像不同。垂直影像不同的量小於低F#透 鏡’且通常不爲觀看者注意。然而,可藉例如F# 2.0或更 大之較大F#透鏡,增強垂直影像不同,所以於觀看者的 眼睛中刻意製造垂直不同知覺。 藉於一致移動材料中製造增強的垂直影像不同可獲得 一優點’即因而於觀看者中引發的該物理知覺係特有的、 立即的及自動的,並可因而作爲新穎的鑑別方法。無其他 已知材料可從所有的檢視方位角方向提供類似知覺。 一致深、一致浮動及一致飄浮的合成放大因子實施例 係依據該透鏡1軸線與該圖示元件4軸線的角度校正,及該 -31 - 200902339 系統的縮放比。當縮放比不等於1.0 0 0 0時,從該些軸線之 實質校正所獲得的最大放大等於1/(1.0000-(縮放比))的絕 對値。因而具0.995縮放比的一致深材料將呈現|1/(1〇〇〇_ 0_995)| = 200χ。同樣地,具1.0〇5縮放比之一致浮動材料亦 將呈現|1/(1·000-1.005)卜200χ的最大放大。以類似於—致 移動材料實施例的方式’ 一致深、一致浮動及一致飄浮之 透鏡1軸線與圖示元件4軸線的輕微角度不重合實施例,降 低了該圖示元件之合成影像的放大因子,並使放大合成影 像旋轉。 一致深或超深圖示型樣所產生之合成影像爲相對於一 致深或超深圖示型樣之方位的右上方,同時一致浮動或超 浮動圖不型樣所產生之合成影像爲顛倒,相對於一致浮動 或超浮動圖示型樣之方位旋轉一百八十度(1 8 0。)。 圖2a槪要描繪一致移動實施例中所見的反直覺正視 差影像移動效果。圖2 a的左側描繪繞水平軸丨6擺動或旋 轉18之平面圖中的一項一致移動材料12。若合成放大影像 14依據視差而移動,其隨著該材料12繞該水平軸16擺動而 顯現爲上、下替換(如圖2a中所示)。該表面視差移動典型 的爲實際物件、傳統印刷及全像攝影影像。取代呈現視差 移動,合成放大影像14顯示正視差移動2〇_垂直於正常預 期之視差移動方向的移動。圖2 a的右側描繪隨其繞水平 旋轉軸1 6擺動1 8而呈現單一合成放大影像丨4之正視差移動 的一項材料1 2的透視圖。點輪廓2 2顯示該合成放大影像^ 4 藉正視軸線而移向右之後的位置,且點輪廓24顯示該合成 -32- 200902339 放大影像1 4藉正視軸線而移向左之後的位置。 一致深及一致浮動實施例的視覺效果等尺寸地描繪於 圖2b、c中。在圖2b中,一項一致深材料26呈現合成放大 影像2 8 ’當由觀察者3 0的眼睛檢視時,其實體鏡地顯現爲 置於該一致深材料26之平面下方。在圖2c中,一項—致 浮動材料32呈現合成放大影像34,當由觀察者30的眼睛檢 視時,其實體鏡地顯現爲置於該一致浮動材料3 2之平面上 方。該一致深及一致浮動效果可從所有方位角檢視位置及 廣泛的高度位置見到’從垂直高度(使得該觀察者3 〇的眼 睛至該一致深材料2 6或一致浮動材料3 2的視線垂直該材料 的表面)低到典型地小於4 5度的淺高度角度。廣泛檢視角 度及方位之一致深及一致浮動效果的能見度提供不同於模 擬使用圓柱形雙凸透鏡狀光學或全像攝影之一致深及一致 浮動材料的簡單及方便的方法。 圖2 d- f中藉顯示該觀察者3 0之眼睛所見該一致飄浮材 料36之三種不同方位角旋轉之合成放大影像38的實體鏡地 感知深度位置,及該一致飄浮材料3 6及合成放大影像3 8的 相應平面圖之等尺寸檢視,描繪一致飄浮實施例效果。當 該一致飄浮材料36原始如平面圖中所示時,圖2d描繪該 合成放大影像3 8(以下稱爲’該影像’)爲實體鏡地顯現爲置 於該一致飄浮材料3 6之下的平面中。該平面圖中深黑線爲 了說明而做爲方位角方位參考37。請注意,圖2d中該方 位參考37係以垂直方向校正,且該影像38係以水平方向校 正。由於縮放比沿著實質上平行於連接觀察者雙眼瞳孔之 -33- 200902339 線校正的該一致飄浮材料3 6的第一軸線(此將於以下稱爲, 實體鏡的縮放比|)小於1.000,該影像38出現於一致深位置 。該一致飄浮材料3 6之實體鏡的縮放比沿垂直於該第一軸 線的第二軸線大於1. 〇 〇 0 ’如圖2 f中所示,藉以於該第二 軸線實質上平行連接觀察者瞳孔之線校正時,製造該影像 3 8的一致浮動效果。請注意,該方位參考3 7於圖中係處於 水平位置。圖2e描繪該一致飄浮材料36的中間方位角方 位,其由於此方位角方位之實體鏡的縮放比實質上爲 1 · 0 0 〇而產生一致移動正視差影像效果。 由於材料爲方位角旋轉,一致飄浮影像3 8從該一致飄 浮材料36的下方移動(圖2d),向上至該一致飄浮材料36的 位準(圖2e),及進一步向上至該一致飄浮材料36的位準上 方(圖2f),其視覺效果可藉結合該一致飄浮材料36與傳統 印刷資訊而予增強。傳統印刷之未變的實體鏡的深度做爲 較佳感知該影像3 8之實體鏡的深度的參考平面。 當一致材料以例如’點’光源(例如聚光燈或LED閃光) 或視準源(例如日光)之強力指向性光源照射時,可看見圖 示的"陰影影像"。該些陰影影像在許多方面是不尋常的。 雖然一致呈現的合成影像不隨照度之方向移動而移動,但 所產生的陰影影像卻移動。此外,雖然一致合成影像可置 於不同於材料之平面的視覺平面,但陰影影像則總是置於 材料的平面中。陰影影像的顏色爲圖示的顏色。所以黑色 圖示製造黑色陰影影像,綠色圖示製造綠色影像,同時白 色圖示製造白色陰影影像。 -34- 200902339 陰影影像的移動係隨照度之角度而移動,乃與以平行 於合成影像中所呈現視覺效果之方式的特定深度或移動一 致效果相關。因而,當檢視角度改變時,隨著光線角度之 陰影影像的移動係平行於合成影像所顯示之移動而改變。 移動陰影影像隨光源移動而正視差地移動。 深陰影影像以光源的相同方向移動。 浮動陰影影像以光源的相反方向移動。 飄浮陰影影像以上述合成的方向移動。 飄浮深陰影影像以左-右方向之光線的相同方向移動 ,但與上-下方向之光線的方向相反;飄浮浮動陰影影像 以左-右方向之光線的相反方向移動,但與上-下方向之光 線的方向相同;飄浮移動陰影影像顯示相對於光線移動而 正視差移動。 一致形態陰影影像隨光源移動而顯示形態效果。 當例如LED光之發散點光源朝向或遠離一致膜時, 可見其餘的不尋常陰影影像效果。當光源進一步遠離其發 散射線而更接近近似視準光線,並因深而產生陰影影像日寺 ,超深、浮動或超浮動一致合成影像槪以合成影像的相同 尺寸出現。當光線較接近表面時,深及超深材料的陰影影 像由於照度強烈發散而縮小,同時浮動及超浮動材料的陰 影影像擴大。以聚集照度照射該些材料使得深及超深陰景多 影像放大爲大於合成影像的尺寸’同時浮動及超浮動陰景多 影像縮小。 一致移動材料的陰影影像並不隨照度的發散或聚集己女 -35- 200902339 變而顯著地改變縮放’而是陰影影像繞照度的中央而旋轉 。當照度的發散或聚集改變時,一致飄浮陰影影像於一方 向縮小及於垂直方向放大。一致形態陰影影像隨照度的發 散或聚集改變而相對於特定形態型樣改變。 所有該些陰影影像效果可做爲用於安全、防僞、品牌 保護應用及其他類似應用之一致材料的其餘鑑別方法。 圖3a-i爲平面圖’顯示各式實施例及微透鏡之對稱二 維陣列的不同型樣的滿足因子。圖3 a、d及g分別描繪微 透鏡4 6、5 2及6 0,其配置爲規則的六角形陣列型樣4 〇。( 陣列型樣虛線4 0、4 2及4 4代表透鏡的型樣對稱,但不必然 代表透鏡陣列的任一物理元件。)圖3 a的透鏡具有實質上 圓形底座幾何46’圖3g的透鏡具有實質上六角形底座幾 何60,及圖3d的透鏡具有不完全六角形52的中間底座幾 何。如圖3 b、e及h中所見,透鏡幾何的類似發展應用於 透鏡48、54及62的方形陣列42,其中該些透鏡具有範圍從 實質上圓形48至不完全方形54至實質上方形62的底座幾何 。相應地,如圖3 c、f及i中所見,等邊三角形陣列4 4包 含具有範圍從實質上圓形50至不完全三角形58至實質上三 角形64之底座幾何的透鏡。 圖3 a-i的透鏡型樣爲可用於本系統的透鏡。透鏡之間 的空隙空間未直接提供影像的合成放大。使用該些透鏡型 樣製造的材料亦將包括圖示元件的陣列,其係以幾乎相同 的縮放配置於相同的幾何中,允許用於產生一致移動、一 致深、一致浮動及一致飄浮效果的縮放差異。若空隙的空 -36- 200902339 間大’例如圖3 c中所示,透鏡將具有低滿足因子,且影 像與背景之間對比將由於來自圖示元件的光線散射而降低 。若空隙的空間小,透鏡將具有高滿足因子,且影像與背 景之間對比將高,提供透鏡本身具有良好焦點屬性,且圖 示元件處於透鏡的焦點平面中。其通常易於形成具圓形或 幾乎圓形底座而非具方形或三角形底座的高光學品質微透 鏡。圖3 d中顯示透鏡性能與空隙空間最小化的良好平衡 ;透鏡的六角形陣列具有完全六角形的底座幾何。 具有低F#之透鏡特別適用於本系統。關於低F#,吾 人亦即小於4,特別係用於約2或更低的一致移動。低F# 透鏡隨其直徑的比例而具有高曲率及相應大的凹陷,或中 心厚度。典型的一致透鏡,其F#爲0.8,具有28微米寬的 六角形底座,及10.9微米的中心厚度。50微米直徑及200 微米焦距之典型的德林克沃特(Drinkwater)透鏡具4的F# 及3.1微米的中心厚度。若縮放爲相同底座尺寸,一致透 鏡具有約大於德林克沃特透鏡六倍的凹陷。 吾人發現多邊形底座多帶狀透鏡,例如六角形底座多 帶狀透鏡,具有圓形底座球面透鏡上重要及未預期的優點 。如上述說明,六角形底座多帶狀透鏡憑藉其應力消除幾 何而顯著地改進,但經由六角形底座多帶狀透鏡的使用可 獲得其餘未預期的光學優點。 吾人稱該些透鏡爲多帶狀,因爲其擁有三個光學區, 各提供主題發明之不同及獨特的優點。該三區爲中央區( 構成約透鏡的一半區域)、側面區及角落區。該些多邊形 -37- 200902339 透鏡具有有效直徑,其爲一圓形直徑,位於該角落區內, 環繞該中央區及包括該側面區。 主題發明之六角形底座多帶狀透鏡的中央區具有非球 狀形式(例如’對具有名義上28微米焦距的28微米直徑透 鏡而言’具有由[y=(5.1316E)x4-(0.01679)x3+(0.124931)x + 1 1 . 2 4 8 2 4 ]定義的形式),其將光線引至至少一焦點,且 球面表面具有該相同直徑及焦距。圖30描繪具聚合物基底 786中名義上28微米焦距之名義上28微米直徑六角形底座 多帶狀透鏡7 8 4的該中央區7 8 0焦點屬性7 8 2 (透鏡及基底 n=l.51),及圖31描繪具聚合物基底7 94中名義上30微米焦 距之28微米直徑球面透鏡792的該中央區788焦點屬性790( 透鏡及基底n=l,51)。該二圖的比較清楚地呈現該主題揭 露至少執行六角形底座多帶狀透鏡7 84以及球面透鏡792。 從廣泛的檢視角度,該六角形底座多帶狀透鏡784的該中 央區780提供高影像解析度及淺深度的視場。 如圖32中所描繪的,該主題發明之該六角形底座多帶 狀透鏡7 84的六個側面區7 96,每一均具有以複雜的方式取 決於具該區之位置的焦距,但該效果致使側面區796的焦 點伸展超過値798的範圍,包括中央區焦點的約+/-1〇個百 分點。焦點的垂直模糊798有效地增加該些區796中透鏡之 視場的深度,並提供相當於具有平坦視場透鏡的優點。圖 3 3中可見球面透鏡7 92之外部區8 0 0的性能。相較於對該六 角形底座多帶狀透鏡784,對該球面透鏡792而言,焦點 8 02的垂直模糊顯著地較少。 -38- 200902339 此對於正常檢視之外特別重要:增加的視場深度,及 有效地美化視場,緩和突然的影像失焦,其於彎曲的焦點 表面與圖示平面分離時,發生於球面透鏡。因此,使用六 角形底座多帶狀透鏡的一致材料顯示合成影像,其以較使 用球面透鏡之相同一致材料更高的檢視角度更柔和地自焦 點褪去。這是所需的,因其提昇材料的有效檢視角度,並 因而提昇其做爲安全裝置或影像呈現裝置的用處。 圖32之六角形底座多帶狀透鏡784的角落區806擁有發 散焦點屬性,其提供散射808周遭照度至圖示平面之未預 期的優點’並藉以降低一致材料的敏感性爲照度狀況。圖 33的該球面透鏡792未散射周遭照度成寬區域(如缺少散射 至圖不平面區804之射線所見)’所以相較於使用六角形底 座多帶狀透鏡製成的一致材料,當從各式角度檢視時,使 用球面透鏡製成的一致材料具有較大合成影像亮度變化。 由於六角形底座多帶狀透鏡較球面透鏡具有更高的滿 足因子(覆蓋平面的能力)’所以從示範六角形底座多帶狀 透鏡所獲得之好處被進一步放大。球面透鏡之間的空隙空 間提供實際上無周遭光線散射,同時非散射區域較六角形 底座多帶狀透鏡的狀況下小。 因而可見即使六角形底座多帶狀透鏡的焦點屬性低於 由傳統光學標準所評估之球面透鏡的焦點屬性,但在主題 發明六角形底座多帶狀透鏡的本文中,提供球面透鏡上未 預期的好處及優點。 每一類型的透鏡可從附加散射微結構或導入或倂入透 -39- 200902339 鏡空隙空間以增強周遭照度散射至圖示平面的散射材料而 獲利。此外,該透鏡空隙空間可由材料塡充,該材料將形 成小半徑新月形,其具聚集或發散焦點屬性,以導引周遭 照度至圖示平面。該些方法可予結合,例如,將光散射顆 粒倂入透鏡空隙的新月形塡充材料。另一方面,透鏡空隙 區可爲以適當散射透鏡空隙區而原始製造。 具有該些比例的球面透鏡非常難以製造,因爲膜的表 面與透鏡的邊緣之間高接觸角度做爲應用以使透鏡於製造 期間與工具分離之力量的壓力集中器。該些高壓力使透鏡 至膜的附著失敗,及無法將透鏡從工具移除。此外,低 F#球面透鏡的光學性能逐漸妥協而使半徑區遠離透鏡中心 :低F#球面透鏡除了接近其中央區外無法聚焦良好。 六角形底座透鏡具有超越具有實質上圓形底座透鏡之 未預期及顯著的好處:相較於具有實質上圓形底座之光學 相等透鏡,六角形透鏡以較低的剝落力釋放其工具。六角 形透鏡具有一形狀,其由中心附近實質上軸向地對稱混合 爲六角形對稱,並於其底座具有做爲壓力集中器的角落。 尖形底座角落引發的壓力集中降低了製造期間透鏡與其鑄 模分離所需的整體剝落力。該效果的量是實質的-相較於 實質上圓形底座透鏡,製造期間的剝落力經由二或更多個 六角形底座透鏡的因子而降低。 材料的影像對比可藉以光吸收(暗彩色的)不透明著色 材料塡充透鏡空隙空間,有效低形成透鏡的遮罩,而予增 強。此排除了經由透鏡空隙空間之圖示層的光線散射所引 -40 - 200902339 發的對比降低。此空隙塡充的附加效果爲由於進入的周遭 照度遭阻礙而無法經空隙空間傳遞至圖示平面’整體影像 變暗。只要塡充可阻擋偏移的周圍透鏡區’那麼具有周圍 失焦之透鏡所產生的影像清晰度,亦可藉不透明的著色空 隙塡充而予改進。 藉由以白色或亮彩色的材料,或與用做一致材料之基 底匹配之顏色的材料,塡充透鏡空隙空間,可獲得不同效 果。若亮彩色的透鏡空隙的塡充夠密集,且圖示平面結合 圖示元件與背景之間的強烈對比,當以反射光線檢視時, 一致合成影像將實質上看不見,當以透鏡端所傳輸之光線 檢視時,又將明顯地可見,但當從圖示端檢視時,則不可 見。此提供具有單向傳輸影像的新穎安全效果,其僅於傳 輸的光線中可見,及僅從一端可見。 替代或除了可見光顏料之外,透鏡空隙的包覆中可使 用螢光材料,以提供鑑別的其餘機構。 圖4表示沿呈現材料之軸線改變實體鏡之縮放比的效 果,S SR(圖示元件重複期間/透鏡陣列重複期間)。具有大 於1.0000之SSR的系統之區將產生一致浮動及超浮動效果 ,具有實質上1.0000之SSR的區將產生一致移動正視差移 動(OPM)效果,及具有小於!.〇〇〇〇之SSR的區將產生一致 深及一致超深效果。所有的該些效果可沿系統膜之軸線以 多樣化的方式一個一個的產生及轉換。該圖描繪無限種組 合之一。虛線66表示相應於實質上1.0000的SSR値、一致 深與一致超深及一致浮動與一致超浮動之間區分線、及呈 -41 - 200902339 現OPM的SSR値。區68中,一致材料的SSR爲 製造一致深效果。 鄰近的爲區70,其中SSR從0.995躍至1.〇〇5, 一致深至一致浮動效果的空間轉換。下一區72中 1.005,製造一致浮動效果。下一區74製造平順的 換,從一致浮動效果至一致深效果。區76大幅前進 致深效果,至〇 P Μ,至一致浮動效果,及區7 8向 0ΡΜ。完成該些效果所需重複期間中變化’通常極 示元件層中完成。除了改變每一區中的SSR’其可 變陣列每一區之旋轉角度所需,較佳地於圖示元件 ,以保持實質上尺寸類似的合成放大影像。 解譯該圖的最簡單方式是將其視爲實體鏡深度 ,其將感知爲一項系統材料之整條軸線。因而其可 的局部控制,及選擇地藉陣列旋轉角度的相應局部 而製造影像的實體鏡造型視場,其爲一顯示輪廓的 面。該實體鏡造型表面可用於代表形狀的無限制範 括人臉。製造實體鏡造型格或期間點之圖示元件的 爲視覺上顯示複雜表面的特別有效方式。 圖5 a-C爲平面圖,描繪相對於本系統之材料製 他型樣的旋轉陣列型樣的效果。圖5 a顯示具有規 期陣列間隔82的透鏡陣列80,未實質改變陣列軸的 圖5b顯示具日漸改變之陣列軸線方位角86的圖示 列84。如圖示,若透鏡陣列80藉於圖示陣列上翻譯 列而與圖示元件陣列84結合,那麼所產生的槪略視 0.995 > 製造從 SSR爲 向下轉 ,從一 下回至 易於圖 能爲改 陣列中 的截面 藉SSR 控制, 視覺表 圍,包 型樣可 造中其 則的週 角度。 元件陣 透鏡陣 覺效果 -42- 200902339 便顯示於圖5c中。在圖5c中,經由結合透鏡陣列80及圖 示陣列84所製造的材料88,製造合成放大影像89、90、91 的型樣,其改變縮放並旋轉整個材料。朝該材料8 8影像8 9 的上緣是大的’並顯示小旋轉。影像90,朝該材料88的上 中段是較小的’並經由相對於影像89的顯著角度而旋轉。 影像89及91之間的不同縮放及旋轉爲該透鏡型樣82及該圖 示元件型樣86之角度不重合之差異的結果。 圖6 a-c描繪當第一影像移動跨越圖示元件型樣92及94 中邊界104時,使合成放大OPM影像98定型爲另一合成放 大影像1 02的方法。圖示元件型樣92具有顯示於放大插頁 96中的圓形圖示元件98。圖示元件型樣94具有顯示於放大 插頁100中的星形圖示元件102。圖示元件型樣92及94並非 個別物件,而是於其邊界1 04結合。當材料係使用結合的 圖示元件之型樣而組合時,最後OPM影像將顯示圖6b及 c中描繪的變形效果。圖6b顯示OPM圓形影像98,其向 右10 7移動、跨越邊界1〇4並從該邊界出現,同樣地,星形 影像102亦向右移動。當影像1〇6跨越該邊界時進行轉換, 部分圓形及部分星形。圖6c顯示其進一步向右移動之後 的影像:影像98現在更接近該邊界104’及影像106幾乎完 全跨越該邊界而完成其形態’從圓形成爲星形。經由從一 圖示元件型樣到其他型樣地製造一轉換區’而非具有硬邊 界104,該變形效果可以較不突然的方式完成。在該轉換 區中,該圖示將經由一連串階段而逐漸從圓形改變爲星形 。最後OPM影像之視覺形態的流暢將取決於用於轉換之 -43- 200902339 階段的數量。圖形的可能性的範圍是無盡的。例如:該轉 換區可經設計而使圓形顯現爲縮小,同時尖形星點向上突 出物穿越’或另一方面圓形側面可顯現爲內凹而製造端而 粗硬的星形,其逐漸變尖直至達成最後設計爲止。 圖7a-c爲本系統之材料的截面,其描繪圖示元件的另 一實施例。圖7a描繪具透鏡1及藉光學隔片5而與圖示元 件1 〇 8分離的材料。圖示元件i 〇 8係藉應用於光學隔片5之 下表面的無色的、彩色的、著色的或染色的材料之型樣而 形成。任一大量的常見印刷方法,例如噴墨、雷射、凸版 印刷、柔性印刷、凹版印刷及凹模,只要印刷解析度夠佳 ,便可用於置放此類圖示元件108。 圖7b描繪具圖示元件II2之不同實施例的類似材料系 統。在本實施例中,該圖示元件係由嵌入支撐材料11 〇之 顏料、染料或顆粒形成。支撐材料1 1 0中圖示元件1 1 2之本 實施例的範例包括:凝膠中銀顆粒、如同攝影乳膠、吸收 入墨水接收器包覆之著色的或染色的墨水、染料昇華轉換 爲染料接收器包覆、及成像膜中光變色或熱變色影像。 圖7 c描繪形成圖示元件1 1 4之微結構方法。此方法具 有幾乎無限制空間解析度的好處。該圖示元件1 1 4可由微 結構1 1 3或固體區11 5中空隙經單獨或結合而形成。該空隙 1 1 3可選擇地以例如蒸發金屬、具不同折射率之材料或染 色的或著色的材料之另一材料塡充或包覆。 圖8a、b描繪圖示元件的正及負實施例。圖8a顯示正 圖示元件116,其對比透明的背景118爲彩色的、染色的或 -44 - 200902339 著色的背景120。圖8b顯示負圖示元件122,其對比彩色 的、染色的或著色的背景120爲透明的背景118。本系統的 材料可選擇地結合正及負圖示元件二者。製造正及負圖示 元件之本方法特別適用於圖7c的該微結構圖示元件1 1 4。 圖9顯示本系統之畫素區材料的一實施例的截面。本 實施例包括具短焦點透鏡124之區及具長焦點透鏡136之其 他區。該短焦點透鏡124投射配置於透鏡124之焦點平面的 圖示平面128中圖示元件129的影像123。該長焦點透鏡136 投射配置於透鏡1 3 6之焦點平面的圖示平面1 3 2中圖示元件 137的影像134。光學隔離板126將短焦點透鏡124與其相關 圖示平面128隔離。長焦點透鏡136藉光學隔離板126、圖 示平面1 2 8及第二光學隔離板1 3 0的厚度總和,而與其相關 圖示平面132隔離。該第二圖示平面132中圖示元件137位 於短焦點透鏡124的焦點深度之外,因而未於短焦點透鏡 區中形成明顯的合成放大影像。以類似的方式,圖示元件 129過於接近長焦點透鏡136而無法形成明顯的合成放大影 像。因此,具有短焦點透鏡1 2 4之材料的區將顯示該圖示 元件1 2 9的影像1 2 3,同時具有長焦點透鏡1 3 6之材料的區 將顯示圖示元件137的影像134。所投射的影像123及134在 設計、顏色、OPM方向、合成放大因子及包括上述深、 一致、浮動及飄浮效果之效果可有所不同。 圖10爲本系統之畫素區材料的另一實施例的截面。本 實施例包括於非升高透鏡148之底座上方具由透鏡支撐台 144升高之透鏡140的區。該升高透鏡140之焦距爲距離158 -45- 200902339 ,將該些透鏡的焦點置於第一圖示平面152中。該非升高 透鏡148之焦距爲距離160,將該些透鏡的焦點置於第二圖 示平面156中。該二焦距158及160爲類似或非類似。該升 高透鏡140投射配置於透鏡140之焦點平面的圖示平面152 中圖示元件1 6 2的影像1 3 8。該非升高透鏡1 4 8投射配置於 透鏡148之焦點平面的圖示平面156中圖示元件164的影像 146。該升高透鏡140藉透鏡支撐台144及光學隔離150的厚 度總和而與其相關圖示元件162隔離。該非升高透鏡148藉 光學隔離150、圖示層152及圖示隔離板154的厚度總和而 與其相關圖示元件164隔離。第二圖示平面156中圖示元件 164位於該升高透鏡140的焦點深度之外,因而未於升高透 鏡區中形成明顯的合成放大影像。以類似的方式,圖示元 件152過於接近非升高透鏡148而無法形成明顯的合成放大 影像。因此,具有升高透鏡140之材料的區將顯示該圖示 元件162的影像138,同時具有非升高透鏡148之材料的區 將顯示圖示元件156的影像146。所投射的影像138及146在 設計、顔色、OPM方向、合成放大因子及包括深、一致 、浮動及飄浮效果之效果可有所不同。 圖1 1 a、b爲截面圖,描繪本系統的非折射實施例。 圖1 1 a描繪—實施例,其使用聚焦反射鏡i 66而非折射透 鏡’投射圖示元件172的影像174。圖示層170係置於觀看 # @眼睛與聚焦光學之間。聚焦反射鏡1 66可爲金屬化的 167 ’以獲得高聚焦效率。該圖示層170藉光學隔離板168 W保持等於該反射鏡之焦距的距離。圖1 1 b揭露本材料的 -46- 200902339 針孔光學實施例。較佳地爲黑色以便對比增強之不透明的 上層176被孔徑178穿孔。光學隔離板元件180控制該系統 的視場。圖示層1 8 2中圖示元件1 8 4以類似於針孔照相機之 針孔光學的方式,經由孔徑1 7 8而成像。由於少量的光線 通過該孔徑,當向後照射時本實施例最爲有效,首先光線 通過圖示平面182,接著通過孔徑178。可使用反射系統設 計或針孔光學系統設計,而製造OPM、深、浮動及飄浮 等每一上述實施例的效果。 圖12a、b爲截面圖,比較具混合折射/反射材料199之 全折射材料1 8 8的結構。圖1 2 a描繪一示範結構,具有藉 光學隔離板198而與圖示平面194隔離。選擇的密封層195 促成總折射系統厚度196。透鏡192投射圖示影像190至觀 看者(未顯示)。混合折射/反射材料199包括具直接位於下 方之圖示平面208的微透鏡210。光學隔片200將該透鏡210 及該圖示平面208與反射層202隔離。反射層202可爲金屬 化的,例如藉蒸發或噴濺鋁 '金、鍺、鉻、餓,藉化學配 置銀或藉多層干擾膜而消耗鈾或銀。從圖示層208散射的 光線,從反射層202反射,傳遞通過圖示層208及進入透鏡 210 ’其投射影像206至觀看者(未顯示)。該二圖係以約相 同縮放繪製:經視覺比較,可見混合折射/反射系統1 99的 總系統厚度2 1 2約爲全折射系統1 8 8之總系統厚度1 9 6的一 半。等效系統的示範尺寸,總折射系統1 8 8厚度1 9 6爲2 9 μ ,總混合折射/反射系統1 9 9厚度2 1 2爲1 7 μ。折射/反射系 統的厚度可藉縮放而進一步減少。因而,可以總厚度約8 μ -47- 200902339 製成具直徑1 5 μ之透鏡的混合系統。可使用混合折射/繞射 設計製造OPM、深、浮動、飄浮、Morph及3-D等每一上 述實施例的效果。 圖1 3爲一截面圖,顯示本系統之’剝去以展現'竄改指 示材料實施例。本實施例未顯示影像直至其遭竄改爲止。 未竄改的結構顯示於區224中,其中折射系統214爲光學掩 藏於包含選擇的基底218及對透鏡215爲保角之可剝落層 220的頂層21 6之下。可剝落層220有效地形成負透鏡結構 22 0,其安裝於正透鏡215之上並抵消其光學放大率。透鏡 2 1 5無法於未竄改的區域中形成圖示層的影像,且來自圖 示平面的散射光222未聚焦。頂層216可包括選擇的膜基底 218。區226中顯示的竄改使得折射系統214的頂層216釋放 而暴露該透鏡2 1 5,使其可形成影像22 8。OPM、深、浮動 及飄浮等上述實施例的每一效果可包括於圖1 3之類型的竄 改指示’剝去以展現’系統中。 圖1 4爲一截面圖,描繪本系統之1剝去以改變·竄改指 示材料實施例。本實施例於竄改252之前顯示第一圖示平 面242的第一影像24 8,接著於被竄改之後在區2 54顯示第 二影像25 8。區2 52中顯示未竄改的結構,其中二折射系統 23 2及23〇堆疊。該第一圖示平面2U係置於該第二系統的 透鏡240之下。在區252中竄改之前,第一或較上系統232 呈現該桌一圖不平面242的影像。該弟一圖不平面246位於 透鏡2 3 4之焦點的深度外側過遠,而無法形成明顯的影像 。該第一透鏡234藉選擇的基底236及對該第二透鏡24 0爲 -48- 200902339 保角之可剝落層238而與該第二透鏡240隔離。可剝落層 232有效地形成負透鏡結構23 8,其安裝於正透鏡240之上 並抵消其光學放大率。頂層232可包括選擇的膜基底236。 該頂層2 3 2之剝落2 5 6中的竄改結果顯示於區2 5 4中,從該 第二折射系統230,暴露該第二透鏡240,使其可形成該第 二圖示層246的影像2 5 8。由於圖示層過於接近該透鏡240 ,所以第二透鏡240不形成該第一圖示層242的影像。 竄改指示材料的本實施例極適於做爲應用於物件之膠 布或標籤的應用。竄改釋放頂層23 2,離開附著物件的第 二系統2 3 0。在竄改之前,本實施例呈現第一影像2 4 8。在 竄改2 5 4之後,第二系統23 0仍附著物件,呈現第二影像 258,同時剝落層256完全不呈現影像。OPM、深、浮動及 飄浮等上述實施例的每一效果,可包括於第一系統23 2或 第二系統2 3 0中。 請注意,另一實施例完成類似於圖1 4i的效果,具有 彼此層壓的兩個別系統。在本實施例中,當較上層剝落時 ,便採用第一圖示平面及其影像,展現第二系統及其影像 〇 圖15 a-d爲截面圖,顯示本系統的各式雙面實施例。 圖15a描繪雙面材料260,其包括單一圖示平面264,其藉 透鏡2 6 2而於一側成像2 6 8,及藉第二組透鏡2 6 6而於對面 側成像2 7 0。從左側所見影像2 6 8 (如圖所示)爲從右側所見 影像27〇的鏡中影像。圖示平面264可包含圖示元件,其爲 以類似於鏡中影像出現的符號或影像,或爲以不同於鏡中 -49- 200902339 影像出現的圖示元件,或爲圖示元件的結合,其中當從一 側檢視時部分該圖示元件被正確讀取,而當從另一側檢視 時,其他該圖示元件則被正確讀取。OPM、深、浮動及飄 浮等上述實施例的每一效果可從依據本實施例之雙面材料 的任一側顯示。 圖1 5b描繪另一雙面實施例272,其具有分別藉兩組 透鏡274及280成像之282及286的圖示平面276及278。本實 施例實質上爲兩個別系統2 8 7及2 8 9,例如圖1 a中所描繪 的,二者之間已結合圖示層隔片277。圖示層隔片277的厚 度將判斷’錯誤’圖示層藉一組透鏡之成像2 8 4及2 8 8的的程 度。例如,若圖示層隔片277的厚度爲零,使得圖示層276 及2 78接觸,那麼二圖示層接藉二組透鏡274及2 80成像。 在另一範例中,若圖示層隔片277的厚度實質上大於透鏡 274及2 80之焦點的深度,那麼該’錯誤’圖示層將不藉透鏡 2:74及280而成像。在又另一範例中,若一組透鏡274之焦 點的深度是大的,但其他組透鏡之焦點的深度是小的(因 爲透鏡274及280具有不同F#),那麼二圖示平面276及278 將經由透鏡274而成像282,但僅一圖示平面27 8將經由透 鏡2 8 0而成像,所以此類型材料將從一側顯示二影像,但 僅一該些鏡中的影像從相反側顯示。OPM、深、浮動及飄 浮等_h述實施例的每一效果可從依據本實施例之雙面材料 的任一側顯示,且所投射的影像2 82及2 8 6可爲相同或不同 顏色。 圖15c顯示又另一雙面材料29〇,具有著色的圖示層 -50- 200902339 隔片298,限制材料之一側的透鏡看見圖示的’錯誤1組。透 鏡292成像294圖示層296,但由於著色的圖示層298的出現 ,而無法成像圖示層300。同樣地,透鏡302成像304圖示 層3〇〇,但由於著色的圖示層298的出現,而無法成像圖示 層296。OPM、深、浮動及飄浮等上述實施例的每一效果 可從依據本實施例之雙面材料的任一側顯示,且所投射的 影像294及3 04可爲相同或不同顏色。 圖15d揭露進一步雙面材料3 06實施例,其具有成像 3 1 8圖示層3 1 4的透鏡3 0 8,及於相反側成像3 2 2圖示層3 1 0 的透鏡316。圖示層310接近或實質上與透鏡308的底座接 觸’及圖示層314接近或實質上與透鏡316的底座接觸。圖 示3 10過於接近透鏡3〇8而無法形成影像,所以其光線散射 3 2 0而非聚焦。圖示3丨4過於接近透鏡3丨6而無法形成影像 ’所以其光線散射324而非聚焦。OPM、深、浮動及飄浮 等上述實施例的每一效果可從依據本實施例之雙面材料的 任一側顯示’且所投射的影像3丨8及3 2 2可爲相同或不同顏 色。 圖16a-f爲截面圖及相應平面圖,描繪以本系統製造 灰階或色調圖示元件型樣及後續合成放大影像的三種不同 方法。圖1 6 a- c爲材料3 0 7之圖示端的截面細節,包括部分 光學隔離板309及透明的微結構圖示層311。圖示元件形成 爲浮雕表面3 1 3、3 1 5、3 1 7,其接著分別以著色的或染色 的材料323、325、327塡充。圖示層的下端可選擇地以密 封層321岔封,其可爲透明的、著色的、彩色的' 染色的 -51 - 200902339 或著色的、或不透明的。圖示元件313、315及317的浮雕 微結構分別提供染色的或著色的塡充材料323、325及327 之厚度變化’其如平面圖中所見’製造圖示元件之光學密 度中變化。相應於圖示元件3 23、3 25及3 27的平面圖爲平 面圖3 3 7、33 9及341。製造灰階或色調合成放大影像之方 法的使用不限於文中所揭露之範例細節,但通常可應用於 製造無限制的灰階影像變化。 圖16a包括圖示元件313、染色的或著色的圖示元件 塡充323及相應平面圖337。該圖頂端之圖示平面的截面圖 僅可顯示一通過圖示元件之切割平面。該切割平面的位置 係由通過平面圖337、339及341之虛線319表示。因此,圖 示元件313的截面爲通過實質上半球面形圖示元件的平面 。藉適當地限制塡充3 2 3之整體染料或顏料密度,染色的 或著色的塡充3W之厚度變化製造平面圖337中所代表的色 調或灰階、光學密度變化。此型圖示元件的陣列可於本材 料系統中合成放大,以產生顯示相等灰階變化的影像。 圖16b包括圖示元件315、染色的或著色的圖示元件 塡充325及相應平面圖339。平面圖339顯示圖示元件315爲 面的浮雕代表。面之影像中色調變化是複雜的,如截面圖 中複雜的厚度變化3 25所顯示。關於所揭露的相關圖示元 件3 13 ’此類型之圖示元件的陣列,如315、3 25及3 3 9所示 ,可於本材料系統中合成放大,以產生顯示本範例中代表 面之影像的相等灰階縮放變化的影像。 圖16c包括圖示元件317、染色的或著色的塡充327及 -52- 200902339 相應平面圖34 1。以類似於上述圖1 6a、b之討論的方式, 圖示元件結構的浮雕形狀於染色的及著色的塡充3 27的出 現中’及本材料系統所產生的合成放大影像中產生色調變 化。相較於製造完全表面中暗中心之圖示元件313的效果 ’圖不兀件317描繪製造完全表面中亮中心的方法。 圖I0d、e揭露包括圖示元件329及33ι之透明的浮雕 微結構圖示層3 1 1的另一實施例3 2 6,其包覆高折射率材料 3 2 8。該圖示層3丨丨可以選擇的密封層3 2丨密封,其分別塡 充圖示元件3 2 9與3 3 1、3 3 0與3 3 2。該高折射率層3 2 8藉總 內部反射製造其本身反射而增強傾斜表面的能見度。平面 圖342及344呈現圖示元件329與331之出現及其合成放大影 像的代表影像。該高折射率包覆實施例提供一種邊緣-增 強效果’而未添加顏料或染料以使圖示及其影像可見。 圖16f揭露透明的浮雕微結構圖示335的又另一實施 例3 3 3,其使用空氣、氣體或液體量3 3 6以提供相位介面 3 34微結構的視覺定義。選擇的密封層340可添加或不添加 選擇的膠黏劑33 8,使空氣、氣體或液體量3 3 6陷入。相位 介面圖示元件的視覺效果類似於高折射率包覆的圖示元件 3 29及331的視覺效果。 圖1 7a-d爲截面圖’顯示本系統用做結合印刷資訊之 層壓膜,例如可用於製造I.D.卡及駕照,其中材料3 48 (包 含上述透鏡及影像的協調微陣列)覆蓋表面的實質比例j。 圖17a描繪用做印刷3 47上層壓之一致的實施例。具有圖 示層中至少一些光學透明度的材料348以層壓膠黏劑35〇被 -53- 200902339 層壓爲纖維基底3 54,例如紙或紙代用品,覆蓋或部分覆 蓋印刷元件3 52,其先前已應用於纖維基底3 54。由於材料 3 48至少爲部分透明的,可看穿印刷元件3 52,且該組合的 效果爲提供與靜態印刷組合之本系統的動態影像效果。 圖1 7b顯示系統材料的實施例,其用於層壓應用於例 如聚合物膜之非纖維基底3 5 8的印刷元件3 5 2之上。如圖 17a中’具有圖示層中至少一些光學透明度的材料348以 層壓膠黏劑3 5 〇被層壓爲非纖維基底3 5 8,例如聚合物、金 屬、玻璃、或陶製代用品,覆蓋或部分覆蓋印刷元件3 5 2 ’其先前已應用於纖維基底3 54。由於材料3 48至少爲部分 透明的’可看穿印刷元件3 5 2,且該組合的效果爲提供與 靜態印刷組合之動態影像效果。 圖1 7 c描繪直接於材料3 6 0之透鏡端上印刷元件的使 用。在本實施例中’材料348具有直接應用於較上透鏡表 面的印刷元件3 5 2。本實施例不要求材料爲至少部分透明 :該印刷兀件3 5 2置於材料頂端,環繞印刷元件可看見動 態影像效果。在本實施例中’材料348用做最終產品的基 底,例如貨幣、身份證,及需鑑別或提供另一物件之鑑別 的其他物件。 圖描繪直接於至少部分透明的材料362之圖示端 上印刷元件的使用。印刷元件3 5 2直接應用於至少部分透 明的系統材料3 4 8之圖示層或密封層。由於該系統材料348 爲至少部分透明的’可看穿印刷元件3 5 2,且該組合的效 果爲提供與靜態印刷組合之動態影像效果。在本實施例中 -54- 200902339 ,系統材料3 4 8用做最終產品的基底,例如貨幣、身份證 ,及需鑑別或提供另一物件之鑑別的其他物件。 圖17a-d的每一實施例可單獨或組合使用。因而,例 如’系統材料3 48可爲印刷之上(圖i7c)及印刷背面(圖17d) ’接著選擇地層壓於基底上的印刷之上。 (圖17a、b)。例如該些可進—步提升本系統之材料的 仿冒、模擬及竄改抵制的組合。 圖18a-f爲截面圖,描繪本系統之應用,或結合各式 基底及與印刷資訊。圖18a-f的實施例不同於圖17a_d的實 施例,前者各圖揭露覆蓋大部分或全部物件的系統材料 3 4 8 ’而本圖揭露之實施例,其中系統材料或其光學效果 實質上未覆蓋整個表面,而是僅覆蓋部分表面。圖18a描 繪一項至少部分透明的系統材料3 6 4,其以膠黏劑元件3 6 6 附著至纖維或非纖維基底3 6 8。選擇的印刷元件3 7 0已直接 應用於材料364之表面的較上透鏡。印刷元件37〇可爲部分 較大型樣’其延伸超出該項材料364。該項材料364選擇地 層壓於印刷元件3 7 2之上,其於材料3 6 4的應用之前,已應 用纖維或非纖維基底。 圖18b描繪倂入非光學基底3 78做爲視窗之單面系統 材料3 64的實施例’其中至少一些系統材料3 64的邊緣被非 光學基底378佔據、覆蓋或包圍。印刷元件380可選擇地應 用於系統材料透鏡表面的頂端,且該些印刷元件可校正或 相應於印刷元件3 8 2 ’其應用於鄰近印刷元件3 8 0之區域的 非光學基底3 78。同樣地’印刷元件3 84可應用於校正或相 -55 - 200902339 應於印刷元件3 8 6之非光學基底的相反側,該印刷元件3 8 6 應用於系統材料3 6 4的圖示或密封層3 8 8。當從透鏡端檢視 材料時,此類視窗的效果將呈現明顯的影像,當從圖示端 檢視.時則無影像,因而提供單向的影像效果。 圖1 8c顯示類似於圖1 8b的實施例,除了系統材料306 爲雙面材料306(或上述其他雙面實施例)外。印刷元件390 、392、3 94及3 96的功能實質上相應於先前所描述的印刷 元件3 8 0、3 8 2、3 8 4、3 8 6。當從相反側檢視材料時,此類 材料視窗的效果將呈現不同的明顯影像。例如,視窗倂入 貨幣文件可顯示鈔票的數値面額,例如當從鈔票的正面檢 視時的"1 0”,但當從鈔票的背面檢視時,一致視窗可顯示 不同資訊,例如"USA”,其可爲做爲第一影像的相同顏色 ,或不同顏色。 圖1 8 d描繪做爲由限制長度之透鏡3 74的區所形成之 材料的光學隔片的透明基底3 73,及實質上延伸超出透鏡 374的區之周圍的圖示層376。在本實施例中,本效果將僅 於包括透鏡及圖示的該區中(相應於圖中透鏡區3 74)可見 。透鏡374及鄰近基底二者可選擇地印刷375,且印刷元件 可應用於圖示層3 76或應用於覆蓋該圖示之選擇的密封層( 圖中未顯示-參照圖1)。於本實施例的方式之後,多路透 鏡區可用於物件上;不論透鏡區的置放位置,將可看見一 致效果;對每一透鏡區而言,影像的尺寸、旋轉、實體鏡 的深度位置及OPM屬性可爲不同。本實施例可適用於身 份證、信用卡、駕照之應用,及類似應用。 -56- 200902339 圖1 8e顯示類似於圖18d的實施例,除了圖示平面4〇2 實質上未延伸超出透鏡區400的長度外。光學隔片398隔離 透鏡400與圖示402。印刷元件404及406相應於圖18d中印 刷元件375及377。於本實施例的方式之後,多路區400可 用於物件上;每一區可具有個別效果。本實施例可適用於 身份證、信用卡、駕照之應用,及類似應用。 圖1 8f描繪類似於圖1 8d的實施例,除了本實施例結 合光學隔片408外,其隔離透鏡413與圖示平面410。透鏡 413實質上延伸超出圖示區412的周圍。印刷元件414及416 相應於圖1 8 d中的印刷元件3 7 5及3 7 7。於本實施例的方式 之後,多路透鏡區可用於物件上;不論透鏡區的置放位置 ,將可看見本效果;對每一透鏡區而言,影像的尺寸、旋 轉、實體鏡的深度位置及OPM屬性可爲不同。本實施例 可適用於身份證、信用卡、駕照之應用,及類似應用。 圖1 9a、b描繪當倂入上述類型之結構時,比較球面 透鏡之對焦視場與平坦視場非球狀透鏡之對焦視場的截面 檢視。圖1 9a描繪應用於上述系統的實質上球面透鏡。實 質上球面透鏡418藉光學隔片420與圖示平面422隔離。所 投射垂直於材料之表面的影像424來自於圖示層422內的焦 點426。由於焦點426位於圖示層422內,所以影像424爲精 確焦點。當從傾斜角度檢視透鏡時,由於相應焦點43 0不 再位於圖示平面中,所以影像428模糊及失焦,並超出實 質距離。箭頭43 2顯示透鏡的視場曲率,等於焦點4M至 43 0的曲線。焦點位於遍及區434的圖示平面內,那麼便於 -57- 200902339 區4 3 6中圖示平面外部移動。適用於符合印刷影像或圖示 之平面的透鏡典型地具有低F#,典型地小於1,產生焦點 的極淺深度-可有效地使用較高F#透鏡而具有深及浮動效 果,但當用於一致移動效果時,形成相稱的垂直雙筒望遠 鏡,不同於文中所描述的效果。一旦較低限制的焦點深度 於圖示平面外部移動時,影像清晰便快速下降。由此圖可 見,實質上球面透鏡的視場曲率限制影像的視場:該影像 明顯的僅位於對焦區43 4內,更傾斜的檢視角度則快速失 焦。實質上球面透鏡並非平坦視場透鏡,且該些透鏡的視 場曲率被放大爲低F#透鏡。 圖19b描繪應用於本系統的非球狀透鏡。關於非球狀 透鏡,其曲率不接近球。非球狀透鏡43 8藉光學隔片440而 與圖示層442區隔。非球狀透鏡43 8投射垂直於材料之平面 的圖示平面442的影像444。該影像係於焦點446產生。由 於非球狀透鏡43 8具有平坦視場C2,所以其焦距置於圖示 平面442內,以便具有廣泛的檢視角度,從垂直的檢視角 度444到傾斜的檢視角度448。透鏡的焦距依據通過其之檢 視角度而改變。該焦距於垂直檢視角度4 4 4時是最短的, 並隨著檢視角度變得更加傾斜而增加。在傾斜的檢視角度 448時,焦點450仍位於圖示平面的厚度內,且傾斜影像因 而仍位於傾斜檢視角度448時的焦點。非球狀透鏡43 8之對 焦區454較實質上球面透鏡41 8之對焦區43 4爲大。非球狀 透鏡43 8因而提供相關影像圖示之寬度上的放大視場,使 得相較於球面透鏡4 1 8的視場’相關影像圖示的周邊未落 -58- 200902339 於圖外。由於所提供的較大視場及所產生之相關影像的能 見度增加,非球狀透鏡對於本系統較佳。 圖20a-c爲截面圖,描繪源自於使用厚圖示層之效用 的兩個好處。該些好處之應用不論用於檢視之透鏡456爲 實質上球面透鏡4 1 8或非球狀透鏡4 3 8 ’但最大的好處爲結 合非球狀透鏡4 3 8。圖2 0 a描繪薄圖示層4 6 0系統材料’其 包括藉光學隔片458而與圖示層460隔離的透鏡456。相較 於透鏡4 6 3的視場曲率’圖示元件4 6 2爲薄圖示元件4 6 1 ’ 將對焦區限制爲小角度,即沿垂直方向4 6 4投射的影像與 具有圖示層460中焦點470的最高傾斜角度影像468之間的 角度。最大視場之獲得係藉設計垂直影像焦點466置於圖 示平面的底部,藉以使傾斜視場角度最大化,限制在於焦 點470置於圖示平面之頂端的該點。圖20a中系統的視場 限制在3 0度。 圖20b描繪由結合圖示平面471所獲得的好處,相較 於透鏡456的視場曲率’其爲厚圖不平面472。透鏡456藉 光學隔片45 8而與厚圖示元件474隔離。厚圖示元件474保 持在55度,較圖20a之薄圖示元件462大之視場上的焦點 475中。經由透鏡4 5 6而從焦點478投射的垂直影像476處於 清晰的焦點,且當檢視角度增加直至55度時,該焦點仍保 持清晰,其中傾斜影像480焦點482置於厚圖示平面47 1的 頂端。若檢視則增加的視場對平坦視場透鏡而言是最大的 ,例如圖1 9b的非球狀透鏡43 8。 圖20c描繪厚圖示平面492的又另一優點;降低本系 -59- 200902339 統材料的敏感性爲厚度S的變化,其可源自於製造變化。 透鏡484從厚度i之圖示層的底部表面隔出距離S。透鏡 484投射來自配置於圖示層492之底部的焦點498的影像496 。該圖展現透鏡與圖示層之間光學空間S的變化可於等於 圖示層i之厚度的範圍上改變,而不漏失影像496、5 00 ' 5 04焦點。在透鏡48 6,光學隔片厚度約爲(S + i/2),且影像 5 00的焦點5 02仍處於圖示層492的厚度i之內。在透鏡488 ,光學隔片的厚度增加到(S + i)490,且影像5 04的焦點506 置於厚圖示元件494的頂端。光學隔片厚度因而可於相應 於圖示層i之厚度的範圍上改變:薄圖示層因而提供光學 隔片厚度變化的小容許量,且厚圖示層提供光學隔片厚度 變化的大容許量。 其餘好處是由厚圖示層492提供。例如實質上球面透 鏡之不完整透鏡,可具有朝向其邊緣而非其中心496的較 短焦距493。此爲實質上球面透鏡之共同球面像差缺點的 一個觀點。厚圖示層提供一圖示元件,其可清晰地聚焦於 焦距4 9 8至4 9 5的範圍上,藉以改進由具焦距變化之透鏡 4 84所產生之影像的整體清晰及對比。 圖21a、b爲平面圖,顯示本系統應用於貨幣及其他 安全文件,做爲'視窗化’安全執行緒。圖2 1 a、b顯示視窗 化執行緒結構,包括系統材料5 0 8,其已撕開爲一帶狀物 ,稱爲"執行緒”,其典型地處於0.5 m m至1 0 m m寬度的範 圍。執行緒5 0 8被倂入該纖維文件基底5 1 0,並提供視窗化 區5 1 4。執行緒5 0 8可選擇地結合著色的、染色的、塡充的 -60- 200902339 或包覆的密封層5 1 6,以增加影像對比及/或提供其餘的安 全及鑑別特徵,例如導電性、磁性、核磁共振檢測及鑑別 ,或當從基底的背面(呈現一致合成影像及膠黏劑層5 1 7之 側的相反側)檢視時,隱藏材料免於反射照度檢視,以強 化執行緒5 0 8及纖維基底5 1 0之間的結合。維持該執行緒 5 〇8於一方位,以保持透鏡在最上方,使得視窗化區514中 影像效果可見。纖維基底5 1 0及執行緒可由印刷元件5 1 8套 印,且該纖維基底可經印刷520於其背面。 圖2 1a、b描繪執行緒5 08及其影像效果522,僅於視 窗化區514中基底510的上表面521可見。執行緒508於內部 區5 12被纖維基底材料覆蓋,且影像效果522於該些區中實 質上不可見。當併入執行緒508時,OPM效果特別引人注 目(參照圖22)。當纖維基底510以各種方向傾斜時,可形 成OPM影像以掃瞄橫越執行緒的寬度524,而製造令人吃 驚及戲劇性的視覺效果。OPM影像的掃瞄特徵使其可呈 現影像522,其大於執行緒508的寬度。使用者對於包含視 窗化執行緒5 0 8之文件的檢查,接著可傾斜該文件以掃瞄 橫越該執行緒的整個影像,捲動其如同遮蓬符號。亦可使 用深、浮動及飄浮實施例的效果,以獲得視窗化執行緒格 式的好處。 執行緒508於以製紙工業常用的技術而製造期間,可 至少部分倂入安全紙。例如,如以參考的方式倂入本文之 美國專利4,53 4,3 98所提出的,當纖維爲未凝固及柔軟時 ,可將執行緒508壓入濕式紙中。 -61 - 200902339 本系統的視窗化執行緒特別適用於貨幣。執行緒材料 之典型的總厚度處於22 μ至3 4 μ的範圍,同時貨幣文件的總 厚度可高達8 8 μ的範圍。藉局部減少紙的厚度達等於執行 緒之厚度的量,可將本系統的視窗化安全執行緒結合貨幣 文件,而實質上不改變紙的總厚度。 在示範實施例中,執行緒508包含·· 一或多個光學隔片; 一或多個定位於光學隔片之內、之上或相鄰之微影像 或圖示的選擇地期間性平面陣列;及 一或多個定位於光學隔片或平面圖示陣列之內、之上 或相鄰之非圓柱形微透鏡的選擇地期間性平面陣列,其中 每一微透鏡具有小於50微米的基礎直徑。 在另一實施例中,微影像或圖示構成塡充的空隙或凹 處,其係形成於一或多個光學隔片的表面上,同時非圓柱 形微透鏡爲非球狀微透鏡,其中每一非球狀微透鏡具有約 15至約3 5微米範圍的基礎直徑。至少一著色的密封或掩蔽 層516可定位於微影像或圖示的平面陣列上,用於增加對 比及因而圖示的視覺敏銳,且亦用於當執行緒至少部分嵌 入安全文件中時遮罩執行緒508的出現。 在本發明的又另一實施例中,執行緒5 08包含: 具有相對之上及下平面表面的光學隔片; 包含形成於光學隔片之下平面表面上之塡充的凹處之 微影像或圖示的週期陣列; 定位於光學隔片之上平面表面上之非圓柱形、平坦視 -62- 200902339 場、非球狀或多邊形底座多帶狀微透鏡的週期陣列,其中 每一微透鏡具有約20至約30微米範圍之基礎直徑;及 定位於圖示陣列上之著色的密封或掩蔽層516。 光學隔片可使用一或多個實質上無色的聚合物而形成 ’包括但不限於聚酯、聚丙烯、聚乙烯、聚乙烯對苯二酸 鹽、聚氯乙烯等。在示範實施例中,使用聚酯或聚乙烯對 苯二酸鹽形成具有約8至約25微米範圍之厚度的光學隔片 〇 圖示及微透鏡陣列可使用實質上透明的或清澈的輻射 固化材料而形成,包括但不限於丙烯酸樹脂、聚酯、環氧 化物、氨基甲酸酯等。較佳地,使用取自Lord Chemicals 之產品U1 07的丙烯酸鹽氨基甲酸酯形成陣列。 形成於光學隔片之下平面表面上的每一圖示凹處測量 爲約0.5至約8微米深度’典型地爲30微米的微影像或圖示 寬度。該凹處可以任一適當材料塡充,例如著色的樹脂、 墨水、染料、金屬或磁性材料。在一示範實施例中,該凹 處係以著色的樹脂塡充’包含取自Sun Chemical Corporation之產品Spectra Pac的次微米顏料。 著色的密封或掩蔽層516可使用一或多樣不透明包覆 或墨水而形成’包括但不限於著色的包覆,其包含顏料, 例如分佈於固化聚合物材料之黏結劑或載子內的二氧化欽 。較佳地,使用輻射固化聚合物形成具有約0.5至約3微米 範圍之厚度的密封或掩蔽層516。 如上述,執行緒5 0 8可依據下列方法而準備: -63- 200902339 將實質上透明的或清澈的輻射固化樹脂應用於光學隔 片的上及下表面; 於光學隔片的上表面上形成微透鏡陣列及於光學隔片 的下表面上形成凹處形式的圖示陣列; 使用輻射源固化實質上透明的或清澈的樹脂; 以著色的樹脂或墨水塡充圖示陣列凹處; 從光學隔片的下表面移除超量的樹脂或墨水;及 將著色的密封或掩蔽包覆或層應用於光學隔片的下表 面。 在許多狀況下,用於藉高速非接觸感應器檢測及鑑定 之貨幣及其他高價値財務與識別文件之安全執行緒是必須 的,例如電容感應器、磁場感應器、光學傳輸及不透明度 感應器、螢光性及/或核磁共振。 螢光的材料倂入透鏡、基底、圖示矩陣或一致膜的圖 示塡充元件,藉觀察螢光性的出現及頻譜特性可啓動一致 材料的隱蔽或法庭鑑別。螢光一致膜可經設計而具有材料 的兩側可見或僅材料的一側可見之螢光的屬性。圖示層下 之材料中不具光學隔離層,一致材料之任一部分的螢光性 將可從其任一側可見。光學隔離層的倂入使其可區隔其兩 側之螢光性的能見度。因而,圖示平面下倂入光學隔離層 的一致材料可經設計而呈現大量不同方式的螢光性:可從 透鏡端看見螢光的顏色A、不可從光學隔離層端看見螢光 性、可從光學隔離層端但不可從透鏡端看見螢光的顏色A 或B、及可從透鏡端看見螢光的顏色A並可從光學隔離層 -64- 200902339 贿看見蛋光的顏色八或B。各種螢光的簽章所提供的獨特 性可用於進-步增強—致材料的安全。光學隔離層可爲著 色的或染色的材料層、金屬層、或著色的層及金屬層的組 合,其吸收或反射從材料的一側之螢光發射,並避免從另 一側看見。 從疋型的空隙所形成的圖示,及其相反從定型的柱狀 所形成的圖不,特別授權而附加機器可讀取鑑別特徵至貨 幣及其他局價値文件的一致材料安全執行緒。圖示矩陣、 圖示塡充及任一數量的向後包覆(密封包覆)可全部、個別 及/或所有組合地結合非螢光顏料、非螢光染料、螢光顏 料、金光染料、金屬顆粒'磁性顆粒、核磁共振簽署材料 、雷射光顆粒、有機LED材料、光學可變的材料、蒸發 金屬、薄膜干擾材料、液晶聚合物、光學上轉換與下轉換 材料、一色性材料、光學作用材料(擁有光學旋轉放大率) 、光學極化材料、及其他相關材料。 在些丨β況下’例如當暗或彩色的包覆(例如磁性材 料或傳導層)已附加至一致材料時,或當圖示平面的顏色 是令人不愉快的時,當從基底的背面觀看時,便需要如同 在反射光線中觀看,從紙基底的一側遮罩或隱藏嵌入、部 分嵌入或視窗化一致材料安全執行緒的出現,同時可從該 基底的相反側看見該執行緒。其他類型的貨幣安全執行緒 通常結合一金屬層,典型地爲鋁,以反射透過表面基底的 光線,藉此提供周圍的基底類似的亮度。可以類似方式使 用鋁或其他顏色的中性反射金屬,藉於一致材料的背面上 -65- 200902339 應用該金屬層,接著選擇地適當 的出現。爲相同目的可使用著色 與其結合,從文件的"背”面隱藏 度。該著色的層可爲任一顏色, 色爲符合纖維基底的內、外之光 者。 附加金屬化的層至一致材料 經由蒸發、噴濺、化學沈澱或其 圖示或密封層的直接金屬化,或 封層至第二聚合物膜的金屬化表 安全執行緒是常見的實施,即藉 屬化該膜而餘下金屬化區域的窄 的表面至第二聚合物膜,接著撕 金屬帶狀物藉層壓膠黏劑而與該 藉此保護金屬免於執行緒邊緣的 用於主題發明的狀況:該一致材 壓膜。因而,一致材料可經由添 化層而增加。 合成影像可設計爲二元型樣 (或顏色缺少)及定義背景之不同 狀況下,每一圖示區包括完全單 開通或完全關閉的影像’畫素1。 色調變化,可產生更精密的合成 像中顏色的密度,或藉包括或排 密封,而遮罩一致執行緒 的層以取代金屬化的層或 或掩蔽安全執行緒的能見 包括白色,但最有效的顏 線內部散射的顏色及密度 可以許多方式完成,包括 他適當機構之一致材料的 層壓一致材料的圖示或密 面。以下列方式製造貨幣 金屬化一膜之型樣,去金 '帶狀物’,層壓該金屬化 開該層壓的材料,使得該 撕開執行緒的邊緣隔離, 化學攻擊。此方法亦可應 料可簡單地取代該第二層 加定型的或不定型的金屬 ,具有一定義圖示之顏色 顏色(或顏色缺少),在此 一色調影像,其使用完全 藉提供選擇的圖示顏色之 影像。藉控制每一圖示影 除選擇的圖示群組中設計 -66 - 200902339 元件而有效地’半調色•合成影像,可製造合成影像色調變 化。 第一方法控制每一圖示影像之顏色的密度,可藉控制 製造微印刷圖示影像之材料的光學密度而予完成。實施的 一種方便的方法是利用先前已描述之塡充的空隙圖示實施 例。 第二方法,即藉包括或排除圖23中所描繪之選擇的圖 示群組中設計元件而’半調色'合成影像,可經由包括等於 所需顏色密度之圖示區比例的影像設計元件。圖23描繪使 用圖示區5 7 0之六角形重複型樣的範例,其符合透鏡的類 似六角形重複型樣。每一圖示區570不包含相同的資訊。 所有圖示影像元件5 72、5 74、. 576及5 78實質上以相同顏色 密度呈現。在一些圖示區中呈現圖示影像元件5 72與5 74 ’ 及在其他圖示區中呈現不同的圖示影像元件。一些圖示區 包含單一圖示影像元件5 70。具體地,圖示影像元件5 72係 以圖示區的一半呈現,圖不影像兀件574係以圖不區的四 分之三呈現’圖示影像元件5 7 8係以圖示區的一半呈現’ 及圖示影像元件5 76係以圖示區的三分之一呈現。每一圖 示區中呈現的資訊決定相關透鏡是否將顯示圖示影像型樣 的顏色,或從特定檢視方位顯示圖示影像背景的顏色。影 像元件5 72或5 78將可從圖示型樣相關的所有透鏡見到,但 圖示影像元件5 72的合成影像5 80空間與圖示影像元件578 的合成影像空間重疊。由於每一透鏡將投射重疊區5 82中 圖示影像顏色’所以圖示572及5 78之合成影像的重疊區 -67- 200902339 5 8 2之機構將以1 0 0 %顏色密度出現。該二合成影像的非重 疊部分5 8 8僅可於透鏡的5 0 %中見到,所以其係以5 0 %顏色 密度出現。圖示元件5 7 6的合成影像5 8 6僅可於透鏡的三分 之一中見到,所以其係以3 3 . 3 %顏色密度出現。圖示影像 元件5 76的合成影像5 84相應地以75%顔色密度出現。經由 選擇的一部分圖示區中圖示影像元件之選擇的省略,可於 合成影像中獲得色調變化之極大的範圍,此完全處於本文 的範圍。爲求最大有效,遍及圖示影像區之圖示影像元件 之分佈將極一致。 圖24a中所描繪的相關圖示影像設計方法可用於製造 結合的合成影像元件,其尺寸小於個別合成影像元件的最 小特徵。在圖示影像的最小特徵尺寸大於特徵之配置準確 性的一般情況下,這是可能的。因而在二微米尺寸的等級 下,圖示影像可具有最小特徵,但該些特徵可準確地置於 0.2 5微米間隔之柵格的任一點上。在此狀況下,圖示影像 的最小特徵較該特徵的配置準確性大八倍。先前附圖使用 六角形圖示型樣594描繪此方法,但其可應用任何其他可 用的型樣對稱。在類似於圖2 3之方法的方式中,本方法係 依賴使用至少一圖示區中的不同資訊。在圖24a的範例中 ,兩不同圖示型樣596及598各於一半的圖示區中呈現(爲 求清晰’圖中僅顯示每一型樣之一)。該些圖示影像產生 合成的合成影像600,其結合圖示影像元件5 96製造的合成 影像6〇2及圖示影像元件598製造的合成影像604。該二合 成影像602及604經設計而具有重疊區域6〇6及6〇8,其顯現 -68- 200902339 爲具有1 0 0 %顏色密度,同時非重疊區域6 〇 5具有5 0 %顏色 密度。合成的合成影像中重疊區域的最小尺寸可與圖示影 像元件之合成放大縮放的定位準確性一樣小,且因而可較 經設計而於小區域中重疊之二組成的合成影像的最小特徵 尺寸小。在圖2 3的範例中,重疊區域用於以較其他爲窄的 線製造數字"1 〇"的符號。 如圖24b中所示’此方法亦可用於製造圖示影像元件 之間間隙的窄型樣。六角形圖示區6 〇 9可爲方形或任何其 他適當的形狀,以製造空間塡充陣列,但六角形較佳。在 此範例中’圖示的一半定型圖示影像610,而其一半爲圖 示影像6 1 1。理想地,該二型樣將極一致地分佈於圖示區 之間。該些型樣的所有元件被描繪爲實質上相等及一致的 顔色密度。隔離中該二型樣未清楚地建議最後影像的形式 ’且其可用做安全元件-該影像在由其上透鏡陣列形成之 前不明顯。顯示圖示元件610之合成影像與圖示元件611之 合成影像的組合所形成合成影像6 1 2的例子,藉此個別合 成影像之間所保持的間隙形成數字"1 〇 "。在此狀況下,二 合成影像結合而形成最後合成影像,所以影像6 1 3之彩色 的零件顯示5 0 %顏色密度。本方法不限於此範例的內容: 可使用三個圖示而非兩個’定義合成的合成影像中所需元 件的間隙可具有可變的寬度及無限制的形狀種類,且此方 法可與圖23、24a、b或25的方法,或吾人以提及的其他 圖示影像設計方法相結合。 隱蔽、隱藏資訊可倂入無法於結果合成影像中看見的 -69- 200902339 圖示影像。可使用隱藏於圖示影像的隱蔽資訊,例如進行 物件的隱蔽鑑別。圖2 5描繪完成此作業的兩種方法。經由 使用相符的圖示影像616及61 8而描繪第一方法。圖示影像 6 1 6顯示固體邊緣型樣及包含於該邊緣內部的數字” 42"。 圖示影像61 8顯示具數字M2"的固體形狀,做爲該形狀中 圖形的孔洞。在此範例中,圖示影像61 6及61 8的周圍形狀 實質上相同,且其個別圖示區634及636內的相對位置亦實 質上相同。當合成的合成影像620係從該些圖示影像製造 時,由於所有圖示影像具有相應區域中的型樣,合成的合 成影像622之邊緣將顯示100%顏色密度,故從圖示影像 616及618製造的合成影像中存在完全重疊。由於來自僅塡 充一半圖示區之圖示影像61 8的空間周圍的"42”的影像, 及來自亦塡充一半圖示區之圖示影像61 6的彩色的"42”的 影像,合成的合成影像6 2 0之內部6 2 4的顏色密度將爲5 0 % 。因此,"42”及其背景之間不存在色調不同,故所觀察之 合成的合成影像626將顯示具有100%顏色密度邊緣628及 5 0%顏色密度內部630的影像。隱蔽地呈現於所有圖示影 像61 6及618中的"42”藉此被”抵消",且不能於所觀察之合 成的合成影像626中看見。 藉圖25中三角形63 2描繪將隱蔽資訊倂入圖示影像的 第二方法。三角形632可任意地置於圖示區中(圖中未顯示 ),或其可置於實質上不符合圖不區634、632之期間的陣 列或其他型樣中。合成影像係由微透鏡之相應規則的陣列 所成像之規則陣列的圖示影像的多重性製造。實質上未相 -70- 200902339 應於微透鏡陣列之期間的圖示平面型樣將不形成完整的合 成影像。因而三角形632的型樣將不製造相干合成影像’ 且將不能於所觀察的合成影像6 2 6中見到。此方法不限於 簡單的幾何設計,例如三角形63 2。例如字母與數字資訊 、條碼、資料位元及大縮放型樣之其他隱蔽資訊,可藉本 方法而倂入圖示平面。 圖2 6描繪於一致材料中製造完全三維整體影像的一般 方法(一致3-D)。單一圖示區640包含圖示影像642,其代 表如圖示區640之有利位置所見將以3-D顯示之物件的縮 放-歪曲檢視。在此狀況下,圖示影像642經設計而形成中 空管674的合成影像670。圖示影像642具有代表中空管672 之最近端6M的前景訊框644、代表中空管672之角落676的 疊錐形間隙型樣6 4 6、及代表中空管6 7 2之最遠端6 7 8的背 景訊框64 8。可以見到圖示影像642中前景訊框644與背景 訊框64 8的相對比例,未相應於合成影像中空管672之最近 端674與最遠端678的比例。縮放之差異的原因在於進一步 從一致材料之平面出現的影像歷經較大的放大,所以其圖 示影像中尺寸必須減少以便提供放大的正確縮放而形成合 成影像6 7 2。 吾人於一致3-D材料的不同位置發現圖示區650,其 包括不同圖示影像652。如同圖示影像642,圖示影像652 代表如圖示區6 5 0之不同有利位置所見之合成影像672的縮 放-歪曲檢視。前景訊框654及背景訊框65 8的相對縮放類 似於圖示影像642的相應元件(儘管此通常將不是真的), -71 - 200902339 但背景訊框658的位置已偏移,連同角落型樣656的尺寸及 方位。圖不區660被置於進一步遠離一致3-D材料,且其 呈現又另一縮放-歪曲圖示影像662,包括具前景訊框664 、疊錐形間隙型樣667及背景訊框66 8的圖示影像662。 通常,一致3 - D材料的每一圖示區中圖示影像將與其 鄰近者略有不同,並與距離較遠者顯著地不同。可以見到 圖示影像65 2代表圖示影像642與662之間的轉換階段。通 常,一致3 -D材料的每一圖示影像可以是獨特的,但每一 將代表圖示影像至其另一面之間的轉換階段。 合成影像670係由如同圖示影像640、650及660之圖示 影像的多重性所形成,做爲經由相關透鏡陣列的合成成像 。中空管674的合成影像顯示不同合成放大因子的效果, 其源自於每一圖示影像之不同元件的有效重複期間。讓我 們假設中空管影像674預期將視爲超深影像。在此狀況下 ,若圖示區64 0配置距圖示區650的左下方一些距離,且圖 示區660配置距圖示區650的右上方一些距離,可以見到前 景訊框6 4 4、6 5 4及6 6 4的有效期間將小於背景訊框6 4 8、 658及668的有效期間,藉以使該管的最近面676(相應於前 景訊框644、654及664)置於較接近一致材料的平面,及使 該管的最遠面678置於較深及進一步離開一致材料的平面 ,並經較大因子而放大。角落元件646、656及667符合前 景及背景元件,而製造流暢地改變其間深度的效果。 圖27a-b更完整地描述一致3-D之圖示影像的設計方 法。該圖隔離單一影像放映機6 8 0的方法。如先前所描述 -72- 200902339 的’單一影像放映機包括一透鏡、一光學隔片及一圖示影 像;該圖示影像具有實質上與該透鏡之重複期間相同的尺 寸(允許製造一致視覺效果的小縮放差異)。透鏡及其相關 圖示的視場顯示爲圓錐形682 :其亦相應於透鏡之焦點圓 錐形的倒轉,所以視場圓錐形6 8 2的比例係由透鏡的F #決 定。儘管該圖顯示該圓錐形爲具有圓形的底座,但該底座 的形狀將實際上與圖示區的形狀相同,例如六角形。 在此範例中,吾人希望製造一致3-D合成影像,其結 合三不同超深影像平面6 84、690及692之相同視覺大小的 三個"UNISON "字686、690及694的副本。影像平面684、 6 8 8及692的直徑隨視場圓錐形而延伸:換言之,隨影像的 深度增加,視場圓錐形所覆蓋的區域增加。因而最淺深度 平面684的視場僅圍繞UNISON字的"NIS"部分,同時中間 深度平面6 8 8圍繞"NIS "全部及"U"與” 〇 "部分,且最深深度 平面692圍繞幾乎全部的"UNISON",僅缺少最後的,,N”部 分。 藉每一合成影像平面684、688及692呈現的資訊 (UNISON 686、690及694)最後必須倂入影像放映機"ο中 的單一圖示影像。此係藉捕捉每一深度平面6 8 4、6 u及 6 9 2之視場圓錐形6 8 6中資訊,接著將結果的圖示影像型樣 縮放爲相同尺寸。圖示影像696代表於深度平面6 84所見一 致影像6 8 6的視場’圖示影像7 〇 4代表於深度平面6 8 8所見 一致影像ό 9 0的視場,及圖示影像7〗6代表於深度平面6 9 2 所見一致影像694的視場。 -73- 200902339 在圖示影像696內,圖示影像元件698來自於UNISON 影像68 6之第一個”N"的部分,圖示影像元件700來自於 UNISON影像6 8 6之”1”的部分,及圖示影像元件7〇2來自於 UNISON影像686之” S”的部分。在圖示影像704內,圖示 影像元件706來自於UNISON影像690之"U"的部分,圖示 影像元件70 8來自於UNISON影像690之第一個”N”的部分 ’圖示影像元件7 1 0來自於UNISON影像6 9 0之"S "的部分 ’及圖示影像元件714來自於UNISON影像690之”0"的部 分。請注意,儘管合成影像6 8 6、690及694以類似的縮放 呈現,中間深度平面688的圖示影像704以較圖示影像696 小的縮放呈現其UNISON字母。此考量圖示影像704將歷 經的較高合成放大(當合成地結合相同深度平面之周圍的 圖示影像的多重性時)。以類似的方式,圖示影像7 1 6結合 來自於UNI S ON影像6 9 4的圖示影像元件7 1 8,且倂入其圖 示影像的UN I S ON字母將進一步減少縮放。 如圖2 8中所示,影像放映機的最後圖示影像係藉結合 該些三圖示影像696、704及716至單一圖示影像730而製造 。結合的圖示元件7 3 2結合影像放映機680所需的所有圖形 及深度資訊,使其促成由影像放映機之多重性形成的合成 影像,每一結合源自於其本身視場圓錐形之相交並集中在 影像放映機的特定圖示影像資訊,與將產生之合成影像的 位準與元件。由於每一影像放映機係以至少來自於每一其 他影像放映機的一透鏡重複期間替換,每一影像放映機將 攜帶源於具合成影像空間之其視場圓錐形之相交的不同資 -74- 200902339 訊。 呈現所選擇3-D影像所需每一圖示影像可由下列資料 加以計算:合成影像之三維數位模型的知識、將呈現於合 成影像中所需的深度位置及深度範圍、透鏡重複期間、透 鏡視場及圖示影像的最終圖形的解析度。後面的因子置上 限於細節的位準上,其可呈現於每一深度平面。由於進一 步源於一致材料之平面的深度平面攜帶大量的資訊(由於 增加的視場),圖示之圖形的解析度限制具有該些合成影 像深度平面之解析度的最大影響。 圖29描繪圖27a-b的方法如何能應用於複雜的三維合 成影像’例如無價的冰河時期雕刻毛象象牙藝品 Brassempouy小姐742。個別影像放映機738結合至少—透 鏡、一光學間隔元件及一圖示影像(圖中未顯示),並置於 隔離浮動合成影像空間與深合成影像空間之一致材料的平 面7 4 0中。在本範例中’合成影像空間涵蓋一致材料,使 得部分影像置於浮動合成影像空間及部分置於深合成影像 空間。影像放映機738具有實質上圓錐形的視場其延伸進 入深合成影像空間7 4 4及浮動合成影像空間7 4 6。深影像平 面的選擇編號爲748及752J62,並以獲得所需深合成影像 空間解析度之必須爲間隔。同樣地,浮動影像平面的選擇 編號爲750及76心7 74’並以獲得所需浮動合成影像空間解 析度之必須爲間隔。一些該些平面,例如深平面7 4 8及浮 動平面750將延伸超出合成影像,且將不促成圖示影像中 的最後資訊。爲求清晰 > 圖29中所顯示影像平面的數量限 -75- 200902339 制爲少量’但實際選擇的影像平面之數量可以多,例如5 0 或1 〇個平面’或更多’以獲得所需的合成影像深度解析度 〇 接著應用圖27a-b及28的方法,以經由選擇的深度平 面756-774判斷物件742之表面的相交的形狀,而獲得每一 深度平面的圖示影像。結果的個別圖示影像縮放爲結合的 圖示影像之最後大小。所有浮動圖示影像首先旋轉1 8 0度( 因爲當其投射時再次經歷該旋轉,藉此使其回到合成影像 中正確方位)’接著與深圖示影像結合,以形成影像放映 機7 3 8的最後圖示影像。影像放映機的每一位置均重複此 過程,以獲得形成全合成影像742所需之圖示影像的完整 型樣。 合成影像的解析度取決於光學放映機的解析度及圖示 影像的解析度。吾人已獲得小於0 . 1微米之圖示影像圖形 的解析度,其超出放大光學的理論光學解析度(〇.2微米)。 典型的圖示影像係以0.2 5微米的解析度製造。 一致材料可經使用分別結合透鏡及圖示微結構之單片 或成捲處理而予製造。透鏡工具及圖示工具均源自於使用 光遮罩及光阻方法。 透鏡工具最初設計爲半導體型遮罩,典型地爲玻璃上 黑鉻。具有足夠解析度的遮罩可藉照相縮版、電子束寫入 或雷射寫入而予製造。透鏡工具的典型遮罩將以例如3 〇微 米之選擇的期間結合不透明的六角形之重複型樣’其以清 楚的線區隔小於2微米寬的六角形。該遮罩接著用於暴露 -76- 200902339 光阻於使用傳統半導體uv曝光系統的玻璃板上。該抗鈾 劑的厚度經選擇而獲得透鏡的所需凹陷。例如,5微米厚 度的AZ 4620正光阻經由適當機構而包覆玻璃板,例如藉 旋轉包覆、浸泡包覆、新月形包覆或噴塗,而形成具有名 義上30微米重複及名義上35微米焦距的透鏡。該光阻以該 遮罩型樣曝光,並以傳統方式向下顯影至玻璃,接著於 1 00 °C下乾燥及排氣達3 0分鐘。透鏡係依據本技藝已知的 標準方法,經熱回流而予形成。結果的光阻微透鏡包覆傳 導金屬,例如金或銀,及藉電鑄製造的負鍍鎳工具。 圖示工具係以類似的方法製造。圖示型樣典型地以 CAD軟體的協助而設計,且該設計被傳輸至半導體遮罩 廠商。該遮罩以類似的方式用於透鏡遮罩,除了將曝光之 抗蝕劑的厚度依據所需合成影像的光學密度而典型地處於 0.5微米至8微米的範圍外。該光阻以該遮罩型樣曝光,並 以傳統方式向下顯影至玻璃,以傳導金屬及藉電鑄製造的 負鍍鎳工具包覆。依據原始遮罩設計的選擇,及所使用抗 蝕劑類型(正或負)的選擇,可以抗蝕劑型樣中空隙的形式 而製造圖示,或其可以抗蝕劑型樣"平台"或柱狀的形式製 造,或二者皆然。 一致材料可以微光學及微結構複製之技藝中已知的各 式材料及多重性方法製造,包括擠壓凸版、輻射固化澆鑄 、軟凸版及注入鑄模、反應注入鑄模及反應澆鑄。製造的 示範方法爲形成該圖示做爲輻射固化液體聚合物中空隙, 其係針對底座膜澆鑄,例如7 5 g a g e附著促進P E T膜,接 -77- 200902339 著從正確校正或相對於該圖示偏斜之底座膜背面上輻射固 化聚合物形成透鏡,接著以凹版印刷型刮墨刀針對膜表面 將次微米顆粒著色的著色材料塡充圖示空隙,藉適當機構 (例如溶劑移除、輻射固化或化學反應)固化該塡充,最後 應用選擇的密封層,其可爲透明的、染色的、著色的或結 合隱蔽安全的材料。 一致移動材料的製造需要圖示工具及透鏡工具結合二 陣列之對稱軸的不重合角度。圖示及透鏡型樣之對稱軸的 不重合控制產生的材料中合成影像尺寸及合成影像旋轉。 其通常需要提供合成影像實質上與成捲方向或相交成捲方 向的校正,及在其他狀況下透鏡型樣及圖示型樣之間圖示 及透鏡的總角度不重合被均等地劃分。所需角度不重合的 角度通常極小。例如,0 · 3度等級的總角度不重合適於將 一致移動材料中3 0微米圖示影像放大爲5.7 m m的大小。 在此範例中,總角度不重合於二工具之間被均等地劃分, 所以每一工具以二工具的相同方向偏斜爲0.15度的角度。 由於工具於底座膜的背面形成微結構,所以係沿相同方向 偏斜,使得工具的偏斜彼此加成而非彼此抵消。 偏斜可於遮罩的原始設計時,藉旋轉整個型樣達寫入 之前所需角度而倂入工具。偏斜亦可藉數値控制的銑床切 割爲適當角度而機械地倂入平坦的鍍鎳工具。該偏斜的工 具接著使用偏斜切割邊緣形成爲圓柱形工具,以校正該工 具與壓印圓筒的旋轉軸線。 此中合成放大微光學系統可與其餘特徵結合,包括但 -78- 200902339 不限於單一元件或各式組合的該些實施例,例如圖示塡充 材料,背面包覆、頂部包覆、定型及非定型的、透鏡、光 學隔片或圖示材料中塡充或內含物,如同層壓或包覆。墨 水及/或膠黏劑包括正或負材料之形式中的水、溶劑或輻 射固化、光學透明的、半透明的或不透明的、著色的或染 色的指標,包覆或印刷包括但不限於墨水、金屬、螢光的 或磁性材料、X射線、紅外線或紫外線吸收劑或發射材料 ’磁性及非磁性金屬包括鋁鍍鎳、鉻、銀及金;用於檢測 或資訊儲存的磁性包覆及顆粒;如同包覆及顆粒之螢光的 染料及顏料;IR螢光的包覆、塡充、染料或顆粒;UV螢 光的包覆、塡充、染料或顆粒;磷光的染料及顏料,如同 包覆及顆粒、乩板、DNA、RNA或其他大分子炸藥添加劑 、二色性纖維、放射性同位素、印刷容納包覆、塗料、或 底漆、化學反應材料、微包膠配料、視場所及材料、傳導 顆粒及金屬製的及非金屬製的包覆,微穿孔孔洞、彩色的 執行緒或纖維、一致嵌入文件表面、標籤或材料表面的貼 片’結合紙或聚合物做爲黏附製造期間之紙的載子,螢光 的二色性執行緒或顆粒、拉曼散射包覆或顆粒、顔色轉移 包覆或顆粒、一致層壓紙、紙板、硬紙板、塑膠、陶製品 、毛線或金屬基底,U s i ο η例如執行緒、貼片、標籤、覆 蓋包覆、熱戳記箔或易撕帶、全像攝影、繞射、繞射 kinegram、等値線、攝影或折射光學元件、液晶材料、上 轉換及下轉換材料。 雖然影像圖示組件已詳細地結合聚焦元件的上述陣列 -79- 200902339 ,影像圖示組件可用於提供其他應用的影像"印刷”。例如 ,圖34爲具微結構圖示元件之材料的實施例之圖示層821 的截面,例如微結構圖示元件的陣列。所顯示的圖示層 8 2 1可構成本合成放大微光學影像投射系統、波紋放大系 統的圖示層、"鎖匙及金鑰’'波紋放大系統的圖示層(如下 述)、微影像或有效π微印刷”的獨立層、微圓柱形雙凸透 鏡狀影像膜系統的圖示層、或另一微光學系統的影像或圖 不層。 圖示層821可爲獨立式或選擇地裝備於基底820或透明 基底820上(若圖示層構成波紋放大系統中元件,其中圖示 層821經由透明基底820而光學耦合至微透鏡陣列,便需爲 後者)。選擇的基底或透明基底820支撐或與圖示層821接 觸,後者結合可做爲圖示影像之元件的各式微結構。微結 構圖示元件可形成爲凹處或材料層中凸起的區域,例如圖 示層821,或位於基底中。微結構圖示影像元件可採用各 式形式及幾何,包括但不限於非對稱空隙型樣822、對稱 空隙型樣823、光線陷阱型樣824、全像攝影表面凸版印刷 型樣82 5、通用繞射表面凸版印刷型樣826、二元結構型樣 827、"二元光學儀器”、”結構顏色"及一般階梯形凸版印 刷型樣82 8、隨機粗糙及虛擬隨機粗糙型樣829、名義平坦 表面型樣830及凹面831與凸面832型樣(如圖所示,從圖示 層下端所檢視)。 圖示層8 2 1可結合同質微結構的陣列或型樣,例如, 僅非對稱空隙型樣822。另一方面,圖示層821可結合二或 -80- 200902339 更多微結構實施例82 2- 8 3 2的陣列或型樣。該微結構做爲 可形成於共同形成影像之微結構圖示元件之陣列中的圖示 元件,類似於形成傳統印刷影像之畫素的群組或陣列。例 如,可製造具有微結構圖示元件之陣列的系統,該微結構 圖示元件之陣列可與上述聚焦元件的陣列結合,其中該二 陣列相符以形成可或不可放大的合成光學影像。亦可製造 具有微結構圖示元件之陣列的系統,該微結構圖示元件之 陣列共同地形成預期以放大檢視的”微印刷"影像,例如經 由放大鏡或顯微鏡之助而檢視。 圖34的微結構圖示元件822-832可經設計而呈現其零 件內及其零件與當圖示元件浸入或接觸真空、氣體(包括 混合氣體,例如空氣)、液體或固體時圖示層82 1之周圍非 結構區域之間的光學對比。該光學對比可經由折射、總內 部反射、表面反射、散射、部分極化、極化、光學旋轉、 衍射、光學干擾及其他光學效果而予提升。 微結構圖示元件 圖35爲一截面圖,描繪結合多個微結構圖示影像元件 實施例之包覆的圖示層777。圖示層777類似於圖34的圖示 層82 1,且亦可爲獨立式或選擇地裝備於基底77 5或透明基 底775。所描繪圖示元件實施例可包括圖34中型樣,包括 非對稱空隙型樣779、對稱空隙型樣78 1、光線陷阱型樣 7 8 3、全像攝影表面凸版印刷型樣7 8 5、通用繞射表面凸版 印刷型樣787、二元結構型樣789、"二元光學儀器"、•’結 -81 - 200902339 構顏色”及一般階梯形凸版印刷型樣79 1、隨機粗糙及虛擬 隨機粗糙型樣795、名義平坦表面型樣797及凹面799與凸 面80 1型樣(如圖所示,從圖示層下端所檢視)。 微結構圖示影像元件係使用任一上述微結構圖示影像 兀件工具及方法而形成於圖示層中。 任一圖示元件微結構可以保角的、非保角的及/或指 向性包覆材料7 9 3包覆。 定型的包覆 包覆材料793可爲保角的、非保角的、連續的、非連 續的、定型的、非定型的、指向的,或其可具有不同於圖 示層7 7 7或其組合的屬性或材料。包覆材料7 9 3的型樣可提 供圖示影像元件,其可與微結構影像元件型樣相符,或獨 立於微結構影像元件型樣,或二者皆然。包覆材料793可 爲定型的以於圖示層777的表面裝備圖示影像元件,不論 圖示層777是否結合任一微結構型樣。不論定型的或非定 型的包覆材料793均不需覆蓋圖示層777的整個表面。該包 覆材料僅可應用於圖示層777的選擇部分。 例如,圖示影像元件可藉製造一型樣去金屬化鋁層, 做爲不具任何微結構之聚酯圖示層的區域中聚酯圖示層( 如圖示層777的一範例)上包覆材料(如包覆材料793的一範 例)而形成(例如下述圖4 0中所描繪的)。在此範例中,型 樣去金屬化鋁層提供不使用圖示層上微結構表面的圖示影 像。該型樣去金屬化鋁層亦可用於結合該聚酯圖示層之另 -82- 200902339 一區域中微結構圖示影像元件。該型樣去金屬化鋁層可與 微結構圖示影像元件相符’使得其預定的出現藉該型樣去 金屬化鋁層而增強,或藉該型樣去金屬化鋁層所提供之圖 示影像可獨立於圖示層微結構圖示影像元件,使得該型樣 去金屬化鋁層圖示影像用於製造一合成影像,同時該微結 構圖示影像元件用於製造一第二合成影像。 包括定型的包覆之正及負影像 微結構圖示影像元件及定型的圖示層包覆二者可用於 形成正影像或負影像(亦參照下列圖40),使得任一該些影 像元件可呈現選擇的”前景”屬性或選擇的"背景”屬性,同 時周圍的區域呈現上述二屬性中未呈現的一個。因而圖示 影像元件可用於形成垂直影像或顏色相反的影像,及相應 地垂直合成影像或顏色相反的合成影像。 有關一範例,任一該些圖示影像元件方法可用於提供 影像(例如貨幣面額-"50”),其爲不透明的或爲相對於透明 的背景或第二顏色之背景的第一顏色,同時在圖示層777 的不同區域中,著色型樣可爲相反的,使得該影像爲透明 的或第二顏色,同時該背景爲不透明的或第一顏色。 用於微印刷之圖示影像元件實施例 雖然本發明的任一及所有圖不影像元件實施例可用做 波紋放大系統的元件’其亦可僅用做廣泛應用的超高解析 度微印刷。本主題發明之圖示影像元件方法可用於製造微 -83- 200902339 印刷,其用於緊實資訊儲存,用於隱蔽貨幣、文件、包裝 及製造之物件的識別,用於貨幣、文件、包裝及製造之物 件的條碼及數位標籤,及用於可受惠於超高解析度印刷或 資訊標籤的所有應用。在本實施例中’提供共同地形成影 像之微結構圖示元件的型樣或陣列’或提供需要放大檢視 的某些資訊。 圖3 6a、b呈現經由一材料之圖示層83 6的截面,該材 料具有附加包覆材料層8 3 8及840之類似於圖34及35中的微 結構圖示影像元件組。所顯示的圖示層83 6可構成波紋放 大系統的圖示層、”鎖匙及金鑰"波紋放大系統的圖示層( 如下述)、微影像或有效”微印刷"的獨立層、微圓柱形雙 凸透鏡狀影像膜的圖示層、或另一微光學系統的圖示層。 圖示層836可爲獨立式或可選擇地裝備於基底834或透 明基底834上。選擇的基底或透明基底834支撐或與結合可 獨立或組合而做爲圖示影像之元件的各式微結構的圖示層 83 6接觸。微結構圖示影像元件可採用廣泛的形式或幾何 ,包括但不限於相應於圖3 4之實施例的實施例8 4 4 - 8 6 4。 如圖36a中所描繪的,具有微結構圖示元件844-8 5 6的 圖示層836顯示爲以層壓膠黏劑838被層壓至可以基底或透 明的基底842支撐的包覆材料層840。層壓膠黏劑838首先 可應用於圖示層836,接著被帶入與包覆材料層838接觸, 如同微結構圖示元件844及846所示層壓膠黏劑中間隙所表 示,或層壓膠黏劑838首先亦可或取代而應用於包覆材料 層840 ’接著被帶入與圖示層836接觸’如同微結構圖示影 -84 - 200902339 像元件8 4 8 - 8 5 6所示層壓膠黏劑8 3 8中連續層所表示。 在本實施例中,包覆材料層840緊密接近或接觸微結 構圖示影像元件844-856。該包覆層類似於圖34的包覆層 793,並可具有與包覆層793相關描述的效果。 在圖36b中,顯示具有微結構圖示影像元件85 8-864 之圖示層837的截面,其顯示爲使用層壓膠黏劑83 9而層壓 至具有包覆材料層841的層壓基底843。雖然層壓膠黏劑 83 9顯示爲已應用至圖示層837,且接著被帶入與層壓基底 843接觸’但應理解的是層壓膠黏劑839首先亦可或取代而 應用於層壓基底843,接著被帶入與圖示層8 3 7接觸。 在本實施例中,包覆材料層841藉層壓基底843而與圖 示層837隔離。包覆層841可爲先前所列用於包覆層840及 793的任一材料。 當微結構圖示影像元件844- 8 6 4顯示於圖36a中做爲非 塡充的時’至少一部分微結構圖示影像元件844-864可以 圖示塡充材料而選擇地塡充,或於層壓之前以保角的、非 保角的或指向性包覆材料包覆。該微結構圖示元件不需完 全墳充。當爲塡充的時,其僅可部分塡充,或爲塡充的部 分。 微結構圖示影像元件可呈現爲正或負影像,或二者皆 然。在圖37 a-c中,圖示層868可爲獨立式或可選擇地安裝 於基底866或透明的基底866上。圖示層868可選擇地提供 包覆材料層870,其可部分或完全覆蓋圖不層868。 在圖37a中,圖示層868具有微結構圖示元件的二區 -85- 200902339 :正圖示元件872及負圖不兀件874。爲了描繪之故,正圖 示元件8 72的一般形式已反映爲負圖示元件874的形式。選 擇的包覆材料870顯示爲正圖示872上保角的包覆,及負圖 示8 74上非保角的包覆,例如僅保角的及非保角的包覆二 者可用於與正圖示872及負圖示8 74二者結合。 正圖示影像元件872的物件型樣被提供爲圖示層868中 凹處或空隙8 7 1,同時正圖示影像元件8 72之背景區域被提 供爲正圖示區872中凸出區域。負圖示影像元件874的背景 區域被提供爲圖示層868中凹處875,且負圖示影像元件 8 74的物件型樣被提供爲圖示層中凸出區域。 圖37b描繪當圖示以具有不同於圖示層8 68材料之屬 性的圖示塡充材料塡充時,正及負圖示元件及型樣的效果 如何地特別引人注意。圖示層868及選擇的基底866的不同 區係以塡充的正圖示8"76及塡充的負圖示880顯示。圖示塡 充材料878形成正圖示元件876的物件型樣886,及塡充的 負圖示元件880的背景。 參照圖37c,塡充的正圖示元件890及塡充的負圖示元 件892之詳細的平面圖882顯示塡充的正圖示元件886,其 出現不同於周圍的背景外表8 8 4的8 8 8。例如:塡充的正圖 示元件及背景周圍的外表之間共同的差異爲顏色。若圖示 塡充材料878具有顏料、染料或其他著色材料,那麼塡充 的正圖示元件886將顯示圖示塡充材料886的高集中893, 同時周圍的背景區域8 84將否。以類似的方式,塡充的負 圖示元件8 92的背景將顯示圖示塡充材料886的高集中,同 -86- 200902339 時塡充的負圖示元件892的物件型樣將顯示圖示塡充材料 的不足894。 經由該些機構及與文中其他揭露的組合’可以看見可 製造正及負影像圖示元件。當做爲波紋放大系統的元件時 ,該些正及負影像圖示元件可用以產生正及負合成影像。 正及負影像元件可單獨或組合使用。 圖38a-c呈現結合塡充的圖示及包覆之實施例的代表 範例。圖示層898可爲獨立式或可選擇地裝備於基底8 96或 透明基底8 96上。選擇的基底或透明基底8 96支撐或與結合 可單獨或組合而做爲圖示影像之元件的各式微結構的圖示 層898接觸。 圖38a顯示已藉適當機構(如圖35所描述的)應用於至 少一部分圖示層898之表面的包覆材料900。圖中所顯示的 包覆材料9 0 0爲相對於圖示層8 9 8表面保角的,但其可爲非 保角的、非連續的、定型的,或具有不同屬性及/或材料 之包覆的區域。正圖示元件904具有以圖示塡充材料9〇2塡 充的其物件型樣微結構,及其非塡充的背景元件。負圖示 元件9 06具有以圖示塡充材料902塡充的其背景微結構,同 時其物件型樣微結構9 0 8爲非塡充的。 圖38a中所顯示的實施例可經由包覆材料9〇〇及圖示 塡充材料9 0 2的不同檢視角度所產生的不同光學效果提供 圖示影像的視覺增強。例如,若包覆材料9〇〇爲鋁的薄層 ,使得當從垂直於圖示層898之平面的方向檢視時,其實 質上是透明的,塡充的圖示元件之中央區域將出現實質上 -87- 200902339 相同顏色,如同其不具包覆。薄鋁層的反射性隨著入射角 度的增加而增加,所以塡充的、包覆的圖示元件的傾斜端 出現更多反射’結果出現高對比輪廓的圖示元件。若包覆 材料900爲單一層或多層電介質包覆,包覆的顏色可隨不 同檢視角度而不同,藉此圖示元件端添加了顏色色調或顏 色高照明效果。其他類型的包覆材料可用於促進附著,以 產生附加的視覺效果,或可提供隱蔽、機器可讀取或法庭 鑑別特徵予該材料。將理解的是該圖示元件不需被塡充或 包覆。吾人僅可部分塡充一些圖示元件。 圖38b中所顯示之實施例顛倒圖38a之圖示塡充及包 覆的順序,其中微結構圖示首先以圖示塡充材料902塡充 ,並接著以包覆材料900而包覆。圖示層898可選擇地裝備 於基底896或透明基底896上,或可隨意固定。圖示元件 9 10及9 12係以圖示塡充材料9〇2塡充,並接著以包覆材料 900而選擇地包覆。 圖3 8 b之實施例的視覺效果通常將與圖3 8 a的視覺效 果不同,儘管以相同材料用於包覆材料900及圖示塡充材 料902。依據圖示塡充材料902的光學屬性,包覆材料9〇〇 可或不可經由圖示塡充材料902而見到。包覆材料900可直 接於塡充的圖示之間區域見到。 假設圖示元件實質上完全以圖示塡充材料902塡充, 所有各處均可見到包覆材料90〇 ’不論經由圖示塡充材料 902見到或直接見到’該包覆材料9 00實質上平行於圖示層 8 98的表面。因而包覆材料900的出現可修改圖示塡充材料 -88- 200902339 902的整體出現’但其未提供圖3 8a中輪廓或邊緣提升功 能。包覆材料900可經設計而具有除了或取代光學效果的 其他效果或功能-例如,包覆材料900可啓動附著圖示層 898之物件的非接觸鑑別、檢測或識別。 若圖示元件未以圖示塡充材料902塡滿,那麼包覆材 料900實質上可不平行於圖示層898的表面。在此狀況下( 未描繪),在包覆材料900接觸圖示塡充材料902及實質上 非平面的區域中,可具有該包覆材料900所提供的其餘光 學效果。 圖38c之實施例爲圖38b之實施例的延伸以包括多路 圖示塡充材料。(儘管此處未描繪,多路圖示塡充材料亦 可用於圖3 8 a之實施例,且下列討論亦應用於該實施例。) 圖示層898具有以第一圖示塡充材料916塡充的正微結構圖 示元件926及負微結構圖示元件92 8。微結構圖示元件926 及928未由第一圖示塡充材料916塡滿。此可藉多個機構完 成,包括散佈第一圖示塡充材料9 1 6於溶劑中,以散佈第 一圖示塡充材料9 1 6之溶劑塡充圖示微結構,並使該溶劑 乾燥及因而縮小第一圖示塡充材料916的量。未塡滿圖示 微結構的另一機構爲以第一圖示塡充材料9 1 6進行塡充, 及接著藉抹除或拆毀機構而移除一些圖示塡充材料9 1 6, 例如以刮墨刀而緩衝或高壓抹除。 第一圖示塡充材料9 1 6可經由乾燥、化學反應(例如二 部分環氧化物或樹脂及硬化劑聚合作用反應)、輻射固化 、氧化或其他適當機構而選擇地穩定化、固化或乾燥。第 -89- 200902339 —圖示塡充材料916亦可選擇地不穩定化,使其可以一些 方式而與第二圖示塡充材料91 8化學反應。 圖示微結構926及928接著以第二圖示塡充材料918選 擇地塡充。依據用於提供第一圖示塡充材料916之未充滿 的方法,第一圖示塡充材料916及第二圖示塡充材料918的 相對厚度可於不同區域中不同,或具有不同深度、寬度或 外觀比之圖示元件微結構不同。正圖币兀件926顯不第一 圖示塡充材料916及第二圖示塡充材料918之約相等的量, 且該二塡充材料之厚度約相等地位於塡充的區域920的中 心。圖中該負圖示元件顯示外觀比的大差異,使得該二較 大塡充的圖示元件之中央區922顯示分別針對第一及第二 圖示塡充材料9 1 6及9 1 8例如約1 : 3的塡充材料厚度比。較 小負圖示元件924之中心顯示分別針對第一及第二圖示塡 充材料9 1 6及9 1 8例如約4 : 1的極不同塡充材料厚度比。該 塡充的圖示可選擇地以包覆材料900包覆。 包覆材料900亦可於以第一圖示塡充材料916塡充圖示 之前選擇地應用於圖示層898,或其可於以第二圖示塡充 材料918塡充之前應用於圖示層989及第一圖示塡充材料 9 1 6。該些變化未於圖中描繪。 正圖示元件920具有以圖示塡充材料916及918塡充的 其物件型樣微結構,及未塡充的其背景元件。負圖示元件 928具有以圖示塡充材料916及918塡充的其背景微結構, 同時其物件型樣微結構爲未塡充的。 請注意,本發明之任一實施例中任一圖示層材料未侷 -90- 200902339 限於圖38a-c的材料,本身可結合顏料、染料、著色劑、 營光材料或先前於本定義段中所陳述之任一適當種類的塡 充材料。由於以透明、未染色及未著色的圖示層形成,並 接著以著色的圖示塡充材料塡充之特定微結構圖示元件, 可視爲正圖示元件,同時以著色的圖示層形成,並接著以 透明、未染色及未著色的圖示塡充材料塡充之極相同的微 結構圖示元件,可視爲負元件,所以塡充圖示層提供理論 上正及負圖示元件之間明顯的圖示。在此範例中,所有正 圖示元件及負圖示元件之間的改變爲圖示層及圖示塡充材 料之材料的選擇。當其便於論及正及負圖示元件時,實際 上存在可能性的連續區,包括呈現於背景中具有一顏色或 光學效果的圖示元件’及呈現於物件型樣中的第二顏色及 /或光學效果,反之亦然。 若圖3 8 a - c的圖示元件被用於做爲部分波紋放大系統 ,那麼包覆材料及圖示塡充材料之組合所提供的獨特效果 亦將繼續存在於波紋放大系統所產生的合成影像中。 圖示上定型的包覆及做爲圖示 圖3 9 a- c描繪定型的包覆材料、熱戳記箔、指向性包 覆、及塡充的圖示之應用及組合。在圖39(a)中,圖示層 932可爲獨立式或其可選擇地裝備於基底930或透明基底 93 0上。選擇的基底或透明的基底93 0支撐或與結合可單獨 或組合而做爲圖示影像之元件的各式微結構的圖示層93 2 接觸。 -91 - 200902339 在圖39a中,包覆材料93 4的圖案結構構成呈現93 5包 覆材料的區域,及缺少包覆材料的區域。包覆材料9 3 4的 圖案結構可爲任一形式或進行任一目的,包括波紋放大微 光學系統之圖示元件的製造。本技藝中圖案結構包覆的多 個方法是已知的,包括於包覆及化學蝕刻暴露的包覆上印 刷或沈澱抗餓劑材料,接著從該包覆選擇地化學剝除該抗 飽劑材料。該抗蝕劑層可爲光阻,且該抗蝕劑的圖案結構 可藉光學曝光方法而完成。包覆之圖案結構的另一方法爲 首先沈澱定型的抗蝕劑(或另一方面沈澱抗蝕劑及隨後定 型)’接著將該包覆應用於材料的表面及抗蝕劑,接著化 學移除所附著的抗蝕劑及包覆。例如-"去金屬化的安全執 行緒”之製造中後者方法是常見的,其中抗蝕劑材料印刷 於聚合物基底上,基底及抗蝕劑係藉真空金屬化或噴濺而 以鋁包覆,並化學移除該抗蝕劑。在呈現抗蝕劑的位置, 欠缺鋁包覆,並於該抗蝕劑移除時”解除”。取代化學移除 選擇的金屬化區域,該些區域可機械地移除,例如藉磨擦 。將理解的是僅包覆的部分可予定型。 未與波紋放大膜中圖示元件的縮放及幾何相符之定型 的金屬化的包覆,可用於產生合成影像中部分透明金屬之 效果,由於去金屬化之區域的位置將隨圖示元件而變-以 類似於印刷中所使用半調色方法,從呈現不透明度之圖示 元件形成的合成影像與包覆呈現的部分成比例。 另一方面,定型的去金屬化的金屬包覆可用於製造與 可用於產生第二合成影像組之微結構圖示元件不同的圖示 -92- 200902339 元件組。該附加合成影像的一項應用係用於貨幣、文件及 商標保護之材料的隱蔽鑑別。 在圖39a中,托架936所指定區域中包覆材料934係以 未與微結構圖示元件之幾何相符之方式定型。定型的包覆 材料934可攜帶個別資訊,例如圖示元件的不同型樣,或 其可攜帶其他圖形或文字資訊,或無資訊。 相對地,托架9 3 8所指定區域中包覆層9 3 4與圖示元件 相符,包覆抑制的形狀93 1,但不包覆其間的”平坦部分 " 93 9。此類圖案結構可藉以包覆材料934包覆圖示層932的 整個表面而完成,包括抑制的區域931及”平坦部分" 93 9, 接著藉拆毀、摩擦、擦拭、削勻、硏磨、化學蝕刻、膠黏 劑脫下,或藉其他適當機構,從”平坦部分"939移除包覆 材料9 3 4。 以此方式而與圖示元件相符之定型的包覆材料934可 提供圖示元件之強烈視覺、光學、電磁性、磁性或其他增 強。例如:結合微結構圖示元件的圖示層9 3 2可噴濺金’ 接著可藉相對於例如紙之纖維材料摩擦包覆的表面,而從 平坦部分93 9移除該金。殘餘在圖示元件中的金接著提供 真金的金屬製表面,同時平坦部分則不含金’所以圖示元 件顯現爲與背景區隔的金物件。 圖39b描繪各式圖示層932實施例,其爲結合熱戳記 箔包覆9 42與圖示塡充材料948的單件(946)及組合(950、 95 1)。所顯示典型的熱戳記箔結構,其中熱膠黏劑層94〇 趣結熱戳記箔包覆的箔層94 2至圖示層93 2。熱戳記箔包覆 -93- 200902339 的易碎漆器層944選擇地裝備以支撐熱戳記箔942。易碎漆 器層9 44可結合微結構型樣,例如全息圖。在托架9 4 6所指 定的區域中,熱戳記箔包覆942已藉知名機構而應用於圖 示層932的表面,密封於微結構圖示元件之抑制的區域上 。在托架9 50所指定的區域中,熱戳記箔942已應用於包含 圖示塡充材料948的微結構圖示上。在托架951所指定的區 域中,熱戳記箔942已應用於圖示層93 2,並接著移除覆蓋 於微結構圖示元件之抑制的區域上熱戳記箔包覆材料。移 除熱戳記箔包覆材料的適當機構包括但不限於高壓氣體噴 射、高壓水或其他液體噴射及機械瓦解與摩擦。微結構圖 示兀件可選擇地以圖示塡充材料948塡充,使得以圖示塡 充材料948控制圖示微結構表面,及以熱戳記箔包覆材料 控制”平坦部分”表面。如圖所不,圖示塡充材料9 4 8選擇 地包覆至少一部分熱戳記箔包覆942之上,或其可應用以 便僅塡充圖示凹處(未顯示)。 圖3 9 c描繪各式圖示層9 3 2實施例,其結合可選擇地 用於與圖不塡充材料9 4 8組合的指向性包覆材料(9 5 2及 9 6 2 )。第一指向性包覆9 5 2從箭頭9 5 4所指定的方向應用於 圖示層932。第一指向性包覆9W的指向性沈澱使其優先包 覆"平坦部分"及托架9 5 6所指定之區域中圖示元件的右側( 如圖所不)° s亥包覆可提供微結構圖示元件之一側的視覺 高照明,製造”陰影”或”聚光照射"效果。 在托架9 5 8所指定之區域中,使用二指向性包覆。箭 頭954指示包覆π平坦部分”及該區域中微結構圖示元件之 -94 - 200902339 右側的第—指向性包覆95 2的應用方向。第二指向性包覆 962從箭頭960所指定的方向應用,並包覆微結構圖示元件 的左側。第一及第二指向性包覆(分別爲952及962)可爲相 同材料或不同材料,且其可如圖所示地從相反方向(95 4及 9 6 0)應用’或其可以類似的方向應用。例如:若第一指向 性包覆952爲銀,且其從箭頭9 54所顯示的方向應用,及若 第二指向性包覆962爲金,且其從箭頭96〇所顯示的方向應 用’那麼微結構圖示元件的右側將出現銀及其左側將出現 金’同時其中心仍爲未包覆的並可出現透明。關於另一範 例:先前範例的狀況,除了該銀係以箭頭9 54所顯示的角 度應用’且該金係從相同的大體方向,以較接近整個圖示 層93 2垂直表面十度的角度應用。該金接著將包覆與該銀 之圖示元件的相同側,但該金將包覆圖示的右上側或中心 。結果的圖示元件顯現爲具有銀的右側,其混合爲朝向圖 示元件頂端的金色(如圖所示)。對於熟悉本技藝之人士而 言許多其他組合及變化將是顯而易見的。 托架964所指定之圖39c的區域中顯示又另一變化, 其中微結構圖示元件具有二指向性包覆,第一指向性包覆 952及第二指向性包覆962,且接著以圖示塡充材料948塡 充。該圖先前未顯示,圖示塡充材料可選擇地附加該圖之 任一部分的任一包覆的微結構圖示元件,包括圖39a中區 936與93 8,及圖39c的區95 6。 圖40a描繪定型的包覆材料96 7使用,做爲製造圖示 影像元件的機構。定型的包覆材料967裝備於基底966或透 -95- 200902339 明基底966上,該圖案結構結合選擇的厚度之包覆材料968 的區域,及具有較小厚度之包覆材料969的區域或不具包 覆材料97 0的區域,或二者皆然。包覆材料的不同厚度-全 厚度(968)、部分厚度(969)及零厚度(970)(或缺少包覆材 料)-可經定型而代表圖示影像資訊做爲波紋放大系統中元 件。全厚度包覆材料或零厚度包覆材料可用於形成圖示元 件的物件型樣。圖40b描繪平面圖972,有關使用全厚度 圖示元件而針對以零厚度或部分厚度包覆材料形成之背景 976而形成物件型樣(字母及數字)。由於平面圖972中所示 圖示元件的物件型樣係藉包覆材料9 6 7的存在而形成,該 圖示影像稱爲正圖示影像。圖40c呈現負圖示影像的平面 圖978,其中背景係藉全厚度包覆材料982而形成,且物件 型樣係藉部分或零厚度包覆材料980而形成。部分厚度包 覆材料969的區域可用於製造灰階型樣,其中包覆材料967 的光學效果依據包覆材料的性質而修改或降低密度效果。 包覆材料967的圖案結構可藉任一有關圖38之先前描 述的方法而完成。部分厚度包覆材料的區域可藉附加遮罩 及鈾刻步驟,或藉蝕刻部分厚度區域之型樣中全厚度包覆 而予製造,接著完成包覆材料967的第二包覆以沈源部分 厚度層於整個基底966或透明基底966上,接著選擇地遮罩 及蝕刻一次以上而產生零厚度區域970。 其餘的包覆材料層可選擇地附加至定型的包覆材# 967。範例包括但不限於經真空沈澱的金屬化、著色的染 色的包覆或任一本文件之定義段中先前所表列者。範例: -96 - 200902339 該層可直接應用、層壓、熱戳記、包覆或其他提供。該附 加層的應用可提供一優點,改變部分厚度包覆材料969之 區域及零厚度(缺少)包覆材料970之區域的出現。 圖4 1 a、b描繪二部分波紋放大系統的二實施例,其 可用做"鎖匙及金鑰"鑑別系統,其中微透鏡陣列爲做爲” 開啓”圖示陣列項中資訊之金鑰的個別項。在圖4 1 a中, 選擇的透明基底9 8 4支撐以光傳輸材料9 8 8製造的微透鏡 986,其可與用於形成該選擇的透明基底984之材料不同或 相同。結合微透鏡9 8 6加上選擇的基底9 84之透鏡片1 000的 總厚度小於微透鏡9 86的焦距1 004。 透鏡片1000未永久附著圖示片1002,但爲可用做圖示 片1 002之鑑別裝置的自由及個別項。當用做鑑別裝置時, 透鏡片1000被導入接觸或接近圖示片10 02的表面。該二片 之間間隙992通常將包含空氣薄膜,或間隙992可選擇地塡 充水、甘油或其他流體’以提供透鏡片1〇〇〇及圖示片1002 之間的光學或機械耦合。 結合選擇的透明基底990、圖示層994及圖示元件996( 文中所示選擇地塡充圖示塡充材料997)之圖示片1002配置 透鏡片1000最遠之表面上圖示層。圖示片1002加上透鏡片 1 000的總厚度經設計而實質上等於微透鏡9 8 6的焦距1〇〇4 。當透鏡片1 〇〇〇實質上置於附近時,例如接觸結合或未結 合流體的圖示片1〇〇2 ’微透鏡986的焦點99 8將置於圖示層 994之內或附近。焦點99 8的最佳位置爲圖示層994的略低 或下表面。 -97- 200902339 依據圖4 1 a之實施例所形成的系統可用做防僞、鑑別 或安全裝置。例如’圖示片1〇〇2的圖示層994可於製造、 原始創作、包裝或配送時附著、黏附或永久固定或倂入於 物件或文件。圖示片1 002本身不需具有任何可視的區別特 徵。實際上圖示元件996將極小,尺寸上從若干微米至數 十微米的程度’且裸眼將有效地不可見。其餘的傳統印刷 或成像可視需要而裝備或附著於圖示片1002。 該附加成像的範例可爲人們用於識別的照片,使得圖 示片完成做爲該照片的背景。圖示片1 002的鑑定可經由結 合穩固附著的物件,及置放實質上與圖示片1 00 2接觸之適 當的縮放透鏡片1 000,並於其平面內旋轉透鏡片1 000直至 該透鏡與圖示元件996充分校正而形成圖示元件996的合成 影像爲止。(”適當縮放的”透鏡片爲一透鏡片,其中聚焦 元件的陣列具有旋轉對稱及實質上與圖示片1002上圖示元 件996之陣列相符的重複期間,且圖示/透鏡重複率經設計 而達選擇的光學效果[超深、深、移動、浮動、超浮動、 飄浮、3-D,及其組合等])。 圖4 1 b描繪本發明之觀點的另一實施例。在本圖中, 透鏡片1010是整體的,由其較上表面之包括微透鏡1008的 單一材料組成,且材料1 006的選擇的附加厚度提供光學間 隔。若透鏡片1000未包括選擇的透明基底984’圖41a的 透鏡片1 0 0 0亦可以此方式形成。同樣地,如圖4 1 a中所示 ,圖41b的透鏡片1〇1〇可使用透明基底及微透鏡層而形成 。爲求完整,顯示透鏡片1000及1010的另二結構-透鏡片 -98- 200902339 1000或1010可具有所示的該二結構之一 _整體的透鏡(圖 41b)或基底加上透鏡(圖41a) ° 圖41b之實施例中透鏡片1010的功能與圖41a之透鏡 片1 000的功能相同,儘管由於圖示片1014相較於圖示片 1002的差異,透鏡片1〇1〇的總厚度通常將大於微透鏡1008 焦距1024的比例。圖示片1014結合具圖示元件1020的表面 ,其可選擇地以圖示塡充材料997塡充。爲求完整’所顯 示的圖示片1014爲整體的,具有未隔離的圖示層及基底層 ,但另一方面圖示片1014可以圖示片1〇〇2的方式形成’具 有基底及附著的圖示層。在相同的方式中’圖示片1 002可 依據圖示片1 〇 1 4的結構而形成爲整體的片。 圖示片1014與圖示片1002之間的功能差異爲前者於最 接近透鏡片1010的表面上具有其圖示元件,同時後者於最 遠離透鏡片1 000的表面上具有其圖示元件。此外,由於圖 示片1014的圖示元件1020係位於其較上表面,置於圖示元 件1020下方的材料1018便不需爲透明的,不論圖示片1014 爲整體的或其具有圖示片1002的結構而具圖示層及基底。 圖示片1 002的基底990實質上不需爲透明的,因爲對透鏡 986而言’光必須通過基底990而形成圖示元件996的影像 〇 選擇的包覆材料1016可裝備於圖示片1014的圖示元件 1020上。包覆材料1〇16可視需要藉不同於使用透鏡片1010 之機構而提供圖示片的光學或非接觸鑑別。包覆層1016可 包括其他光學特徵,例如全像攝影或繞射結構。圖示片 -99- 200902339 1 002及圖示片1014二者的圖示元件可採取任一形式,包括 文中實施例的任一圖示元件。 關於圖41a之實施例的狀況,圖41b之實施例的透鏡 片1014並非永久附著於圖示片1014,而是可用做圖示表 101 4之鑑別裝置的自由及個別項。當做爲鑑別裝置時,透 鏡片1010被導入接觸或接近圖示片1014之表面。該二片之 間的間隙1 〇 1 2通常將包含空氣薄膜,或間隙1 0 1 2可選擇地 以水、甘油或其他流體塡充,以提供透鏡片1 〇 1 0與圖示片 1014之間的光學或機械耦合。 圖示片1 0 1 4加上透鏡片1 0 1 0的總厚度經設計而實質上 等於微透鏡1008的焦距1024。當透鏡片1010實質上配置具 或不具耦合流體而與圖示片1014接觸時,微透鏡1 008的焦 點1 022將置於圖示元件1 020內或附近。焦點1 022的最佳位 置係位於或略低於圖示元件1 020的較短範圍。 依據圖4 1 b之實施例而形成的系統可用做防僞及鑑別 裝置。例如,圖示片1 0 1 4的下表面可於製造、原始創作、 包裝或配送時附著、黏附或永久固定或倂入於物件或文件 。圖示片1 0 1 4本身不需具有任何可視的區別特徵。實際上 圖示元件1 020將極小,尺寸上從若干微米至數十微米的程 度,且裸眼將有效地不可見。其餘的傳統印刷或成像可視 需要而裝備或附著於圖示片1 0 1 4。該附加成像的範例可爲 人們用於識別的照片,使得圖示片完成做爲該照片的背景 。圖示片1 0 1 4的鑑定可經由結合穩固附著的物件,及置放 實質上與圖示片1014接觸之適當的縮放透鏡片1〇1〇,並於 -100- 200902339 其平面內旋轉透鏡片101 〇直至該透鏡與圖示元件102 〇充分 校正而形成圖示元件1020的合成影像爲止。 圖示片(1002或1014)的結構或形式可結合形成不同合 成影像之圖示元件(分別對應996或1020)的多路型樣,而 可以不同透鏡片旋轉角度(例如以〇度透鏡片旋轉角度產生 最大放大合成影像的一圖示型樣,及以30度透鏡片旋轉角 度產生最大放大合成影像的第二圖示型樣),不同透鏡重 複期間’不同透鏡與圖示陣列幾何(例如具有六角形幾何 的一陣列組,及具有方形幾何的第二陣列組)及其組合, 予以讀取或鑑定。 不同透鏡期間鑑別方法的範例爲一圖示片,其結合當 經由具30微米之重複期間的透鏡片而合成放大時產生深影 像的圖示元件型樣,及亦結合當經由具4 5微米之重複期間 的透鏡片而合成放大時產生浮動影像的第二圖示元件型樣 。第二圖示元件型樣可選擇地以不同於第一圖示元件型樣 的旋轉角度予以鑑定。 具多路圖示型樣的材料可結合可以第一金鑰(具第一 選擇的重複期間之透鏡片)展現的一組資訊,及可各以其 餘金鑰(各符合其個別圖示元件重複之縮放的透鏡片)展現 的其餘組資訊。該多路圖示型樣亦可於需要具不同焦距之 聚焦元件的不同圖示層中提供,而從不同圖示層形成可見 合成光學影像。 圖42的實施例稱爲結合隱蔽資訊至隨後可經由使用隱 蔽鑑別透鏡片1 〇 4 〇而予”解碼或展現之本發明的波紋放大 -101 - 200902339 系統1026之’濕式解碼器1方法及系統。在本圖中,放大系 統1026包括微透鏡1028及圖示層1〇3〇,其結合圖示層1030 之中或之上的隱蔽圖示型樣1034。圖示層1030亦可選擇地 包括公然圖不型樣1 0 3 2。如先前提及的,放大系統1 〇 2 6經 設計而產生公然圖示型樣1 032的公然可檢視合成影像1038 。相對地,隱蔽圖示型樣1 034的重複期間及/或旋轉對稱 刻意地設計,以便於經由微透鏡1 02 8之機構檢視時,不產 生公然可檢視合成影像。 例如,隱蔽圖示型樣1 03 4的重複期間可經設計而實質 上與微透鏡1 028的重複期間不同;隱蔽圖示型樣1 034期間 可經設計而爲37微米,同時微透鏡1 028期間可經設計而爲 32微米。圖示對透鏡的縮放比(約1.1 56)將製造具約205微 米之期間的隱蔽圖示型樣103 4的浮動合成影像。該尺寸之 隱蔽合成影像的特徵爲裸眼實質上不可見。(該隱蔽圖示 期間可另外選擇而產生與約〇 . 8 6 5之圖示對透鏡的縮放比 相等期間的深合成影像。對特定微透鏡重複期間而言,隱 蔽圖示之重複期間可經設計而產生具任——致波紋放大效 果的合成影像,包括但不限於超深、深、移動、浮動、超 浮動、形態。)文中所呈現的特定尺寸僅代表可選擇之尺 寸的連續區的單一範例。 關於另一範例,隱蔽圖示型樣1 〇3 4的旋轉對稱可經設 計而實質上與微透鏡1〇2 8的旋轉對稱不同。在此範例中’ 吾人將假定微透鏡1 02 8及隱蔽圖示型樣1034係配置於六角 形陣列中,但隱蔽圖示型樣1 〇 3 4之陣列的方位係從微透鏡 -102- 200902339 1 02 8之陣列的方位旋轉30度。該二陣列的不重合亦將避免 隱蔽圖示型樣1 03 4之公然可檢視合成影像的形成。避免隱 蔽圖示型樣1 03 4合成影像之形成的又另一方法爲配置微透 鏡1 02 8至一陣列幾何中,例如六角形,同時配置隱蔽圖示 型樣1 03 4至不同陣列幾何中,例如方形。 隱蔽圖示型樣1 03 4可經由以附加、個別元件之隱蔽鑑 別透鏡片1 040形成合成影像而予展現,其中隱蔽鑑別透鏡 片1 040係以塡充其間間隙之光學耦合材料1 044導入放大系 統1 02 6之微透鏡1 028附近或實質上與其接觸。該光學耦合 材料較佳地爲具有類似於形成隱蔽鑑別透鏡片之材料1 052 及形成放大系統透鏡1 02 8之材料1 0 5 0之折射率的液體,例 如甘油或玉米糖漿。該耦合材料具有藉將透鏡1 028浸入具 有類似折射率之媒介物中而部分完全抵消其聚焦放大率的 功能。其他材料可用於完成此功能,包括膠體(包括凝膠) 、彈性體及壓力敏感膠黏劑。 隱蔽鑑別透鏡片1 040之屬性,包括其陣列幾何、重複 期間及微透鏡焦距,經設計而與隱蔽圖示型樣1 034的陣列 幾何與重複期間及至隱蔽鑑別透鏡片透鏡1 042與圖示平面 1 0 3 0之總距離相符。 實際上,例如甘油之少量流體被置於放大系統透鏡 1 028的表面,且隱蔽鑑別透鏡片1040的平坦表面被置放而 與該流體接觸,並實質上被擠入而與透鏡1 02 8接觸。隱蔽 鑑別透鏡片1 040接著於其平面中旋轉,而實質上校正微透 鏡1 042之陣列的方位與隱蔽圖示型樣1 03 4之陣列的方位。 -103- 200902339 關於所進行隱蔽圖示型樣1034的校正,合成影像1 048變得 充分放大而可以裸眼識別,接近於該二陣列具有實質上相 同方位之位置的最大放大。 另一實施例爲形成隱蔽鑑別透鏡片1040爲壓力敏感標 籤或膠布,其可應用於透鏡1 028的表面。在本實施例中, 光學耦合材料1 044的功能係藉應用於隱蔽鑑別透鏡片1040 之平坦表面的實質上透明的壓力敏感膠黏劑而完成。將隱 蔽鑑別透鏡片1 040校正爲隱蔽圖示型樣1 034之方位的方法 是需要的,例如藉印刷校正型樣或以放大系統1 026之邊緣 爲方向,其中隱蔽鑑別透鏡片1 040的邊緣於應用時可相符 〇 '濕式解碼器’方法及系統的又另一替代結構爲將隱蔽 圖示型樣1 03 4倂入第二圖示層。該第二圖示層可接近透鏡 1028或進一步來自透鏡1028而非第一圖示層1030。隱蔽鑑 別透鏡片1 040的焦距及厚度接著經設計,於以光學耦合材 料1 044而應用隱蔽鑑別透鏡片1 040至透鏡1028時,使其焦 點落入該第二圖示層。在本實施例中,只要第二圖示平面 的位置使透鏡1 028不能形成可識別之隱蔽圖示型樣1 034的 公然影像,隱蔽圖示型樣1〇3 4的陣列屬性可與公然圖示型 樣的陣列屬性相同。 圖43的實施例稱爲1乾式解碼器’方法及系統,其將隱 蔽資訊倂入隨後可經由使用隱蔽鑑別透鏡片1 064而予"解 碼"或展現的放大系統1 〇 5 4。在該圖中,放大系統1 〇 5 4包 括微透鏡及圖示層1058’其結合圖示層1〇58之中或之 -104- 200902339 上的隱蔽圖示型樣1060。圖示層1058亦可選擇地包括公然 圖示型樣1 〇 5 9。如先前所提及,放大系統丨〇 5 6可選擇地經 設計而產生公然圖示型樣1 059的公然可檢視合成影像。相 對地,隱蔽圖示型樣1 0 6 0的重複期間及/或旋轉對稱刻意 地設計’使得當經由微透鏡1 0 5 6的機構檢視時,不致產生 公然可檢視合成影像。 例如,隱蔽圖示型樣1 0 6 0的重複期間可經設計而實質 上與微透鏡1 056之重複期間不同;隱蔽圖示型樣1 060期間 可經設計而爲2 8 · 0 7 1微米,同時微透鏡1 〇 5 6期間可經設計 而爲2 8 · 0 0 0微米。圖示對透鏡的縮放比(約1 · 〇 〇 2 5 5 )將製造 具約392微米之期間的(隱蔽圖示型樣1060的)浮動合成影 像1063。該尺寸之隱蔽合成影像的特徵爲裸眼實質上不可 見。(該隱蔽圖示期間可另外選擇而產生與約0.99746之圖 示對透鏡的縮放比相等期間的深合成影像。對特定微透鏡 重複期間而言,隱蔽圖示之重複期間可經設計而產生具任 ——致波紋放大效果的合成影像,包括但不限於超深、深 、移動、浮動、超浮動、形態。)文中所呈現的特定尺寸 僅代表可選擇之尺寸的連續區的單一範例。 關於另一範例,隱蔽圖示型樣1 060的旋轉對稱可經設 計而實質上與微透鏡1 〇 5 6的旋轉對稱不同。在此範例中, 吾人將假定微透鏡1〇5 6及隱蔽圖示型樣1 0 60係配置於六角 形陣列中,但隱蔽圖示.型樣1 060之陣列的方位係從微透鏡 1 0 5 6之陣列的方位旋轉3 0度。該二陣列的不重合亦將避免 隱蔽圖示型樣1 060之公然可檢視合成影像的形成。避免隱 -105 - 200902339 蔽圖示型樣1 060合成影像之形成的又另一方法爲配置微透 鏡1 05 6至一陣列幾何中,例如六角形,同時配置隱蔽圖示 型樣1 0 6 0至不同陣列幾何中,例如方形。 隱蔽圖示型樣1 060可經由以附加、個別元件之機構的 隱蔽鑑別透鏡片1064形成第二合成影像而製成可見’其中 隱蔽鑑別透鏡片1 064被導入放大系統之微透鏡1 05 6附近或 實質上與其接觸,並未使用塡充其間間隙1 06 5之光學耦合 材料。間隙1 〇 6 5係以空氣、真空或瀰漫放大系統1 0 5 4之周 遭環境的任一其他氣體塡充。 隱蔽鑑別透鏡片1 064之屬性,包括其陣列幾何、重複 期間及微透鏡焦距,經設計而於其投射至形成隱蔽鑑別透 鏡片1 064之材料1 070中時,與隱蔽圖示型樣1 063的陣列幾 何與重複期間及至隱蔽鑑別透鏡片透鏡1 066與隱蔽合成影 像1 063之位置的總距離相符。 實際上,隱蔽鑑別透鏡片1064的平坦表面被置放而與 放大透鏡1 05 6接觸。隱蔽鑑別透鏡片1 064接著於其平面中 旋轉,而實質上校正微透鏡1 066之陣列的方位與隱蔽圖示 型樣1 063之陣列的方位。關於所進行形成第二合成影像 1 068之隱蔽合成影像1 063的校正,該第二合成影像1 06 8變 得充分放大而可以裸眼識別,接近於該二陣列具有實質上 相同方位之位置的最大放大。 另一實施例爲形成隱蔽鑑別透鏡片1 064爲壓力敏感標 籤或膠布,其可應用於透鏡1 05 6的表面。在本實施例中, 極薄(實質上小於微透鏡1 05 6的高度)實質上透明的壓力敏 -106- 200902339 感膠黏劑(圖中未顯示)可應用於隱蔽鑑別透鏡片1064的整 個平坦表面,或定型的壓力敏感膠黏劑(圖中未顯示)可應 用於該表面。在第一狀況下,該極薄實質上透明的壓力敏 感膠黏劑的應用-對於放大系統1 05 6之包覆的隱蔽鑑別透 鏡片,將使該膠黏劑接觸透鏡1 05 6的頂端,並未塡充間隙 1 065及掩蔽該透鏡側,因而避免使透鏡1 05 6形成第一隱蔽 合成影像1 063的空氣間隙。在第二狀況下,隱蔽鑑別透鏡 片1 064在無膠黏劑的區域中將維持未塡充的間隙1 065。將 隱蔽鑑別透鏡片1064校正爲隱蔽圖示型樣1060之方位的方 法是需要的,例如藉印刷校正型樣或以放大系統1 05 6之邊 緣爲方向,其中隱蔽鑑別透鏡片1 064的邊緣於應用時可相 符。 '乾式解碼器’方法及系統的又另一替代結構爲將隱蔽 圖示型樣1060併入第二圖示層。該第二圖示層可接近透鏡 1056或進一步來自透鏡1056而非第一圖示層1058,而處於 任一啓動透鏡1 05 6形成隱蔽圖示1 060之真實或虛擬影像的 位置。隱蔽鑑別透鏡片1 064的焦距及厚度接著經設計,於 隱蔽鑑別透鏡片1 064被置於實質上接觸透鏡1 0 5 6時,使其 焦點落於透鏡1〇5 6形成隱蔽合成影像的位置。 圖44a、b中描繪展現本發明之放大系統中隱藏資訊 的又另一方法。吾人已創造一名詞「水一致」(HydroUnison) ,表示使用本實施例之原理的波紋放大系統。在圖44a中 ,水一致波紋放大系統1 078結合微透鏡1 08 0的陣列、圖示 層1082及其間的光學隔片1081,其係與微透鏡1080或圖示 -107- 200902339 層1082相鄰,或二者皆然。圖示層1〇82結合圖示型樣1〇84 。當處於空氣、另一氣體中或真空時,光學隔片1081的厚 度貫質上大於微透鏡1080的焦距1〇86。可以見到,微透鏡 1080的空氣焦點1088遠離圖示型樣1〇84及圖示層1082。來 自微透鏡1080之空氣中合成影像投射1〇9〇嚴重地模糊及失 焦,不具可識別的影像。 圖44b描繪將微透鏡1 08 0浸入例如水之適當流體1 092 中的效果。(浸入爲一相對情況-只要流體1〇92置於大於透 鏡1080之中心高度1091的層中微透鏡1080之上,透鏡便從 光學的標準點"浸入"。)改變水—致波紋放大系統1 07 8之 外媒介物的折射率,可改變微透鏡1080的焦距。在此範例 中,提升系統外部媒介物的折射率,增加了微透鏡1 0 8 0的 焦距。光學隔片10 81的厚度經選擇而將浸入流體1 092之微 透鏡1 080的焦點1 0 8 8導入圖示層1 0 82中或其附近。在該些 狀況下,微透鏡1 080可投射聚焦良好之圖示型樣1 084的合 成影像1 095。 當以空氣中透鏡1 〇 8 0於乾式狀態檢視時,依據本實施 例之水一致系統顯現爲不具明顯的影像。當透鏡以具有實 質上等於選擇的浸入流體1 092之折射率的液體弄濕(浸入) 時,合成影像突然出現。若合成影像爲組合浮動/深影像 或超深影像,該效果特別顯著。隨著該水一致系統乾燥, 合成影像變成黯淡及消失。 對流體1 092的特定選擇而言’當浸入具選擇的折射率 之流體1 〇 9 2時,經由製造光學隔片1 0 8 1之厚度爲約等於浸 -108- 200902339 入流體1 092之微透鏡1 080的焦距1 094 ’而完成設計水一致 系統以產生該效果。方便的流體1092爲水,具有約1.3 3的 典型折射率。對選擇的浸入流體1 092而言,儘管水一致波 紋放大系統1 078可爲非"薄透鏡”光學系統,薄透鏡系統設 計透鏡製造方程式可用於發現適當準確的光學隔片1 08 1的 設計厚度。 透鏡製造方程式爲: 1 / f = 〇 透鏡-n 0) (1 / R 1 -1 / R 2) 其中: f=當浸入折射率η。之媒介物中時的透鏡焦距 η透鏡=透鏡材料的折射率 η。=浸入媒介物的折射率 =第一透鏡表面之曲率的半徑 R2 =第二透鏡表面之曲率的半徑 由於透鏡1080的焦點爲水一致波紋放大系統1078的內 部,影響焦距之唯一曲率爲第一曲率,Ri -第二曲率R2可 視爲具無限半徑的平坦表面,降低1/R2比例等於零。該透 鏡製造方程式接著簡化爲: l/f=(n 透鏡- n〇)或 f=Ri/(n 透鏡-n〇) 對空氣中透鏡而言,η透鏡= 1.487,及η。= n空氣= 1-000 : f 空氣=1^/(1.487-1.000) = R】/0.487 = 2.053 Ri 對浸入水中透鏡而言,η透鏡=1.487,及η。= n水= 1.3 3 3 : -109- 200902339 f 水=RWCl.487-1.333) = 1/0.154 = 6.494 R! 所以發現浸入水中透鏡1 0 8 0之焦距約大於透鏡1 0 8 0的 空氣中焦距,商爲: f 水/ f 空氣=(6.494 Ri)/(2.053 = 3.163 例如,若從具有I.487之折射率的材料所形成的特定 微透鏡1080具有23微米的空氣中焦距1086,那麼當浸入水 中時’微透鏡1080將具有約23x3.163 = 72.7微米。 可使用具有類似於選擇的浸入流體1 092之折射率的其 他流體,以展現隱藏影像,具有部分基於如何密切符合浸 入流體1 0 9 2之折射率的特定流體的有效性。例如,乙醇具 有約1 .36的折射率。當浸入乙醇時,上述範例中透鏡的焦 距將爲88.2微米,所以若光學隔片1081經設計而具有約73 微米的厚度,相應於具有水之折射率的選擇的浸入流體 1 〇 9 2,合成影像1 0 9 5將輕微失焦。 圖44 a、b的實施例可用於各類應用,包括但不限於 物件的鑑別,其具有水一致系統膜層壓、貼紙、貼片、執 行緒、封條、戳記或標籤,例如比賽門票、彩票、身份證 、簽證、護照、駕照、政府文件、出生證明、流通票據、 旅行支票、銀行支票、貨幣、賭博籌碼、製造的商品,及 其他相關及類似物件。水一致系統亦可用於提供裝飾性、 新穎及潮濕指示效用予物件、文件及製造的商品。 先前文中所提及一致波紋放大系統的其他實施例亦爲 潮濕指示-將該些一致系統的透鏡浸入流體,通常將避免 材料形成合成影像。當液體乾燥或移除時,該合成影像返 200902339 回。 圖44a、b的實施例可進一步延伸而提供多路影像水 —致系統1 〇 9 6 ’其於水一致微透鏡1 〇 9 8浸入不同媒介物 (1 1 12、1 120、1 128)時,可呈現相同或不同顏色的二或更 多不同的一致波紋放大合成影像。圖45 a-c中所呈現之範 例描繪水一致系統1 096 ’其可產生三個不同合成影像 (1 1 14、1 126、1 134)。第一合成影像係於透鏡處於空氣真 空或另一氣體的媒介物1112中時產生;第二合成影像係於 透鏡浸入具約1 · 3 3程度之折射率的水1 1 2 〇或其他液體中時 產生;及第三合成影像係於透鏡浸入具約1 _ 4 1 8之折射率 的媒介物1 128(例如62體積百分比甘油及3 89體積百分比水 的均勻混合物)中時產生。 每一該些三個合成影像可爲彼此相同顏色 '型樣及一 致效果的類型’或可爲彼此不同顏色、型樣及一致效果。 雖然一致合成影像之類型、顏色及型樣可與水一致系統所 產生的一些或全部合成影像相同,但重要的是請注意,一 致深度效果(超深、深、浮動、超浮動、飄浮)的量,即浮 動影像的表面高度及深影像的深度與微透鏡111 2的f-數量 成比例。將微透鏡1 0 9 8浸入具有不同折射率的媒介物中, 改變了微透鏡1 098的f-數量,並成比例地放大分別產生之 合成影像中一致深度效果的量。 水一致波紋放大系統1 0 9 6結合微透鏡1 〇 9 8、隔離微透 鏡1098與第一圖示層11〇2的第一光學隔片1100、具有第— 圖示型樣1117的第一圖示層1102、隔離第一圖示層1102與 -111 - 200902339 第二圖示層1106的第二光學隔片1104、具有第二圖示型樣 1119的第二圖示層11〇6、隔離第二圖示層1106與第三圖示 層1110的第三光學隔片1108、及具有第三圖示型樣111丨的 第三圖示層1 1 10。 圖4 5 a描繪示範多路影像水〜致系統1 0 9 6的功能。當 微透鏡1098浸入具有實質上等於1.000折射率之媒介物(例 如真空、空氣及大部分氣體)時,微透鏡1 09 8具有配置其 焦點1118於第一圖示層1102內或附近的焦距1116。圖示層 1102可予省略,但若其呈現及若其具有與微透鏡1098正確 幾何關係的適當圖示型樣1 1 1 7(如曾提及之主題發明的相 關各式實施例),那麼微透鏡1 098將投射第一圖示型樣 1 1 1 7的合成影像1 1 1 4。 圖45b顯示微透鏡1 09 8浸入具有約1.33折射率的液體 1 120中,例如水。微透鏡1 09 8的流體浸入焦距丨122現在較 微透鏡1 0 98的空氣中焦距1 1 16大三倍。水浸入焦點丨124現 在約爲第二圖示層1 106的深度,且微透鏡1 098可形成第二 圖示型樣1119的合成影像1126。 圖45c中描繪當微透鏡1 09 8浸入具有i. 41 8折射率之流 體1 1 2 8時,範例多路影像水一致波紋放大系統1 〇 9 6的功能 。由於浸入流體1 1 2 8的折射率甚至較接近微透鏡1 〇 9 8的折 射率,其焦距1130實質上更大·約較空氣中焦距1116大7·2 倍。新焦點1 132現在約爲第三圖示層1 1 10的深度,且微透 鏡1098可形成第三圖示型樣1111的合成影像1134。 圖45 a-c之實施例的無窮變化清楚地可能處於主題發 -112 - 200902339 明的範圍內,包括可投射之合成影像的數量的選擇、合成 影像的顏色及類型、特定圖示層的出現或不在、浸入流體 折射率的選擇等。 圖45a-c之實施例的應用包括但不限於:獎勵及促銷 項目、鑑別及安全材料、遊戲裝置、潮濕指標及區別不同 液體的裝置。 經由使用圖46中所描繪本發明之放大系統可獲得另一 效果。該效果啓動觀看者觀看合成影像以便隨觀看者的相 關方位角角度改變而改變。該改變的影像係於偏離垂直一 選擇的量所替換之檢視角度的圓錐形內觀看。當觀看者觀 察中空檢視圓錐形內一致圍繞波紋放大系統時,所見影像 可依據環繞該中空圓錐形之觀看者的特定方位角角度而予 設計。於圖4 6的頂端’觀看者從檢視點A觀察放大系統 ’且她從該檢視點看見大寫字母"A "的合成影像。若觀看 者移至不同方位角檢視點,例如圖46底部所顯示的檢視點 B ’那麼她便可看見不同合成影像,例如大寫字母·· B "的影 像。 圖46之左上及右下亦描繪完成該效果的方法。當觀看 者從檢視點A觀察放大系統時,如該圖之左上所顯示的 ’該系統中微透鏡從圖示型樣的左側形成合成影像。當觀 看者從檢視點B觀察材料時,如該圖之右下所顯示的,該 微透鏡從圖示型樣的右側形成合成影像。由於如從多路檢 視點所見’每一圖示型樣攜帶環繞多路合成影像的資訊, 所以倂入每一圖示型樣的特定影像元件通常將爲每一圖示 -113- 200902339 型樣獨特的。 圖47描繪倂入代表圖示型樣的特定影像元件。在此圖 中可以見到’將從方位角檢視點方向A的高度範圍見到 圖示區A中影像元件。同樣地,將從檢視點方向b見到 圖示區B ’等等。請注意,在圖示型樣的左上(區F),並 爲圖示區中影像元件,所以如從方向F的檢視點所見,其 將代表合成影像中空白區域。 本實施例具有使用的多重性。範例包括:顯現爲不從 不同方位角角度改變的合成影像,使其總是面對或”追蹤” 觀看者;可呈現之形成移動圖畫或動畫的一連串相連影像 :可提供之文字或圖形資訊的多路頁面,使得觀看者經由 旋轉材料而"翻轉頁面"並從不同方位角位置檢視;對於從 不同方向接近之駕駛者的街號或呈現不同資訊的交通控制 符號;及許多其他應用。 圖4 8a-f描繪製造塡充的圖示微結構的較佳方法。在 圖48a中膜基底(較佳地爲92標準規格聚酯膜)攜帶凝膠或 液體聚合物1 5 02(例如Lord Industries的U107)包覆。在 圖48b中,凝膠或液體聚合物包覆15〇2被導入接觸圖示微 結構工具1 5 04,其典型地由鍍鎳電鑄而製造,並應用適當 能量(例如紫外光或電子束輻射),使得凝膠或液體聚合物 包覆1 502聚合並保持圖示微結構工具1 5 04的微結構形狀。 圖48c中 > 當圖不微結構工具1504移除時’聚合包覆圖币 層1 5 1 0保持圖示微結構工具的負壓印,該些負壓印構成圖 示微結構1508的圖示層1510。圖48d中,圖示層1510接著 -114- 200902339 以圖示塡充材料1 5 1 2包覆,其塡充圖示微結構1 5 0 8。圖示 塡充材料1512經由沿箭頭1516之方向移動的刮墨刀15 14的 機構而自圖示層1510的頂表面移除(如圖所示)。如圖48f 中所示,刮墨刀15 14選擇地將圖示塡充材料15 12從圖示層 的平坦上表面移除,同時將其留在圖示微結構1508之後。 留在圖示微結構1508中的圖示塡充材料1520接著藉適當能 量源(例如紫外光或電子束輻射)的應用而選擇地聚合。 若圖示塡充材料1 5 1 2係以溶劑爲主,最後過程步驟可 包括加熱以去除多餘的溶劑。 文中的系統及裝置具有許多使用及應用領域。範例包 括: 政府及防衛應用-不論聯邦、國家或外國(例如護照、 身份證、駕照、簽證、出生證明、人口記錄、選舉人登記 卡、選票、社會安全卡、債券、食物券、郵票及稅單); 貨幣-不論聯邦、國家或外國(例如紙幣中安全執行緒 、聚合物貨幣中特徵及紙幣上特徵); 文件(例如所有權狀、契據、許可證、執照及證書); 財務及流通票據(例如保付銀行支票、公司支票、個 人支票、銀行收據、股票證書、旅行支票、匯票、信用卡 、簽帳卡、ATM卡、慈善信用卡、預付電話卡及禮物卡) i 秘密資訊(例如電影劇本、法律文件智慧財產、醫療 記錄/醫院記錄' 處方簽/條簽及”秘密處方”); 產品及商標保護,包括紡織物&家庭護理(例如洗衣店 -115- 200902339 洗潔劑、紡織調節劑、盤碟保護、家用清潔劑、表面包覆 、紡織物柔軟劑、漂白劑及特殊紡織物處理); 美容護理(例如護髮、髮色、護膚&清潔、化妝品、香 氣、止汗劑&除臭劑、女性保護條簽、棉球及護墊); 嬰兒及家人護理(例如嬰兒尿布、嬰兒及幼童擦巾、 嬰兒圍裙、嬰兒床單&床席、紙巾、廁所衛生紙及面紙); 健康護理(例如口腔護理、寵物健康及營養、處方用 藥、不需處方用藥、藥物輸送及個人健康護理、處方維他 命及運動與營養充;處方及非處方眼鏡;售予醫院的醫療 裝置與裝備、醫療專業人員及躉售醫療批發商,即:繃帶 、裝備、可移植裝置、外科補給品); 食品及飲料包裝; 乾貨包裝; 電器、零件&成分; 服飾及鞋類’包括運動服、鞋類、許可及非許可縮放 '運動及休閒服飾、紡織物; 生技製藥; 航太組件及零件; 汽車組件及零件; 運動商品; 菸品; 軟體; 光碟片及DVD ; 爆裂物; -116- 200902339 新穎物件(例如禮物紙及緞帶); 書及雜誌; 學校商品及辦公室用品; 名片, 運送文件及包裝; 筆記本套; 書套; 書籤; 比賽及車票; 博奕應用(例如彩票、遊戲卡、娛樂場籌碼與牌戲用 品、彩券銷售及總賭金); 家庭裝備(例如毛巾、亞麻布製品及家具); 地板及牆面塗料; 珠寶&手錶; 手提袋; 藝術品、珍藏品及紀念品; 玩具; 展覽(例如產品採購地點及推銷呈現); 產品標示、標籤及包裝(例如貼紙、吊牌、標籤、執 行緒、開口條、外包裝、確保用於鑑別或增強之應用於商 標產品或文件的防竄改影像、僞裝及資產追蹤)。 上述實施例的適當材料包括廣泛的聚合物。丙烯酸、 丙烯酸鹽聚酯、丙烯酸鹽氨基甲酸酯、聚丙烯、氨基甲酸 酯及具有微透鏡及微結構圖示元件二者之適當光學及機械 -117- 200902339 屬性的聚酯。選擇的基底膜的適當材料包括大部分市售聚 η物膜,包括丙烯酸、玻璃紙、賽綸、尼龍、聚碳酸酯、 聚醋、聚丙嫌、聚乙烯及聚乙烯組合。微結構圖示塡充材 料可包括適於製造微結構圖示元件的任一上列材料,以及 以溶劑爲主的墨水及其他常見的顏料或染料展色劑。倂入 該些材料的染料或顏料將與該展色劑的化學構造相容。顏 料必須具有實質上小於任一圖示元件之組件的最小尺寸。 選擇的密封層材料可包括適於製造微結構圖示元件的任一 上列材料,加上許多不同市售用於印刷與紙及膜轉換工業 的塗料、墨水、表面塗漆、亮光漆、亮漆及透明塗漆。並 無較佳的材料組合-材料的選擇取決於材料幾何的內容、 系統的光學屬性及所需的光學效果。 按序列安排之合成影像 · 本發明的另一實施例稱爲一致電影(Uns ion Flicker), 可選擇地從不同檢視點呈現不同合成影像。在一類電影合 成影像(SI)中爲靜態平面內影像,而非此點所討論之動作 影像中動態(移動)平面內影像。 一致電影可經設計而呈現一系列合成影像的多重性, 提供短動畫的效果而呈現從檢視或”電影”出現或消失的合 成影像(爲本實施例提供動力),呈現一連串連續或例如不 同文字頁面之不連續資訊頁面的合成影像,及呈現提供源 自於檢視角度相依影像集之其他視覺效果的合成影像。 圖49經由63個所描繪的各式觀點及設計、表面與平面 -118- 200902339 內影像之能見度控制或視場(F 〇 V )控制的實施例,吾人稱 爲電影合成影像。平面內影像爲一具有若干視覺邊界、型 樣或視覺上實質置於基底之平面中之結構的影像,在該基 底之上或之中載運該平面內影像。電影平面內影像之視場 (FOV)的控制係藉平面內影像之邊界內所包含圖示的F〇v 控制型樣或陣列而完成。個別合成放大影像係經由聚焦元 件之陣列的互動而製造,例如任一先前所描述的,及吾人 稱爲FOV控制合成影像的一或多個FOV控制圖示型樣或 陣列。可形成該聚焦元件及圖示,並可具有上述聚焦元件 及影像圖示的尺寸及特徵。該FOV控制合成影像提供藉 移動檢視電影平面內影像的視場,例如與電影影像區域視 覺相交之中或之外的FOV控制合成影像的視差、正視差 或隱藏視差移動。 合成影像的視差移動源自於實體鏡的深度效果,包括 例如該些先前所描述的深、超深、浮動、超浮動、飄浮、 圍繞及3 -D效果。隱藏視差合成影像移動爲視差及正視差 移動之混合的影像移動-隱藏視差合成影像將以相對於有 效傾斜檢視軸線之非平行及非垂直角度移動,例如3 0度( 其中平行定義爲〇度,垂直定義爲90度)。回想起正視差移 動,爲通常平行於影像之平面的傾斜軸線的方向之移動。 隱藏視差合成影像通常亦將呈現一些實體鏡的深度效果。 上述形態影像亦可製造隱藏視差影像移動。 電影合成影像構成FOV控制型樣及邊界形狀。該 F Ο V控制型樣用於控制角度之範圍的目的,在此之上邊界 -119 - 200902339 內的透鏡將視爲’'啓動"。爲求簡化,吾人將考量結合不具 任何其他一致效果之單一電影FOV控制型樣集的一致電 影材料。當例如透鏡之一致電影聚焦元件聚焦於FOV控 制型樣上時,FOV控制型樣的顏色顯現爲塡充整個透鏡( 因而該透鏡"啓動"),且當該透鏡聚焦於該FOV控制型樣 之外的點上時,該透鏡顯現爲以背景的顏色塡充(因而該 透鏡’'關閉")。電影影像之設計的最小單元因而爲單一圖 示區,且電影影像的該最小單元或電影畫素爲單——致電 影透鏡或聚焦元件。 電影影像可爲任一尺寸,範圍從單一電影畫素到數兆 電影畫素或更多。極小的電影影像,例如無法由裸眼區別 的微小黑體字或隱蔽影像,可由電影畫素的小型樣製造。 如先前所提及的(圖42的”濕式解碼器"方法及圖43的”乾式 解碼器”方法),該電影影像可用做隱蔽的安全特徵,其需 要高倍放大檢視,例如藉用高倍數放大鏡(2 Ox或更大)、 顯微鏡或輔助透鏡材料以提供合成放大影像。 圖49a爲一致電影膜2000之示範實施例的平面圖,其 具有以格式化乳齒象頭2 005之形式的電影平面內影像之設 計的區域。在該區域的邊界內部爲FOV控制圖示的陣列 或型樣,其構成電影平面內影像,並符合文中先前所描述 之形成FOV合成放大影像2007及2010之類型的聚焦元件( 未顯示)的陣列。FOV控制合成影像200 7及20 10顯示爲浮 動(或超浮動)影像,但其亦可爲深、超深、移動、形態、 環繞、3 -D或其他類先前描述的一致合成放大影像。電影 -120 - 200902339 影像區域2005及FOV控制合成影像2007的視覺相交2015 製造以FOV控制合成影像2〇〇7之顏色塡充的電影影像區 域2005的表面。因而可見到電影影像區域2005,或顯現爲 從此檢視角度"啓動"。 圖49b爲圖49a之格式化乳齒象頭2〇05之合成的電影 平面內影像4019的放大平面圖。平面內影像4019具有邊界 4013,其中置有複數影像圖示的型樣或陣列。在其平面內 ,複數影像圖示之合成的形式合成地採取格式化乳齒象頭 的形狀及表面,但可形成任何其他的形狀或設計。圖49c 爲圖49b之平面內影像之區段4017的放大。圖49c描繪影 像圖示陣列形成平面內影像40 19的示範實施例。影像圖示 陣列的特徵在於暗及亮圖示的區域。影像圖示陣列亦可由 例如具有缺少影像圖示之平面內影像40 1 9內影像圖示及區 域的陣列形成。在一形式中,暗圖示均可爲相同顏色,或 另一方面爲不同顏色的組合。在圖49的範例中,儘管暗區 可具有其他形狀,但每一暗區通常具有梯形形狀。 FOV控制合成放大影像2 007、2010藉聚焦元件之陣列 的互動而製造,例如任一文中先前所描述的陣列,及形成 合成的電影平面內影像4019之圖49b、c中所描繪的F0V 控制圖示的陣列。在一示範實施例中’聚焦元件的陣列爲 循環的,旋轉地對稱具有先前所描述之類型(參照例如圖 3a-i)的其平面內對稱軸之聚焦元件的平面陣列。FOV控 制圖示之陣列亦爲循環的形式,旋轉地對稱具有其平面內 對稱軸的平面陣列。在圖4 9 a及d的範例中’影像圖示聚 200902339 焦元件的循環、旋轉地對稱平面陣列具有一旋轉對稱,其 實質上相應於FOV控制圖示之陣列的旋轉對稱,其中在 FOV控制圖示之循環平面陣列的對稱軸中,控制圖示之重 複期間對於聚焦元件之重複期間的比例大於1,且聚焦元 件之循環平面陣列的相應對稱軸實質上校正,因而製造 FOV浮動控制合成放大影像2007、2010。如圖49a及d中 所描繪的,由於圖49c的影像圖示實質上爲梯形形狀,相 應FOV浮動合成放大影像將實質上相同。 如上述所提及的,可產生其他FOV控制合成放大影 像。例如,可藉改變FOV控制圖示之重複期間對於聚焦 元件之重複期間的比例,例如小於1,而產生深F Ο V控制 合成放大影像。 圖49d以透視圖描繪圖49a的效果,包括觀察者2020 的眼睛。在此檢視中,可見到一 FOV控制浮動(或超浮動) 合成放大影像2007插入觀察者2020的眼睛與電影影像區域 2005之間的視線(或視覺相交)。FOV控制合成影像2007之 視覺投射202 5的外觀尺寸大於電影影像區域2005,所以 FOV控制合成影像2007顯現爲以形成電影影像2005之暗或 彩色的圖示之顏色完全塡充。 由於電影影像區域2005的區域或邊界外部無FOV控 制圖示,所以視覺上置於電影影像區域2 0 0 5外部的F Ο V 控制合成影像2007的部分將不可見。電影影像區域2005有 效地爲一視窗,其在本範例的限制下,決定可以見到之 F Ο V控制合成影像2 0 0 7的長度。 -122 - 200902339 若FOV控制合成影像2007具有較電影影像區域2005 小的視覺尺寸,那麼其將未塡滿電影影像2 〇 〇 5,使得整個 電影平面內影像2005顯現爲將未啓動"。由於電影影像區 域的F Ο V係由電影影像區域2 0 0 5及F OV控制合成影像 2 007之視覺校正或相交的長度決定,所以將缺少一些部分 。所表達的另一方式,可由觀察者2 02 0見到之電影平面內 影像2005的量,係由FOV控制合成影像2007視覺上與電 影平面內影像2005相交或重疊的量決定。 圖5 0a、b描繪從不同於圖49a及d之檢視點的一致電 影膜2000的效果。圖50a爲從不同於圖49a之檢視角度的 一致電影膜的平面圖。從該角度,FOV控制合成影像2007 的表面視覺位置被替換爲圖49a中前一位置的視線左側。 如圖5〇b中所示,F〇V控制合成影像2 0 07與2 010均未視覺 上重疊’而是從不同檢視點203 0與電影影像區域2005校正 。由於電影影像圖示型樣的出現係源自於F0V控制合成 影像與該電影影像的視覺校正或重疊,所以當從不同檢視 點檢視時’缺少視覺校正或重疊使得該電影影像顯現爲被 "關閉"。由於電影影像區域將不被見到以暗或彩色的圖示 塡充’所以無法從該檢視點見到該電影影像。圖50a、b 中未校正被誇大’其描繪一範例,其中檢視角度使得圖 49a、d之合成影像2〇〇7的邊界落於電影影像2〇〇5之邊界 區域外部。該效果發生於聚焦元件的焦點落於亮彩色的圖 示上時’或落於缺少圖4 9 c中圖示的區域上時。 圖5 1 a-d描繪用於控制—或多個一致電影合成影像的 -123- 200902339 FOV並選擇地將其與另--致合成影像結合的圖示設計方 法。圖5 1 a顯示呈現Zuni迷信熊影像之重複型樣的一致 深度效果(例如上述深或浮動合成影像系統)的圖示型樣 2045。圖5lb顯示圖示2 05 0的型樣,以提供Lascaux洞穴 馬2052之電影影像的FOV控制。圖51c顯示圖示2055的型 樣,以提供乳齒象205 7之電影影像的FOV控制。 依據本揭露先前提及之方法,每一該些個別圖示型樣 的縮放比經設計而獲得每一所需之效果,例如,,Zuni 迷信熊圖示型樣陣列2045對於聚焦元件之相關陣列的縮放 比,當結合具3 0微米重複期間之微透鏡陣列時,可經設計 而爲0·99849849(源自於約666倍的放大),以製造具20微米 期間的深合成影像。電影Lascaux洞穴馬2052對FOV控 制圖示205 0的縮放比可經設計而製造具足夠大重複期間的 超深F Ο V合成影像’使得合成放大F Ο V控制圖示之陣列 的單一範例的視覺尺寸,將大於電影影像L a s c a u X洞穴馬 2 0 5 2平面內圖示型樣的尺寸,例如圖4 9 a、d中所描繪的 ’其中FOV控制合成影像2007係以使其大於電影平面內 影像乳齒象頭2 〇 〇 5之型樣區域的合成放大呈現。例如, Lascaux 洞穴馬比例可爲源自於約3 997倍放大的 0_9997498148834 ’且乳齒象比例可爲源自於約8993倍放 大的 0.9998888066148 。 爲求清晰’電影影像Lascaux洞穴馬2052及電影影像 乳齒象2 〇 5 7的邊界於圖5 〇 b、c中以虛線顯示,但電影影 像不具任何連續邊界。如圖4 9b、c中所描繪的,該虛線 -124- 200902339 表示包含電影影像2052、2057之影像圖示的陣列的外殼。 其長度分別由其FOV控制圖示陣列型樣2050及2〇55的長 度所定義。該電影影像將僅於其F Ο V控制圖示之陣列存 在處,及當存在具FOV控制合成影像之電影影像區域的 視覺相交時方可見到。此原則適用於本圖之實施例的所有 電影影像。 電影影像的尺寸或放大係由其”足跡",或包含電影影 像之F ◦ V控制陣列型樣的長度所固定。此係電影平面內 影像與其他類具有固定尺寸之合成影像-電影平面內影像 之間的區別。電影FOV控制合成影像的放大可予改變, 其係經由例如改變該FOV控制影像圖示/聚焦元件(例如微 透鏡)縮放比,或經由有關微透鏡陣列之F Ο V控制影像圖 示之陣列的角度不重合,但電影平面內影像的尺寸實質上 將不改變。因而,F Ο V合成影像之放大的改變未改變電影 平面內影像的形狀或長度,而是改變FOV合成影像之放 大’改變了其視覺上與電影影像相交或重疊的程度(即塡 滿、過度塡充或未塡滿)。 圖51a-c的所有圖示資訊2045、2050、2055可結合而 形成圖51d中所示之圖示2065的複合組合,並於圖52中放 大。當電影平面內影像被’,啓動”時,圖示資訊以附加方式 2065而結合,使得電影影像2〇52及205 7視覺上將模糊一致 深度效果Zuni熊合成影像。此組合係經由使用該圖示集 上”結合"函數而製造,將於下列詳細討論。 圖51及52之合成圖示集2〇65的效果顯示於圖53a_j中 -125- 200902339 。圖示影像區2072內合成圖示影像2075、2080、2085係經 由合倂或結合三不同圖示型樣2045、2050、2055而產生。 圖53j顯示該三型樣於一致材料2070上位置2115結合。爲 說明之故,圖示型樣2045、2050、205 5的個別貢獻以不同 艙口型樣顯示於圖5 3 a、d、g中,所以可理解他們對於總 合成影像效果的貢獻。當然,如圖5 3 j中所示’圖示影像 的實際複合組合將不顯示任何區別。 由於不同圖示型樣2045、2050、2055的重複期間通常 將不同,圖53a、d、g中所示特定圖示影像區2072並不代 表一致材料2070之所有位置之所有圖示的一致圖示影像型 樣。該特定圖示型樣區應用至圖53b、e及h中所示一致 材料2〇70之中心的點21 15。合成圖示影像型樣的形式依據 包含他們及一致材料2〇70上他們位置之圖示型樣的縮放因 子’而可或不可與一致材料的其他位置重複。 由於可由每一聚焦元件聚焦之圖示平面區域的尺寸大 於聚焦元件陣列或圖示陣列型樣的重複尺寸,所以圖示影 像元件2075、20 8 0及208 5不必要完全置於單—圖示影像區 2〇72之虛擬邊界2〇72的單一位置內。 圖53a顯示三不同圖示影像2〇75、2〇8〇及2〇85,他們 攜帶來自一致材料2070上點2115之個別圖示型樣2〇45、 2〇50及2〇55(圖51a-c)的合成影像資訊。如圖53c中所示, 圓形代表當從垂直右側的角度2125檢視—致材料2〇7〇時, 例如一致微透鏡(圖中未顯示)的焦點2〇9〇。—致材料2〇7〇 上點2 11 5因而顯示當從檢視點2丨2 〇觀看時電影乳齒象型樣 -126- 200902339 的部分。如圖53b中所示之類似的方式,當從檢視點2i2〇 檢視時致材料2070中其他聚焦元件亦將聚焦於電影乳 齒象圖不型樣影像205 5上,因而使電影乳齒象合成影像 2 1 1 0可見。 053b亦顯不’在電影乳齒象合成影像21〇〇之邊界外 部區域中,將看見深Zuni熊合成影像型樣2〇95。從檢視 點2120,一致材料2〇7〇因而針對Zuni熊的深合成影像型 樣而呈現平面內電影乳齒象頭2 i丨〇的合成影像。 當點2 U 5的檢視點改變如圖5 3 f中所示時,使得以垂 直於其上表面的角度2130進行一致材料2070的檢視2122, 經由一致材料2070所呈現合成影像的表面便改變。圖53d 咸不’代表焦點2〇9〇現在已偏移至圖示區2072的中心,且 其不再落在圖示影像20 8 5上,而是在圖示影像2〇75、2〇8〇 及2085之間的背景區域上。如圖53ε中所示,一致材料 2070上點21 15處將看不到合成影像。一致材料2〇7〇上的其 他點將顯示Zuni熊合成影像209 5,但電影影像2 1 1 〇、 2145將均無法從檢視點2122看見。本質上,電影合成影像 2 1 1 0及2 1 4 5均被”關閉"及無法看見-僅可從該檢視點穿越 一致材料2070的面而看見Zuni熊圖示合成影像型樣2095 〇 當點2 1 1 5的檢視點再次改變時,如圖5 3 i中所示,使 得一致材料2070以垂直左側的角度21 35而檢視2124 ,代表 焦點2090的位置便落於圖τρ:影像2080上(顯示於圖53g中) ,其爲電影Lascaux洞穴馬圖示型樣2〇5〇所提供圖示影像 -127- 200902339 的元件或部分。圖53h顯示,結合經由或藉其他聚焦元件 而從相同檢視點2 1 2 4所檢視的他類似焦點,一致材料現在 以Lascaux洞穴馬電影合成影像之邊界2 1 40外側可見的深 背景Zuni熊合成影像2095,顯示電影Lascaux洞穴馬型 樣合成影像2 1 4 5。 圖5 3 a-j因而描繪可變的合成影像效果,其可從合成 圖示集2065(圖52)的不同檢視角度看見或呈現。在圖53a-j 的範例中,經由平行於一致材料之垂直尺寸(如圖示)旋轉 環繞軸線2073的檢視點,而獲得所有檢視角度。此僅爲一 範例’可由本技藝中技藝熟練人士以許多不同方式予以延 伸。例如’圖示型樣可經設計而於經由環繞軸線2073旋轉 以檢視一致材料時顯示合成影像集,並於一致材料環繞垂 直於軸線2073之軸線旋轉時顯示不同合成影像集。本方法 之無限範圍的變化清楚地處於本發明的範圍內。 圖5 4-5 7爲從不同角度或檢視點檢視—致材料時,提 及有關結合圖示集以獲得不同合成影像視覺效果的圖示代 表。如圖49-53所示’由於其未實際顯示典型的圖示影像 之實際縮放及產生之典型的合成影像之實際縮放,所以該 些圖爲縮放的圖示代表。在該些圖中,每一標籤A的頂 部影像爲另一合成圖不集的圖示代表。超出縮放的該些影 像的部分爲電影影像圖示之陣列所形成之型樣2〗6丨的邊界 。爲了描繪方便,部分A中所顯示電影乳齒象圖示影像 跨越少量的Zuni熊圖示影像。實際上,其將產生具粗鶴 影像解析度之極小的電影影像。 -128- 200902339 在實際應用中,電影平面內影像型樣2 1 6 1可輕易地跨 越數千圖示影像,但其無法以附圖清晰地描繪。而是電影 影像的縮小版本及其相關圖示型樣顯示於該些圖的部分A 中。該些圖的部分B及C描繪將經由結合具有部分A之 設計方法的適當縮放的圖示型樣之一致材料製造的合成影 像。部分A的Zuni熊影像被理解爲經合成放大而形成部 分B及C的深Zuni熊合成影像。該深Zuni熊影像係經製 造圖示影像之陣列及聚焦元件之相關陣列,例如微透鏡, 而合成形成及放大,以如先前所討論的形成一致深合成放 大影像。雖然部分B及C的電影乳齒象型樣跨越深Zuni 熊合成影像的許多重複,若顯示其實際相對縮放,便可跨 越部分A之數百或數千的Zuni熊圖示影像。 圖49 -5 3呈現經由圖形附加而結合的合成圖示集。該 圖形的布林函數可於電腦輔助設計程式中執行,例如 AutoCAD。如圖54-61中所示,其他圖形的布林函數可用 於製造合成圖示集。 該些圖中顯示的合成圖示型樣僅爲無限種可能組合的 少數。除了圖54-6 1中所呈現的組合外,該些觀念及設計 原理的大量延伸對於熟悉本技藝的工作人員而言將是顯而 易見的。獲得該些合成圖示型樣的方法總結爲依據下列系 統的簡寫形式: B = Zuni熊圖示集(深) M =全乳齒象影像 FM =電影乳齒象圖不集 -129- 200902339 + =結合圖形的布林函數 -=減去圖形的布林函數 η =相交圖形的布林函數 爲進行描述,吾人將假定Zuni熊圖 生深合成影像。圖54a顯示以下列方法製 2 160 (B-M) + (FM-B), 或置入文字: ”從Zuni熊圖示集扣除全乳齒象影像 示集結合從電影乳齒象圖示集扣除Zuni 的型樣”。 如圖5 4b中所示,假定合成影像呈現 白色,一致材料2162呈現藉圖示組合產生 ,其將爲具白乳齒象形平面內區域21 70的 合成放大影像型樣2 1 65,其中當經由聚焦 相關陣列而從(例如)垂直於影像之平面及 檢視時,將看不見Zuni熊深型樣。如圖 從垂直於影像之平面右側的位置檢視時, 包含負(白)Zuni熊深型樣2 180之黑乳齒; 2175的全黑Zuni熊型樣2165。 圖5 5 a顯示以下列方法製造的合成圖f 或 ”從深Zuni熊圖示集扣除全乳齒象影 示集經設計而產 造的合成圖示集 ,並以該合成圖 熊圖示集所製造 黑色,且背景爲 的合成影像效果 全黑Zuni熊深 元件(未顯示)之 垂直左側的位置 5 4c中所示,當 該材料將顯示具 象形平面內區域 六集2185 像,並以該合成 -130- 200902339 圖不集結合從全乳齒象影像扣除深Zuni熊圖示集所製造 的型樣”。 結果一致材料2187合成影像顯示於圖55b、^中;具 黑平面內乳齒象頭2195的全黑Zuni熊深型樣219〇,其中 見到負(白)Zuni熊深型樣2200。由於使用全乳齒象影像取 代電影乳齒象圖示型樣,當從垂直檢視點、垂直左側檢視 點(圖5 5 b)或垂直右側檢視點(圖5 5 c)觀看,材料的—般表 面未改變。本質上,全乳齒象影像爲從垂直及垂直左與右 側之所有檢視點所見的平面內型樣(非電影平面內影像)。 因而,該全乳齒象影像從所有檢視點顯現爲”開啓Π。由於 Zuni知口成影像2190及2200爲深合成影像,其將呈現從 不同檢視點的視差移動,同時平面內黑乳齒象頭合成影像 2195將否。一'個結果爲隨者檢視點的改變,Ziini熊合成 影像2190、2200將於平面內黑乳齒象頭合成影像2195的相 對位置中偏移。當Zuni熊合成影像從平面內乳齒象頭 2 1 9 5的外部跨越進入時,Z u n i熊合成影像將從黑2 2 0 5改 變爲白2210。 有關本實施例的進一步範例,圖5 6 a顯示以任一該方 法所製造的合成圖示集2215 (B-M)+ ((B+ FM)-(BnFM)) 或 (B-M)+ ((B+ FM)-(B-(B-FM)))。 上述第一方法定義: "從深Z u n i熊圖示集扣除全乳齒象影像,結合從深 -131 - 200902339Vi. Appears to have realistic three-dimensionality (consistent 3-D). The disclosed synthetic magnification micro-optic system can be used, for example, as a security or authentication device, comprising: (a) a planar array of image representations having an in-plane symmetry axis, and the image representation having repeats within its planar array And (b) the image illustrates a planar array of focusing elements having an in-plane symmetry axis, and the image illustrates the focusing element having a repeating period within its planar array, wherein the image illustrates the plane of the focusing element The array is configured in a planar array of the image representation, and forms at least a portion of the image representation of at least one of the image representations at a sufficient distance from the image-focused component, and wherein The device has a thickness of less than 50 microns, or the image shows that the focusing element has an effective diameter of less than 50 microns, or both. In another embodiment, a method of fabricating a synthetic magnification micro-optic system and a method of fabricating a document security device each comprise the following steps: (a) providing a planar array having an image representation of its in-plane symmetry axis, the image representation Having a repeating period within the array; (b) providing a planar array of imaged focusing elements having an in-plane symmetry axis thereof, the image showing that the focusing element has a repeating period within the array, wherein the system includes the image representation Planar array, and the image shows that the planar array of focusing elements has a thickness of less than 50 microns, or the image shows that the focusing element has an effective diameter of less than 50 microns, or both; and (c) with respect to the image The image is arranged in a planar array to illustrate a planar array of focusing elements and to form at least a portion of the composite magnified image of the image representation at a sufficient distance from the image-capturing focusing element. In yet another embodiment, a method of controlling an optical effect in a synthetic magnifying micro-optic system or a security or authentication device is disclosed, the optical effect comprising a moving effect 'magnification, a visual depth effect, or a synthesis of the effect, the method comprising the steps of: (a) providing a planar array of image representations with their in-plane symmetry axes 'this image representation has repeating periods within the array; (b) providing a planar array of image-imaged focusing elements with its in-plane symmetry axis' The image illustrates that the focusing element has a repeating period -12-200902339 within the array, wherein the system includes a planar array of the image representation, and the image illustrates a planar array of focusing elements having a thickness of less than 50 microns, or an image map Having the focusing element having an effective diameter of less than 50 microns, or both; and (c) arranging the planar array of the image focusing elements substantially parallel to the planar array of the image representation, and interfacing with the image A sufficient distance of the focusing element to form at least a portion of the synthesized enlarged image of the image representation; (d) wherein the image is illustrated Repeat the period with the image icon. The ratio of the repetition period of the focusing element is selected from the group consisting of less than 1, substantially equal to 1 and greater than 1, and selecting the plane of symmetry of the planar array of the image and the corresponding image to illustrate the planar array of focusing elements The axis of symmetry is corrected or directionally offset. In a further exemplary embodiment, an image representation for use in a synthetic micro-optic system is disclosed, the synthetic magnification micro-optic system comprising: U) a planar array of image representations; and (b) a planar array of image-wise focusing elements, wherein Arranging the planar array of the image focusing elements in a manner corresponding to the planar array of the image representation, and forming at least a portion of the composite image of the image representation at a sufficient distance from the image indicating the focusing element; the image The illustration includes an image representation formed as a recess in the substrate, the recess forming the void selectively providing a material charge in contrast to the substrate. Also disclosed is a synthetic magnification micro-optic system or document security device and method of fabricating the same, comprising: U) a planar array of image representations; and -13 - 200902339 (b) image showing a planar array of focusing elements, the focusing element comprising a polygonal base Multi-band focusing element. Furthermore, the invention discloses a security or authentication thread comprising: (a) a material having a periodic array of micro-images or image representations containing recesses formed therein; (b) being disposed at a sufficient distance from the focusing element a periodic array of non-cylindrical, flat, non-spherical or polygonal base multi-band micro-focusing elements forming at least a portion of the micro-image or image representation of at least one synthetically magnified image. The micro-focusing element comprises a range from about a focusing element having a base diameter of from about 2 micrometers; and (c) a colored or metallic sealing or masking layer covering the array of microimages or images. A document security device or security thread specifically for use in currency is disclosed, comprising: (a) a planar array having an image representation of its in-plane symmetry axis, the image representation having a repeating period within the array; and (b) having The image of the in-plane symmetry axis illustrates a planar array of focusing elements. The image-capturing focusing element has a repeating period within the array, and the image is disposed substantially parallel to the planar array of image representations. The planar array forms at least a portion of the composite enlarged image of the image representation at a sufficient distance from the image-capturing focusing element, wherein the system includes a planar array of the image representation, and the image illustrates a plane of the focusing element The array has a thickness of less than 5 〇 microns, or the image shows that the focusing element has an effective diameter of less than 50 microns, or both. -14 - 200902339 and discloses a synthetic magnification optical and security system comprising an image and a plurality of image focusing elements, the focusing elements and the image system being disposed in planes associated with each other, wherein the system is substantially parallel to a plane of the system When tilted near the axis, at least one synthetically magnified image is formed which appears to move in a direction parallel to the tilt axis. The present invention further provides a synthetic magnification micro-optic system and a method of fabricating the same, comprising: u) - or a plurality of optical spacers; (b) a micro image composed of a planar array of image representations, the image representation having at least An axis of symmetry near one of the axes and positioned on or near the optical spacer; and (c) an image having an axis of symmetry located near at least one of its planar axes, the planar array of focusing elements, the axis of symmetry The micro-image array has the same plane axis, each focusing element is a polygonal base multi-band focusing element, or a lens providing an enlarged field of view beyond the width of the associated image, so that the periphery of the related image does not fall in the field of view In addition, or the non-spherical focusing element has an effective diameter of less than 50 microns. The system can include one or more of the above effects. A method is provided whereby the effects are optionally included in the system. The invention further provides a security device suitable for at least some companies, and for incorporating a security document, a label, a tear strip, a tamper indicating device, a sealing device or other authentication or security device, comprising at least one micro-optic system as described above . More specifically, the present invention provides a document security device and a method of fabricating the same, comprising: -15- 200902339 (a) - or a plurality of optical spacers; (b) a micro image composed of a planar array of image representations, the image Illustrated having an axis of symmetry located near at least one of its axes and positioned on or near the optical spacer; and (c) a planar array of imaged focusing elements having an axis of symmetry located near at least one of its planar axes The axis of symmetry is the same as the plane axis of the micro-image plane array, and each focusing element is a polygonal base multi-band focusing element, or a lens that provides an enlarged field of view beyond the width of the associated image, such that the associated image is illustrated. The perimeter does not fall outside the field of view, or the non-spherical focusing element has an effective diameter of less than 50 microns. In any one or more of the above embodiments, the image illustrates that the focusing element can have an F number equal to 4 or less, for example equal to 2 or less, or even equal to 1 or less. Moreover, the image illustrates that the focusing element can comprise a non-cylindrical lens or a non-cylindrical focusing mirror, or both. Further, the present invention provides a visual enhancement device comprising at least one micro-optical system as described above, and having the above effects, for visual enhancement of clothes, skin care products, documents, printed materials, manufactured goods, merchandising systems, Packaging, purchasing presentation points, publications, advertising devices, sports goods, financial documents and transaction cards, and all other items. In yet another embodiment, a synthetic micro-optic system and security device is disclosed, including an in-plane image formed by an array or array of image representations and an array of focusing elements. The system produces at least two different synthetic images. This synthetic image job is used to modulate or control the length of occurrence of another synthetic image. In an exemplary form, the array of image representations is characterized by -16-200902339 in the area of the shaded or shaded area or the dark or colored area of the unillustrated area. The array of image representations forms an in-plane composite image 'and the array of focusing elements interacts with the array of image representations to form individual composite magnified images' for controlling the field of view of the in-plane image, and thus Modulates or controls the length of occurrence of an image in the plane. Thus, the presence of the in-plane image visually appears or disappears, or is turned on or off, depending on the viewing angle of the system. In still further embodiments, a micro-optic system is disclosed, comprising: (a) an in-plane image having a boundary and an image region within the boundary, visually placed in a substantial plane of the substrate, the in-plane being disposed on the substrate (b) one or more control patterns of the illustration contained within the boundaries of the in-plane image; and (c) an array of focusing elements illustrated to form at least a portion of the one or more of the illustrations At least one synthetically magnified image of the control pattern, the synthetically magnified image providing a limited field of view to view the in-plane image that modulates the occurrence of the in-plane image. The synthetically magnified image can provide a view of the field of view of the in-plane image by moving in and out of the visually intersecting image of the composite magnified image of the image region of the in-plane image. Therefore, the in-plane image is visible when the synthesized magnified image is visually intersected with the image region of the in-plane image, and is when the synthesized magnified image does not visually intersect any part of the image region of the in-plane image. Invisible. The amount of the image in the in-plane image can be determined by the amount by which the synthetically magnified image is visually intersected with the image region of the in-plane image -17-200902339. As defined above, a security document or label having at least one security device is also provided which is at least partially embedded therein or mounted thereon. Other systems, devices, methods, features, and advantages will become apparent to those skilled in the art. All remaining systems, methods, features, and advantages are intended to be included within the scope of the present invention and are protected by the scope of the claims. All technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the art to which the invention pertains, unless otherwise defined. All publications, patent applications, patents and other references mentioned in the text are incorporated by reference. In the event of a conflict, this specification, including definitions, will be controlled. In addition, the materials, methods, and examples are merely illustrative and are not intended to be limiting. [Embodiment] Reference is now made in detail to the description of the embodiments illustrated in the drawings. Although many embodiments are described in conjunction with the drawings, the invention is not limited to the embodiments disclosed herein. Conversely, it is intended to cover all alternatives, modifications, and equivalents. For the sake of brevity and avoidance of repeated explanations, all subsequent references to the following nouns will be understood as definitions, descriptions and details in the text. For the sake of convenience, the terms defined will be apparently printed in the first example of the description of a particular embodiment. -18- 200902339 Graphic 塡. The illustrations are filled with glue and suspension to provide some. These different touch detection or detection entanglement materials include, but are not limited to, ray properties, Jane, reflectivity, Rayleigh genus effects, heating, electrochromism as a mixture, and these properties. Material properties that can be generated, electrical, cold, phosphorous, refractive index, color, polarization of the color circle, photocharged material - any material used to fill the microstructured component can be a gas, Liquids, gels, powders, solids, milk, composite materials, and combinations thereof. The attribute properties typically shown to be measured or detectable different from the surrounding layer material may provide an optical effect' or a non-adjacent property of the material that may be provided' or both. Combinations of materials can be used to provide the multiplicity of the attributes of the illustrated components. The material properties of the filling material produce the desired optical effect: package: transparency, opacity, refractive index, color distribution, loose bead powder, protein light, iridescence, color reflection and color absorption linear, circular and weighted Polarization properties, Raman or sexual 'optical rotation, fluorescence, luminescence, phosphorescence, two-photon, pressure discoloration, photochromism, triboluminescence, electroluminescence and magnetochromism. The illustrated entangled material can be a simple material, or a combination of suspensions or other combinations of multiple materials to obtain the desired non-contact detection or identification properties. The auxiliaries include, but are not limited to, magnetic reactions, magnetization, Charge distribution, conductivity, thermal conductivity, dielectric strength, fluorescent light, two-photon effect, nuclear magnetic resonance, transparency, opacity, color distribution, scattering properties, pearl powder, protein light, color reflection and color absorption, reflectivity, Linear, Circular and Elliptical, Raman or Rayleigh Properties, Radioactivity, Radiology Rotation, Thermochemistry, Pressure Discoloration, Photochromism, Friction Hair -19- 200902339 Light, electroluminescence, electrochromism and magnetochromism. The illustrated entangled material may preferably comprise a carrier material, such as a monomer, oligo or polymeric material, and combinations thereof, which are solvent cure, heat cure, oxidative cure, reaction cure, or radiation cure. The unusual radiation-curing photopolymer is U107 photopolymer from Lord Industries. The optical, non-contact detection, and non-contact identification properties of the illustrated carrier material can be modified by mixing or combining the following materials, such as, but not limited to, the materials: dyes, colorants, pigments, powder materials, inks. , powder minerals, magnetic materials and particles, magnetized materials and particles, magnetic reactive materials and particles, phosphors, liquid crystals, liquid crystal polymers, carbon black or other light absorbing materials, titanium dioxide or other light scattering materials, photonic crystals, nonlinear crystals , nano particles, nanotubes, buckyballs, cloth base tubes, organic materials, pearlescent materials, powder pearls, multilayer interference materials, milky white materials, iridescent materials, low refractive index materials or powders, high refractive index materials or Powder, diamond powder, structural pigment, polarized material, polarized rotating material, fluorescent material, phosphorescent material, thermochromic material, pressure-changing material, photochromic material, triboluminescent material, electroluminescent material, electrochromic material , magnetic color changing materials and particles, radioactive materials, radioactive materials, charge separation materials and groups thereof Hehe. Exemplary exemplified entanglement materials include, for example, the photopolymer carrier of U107 of L〇rd Industries, which is based on a submicron pigment powder to form a thick 11 ink ". Other attributes, materials, methods, mechanisms, and combinations thereof, which are not explicitly mentioned herein, are obviously understood to be included within the scope of the present invention. -20- 200902339 Cladding material - any material used to coat the illustrated layer or the illustrated entanglement material, or to coat any layer of the corrugated amplification system, including but not limited to lenses, graphic surfaces, graphic layers, The microstructured component, the illustrated entanglement material, or any layer of material disposed, laminated or applied to the lens, the illustrated layer, or any layer of the lens, the illustrated layer 'substrate, or the interior or exterior of the transparent substrate. The cladding material typically provides properties that are detectably different from the properties of the layers, the illustrated entanglement material, the substrate, the transparent substrate, or other materials in the lens layer. These different properties may provide optical effects, or they may provide non-contact detection or identification properties of the starting material, or both. Combinations of materials can be used to coat the material while providing the multiplicity of properties of the desired coating material. The material properties of the coating material that can produce the desired optical effect include, but are not limited to, transparency, opacity, refractive index, color distribution, Scattering properties 'pearl powder, protein light, iridescent color, color reflection and color absorption, reflectivity, linear, circular and elliptical polarization properties, Raman or Rayleigh properties, optical rotation, fluorescence, luminescence, phosphorescence, two Photon effect, thermochemistry, pressure discoloration, photochromism, triboluminescence, electroluminescence, electrochromism and magnetochromism. The coating material can be a simple material or be obtained as a mixture, combination, suspension or other combination of multiple materials. The appropriate method of applying the cladding material depends on a number of factors, including the material properties and the desired function or effect of the material. Wet reduction reaction (like wet silver plating), electroless plating, electroplating, vapor deposition, sputtering, plasma spraying, molecular beam epitaxy, hot stamping, foil transfer, lamination and other appropriate and well-known methods And combinations thereof, can be applied to metals, metal oxides, semiconductor packages - 21 - 200902339 and their combinations. Wet coating, spray coating, printing, lamination, chemical reaction on the surface of the graphic, inkjet, electrical printing, dip dyeing, crescent coating, wave coating, reactive coating and other suitable and well-known methods and combinations A coating material incorporating a liquid carrier material can be applied. Film or foil-based cladding materials can be applied by thermal embossing, foil transfer, lamination, and other suitable and well-known methods and combinations thereof. The cladding material may preferably be an evaporated or sputtered metal such as ingot, gold or silver, or a metal oxide such as indium-tin oxide or iron oxide. The coating material in combination with the chelating material may preferably comprise a carrier material such as a monomer, oligo or polymeric material and combinations thereof, which are solvent curing, heat curing, oxidative curing, reaction curing or radiation curing. An exemplary radiation curable photopolymer is U107 photopolymer from Lord Industries. The optical, non-contact detection and non-contact identification properties of the coated carrier material can be modified by mixing or grouping with any of the following materials (such as, but not limited to, such materials): dyes, colorants, minerals, magnetic materials, and Particles, magnetic and particles, phosphors, liquid crystal liquid materials, titanium dioxide or other optical dispersions, nano particles, nanotubes, brilliance materials, powder pearls, multi-irid materials, low refractive index materials or diamond powders, structures Pigments, polarized materials, phosphorescent materials, thermochromic materials, triboluminescent materials, electroluminescent pigments, powder materials, inks, powdered materials and particles, magnetically reactive material crystal polymers, carbon black or other light absorbing materials, photons Crystals, nonlinear crystal-based spheres, cloth-based tubes, organic materials, rare-layer interference materials, milky white materials, color powders, high refractive index materials or powders, materials, polarized rotating materials, fluorescent materials, pressure-changing materials, light Color-changing luminescent materials, electrochromic materials, magnetic transformation-22- 200902339 Color materials and particles, radioactive materials, radioactive materials, charge fractions Separate materials and combinations thereof. The vane coating material includes, for example, the U1 07 photopolymer carrier of Lord Industries, which is based on a submicron pigment powder to form a thick "ink". The coating material can also be selected to provide physical, chemical, mechanical, primer or adhesion promoting properties. Other attributes, materials, methods, mechanisms, and combinations thereof, which are not explicitly mentioned herein, are obviously understood to be included within the scope of the present invention. Graphical component of the illustrated design or pattern, wherein the object type of the illustrated component, such as a character or logo, is colored, colored, metallized, or with the background of the illustrated component. the difference. In general, during the manufacturing process, the object type of the component being illustrated will obtain its own distinguishing properties before any distinguishing property is obtained or applied to the background of the component being shown. Positive image - An image or composite image formed by the component being shown. Negative image - a graphic element that is not designed or typed, wherein the background of the illustrated element is colored, colored, metallized, or distinct from the object of the illustrated element, such as a word. Yuan or logo. In general, during the manufacturing process, the background of the negative graphic element will be obtained from any of the distinguishing properties or the object type applied to the negative graphic element. Image or synthetic image. The object type of the illustrated component - a discrete and bounded graphical component of the design or pattern, such as a word or logo. In general, the elements of the illustrated elements -23-200902339 are preferably bounded by one, two, or three illustrated elements or patterns, but may be more bounded. The background of the illustrated component - the area of the unbounded line of the graphic design or pattern encircles the object. Generally, the background of the illustrated elements or patterns continually spans multiple illustrated elements or patterns. The substantially planar layer of the illustrated layer-microprint can be applied to the face of the substrate or transparent substrate, or can be a separate layer. A wide range of materials can be used for the illustrated layers including, but not limited to, thermoset polymers, thermoformed polymers, cast polymers, reactive cast polymers, radiation curable polymers, biopolymers, gels, starches, sugars, cesium polymerization , multilayer dielectric polymer film, solvent cast polymer 'compression mold polymer, injection mold polymer, letterpress polymer, glass, metal oxide, diamond, aluminum oxide, photopolymer, photoresist, printing ink or styling The coating, inkjet printing coating, electroprinting coating, and combinations thereof are illustrative of the layer material being a photopolymer, such as the Ul 107 photopolymer of Lord Industries. The illustrated layer may be a single material or a combination of dyes, colorants, pigments, powder materials, inks, powder minerals, magnetic materials and particles, magnetized materials and particles, magnetically reactive materials and particles, phosphors, liquid helium θθ #1=1物, carbon black or other light absorbing material, titanium dioxide or other light scattering material, photonic crystal 'nonlinear crystal, nanoparticle, nano tube, cloth base ball, cloth base tube, organic material, pearl luminescent material , powder cherish materials, milky white materials, iridescent materials, low refractive index, secondary powder, diamond powder, structural pigments, polarized materials, polarized rotating materials, phosphorescent materials, ~ 24 - 200902339 thermal discoloration Materials, pressure-changing materials, photochromic materials, triboluminescent materials, electroluminescent materials, electrochromic materials, magnetically variable materials and particles, radioactive materials, radioactive materials, charge separation materials, and combinations thereof, and can enhance or change their optics Other suitable materials for electrical, magnetic 'nuclear magnetic resonance or other physical properties. The non-standard illustrated layer material is Lord Industries' U107 photopolymer. Other attributes, materials, methods, mechanisms, and combinations thereof, which are not explicitly mentioned herein, are obviously understood to be included within the scope of the present invention. Microstructured image element - a graphic element having a physical relief printing or a microstructure that can be formed in the illustrated layer by a number of suitable mechanisms, including thermoforming, casting, compression molding, injection molding, relief, styling Radiation exposure and development, laser exposure and development, inkjet printing, electrical printing, printing, engraving, electroforming, line drawing, photography, holographic photography, and well-known curing and etching or expansion processes, masking and precipitation processes , matte and chemical saturating, masking and reactive etching, masking and ion honing, micro-mechanical, laser mechanical and laser melt loss, photopolymer exposure and development combined with other suitable mechanisms and combinations thereof Laser exposure. The microstructured image element is preferably a liquid photopolymer between a cast polymer substrate (typically PET) and a nickel plated microstructured image component tool, radiation cured the photopolymer, and an attached cured photopolymer It is formed by peeling off the polymer substrate from the nickel-plated microstructured image element tool. Other attributes, materials, methods, mechanisms, and combinations thereof that are not explicitly mentioned herein are apparent to those skilled in the art, and it is apparent that -25-200902339 is included within the scope of the present invention. Microstructured image component tool and method - a tool and method for forming a microstructured image component in a layer as illustrated by a thermoforming, casting, compression molding, injection molding, relief, styling radiation exposure and Development, electroforming, and photopolymer exposure and development. The tool can be manufactured by many similar and appropriate mechanisms, including thermoforming, casting, compression molding, injection molding, letterpress, styling radiation exposure and development, laser exposure and development, inkjet printing, electrical printing, printing, engraving, electricity. Casting, line drawing, photography, holographic photography, and well-known curing and etching or expansion processes, masking and deposition processes, masking and chemical uranium engraving, masking and reactive etching, masking and ion honing, micromachined, Laser exposure of lasers and lasers combined with laser fuses, photopolymer exposure and development, and other suitable mechanisms and combinations thereof. The microstructured image component tool preferably produces the original microstructure, the conductive metallization of the microstructured photoresist surface, and the nickel plating of the conductive surface by optical exposure and development of the photoresist material on a hard substrate or a rigid transparent substrate. Produced by well-known methods. Other attributes, materials, methods, mechanisms, and combinations thereof, which are not explicitly mentioned herein, are obviously understood to be included within the scope of the present invention. Transparent substrate - any substantially planar and substantially optically transparent material 'including but not limited to glass 'metal oxides, polymers, composite materials, biopolymers, sugars, celluloses, starches, gels, and combinations thereof, It is used to support an optical component of a uniform corrugated amplification system that optionally includes a microlens array and one or more illustrated image arrays. PET Polymer -26- 200902339 The film is an exemplary substrate for the illustrated layer and corrugated amplification system of the present invention. Other attributes, materials, methods, mechanisms, and combinations thereof, which are not explicitly mentioned herein, are obviously understood to be included within the scope of the present invention. Substrate - any substantially planar material including, but not limited to, glass, metal, composite materials, metal oxides, polymers, biopolymers, sugars, cellulose, starch, gels, paper, fibrous materials, non-fibrous materials , foil, non-woven paper substitutes and combinations thereof. The ruthenium polymer film is the exemplary substrate of the present invention. Other attributes, materials, methods, mechanisms, and combinations thereof, which are not explicitly mentioned herein, are obviously understood to be included within the scope of the present invention. Conformal cladding material - a cladding material that conforms to the surface shape of the application. The spray metal cladding is typically conformal - it covers the vertical surface, the micro-structure sidewalls, the relief regions, and the horizontal surface. Non-conformal cladding material - a coating material that does not conform to the applied surface shape. The evaporative metal cladding is typically non-conformal - it preferentially coats the horizontal surface 'but insufficiently overlies the vertical surface and the microstructured sidewalls, and does not enclose the relief region. Directional Cladding Material - A coating material that preferentially coats a horizontal surface and a surface that has a vertical surface that is directed toward the general direction of the cladding source, but does not cover a surface that is directed away from the vertical surface in the general direction of the cladding source. The compensated or obstructed evaporating metal coating is an example of a directional cladding material: the flow of metal vapor points to a surface that is not substantially perpendicular to the angle, such that the |, near-surface of the microstructure -27-200902339 will be packaged Covered, but the "far" surface of the microstructure will be obscured and uncoated. Referring now to the drawings, Figure 1a depicts an embodiment of a micro-optic system 12 that provides positive parallax shifting of one or more images of the system. The system 12 microlens 1 has at least two axes of symmetry which are substantially equal and arranged in a two-dimensional periodic array. The diameter of the lens 2 is preferably less than 50μ, and the void space between the lenses 3 is preferably 5 μ. Or smaller. (We alternately use the nouns "μ" and "μηι" ' to indicate the same size.) The microlens 1 focuses the image of the component 4 and projects the image 1 观看 to the viewer. Typically used for ambient illumination with normal levels, so the illuminance of the illustrated image is generated by reflecting or transmitting ambient light. The illustrated element 4 is a period of substantially similar to a lens array comprising lens 1. And an element of a periodic array of graphic elements of the size. An optical spacer 5 between the lens 1 and the illustrated element 4 is contiguous with the material of the lens 1 or alternatively an individual substrate 8 - in this In an embodiment, the lens 9 is separated from the substrate. The illustrated element 4 is optionally protected by a sealing layer 6, which is preferably a polymeric material. The sealing layer 6 can be transparent, translucent, colored, dyed. , opaque, metallic, magnetic, optically variable, and any combination thereof, providing the desired optical effects and/or remaining functions for security and identification purposes, including automated currency identification, verification, Support for tracking, counting, and detection systems that rely on optical effects, conductivity or capacitance, and magnetic field detection. The total thickness of the system 7 is typically less than 5 μμ; the actual thickness depends on the F# of the lens 1 and the lens 2 The diameter, and the thickness of the remaining security features or visual effect layers. The repeating period 11 of the illustrated element 4 is substantially the same as the repeating period of the lens 1-28-200902339; the "zoom ratio" is the repeating period of the illustration and the lens Heavy The ratio of the complex period is used to create many different visual effects. When the direction of the symmetry axis of the lens and the figure deviates, the axial symmetry of the scaling ratio is substantially equal to 1. 0000 ' results in a consistent movement of the positive parallax effect. When the lens and the illustrated symmetry axis are substantially corrected, the axial symmetry 缩放 of the scaling ratio is less than 1. 0000, resulting in a consistent deep and consistent ultra-deep effect, and when the symmetry axis of the lens and the figure is substantially corrected, the axial symmetry 缩放 of the scaling ratio is greater than 1. 0000, resulting in consistent floating and consistent super-floating effects. The axial asymmetry of the scaling ratio, for example, the X direction is 0. 995 and Y direction 1. 005, resulting in a consistent floating effect. Consistent morphological effects can be obtained by scaling the lens during the repetition of the lens or during the repetition of the illustration, or by combining the spatial change information into the graphic pattern. By combining the spatial change information into the graphic pattern, a uniform 3D effect can also be produced, but in the present embodiment, the information represents the difference of the three-dimensional object as seen from a specific position substantially corresponding to the position of the figure. View point. Figure 1 b presents an isometric view of the system, as depicted in cross-section in Figure 1a, with a square array pattern of lenses 1 and a repeating period 1 1 and an optical spacer thickness 5 (Figure 1 a is not specific The square array pattern 'but is a representative cross section of all regular periodic array patterns). The graphical component 4 is shown as a "$ " image, clearly seen in the front-end truncation segment. Although there is a substantially one-to-one correspondence between the lens 1 and the illustrated element 4, the axis of symmetry of the lens array will not be correct, which is indeed corrected with the axis of symmetry of the illustrated array. In with 1. The zoom ratio of 0000 is the same as that of the graph la-b (positive parallax shift). In the case of the material embodiment, when the axis of the lens 1 is substantially corrected with the axis of the image, the resultant image of the illustrated component is synthesized (this example) Medium is large" $ " -29- 200902339 Photographic magnification", and is theoretically close to infinite factor amplification. The slight angle of the lens 1 axis and the axis of the illustrated element 4 does not coincide with the magnification factor of the composite image of the illustrated component. And rotating the synthesized image. The moving composite image generated by the lens, the optical spacer, and the specific combination of the illustrations is specifically changed by the viewing angle shifting amount, and the matching amount is a part of the composite image repeating distance. For example, if the rendering is 0. The uniform moving material of the composite image of the 25-inch repeating distance, and when the viewing angle is changed by 10 degrees, the synthetic images appear to have a positive parallax shift of 0 · 1 inch, and then used to manufacture the tool 1. The same lens, illustration and spacer with the same uniform repeating distance of 0 inches, when the viewing angle changes by 1 〇, will proportionally present a large positive parallax shift-0. 4 miles. The amount of the positive parallax image shift is scaled to match the repeat distance of the resulting composite image. The relationship between the change in the viewing angle and the scaling of the positive parallax movement depends on the F# of the lens used. For a change in the selected viewing angle, a low F# lens produces a smaller amount of positive parallax movement than a larger F# lens. An exemplary lens for uniformly moving material may have 0. 8 of F#. One reason for the desired F# is to minimize the vertical difference between the image seen by the observer's left eye and the image seen by the right eye. The vertical difference is the vertical misalignment between the left eye and the right eye image - an image appears to be replaced vertically with respect to other images. Horizontal images differ from common and normal phenomena • They are one of the factors used by the eye-brain system to sense two-dimensional depth. Vertical image differences are often not encountered by people - if their optics are not coincident, they are sometimes seen in binocular telescopes or binocular microscopes. Although horizontal images occur continuously in people's binocular vision, vertical images have never been different in nature, so -30- 200902339 people have limited ability to adapt to different vertical images. This adjustment requires a slight upward or downward look at the other eye. This is an unnatural experience, although it will not harm people, but it will produce immediate physical perception in the viewer's eyes due to unaccustomed eye muscle movements. This physical perception has been described in various ways, from "it makes my eyes feel weird" to 'this is not easy for me to see". This effect is exhibited regardless of the azimuthal direction of the view (i.e., the uniformly moving material can be rotated at any angle in its plane without missing the effect). Any type of conventional printing does not cause this physical perception of the viewer. Consistent moving materials can be designed to raise the perception of the viewer by enhancing the vertical differences in the image. Since the viewer's eyes are placed on a horizontal plane, the vertical image is different in the consistent moving material. Since the left eye view is different from the horizontal angle of the right eye view system, the synthetic image seen by the left eye is replaced with the synthetic image in the right eye and positively in the vertical direction, so that the vertical image is manufactured differently. The vertical image differs by a different amount than the low F# lens' and is usually not noticed by the viewer. However, you can borrow, for example, F# 2. Larger F# lenses of 0 or larger, which enhance the vertical image, are deliberately created vertically different perceptions in the viewer's eyes. The advantage of making an enhanced vertical image in a consistently moving material is that the physical perception that is triggered in the viewer is unique, immediate and automatic, and can thus be used as a novel authentication method. No other known materials provide similar perception from all viewing azimuth directions. The embodiment of the synthetic magnification factor of consistently deep, uniformly floating and uniformly floating is based on the angle correction of the axis of the lens 1 and the axis of the illustrated element 4, and the scaling ratio of the -31 - 200902339 system. When the zoom ratio is not equal to 1. At 0 0 0 0, the maximum amplification obtained from the substantial correction of the axes is equal to 1/(1. The absolute of 0000-(zoom ratio)). Thus with 0. A consistent deep material of 995 scaling ratio will exhibit |1/(1〇〇〇_ 0_995)| = 200χ. Similarly, with 1. The 0浮动5 scaling ratio of the floating material will also present |1/(1·000-1. 005) The maximum magnification of the 200 χ. In a manner similar to the embodiment of the moving material, the uniform angle, the uniform floating, and the uniform floating lens 1 axis do not coincide with the slight angle of the axis of the illustrated element 4, reducing the magnification factor of the composite image of the illustrated element. And rotate the magnified composite image. The synthetic image produced by the uniform deep or ultra-deep graphic pattern is the upper right relative to the orientation of the uniform deep or ultra-deep graphic pattern, while the synthetic image produced by the uniform floating or super floating pattern is reversed. Rotate one hundred and eighty degrees (180) relative to the direction of the uniform floating or superfloating graphic pattern. Figure 2a depicts the anti-intuitive positive parallax image shifting effect seen in the consistent moving embodiment. The left side of Figure 2a depicts a consistent moving material 12 in a plan view of a swing or rotation 18 about a horizontal axis 丨6. If the synthetically magnified image 14 is moved in accordance with the parallax, it appears as an up-and-down replacement as the material 12 is swung about the horizontal axis 16 (as shown in Figure 2a). The surface parallax movement is typically a physical object, a conventional print, and a holographic image. Instead of presenting the parallax shift, the synthetically magnified image 14 shows the movement of the positive parallax movement 2〇_ perpendicular to the normal expected parallax movement direction. The right side of Figure 2a depicts a perspective view of a material 12 that exhibits a positive parallax shift of a single synthetically magnified image 随4 as it swings 18 about the horizontal axis of rotation 16 . The point contour 2 2 shows the position of the synthetically magnified image ^ 4 moved to the right by the front view axis, and the point outline 24 shows the position of the composite image - 4 - 200902339 enlarged image 1 moved to the left by the front view axis. The visual effects of the consistent deep and consistent floating embodiment are equally dimensioned in Figures 2b, c. In Fig. 2b, a uniform deep material 26 presents a synthetically magnified image 2 8 ' when viewed by the eye of the observer 30, the solid mirror appears to be placed below the plane of the uniform deep material 26. In Fig. 2c, an item-induced floating material 32 presents a synthetically magnified image 34 that, when viewed by the eye of the viewer 30, is physically mirrored to be placed above the plane of the uniform floating material 32. The consistent deep and consistent floating effect can be seen from all azimuth viewing positions and wide height positions 'from vertical height (so that the observer's 3 〇 eyes to the consistent deep material 2 6 or consistent floating material 3 2 line of sight vertical) The surface of the material is as low as a shallow elevation angle typically less than 45 degrees. Wide-ranging visibility and consistent visibility of uniform floating effects provide a simple and convenient method of simulating consistent deep and consistent floating materials using cylindrical lenticular optics or holographic photography. Figure 2 d-f shows the solid mirror-perceived depth position of the composite magnified image 38 of the three different azimuthal rotations of the uniform floating material 36 as seen by the eye of the observer 30, and the uniform floating material 36 and the synthetic magnification The same size view of the corresponding plan view of the image 3 8 depicts the effect of the consistent floating embodiment. When the uniform floating material 36 is originally as shown in plan view, FIG. 2d depicts the synthetically magnified image 38 (hereinafter referred to as 'the image') as a solid mirror that appears as a plane placed under the uniform floating material 36. in. The dark black line in the plan view is used as the azimuth orientation reference 37 for illustration. Note that the reference frame 37 in Figure 2d is corrected in the vertical direction and the image 38 is corrected in the horizontal direction. Since the scaling ratio is less than 1 along the first axis of the uniform floating material 36 corrected substantially parallel to the -33-200902339 line connecting the observer's binocular pupils (this will be referred to below, the scaling ratio of the solid mirror|) . 000, the image 38 appears in a consistent deep position. The scaling of the solid mirror of the uniform floating material 36 is greater than 1. along a second axis perpendicular to the first axis.  〇 〇 0 ′ is produced as shown in Fig. 2f, whereby the uniform floating effect of the image 38 is produced when the second axis is substantially parallel-connected to the line of the observer pupil. Please note that this orientation reference 3 7 is in the horizontal position in the figure. Figure 2e depicts the intermediate azimuthal orientation of the uniform floating material 36, which produces a consistently moving positive parallax image effect due to the fact that the scale ratio of the solid mirror of the azimuthal orientation is substantially 1 · 0 0 。. As the material is azimuthal rotated, the uniform floating image 38 moves from below the uniform floating material 36 (Fig. 2d), up to the level of the uniform floating material 36 (Fig. 2e), and further up to the uniform floating material 36. Above the level (Fig. 2f), the visual effect can be enhanced by combining the consistent floating material 36 with conventional printed information. The depth of the conventionally printed untouched solid mirror serves as a reference plane for better sensing the depth of the solid mirror of the image 38. The illustrated "shadow image" can be seen when the consistent material is illuminated by a strong directional light source such as a 'point' source (e.g., a spotlight or LED flash) or a source of sight (e.g., daylight). These shadow images are unusual in many ways. Although the resultant synthetic image does not move in the direction of illumination, the resulting shadow image moves. In addition, although a consistent composite image can be placed on a different plane than the plane of the material, the shadow image is always placed in the plane of the material. The color of the shadow image is the color of the icon. So the black icon creates a black shadow image, the green icon creates a green image, and the white icon creates a white shadow image. -34- 200902339 The movement of a shadow image moves with the angle of illumination, which is related to a specific depth or motion-consistent effect in a manner parallel to the visual effects presented in the composite image. Thus, as the viewing angle changes, the movement of the shadow image as the ray angle changes parallel to the movement displayed by the composite image. The moving shadow image moves positively as the light source moves. Dark shadow images move in the same direction as the light source. The floating shadow image moves in the opposite direction of the light source. The floating shadow image moves in the direction of the above synthesis. The floating dark shadow image moves in the same direction as the light in the left-right direction, but opposite to the direction of the light in the up-down direction; the floating floating shadow image moves in the opposite direction of the light in the left-right direction, but with the up-down direction The direction of the light is the same; the floating moving shadow image shows a positive parallax movement relative to the light movement. The consistent shape shadow image shows the morphological effect as the light source moves. The remaining unusual shadow image effects are visible when, for example, the diverging point source of LED light is directed toward or away from the uniform film. When the light source is further away from its scatter line and closer to the approximate collimated ray, and the shadow image is generated due to the depth, the ultra-deep, floating or super-floating consistent composite image appears in the same size of the composite image. When the light is closer to the surface, the shadow image of the deep and ultra-deep material shrinks due to the strong divergence of the illumination, while the shadow image of the floating and super-floating material expands. Illuminating the materials with concentrated illumination makes the deep and ultra-deep shadow multi-images larger than the size of the composite image' while the floating and super-floating shadows are reduced. The shadow image of a uniformly moving material does not diverge or converge with the illuminance -35- 200902339 and significantly changes the zoom', but the shadow image rotates around the center of the illuminance. When the divergence or aggregation of the illumination changes, the uniformly floating shadow image is reduced in one direction and enlarged in the vertical direction. Consistent morphological shadow images change with respect to a particular morphological pattern as the illuminance diverges or aggregates change. All of these shadow image effects can be used as the remaining identification method for consistent materials for security, anti-counterfeiting, brand protection applications, and other similar applications. Figures 3a-i are plan views showing the satisfaction factors for different types of symmetric two-dimensional arrays of various embodiments and microlenses. Figures 3 a, d and g depict microlenses 4 6 , 5 2 and 60 , respectively, which are configured in a regular hexagonal array pattern 4 〇. (Array pattern dashed lines 40, 4 2, and 4 4 represent the symmetry of the lens pattern, but do not necessarily represent any physical component of the lens array.) The lens of Figure 3a has a substantially circular base geometry 46' Figure 3g The lens has a substantially hexagonal base geometry 60, and the lens of Figure 3d has an intermediate base geometry with an incomplete hexagon 52. As seen in Figures 3b, e and h, a similar development of lens geometry is applied to the square array 42 of lenses 48, 54 and 62, wherein the lenses have a range from substantially circular 48 to incomplete square 54 to substantially square The base geometry of 62. Accordingly, as seen in Figures 3c, f and i, the equilateral triangle array 4 4 includes lenses having a base geometry ranging from substantially circular 50 to incompletely triangular 58 to substantially triangular 64. The lens pattern of Figures 3 a-i is a lens that can be used in the present system. The void space between the lenses does not directly provide a synthetic magnification of the image. Materials made using these lens patterns will also include an array of illustrated elements that are placed in the same geometry with nearly the same scaling, allowing for scaling for consistent movement, consistent depth, consistent float, and consistent floating effects. difference. If the gap is between -36 and 200902339, as shown in Figure 3c, the lens will have a low satisfaction factor and the contrast between the image and the background will be reduced due to light scattering from the illustrated elements. If the space of the gap is small, the lens will have a high satisfaction factor and the contrast between the image and the background will be high, providing the lens itself with good focus properties, and the illustrated element is in the focal plane of the lens. It is often easy to form a high optical quality microlens with a round or nearly circular base instead of a square or triangular base. A good balance of lens performance and void space minimization is shown in Figure 3d; the hexagonal array of lenses has a fully hexagonal base geometry. Lenses with low F# are particularly suitable for this system. With regard to low F#, we are less than 4, especially for consistent movement of about 2 or lower. Low F# lenses have a high curvature and correspondingly large depressions, or center thickness, as a function of their diameter. A typical uniform lens with a F# of 0. 8, with a 28 micron wide hexagonal base, and 10. 9 micron center thickness. The typical Derinkwater lens with a 50 micron diameter and a 200 micron focal length has F# and 3. 1 micron center thickness. If scaled to the same base size, the uniform lens has a recess that is approximately six times larger than the Delincker lens. We have found that polygonal base multi-tape lenses, such as hexagonal base multi-strip lenses, have important and unexpected advantages on a circular base spherical lens. As explained above, the hexagonal base multi-strip lens is significantly improved by its stress relief geometry, but the remaining undesired optical advantages are obtained through the use of a hexagonal base multi-strip lens. I refer to these lenses as multi-band because they have three optical zones, each offering different and unique advantages of the subject invention. The three zones are the central zone (constituting a half of the lens), the side zone and the corner zone. The polygons -37-200902339 have an effective diameter which is a circular diameter located in the corner region surrounding the central region and including the side regions. The central region of the hexagonal base multi-strip lens of the subject invention has an aspherical form (e.g., 'for a 28 micron diameter lens having a nominal 28 micron focal length' having [y = (5. 1316E)x4-(0. 01679) x3+ (0. 124931) x + 1 1 .  2 4 8 2 4 ] The defined form) directs light to at least one focus, and the spherical surface has the same diameter and focal length. Figure 30 depicts the nominal 28 micron diameter hexagonal base with a nominal 28 micron focal length in polymer substrate 786. This central region of the multi-strip lens 784 has a focus property of 7 8 2 (lens and substrate n = l. 51), and Figure 31 depicts the central region 788 focus property 790 (lens and substrate n = 1, 51) of a 28 micron diameter spherical lens 792 having a nominal 30 micron focal length in the polymer substrate 7 94. A comparison of the two figures clearly shows that the subject disclosure discloses at least a hexagonal base multi-strip lens 7 84 and a spherical lens 792. From a wide viewing angle, the central region 780 of the hexagonal base multi-strip lens 784 provides a high image resolution and a shallow depth field of view. As depicted in Figure 32, the six side regions 7 96 of the hexagonal base multi-strip lens 744 of the subject invention each have a focal length that depends in a complex manner depending on the location of the region, but The effect causes the focus of the side region 796 to extend beyond the range of the 値 798, including about +/- 1 百分点 of the focus of the central region. The vertical blur 798 of the focus effectively increases the depth of the field of view of the lens in the zones 796 and provides the advantage of having a flat field of view lens. The performance of the outer zone 80 of the spherical lens 7 92 can be seen in FIG. Compared to the hexagonal base multi-strip lens 784, the vertical blur of the focus 82 is significantly less for the spherical lens 792. -38- 200902339 This is especially important for normal viewing: increased field of view depth, and effective beautification of the field of view, mitigating sudden image out of focus, which occurs when the curved focal surface is separated from the plane of the figure, occurs in a spherical lens . Thus, a consistent material is displayed using a uniform material of a hexagonal base multi-strip lens that fades away from the focus more gently at a higher viewing angle than the same uniform material of the spherical lens. This is desirable because it enhances the effective viewing angle of the material and thus enhances its usefulness as a security device or image rendering device. The corner region 806 of the hexagonal base multi-strip lens 784 of Figure 32 has a divergent focus property that provides the undesired advantage of scattering 808 ambient illumination to the illustrated plane' and thereby reduces the sensitivity of the uniform material to the illumination condition. The spherical lens 792 of Fig. 33 does not scatter ambient illumination into a wide area (as seen by the absence of rays scattered to the non-planar area 804), so when compared to a uniform material made using a hexagonal base multi-strip lens, For angled viewing, a consistent material made with a spherical lens has a large composite image brightness variation. Since the hexagonal base multi-strip lens has a higher full factor (capability of covering the plane) than the spherical lens, the benefits obtained from the exemplary hexagonal base multi-strip lens are further magnified. The void space between the spherical lenses provides virtually no ambient light scattering, while the non-scattering area is smaller than in the case of a hexagonal base multi-tape lens. It can thus be seen that even though the focus property of the hexagonal base multi-tape lens is lower than that of the spherical lens evaluated by the conventional optical standard, in the context of the subject invention hexagonal base multi-strip lens, the undesired provision on the spherical lens is provided. Benefits and advantages. Each type of lens can benefit from the addition of a scattering microstructure or the introduction or intrusion into the mirror void space to enhance the scattering of ambient illumination to the illustrated planar scattering material. In addition, the lens void space may be filled with material that will form a small radius crescent shaped with gathered or divergent focus properties to direct ambient illumination to the illustrated plane. These methods can be combined, for example, by crescent-shaped materials that entrap light-scattering particles into the lens voids. Alternatively, the lens void region can be originally fabricated with a suitable scattering lens void region. Spherical lenses having such ratios are very difficult to manufacture because the high contact angle between the surface of the film and the edge of the lens serves as a pressure concentrator for applying the force separating the lens from the tool during manufacture. These high pressures fail to attach the lens to the film and the lens cannot be removed from the tool. In addition, the optical properties of the low F# spherical lens are gradually compromised to keep the radius away from the center of the lens: the low F# spherical lens cannot focus well except near its central zone. The hexagonal base lens has the unexpected and significant benefit of overcoming a substantially circular base lens: the hexagonal lens releases its tool with a lower peeling force than an optically equivalent lens having a substantially circular base. The hexagonal lens has a shape which is substantially axially symmetrically mixed into a hexagonal symmetry from the vicinity of the center, and has a corner as a pressure concentrator on its base. The concentration of pressure induced by the corners of the pointed base reduces the overall peeling force required to separate the lens from its mold during manufacture. The amount of effect is substantial - the peeling force during manufacture is reduced by the factor of two or more hexagonal base lenses as compared to a substantially circular base lens. The image contrast of the material can be enhanced by the light absorbing (dark color) opaque coloring material filling the lens void space, effectively lowering the mask forming the lens. This eliminates the contrast reduction caused by the light scattering of the illustrated layer through the lens void space -40 - 200902339. The additional effect of this gap filling is that the illumination of the surrounding area is hindered and cannot be transmitted to the illustrated plane through the void space. The sharpness of the image produced by the lens with the surrounding out-of-focus lens can be improved by opaque coloring gaps as long as it fills the peripheral lens area of the offset. Different effects can be obtained by filling the lens void space with a white or bright colored material, or a material that matches the color of the substrate used as a consistent material. If the bright color lens gap is dense enough, and the graphic plane is intensively contrasted with the background and the background, the consistent composite image will be substantially invisible when viewed with reflected light, when transmitted at the lens end. When the light is viewed, it will be clearly visible, but it will not be visible when viewed from the end of the diagram. This provides a novel security effect with unidirectionally transmitted images that are only visible in the transmitted light and visible only from one end. Instead of or in addition to visible light pigments, a fluorescent material can be used in the coating of the lens voids to provide the remainder of the identification. Figure 4 shows the effect of changing the scaling ratio of the solid mirror along the axis of the material, S SR (during the repeating of the illustrated elements / during the repetition of the lens array). Has more than 1. The system area of 0000 SSR will produce a consistent floating and super floating effect, with substantially 1. The area of S0000 of 0000 will produce a consistent moving positive parallax movement (OPM) effect, and has less than! . The area of the SSR will produce a consistent deep and consistent ultra-deep effect. All of these effects can be generated and converted one by one in a variety of ways along the axis of the system membrane. This figure depicts one of the infinite combinations. The dashed line 66 indicates that it corresponds to substantially 1. 0000 SSR値, consistent deep and consistent ultra-deep and consistent floating and consistent super-floating line, and -41 - 200902339 OPM SSR値. In zone 68, the SSR of the consistent material is a consistently deep effect. Adjacent is zone 70, where the SSR is from 0. 995 jumped to 1. 〇〇5, a spatial conversion that is consistent with deep and consistent floating effects. In the next area 72 005, manufacturing a consistent floating effect. The next zone 74 produces a smooth transition from a consistent floating effect to a consistent deep effect. Zone 76 advances sharply to deepen the effect, to Μ P Μ, to a consistent floating effect, and zone 7 8 to 0 ΡΜ. The change in the repeating period required to complete these effects is usually done in the component layer. In addition to changing the SSR' in each zone, it is desirable to rotate the angle of each zone of the variable array, preferably in the illustrated elements, to maintain a substantially similarly sized synthetically magnified image. The easiest way to interpret the graph is to think of it as the solid mirror depth, which will be perceived as the entire axis of a system material. Thus, it is possible to locally control, and selectively create a solid mirror-shaped field of view of the image by the corresponding portion of the array rotation angle, which is a face for displaying the outline. The solid mirrored surface can be used to represent an unrestricted general face of the shape. The creation of a solid mirror styling or a graphical element of a period of time is a particularly effective way to visually display complex surfaces. Figure 5 a-C is a plan view depicting the effect of a rotating array pattern relative to the material of the system. Figure 5a shows lens array 80 with regular array spacing 82, without substantially altering the array axis. Figure 5b shows a graphical column 84 with a varying array axis azimuth angle 86. As illustrated, if the lens array 80 is combined with the illustrated element array 84 by means of a translation column on the illustrated array, then the resulting squint is 0. 995 > Manufacturing from SSR to down, from the next to the easy map can be used to change the cross section of the array by SSR control, visual perimeter, package pattern can create their circumferential angle. The component array lens array effect -42- 200902339 is shown in Figure 5c. In Fig. 5c, a pattern of synthetically magnified images 89, 90, 91 is produced via bonding of the lens array 80 and the material 88 produced by the array 84, which changes the scaling and rotates the entire material. The upper edge of the image 8 9 towards the material 8 8 is large and shows a small rotation. The image 90 is smaller toward the upper midsection of the material 88 and rotates through a significant angle relative to the image 89. The different scaling and rotation between images 89 and 91 is the result of the difference in angles between the lens pattern 82 and the illustrated component pattern 86. 6 a-c depict a method of shaping a composite magnified OPM image 98 into another composite magnified image 102 as the first image moves across the boundary 104 of the illustrated component patterns 92 and 94. The illustrated component pattern 92 has a circular graphic element 98 that is shown in the enlarged insert 96. The illustrated component pattern 94 has a star-shaped graphical component 102 that is shown in the enlarged insert 100. The illustrated component patterns 92 and 94 are not individual objects, but are combined at their boundaries 104. When the materials are combined using the combined graphic elements, the final OPM image will show the deformation effects depicted in Figures 6b and c. Figure 6b shows an OPM circular image 98 that moves to the right 10 7 , crosses the boundary 1 〇 4 and emerges from the boundary, and likewise, the star image 102 also moves to the right. When the image 1〇6 crosses the boundary, it is converted, partially circular and partially star-shaped. Figure 6c shows the image after it has moved further to the right: the image 98 is now closer to the boundary 104' and the image 106 completes its shape almost completely across the boundary' from a circle to a star. By creating a transition zone from one of the illustrated component types to other types instead of having a hard boundary 104, the deformation effect can be accomplished in a less abrupt manner. In the transition zone, the illustration will gradually change from circular to star via a series of stages. The smoothness of the visual form of the final OPM image will depend on the number of stages used for the conversion -43- 200902339. The range of possibilities for graphics is endless. For example, the transition zone can be designed such that the circle appears to be reduced, while the pointed star point protrudes upward through the protrusion or the circular side can appear as a concave to create an end-to-hard star, which gradually Sharpen until the final design is reached. Figures 7a-c are cross sections of the material of the system depicting another embodiment of the illustrated elements. Figure 7a depicts a material with lens 1 and by optical spacer 5 separated from the illustrated element 1 〇 8. The illustrated element i 〇 8 is formed by a colorless, colored, colored or dyed material applied to the lower surface of the optical spacer 5. Any of a number of common printing methods, such as ink jet, laser, letterpress, flexographic, gravure, and die, can be used to place such graphic elements 108 as long as the print resolution is good. Figure 7b depicts a similar material system with different embodiments of the illustrated element II2. In the present embodiment, the illustrated element is formed of a pigment, dye or granule embedded in the support material 11 。. Examples of this embodiment of the illustrated element 1 1 2 in the support material 1 10 include: silver particles in the gel, like photographic emulsion, colored or dyed ink that is absorbed into the ink receiver, and dye sublimation converted to dye receiving Coating, and photochromic or thermochromic images in the imaging film. Figure 7c depicts a microstructured method of forming the illustrated element 112. This method has the benefit of almost unlimited spatial resolution. The illustrated element 112 may be formed by the microstructures 1 1 3 or the voids in the solid region 11 5 either alone or in combination. The voids 1 1 3 are optionally filled or coated with another material such as a vaporized metal, a material having a different refractive index, or a dyed or colored material. Figures 8a, b depict positive and negative embodiments of the illustrated components. Figure 8a shows a component 116 being illustrated with a contrasting transparent background 118 colored, tinted or -44 - 200902339 colored background 120. Figure 8b shows a negative graphic element 122 whose contrasting colored, tinted or tinted background 120 is a transparent background 118. The materials of the system are optionally combined with both positive and negative graphic elements. The method of making positive and negative graphic elements is particularly applicable to the microstructured graphic element 1 14 of Figure 7c. Figure 9 shows a cross section of an embodiment of the pixel material of the present system. This embodiment includes a region having a short focus lens 124 and other regions having a long focus lens 136. The short focus lens 124 projects an image 123 of the component 129 illustrated in the illustrated plane 128 of the focal plane of the lens 124. The long-focus lens 136 projects the image 134 of the component 137 illustrated in the illustrated plane 133 of the focal plane of the lens 136. Optical spacer 126 isolates short focus lens 124 from its associated illustrated plane 128. The long focus lens 136 is separated from its associated illustrated plane 132 by the sum of the thickness of the optical spacer 126, the illustrated plane 128 and the second optical spacer 130. The illustrated element 137 in the second illustrated plane 132 is outside the depth of focus of the short focus lens 124 and thus does not form a distinct synthetically magnified image in the short focus lens area. In a similar manner, the illustrated element 129 is too close to the long focus lens 136 to form a distinct synthetically magnified image. Thus, the area of the material having the short focus lens 1 2 4 will display the image 1 2 3 of the illustrated element 1 29 while the area of the material having the long focus lens 136 will display the image 134 of the illustrated element 137. The projected images 123 and 134 may differ in design, color, OPM direction, synthetic magnification factor, and effects including the above-described deep, uniform, floating, and floating effects. Figure 10 is a cross section of another embodiment of the pixel material of the present system. This embodiment includes an area of the lens 140 raised by the lens support 144 above the base of the non-raised lens 148. The focal length of the elevated lens 140 is a distance 158-45-200902339, and the focus of the lenses is placed in the first illustrated plane 152. The focal length of the non-elevating lens 148 is a distance 160, and the focus of the lenses is placed in the second graphical plane 156. The two focal lengths 158 and 160 are similar or non-similar. The elevation lens 140 projects an image 138 of the illustrated element 162 in the illustrated plane 152 disposed in the focal plane of the lens 140. The non-elevating lens 148 projects the image 146 of the component 164 in the illustrated plane 156 disposed in the focal plane of the lens 148. The raised lens 140 is isolated from its associated graphic element 162 by the sum of the thicknesses of the lens support 144 and the optical isolation 150. The non-elevating lens 148 is isolated from its associated graphic element 164 by the sum of the thickness of the optical isolation 150, the illustrated layer 152, and the illustrated spacer 154. The illustrated element 164 in the second illustrated plane 156 is located outside of the focal depth of the raised lens 140 and thus does not form a distinct synthetically magnified image in the raised lens area. In a similar manner, the illustrated element 152 is too close to the non-raised lens 148 to form a distinct synthetically magnified image. Thus, the area having the material that raises the lens 140 will display the image 138 of the illustrated element 162 while the area of the material having the non-raised lens 148 will display the image 146 of the illustrated element 156. The projected images 138 and 146 may differ in design, color, OPM direction, synthetic magnification factor, and effects including deep, uniform, floating, and floating effects. Figure 1 1a, b are cross-sectional views depicting a non-refracting embodiment of the present system. Figure 11a depicts an embodiment that uses a focusing mirror i66 instead of a refractive lens' to project an image 174 of the graphic element 172. The illustrated layer 170 is placed between the viewing #@eye and the focusing optics. Focusing mirror 1 66 can be metallized 167 ' to achieve high focusing efficiency. The illustrated layer 170 maintains a distance equal to the focal length of the mirror by the optical spacer 168W. Figure 1 1 b discloses a -60-200902339 pinhole optical embodiment of the present material. Preferably, the black layer 176 is perforated by the aperture 178 in contrast to the enhanced opaque upper layer 176. Optical spacer element 180 controls the field of view of the system. The illustrated element 184 in the illustrated layer 182 is imaged via aperture 177 in a manner similar to the pinhole optics of a pinhole camera. Since a small amount of light passes through the aperture, this embodiment is most effective when illuminated rearward, first passing light through the illustrated plane 182 and then through aperture 178. The effects of each of the above embodiments, such as OPM, deep, floating, and floating, can be fabricated using a reflective system design or a pinhole optical system design. Figures 12a, b are cross-sectional views comparing the structure of a fully refractive material 188 having a hybrid refractive/reflective material 199. Figure 1 2a depicts an exemplary structure having isolation from the illustrated plane 194 by optical spacers 198. The selected sealing layer 195 contributes to a total refractive system thickness 196. Lens 192 projects image 190 to a viewer (not shown). The hybrid refractive/reflective material 199 includes a microlens 210 having a graphic plane 208 directly below. Optical spacer 200 isolates lens 210 and the illustrated plane 208 from reflective layer 202. The reflective layer 202 can be metallized, for example by evaporating or sputtering aluminum 'gold, antimony, chromium, starving, by chemically arranging silver or by consuming uranium or silver by means of multiple layers of interference films. Light scattered from the illustrated layer 208, reflected from the reflective layer 202, passes through the illustrated layer 208 and into the lens 210' which projects the image 206 to a viewer (not shown). The two figures are drawn at approximately the same scale: visually, it is seen that the total system thickness of the hybrid refraction/reflection system 1 1 2 2 is approximately one-half of the total system thickness of the total refraction system 188. The exemplary size of the equivalent system, the total refractive system 1 8 8 thickness 196 is 2 9 μ, the total mixed refraction/reflection system 1 9 9 thickness 2 1 2 is 1 7 μ. The thickness of the refraction/reflection system can be further reduced by scaling. Thus, a hybrid system having a lens with a diameter of 15 μ can be made with a total thickness of about 8 μ -47 to 200902339. The effects of each of the above embodiments, such as OPM, deep, floating, floating, Morph, and 3-D, can be fabricated using a hybrid refraction/diffraction design. Figure 13 is a cross-sectional view showing the 'stripping of the system to reveal a 'tamper indicating material embodiment. The image is not displayed in this embodiment until it is tampered with. The tamper evident structure is shown in region 224, wherein refractive system 214 is optically hidden beneath top layer 216 comprising a selectable substrate 218 and a peelable layer 220 that is angled to lens 215. The peelable layer 220 effectively forms a negative lens structure 220 that is mounted over the positive lens 215 and counteracts its optical power. Lens 2 15 cannot form an image of the illustrated layer in the untampered region, and scattered light 222 from the illustrated plane is not in focus. The top layer 216 can include a selected film substrate 218. The tamper shown in region 226 causes the top layer 216 of the refractive system 214 to be released to expose the lens 2 15 such that it can form image 22 8 . Each of the effects of the above embodiments, such as OPM, deep, floating, and floating, may be included in the tampering indication 'stripping to show' system of the type of Figure 13. Figure 14 is a cross-sectional view depicting an embodiment of the stripping of the system to alter and tamper the indicator material. The present embodiment displays the first image 24 of the first graphic plane 242 prior to tampering 252, and then displays the second image 25 8 in the area 2 54 after being tampered with. An untampered structure is shown in zone 2 52, wherein the two refractive systems 23 2 and 23 are stacked. The first illustrated plane 2U is placed below the lens 240 of the second system. Prior to tampering in zone 252, first or upper system 232 presents an image of the table 1024. The figure is not too flat 246 located too far outside the depth of the focus of the lens 2 34 and cannot form a distinct image. The first lens 234 is isolated from the second lens 240 by a selected substrate 236 and a peelable layer 238 that is a -48-200902339 conformal to the second lens 240. The peelable layer 232 effectively forms a negative lens structure 23, which is mounted over the positive lens 240 and counteracts its optical power. The top layer 232 can include a selected film substrate 236. The tampering result of the peeling of the top layer 232 is displayed in the region 254. From the second refractive system 230, the second lens 240 is exposed to form an image of the second graphic layer 246. 2 5 8. Since the illustrated layer is too close to the lens 240, the second lens 240 does not form an image of the first graphic layer 242. This embodiment of the tamper indicating material is highly suitable for use as a tape or label for an article. The tamper releases the top layer 23 2 away from the second system 2 3 0 of the attached object. This embodiment presents the first image 2 4 8 prior to tampering. After tampering with 2 5 4 , the second system 230 still attaches the object, presenting the second image 258 while the peeling layer 256 does not present the image at all. Each of the effects of the above embodiments, such as OPM, deep, floating, and floating, may be included in the first system 23 2 or the second system 230. Note that another embodiment accomplishes an effect similar to that of Fig. 14i, having two other systems laminated to each other. In the present embodiment, when the upper layer is peeled off, the first graphic plane and its image are used to reveal the second system and its image. Fig. 15 a-d are cross-sectional views showing various double-sided embodiments of the system. Figure 15a depicts a double-sided material 260 that includes a single illustrated plane 264 that images 2 6 8 on one side by lens 2 6 2 and images 210 on the opposite side by a second set of lenses 2 6 6 . The image seen from the left side 2 6 8 (as shown) is the image of the mirror 27 从 from the right side. The illustrated plane 264 can include illustrated elements that are symbols or images that appear similar to images in a mirror, or that are diagram elements that appear differently than images in the mirror -49-200902339, or a combination of illustrated elements. Some of the illustrated elements are correctly read when viewed from one side, and the other illustrated elements are correctly read when viewed from the other side. Each of the above embodiments of OPM, deep, floating, and floating can be displayed from either side of the double-sided material according to the present embodiment. Figure 15b depicts another double sided embodiment 272 having illustrated planes 276 and 278 imaged 282 and 286 by two sets of lenses 274 and 280, respectively. This embodiment is essentially two separate systems 2 8 7 and 2 8 9, such as depicted in Figure 1 a, with the illustrated layer spacers 277 interposed therebetween. The thickness of the illustrated layer spacer 277 will determine the extent to which the 'error' graphic layer is imaged by a set of lenses 2 8 4 and 2 8 8 . For example, if the thickness of the illustrated spacer 277 is zero such that the illustrated layers 276 and 2 78 are in contact, then the second illustrated layer is imaged by the two sets of lenses 274 and 280. In another example, if the thickness of the illustrated spacer 277 is substantially greater than the depth of the focus of the lenses 274 and 280, then the 'wrong' graphic layer will not be imaged by lenses 2: 74 and 280. In yet another example, if the depth of focus of one set of lenses 274 is large, but the depth of focus of the other sets of lenses is small (because lenses 274 and 280 have different F#), then two illustrated planes 276 and 278 Image 282 will be imaged via lens 274, but only one of the illustrated planes 278 will be imaged via lens 280, so this type of material will display two images from one side, but only one of the images in the mirrors will be displayed from the opposite side. . OPM, deep, floating, floating, etc. Each effect of the embodiment described can be displayed from either side of the double-sided material according to the present embodiment, and the projected images 2 82 and 286 can be the same or different colors. . Fig. 15c shows yet another double-sided material 29〇 having a colored patterned layer -50-200902339 septum 298, the lens on one side of the restraining material seeing the 'error 1' shown. The lens 292 image 294 illustrates the layer 296, but the illustrated layer 300 cannot be imaged due to the appearance of the colored patterned layer 298. Similarly, lens 302 image 304 illustrates layer 3, but the illustrated layer 296 cannot be imaged due to the appearance of colored layer 298. Each of the above embodiments of OPM, deep, floating, and floating may be displayed from either side of the double-sided material according to the present embodiment, and the projected images 294 and 408 may be the same or different colors. Figure 15d discloses a further embodiment of a double-sided material 306 having a lens 308 for imaging the layer 3 1 4 of the image 3 1 8 and a lens 316 for imaging the layer 3 1 0 of the layer 3 1 0 on the opposite side. The illustrated layer 310 is in proximity or substantially in contact with the base of the lens 308 and the illustrated layer 314 is in close proximity or substantially in contact with the base of the lens 316. The illustration 3 10 is too close to the lens 3〇8 to form an image, so its light scatters 3 2 0 instead of focusing. Figure 3丨4 is too close to the lens 3丨6 to form an image ‘ so its light scatters 324 instead of focusing. Each of the above embodiments of the OPM, deep, floating, and floating may be displayed from either side of the double-sided material according to the present embodiment and the projected images 3丨8 and 3 2 2 may be the same or different colors. Figures 16a-f are cross-sectional views and corresponding plan views depicting three different methods of fabricating grayscale or shaded component shapes and subsequent synthetically magnified images using the present system. Figure 1 6 a-c is a cross-sectional detail of the illustrated end of material 307, including a portion of optical spacer 309 and a transparent microstructured layer 311. The illustrated elements are formed as relief surfaces 3 1 3, 3 1 5, 3 1 7 , which are then filled with colored or dyed materials 323, 325, 327, respectively. The lower end of the illustrated layer is optionally sealed with a sealing layer 321 which may be transparent, colored, colored 'stained -51 - 200902339 or colored, or opaque. The embossed microstructures of the illustrated elements 313, 315, and 317, respectively, provide variations in the thickness of the dyed or tinted chelating materials 323, 325, and 327, which are seen in the plan view to produce variations in the optical density of the illustrated elements. The plan views corresponding to the illustrated elements 3 23, 3 25 and 3 27 are plan views 3 3 7 , 33 9 and 341. The use of methods for making grayscale or tonal composite magnified images is not limited to the example details disclosed herein, but is generally applicable to the production of unlimited grayscale image variations. Figure 16a includes illustrated elements 313, stained or colored graphical elements 323 and corresponding plan views 337. The cross-sectional view of the illustrated plane at the top of the figure can only show a cutting plane through the elements shown. The position of the cutting plane is indicated by dashed lines 319 through plan views 337, 339 and 341. Therefore, the cross section of the drawing element 313 is a plane through which the element is substantially hemispherical. The hue or gray scale, optical density variation represented in plan view 337 is produced by appropriately limiting the overall dye or pigment density of the entangled 3 2 3 , the thickness variation of the dyed or colored 塡 3W. An array of such illustrated elements can be synthetically magnified in the material system to produce an image showing equal grayscale variations. Figure 16b includes illustrated element 315, tinted or colored graphical element 325 and corresponding plan view 339. Plan view 339 shows an embossed representation of the illustrated element 315 as a face. The change in hue in the image of the face is complex, as shown by the complex thickness variation in the cross-section 3 25 . With respect to the disclosed related illustrated elements 3 13 'the array of the illustrated elements of this type, as shown in 315, 3 25 and 3 3 9 , can be synthesized and magnified in the material system to produce a representative surface in the present example. An image with equal grayscale scaling of the image. Figure 16c includes an illustrated element 317, a tinted or colored flood 327, and a -52-200902339 corresponding plan view 34 1 . In a manner similar to that discussed above with respect to Figures 16a, b, the relief shape of the illustrated element structure produces a hue change in the appearance of the dyed and colored swells 3 27 and the synthetically magnified image produced by the material system. The effect of the graphic element 313, which produces a dark center in a complete surface, is depicted in Figure 317, which depicts a method of making a bright center in a complete surface. Figures I0d, e disclose another embodiment of the embossed microstructure illustrated layer 31 1 1 including the illustrated elements 329 and 33, which is coated with a high refractive index material 3 2 8 . The illustrated layer 3 丨丨 can be selected by a sealing layer 3 2 丨 which is filled with the illustrated elements 3 2 9 and 3 3 1 , 3 3 0 and 3 3 2 , respectively. The high refractive index layer 3 2 8 produces its own reflection by total internal reflection to enhance the visibility of the inclined surface. Planograms 342 and 344 present representative images of the appearance of elements 329 and 331 and their synthesized magnified images. The high refractive index coating embodiment provides an edge-enhancing effect without the addition of pigments or dyes to make the illustration and its image visible. Figure 16f discloses yet another embodiment of the transparent relief microstructure representation 335, 3 3 3, which uses an air, gas or liquid amount 336 to provide a visual definition of the phase interface 3 34 microstructure. The selected sealing layer 340 may or may not be filled with a selected adhesive 33, 8 to trap air, gas or liquid. The visual effect of the phase interface elements is similar to that of the high refractive index coated elements 3 29 and 331. Figure 1 7a-d is a cross-sectional view showing the system used as a laminate film for printing information, for example, for manufacturing. D. Card and driver's license, where material 3 48 (coordinated microarray containing the lens and image described above) covers the substantial proportion j of the surface. Figure 17a depicts a consistent embodiment for lamination on printing 3 47. The material 348 having at least some of the optical transparency in the illustrated layer is laminated to a fibrous substrate 3, such as a paper or paper substitute, with a lamination adhesive 35 覆盖 -53- 200902339, covering or partially covering the printing element 3 52, Previously applied to fiber substrate 3 54 . Since the material 3 48 is at least partially transparent, the printing element 352 can be seen through, and the effect of the combination is to provide a dynamic image effect of the system in combination with static printing. Figure 1 7b shows an embodiment of a system material for lamination on a printing element 35 of a non-fibrous substrate 358 such as a polymeric film. As shown in Figure 17a, the material 348 having at least some of the optical transparency in the illustrated layer is laminated as a non-fibrous substrate 35, such as a polymer, metal, glass, or ceramic substitute, with a laminating adhesive 3 5 . Covering or partially covering the printing element 3 5 2 ' has previously been applied to the fibrous substrate 3 54 . Since the material 3 48 is at least partially transparent, the printable element 325 can be seen through, and the effect of the combination is to provide a dynamic image effect in combination with static printing. Figure 1 7c depicts the use of printing elements directly on the lens end of material 360. In this embodiment, the material 348 has a printing element 325 that is applied directly to the upper lens surface. This embodiment does not require that the material be at least partially transparent: the printing element 325 is placed on top of the material and a dynamic image effect is visible around the printing element. In this embodiment, material 348 is used as the basis for the final product, such as currency, identification cards, and other items that need to be identified or provided for identification of another item. The figure depicts the use of printing elements directly on the illustrated end of the at least partially transparent material 362. The printing element 325 is applied directly to the at least partially transparent system material 348 or the sealing layer. Since the system material 348 is at least partially transparent, the printable element 325 can be seen through, and the effect of the combination is to provide a dynamic image effect in combination with static printing. In this embodiment -54-200902339, system material 348 is used as the base for the final product, such as currency, identification cards, and other items that need to be identified or provided for identification of another item. Each of the embodiments of Figures 17a-d can be used alone or in combination. Thus, for example, the 'system material 3 48 can be overprinted (Fig. i7c) and printed back (Fig. 17d)' and then selectively laminated over the print on the substrate. (Fig. 17a, b). For example, a combination of counterfeiting, simulation, and tamper resistance that can be used to enhance the material of the system. Figures 18a-f are cross-sectional views depicting the application of the system, or combining various substrates and printing information. The embodiment of Figures 18a-f differs from the embodiment of Figures 17a-d in that the prior art discloses a system material 348 that covers most or all of the objects and the embodiment disclosed herein, wherein the system material or its optical effect is substantially absent Covers the entire surface, but covers only part of the surface. Figure 18a depicts an at least partially transparent system material 364 attached to a fibrous or non-fibrous substrate 386 with an adhesive element 366. The selected printing element 370 has been applied directly to the upper lens of the surface of material 364. The printing element 37 can be a partially larger version that extends beyond the material 364. This material 364 is selectively laminated over the printing element 372, which has been applied to the fiber or non-fibrous substrate prior to the application of the material 364. Figure 18b depicts an embodiment of a single-sided system material 3 64 that is punctured into a non-optical substrate 3 78 as a window. The edges of at least some of the system material 3 64 are occupied, covered or surrounded by a non-optical substrate 378. Printing element 380 is optionally applied to the top end of the lens surface of the system material, and the printing elements are calibrated or corresponding to printing element 3 8 2 ' applied to non-optical substrate 3 78 adjacent the area of printing element 380. Similarly, the 'printing element 3 84 can be applied to the correction or phase -55 - 200902339 on the opposite side of the non-optical substrate of the printing element 386, which is applied to the illustration or seal of the system material 364 Layer 3 8 8. When viewing material from the lens end, the effect of such a window will be apparent when viewed from the end of the diagram. There is no image at the time, thus providing a one-way image effect. Figure 18c shows an embodiment similar to Figure 18b, except that system material 306 is a double-sided material 306 (or other two-sided embodiment described above). The functions of printing elements 390, 392, 3 94 and 3 96 substantially correspond to the previously described printing elements 38 0 0, 3 8 2, 3 8 4, 3 8 6 . When viewing materials from the opposite side, the effect of such material windows will present different distinct images. For example, a window in a currency file can display the number of denominations of a banknote, such as "1 0" when viewed from the front of the banknote, but when viewed from the back of the banknote, the consistent window can display different information, such as "USA ", it can be the same color as the first image, or a different color. Figure 18 d depicts a transparent substrate 3 73 as an optical spacer of material formed by the regions of the lens 3 74 of limited length, and a patterned layer 376 extending substantially beyond the area of the lens 374. In the present embodiment, the effect will be visible only in the region including the lens and the illustration (corresponding to the lens region 3 74 in the drawing). Both lens 374 and adjacent substrate are optionally printed 375, and the printing elements can be applied to illustrated layer 3 76 or to a sealing layer that covers the selection of the illustration (not shown - see Figure 1). After the mode of the embodiment, the multi-lens lens area can be used on the object; regardless of the placement position of the lens area, a uniform effect can be seen; for each lens area, the size of the image, the rotation, and the depth position of the solid mirror And OPM properties can be different. This embodiment is applicable to applications for identity cards, credit cards, driver's licenses, and the like. -56- 200902339 Figure 1 8e shows an embodiment similar to Figure 18d, except that the illustrated plane 4〇2 does not extend substantially beyond the length of the lens zone 400. Optical spacer 398 isolates lens 400 from diagram 402. Printing elements 404 and 406 correspond to printing elements 375 and 377 of Figure 18d. Following the manner of this embodiment, the multiplexed zone 400 can be used on objects; each zone can have individual effects. This embodiment can be applied to applications for ID cards, credit cards, driver's licenses, and the like. Figure 1 8f depicts an embodiment similar to that of Figure 18d, except that the present embodiment incorporates an optical spacer 408 with its isolation lens 413 and illustrated plane 410. Lens 413 extends substantially beyond the perimeter of illustrated area 412. Printing elements 414 and 416 correspond to printing elements 3 7 5 and 377 in Figure 18. After the mode of the embodiment, the multi-lens lens area can be used on the object; the effect can be seen regardless of the placement position of the lens area; for each lens area, the size of the image, the rotation, and the depth position of the solid mirror And OPM properties can be different. This embodiment is applicable to applications for ID cards, credit cards, driver's licenses, and the like. Figure 1 9a, b depicts a cross-sectional view of the in-focus field of view of a spherical lens versus a flat field of view non-spherical lens when the structure of the above type is incorporated. Figure 19.a depicts a substantially spherical lens applied to the above system. The substantially spherical lens 418 is isolated from the illustrated plane 422 by an optical spacer 420. Image 424 projected perpendicular to the surface of the material is from focal point 426 within layer 422. Since the focus 426 is within the illustrated layer 422, the image 424 is the precise focus. When the lens is viewed from an oblique angle, since the corresponding focus 43 0 is no longer in the plane of the drawing, the image 428 is blurred and out of focus, and exceeds the substantial distance. Arrow 43 2 shows the curvature of field of the lens, which is equal to the curve of focus 4M to 43 0. The focus is located in the illustrated plane throughout the zone 434, which facilitates external movement of the illustrated plane in the -57-200902339 zone 4 3 6 . Lenses suitable for use in conforming to the printed image or illustrated plane typically have a low F#, typically less than one, producing a very shallow depth of focus - effectively using a higher F# lens with deep and floating effects, but when used consistently When moving the effect, a commensurate vertical binocular is formed, which is different from the effect described in the text. Once the lower limit focus depth moves outside the plane of the illustration, the image sharpness drops rapidly. As can be seen from this figure, the field of view curvature of the spherical lens limits the field of view of the image: the image is clearly located only within the focus area 434, and the more oblique viewing angle is rapidly out of focus. Substantially the spherical lenses are not flat field lenses, and the field curvature of the lenses is magnified to a low F# lens. Figure 19b depicts a non-spherical lens applied to the present system. Regarding the non-spherical lens, its curvature is not close to the ball. The non-spherical lens 43 8 is separated from the illustrated layer 442 by an optical spacer 440. The non-spherical lens 43 8 projects an image 444 of the illustrated plane 442 that is perpendicular to the plane of the material. This image is produced at focus 446. Since the aspherical lens 43 8 has a flat field of view C2, its focal length is placed within the illustrated plane 442 to provide a wide viewing angle, from a vertical viewing angle 444 to a tilted viewing angle 448. The focal length of the lens changes depending on the viewing angle through it. This focal length is the shortest at the vertical viewing angle of 4 4 4 and increases as the viewing angle becomes more oblique. At the oblique viewing angle 448, the focus 450 is still within the thickness of the illustrated plane, and the oblique image is still at the focus when tilting the viewing angle 448. The focal region 454 of the aspherical lens 43 8 is larger than the focal region 43 4 of the substantially spherical lens 41 8 . The aspherical lens 438 thus provides an enlarged field of view across the width of the associated image representation such that the perimeter of the image associated with the field of view of the spherical lens 412 is not shown -58-200902339. Aspherical lenses are preferred for the present system due to the increased field of view provided and the increased visibility of the associated images produced. Figures 20a-c are cross-sectional views depicting two benefits derived from the utility of using a thick graphic layer. The application of these benefits, whether the lens 456 used for viewing is a substantially spherical lens 4 18 or a non-spherical lens 4 3 8 ', but the greatest benefit is the incorporation of the non-spherical lens 4 3 8 . Figure 20a depicts a thin illustrated layer 460 system material 'which includes a lens 456 that is isolated from the illustrated layer 460 by an optical spacer 458. Compared to the field of view curvature of the lens 463, the illustrated element 4 6 2 is a thin illustrated element 4 6 1 ' limiting the focus area to a small angle, ie, an image projected in the vertical direction 4 4 4 and having a layer of illustration The angle between the highest tilt angle image 468 of the focus 470 in 460. The maximum field of view is obtained by designing the vertical image focus 466 at the bottom of the graphical plane to maximize the oblique field of view angle, limited by the point at which the focal point 470 is placed at the top of the illustrated plane. The field of view of the system in Figure 20a is limited to 30 degrees. Figure 20b depicts the benefit obtained by the combination of the illustrated plane 471, which is a thick map non-planar 472 compared to the field of view curvature of the lens 456. Lens 456 is isolated from thick graphic element 474 by optical spacers 458. The thick graphic element 474 is maintained at 55 degrees, in the focus 475 on the field of view larger than the thin graphical element 462 of Figure 20a. The vertical image 476 projected from the focus 478 via the lens 456 is at a sharp focus, and the focus remains sharp as the viewing angle increases up to 55 degrees, with the oblique image 480 focus 482 placed on the thick graphical plane 47 1 top. If viewed, the increased field of view is greatest for a flat field lens, such as the aspherical lens 43 8 of Figure 19.b. Figure 20c depicts yet another advantage of the thick graphical plane 492; the sensitivity of the reduced material of the system is a variation of the thickness S, which may be derived from manufacturing variations. Lens 484 is separated from the bottom surface of the illustrated layer of thickness i by a distance S. Lens 484 projects an image 496 from a focus 498 disposed at the bottom of layer 492. The figure shows that the change in the optical space S between the lens and the illustrated layer can be varied over a range equal to the thickness of the illustrated layer i without missing the image 496, 500 '5 04 focus. At lens 48 6, the thickness of the optical spacer is approximately (S + i/2), and the focus 502 of image 500 is still within the thickness i of layer 492. At lens 488, the thickness of the optical spacer is increased to (S + i) 490, and the focus 506 of image 504 is placed at the top end of thick graphic element 494. The thickness of the optical spacer can thus vary over a range corresponding to the thickness of the illustrated layer i: the thin patterned layer thus provides a small tolerance for the thickness variation of the optical spacer, and the thick patterned layer provides a large tolerance for the thickness variation of the optical spacer the amount. The remaining benefits are provided by a thick graphic layer 492. For example, an incomplete lens of substantially spherical lens may have a shorter focal length 493 toward its edge rather than its center 496. This is a view of the disadvantage of a common spherical aberration of a substantially spherical lens. The thick graphic layer provides a graphic element that is clearly focused over a range of focal lengths from 498 to 495 to improve the overall sharpness and contrast of the image produced by the lens 4 84 having a focal length variation. Figures 21a and b are plan views showing that the system is applied to currency and other security documents as a 'windowing' security thread. Figure 2 1 a, b shows the windowed thread structure, including the system material 5 0 8, which has been torn into a strip, called "threads, which is typically at 0. Range from 5 m to 10 m width. The thread 5 0 8 is broken into the fiber file base 5 1 0 and provides a windowing area 5 1 4 . The thread 508 can optionally incorporate a colored, dyed, fused-60-200902339 or coated sealing layer 516 to increase image contrast and/or provide the remaining safety and identification features, such as electrical conductivity. , magnetic, nuclear magnetic resonance detection and identification, or when viewing from the back side of the substrate (the opposite side of the side of the uniform synthetic image and adhesive layer 517), the hidden material is protected from reflected illumination for enhanced thread 5 0 8 and the bond between the fiber substrates 5 10 . The thread is maintained in a position to maintain the lens at the top so that the image effect in the windowed area 514 is visible. The fibrous substrate 510 and threads can be overprinted by printing element 518 and the fibrous substrate can be printed 520 on its back side. 2a, b depicting the thread 508 and its image effect 522, visible only in the upper surface 521 of the substrate 510 in the windowed region 514. The thread 508 is covered by the fibrous base material in the inner region 5 12 and the image effect 522 is substantially invisible in the regions. When incorporated into the thread 508, the OPM effect is particularly noticeable (see Figure 22). When the fiber substrate 510 is tilted in various directions, an OPM image can be formed to scan the width 524 across the thread to create a surprising and dramatic visual effect. The scan feature of the OPM image makes it possible to present an image 522 that is larger than the width of the thread 508. The user checks the file containing the windowed thread 508, and then tilts the file to scan the entire image across the thread, scrolling it like a awning symbol. You can also use the effects of deep, floating, and floating embodiments to get the benefits of a windowed thread format. The thread 508 can at least partially break into the security paper during manufacture in the art commonly used in the paper industry. For example, as disclosed in U.S. Patent No. 4,53,3,98, the disclosure of which is incorporated herein by reference in its entirety in its entirety in the the the the the the the the -61 - 200902339 The system's windowed thread is especially suitable for currency. The typical total thickness of the thread material is in the range of 22 μ to 3 4 μ, while the total thickness of the currency document can be as high as 8 8 μ. By locally reducing the thickness of the paper to a thickness equal to the thickness of the thread, the windowed security thread of the system can be combined with the currency document without substantially changing the overall thickness of the paper. In an exemplary embodiment, the thread 508 includes one or more optical spacers; one or more selected periodic planar arrays positioned within, above or adjacent to the optical spacers or the illustrated micro-images or illustrations And a selected periodic planar array of one or more non-cylindrical microlenses positioned within, on or adjacent to the optical spacer or planar graphic array, wherein each microlens has a base diameter of less than 50 microns . In another embodiment, the microimage or graphic forms a filled void or recess formed on the surface of one or more optical spacers while the non-cylindrical microlens is a non-spherical microlens, wherein Each of the non-spherical microlenses has a base diameter in the range of from about 15 to about 35 microns. At least one colored sealing or masking layer 516 can be positioned on the micro image or the illustrated planar array for added contrast and thus visual acuity, and also for masking when the thread is at least partially embedded in the security document The presence of thread 508. In still another embodiment of the present invention, the thread 5 08 includes: an optical spacer having a relatively upper and lower planar surface; a micro image including a recess formed in a planar surface below the optical spacer Or a periodic array of illustrations; a periodic array of non-cylindrical, flat-view-62-200902339 field, non-spherical or polygonal base multi-band microlenses positioned on a planar surface above the optical spacer, wherein each microlens A base diameter having a range of from about 20 to about 30 microns; and a colored sealing or masking layer 516 positioned on the illustrated array. Optical spacers can be formed using one or more substantially colorless polymers including, but not limited to, polyester, polypropylene, polyethylene, polyethylene terephthalate, polyvinyl chloride, and the like. In an exemplary embodiment, the polyester or polyethylene terephthalate is used to form an optical spacer having a thickness in the range of from about 8 to about 25 microns. The microlens array can be cured using substantially transparent or clear radiation. Formed from materials including, but not limited to, acrylics, polyesters, epoxies, urethanes, and the like. Preferably, an array of acrylate urethanes from the product U1 07 of Lord Chemicals is used. Each of the illustrated recesses formed on the planar surface below the optical spacer is measured to be about 0. 5 to about 8 microns depth 'typically 30 micrometers of micro image or graphic width. The recess can be filled with any suitable material, such as a colored resin, ink, dye, metal or magnetic material. In an exemplary embodiment, the recess is filled with a colored resin to include a sub-micron pigment from Spectra Pac, a product of Sun Chemical Corporation. The colored sealing or masking layer 516 can be formed using one or more opaque coatings or inks, including but not limited to colored coatings, which comprise pigments, such as dioxide dispersed in a binder or carrier of the cured polymeric material. Chin. Preferably, the radiation-cured polymer is formed to have a thickness of about 0. A sealing or masking layer 516 having a thickness ranging from 5 to about 3 microns. As described above, the thread 508 can be prepared according to the following method: -63- 200902339 Applying a substantially transparent or clear radiation-curable resin to the upper and lower surfaces of the optical spacer; forming on the upper surface of the optical spacer a microlens array and an illustrated array in the form of a recess on a lower surface of the optical spacer; curing a substantially transparent or clear resin using a radiation source; filling the array recess with a colored resin or ink; The lower surface of the separator removes excess resin or ink; and a colored sealing or masking coating or layer is applied to the lower surface of the optical spacer. In many cases, security threads for the detection and identification of high-speed non-contact sensors and other high-priced financial and identification documents are required, such as capacitive sensors, magnetic field sensors, optical transmissions, and opacity sensors. , fluorescing and / or nuclear magnetic resonance. Fluorescent materials are incorporated into the lens, substrate, graphic matrix, or uniform film representation of the entanglement element to enable the concealment or forensic identification of consistent materials by observing the presence and spectral characteristics of the luminescence. The fluorescent uniform film can be designed to have the properties of the fluorescent material visible on either side of the material or only visible on one side of the material. The material under the layer shown does not have an optically isolating layer, and the luminosity of any portion of the uniform material will be visible from either side. The intrusion of the optical barrier allows it to distinguish the visibility of the phosphorescence on both sides. Thus, the uniform material that penetrates the optical isolation layer in the plane of the illustration can be designed to exhibit a large number of different ways of fluorescence: the color A of the fluorescent light can be seen from the lens end, and the fluorescence can not be seen from the end of the optical isolation layer. The color A or B from the end of the optical isolation layer but not from the lens end, and the color A from which the fluorescence can be seen from the lens end can be seen from the optical isolation layer -64-200902339. The uniqueness of the various fluorescent signatures can be used for further enhancements - the safety of materials. The optically isolating layer can be a colored or dyed layer of material, a layer of metal, or a combination of colored layers and metal layers that absorb or reflect the fluorescent emission from one side of the material and avoid being seen from the other side. The illustrations formed from the crevice-type voids, and vice versa from the shaped columns, are specifically authorized to attach machines to read consistent material safety threads that identify features to currency and other pricing documents. The illustrated matrix, the graphic overlay, and any number of retro-coated (sealed coating) may be combined with all, individually, and/or all combinations of non-fluorescent pigments, non-fluorescent dyes, fluorescent pigments, goldescent dyes, metals Particles 'magnetic particles, nuclear magnetic resonance signing materials, laser light particles, organic LED materials, optically variable materials, evaporating metals, thin film interference materials, liquid crystal polymers, optical up-conversion and down-conversion materials, monochromatic materials, optically active materials (with optical rotation magnification), optically polarized materials, and other related materials. In the case of 丨β, such as when a dark or colored coating (such as a magnetic material or a conductive layer) has been attached to a consistent material, or when the color of the illustrated plane is unpleasant, when viewed from the back of the substrate It is desirable to view or hide the presence of embedded, partially embedded or windowed consistent material security threads from one side of the paper substrate as viewed in reflected light while viewing the thread from the opposite side of the substrate. Other types of monetary security threads typically incorporate a metal layer, typically aluminum, to reflect light transmitted through the surface substrate, thereby providing similar brightness to the surrounding substrate. A neutral or reflective metal of aluminum or other color can be used in a similar manner, by applying the metal layer on the back side of the uniform material -65-200902339, and then selectively appearing appropriately. Coloring can be used for the same purpose, and the degree of hiding from the "back" of the document. The colored layer can be any color, and the color is the inner and outer light of the fiber substrate. It is a common practice for the material to be directly metallized via evaporation, sputtering, chemical precipitation or its graphic or sealing layer, or a metallization table seal to the second polymer film, ie by relining the film and remaining The narrow surface of the metallized region to the second polymer film, followed by the tearing of the metal strip by the laminating adhesive and the condition for protecting the metal from the edge of the thread for the subject invention: the uniform material pressure Membrane. Thus, a consistent material can be added via the additive layer. The composite image can be designed as a binary pattern (or lack of color) and in different conditions to define the background, each graphic area includes a fully single-open or fully closed image. 'Pixel 1. Tonal change, which produces a more precise density of the color in the composite image, or by including or arranging the seal, while masking the layer of the consistent thread to replace the metallized layer or masking the safety The visibility can be seen in white, but the most effective color and density of internal scattering of the line can be accomplished in a number of ways, including the illustration or the dense surface of the laminated uniform material of a consistent material of his appropriate mechanism. The type of film, the gold 'belt' is laminated, and the metallization is laminated to make the edge of the tearing process, chemical attack. This method can also simply replace the first A two-layer shaped or amorphous metal with a defined color (or lack of color), in which a tonal image is used to provide an image of the selected graphic color. In addition to the selected image group, the design of the -66 - 200902339 component is effective for 'half-toning and synthetic images, which can produce a composite image tonal change. The first method controls the density of the color of each graphic image, which can be controlled by The optical density of the material for micro-printing the image is produced. A convenient method of implementation is to illustrate the embodiment using the gaps previously described. The method of 'half-toning' the composite image by including or excluding the design elements in the selected group of diagrams depicted in FIG. 23 may be via an image design component that includes a scale of the graphical region equal to the desired color density. 23 depicts an example of a hexagonal repeat pattern using the illustrated area 570, which conforms to a similar hexagonal repeat pattern of the lens. Each of the illustrated areas 570 does not contain the same information. All of the illustrated image elements 5 72, 5 74.  576 and 5 78 are substantially rendered in the same color density. The illustrated image elements 5 72 and 5 74 ' are presented in some of the illustrated areas and the different illustrated image elements are presented in other illustrated areas. Some of the illustrated areas include a single illustrated image element 5 70. Specifically, the illustrated image element 5 72 is presented in half of the illustrated area, and the image element 574 is presented in three-quarters of the area of the image. The rendered and illustrated image elements 5 76 are presented in one-third of the illustrated area. The information presented in each of the maps determines whether the associated lens will display the color of the image of the icon or display the color of the background of the image from a particular viewing orientation. The image elements 5 72 or 5 78 will be visible from all of the lenses associated with the pattern, but the composite image 580 space of the illustrated image element 5 72 overlaps the composite image space of the illustrated image element 578. Since each lens will project the image color shown in the overlap region 582, the mechanism of the overlap region -67-200902339 5 8 2 of the composite image of 572 and 5 78 will appear at a density of 100%. The non-overlapping portion of the two-composite image 58 8 can only be seen in 50% of the lens, so it appears at a density of 50%. The composite image 5 8 6 of the illustrated element 5 7 6 can only be seen in one third of the lens, so it is 3 3 .  3 % color density appears. The composite image 5 84 of the illustrated image element 5 76 appears correspondingly at a 75% color density. A large range of color tone variations can be obtained in the composite image via the omission of the selection of the image elements illustrated in the selected portion of the image area, which is entirely within the scope of this document. For maximum effectiveness, the distribution of the image elements throughout the illustrated image area will be extremely consistent. The associated graphical image design method depicted in Figure 24a can be used to fabricate bonded synthetic image elements that are smaller in size than the smallest features of the individual synthetic image elements. This is possible in the general case where the minimum feature size of the illustrated image is greater than the configuration accuracy of the feature. Thus, at the level of two micrometers, the illustrated image can have minimal features, but the features can be accurately placed at 0. At any point of the grid of 2 5 micron intervals. In this case, the minimum feature of the illustrated image is eight times greater than the accuracy of the feature. The previous figures depict this method using a hexagonal graphic pattern 594, but it can be applied to any other available pattern symmetry. In a manner similar to the method of Figure 23, the method relies on the use of different information in at least one of the illustrated regions. In the example of Fig. 24a, two different graphical patterns 596 and 598 are each presented in half of the illustrated area (for clarity only one of each pattern is shown in the figure). The illustrated images produce a composite image 600 that is synthesized in conjunction with a composite image 6〇2 produced by the image element 596 and a composite image 604 created by the image element 598. The two composite images 602 and 604 are designed to have overlapping regions 6〇6 and 6〇8, which appear to have a color density of -100-200902339 while the non-overlapping region 6 〇 5 has a 50% color density. The minimum size of the overlap region in the synthesized synthetic image can be as small as the positioning accuracy of the synthetic zoom and zoom of the illustrated image element, and thus can be smaller than the minimum feature size of the composite image designed to overlap in the small region. . In the example of Figure 23, the overlap region is used to make the sign of the number "1" in a narrower line than the other. As shown in Figure 24b, this method can also be used to create a narrow pattern of gaps between the illustrated image elements. The hexagonal graphic area 6 〇 9 can be square or any other suitable shape to create a space-filled array, but a hexagonal shape is preferred. In this example, the half of the illustration shows the image 610, and half of it is the image 6 1 1 . Ideally, the two types will be extremely uniformly distributed between the illustrated areas. All of the elements of these patterns are depicted as being substantially equal and consistent in color density. The second type in isolation does not clearly suggest the form of the final image 'and it can be used as a security element - the image is not apparent until it is formed by the array of lenses thereon. An example of the composite image 6 1 2 formed by the combination of the composite image of the graphic element 610 and the composite image of the graphic element 611 is displayed, whereby the gap between the individual synthesized images forms a number "1 〇 ". In this case, the two synthetic images combine to form the final composite image, so the color of the image 6 1 3 shows a 50% color density. The method is not limited to the content of this example: the gaps of the required elements in the composite image that can be used in three illustrations instead of the two 'definitions' can have variable width and unrestricted shape types, and the method can be combined with The method of 23, 24a, b or 25, or the combination of other graphic design methods mentioned by us. Concealed, hidden information can be inserted into the -69- 200902339 image that cannot be seen in the resulting composite image. Concealed information hidden in the illustrated image can be used, for example, for covert identification of objects. Figure 2 5 depicts two ways to accomplish this. The first method is depicted via the use of matching graphical images 616 and 618. The illustrated image 6 1 6 shows the solid edge pattern and the number "42" contained inside the edge. The illustrated image 61 8 shows the solid shape with the number M2" as a hole in the shape of the shape. In this example The surrounding shapes of the illustrated images 61 6 and 61 8 are substantially the same, and the relative positions in the individual illustrated areas 634 and 636 are also substantially the same. When the synthesized composite image 620 is manufactured from the illustrated images, Since all of the illustrated images have patterns in the corresponding regions, the edges of the synthesized composite image 622 will exhibit a 100% color density, so there is a complete overlap in the composite images produced from the illustrated images 616 and 618. The image of the "42" around the space of the graphic image 61 8 in the icon area, and the image of the color "42" which is also filled with the graphic image 61 6 of the half of the graphic area, the synthesized synthetic image 6 The color density of the internal 6 2 4 of 20 will be 50%. Therefore, there is no difference in hue between "42" and its background, so the synthesized composite image 626 observed will show an edge with a 100% color density 628. And 50% 630 internal image density. "42" implicitly present in all of the illustrated images 61 6 and 618 is thereby "offset" and cannot be seen in the synthesized image 626 of the composition being observed. A second method of breaking concealed information into the illustrated image is depicted by triangle 63 2 in FIG. The triangle 632 can be arbitrarily placed in the illustrated area (not shown), or it can be placed in an array or other pattern that does not substantially conform to the regions 63, 632. The composite image is produced by the multiplicity of the graphical representation of the regular array imaged by the corresponding regular array of microlenses. Substantially non-phase -70- 200902339 The graphic pattern that should be in the period of the microlens array will not form a complete composite image. Thus the pattern of triangles 632 will not produce a coherent composite image' and will not be seen in the observed composite image 62. This method is not limited to simple geometric designs such as triangle 63 2 . For example, alphanumeric information, bar codes, data bits, and other hidden information of large zoom patterns can be broken into the graphic plane by this method. Figure 26 depicts a general method of producing a fully three-dimensional overall image in a consistent material (consistent 3-D). The single pictorial area 640 includes a pictorial image 642 that represents a zoom-and-squint view of the object to be displayed in 3-D as seen from the vantage point of the illustrated area 640. In this case, the illustrated image 642 is designed to form a composite image 670 of the hollow tube 674. The illustrated image 642 has a foreground frame 644 representing the proximal end 6M of the hollow tube 672, a stacked conical gap pattern 646 representing the corner 676 of the hollow tube 672, and the farthest point representing the hollow tube 763. The background frame 64 8 of the terminal 6 7 8 . The relative scale of the foreground frame 644 and the background frame 64 8 in the illustrated image 642 can be seen, not corresponding to the ratio of the nearest end 674 to the farthest end 678 of the synthetic image hollow tube 672. The reason for the difference in zooming is that the image appearing from the plane of the uniform material undergoes a large enlargement, so the size of the image in the image must be reduced to provide the correct scaling of the magnification to form a composite image 6 7 2 . We have found a graphical area 650 at a different location from the consistent 3-D material, which includes different graphical images 652. As with the illustrated image 642, the illustrated image 652 represents a zoom-speech view of the composite image 672 as seen at different vantage points of the illustrated region 65. The relative scaling of the foreground frame 654 and the background frame 65 8 is similar to the corresponding element of the illustrated image 642 (although this will generally not be true), -71 - 200902339 but the position of the background frame 658 has been offset, along with the corner type The size and orientation of the sample 656. The map area 660 is placed further away from the consistent 3-D material, and it presents yet another zoom-distort image 662, including the foreground frame 664, the stacked cone gap pattern 667, and the background frame 66 8 Image 662 is shown. Typically, the image shown in each of the graphical regions of the consistent 3 - D material will be slightly different from its neighbors and significantly different from those farther away. It can be seen that the illustrated image 65 2 represents the transition phase between the illustrated images 642 and 662. Typically, each of the graphical images of a consistent 3-D material can be unique, but each will represent a transition phase between the illustrated image and its other side. The composite image 670 is formed by the multiplicity of the image as shown in the illustrated images 640, 650, and 660 as a composite image through the associated lens array. The composite image of the hollow tube 674 shows the effect of different synthetic magnification factors resulting from the effective repetition period of the different elements of each of the illustrated images. Let us assume that the hollow tube image 674 is expected to be considered an ultra-deep image. In this case, if the illustrated area 64 0 is disposed some distance from the lower left of the illustrated area 650, and the illustrated area 660 is disposed some distance from the upper right of the illustrated area 650, the foreground frame 64 4 can be seen. The effective period of 6 5 4 and 6 6 4 will be less than the effective period of background frames 6 4 8, 658 and 668, whereby the nearest face 676 of the tube (corresponding to foreground frames 644, 654 and 664) is placed closer. The plane of the material is uniform, and the farthest face 678 of the tube is placed deeper and further away from the plane of uniform material and amplified by a larger factor. The corner elements 646, 656 and 667 conform to the foreground and background elements, creating the effect of smoothly varying the depth therebetween. Figures 27a-b more fully describe the design of a consistent 3-D graphical image. This figure isolates the single image projector 680. The 'single image projector as described previously -72-200902339 includes a lens, an optical spacer, and a pictorial image; the illustrated image has substantially the same dimensions as the repeat period of the lens (allowing for uniform visual effects) Small zoom difference). The field of view of the lens and its associated illustration is shown as a conical shape 682: which also corresponds to the inversion of the focal circle of the lens, so the ratio of the field conical shape 862 is determined by the F# of the lens. Although the figure shows that the conical shape has a circular base, the shape of the base will actually be the same as the shape of the illustrated area, such as a hexagon. In this example, we would like to create a consistent 3-D synthetic image that combines copies of three "UNISON" words 686, 690, and 694 of the same visual size of three different ultra deep image planes 6 84, 690, and 692. The diameters of image planes 684, 6 8 8 and 692 extend with the field of view conic: in other words, as the depth of the image increases, the area covered by the field conic increases. Thus the field of view of the shallowest depth plane 684 is only around the "NIS" portion of the UNISON word, while the intermediate depth plane 6 8 8 surrounds the "NIS "all &"U" and 〇" sections, and the deepest depth plane 692 revolves around almost all of the "UNISON", only missing the last, N" part. The information presented by each of the composite image planes 684, 688, and 692 (UNISON 686, 690, and 694) must ultimately be entered into a single image of the image projector ". This captures the information in the field conical 6 8 6 of each depth plane 6 8 4, 6 u, and 6 9 2 , and then scales the resulting image pattern to the same size. The illustrated image 696 represents the field of view of the uniform image 6 8 6 seen in the depth plane 6 84. The image 7 〇 4 represents the field of view of the coincident image ό 9 0 seen in the depth plane 687 and the image 7 〗 6 Represents the field of view of the consistent image 694 as seen in the depth plane 6 9 2 . -73- 200902339 In the illustrated image 696, the illustrated image element 698 is from the first "N" portion of the UNISON image 68, and the image element 700 is shown from the "1" portion of the UNISON image. And the illustrated image element 7〇2 is from the "S" portion of the UNISON image 686. In the illustrated image 704, the image element 706 is shown from the "U" portion of the UNISON image 690, and the image element is illustrated. 70 8 from the first "N" part of the UNISON image 690 'Illustrated image element 7 1 0 from the portion of the UNISON image 690 "S " and the illustrated image element 714 from the UNISON image The 690's "0" part. Note that although the composite images 666, 690, and 694 are rendered in a similar zoom, the illustrated image 704 of the intermediate depth plane 688 presents its UNISON letter with a smaller zoom than the illustrated image 696. This consideration illustrates that the image 704 will magnify the higher synthesis (when combined with the multiplicity of the illustrated image around the same depth plane). In a similar manner, the illustrated image 7 1 6 incorporates the illustrated image element 7 1 8 from the UNI S ON image 6 9 4 and the UN I S ON letter that is inserted into its image will further reduce the zoom. As shown in Fig. 28, the last image of the image projector is produced by combining the three image images 696, 704 and 716 to a single image 730. The combined graphical component 7 3 2 combines all of the graphics and depth information required by the image projector 680 to cause a composite image formed by the multiplicity of the image projector, each combination resulting from the intersection of its own field of view cones and Focus on the specific graphic image information of the image projector, and the level and components of the synthetic image to be produced. Since each image projector is replaced by at least one lens repeat period from each of the other image projectors, each image projector will carry a different amount of intersections from the field conical shape of the composite image space - 74-200902339 . Each graphic image required to present the selected 3-D image can be calculated from the following data: knowledge of the three-dimensional digital model of the synthesized image, depth position and depth range required to be presented in the composite image, lens repeat period, lens view The resolution of the final graphics of the field and the image. The latter factor is placed on the level of detail, which can be presented in each depth plane. Since the depth plane that is further derived from the plane of the uniform material carries a large amount of information (due to the increased field of view), the resolution of the graphical representation of the graph has the greatest influence on the resolution of the composite image depth plane. Figure 29 depicts how the method of Figures 27a-b can be applied to complex three-dimensional composite images, such as the priceless ice age engraving mammoth ivory art, Miss Brassempouy 742. The individual image projectors 738 incorporate at least a lens, an optical spacer element, and a pictorial image (not shown) and are placed in a flat surface 74 that separates the floating synthetic image space from the deep synthetic image space. In this example, the synthetic image space covers the uniform material, so that part of the image is placed in the floating synthetic image space and partially placed in the deep synthetic image space. The image projector 738 has a substantially conical field of view that extends into the deep synthetic image space 724 and the floating synthetic image space 724. The selection of the deep image planes is 748 and 752J62, and the space resolution required to obtain the deep synthetic image must be the interval. Similarly, the selection of the floating image planes is 750 and 76 hearts 7 74' and the spacing required to obtain the desired spatial resolution of the floating composite image is an interval. Some of these planes, such as the deep plane 784 and the floating plane 750, will extend beyond the composite image and will not contribute to the final information in the image. For clarity> The number of image planes shown in Figure 29 is limited to -75- 200902339 as a small amount 'but the number of image planes actually selected can be many, for example 5 0 or 1 平面 plane 'or more' to get The desired composite image depth resolution is then applied to the methods of Figures 27a-b and 28 to determine the intersecting shape of the surface of the object 742 via the selected depth planes 756-774 to obtain a pictorial image of each depth plane. The resulting individual image is scaled to the final size of the combined image. All floating graphic images are first rotated by 180 degrees (because the rotation is again experienced when it is projected, thereby returning it to the correct orientation in the composite image)' and then combined with the deep graphic image to form a video projector 7 3 8 The last illustrated image. This process is repeated for each position of the image projector to obtain a complete image of the graphical image required to form a fully synthetic image 742. The resolution of the composite image depends on the resolution of the optical projector and the resolution of the image. I have obtained less than 0.  The resolution of a 1 micron image of a graphic image that exceeds the theoretical optical resolution of the magnifying optics (〇. 2 microns). The typical graphic image is 0. 2 5 micron resolution manufacturing. Consistent materials can be fabricated using a single piece or roll process that combines the lens and the illustrated microstructure, respectively. Lens tools and graphic tools are derived from the use of light masks and photoresist methods. The lens tool was originally designed as a semiconductor type mask, typically black chrome on glass. A mask with sufficient resolution can be fabricated by photo reduction, electron beam writing or laser writing. A typical mask of a lens tool will incorporate a opaque hexagonal repeat pattern during a selected period of, for example, 3 〇 micrometers, which is separated by a clear line by a hexagon that is less than 2 microns wide. The mask is then used to expose -76-200902339 photoresist to a glass plate using a conventional semiconductor uv exposure system. The thickness of the uranium-trimming agent is selected to obtain the desired depression of the lens. For example, a 5 micron thick AZ 4620 positive photoresist is coated with a glass plate via a suitable mechanism, such as by spin coating, immersion coating, crescent coating or spray coating, to form a nominal 30 micron repeat and nominally 35 microns. A focal length lens. The photoresist was exposed in the mask pattern and developed down to the glass in a conventional manner, followed by drying and evacuating at 100 ° C for 30 minutes. The lens is formed by thermal reflow according to standard methods known in the art. The resulting photoresist microlens coats a conductive metal, such as gold or silver, and a negative nickel plating tool made by electroforming. The illustrated tools are manufactured in a similar manner. The graphic design is typically designed with the aid of a CAD software and the design is transmitted to the semiconductor mask manufacturer. The mask is used in a similar manner for the lens mask except that the thickness of the exposed resist is typically at 0 depending on the optical density of the desired composite image. Outside the range of 5 microns to 8 microns. The photoresist is exposed in the mask pattern and developed down to the glass in a conventional manner, coated with a conductive metal and a negative nickel plating tool fabricated by electroforming. Depending on the choice of original mask design and the choice of resist type (positive or negative), the illustration can be made in the form of voids in the resist pattern, or it can be a resist pattern "platform" or Made in the form of a column, or both. Consistent materials can be fabricated from a variety of materials and multiplicity methods known in the art of micro-optical and microstructure replication, including extrusion relief, radiation-cured casting, soft relief and injection molding, reactive injection molding, and reactive casting. An exemplary method of manufacture is to form the illustration as a void in a radiation-curable liquid polymer that is cast against a base film, such as a 7 5 gage adhesion-promoting PET film, from -77 to 200902339 from correct correction or relative to the illustration The radiation-cured polymer is formed on the back side of the deflected base film to form a lens, and then the colored material colored by the gravure-type squeegee for the sub-micron particles on the surface of the film is filled with the illustrated space by a suitable mechanism (for example, solvent removal, radiation curing) Alternatively, the chemical reaction is cured, and finally the selected sealing layer is applied, which may be transparent, dyed, colored or combined with a concealed safety material. The fabrication of a uniformly moving material requires the illustrated tool and lens tool to combine the misalignment angles of the symmetry axes of the two arrays. The composite image size and the composite image rotation in the material produced by the non-coincidence control of the symmetry axis of the figure and the lens pattern. It is generally necessary to provide correction that the synthetic image is substantially in the direction of the winding or intersecting the winding direction, and in other cases the illustration between the lens pattern and the graphic pattern and the total angle of the lens are not coincidently divided. Angles where the required angles do not coincide are usually extremely small. For example, a total angle of 0. 3 degrees is not critical to magnify a 30 micron image in a consistent moving material to 5. 7 m in size. In this example, the total angle does not coincide with the two tools being equally divided, so each tool is skewed to zero in the same direction of the two tools. 15 degrees angle.  Since the tool forms a microstructure on the back side of the base film, So the system is skewed in the same direction, The skew of the tools is added to each other rather than cancel each other out.  Skew can be used in the original design of the mask, Break into the tool by rotating the entire pattern to the desired angle before writing. The skew can also be mechanically inserted into a flat nickel plating tool by cutting the machine to a suitable angle. The deflected tool is then formed into a cylindrical tool using a skewed cutting edge. To correct the axis of rotation of the tool and the impression cylinder.  The synthetic magnifying micro-optic system can be combined with other features. Including but -78-200902339 are not limited to the single element or the various combinations of the various combinations, For example, the graphic supplement material, Covered on the back, Top wrap, Shaped and unshaped, lens, Filling or inclusion in optical spacers or graphic materials, As laminated or coated. Ink and/or adhesives include water in the form of positive or negative materials, Solvent or radiation curing, Optically transparent, Translucent or opaque, Colored or dyed indicators, Coating or printing includes, but is not limited to, ink, metal, Fluorescent or magnetic material, X-ray, Infrared or UV absorbers or emissive materials ‘Magnetic and non-magnetic metals include aluminum nickel plating, chromium, Silver and gold; Magnetic coatings and granules for testing or information storage; Dyes and pigments that are like fluorescent coatings and particles; IR fluorescent coating, Supplementary Dyestuff or granule; UV fluorescent coating, Supplementary Dyestuff or granule; Phosphorescent dyes and pigments, Like coatings and granules, Seesaw, DNA, RNA or other macromolecular explosive additives, Dichroic fiber, Radioisotope, Printing to accommodate the coating, coating, Or primer, Chemical reaction materials, Micro-encapsulated ingredients, Depending on the location and materials, Conductive particles and metal and non-metallic coatings, Micro-perforated holes, Colored threads or fibers, Consistently embedded on the surface of the file, The label on the surface of the label or material 'bonds paper or polymer as a carrier for the paper during the bonding process, Fluorescent dichroic thread or particles, Raman scattering coated or granules, Color transfer coating or granules, Uniform laminated paper, cardboard, cardboard, plastic, Ceramic products, Wool or metal substrate, U s i ο η such as thread, Patch, label, Covering, Hot stamped foil or easy to tear tape, Holographic photography, Diffraction, Diffraction kinegram, Equal line Photographic or refractive optics, Liquid crystal material, Upconvert and downconvert material.  Although the image illustration assembly has been combined in detail with the above array of focusing elements -79-200902339 , The image icon component can be used to provide images for other applications" print". E.g , Figure 34 is a cross section of an illustrated layer 821 of an embodiment of a material having microstructured elements. For example, an array of microstructured elements. The illustrated layer 8 2 1 can constitute the synthetic magnification micro-optical image projection system, The graphic layer of the corrugated magnification system, " The graphical layer of the key and key ''corrugated magnification system (described below), Independent layer of micro image or effective π microprinting, a graphical layer of a micro-cylindrical lenticular image film system, Or an image or map of another micro-optical system.  The illustrated layer 821 can be independently or alternatively mounted on the substrate 820 or the transparent substrate 820 (if the layers illustrated form the components in the corrugated amplification system, Wherein the illustrated layer 821 is optically coupled to the microlens array via a transparent substrate 820, It needs to be the latter). The selected substrate or transparent substrate 820 supports or contacts the illustrated layer 821, The latter combines various microstructures that can be used as components of the illustrated image. The microstructural graphic element can be formed as a raised or raised region in the material layer. For example, the display layer 821, Or located in the substrate. The microstructured image elements can be in various forms and geometries. Including but not limited to asymmetric void pattern 822, Symmetrical void pattern 823, Light trap pattern 824, Full-image photographic surface relief printing pattern 82 5. Universal diffraction surface relief printing pattern 826, Binary structure type 827, " Binary optical instrument", Structure color " And the general stepped letterpress printing pattern 82 8. Random rough and virtual random rough pattern 829, Nominal flat surface pattern 830 and concave surface 831 and convex surface 832 (as shown, Viewed from the bottom of the graphic layer).  The illustrated layer 8 2 1 can be combined with an array or pattern of homogenous microstructures. E.g,  Only asymmetric void pattern 822. on the other hand, The illustrated layer 821 can incorporate an array or pattern of two or -80-200902339 more microstructured embodiments 82 2- 8 3 2 . The microstructure is an illustrative component that can be formed in an array of microstructured graphic elements that together form an image. Similar to a group or array of pixels that form a conventional printed image. E.g, A system can be fabricated having an array of microstructured graphic elements, The array of microstructured elements can be combined with an array of the above-described focusing elements. Wherein the two arrays are matched to form a synthetic optical image that may or may not be magnified. It is also possible to manufacture a system having an array of microstructured graphic elements. The array of microstructured elements collectively forms a "microprint" that is intended to magnify the view. image, For example, it can be viewed with the help of a magnifying glass or a microscope.  The microstructured graphical elements 822-832 of Figure 34 can be designed to present within the parts and their parts and when the illustrated elements are immersed or in contact with the vacuum, Gas (including mixed gas, Such as air), The liquid contrast between the non-structural regions around layer 82 1 is shown in liquid or solid. This optical contrast can be via refraction, Total internal reflection, Surface reflection, scattering, Partially polarized, polarization, Optical rotation,  diffraction, Optical interference and other optical effects are enhanced.  Microstructured graphic component Figure 35 is a cross-sectional view, A patterned layer 777 that is coated with a plurality of microstructured image component embodiments is depicted. The illustrated layer 777 is similar to the illustrated layer 82 of Figure 34. It can also be independently or selectively equipped to the substrate 77 5 or the transparent substrate 775. The depicted illustrated component embodiments can include the pattern of FIG. Including asymmetric void pattern 779, Symmetrical void pattern 78 1. Light trap pattern 7 8 3, Full-image photographic surface relief printing type 7 8 5, Universal diffraction surface relief printing pattern 787, Binary structure type 789, " Binary optical instrument " , • 'Knot -81 - 200902339 Color" and general stepped letterpress type 79 1. Random rough and virtual random rough pattern 795, Nominal flat surface pattern 797 and concave surface 799 and convex surface 80 1 (as shown, Viewed from the bottom of the graphic layer).  The microstructured image element is formed in the illustrated layer using any of the above described microstructured image tools and methods.  The microstructure of any of the illustrated components can be angled, The non-conformal and/or oriented coating material is coated with 7 9 3 .  The shaped cladding material 793 can be conformal, Non-conservative, continuously, Non-continuous, fixed, Unshaped, Pointing, Or it may have attributes or materials that differ from the illustrated layer 7 7 7 or a combination thereof. The type of cladding material 7 9 3 can provide the image components shown. It can match the shape of the microstructured image component. Or independent of the microstructured image component type, Or both. The cladding material 793 can be shaped to equip the surface of the illustrated layer 777 with the illustrated image elements. Either the illustrated layer 777 incorporates any of the microstructure types. Neither the shaped or unshaped cladding material 793 need to cover the entire surface of the illustrated layer 777. The cladding material is only applicable to selected portions of the illustrated layer 777.  E.g, The illustrated image element can be fabricated into a metallized aluminum layer.  Formed as a coating material (such as an example of the cladding material 793) on the polyester graphic layer (as an example of the illustrated layer 777) in the region of the polyester graphic layer without any microstructure (for example, the following Figure 40 depicts). In this example, The patterned demetallized aluminum layer provides a graphic image that does not use the microstructured surface on the illustrated layer. The metallized aluminum layer of this type can also be used to bond the micro-structured image element in the region of the -82-200902339 of the polyester graphic layer. The patterned metallized aluminum layer conforms to the microstructured image element of the microstructure such that its intended occurrence is enhanced by the metallization of the aluminum layer. Or the image provided by the metallized aluminum layer can be used to image the image element independently of the illustrated layer microstructure. The image of the metallized aluminum layer is used to create a composite image. At the same time, the micro-structured image element is used to fabricate a second composite image.  Both the positive and negative images of the shaped cladding are included. The microstructured image elements and the patterned layer coating of the sizing can be used to form a positive or negative image (see also Figure 40 below). Either any of the image elements can present a selected "foreground" attribute or a selected " Background attribute, At the same time, the surrounding area presents one of the above two attributes that is not presented. Thus, the image elements can be used to form vertical images or images of opposite colors. And correspondingly vertically synthesizing images or synthetic images of opposite colors.  For an example, Any of these illustrated image element methods can be used to provide images (eg, currency denomination-" 50”), It is opaque or the first color relative to the background of the transparent background or the second color, Also in different areas of the illustrated layer 777, The coloring pattern can be reversed, Making the image transparent or in a second color, At the same time the background is opaque or the first color.  Exemplary Image Elements for Micro-Printing Although any and all of the image element embodiments of the present invention can be used as components of a corrugated amplification system, they can be used only for ultra-high resolution micro-printing for a wide range of applications. The illustrated image element method of the subject invention can be used to manufacture micro-83-200902339 printing, It is used to compact information storage, Used to cover money, file, Identification of packaging and manufactured items, For currency, file, Bar code and digital labels for packaging and manufacturing items, And for all applications that benefit from ultra-high resolution printing or informational labels. In this embodiment, 'a pattern or array of microstructured graphic elements that collectively form an image is provided' or provides some information that requires magnification of the view.  Figure 3 6a, b presents a section through the illustrated layer 83 6 of a material, The material has additional layers of cladding material 8 8 8 and 840 similar to the microstructured image component groups of Figures 34 and 35. The illustrated layer 83 6 can be formed as a graphical layer of the corrugation amplification system, "Key and Key" The graphical layer of the corrugated amplification system (as described below), Micro-image or effective "micro-printing" Independent layer, a graphic layer of a microcylindrical lenticular image film, Or a graphic layer of another micro-optic system.  The illustrated layer 836 can be self-contained or alternatively mounted on the substrate 834 or the transparent substrate 834. The selected substrate or transparent substrate 834 is supported or in contact with a patterned layer 83 6 of various microstructures that can be used as elements of the illustrated image, either alone or in combination. The microstructured image element can be in a wide variety of forms or geometries. This includes, but is not limited to, the embodiment 8 4 4 - 8 6 4 corresponding to the embodiment of FIG.  As depicted in Figure 36a, The illustrated layer 836 having microstructured graphic elements 844-8 5 6 is shown laminated with a layer of adhesive material 840 that is laminated to a substrate or transparent substrate 842. The layered adhesive 838 can first be applied to the illustrated layer 836, Then brought into contact with the cladding material layer 838,  As indicated by the gaps in the laminating adhesive shown in microstructured graphical elements 844 and 846, Or the laminating adhesive 838 may first or alternatively be applied to the cladding material layer 840' and then brought into contact with the illustrated layer 836 as if it were a microstructured image-84 - 200902339 image element 8 4 8 - 8 5 6 shows the continuous layer of laminating adhesive 8 8 8 .  In this embodiment, The cladding material layer 840 is in close proximity to or in contact with the microstructured image elements 844-856. The cladding layer is similar to the cladding layer 793 of FIG. It may have the effect described in relation to the cladding layer 793.  In Figure 36b, Showing a cross section of the illustrated layer 837 having the microstructured image elements 85 8-864, It is shown laminated to a laminate substrate 843 having a coating material layer 841 using a laminating adhesive 83 9 . Although the laminate adhesive 83 9 is shown as having been applied to the illustrated layer 837, And then brought into contact with the laminate substrate 843', but it should be understood that the laminate adhesive 839 may first or alternatively be applied to the laminate substrate 843, It is then brought into contact with the illustrated layer 8 3 7 .  In this embodiment, The cladding material layer 841 is isolated from the patterned layer 837 by a laminate substrate 843. The cover layer 841 can be any of the materials previously listed for the cladding layers 840 and 793.  When the microstructured image elements 844-8 8 4 are shown as being non-charged in Figure 36a, at least a portion of the microstructured image elements 844-864 may be selectively filled with the stencil material, Or to maintain the angle before lamination, Non-conformal or directional coated material. The microstructured graphic elements do not need to be fully filled. When it is full, It can only be partially supplemented, Or as part of the supplement.  The microstructured image component can appear as a positive or negative image. Or both. In Figure 37 a-c, The illustrated layer 868 can be self-contained or alternatively mounted on a substrate 866 or a transparent substrate 866. The illustrated layer 868 optionally provides a layer of cladding material 870, It may partially or completely cover the layer 868.  In Figure 37a, The illustrated layer 868 has two regions of the microstructured graphic element -85-200902339: The element 872 and the negative picture 874 are being illustrated. For the sake of portrayal, The general form of the positive graphical element 8 72 has been reflected in the form of a negative graphical element 874. The selected cladding material 870 is shown as a wrap of the conformal 872 on the front icon. And the negative image shows the non-conformal coating on the 8 74, For example, only the conformal and non-conformal coatings can be used in combination with both the positive graphic representation 872 and the negative graphic representation 8 74.  The object pattern of the image element 872 is shown as a recess or void in the layer 868. At the same time, the background area of the image element 8 72 is shown as being raised in the area 872. The background area of the negative graphic image element 874 is provided as a recess 875 in the illustrated layer 868, The object pattern of the negative graphic image element 8 74 is provided as a raised area in the illustrated layer.  Figure 37b depicts when the illustration is filled with a graphic charge material having a different property than the material of the illustrated layer 8 68, The effects of positive and negative graphic components and patterns are particularly attractive. The different layers of the illustrated layer 868 and the selected substrate 866 are filled with positive illustrations 8" 76 and the negative negative icon 880 are displayed. The illustrated stencil 878 forms the object pattern 886 of the component 876 being shown. And the background of the negative negative graphic element 880.  Referring to Figure 37c, The detailed plan view 882 of the expanded positive graphic element 890 and the negative negative graphic element 892 shows the expanded positive graphic element 886, It appears 8 8 8 different from the surrounding background 8 8 4 . E.g: The difference between the positive component and the appearance around the background is the color. If the illustration, the filling material 878 has a pigment, Dyes or other coloring materials, The expanded positive graphic component 886 will then display a high concentration 893 of the illustrated charging material 886,  At the same time, the surrounding background area 8 84 will be no. In a similar way, The negative background of the illustrated component 8 92 will show a high concentration of the illustrated charging material 886, The object type of the negative graphic element 892 that is charged with -86-200902339 will display the insufficient 894 of the graphic filling material.  Through these mechanisms and combinations with other disclosures herein, it can be seen that positive and negative image representation elements can be fabricated. When used as a component of a corrugated amplification system, The positive and negative image representation elements can be used to produce positive and negative composite images.  The positive and negative image elements can be used alone or in combination.  Figures 38a-c present representative examples of embodiments of the illustrated and coated embodiments. The illustrated layer 898 can be self-contained or alternatively mounted on the substrate 8 96 or the transparent substrate 8 96. The selected substrate or transparent substrate 8 96 is supported or in contact with the illustrated layer 898 of various microstructures that can be combined as an element of the illustrated image, either alone or in combination.  Figure 38a shows a cladding material 900 that has been applied to the surface of at least a portion of the illustrated layer 898 by a suitable mechanism (as depicted in Figure 35). The covering material 900 shown in the figure is a conformal angle with respect to the surface of the illustrated layer 8 9 8 . But it can be non-conservative, Non-continuous, fixed, Or a covered area with different properties and/or materials. The positive graphic element 904 has its object-like microstructure filled with the illustrated filling material 9〇2塡, And its non-expanding background components. The negative graphic element 906 has its background microstructure filled with the illustrated chelating material 902, At the same time, its object-type microstructure 9 0 8 is non-filled.  The embodiment shown in Figure 38a provides visual enhancement of the illustrated image via different optical effects produced by the different viewing angles of the cladding material 9 and the illustrated splicing material 902. E.g, If the covering material 9 is a thin layer of aluminum, So that when viewed from a direction perpendicular to the plane of the illustrated layer 898, In fact, it is transparent in nature. The central area of the illustrated graphic element will appear essentially the same color as -87- 200902339, As if it is not covered. The reflectivity of the thin aluminum layer increases as the angle of incidence increases. So supplemented, The slanted end of the wrapped graphic element exhibits more reflection' the resulting graphical component with a high contrast profile. If the cladding material 900 is a single layer or a multilayer dielectric coating, The color of the cover can vary with different viewing angles. This shows that the color of the component or the color of the color is added to the end of the component. Other types of cladding materials can be used to promote adhesion, To create additional visual effects, Or can provide concealment, The machine can read or court identify features to the material. It will be understood that the illustrated components need not be overfilled or wrapped. We can only partially supplement some of the graphic components.  The embodiment shown in Figure 38b reverses the sequence of the overlay and overlay of Figure 38a, The microstructure diagram is first filled with the illustrated charging material 902. It is then coated with a covering material 900. The illustrated layer 898 is optionally mounted on a substrate 896 or a transparent substrate 896. Or you can fix it at will. The illustrated components 9 10 and 9 12 are filled with the illustrated charging material 9〇2, It is then selectively coated with a covering material 900.  The visual effect of the embodiment of Figure 3b will generally differ from the visual effect of Figure 38a. Although the same material is used for the covering material 900 and the illustrated filling material 902. According to the optical properties of the supplementary material 902, The cladding material 9 〇〇 may or may not be visible via the illustrated entrapping material 902. The cladding material 900 can be seen directly in the area between the illustrated illustrations.  It is assumed that the illustrated elements are substantially fully filled with the illustrated entrapping material 902,  The covering material 90 〇 ' is visible everywhere, whether seen or directly seen through the illustrated embossing material 902. The covering material 9 00 is substantially parallel to the surface of the illustrated layer 8 98. Thus the presence of the cladding material 900 may modify the overall appearance of the illustrated splicing material -88-200902339 902' but it does not provide the contour or edge lifting function of Figure 38a. The cladding material 900 can be designed to have other effects or functions in addition to or in place of optical effects - for example, The cladding material 900 can initiate non-contact identification of the article to which the illustrated layer 898 is attached, Detection or identification.  If the illustrated component is not filled with the illustrated charging material 902, The cladding material 900 can then be substantially non-parallel to the surface of the illustrated layer 898. In this situation (not depicted), In the region where the cladding material 900 contacts the illustrated entangled material 902 and is substantially non-planar, There may be other optical effects provided by the cladding material 900.  The embodiment of Fig. 38c is an extension of the embodiment of Fig. 38b to include a plurality of illustrated reticle materials. (although not depicted here, The multi-way graphic charging material can also be used in the embodiment of Fig. 38 a, And the following discussion also applies to this embodiment. The illustrated layer 898 has a positive microstructured display element 926 and a negative microstructured graphic element 92 8 that are filled with the first illustrated smear material 916. The microstructured graphical elements 926 and 928 are not filled by the first illustrated supplemental material 916. This can be done by multiple agencies. Including dispersing the first illustrated chelating material 9 16 in a solvent, The microstructure is illustrated by dispersing the solvent of the first illustrated chelating material 916, The solvent is dried and thus the amount of the first illustrated charge material 916 is reduced. The other mechanism of the microstructure is to be filled with the first graphic filling material 9 16 .  And then remove some of the graphic filling materials by erasing or demolishing the mechanism 9 1 6,  For example, buffering with a doctor blade or high voltage erasing.  The first illustrated charging material 9 16 can be dried, Chemical reaction (eg two-part epoxide or resin and hardener polymerization), Radiation curing, Selectively stabilized by oxidation or other suitable mechanism, Cured or dried. -89- 200902339 - The illustrated charging material 916 can also be selectively destabilized, It can be chemically reacted with the second illustrated chelating material 91 8 in some manner.  The illustrated microstructures 926 and 928 are then selectively filled with the second illustrated entanglement material 918. According to an unfilled method for providing the first illustrated charging material 916, The relative thicknesses of the first illustrated charging material 916 and the second illustrated charging material 918 can be different in different regions. Or have different depths, The width or appearance is different from the microstructure of the illustrated components. The positive currency element 926 is not the first. The amount of the supplementary material 916 and the second graphic filling material 918 are approximately equal.  And the thickness of the secondary charge material is approximately equal to the center of the filled region 920. In the figure, the negative graphic component shows a large difference in the aspect ratio. The central region 922 of the two larger illustrated components is shown for the first and second illustrated supplemental materials 9 1 6 and 9 1 8 respectively, for example about 1:  The thickness ratio of the filling material of 3. The center of the smaller negative graphic element 924 is shown for the first and second graphic charging materials 9 1 6 and 9 1 8 respectively, for example about 4:  1 very different 塡 filling material thickness ratio. The expanded illustration is optionally wrapped with a cladding material 900.  The cladding material 900 can also be selectively applied to the illustrated layer 898 prior to being illustrated in the first illustrated charging material 916. Or it may be applied to the illustrated layer 989 and the first illustrated entanglement material 916 prior to being filled with the second illustrated priming material 918. These changes are not depicted in the figure.  The positive graphic element 920 has its object-like microstructures flooded with the illustrated chelating materials 916 and 918. And its background elements that are not fully replenished. The negative graphic element 928 has its background microstructure that is filled with the illustrated filling materials 916 and 918.  At the same time, its object type microstructure is unfilled.  Please note, Any of the illustrated layer materials in any of the embodiments of the present invention is not limited to the materials of Figures 38a-c, It can be combined with pigments, dye, Colorant,  Camp light material or any suitable type of sputum material previously stated in this definition paragraph. Because of transparency, Undyed and uncolored graphic layers are formed, And then to fill the specific microstructured component with a colored graphic overlay.  Can be regarded as a positive component, At the same time, it is formed by a colored layer, And then transparent, The undyed and uncolored graphic overlays complement the same microstructured components, Can be regarded as a negative component, Therefore, the overlay graphic layer provides a clear illustration between the theoretically positive and negative graphic elements. In this example, The change between all of the illustrated components and the negatively illustrated components is the choice of the layers of the illustrated layer and the illustrated overlay material. When it is convenient to discuss positive and negative graphic elements, Actually there is a continuum of possibilities, Included are the illustrated elements 'having a color or optical effect in the background' and the second color and/or optical effect presented in the form of the object, vice versa.  If the illustrated components of Figures 38 a - c are used as part of the corrugated amplification system, The unique effects provided by the combination of the cladding material and the illustrated entanglement material will continue to exist in the composite image produced by the corrugated amplification system.  The encapsulation on the illustration is shown as a diagram. Figure 3 9 a- c depicts the shaped cladding material, Hot stamp foil, Directed coverage, And the application and combination of the illustrated icons. In Figure 39(a), The illustrated layer 932 can be stand-alone or it can alternatively be mounted on the substrate 930 or the transparent substrate 93 0 . The selected substrate or transparent substrate 93 0 supports or is in contact with a patterned layer 93 2 of various microstructures that can be combined as an element of the illustrated image, either alone or in combination.  -91 - 200902339 In Figure 39a, The pattern structure of the cladding material 934 forms an area exhibiting 935 cladding material. And areas where the coating material is missing. The pattern structure of the covering material 9.3 can be in any form or for any purpose. Fabrication of the illustrated components including the corrugated magnifying micro-optical system. A number of methods for coating the pattern structure in the art are known. Including coated or chemically etched exposed coatings to print or precipitate anti-hungry materials, The anti-saturated material is then selectively chemically stripped from the coating. The resist layer can be photoresist. And the pattern structure of the resist can be completed by an optical exposure method. Another method of coating the patterned structure is to first deposit a shaped resist (or deposit a resist on the other hand and subsequently set it)' then apply the coating to the surface of the material and to the resist, The chemical is then removed to remove the resist and the coating. For example -" The latter method is common in the manufacture of de-metallization security. Wherein the resist material is printed on the polymer substrate, The substrate and resist are coated with aluminum by vacuum metallization or sputtering. The resist is chemically removed. In the position where the resist is presented,  Lack of aluminum coating, And "released" when the resist is removed. Instead of chemical removal, the selected metallized area, These areas can be mechanically removed, For example, by rubbing. It will be understood that only the coated portion can be preformed.  a metallized coating that does not conform to the scaling and geometry of the components shown in the corrugated magnifying film, Can be used to produce a partially transparent metal in a synthetic image, Since the location of the demetallized area will vary with the components shown - similar to the half-tone method used in printing, The composite image formed from the graphical representation of the opacity is proportional to the portion of the overlay.  on the other hand, The shaped demetallized metal cladding can be used to fabricate a different component set - 92 - 200902339 component set than the microstructured components that can be used to create the second composite image set. An application of this additional synthetic image is for currency, Covert identification of documents and trademark protected materials.  In Figure 39a, The cladding material 934 in the region designated by the carriage 936 is shaped in a manner that does not conform to the geometry of the microstructured component. Shaped cladding material 934 can carry individual information. For example, different types of components are shown, Or it can carry other graphic or text information, Or no information.  relatively, The cladding layer 9 3 4 in the designated area of the bracket 9 3 8 corresponds to the illustrated component. Cover suppressed shape 93 1, But not covering the "flat part"  93 9. Such a pattern structure can be completed by covering the entire surface of the graphic layer 932 with the covering material 934. Including the suppressed area 931 and the "flat part"  93 9,  Then borrowed and demolished, friction, wipe, Shaved, Honing, Chemical etching, The adhesive is removed, Or by other appropriate agencies, From the "flat part" 939 removes the cladding material 9 3 4 .  The shaped cladding material 934 that conforms to the illustrated elements in this manner provides a strong visual representation of the components, Optics, Electromagnetic, Magnetic or other enhancement. E.g: The illustrated layer 9 3 2 in combination with the microstructured graphic element can be sputtered with gold', which can then be rubbed against the surface of the cladding relative to a fibrous material such as paper. The gold is removed from the flat portion 93 9 . The gold remaining in the illustrated element then provides a metal surface of true gold, At the same time, the flat portion does not contain gold, so the graphic element appears as a gold object separated from the background.  Figure 39b depicts various embodiments of the illustrated layer 932, It is a single piece (946) and combination (950, combined with the thermal stamp foil cover 942 and the illustrated entanglement material 948.  95 1). The typical thermal stamp foil structure shown, The thermal adhesive layer 94 is affixed with a foil-covered foil layer 94 2 to the illustrated layer 93 2 . The frangible lacquer layer 944 of the thermal stamp foil wrap-93-200902339 is optionally equipped to support the thermal stamp foil 942. The frangible lacquer layer 9 44 can be combined with a microstructured pattern. For example, a hologram. In the area specified by the carriage 94, The thermal stamp foil cover 942 has been applied to the surface of the patterned layer 932 by a well-known mechanism. Sealed on the area of suppression of the microstructured graphic elements. In the area designated by the carriage 950, Thermal stamp foil 942 has been applied to the microstructured representation of the illustrated entanglement material 948. In the area specified by the bay 951, The thermal stamp foil 942 has been applied to the illustrated layer 93 2, The thermal stamp foil cladding material overlying the area of inhibition of the microstructured graphic elements is then removed. Suitable mechanisms for removing the thermal stamp foil cladding material include, but are not limited to, high pressure gas injection, High pressure water or other liquid spray and mechanical disintegration and friction. The microstructured display element can optionally be filled with the illustrated supplementary material 948. The illustrated microstructured surface is controlled by the illustrated embossed material 948, And control the "flat portion" surface with a hot stamped foil wrap. As shown in the picture, The illustrated charging material 9 4 8 is selectively coated over at least a portion of the thermal stamp foil cover 942, Or it can be applied to fill only the illustrated recess (not shown).  Figure 3 9 c depicts various embodiments of the illustrated layer 9 3 2, The combination is optionally used for the directional clad material (9 5 2 and 926) in combination with the non-filling material 94. The first directional cover 552 is applied to the illustrated layer 932 from the direction specified by the arrow 975. The first directivity coating 9W's directional precipitation makes it preferentially coated " Flat part" And the right side of the illustrated component in the area designated by the bracket 9 5 6 (as shown). The s-covering provides visual high illumination on one side of the microstructured graphic element. Create "shadow" or "concentrate illumination" effect.  In the area specified by the carriage 956, Use a two-directional coating. The arrow 954 indicates the direction in which the π flat portion is covered and the direction of the first directional coating 95 2 on the right side of the -94 - 200902339 of the microstructured graphic element in the region. The second directional wrap 962 is applied from the direction specified by arrow 960, And wrap the left side of the microstructured graphic element. The first and second directional coatings (952 and 962, respectively) may be the same material or different materials. And it can be applied from the opposite direction (95 4 and 960) as shown or it can be applied in a similar direction. E.g: If the first directional cover 952 is silver, And it is applied from the direction indicated by arrow 9 54, And if the second directional coating 962 is gold, And it applies from the direction indicated by the arrow 96 ’ 'The microstructure will appear on the right side of the micro-structured element and the gold will appear on the left side while the center is still uncoated and transparent. About another example: The status of the previous example, Except that the silver is applied at the angle shown by arrow 9 54' and the gold is from the same general direction, Apply at an angle of ten degrees closer to the vertical surface of the entire illustrated layer 93 2 . The gold will then be coated on the same side as the illustrated elements of the silver. However, the gold will cover the upper right side or center of the illustration. The resulting graphical component appears to have the right side of the silver. It blends into the gold toward the top of the graphic element (as shown). Many other combinations and variations will be apparent to those skilled in the art.  Another change is shown in the area of Figure 39c designated by the cradle 964,  Where the microstructured graphic element has a two-directional coating, a first directional cover 952 and a second directional cover 962, And then fill the material 948 with the illustration. The figure was not previously shown, The illustrated splicing material can optionally be attached to any of the coated microstructured components of any of the Figures. Including the areas 936 and 93 8 in Figure 39a And zone 95 6 of Figure 39c.  Figure 40a depicts the use of a shaped cladding material 96 7 , As a mechanism for manufacturing graphic components. The shaped cladding material 967 is mounted on the substrate 966 or through the -95-200902339 clear substrate 966. The pattern structure is combined with a region of the selected thickness of the cladding material 968, And a region of the cladding material 969 having a smaller thickness or an region having no cladding material 97 0, Or both. Different thicknesses of the cladding material - full thickness (968), Partial thickness (969) and zero thickness (970) (or lack of cladding material) - can be shaped to represent the image information as a component in the corrugated amplification system. A full thickness cladding material or a zero thickness cladding material can be used to form the article shape of the illustrated component. Figure 40b depicts a plan view 972, Object types (letters and numbers) are formed for a background 976 formed of a zero thickness or a partial thickness of the cladding material using a full thickness graphic element. Since the object pattern of the illustrated component shown in plan view 972 is formed by the presence of the cladding material 967, This graphic image is called a positive image. Figure 40c presents a plan view 978 of the negative graphic image, The background is formed by a full thickness of the covering material 982. And the article pattern is formed by a partial or zero thickness cladding material 980. The area of the partial thickness covering material 969 can be used to make a gray scale pattern. The optical effect of the cladding material 967 modifies or reduces the density effect depending on the nature of the cladding material.  The pattern structure of the cladding material 967 can be accomplished by any of the methods previously described in relation to Figure 38. Part of the thickness of the cladding material can be covered by additional masking and uranium engraving steps. Or by etching a full thickness coating of a portion of the thickness region, The second cladding of the cladding material 967 is then completed to sink the source portion of the thickness layer over the entire substrate 966 or the transparent substrate 966. The mask is then selectively masked and etched more than once to produce a zero thickness region 970.  The remaining layer of cladding material is optionally attached to the shaped cladding material #967. Examples include, but are not limited to, metallization by vacuum precipitation, Colored dyed coatings or those previously listed in the definition section of this document. example:  -96 - 200902339 This layer can be applied directly, laminated, Hot stamp, Wrap or other offer. The application of this additional layer provides an advantage. The area of the partial thickness cladding material 969 and the presence of a region of zero thickness (lack of) cladding material 970 are altered.  Figure 4 1 a, b depicting a second embodiment of a two-part corrugated magnification system, It can be used as " Key and key " Identification system, The microlens array is an individual item that is used as a key to "open" the information in the array item. In Figure 41a,  The selected transparent substrate 984 supports a microlens 986 made of a light transmitting material 980, It may be different or the same as the material used to form the selected transparent substrate 984. The total thickness of the lens sheet 1 000 in combination with the microlens 9 8 6 plus the selected substrate 9 84 is less than the focal length 1 004 of the microlens 9 86.  The lens sheet 1000 does not permanently adhere to the image sheet 1002, However, it can be used as a free and individual item for the identification device of the picture 1 002. When used as an authentication device,  The lens sheet 1000 is introduced into contact with or near the surface of the graphic sheet 102. The gap 992 between the two sheets will typically contain an air film. Or gap 992 can optionally be filled with water, Glycerin or other fluids' to provide optical or mechanical coupling between the lens sheet 1' and the illustrated sheet 1002.  Combined with the selected transparent substrate 990, The graphic sheet 994 of the illustrated layer 994 and the illustrated element 996 (optionally illustrated as entangled material 997 is shown) is disposed on the surface of the lens sheet 1000 that is the farthest from the surface. The total thickness of the image sheet 1002 plus the lens sheet 1 000 is designed to be substantially equal to the focal length 1 〇〇 4 of the microlens 186. When the lens sheet 1 is substantially placed nearby, For example, the focus 99 8 of the pictorial lens 1 〇〇 2 'microlens 986 that contacts the bound or unbound fluid will be placed within or adjacent to the illustrated layer 994. The preferred position of focus 99 8 is the slightly lower or lower surface of layer 994.  -97- 200902339 The system formed according to the embodiment of Fig. 4 1 a can be used for anti-counterfeiting, Identification or security device. For example, the graphic layer 994 of the graphic sheet 1〇〇2 can be manufactured,  Original creation, Attached when packaged or delivered, Adhere or permanently fix or break into objects or documents. The graphic sheet 1 002 itself does not need to have any visible distinguishing features. In fact, the illustrated component 996 will be extremely small, The size is from a few microns to tens of microns' and the naked eye will be effectively invisible. The remaining conventional printing or imaging can be equipped or attached to the graphic sheet 1002 as needed.  An example of this additional imaging can be a photo that people use to identify. Make the picture complete as the background of the photo. The identification of the graphic sheet 1 002 can be achieved by combining firmly attached objects. And placing an appropriate zoom lens sheet substantially in contact with the image sheet 100 2, The lens sheet 1 000 is rotated in its plane until the lens and the illustrated element 996 are sufficiently corrected to form a composite image of the illustrated element 996. ("Appropriately scaled" lens sheet is a lens sheet, Where the array of focusing elements has rotational symmetry and substantially coincides with an array of illustrated elements 996 on the image sheet 1002, And the graphic/lens repetition rate is designed to achieve the selected optical effect [ultra-deep, deep, mobile, float, Super floating,  Floating, 3-D, And its combinations, etc.]).  Figure 4 1 b depicts another embodiment of the present invention. In this picture,  The lens sheet 1010 is integral, Composed of a single material comprising a microlens 1008 on its upper surface, And the selected additional thickness of material 1 006 provides an optical separation. If the lens sheet 1000 does not include the selected transparent substrate 984', the lens sheet 1000 of Fig. 41a can be formed in this manner. Similarly, As shown in Figure 41 a, The lens sheet 1〇1〇 of Fig. 41b can be formed using a transparent substrate and a microlens layer. For completeness, The other structure of the display lens sheets 1000 and 1010 - the lens sheet - 98 - 200902339 1000 or 1010 may have one of the two structures shown - an integral lens (Fig. 41b) or a substrate plus lens (Fig. 41a) ° Fig. 41b The function of the lens sheet 1010 in the embodiment is the same as that of the lens sheet 1000 of Fig. 41a. Although due to the difference between the pictorial sheet 1014 and the pictorial sheet 1002, The total thickness of the lens sheet 1〇1〇 will generally be greater than the ratio of the focal length 1024 of the microlens 1008. The graphic sheet 1014 is combined with the surface of the illustrated component 1020. It can optionally be filled with the illustrated charging material 997. The graphic sheet 1014 shown for completeness is integral. With un-isolated graphic layer and base layer, On the other hand, the graphic sheet 1014 can be formed in the manner of the sheet 1 〇〇 2 to form a patterned layer having a substrate and adhesion. In the same manner, the illustrated sheet 1 002 can be formed as a unitary sheet in accordance with the structure of the illustrated sheet 1 〇 14 .  The functional difference between the pictorial sheet 1014 and the pictorial sheet 1002 is such that the former has its illustrated elements on the surface closest to the lens sheet 1010. At the same time, the latter has its illustrated elements on the surface furthest from the lens sheet 1000. In addition, Since the illustrated component 1020 of the graphic sheet 1014 is located on its upper surface, The material 1018 placed below the illustrated element 1020 need not be transparent. The illustrated layer and base are provided regardless of whether the illustrated sheet 1014 is integral or has the structure of the illustrated sheet 1002.  The substrate 990 of the graphic sheet 1 002 does not need to be substantially transparent. Because the light must pass through the substrate 990 for the lens 986 to form an image of the illustrated element 996. The selected cladding material 1016 can be mounted on the illustrated element 1020 of the illustrated sheet 1014. The cladding material 1 〇 16 may optionally provide optical or non-contact identification of the illustrated sheet by a mechanism other than the use of the lenticular sheet 1010. The cladding layer 1016 can include other optical features. For example, holographic or diffractive structures. The graphic elements of both the graphic sheet -99-200902339 1 002 and the graphic sheet 1014 may take any form. Any of the illustrated elements of the embodiments herein are included.  Regarding the situation of the embodiment of Figure 41a, The lens sheet 1014 of the embodiment of Fig. 41b is not permanently attached to the graphic sheet 1014. Rather, it can be used as a free and individual item of the authentication device of the chart 101 4 . When used as an authentication device, The lens 1010 is introduced into contact with or near the surface of the graphic sheet 1014. The gap 1 〇 1 2 between the two sheets will usually contain an air film. Or gap 1 0 1 2 optionally with water, Glycerin or other fluids, To provide optical or mechanical coupling between the lens sheet 1 〇 10 and the graphic sheet 1014.  The total thickness of the illustrated wafer 1 0 1 4 plus lens sheet 1 0 1 0 is designed to be substantially equal to the focal length 1024 of the microlens 1008. When the lens sheet 1010 is substantially in contact with the illustrated sheet 1014 with or without a coupling fluid, The focal point 1 022 of the microlens 1 008 will be placed in or near the illustrated element 1 020. The optimal position of focus 1 022 is at or slightly below the shorter range of the illustrated component 1 020.  A system formed in accordance with the embodiment of Fig. 41b can be used as an anti-counterfeiting and authentication device. E.g, The lower surface of the graphic sheet 1 0 1 4 can be manufactured, Original creation,  Attached when packaged or delivered, Adhere or permanently fix or break into objects or documents. The pictorial picture 1 0 1 4 itself does not need to have any visible distinguishing features. In fact, the illustrated component 1 020 will be extremely small, The size ranges from a few microns to tens of microns, And the naked eye will be effectively invisible. The remaining conventional printing or imaging can be equipped or attached to the graphic sheet 1 0 1 4 as needed. An example of this additional imaging can be a photo that people use to identify. Make the picture piece complete as the background of the photo. The identification of the graphic sheet 1 0 1 4 can be achieved by combining firmly attached objects. And placing an appropriate zoom lens sheet substantially 接触1〇 in contact with the image sheet 1014, The lens sheet 101 is rotated in the plane from -100 to 200902339 until the lens and the graphic element 102 are sufficiently corrected to form a composite image of the element 1020.  The structure or form of the graphic sheet (1002 or 1014) may be combined with a multiplex pattern that forms graphic elements of different composite images (corresponding to 996 or 1020, respectively). Instead, a different lens sheet rotation angle (for example, a pattern of the maximum magnification of the composite image produced by the rotation angle of the lens sheet, And a second graphical pattern that produces a maximum magnification composite image at a 30 degree lens rotation angle) Different lens repetitive periods 'different lenses and illustrated array geometry (eg, an array of groups with hexagonal geometry, And a second array set having a square geometry) and combinations thereof,  Read or identify.  An example of a different lens period identification method is a graphic film. It is combined with a patterned component pattern that produces a deep image when synthesized and amplified by a lens sheet having a repeat period of 30 micrometers. And also in combination with a second graphical element pattern that produces a floating image when synthesized and amplified via a lens sheet having a repeat period of 45 microns. The second illustrated component pattern is optionally identifiable by a different angle of rotation than the first illustrated component pattern.  A multi-patterned material can be combined with a set of information that can be presented by a first key (a lens sheet with a first selected repeat period). And the remaining sets of information that can be presented with their remaining keys (lens that each scales to its individual illustrated components). The multi-way graphic pattern can also be provided in different graphic layers requiring focusing elements having different focal lengths. Visible synthetic optical images are formed from different illustrated layers.  The embodiment of Figure 42 is referred to as a wet decoder 1 method in conjunction with concealment information to a ripple amplification-101 - 200902339 system 1026 of the present invention that can be "decoded or displayed" by using a covert discriminating lens sheet 1 〇4 及 and system. In this picture, The magnification system 1026 includes a microlens 1028 and a layer 1 〇 3 图示, It is combined with a concealed graphic pattern 1034 in or on the illustrated layer 1030. The illustrated layer 1030 can also optionally include a flag pattern 1 0 3 2 . As mentioned earlier, The magnification system 1 〇 2 6 is designed to produce a publicly viewable composite image 1038 of the publicly visible pattern 1 032. relatively, The repetitive period of the concealed graphic pattern 1 034 and/or rotational symmetry is deliberately designed, In order to facilitate inspection through the mechanism of the microlens 108 8 No synthetic images can be viewed in public.  E.g, The repeating period of the concealed graphic pattern 103 4 can be designed to be substantially different from the repetition period of the microlens 1028; The concealed graphic pattern 1 034 can be designed to be 37 microns. At the same time, the microlens 1028 can be designed to be 32 microns. The zoom ratio of the lens is shown (about 1. 1 56) A floating composite image of the concealed graphic pattern 103 4 having a period of about 205 μm will be produced. A feature of the concealed composite image of this size is that the naked eye is substantially invisible. (This concealed icon can be additionally selected to produce a covenant.  8 6 5 The scaled ratio of the lens to the deep synthetic image of the equal period. For a particular microlens repeat period, the repeating period of the concealed graphic can be designed to produce a synthetic image with any ripple-amplifying effect, including but not limited to ultra deep, deep, moving, floating, super floating, and morphological. The particular dimensions presented herein represent only a single example of a contiguous range of selectable sizes. Regarding another example, the rotational symmetry of the covert pattern 1 〇 3 4 can be designed to be substantially different from the rotational symmetry of the microlens 1 〇 28. In this example, 'we will assume that the microlens 108 8 and the concealed graphic pattern 1034 are arranged in a hexagonal array, but the orientation of the array of concealed graphic patterns 1 〇 3 4 is from the microlens -102- 200902339 The orientation of the array of 1 02 8 is rotated by 30 degrees. The misalignment of the two arrays will also avoid the formation of a blatantly viewable composite image of the concealed pictorial image 103. Another way to avoid the formation of a concealed graphic pattern 1 03 4 synthetic image is to configure the microlens 108 8 to an array geometry, such as a hexagon, while configuring the concealed graphic pattern 1 03 4 into different array geometries , for example, a square. The concealed graphic pattern 1 03 4 can be represented by the formation of a composite image by the additional, individual component concealment discriminating lens sheet 1 040, wherein the concealing discriminating lens sheet 1 040 is inserted into the optical coupling material 1 044 for filling the gap therebetween. The microlens 1 028 of system 102 is in proximity to or substantially in contact therewith. The optical coupling material is preferably a liquid having a refractive index similar to that of the material 1 052 forming the covert discriminating lens sheet and the material forming the magnifying system lens 108 8 such as glycerin or corn syrup. The coupling material has the function of partially offsetting the focus magnification by immersing the lens 1028 in a medium having a similar refractive index. Other materials can be used to accomplish this, including colloids (including gels), elastomers, and pressure-sensitive adhesives. The properties of the hidden discriminating lens sheet 1 040, including its array geometry, repetition period and lenticular focal length, are designed and concealed pattern type 1 034 array geometry and repeat period and to the covert discriminating lens sheet lens 1 042 and the plane of illustration The total distance of 1 0 3 0 matches. In fact, a small amount of fluid, such as glycerin, is placed on the surface of the magnification system lens 1028, and the flat surface of the covert discriminating lens sheet 1040 is placed in contact with the fluid and substantially squeezed into contact with the lens 108. . The concealed discriminating lens sheet 1 040 is then rotated in its plane to substantially correct the orientation of the array of microlens 1042 and the orientation of the array of concealed pictorial patterns 103. -103- 200902339 With respect to the correction of the concealed graphic pattern 1034, the composite image 1 048 is sufficiently enlarged to be recognized by the naked eye, and is close to the maximum magnification of the positions of the two arrays having substantially the same orientation. Another embodiment is to form the covert discriminating lens sheet 1040 as a pressure sensitive label or tape that can be applied to the surface of the lens 1028. In the present embodiment, the function of the optical coupling material 1 044 is accomplished by applying a substantially transparent pressure sensitive adhesive that conceals the flat surface of the lens sheet 1040. A method of correcting the hidden discriminating lens sheet 1 040 to the orientation of the concealed pictorial pattern 1 034 is required, for example, by printing a correction pattern or in the direction of the edge of the magnifying system 1 026, wherein the edge of the discriminating lens sheet 1 040 is concealed. Yet another alternative to the 'wet decoder' method and system for application is to break the concealed graphic pattern 103 into the second graphical layer. The second illustrated layer can be adjacent to the lens 1028 or further from the lens 1028 instead of the first illustrated layer 1030. The focal length and thickness of the concealed discriminating lens sheet 1 040 are then designed to focus on the second illustrated layer when the discriminating lens sheet 1 040 to the lens 1028 is applied with the optical coupling material 1 044. In this embodiment, as long as the position of the second graphic plane is such that the lens 1028 cannot form a public image of the identifiable concealed graphic pattern 1 034, the array property of the concealed graphic pattern 1 〇 3 4 can be compared with the public image. The array properties of the pattern are the same. The embodiment of Figure 43 is referred to as a 1 dry decoder' method and system that incorporates hidden information into an amplification system 1 〇 5 4 that can then be "decode" or present via the use of covert discriminating lenticular sheet 1 064. In the figure, the magnification system 1 〇 5 4 includes a microlens and a patterned layer 1058' which is combined with a concealed graphic pattern 1060 on or from -104 to 200902339 in the illustrated layer 1 〇 58. The illustrated layer 1058 can also optionally include a publicly-characterized pattern 1 〇 5 9 . As previously mentioned, the magnification system 丨〇 5 6 is optionally designed to produce a blatantly viewable composite image of the flag graphic 1 059. Conversely, the repeating period of the concealed graphic pattern 1 0 60 and/or the rotational symmetry is deliberately designed such that when viewed through a mechanism of the microlens 1 0 5 6 , a publicly viewable synthetic image is not produced. For example, the repeating period of the concealed graphic pattern 1 0 60 can be designed to be substantially different from the repetition period of the microlens 1 056; the concealed graphic pattern 1 060 can be designed to be 2 8 · 0 7 1 micron. At the same time, the microlens 1 〇5 6 period can be designed to be 2 8 · 0 0 micron. The zoom ratio (about 1 · 〇 〇 2 5 5 ) shown for the lens will produce a floating composite image 1063 (of the concealed graphic pattern 1060) with a period of about 392 microns. The feature of the concealed composite image of this size is that the naked eye is substantially invisible. (The concealed graphic period can be additionally selected to produce about 0. Figure 99746 shows a deep composite image of the period during which the zoom ratio of the lenses is equal. For a particular microlens repeat period, the repeating period of the concealed graphic can be designed to produce a synthetic image with any ripple-intensifying effect, including but not limited to ultra-deep, deep, moving, floating, super-floating, and morphological. The particular dimensions presented herein represent only a single example of a contiguous area of selectable size. Regarding another example, the rotational symmetry of the concealed graphic pattern 1 060 can be designed to be substantially different from the rotational symmetry of the microlens 1 〇 65. In this example, we will assume that the microlens 1〇6 6 and the concealed graphic type 1 0 60 are arranged in a hexagonal array, but concealed. The orientation of the array of patterns 1 060 is rotated by 30 degrees from the orientation of the array of microlenses 1 0 5 6 . The misalignment of the two arrays will also avoid the formation of a blatantly viewable composite image of the concealed graphic pattern 1 060. Avoid hidden -105 - 200902339 Another example of the formation of the 1 060 synthetic image is to configure the microlens 1 056 to an array geometry, such as a hexagon, while configuring the concealed graphic pattern 1 0 6 0 To different array geometries, such as squares. The concealed graphic pattern 1 060 can be made visible by forming a second composite image by the covert discrimination lens sheet 1064 of the mechanism of the additional, individual components. The hidden fingerprint lens 1 064 is introduced into the vicinity of the microlens 1 056 of the amplification system. Or substantially in contact with it, without using an optical coupling material that fills the gap therebetween. The gap 1 〇 6 5 is filled with any other gas in the environment surrounded by air, vacuum or diffuse amplification system 1 0 5 4 . The properties of the covert discriminating lens sheet 1 064, including its array geometry, repetition period, and lenticular focal length, are designed to be projected into the material 1 070 forming the covert discriminating lens sheet 1 064, and the concealed graphic pattern 1 063 The array geometry coincides with the total distance between the repeating period and the position of the covert discriminating lens sheet lens 1 066 and the concealed composite image 1 063. In fact, the flat surface of the covert discriminating lens sheet 1064 is placed in contact with the magnifying lens 105. The covert discriminating lens sheet 1 064 is then rotated in its plane to substantially correct the orientation of the array of microlenses 1 066 and the orientation of the array of concealed pictorial patterns 1 063. Regarding the correction of the concealed composite image 1 063 for forming the second synthesized image 1 068, the second synthesized image 168 becomes sufficiently enlarged to be recognized by the naked eye, which is close to the maximum of the positions of the two arrays having substantially the same orientation. amplification. Another embodiment is to form the covert discriminating lens sheet 1 064 as a pressure sensitive label or tape which can be applied to the surface of the lens 056. In the present embodiment, a very thin (substantially smaller than the height of the microlens 1 056) substantially transparent pressure sensitive -106-200902339 sensitizing adhesive (not shown) can be applied to the entire covert discriminating lens sheet 1064. A flat surface, or a shaped pressure sensitive adhesive (not shown), can be applied to the surface. In the first case, the application of the extremely thin and substantially transparent pressure-sensitive adhesive - for the covert discriminating lens sheet of the enveloping system 1 056, will cause the adhesive to contact the top end of the lens 056, The gap 1 065 is not filled and the lens side is masked, thereby avoiding the lens 1605 forming the air gap of the first concealed composite image 1 063. In the second condition, the covert discriminating lens sheet 1 064 will maintain an unfilled gap 1 065 in the adhesive-free region. A method of correcting the covert discriminating lens sheet 1064 to the orientation of the covert pictorial pattern 1060 is required, for example, by printing a correction pattern or in the direction of the edge of the magnification system 1024, wherein the edge of the discriminating lens sheet 1 064 is concealed. Applicable when matching. Yet another alternative to the 'dry decoder' method and system is to incorporate the covert graphic 1060 into the second graphical layer. The second illustrated layer can be adjacent to the lens 1056 or further from the lens 1056 rather than the first illustrated layer 1058, at any position where the activation lens 056 forms a real or virtual image of the concealed graphic 1 060. The focal length and thickness of the covert discriminating lens sheet 1 064 are then designed such that when the covert discriminating lens sheet 1 064 is placed substantially in contact with the lens 1 0 5 6 , the focus is placed on the lens 1〇56 to form a concealed composite image. . Yet another method of presenting hidden information in the magnification system of the present invention is depicted in Figures 44a,b. We have coined the term "HydroUnison" to mean a corrugated amplification system using the principles of this embodiment. In Fig. 44a, the water uniform corrugated amplification system 1 078 incorporates an array of microlenses 1000, the illustrated layer 1082, and an optical spacer 1081 therebetween, adjacent to the microlens 1080 or the layer 1072 of the -107-200902339 , or both. The illustrated layer 1〇82 is combined with the graphic pattern 1〇84. When in air, another gas, or under vacuum, the thickness of the optical spacer 1081 is substantially greater than the focal length 1 〇 86 of the microlens 1080. It can be seen that the air focus 1088 of the microlens 1080 is remote from the graphical pattern 1 〇 84 and the illustrated layer 1082. The synthetic image projection from the air of the microlens 1080 is severely blurred and out of focus, with no identifiable image. Figure 44b depicts the effect of immersing the microlens 10000 in a suitable fluid 1, 092, such as water. (Immersion is a relative case - as long as the fluid 1〇92 is placed above the microlens 1080 in the layer greater than the center height 1091 of the lens 1080, the lens changes the water-induced ripple from the optical standard point "immersion" The refractive index of the medium outside the system 1 07 8 can change the focal length of the microlens 1080. In this example, the refractive index of the external medium of the system is increased, and the focal length of the microlens 1 0 80 is increased. The thickness of the optical spacer 10 81 is selected to introduce the focus 1 0 8 8 of the microlens 1 080 immersed in the fluid 1 092 into or near the illustrated layer 108. Under these conditions, the microlens 1 080 can project a composite image 1 095 of the well-focused graphical image 1 084. When the lens 1 〇 80 in the air is viewed in the dry state, the water-consistent system according to the present embodiment appears to have no visible image. When the lens is wetted (immersed) with a liquid having a refractive index substantially equal to the selected immersion fluid 1 092, the synthetic image suddenly appears. This effect is particularly noticeable if the composite image is a combined floating/deep image or ultra-deep image. As the water uniform system dries, the composite image becomes dim and disappears. For the particular selection of fluid 1 092 'when immersed in fluid 1 〇 9 2 with a selected refractive index, the thickness through the manufacturing optical septum 1 0 8 1 is approximately equal to the dip-108-200902339 into the fluid 1 092 The focal length of the lens 1 080 is 1 094 'and the design of a water-consistent system is completed to produce this effect. The convenient fluid 1092 is water and has about 1. Typical refractive index of 3 3 . For the selected immersion fluid 1 092, although the water-consistent corrugated amplification system 1 078 can be a non-"thin lens" optical system, the thin lens system design lens manufacturing equation can be used to find a properly accurate optical septum 1 08 1 design. The thickness of the lens is: 1 / f = 〇 lens - n 0) (1 / R 1 -1 / R 2) where: f = lens focal length η lens = lens when immersed in the medium of refractive index η The refractive index η of the material = the refractive index of the immersion medium = the radius of the curvature of the first lens surface R2 = the radius of the curvature of the second lens surface. Since the focus of the lens 1080 is the interior of the water-corresponding corrugated amplification system 1078, affecting the focal length The unique curvature is the first curvature, and the Ri - second curvature R2 can be regarded as a flat surface with an infinite radius, reducing the 1/R2 ratio to be equal to zero. The lens manufacturing equation is then simplified to: l/f = (n lens - n〇) or f =Ri/(n lens-n〇) For a lens in air, η lens = 1. 487, and η. = n air = 1-000 : f air = 1^ / (1. 487-1. 000) = R] / 0. 487 = 2. 053 Ri For immersed in water lenses, η lens = 1. 487, and η. = n water = 1. 3 3 3 : -109- 200902339 f Water = RWCl. 487-1. 333) = 1/0. 154 = 6. 494 R! So it is found that the focal length of the lens immersed in the water is about 100 mm larger than the focal length of the lens in the lens 1 0 8 0. The quotient is: f water / f air = (6. 494 Ri)/(2. 053 = 3. 163 For example, if you have I. The specific microlens 1080 formed by the material of the refractive index of 487 has a focal length 1086 in air of 23 microns, then the microlens 1080 will have about 23x3 when immersed in water. 163 = 72. 7 microns. Other fluids having a refractive index similar to that of the selected immersion fluid 1 092 can be used to reveal a hidden image with a specific fluid based in part on how closely conforming to the refractive index of the immersed fluid 1 0 2 2 . For example, ethanol has about 1 . The refractive index of 36. When immersed in ethanol, the focal length of the lens in the above example will be 88. 2 microns, so if the optical spacer 1081 is designed to have a thickness of about 73 microns, corresponding to a selected immersion fluid 1 〇 9 2 having a refractive index of water, the composite image 1 0 9 5 will be slightly out of focus. The embodiment of Figures 44a, b can be used in a variety of applications including, but not limited to, the identification of articles with water consistent system film lamination, stickers, patches, threads, seals, stamps or labels, such as tournament tickets, lottery tickets. , ID cards, visas, passports, driver's licenses, government documents, birth certificates, negotiable instruments, traveller's cheques, bank checks, currency, gambling chips, manufactured goods, and other related and similar items. The water consistency system can also be used to provide decorative, novel and wet indicating effects to articles, documents and manufactured goods. Other embodiments of the consistent corrugated amplification system referred to in the foregoing are also wet indications - the lenses of the uniform systems are immersed in the fluid, typically avoiding the formation of synthetic images of the material. When the liquid is dried or removed, the synthetic image returns to 200902339. The embodiment of Figures 44a, b can be further extended to provide a multiplexed image water system 1 〇 9 6 ' when immersed in different media (1 1 12, 1 120, 1 128) when the water uniform microlens 1 〇 9 8 Two or more different uniform ripples of the same or different colors can be used to magnify the composite image. The example presented in Figures 45a-c depicts a water consensus system 1 096 ' which produces three different synthetic images (1 1 14 , 1 126, 1 134). The first synthetic image is produced when the lens is in an air vacuum or another gas medium 1112; the second synthetic image is in the lens immersed in water 1 1 2 〇 or other liquid having a refractive index of about 1 · 3 3 And the third synthetic image is produced when the lens is immersed in a medium 1 128 having a refractive index of about 1 _ 4 18 (for example, a uniform mixture of 62 vol% glycerol and 389 vol% water). Each of the three synthetic images may be of the same color 'type and uniform effect type' or may be different colors, patterns and uniform effects from each other. Although the type, color, and pattern of consistent synthetic images may be the same as some or all of the synthetic images produced by a water-consistent system, it is important to note that consistent depth effects (ultra-deep, deep, floating, super-floating, floating) The amount, that is, the surface height of the floating image and the depth of the deep image are proportional to the f-number of the microlens 111 2 . Immersion of the microlenses 1 0 9 8 into a medium having a different refractive index changes the f-number of the microlenses 1 098 and proportionally amplifies the amount of uniform depth effects in the separately produced composite images. The water uniform corrugated amplification system 1 0 9 6 combines the microlens 1 〇 9 8 , the first optical spacer 1100 separating the microlens 1098 from the first graphic layer 11 〇 2, and the first image having the first graphic pattern 1117 The display layer 1102, the first display layer 1102 and the -111 - 200902339, the second optical spacer 1104 of the second graphic layer 1106, the second graphic layer 11〇6 with the second graphic pattern 1119, and the isolation Second, the third optical spacer 1108 of the layer 1106 and the third graphic layer 1110, and the third graphic layer 1 1 10 having the third graphic pattern 111A. Figure 4 5 a depicts the function of the exemplary multi-channel image water system 1 0 9 6 . When the microlens 1098 is immersed, it has substantially equal to 1. The microlens 109 8 has a focal length 1116 that configures its focus 1118 within or near the first illustrated layer 1102 for a medium of refractive index (e.g., vacuum, air, and most gases). The illustrated layer 1102 can be omitted, but if it is presented and if it has a suitable graphical representation of the correct geometry of the microlens 1098 (as in the related embodiments of the subject invention as mentioned), then The microlens 1 098 will project a composite image 1 1 1 4 of the first graphic pattern 1 1 1 7 . Figure 45b shows that the microlens 109 8 immersed has about 1. 33 refractive index liquid 1 120, such as water. The fluid immersion focal length 丨 122 of the microlens 109 8 is now three times larger than the air focal length 1 1 16 of the microlens 10 98. The water immersion focus 124 is now about the depth of the second illustrated layer 1 106, and the microlens 1 098 can form a composite image 1126 of the second graphical pattern 1119. Figure 45c depicts when the microlens 109 8 is immersed with i.  41 8 Refractive Index Flow 1 1 2 8 , the example multi-channel image water uniform ripple amplification system 1 〇 9 6 function. Since the refractive index of the immersed fluid 1 1 2 8 is even closer to the refractive index of the microlens 1 〇 98, the focal length 1130 is substantially larger. It is about 7.2 times larger than the focal length 1116 in the air. The new focus 1 132 is now about the depth of the third graphical layer 1 1 10, and the microlens 1098 can form a composite image 1134 of the third graphical representation 1111. The infinite variation of the embodiment of Figure 45 ac clearly may be within the scope of the subject matter -112 - 200902339, including the selection of the number of synthetic images that can be projected, the color and type of the composite image, the presence or absence of a particular graphic layer , immersion in the choice of fluid refractive index, and the like. Applications of the embodiments of Figures 45a-c include, but are not limited to, rewards and promotions items, authentication and security materials, gaming devices, moisture indicators, and devices that distinguish between different liquids. Another effect can be obtained by using the magnifying system of the present invention depicted in Fig. 46. This effect activates the viewer to view the composite image to change as the viewer's associated azimuth angle changes. The altered image is viewed in a conical shape that deviates from the viewing angle replaced by a vertically selected amount. When the viewer observes that the hollow viewing cone conforms uniformly around the corrugated magnification system, the image seen can be designed based on the particular azimuthal angle of the viewer surrounding the hollow conical shape. At the top of Figure 46, the viewer views the magnification system from view point A and she sees the synthetic image of the capital letter "A " from the view point. If the viewer moves to a different azimuth view point, such as view point B ’ shown at the bottom of Figure 46, she can see images of different composite images, such as capital letters · B ". The method of accomplishing this effect is also depicted in the upper left and lower right of Fig. 46. When the viewer observes the magnification system from the point of view A, as shown in the upper left of the figure, the microlens in the system forms a composite image from the left side of the graphic pattern. When the viewer views the material from the inspection point B, as shown in the lower right of the figure, the microlens forms a composite image from the right side of the graphic pattern. Since each graphic pattern carries information surrounding the multiplexed composite image as seen from the multi-view view point, the specific image component that is inserted into each graphic pattern will typically be the pattern for each graphic -113-200902339 Unique. Figure 47 depicts the intrusion of a particular image element representing a graphical representation. In this figure, it can be seen that the image element in the area A of the drawing is seen from the height range of the azimuth view point direction A. Similarly, the illustrated area B' and the like are seen from the inspection point direction b. Note that on the upper left side of the graphic (Zone F), and is the image element in the icon area, it will represent a blank area in the composite image as seen from the view point in direction F. This embodiment has the multiplicity of use. Examples include: synthetic images that appear as not changing from different azimuth angles, such that they always face or "track" the viewer; a series of connected images that can be rendered to form a moving picture or animation: text or graphic information that can be provided Multiple pages that allow viewers to "flip pages" and view from different azimuth positions via rotating materials; street numbers for drivers approaching from different directions or traffic control symbols that present different information; and many other applications. Figures 4a-f depict a preferred method of fabricating a patterned microstructure. The film substrate (preferably 92 standard size polyester film) is coated with a gel or liquid polymer 205 (e.g., U107 from Lord Industries) in Figure 48a. In Figure 48b, a gel or liquid polymer coating 15〇2 is introduced into contact with the illustrated microstructure tool 15004, which is typically fabricated by nickel electroforming and applied with appropriate energy (eg, ultraviolet or electron beam) Radiation), allowing the gel or liquid polymer to coat 1 502 to polymerize and maintain the microstructured shape of the illustrated microstructure tool 150. Figure 48c > When the non-microstructure tool 1504 is removed, the 'polymeric overlay coin layer 1 5 1 0 maintains the negative embossing of the illustrated microstructure tool, which forms a map of the illustrated microstructure 1508. Layer 1510 is shown. In Fig. 48d, the illustrated layer 1510 is then overcoated with -114-200902339, illustrated as a spliced material 1 5 1 2, which is illustrated as a microstructure 1 508. The illustrated entanglement material 1512 is removed from the top surface of the illustrated layer 1510 via a mechanism of the squeegee 15 14 that moves in the direction of arrow 1516 (as shown). As shown in Figure 48f, the doctor blade 15 14 selectively removes the illustrated smear material 15 12 from the flat upper surface of the illustrated layer while leaving it behind the illustrated microstructure 1508. The illustrated entanglement material 1520 remaining in the illustrated microstructure 1508 is then selectively polymerized by application of a suitable energy source, such as ultraviolet light or electron beam radiation. If the illustrated plumbing material 1 5 1 2 is solvent-based, the final process step may include heating to remove excess solvent. The systems and devices herein have many uses and applications. Examples include: Government and defense applications - whether federal, national or foreign (eg passport, ID card, driver's license, visa, birth certificate, population record, voter registration card, ballot paper, social security card, bond, food stamp, stamp and tax form) Currency – regardless of federal, national or foreign (eg security thread in banknotes, characteristics in polymer currency and characteristics on banknotes); documents (eg title, deed, permit, license and certificate); financial and negotiable instruments ( For example, bank check, company cheque, personal cheque, bank receipt, stock certificate, traveler's cheque, money order, credit card, charge card, ATM card, charity credit card, prepaid calling card and gift card) i secret information (such as movie script, law Document intellectual property, medical records/hospital records 'prescriptions/bars and "secret prescriptions"); product and trademark protection, including textiles & home care (eg laundry-115- 200902339 detergents, textile conditioners, Disc protection, household cleaners, surface coatings, textile softeners, bleaches and specials Textile treatment); beauty treatments (eg hair care, hair color, skin care & cleansing, cosmetics, aromas, antiperspirants & deodorants, female protection labels, cotton balls and pads); baby and family care ( Examples include baby diapers, baby and baby wipes, baby aprons, baby sheets & bed seats, paper towels, toilet paper and facial tissue; health care (eg oral care, pet health and nutrition, prescription medication, no prescription medication, Drug delivery and personal health care, prescription vitamins and sports and nutritional supplements; prescription and over-the-counter glasses; medical devices and equipment sold to hospitals, medical professionals and wholesale medical wholesalers, ie bandages, equipment, portable devices, Surgical Supplies); Food and Beverage Packaging; Dry Food Packaging; Electrical Appliances, Parts &Ingredients; Apparel & Footwear 'Includes Sportswear, Footwear, Licensing & Non-Licensed Zoom' Sports & Casual Wear, Textiles; Biotech Pharmaceuticals; Aerospace components and parts; automotive components and parts; sports goods; smoking products; software; optical discs and DVDs; bursts; -116- 20090233 9 novelty items (eg gift papers and ribbons); books and magazines; school goods and office supplies; business cards, shipping documents and packaging; notebook sets; book covers; bookmarks; competitions and tickets; Casino chips and card supplies, lottery sales and total bets); household equipment (eg towels, linen and furniture); floor and wall coverings; jewelry &watches;handbags; artwork, collections and souvenirs ; toys; exhibitions (eg product purchase locations and sales presentations); product labeling, labeling and packaging (eg stickers, tags, labels, threads, opening strips, outer packaging, ensuring identification or enhancement for use in trademarked products or documents) Anti-tampering images, camouflage and asset tracking). Suitable materials for the above examples include a wide range of polymers. Acrylic, acrylate polyester, acrylate urethane, polypropylene, urethane and suitable optical and mechanical properties with both microlenses and microstructured elements - 117-200902339 Properties of polyester. Suitable materials for the selected base film include most commercially available polyn film, including acrylic, cellophane, saran, nylon, polycarbonate, polyester, polypropylene, polyethylene, and polyethylene combinations. The microstructured encapsulant can include any of the above listed materials suitable for fabricating microstructured graphic elements, as well as solvent based inks and other common pigment or dye developers. The dye or pigment incorporated into these materials will be compatible with the chemical construction of the vehicle. The pigment must have a minimum dimension that is substantially smaller than the components of any of the illustrated components. The selected sealing layer material may comprise any of the above listed materials suitable for fabricating microstructured graphic elements, plus many different commercially available coatings, inks, surface finishes, varnishes, and bright colors for the printing and paper and film conversion industries. Paint and clear paint. There is no better material combination - the choice of material depends on the geometry of the material, the optical properties of the system, and the desired optical effect. Synthetic Image Arranged in Sequence - Another embodiment of the present invention is referred to as an Unsion Flicker, optionally presenting different composite images from different viewing points. In a type of film composite image (SI), it is a static in-plane image, rather than a dynamic (moving) in-plane image in the motion image discussed at this point. A consistent movie can be designed to present the multiplicity of a series of synthetic images, providing a short animation effect to present a composite image that appears or disappears from a view or "movie" (powering this embodiment), presenting a series of consecutive or, for example, different texts The composite image of the discontinuous information page of the page, and the rendered composite image that provides other visual effects derived from the view angle dependent image set. Figure 49 is referred to as a film composite image via 63 examples of various views and designs, surface and plane -128-200902339 image visibility control or field of view (F 〇 V ) control. An in-plane image is an image of a structure having a plurality of visual boundaries, patterns, or visually substantially in the plane of the substrate on which the in-plane image is carried. The field of view (FOV) control of the in-plane imagery is accomplished by the illustrated F〇v control pattern or array contained within the boundaries of the in-plane image. The individual synthetically magnified images are produced by interaction of an array of focusing elements, such as any of the previously described, and one or more FOV control graphic patterns or arrays that we call FOV controlled synthetic images. The focusing element and the illustration can be formed and can have the dimensions and features of the focusing element and image representation described above. The FOV control composite image provides a field of view for moving the image in the in-plane of the movie, such as parallax, positive parallax or hidden parallax movement of the FOV controlled synthetic image in or out of the cinema image region. The parallax movement of the composite image is derived from the depth effects of the solid mirror, including, for example, the previously described deep, ultra deep, floating, super floating, floating, surround, and 3-D effects. The hidden parallax composite image moves into a mixture of parallax and positive parallax movement. The hidden parallax composite image will move at non-parallel and non-perpendicular angles relative to the effective tilt view axis, for example 30 degrees (where parallel is defined as twist, Vertically defined as 90 degrees). Recall the positive parallax movement, which is the direction of the tilt axis that is generally parallel to the plane of the image. Hidden parallax composite images will also typically exhibit the depth effects of some solid mirrors. The above-described morphological image can also create hidden parallax image movement. The film composite image constitutes the FOV control pattern and the boundary shape. The F Ο V control pattern is used to control the range of angles, and the lens above the boundary -119 - 200902339 will be considered as 'starting'. For the sake of simplicity, we will consider a consistent film material that combines a single film FOV control pattern set that does not have any other consistent effect. When a consistent film focusing element such as a lens is focused on the FOV control pattern, the color of the FOV control pattern appears to fill the entire lens (and thus the lens "start"), and when the lens is focused on the FOV control type At a point other than the sample, the lens appears to be filled with the color of the background (thus the lens ''closes'). The smallest unit of the design of the movie image is thus a single representation area, and the smallest unit or movie pixel of the movie image is a single-calling lens or focusing element. Movie images can be of any size, ranging from a single movie pixel to a few megapixels or more. Very small movie images, such as tiny blackfaced or hidden images that cannot be distinguished by the naked eye, can be made from miniatures of cinematic pixels. As previously mentioned (the "Dry Decoder" method of Figure 42 and the "Dry Decoder" method of Figure 43), the movie image can be used as a hidden security feature that requires high magnification viewing, such as borrowing high A magnifying lens (2 Ox or larger), a microscope or an auxiliary lens material to provide a synthetic magnified image. Figure 49a is a plan view of an exemplary embodiment of a uniform film film 2000 having a film plane in the form of a formatted mastographic head 2 005 The area of the inner image design. Inside the boundary of the area is the array or pattern of the FOV control diagram, which constitutes the in-plane image and conforms to the type of FOV synthetic magnified image 2007 and 2010 previously described in the text. An array of components (not shown). FOV Controlled Composite Images 200 7 and 20 10 are displayed as floating (or super floating) images, but they can also be deep, ultra deep, moving, morphological, wrap, 3-D or other types previously A consistently synthesized enlarged image as described. Film-120 - 200902339 Image Region 2005 and FOV Controlled Composite Image 2007 Visual Intersection 2015 Manufacturing with FOV Controlled Composite Image 2〇〇7 The surface of the movie image area 2005 is color-filled. Thus, the movie image area 2005 can be seen, or appears to be from the viewing angle "start". Figure 49b is the film plane of the combined mastodon head 2〇05 of Fig. 49a. An enlarged plan view of the inner image 4019. The in-plane image 4019 has a border 4013 in which a pattern or array of complex image representations is placed. In its plane, the composite form of the plurality of image representations synthetically takes the form of a mastographic head. Shape and surface, but any other shape or design can be formed. Figure 49c is an enlargement of section 4017 of the in-plane image of Figure 49b. Figure 49c depicts an exemplary embodiment of an image-illustrated array forming in-plane image 4019. The array is characterized by a dark and brightly illustrated area. The image representation array can also be formed, for example, by an array of image representations and regions within the in-plane image 40 1 9 lacking an image representation. In one form, the dark icon They may all be the same color, or on the other hand a combination of different colors. In the example of Figure 49, although the dark areas may have other shapes, each dark area typically has The trapezoidal shape. The FOV control synthetically magnified image 2 007, 2010 is fabricated by interaction of an array of focusing elements, such as the array previously described in any of the texts, and the images depicted in Figures 49b, c forming a composite in-plane image 4019. The F0V controls the illustrated array. In an exemplary embodiment, the array of focusing elements is cyclically rotationally symmetric with the plane of the focusing elements of its in-plane symmetry axis of the type previously described (see, for example, Figures 3a-i). The array of FOV control diagrams is also in the form of a loop that is rotationally symmetric with a planar array of in-plane symmetry axes. In the example of Figures 4 9 a and d, the image shows a cyclic, rotationally symmetric planar array of poly-200902339 focal elements having a rotational symmetry that substantially corresponds to the rotational symmetry of the array of FOV control diagrams, where FOV control In the symmetry axis of the illustrated circular planar array, the ratio of the repetition period of the control pattern to the repetition period of the focusing element is greater than 1, and the corresponding symmetry axis of the circular planar array of focusing elements is substantially corrected, thereby fabricating the FOV floating control synthesis amplification Image 2007, 2010. As depicted in Figures 49a and d, since the image representation of Figure 49c is substantially trapezoidal, the corresponding FOV floating synthetic magnified image will be substantially identical. As mentioned above, other FOV control synthetic magnified images can be generated. For example, by changing the ratio of the repetition period of the FOV control map to the repeating period of the focusing element, for example, less than 1, a deep F Ο V control is generated to synthesize the magnified image. Figure 49d depicts the effect of Figure 49a in a perspective view, including the eyes of the viewer 2020. In this view, it can be seen that a FOV control floating (or super floating) synthetically magnified image 2007 is inserted into the line of sight (or visual intersection) between the eye of the viewer 2020 and the movie image area 2005. The apparent size of the visual projection 202 5 of the FOV control synthetic image 2007 is larger than the movie image area 2005, so the FOV control synthetic image 2007 appears to be fully filled with the color of the dark or colored image forming the movie image 2005. Since there is no FOV control icon outside the area or border of the movie image area 2005, the portion of the F Ο V control composite image 2007 that is visually placed outside the movie image area 2 0 0 5 will not be visible. The movie image area 2005 is effectively a window. Under the limitation of this example, it is determined that the F Ο V can control the length of the composite image 2 0 0 7 . -122 - 200902339 If the FOV Control Composite Image 2007 has a smaller visual size than the Movie Image Area 2005, then it will not fill the movie image 2 〇 〇 5, so that the entire movie in-plane image 2005 appears to be unstarted. Since the F Ο V system of the movie image area is determined by the visual correction or the length of the intersection of the movie image area 2 0 0 5 and F OV control synthetic image 2 007, some parts will be missing. Another way of expressing, the amount of in-plane image 2005 that can be seen by the viewer 2000 is determined by the amount by which the FOV-controlled composite image 2007 visually intersects or overlaps with the in-plane image 2005. Figures 50a, b depict the effect of a uniform film 2000 from a viewing point different from that of Figures 49a and d. Figure 50a is a plan view of a uniform film film from a viewing angle different from that of Figure 49a. From this point of view, the surface visual position of the FOV control composite image 2007 is replaced with the left side of the line of sight of the previous position in Fig. 49a. As shown in Fig. 5B, the F〇V control synthesis images 2 0 07 and 2 010 are not visually overlapped, but are corrected from the different view points 2030 and the movie image area 2005. Since the appearance of the movie image graphic pattern is derived from the visual correction or overlap of the F0V controlled synthetic image and the movie image, the lack of visual correction or overlap makes the movie image appear to be "when viewed from different viewing points". Close ". Since the movie image area will not be seen as a dark or colored icon, the movie image cannot be seen from the inspection point. The uncorrected in Fig. 50a, b is exaggerated', which depicts an example in which the viewing angle is such that the boundary of the composite image 2〇〇7 of Figs. 49a, d falls outside the boundary region of the movie image 2〇〇5. This effect occurs when the focus of the focusing element falls on a bright colored image' or falls on the missing area illustrated in Figure 49c. Figure 5 1 a-d depicts a graphical design method for controlling - or - a plurality of consistent film composite images - 123 - 200902339 FOV and selectively combining it with another synthetic image. Figure 51 1a shows a graphical representation 2045 of a consistent depth effect (e.g., the deep or floating synthetic imaging system described above) that exhibits a repeating pattern of Zuni's superstitious bear images. Figure 5b shows a pattern of the 205 0 to provide FOV control of the movie image of the Lascaux cave horse 2052. Figure 51c shows a version of the illustration 2055 to provide FOV control of the movie image of the mastodon 205 7 . In accordance with the previously mentioned method of the present disclosure, the scaling of each of the individual graphic patterns is designed to achieve each desired effect, for example, an associated array of Zuni superstitious bear graphic pattern arrays 2045 for focusing elements. The scaling ratio, when combined with a microlens array with a 30 micron repeat period, can be designed to be 0.99849849 (derived from about 666 times magnification) to produce a deep synthetic image with a 20 micron period. The movie Lascaux Cave Horse 2052 has a zoom ratio of FOV control diagram 205 0 that can be designed to produce a super-deep F Ο V synthetic image with a sufficiently large repeat period to make a single-sample vision of the array of synthetic magnification F Ο V control diagrams The size will be larger than the size of the graphic image in the film image of the Ascau X cave horse in the 2 0 5 2 plane, such as the one depicted in Figure 4 9 a, d where the FOV control synthetic image 2007 is made larger than the plane of the film The synthetic image of the image of the mastodon 2 2 〇〇5 is enlarged. For example, the proportion of Lascaux cave horses can be 0_9997498148834' derived from approximately 3,997 times magnification and the ratio of mastodontics can be derived from approximately 0993 times. 9998888066148. For clarity, the film image of the Lascaux Cave Horse 2052 and the film image of the mastodon 2 〇 5 7 are shown in dotted lines in Figure 5 〇 b, c, but the movie image does not have any continuous boundaries. As depicted in Figures 4b, c, the dashed line -124-200902339 represents the outer casing of the array containing the image representations of the movie images 2052, 2057. The length is defined by the length of its FOV control graphic array patterns 2050 and 2〇55, respectively. The movie image will only be visible in the array of its F Ο V control graphic and will be visible when there is a visual intersection of the movie image area with the FOV controlled composite image. This principle applies to all movie images of the embodiment of this figure. The size or magnification of a movie image is fixed by its "footprint" or the length of the F ◦ V control array pattern containing the movie image. This is a film in-plane image and other types of synthetic images with fixed dimensions - in-plane The difference between images. The magnification of the movie FOV controlled synthetic image can be changed by, for example, changing the FOV control image to indicate the zoom ratio of the image/focusing element (eg, microlens), or via the F Ο V control of the microlens array. The angles of the array of image representations do not coincide, but the size of the image in the plane of the film will not substantially change. Thus, the magnification change of the F Ο V synthetic image does not change the shape or length of the image in the plane of the film, but changes the FOV synthesis. The enlargement of the image 'changes the degree to which it visually intersects or overlaps with the film image (ie, full, over-filled, or underfilled). All of the graphical information 2045, 2050, 2055 of Figures 51a-c can be combined to form a map. The composite combination of the representation 2065 shown in 51d is enlarged in Figure 52. When the in-plane image is 'started', the graphical information is in an additional manner 2065 Together, so that the film images 2〇52 visually blur and 2057 consistent depth effect Zuni bear synthetic image. This combination is made using the "combination" function on the icon set and will be discussed in detail below. The effect of the composite icon set 2〇65 of Figures 51 and 52 is shown in Figure 53a-j -125-200902339. The composite image 2075, 2080, 2085 in the image area 2072 is generated by combining or combining three different graphic patterns 2045, 2050, 2055. Figure 53j shows the combination of the three patterns on the uniform material 2070 at position 2115. For the sake of explanation, the individual contributions of the graphic patterns 2045, 2050, and 205 5 are shown in Figures 5 3 a, d, and g in different hatch patterns, so that their contribution to the total synthetic image effect can be understood. The actual composite combination of the illustrated images shown in Figure 5 3 j will not show any difference. Since the repetition periods of the different graphic patterns 2045, 2050, 2055 will generally differ, the specific figures shown in Figures 53a, d, g The image area 2072 does not represent all of the illustrated consistently imaged images of all locations of the uniform material 2070. The particular graphic pattern area is applied to the center of the uniform material 2〇70 shown in Figures 53b, e, and h. Point 21 15. Synthesize the shape of the image pattern It may or may not be repeated with other positions of the conforming material depending on the scaling factor containing the graphical representation of their position on the uniform material 2〇70. Since the size of the illustrated planar area that can be focused by each focusing element is larger than the focusing element The repeating dimensions of the array or graphic array pattern are such that the illustrated image elements 2075, 2080, and 208 5 need not be completely placed within a single location of the virtual boundary 2〇72 of the single-image area 2〇72. 53a shows three different graphic images 2〇75, 2〇8〇 and 2〇85, which carry the individual graphic patterns 2〇45, 2〇50 and 2〇55 from the uniform material 2070 on point 2115 (Fig. 51a- c) Synthetic image information. As shown in Fig. 53c, the circle represents when the material 2〇7〇 is viewed from the angle 2125 of the vertical right side, for example, the focus of the uniform microlens (not shown) is 2〇9〇 - The material 2〇7〇上上2 11 5 thus shows the part of the film mastodon pattern -126- 200902339 when viewed from the point of view 2丨2 。. A similar way as shown in Figure 53b, when When viewing point 2i2〇, other focusing elements in material 2070 will also be Focusing on the image of the deciduous image of the film 205 5, so that the film mastodon image can be seen as a composite image 2 1 1 0. 053b is also not visible in the outer region of the border of the film mastodon image 21〇〇 The Zuni bear synthetic image pattern 2〇95. From the inspection point 2120, the uniform material 2〇7〇 thus presents a synthetic image of the in-plane movie mastodon 2 i丨〇 for the deep synthetic image of the Zuni bear. When the inspection point change of point 2 U 5 is as shown in Fig. 5 3 f, the inspection 2122 of the uniform material 2070 is made at an angle 2130 perpendicular to its upper surface, and the surface of the composite image presented by the uniform material 2070 changes. Figure 53d is not a representative focus 2〇9〇 has now been offset to the center of the illustrated area 2072, and it no longer falls on the illustrated image 20 8 5, but in the illustrated image 2〇75, 2〇8 On the background area between 〇 and 2085. As shown in Figure 53 ε, no synthetic image will be visible at point 21 15 on uniform material 2070. Other points on the uniform material 2〇7〇 will display the Zuni bear synthetic image 209 5, but the movie images 2 1 1 〇, 2145 will not be visible from the view point 2122. In essence, the film composite images 2 1 1 0 and 2 1 4 5 are both "closed" and invisible - only the face of the uniform material 2070 can be seen from the view point and the Zuni bear graphic synthetic image pattern 2095 is seen. When the point of view of point 2 1 1 5 changes again, as shown in FIG. 5 3 i , the uniform material 2070 is viewed 2124 at an angle 1 35 of the vertical left side, and the position representing the focus 2090 falls on the image τρ: image 2080. (shown in Figure 53g), which provides the elements or parts of the illustrated image -127-200902339 for the movie Lascaux Cave Horse Figure 2〇5〇. Figure 53h shows the combination from the same or via other focusing elements View point 2 1 2 4 Viewed his similar focus, the consistent material is now displayed on the outer side of the border of the Lascaux cave horse film synthetic image 2 1 40 Zuni bear synthetic image 2095, showing the movie Lascaux cave horse type synthetic image 2 1 4 5. Figure 5 3 aj thus depicts a variable synthetic image effect that can be seen or presented from different viewing angles of the composite graphic set 2065 (Fig. 52). In the example of Figures 53a-j, parallel to the consistent material Vertical size (eg The illustration is rotated around the view point of the axis 2073 to obtain all viewing angles. This is merely an example 'can be extended in many different ways by those skilled in the art. For example, the 'pattern can be designed to surround The axis 2073 is rotated to view the uniform material when the composite image set is displayed, and the different synthetic image sets are displayed as the uniform material rotates about an axis perpendicular to the axis 2073. The infinite range of variations of the method is clearly within the scope of the present invention. 4-5 7 When viewing materials from different angles or inspection points, refer to the graphical representations of the combination of graphic sets to obtain visual effects of different synthetic images, as shown in Figure 49-53. The actual scaling of the illustrated image and the actual scaling of the resulting composite image, so the figures are representative of the scaled representation. In these figures, the top image of each label A is another composite image. The representative part of the image beyond the zoom is the boundary of the pattern 2 丨 6 形成 formed by the array of movie image illustrations. The image of the mastodon image shown in A spans a small number of images of Zuni bear images. In fact, it will produce a movie image with a very small image resolution of the crane. -128- 200902339 In practical applications, in-plane imagery The pattern 2 1 6 1 can easily span thousands of graphic images, but it cannot be clearly depicted in the drawings, but a reduced version of the movie image and its associated graphical representation are shown in part A of the figures. Portions B and C of these figures depict synthetic images that will be made via a consistent material that incorporates a suitably scaled graphical pattern of design methods with Part A. The Zuni bear image of Part A is understood to be a deep Zuni bear synthetic image that is partially amplified by synthesis to form parts B and C. The deep Zuni bear image is formed by patterning an array of images and associated arrays of focusing elements, such as microlenses, and synthesizing and amplifying them to form a consistent deep synthetic magnified image as previously discussed. Although some of the B and C movie mastodon patterns span many repetitions of the deep Zuni bear synthetic image, if the actual relative scaling is displayed, it can span hundreds or thousands of Zuni bear graphic images of part A. Figures 49 - 5 3 present a set of synthetic pictorials combined via graphical addition. The Boolean function of the graph can be executed in a computer-aided design program, such as AutoCAD. As shown in Figures 54-61, the Boolean functions of other graphics can be used to make a composite icon set. The composite graphic patterns shown in these figures are only a few of the infinite possible combinations. In addition to the combinations presented in Figures 54-6, a number of extensions of these concepts and design principles will be apparent to those skilled in the art. The methods for obtaining these synthetic graphic patterns are summarized as abbreviations based on the following systems: B = Zuni bear graphic set (deep) M = full milk tooth image FM = movie mastodon image not set -129- 200902339 + = combined The Boolean function of the graph - = the Boolean function minus the graph η = the Boolean function of the intersecting graph. For the description, we will assume that the Zuni bear map is deep synthetic image. Figure 54a shows the creation of 2 160 (BM) + (FM-B) in the following manner, or the text: "Deducting the whole deciduous image from the Zuni bear icon set combined with the deduction of Zuni from the pictograph set. kind". As shown in FIG. 5b, assuming that the composite image appears white, the uniform material 2162 is produced by a combination of illustrations, which will be a synthetically magnified image pattern 2 1 65 with a white deciduous planar in-plane region 21 70, wherein via focusing The Zuni bear deep pattern will not be visible when the correlation array is viewed, for example, perpendicular to the plane of the image and when viewed. As shown in the figure from the position perpendicular to the right side of the plane of the image, it contains a negative (white) Zuni bear deep type 2 180 black milk tooth; 2175 full black Zuni bear type 2165. Figure 5 5 a shows a synthetic map f or "made from the deep Zuni bear icon set deducted from the full-milk tooth image set collection design, and the synthetic graphic set produced by the design. Producing a black, and the background is a composite image effect of the black Zuni bear deep element (not shown) as shown in the vertical left position 5 4c, when the material will display a six-episode 2185 image of the in-plane area, and the synthesis -130- 200902339 The figure is not combined with the model of the deep Zuni bear icon set subtracted from the whole mastodon image. Results The consistent material 2187 synthetic image is shown in Fig. 55b, ^; the black Zuni bear deep type 219 具 with the black dentate head 2195, and the negative (white) Zuni bear deep type 2200 was seen. Since the full mammoth image is used instead of the pictorial image of the film, when viewed from the vertical viewing point, the vertical left viewing point (Fig. 5 5 b) or the vertical right viewing point (Fig. 5 5 c), the general surface of the material is not change. Essentially, the full mastodon image is an in-plane pattern (non-cinematic in-plane image) as seen from all of the vertical and vertical left and right viewing points. Thus, the full-mammoth image appears as "open" from all inspection points. Since Zuni knows that images 2190 and 2200 are deep synthetic images, they will exhibit parallax shifts from different viewpoints, while in-plane black mastoid head synthesis Image 2195 will be no. One result is a change in the viewer's view point, and the Ziini bear synthetic image 2190, 2200 will shift in the relative position of the in-plane black mastodon image composite image 2195. When the Zuni bear synthetic image is in-plane The Zuni bear synthetic image will change from black 2 0 5 to white 2210 as the outer cross of the mastodon 2 1 9 5 enters. For a further example of this embodiment, Figure 5 6 a shows the fabrication by any of the methods The composite icon set 2215 (BM) + ((B + FM) - (BnFM)) or (BM) + ((B + FM) - (B - (B-FM))). The above first method definition: " Deducting the total mascara image from the deep Z uni bear icon set, combined from deep-131 - 200902339

Zuni熊圖示集與電影乳齒象圖示集之組合扣除深Zuni熊 圖示集與電影乳齒象圖示集之相交所製造的型樣"。 第二方法不需執行相交函數便獲得相同結果。 結果合成影像顯示於圖5 6 b及c中。當從垂直於一致 材料22 1 7之平面或垂直左側的角度檢視時,看見全黑 Zuni熊深合成影像型樣222〇(圖56b)。當經由微透鏡(未顯 示)的相關陣列並從垂直右側的角度檢視時,看見黑平面 內乳齒象頭2225,其內看見負(白)Zuni熊深型樣2230。如 先前有關圖55之合成影像的說明,其中當深Zuni熊合成 影像從平面內乳齒象頭2 2 2 5的外部跨越進入時,深Zuni 熊合成影像將從黑223 5改變爲白2240。 圖5 7 a - c中呈現本實施例之方法的另一範例。圖5 7 a 顯示以下列方法製造的合成圖示集2245 (B + FM) 或 ”深Zuni熊圖示集結合電影乳齒象圖示集"。 結果合成影像顯示於圖57b及c中。當經由微透鏡的 相關陣列並從垂直於一致材料2 2 5 0之平面或垂直左側的角 度檢視時,看見全黑深Zuni熊型樣225 5(圖57b)。當從垂 直右側的角度檢視時,看見黑平面內乳齒象頭2260,其具 有保持環繞的全黑深Zuni熊型樣225 5。 爲了說明之故,圖5 1 - 5 7的範例描繪深合成放大影像 及一或多個平面內合成影像’。顯而易見的是一致材料可呈 現任一效果組合,且每一效果彼此獨立。一致材料可呈現 -132- 200902339 任一類型之合成影像的多重性,包括但不限於深、超深、 浮動、超浮動、飄浮、形態、3 -D、移動、環繞及電影。 範例包括但不限於:單一電影影像;具第二電影影像的非 電影平面內影像;以相同或不同方向移動之相同或不同縮 放的二移動影像;具平面內電影影像及浮動影像的超深影 像;具電影影像的飄浮影像等。 此外,依據文中所提及的方法,平面內一致合成影像 的FOV可以一或多個附加的一致合成放大影像加以控制 。圖49-5 7顯示浮動合成放大影像如何而可用於提供平面 內電影影像的FOV控制。該些方法可延伸而提供除了電 影平面內影像以外其他類型合成影像的FOV控制。爲展 現該些方法的普遍性,圖58-61描繪深合成影像型樣之 FOV控制的移動合成影像的應用,及移動合成影像的深合 成影像FOV控制。 圖58呈現二重疊圖示集或陣列2265、三角形移動圖示 集2270及深Zuni熊圖示集2275。移動圖示集2270與深圖 示集2275的縮放略有不同,且已於實質上與深圖示集2275 之軸線校正的一致微透鏡陣列結合時,賦予該移動圖示集 偏斜角度,而獲得選擇的放大。 圖59a中放大顯示二重疊圖示集22 65的中央部分,更 清楚地顯示移動圖示集2270與深圖示集2275之間重疊的不 同型樣。圖59b呈現合成圖示集2280,其爲執行圖示集 2270及2275上圖形的布林相交函數的結果。可清楚地看見 結果圖示的改變極大。 -133- 200902339 圖60描繪先前於圖58中所顯示圖示集之較大區域上相 交的圖示型樣之非均句性。由於二原始型樣的不同縮放及 原始移動型樣的偏斜角度,可見到合成圖示型樣22 80的尺 寸及密度引人注意地改變。 當使用合成圖示集2280的放大區域製造一致材料2285 時,結果合成影像效果顯示於圖61&_;{·中。圖61-a、c及e 顯示’隨著一致材料環繞通過圖中間從頭到尾之垂直軸線 而日益增加地旋轉’三角形移動FOV影像2295及深Zuni 熊影像2290的互動2300。圖61b、d及f顯示分別相應於 圖61a、c及e之一致移動材料的表面。(爲求清晰,該些 圖未呈現按透視法縮短或透視之旋轉的一致材料2 2 8 5 )。 在圖61a-f中,深圖示集2275及移動圖示集2270歷經 圖形的布林相交函數。相交函數產生一型樣,其僅保持呈 現二型樣之原始型樣的該些部分-換言之,該二原始型樣 的重疊區域。相交的合成圖示型樣2280(圖60)所產生的合 成影像因而具有一 FOV,其由該二合成影像之重疊所控制 。圖61a-f呈現一範例,其中三角形移動合成影像2295的 放大大於深Zuni熊合成影像2290的放大。 每一合成影像的FOV受其他而調變,但每一合成影 像的其他屬性則彼此獨立。因而圖6 1 a中三角形移動合成 影像229 5顯現爲以正視差方式隨著一致材料228 5環繞垂直 軸線(圖61c)旋轉而向下移動,並隨著一致材料2285進一 步環繞該垂直軸線旋轉而進一步向下(圖6le)。亦應注意 的是,由於垂直90度移動合成影像旋轉,所以三角形移動 -134- 200902339 合成影像2295的旋轉方位與其圖示2270的旋轉方位不同。 同時,深Zuni熊合成影像2290顯現爲隨著一致材料 22 8 5環繞垂直軸線旋轉而以視差向右移動(從圖61a至圖 6 1 c ’最後到圖6 U)。任一合成影像之唯一可見到的地方 ,相應於落在三角形移動合成影像2295之內部的深Zuni 熊合成影像2300,而處於其視覺相交或重疊區。圖61a之 合成影像互動的視覺表面顯示於圖6 1 b中,其中僅可見的 合成影像爲三角形移動合成影像229 5之長度內爲界的深 Zuni熊23 00。隨著一致材料22 8 5環繞垂直軸線而旋轉(圖 61d),三角形移動合成影像2295有效地製造對於深Zuni 熊23 00之能見度的滑動視窗。同時,深Zuni熊2300顯現 爲隨著一致材料22 8 5旋轉而以其本身適當視差向右移動。 如圖61f中所示,一致材料2285環繞垂直軸線的進一 步旋轉,使三角形移動合成影像22 95進一步向下移動,及 深Zuni熊23 00進一步向右移動。使一致材料228 5環繞例 如水平軸線之不同軸線而傾斜或旋轉,將使二互動合成影 像2290及2295以其本身特有方式移動,但總是滿足總型樣 之F Ο V係由二影像的屬性控制之要求。 因而其展現移動合成影像之能見度的FOV或型樣可 由深合成影像控制(移動合成影像的唯一可見部分爲視覺 上與深合成影像相交或重疊處),及深合成影像之能見度 的FOV或型樣可由移動合成影像控制(深合成影像的唯一 可見處相應於與移動合成影像相交或重疊處)。 若使用較大FOV控制合成影像,便可以電影似的方 -135- 200902339 式啓動及關閉移動合成影像。該F〇V控制合成影像可爲 移動、深、浮動、飄浮或其他一致影像類型。 該些方法可通用於所有類型之合成影像的F 〇 V控制 ’並可應用於二個以上影像。 另一參數的特徵在於FOV控制合成影像爲其開/關轉 換屬性。由於該些型樣具有明顯的邊緣,浮動F〇V控制 合成影像2007(圖49、50)及移動FOV控制合成影像2295( 圖6 1)具有”硬”開/關轉換。當圖4 9及5 〇中所示位置之間浮 動FOV控制合成影像2007爲不完全時,型樣的邊緣將落 於電影乳齒象邊界2005的內部,留下可見的部分乳齒象。 此可爲一些應用中的所需效果,但其亦可能製造具有"軟Μ 開/關轉換的F Ο V控制合成影像,其中受控制之合成影像 的密度淡出’取代隨F Ο V控制合成影像之,,硬”邊緣通過 而突然終止。 獲得”軟”開/關轉換的一種方法爲使用F Ο V控制合成 影像之邊緣上的灰階效果。如同文中先前所提及的,合成 影像灰階效果可以許多方式完成。圖6 2 a- b及6 3呈現獲得 FOV控制合成影像中”軟”開/關轉換之灰階方法的應用範 例。圖示影像23 05爲具深度迴旋邊緣23 10的方形型樣。若 製造圖示影像的陣列,其中每一圖示影像與圖示影像2305 相同,且每一均同樣地置於其圖示區內(參照例如圖5 3中 圖示區2 0 7 2 ),那麼結果合成影像的外表(由結合圖示影像 之陣列的一致材料所形成)將與圖示影像23〇5相同。該合 成影像將具有深度迴旋硬邊緣,恰如所合成的圖示影像。 -136- 200902339 然而,若圖示影像係置於其圖示區內不同位置,使得 圖示的迴旋邊緣從一個替換爲另一個,結果合成影像23 1 5 的邊界(未繪出而縮放有關圖示影像23 1 0)可呈現逐漸密度 轉換,從最大內部23 20密度,經由重疊區23 25至轉換區 2 3 2 5外部的最小密度2 3 4 0。 圖6 3描繪合成影像2 3 1 5的灰階外表,其中合成影像的 密度依據每一區域中重疊的圖示影像數量而改變。實際上 ,光學像差、衍射及其他效果將傾向於進一步使跨越轉換 區的梯度平滑。 若合成影像23 15用做FOV控制合成影像,且若合成 影像2 3 1 5的尺寸大於其所控制的合成影像,那麼所控制合 成影像的開/關轉換將是軟的,因爲所控制合成影像的密 度將隨著合成影像2315之轉換邊緣區通過而淡出。 電影合成影像型樣典型地具有一長度-表示FOV控制 合成影像不存在之長度之外,替代呈現之邊界。當電影合 成影像處於其"關閉”狀態時,因爲光線散射經由或環繞聚 焦光學,電影合成影像的輕微鬼影保持可見。當電影合成 影像結合整體深、超深、浮動、超浮動、飄浮或移動合成 影像時,第二合成影像所提供散射光線的呈現,大大地降 低"關閉"電影鬼影的能見度。 在結合隔離的電影合成影像的一致材料中,”關閉’'電 影鬼影的能見度可經由導入提供與電影鬼影之相同程度密 度的背景色調之圖示型樣而予抑制。該圖示型樣可經設計 ,藉刻意不協調該型樣的期間與聚焦元件陣列的期間,而 -137- 200902339 不形成一致的合成影像。電影鬼影抑制圖示型樣可爲隨機 、虛擬隨機、循環、聚焦元件期間的不合理多路、 Penrose鋪磚或其他適當幾何,以避免合成影像的形成。 大圖示影像內類似隨機型樣的結合通常因爲不同理由 而需要。有時在凹版印刷-刮墨步驟期間不保持其塡充的 較大空隙以及較小空隙的狀況下,便使用形成圖示的空隙 及塡充方法。經由將隨機、虛擬隨機、循環或其他非合成 影像形成型樣中柱狀、脊狀或其他適當形狀倂入較大空隙 ’可獲得改進之圖示塡充材料的保持,使其有效地作用如 同其較小。 儘管已顯示及描述示範實施例,對於本技藝中一般技 術人士將顯而易見的是,可進行所描述之本發明的大量改 變、修改或替代。所有該改變、修改或替代因而可於本發 明的範圍內看見。 【圖式簡單說明】 參照附圖,可較佳地理解本發明的許多觀點。爲清楚 地描繪本發明的原理,附圖中組件不需縮放而係強調。再 者,附圖中,遍及多圖的相同參考編號配賦相應零件。 圖1 a爲微光學系統的截面圖,例示本發明的一實施 例,提供該系統之影像的正視差移動。 圖1 b爲圖1 a之實施例的等尺寸且把一部份切掉的圖 〇 圖2 a描繪圖1 a-b之實施例的正視差合成影像移動效 -138- 200902339 果。 圖2 b-c描繪本系統之深及浮動的視覺效果。 圖2 d-f描繪本系統之飄浮的旋轉所獲得的視覺效果。 圖3a-i爲平面圖,顯示各式實施例及本系統之透鏡的 對稱二維陣列之不同型樣的滿足因子。 圖4描繪圖示元件期間/透鏡期間比之變化所產生之深 、一致、浮動及飄浮實施例效果的不同組合。 圖5a-c爲平面圖’描繪圖示影像之合成放大如何可由 本系統之透鏡陣列與圖示陣列軸現之間相對角度所控制。 圖6a-c爲平面圖’描繪完成本系統之合成放大影像的 變形效果。 圖7a-c爲截面圖’顯示本系統之圖示層的各式實施例 〇 圖8a-b爲平面圖,描繪,正,及,負,圖示元件實施例。 圖9爲一截面圖’描繪用於製造具不同屬性之合成放 大影像的區域之多層材料的實施例。 圖1 〇爲一截面圖,描繪用於製造具不同屬性之合成放 大影像的區域之多層材料的實施例。 圖lla-b爲截面圖,顯示本系統的反射光學及針孔光 學實施例。 圖1 2a-b爲截面圖,比較全折射材料實施例的結構與 混合折射/反射材料實施例的結構。 圖13爲一截面圖,顯示,剝去以展現,窠改指示材料實 施例。 -139- 200902339 圖1 4爲一截面圖’描繪’剝去以改變•竄改指示材料實 施例。 圖15a-d爲截面圖,顯示雙面系統的各式實施例。 圖16a-f爲截面圖,及描繪藉本系統而製造灰階或色 調圖示元件型樣及後續合成放大影像之三種不同方法的相 應平面圖。 圖1 7a-d爲截面圖’顯示結合印刷資訊之本系統的使 用。 圖1 8 a- f爲截面圖’描繪本系統對於或倂入各式基底 及與印刷資訊結合的應用。 圖19a-b爲截面圖’當各倂入本系統時,比較球面透 鏡之視場與平坦視場之非球狀透鏡的視場。 圖2 0 a_ c爲截面圖,描繪使用本系統中厚圖示層所產 生之效用的兩優點。 圖2 1 a、b爲平面圖’顯示本系統以貨幣做爲"視窗化" 安全執行緒的應用。 圖22描繪”視窗化”安全執行緒相關影像之本系統的正 視差移動實施例。 圖2 3描繪本系統的半調色合成影像。 圖24a描繪使用本系統以製造結合的合成影像,其在 尺寸上小於個別合成影像的最小特徵。 圖24b描繪使用本系統以製造圖示影像元件之間間隙 的窄型樣。 圖2 5描繪將隱蔽、隱藏資訊倂入本系統的圖示影像。 -140- 200902339 圖2 6描繪以本系統製造完全三維影像。 圖27a-b描繪用於設計圖26之三維實施例的圖示影像 的方法。 圖28描繪圖27之方法所產生的圖示影像。 圖29描繪圖27之方法如何可應用於複雜的三維合成影 像。 圖3 0描繪具2 8微米之有效直徑的示範六角形底座多帶 狀透鏡的中央區焦點屬性。 圖3 1描繪具2 8微米之直徑的球面透鏡的中央區焦點屬 性。 圖32描繪圖30之六角形透鏡的側面區的性能。 圖3 3描繪圖3 1之球面透鏡的外部區的性能。 圖3 4a、b描繪微結構圖示元件的另一實施例。 圖35a、b描繪圖34a、b之微結構圖示元件進一步包 括包覆材料。 圖36a、b描繪圖34a、b之微結構圖示元件進一步包 括層壓包覆材料。 圖3 7a-c描繪正及負圖示元件。 圖38a-c描繪塡充的及包覆的微結構圖示元件的組合 〇 圖3 9a-c描繪定型的包覆材料對於圖34a、b之微結構 圖示元件的應用及組合。 圖40a-c描繪定型的包覆材料之使用以製造圖示影像 元件。 -141 - 200902339 圖4 1 a、b描繪文中所揭露之微光學系統的’'鎖匙及金 鑰”實施例。 圖42描繪圖41之”鎖匙及金鑰”實施例的另一實施例。 圖43描繪圖Ο之"鎖匙及金鑰"實施例的進一步實施例 〇 圖44a、b描繪文中所揭露之微光學系統的可浸入實 施例。 圖45a、b、c描繪圖44a、b之可浸入實施例的另一實 施例。 圖46描繪依據方位角檢視角度之微光學系統的實施例 〇 圖4 7描繪圖46之微光學系統的另一實施例。 圖48 a-f描繪用於微光學系統之實施例的塡充的微結 構之圖示元件的製造方法。 圖49a爲一俯視平面圖,例示微光學系統的又另一實 施例,其中一合成影像調變或控制該系統所產生之另一合 成影像的視場。 圖49b、c爲圖49a之實施例的平面內影像區域的放大 平面圖。 圖49d爲圖49a之貫施例的透視圖。 圖50a爲從不同檢視角度之圖49a之實施例的俯視平 面圖。 圖5 0 b爲從不同檢視角度之圖4 9 d之實施例的透視圖 -142 - 200902339 圖51a-d插繪影像圖示設計方法’以控制圖49a_d之 實施例的一或多個合成影像的視場,並將其與另一合成影 像選擇地結合。 圖52爲圖5la_d之實施例的影像圖不之示範複合組合 的放大圖。 圖5 3 a-j插繪三種不同的影像圖示陣列之每—圖示的 示範結合’以製造三種不同的合成影像。 圖54a-c描繪製造與Zuni熊之深合成影像結合之乳齒 象頭的平面內合成影像的實施例。 圖5 5 a- c描繪圖5 4 a- c之實施例的替代版本。 圖56a-c描繪圖54a-c之實施例的另一替代版本。 圖57a-c描繪圖54a-c之實施例的又另一替代版本。 圖58描繪製造與深Zuni熊影像結合之移動三角形影 像的圖示型樣的實施例。 圖59 a-b描繪圖58的放大段。 圖6 0描繪圖5 8之相交圖示型樣的非均勻性。 圖6 1 a- f描繪對於圖5 8之圖示型樣的結合之圖形的布 林相交函數的應用。 圖62a-b描繪灰階方法的應用,以獲得圖49_61之實施 例的檢視視場(F Ο V )控制合成影像中軟開/關轉換。 圖63描繪相對於圖62的另一灰階方法,其中合成影像 之密度依據每一區域中重疊之圖示影像的數量而改變。 [主要元件符號說明】 -143 - 200902339 1、 2、 3、 9、 48、 52、 62、 192、 215、 234、 240、 262、 266、 274、 280、 292、 302、 308、 316' 374' 400、 413、 45 6、463、484、48 6、4 8 8、9 86、1 056、1 080:透鏡 4、 108、 112' 129、 137、 162、 164、 172、 184、 313、 315、 317、 323、 325、 327、 329、 330、 331、 332、 410、 462、474、610、611、910、912' 996、1 020 :圖示元件 5、 200、 398、 408、 420、 442、 458、 1081 :光學隔片 6、 321、340、3 8 8 :密封層 7 :總厚度 8、 510、 775、 820、 834、 842、 866、 896、 930、 966、 990 :基底 10、 106、 123、 134、 146、 174、 206、 228、 248、 258、 268 、 270 、 282 、 286 、 294 、 304 、 318 、 322 、 424 、 428 、 496、 500、 504、 522、 613:影像 1 1 :重複期間 1 2 :微光學系統 1 2 : —致移動材料 14 、 28 、 34 、 38 、 89 、 9〇 、 91 、 1〇2 :合成放大影像 1 6 :水平軸 1 8 :擺動或轉動 2 0 :正視差移動 2 2、2 4 :點輪廓 2 6 : —致深材料 30 、 2020 :觀察者 144- 200902339 3 2 :—致浮動材料 3 6 :—致飄浮材料 3 7 :方位角方位參考 3 8 : —致飄浮影像 4 〇 :六角形陣列型樣 4〇、42、44 :陣列型樣虛線 42 :方形陣列 44 :等邊三角形陣列 4 6 :圓形底座幾何 1098、 1112: 46、 60' 210、 1008、 1028、 1042、 1066、 微透鏡 48 、 50 :圓形 5 2 :不完全六角形 5 4 :不完全正方形 5 8 :不完全三角形 60:六角形底座幾何 62 :正方形 64 ··三角形 6 6 :虛線 68 、 70 、 72 、 74 、 76 、 78 、 436 : ® 8 〇 :透鏡陣列 8 2 :規則的週期陣列間隔 84 :圖示元件陣列 8 6 =陣列軸線方位角 -145- 200902339 88、 307、 348、 360、 362、 1006、 1018、 1050、 1052、 1 07 0 :材料 92、94 :圖示元件型樣 96、100:放大插頁 98 :合成放大OPM影像 98·圓形圖不兀件 102 :星形圖示元件 104、 2140、 4013 :邊界 1 〇 7 :右側 1 1 0 :支撐材料 1 1 3 :微結構 1 1 3 :空隙 114、822-832、844-856:微結構圖示元件 1 15 :固體區 116、 872、 876、 904、 920 :正圖示元件 1 1 8 :透明的背景 1 20 :彩色的、染色的或著色的背景 122、 874、 924、 928 :負圖示元件 124 :短焦點透鏡 126、 130、 168、 198、 309 :光學隔離板 128 ' 132、 152、 156、 182、 194、 208、 242、 246、 264、 276 ' 278 ' 402、 422' 442' 471' 1030 :圖示平面 1 3 6 :長焦點透鏡 1 4 0 :升高透鏡 -146- 200902339 144 : 透鏡支擦台 148 : 非升筒透鏡 150 : 光學隔離 152、 170、 182、 208 、 276 、 278 、 296 、 298 、300、 310' 3 14、 376 、 442 ' 460 、 492 、 821 、 836 、 837 、868 、 898 、 932、 994 、 1030、 1058 、1082、 1102、 1510 :圖示層 154 : 圖示隔離板 158、 1 6 0 :距離 166: 聚焦反射鏡 167 : 金屬化的反射鏡 176 : 不透明的上層 178 : 孔徑 180: 光學隔離板元件 188: 全折射材料 190、 610、 611、 616、 618、 640 、 642 、 650 、652' 660、 662、 696、704、7 1 6、 2075 、 2080 、 2085 、 2305 、 2310: 圖示影像 195 : 選擇地密封層 196 : 總折射系統厚度 199 : 混合折射/反射材 料 202 : 反射層 212 : 總系統厚度 214、 232、230:折射系統 2 15' 240 :正透鏡 -147- 200902339 2 1 6、2 3 2 :頂層 218、 236、 820、 834、 866、 896、 930、 984 :選擇的基底 218、23 6:選擇的膜基底 220、 232、 238 :可剝落層 2 2 0、2 3 8 :負透鏡結構 222 :散射光 224 、 226 、 252 、 254 、 936 、 938 、 956 :區 252 ' 254 :竄改 2 5 6 :剝落 2 5 6 :剝落層 260、 290、 306:雙面材料 268 、 270 、 274 、 280 、 282 、 284 、 286 、 288 、 294 、 304 、 318、 322 :成像 272:雙面實施例 277、298:圖示層隔片 287、 289 :系統 306、 348、 364:系統材料 3 1 1 :透明的微結構圖示層 313、315、317 :浮雕表面 3 1 9 :虛線 3 2 0、3 2 4 :光線散射 323、325、327:著色的或染色的材料 323 、 325 、 327 :塡充材料 3 2 5 :厚度變化 -148- 200902339 326、3 3 3 :實施例 3 2 8 :高折射率材料 3 29、331 :高折射率包覆的圖示元件 3 3 4 :相位介面 3 3 5 :透明的浮雕微結構圖示 3 3 6 :量 337、 339、 341、 342、 344、 882、 972、 978:平面圖 3 3 8 :選擇的膠黏劑 347、 375、 520 :印刷 350、838、839·•層壓膠黏劑 352 、 372 、 375 、 377 、 380 、 382 、 384 、 386 、 390 、 392 、 394 ' 396、 404、 406、 414、 416、 518:印刷元件 354、510:纖維基底 3 5 8、3 6 8 :非纖維基底 3 66 :膠黏劑元件 3 70 :選擇的印刷元件 373、 775、 820、 834、 842、 866、 896、 930、 966:透明 基底 374、 400:透鏡區 3 78 :非光學基底 402 、 2050 、 2055 、 2065 、 2270 :圖示 412、 570、 632、 634、 636、 640、 650、 660、 2072:圖示 1i^ 418、 438、 792:球面透鏡 -149- 200902339 4 3 8 :非球面透鏡 426 、 430 ' 446 、 450 、 470 、 475 、 478 、 482 、 498 、 502 ' 506、 802、 998、 1022、 1088、 1118、 1132:焦點 432、 954、 960、 1516:箭頭 434、 454:對焦區 4 4 4 :垂直檢視角度 4 4 8 :傾斜檢視角度 4 5 2 :平坦視場 461 :薄圖示元件 4 6 4 :垂直方向 4 6 6 :垂直影像焦點 4 6 8 :傾斜角度影像 471、472:厚圖示平面 4 7 6 :垂直影像 4 8 0 :傾斜影像 492 :厚圖示層 493、 495、 498、 1004、 1024、 1086、 1116、 1130:焦足巨 494 :厚圖示元件 496 :中心 5 〇 8 :執行緒 5 1 0 :纖維文件基底 5 1 2 :內部區 5 1 4 :視窗化區 5 1 6 :包覆的密封層 -150- 200902339 5 1 6 :密封或掩蔽層 5 1 7 :膠黏劑層 521 :上表面 522 :影像效果 524 :寬度 570 、 572 ' 574 、 576 、 578 、 596 、 598 、 698 、 700 ' 702 、 706、708、710、714、718、2075、2080、208 5 :圖示影 像元件 580 、 584 、 586 、 600 、 602 、 604 、 612 、 626 ' 670 、 672 、 686、 690、 694、 1048、 1095、 1114、 1126、 1134、 1126 、23 15 :合成影像 582 ' 606、608 :重疊區 588、605:非重疊區 5 94 :六角形圖示型樣 596、 598、 1084、 1117、 2045、 2050、 2055:圖示型樣 609:六角形圖示區 620、622、626:合成的合成影像 624 :內部 628 :顏色密度邊緣 630 :顏色密度內部 632 :三角形 640:單一圖示區 644、654、664 :前景訊框 646、 656、 667 :角落元件 -151 - 200902339 648、 658、 668:背景訊框 646、667 :疊錐形間隙型樣 6 5 6 :角落型樣 672 、 674 :中空管 674 :最近端 674 :中空管影像 676 :角落 6 76 :最近面 6 7 8 .最速ΐί而 6 7 8 :最迪面 6 8 0、7 3 8 :單一影像放映機 6 8 2、6 8 6 :圓錐形 684、 688 ' 692 :深度平面 684、 688、 692 :影像平面 684、690、692:超深影像平面 6 84 :最淺深度平面 684、688、692:合成影像平面 68 6、690、6 94 : UNISON 字 6 8 6、690、694 : UNISON 影像 6 8 8 :中間深度平面 692 :最深深度平面 730:單一圖示影像 7 3 2 ·結合的圖不兀件 740 :平面 -152- 200902339 742: Brassempouy 小姐(藝品) 7 4 2 :物件 742 :全合成影像 744 :深合成影像空間 746 :浮動合成影像空間 7 4 8、7 5 2 - 7 6 2 :深影像平面 750、764-774:浮動影像平面 756-774 :選擇的深度平面 777:包覆的圖示層 780 、 788 、 922 :中央區 7 8 2、7 9 0 :焦點屬性 7 84 :六角形底座多帶狀透鏡 78 6、794 :聚合物基底 7 9 6 :側面區 7 9 8 :垂直模糊 8 0 0 :外部區 804:圖示平面區 8 0 6 :角落區 808 :散射 7 7 9、8 2 2 :非對稱空隙型樣 7 8 1、8 2 3 :對稱空隙型樣 7 8 3、824 :光線陷阱型樣 7 8 5、82 5 :全像攝影表面凸版印刷型樣 7 8 7、8 2 6 :通用繞射表面凸版印刷型樣 -153- 200902339 7 8 9、8 2 7 :二元結構型樣 79 1、82 8 : —般階梯形凸版印刷型樣 7 9 3、9 5 2、9 6 2 :指向性包覆材料 793 、 840、 934、 1016 :包覆層 7 9 5、8 2 9 :隨機粗糙及虛擬隨機粗糙型樣 797、8 3 0 :名義平坦表面型樣 799、831:凹面型樣 801、832:凸面型樣 838、 840、 841、 870:包覆材料層 843 :層壓基底 844-864 :微結構圖示影像元件 870、1016:選擇的包覆材料 8 7 1 :凹處或空隙 8 7 2 :正圖示影像元件 8 7 2 ·正圖區 874 :負圖示影像元件 875 :凹處 876:塡充的正圖示 878、 902、 948、 997、 1512、 1520:圖示塡充材料 880:塡充的負圖示 880、892:塡充的負圖示元件 884、888:周圍的背景外表 884:周圍背景區域 8 8 6 :物件型樣 -154- 200902339 886、890:塡充的正圖示元件 8 93 :高集中 8 9 4 :不足 900、 934、 967、 968' 969、 970、 1016 :包覆材料 9 0 8 :物件型樣微結構 916:第一圖示塡充材料 918:第二圖示塡充材料 920 :塡充的區域 9 2 6、928、1 5 08 :圖示微結構 926 :正微結構圖示元件 928 :負微結構圖示元件 931 :抑制的形狀 9 3 1 :抑制的區域 9 3 5 :呈現 936、 938、 946、 950、 951、 956、 958、 964:托架 93 9 :平坦部分 940 :熱膠黏劑層 942 :熱戳記箔包覆 942 :箔層 944:易碎漆器層 946 :單件 950、 951 :組合 9 6 7 :定型的包覆材料 968、982:全厚度包覆材料 -155- 200902339 969:部分厚度包覆材料 970:零厚度包覆材料 976 :背景 980:部分或零厚度包覆材料 984、990 :選擇的透明基底 9 8 8 :光傳輸材料 992、 1012、 1065 :間隙 1000、1010:透鏡片 1002、 1014:圖示片 1 026 :波紋放大系統 1 0 2 8 :放大系統透鏡 1032、 1034、 1059、 1060 :隱蔽圖示型樣 1 0 3 8 :公然可檢視合成影像 1 040、1 064 :隱蔽鑑別透鏡片 1 042、1 066:隱蔽鑑別透鏡片透鏡 1 044 :光學耦合材料 1 0 5 4、1 0 5 6 :放大系統 1 〇 5 6 :放大透鏡 1058、1102:第一圖示層 1 06 3 :浮動合成影像 1 0 6 3 :隱蔽合成影像 1 06 3 :第一隱蔽合成影像 1 0 6 8 :第二合成影像 1 0 7 8、1 0 9 6 :水一致波紋放大系統 -156- 200902339 1 0 8 8 :空氣焦點 1 090 :空氣中合成影像投射 1091 :中心高度 1092、 1128:流體 1 092 :選擇的浸入流體 1 0 9 6 :多路影像水一致系統 1 09 8 :水一致微透鏡 1100 :第一光學隔片 1102、1117:第一圖示型樣 1 104 :第二光學隔片 1106:第二圖示層 1 1 0 8 :第三光學隔片 1110:第二圖不層 1 1 1 1 ··第三圖示型樣 1112、 1120、 1128:媒介物 1 1 1 6 :空氣中焦距 1 11 9 :第二圖示型樣 1120:水 1 1 2 0 :液體 1 122 :流體浸入焦距 1 1 2 4 :水浸入焦點 1510:聚合包覆圖示層 1 5 02 :凝膠或液體聚合物 1 5 02 :凝膠或液體聚合物包覆 -157- 200902339 1 5 0 4 :圖示微結構工具 1 5 1 4 :刮墨刀 2000 : 一致電影膜 2005 :格式化乳齒象頭 2005 ' 2052、 2057、 2110、 2145 :電影影像 2005 :電影影像區域 200 5 :電影平面內影像 2 0 0 5 :電影平面內影像乳齒象頭 200 5 :電影乳齒象邊界 2007 :視場控制合成影像 2007 :浮動FOV控制合成影像 2007、20 10 :視場合成放大影像 2015 :視覺相交 2025 :視覺投射 2030、 2120、 2122、 2124 :檢視點 2045 : Zuni迷信熊圖示型樣陣列 2045 、 2050、 2055 :圖示資訊 2 0 5 0:視場控制圖示 2 0 5 0、2 0 5 5 :視場控制圖示陣列型樣 2050:電影Lascaux洞穴馬圖示型樣 2052 : Lascaux 洞穴馬 2052 :電影影像Lascaux洞穴馬 205 5 :電影乳齒象圖示型樣影像 2 0 5 7 :乳齒象 -158- 200902339 2057 :電影影像乳齒象 2 0 6 5 :附加方式 2065 ' 2 160' 2215' 2245、2280:合成圖示集 2070 ' 2162、 2187、 2217、 2250、 2285 : 一致材 2 0 72 :圖示影像區 2072 :虛擬邊界 2 0 7 3 :軸線 2075、2080、2085:合成圖示影像 2090 :代表焦點 2 095 :深Zuni熊合成影像型樣 2095 :深背景Zuni熊合成影像 2 1 0 0、2 1 1 0 :電影乳齒象合成影像 2 1 1 0 :平面內電影乳齒象頭 2 1 1 0、2 1 4 5 :電影合成影像 2115:位置 2115:點 2125、 2130、 2135:角度 2145:電影Lascaux洞穴馬型樣合成影像 2 1 6 1 :型樣 2 1 6 1 :電影平面內影像型樣 2 165 :全黑Zuni熊深合成放大影像型樣 2165 :全黑Zuni熊型樣 2 170 :白乳齒象形平面內區域 2175:黑乳齒象形平面內區域 -159- 200902339 2180、 2200、 223 0 :負(白)Zuni 熊深型樣 2 190 :全黑Zuni熊深型樣 2 190、2200 : Zuni熊合成影像 2195、2225、2260:黑平面內乳齒象頭 2 1 9 5 :平面內黑乳齒象頭合成影像 2 195 :平面內乳齒象頭 2205 :黑Zuni熊合成影像 2210 :白Zuni熊合成影像 2220 :全黑Zuni熊深合成影像型樣 2 2 3 5 ·黑涂Zuni成合成影像 2240 :白深Zuni熊合成影像 225 5 :全黑深Zuni熊型樣 2265 :重疊圖示集或陣列 2270:三角形移動圖示集 2275 :深Zuni熊圖示集 2275 :深圖示集 2280 :合成圖示型樣 2290 :深Zuni熊影像 2290、2 3 00 :深Zuni熊合成影像 2295 :三角形移動FOV影像 229 5 ··三角形移動合成影像 2295 :移動FOV控制合成影像 2 3 0 0 :互動 23 00 :深 Zuni 熊 -160 - 200902339 23 10 :深度迴旋邊緣 2 3 2 0 :最大內部 23 25 :重疊區 23 25 :轉換區 2340 :最小密度 4017:區段 4 0 1 9 :合成的電影平面內影像 -161 -The combination of the Zuni bear icon set and the movie mastodon icon set deducts the pattern created by the intersection of the icon set and the film mastodon icon set. The second method does not need to perform the intersection function to achieve the same result. The resulting synthetic image is shown in Figures 5b and c. When viewed from an angle perpendicular to the plane or vertical left side of the uniform material 22 17 , the all black Zuni bear deep synthetic image pattern 222 看见 is seen (Fig. 56b). When viewed through the associated array of microlenses (not shown) and viewed from the vertical right side, a black-toothed mastodon head 2225 is seen in which a negative (white) Zuni bear deep pattern 2230 is seen. As previously described with respect to the synthetic image of Fig. 55, when the deep Zuni bear synthetic image straddles from the outside of the in-plane mastodon 2 2 2 5 , the deep Zuni bear synthetic image will change from black 2235 to white 2240. Another example of the method of this embodiment is presented in Figures 5 7 a - c. Figure 5 7 a shows a synthetic icon set 2245 (B + FM) or a "deep Zuni bear icon set combined with a picture of a mastodon image" made by the following method. The resulting composite image is shown in Figures 57b and c. The full black deep Zuni bear pattern 225 5 (Fig. 57b) is seen through the associated array of microlenses and from an angle perpendicular to the plane or vertical left side of the uniform material 2 2 50. When viewed from the vertical right angle, The black-toothed mastodon head 2260 is seen, which has a full black-deep Zuni bear pattern 225 5 that remains surrounded. For illustrative purposes, the examples of Figures 5 1 - 5 7 depict deep synthetic magnified images and one or more in-plane compositings. Image '. It is obvious that a consistent material can present any combination of effects, and each effect is independent of each other. Consistent materials can exhibit the multiplicity of any type of synthetic image of -132- 200902339, including but not limited to deep, ultra deep, floating , super-floating, floating, form, 3-D, moving, surround, and movie. Examples include, but are not limited to, a single movie image; a non-film in-plane image with a second movie image; the same movement in the same or different directions Two moving images with different zooming; ultra-deep images with in-plane movie images and floating images; floating images with movie images, etc. In addition, according to the method mentioned in the text, the FOV of the in-plane consistent synthetic image can be one or more Additional consistently synthesized magnified images are controlled. Figure 49-5 shows how the floating synthetic magnified image can be used to provide FOV control of in-plane movie images. These methods can be extended to provide other types of synthetic images other than in-plane images. FOV Control. To demonstrate the ubiquity of these methods, Figures 58-61 depict the application of a FOV-controlled mobile composite image of a deep synthetic image pattern, and a deep synthetic image FOV control of a moving composite image. Set or array 2265, triangle movement icon set 2270, and deep Zuni bear icon set 2275. The movement icon set 2270 is slightly different from the depth icon set 2275 and has been substantially parallel to the axis of the deep graphic set 2275. When the corrected uniform microlens array is combined, the moving image set is given an oblique angle to obtain a selected magnification. The enlarged overlap is shown in Fig. 59a. The central portion of the illustrated set 22 65 more clearly shows the different patterns of overlap between the moving pictorial set 2270 and the deep pictorial set 2275. Figure 59b presents a composite pictorial set 2280 that is executed to execute the illustrated sets 2270 and 2275 The result of the Boolean intersection function of the upper graph. It can be clearly seen that the change in the resulting graph is extremely large. -133- 200902339 Figure 60 depicts a graphical representation of the intersection of the larger regions of the graph set previously shown in Figure 58 Non-uniformity. Due to the different scaling of the original pattern and the skew angle of the original moving pattern, it can be seen that the size and density of the synthetic graphic pattern 22 80 are noticeably changed. When the uniform material 2285 is fabricated using the enlarged area of the synthetic graphic set 2280, the resultant synthetic image effect is shown in Fig. 61 &_; {·. Figures 61-a, c and e show an interaction 2300 of increasing <RTIgt; triangularly moving FOV image 2295 and deep Zuni bear image 2290 as the uniform material wraps around the vertical axis from head to tail in the middle of the figure. Figures 61b, d and f show the surfaces of the uniformly moving materials corresponding to Figures 61a, c and e, respectively. (For clarity, the figures do not present a consistent material 2 2 8 5 that is shortened or perspective rotated.) In Figures 61a-f, the deep graphical set 2275 and the mobile graphical representation 2270 are subjected to a Boolean intersection function of the graph. The intersection function produces a pattern that retains only those portions of the original pattern of the second type - in other words, the overlapping regions of the two original patterns. The resulting composite image 2280 (Fig. 60) produces a composite image thus having a FOV that is controlled by the overlap of the two composite images. Figures 61a-f present an example in which the enlargement of the triangular moving synthetic image 2295 is greater than the magnification of the deep Zuni bear synthetic image 2290. The FOV of each composite image is modulated by others, but the other properties of each composite image are independent of each other. Thus, the triangular moving synthetic image 229 5 in Fig. 61a appears to move downward in a positive parallax manner as the uniform material 228 5 rotates about the vertical axis (Fig. 61c), and as the uniform material 2285 further rotates about the vertical axis Further down (Figure 6le). It should also be noted that since the vertical image is rotated by 90 degrees, the rotational orientation of the triangular motion -134-200902339 composite image 2295 is different from the rotational orientation of the graphic 2270. At the same time, the deep Zuni bear synthetic image 2290 appears to move to the right with parallax as the uniform material 22 8 5 rotates about the vertical axis (from Figure 61a to Figure 6 c 'finally to Figure 6 U). The only visible portion of any synthetic image corresponds to the deep Zuni bear synthetic image 2300 that falls within the triangle moving synthetic image 2295, but in its visual intersection or overlap region. The visual surface of the composite image interaction of Fig. 61a is shown in Fig. 61b, wherein only the visible composite image is a deep Zuni bear 23 00 bounded by the length of the triangular moving synthetic image 229 5 . As the uniform material 2285 rotates about the vertical axis (Fig. 61d), the triangular motion composite image 2295 effectively creates a sliding window for visibility of the deep Zuni bear 23 00. At the same time, the deep Zuni Bear 2300 appears to move to the right with its own appropriate parallax as the uniform material 22 8 5 rotates. As shown in Figure 61f, the uniform material 2285 is further rotated about the vertical axis, causing the triangular moving composite image 22 95 to move further downward, and the deep Zuni Bear 23 00 moving further to the right. Tilting or rotating the uniform material 228 5 around, for example, different axes of the horizontal axis will cause the two interactive composite images 2290 and 2295 to move in their own unique manner, but always satisfy the general pattern of F Ο V system by the properties of the two images. Control requirements. Thus, the FOV or pattern that exhibits the visibility of the moving composite image can be controlled by deep synthetic images (the only visible portion of the moving composite image is the intersection or overlap of the visually synthesized image with the deep synthetic image), and the FOV or pattern of the visibility of the deep synthetic image. It can be controlled by a moving composite image (the only visible portion of the deep composite image corresponds to the intersection or overlap with the moving composite image). If a large FOV is used to control the composite image, the moving composite image can be activated and deactivated by the movie-135-200902339. The F〇V control composite image can be moving, deep, floating, floating or other consistent image types. These methods are universally applicable to F 〇 V control of all types of synthetic images and can be applied to more than two images. Another parameter is characterized in that the FOV controls the composite image as its on/off switching property. Since the patterns have distinct edges, the floating F〇V control composite image 2007 (Fig. 49, 50) and the moving FOV control composite image 2295 (Fig. 61) have a "hard" on/off transition. When the floating FOV control synthetic image 2007 is incomplete between the positions shown in Figures 49 and 5, the edge of the pattern will fall inside the film mastodon boundary 2005, leaving a visible partial mastodontic image. This may be the desired effect in some applications, but it is also possible to create a F Ο V controlled synthetic image with a "soft Μ on/off transition where the density of the controlled synthetic image fades out' instead of F Ο V controlled synthesis The image, the hard edge passes through and abruptly terminates. One way to obtain a "soft" on/off transition is to use F Ο V to control the grayscale effect on the edges of the composite image. As previously mentioned in the text, the synthetic image gray The order effect can be done in a number of ways. Figure 6 2 a-b and 6 3 present an application example of a gray scale method for obtaining a "soft" on/off transition in a FOV controlled synthetic image. The illustrated image 23 05 is a deep convoluted edge 23 10 A square pattern. If an array of illustrated images is produced, each of the illustrated images is identical to the illustrated image 2305, and each is equally placed within its illustrated area (see, for example, the illustrated area 2 in FIG. 0 7 2 ), then the result of the resultant synthetic image (formed by a consistent material in combination with the array of illustrated images) will be identical to the illustrated image 23〇5. The composite image will have a deep swirling hard edge, just like the synthesized image Image -136- 200902339 However, if the image is placed at a different position in its icon area, the illustrated wraparound edge is replaced from one to the other, resulting in the boundary of the composite image 23 1 5 (not drawn and scaled) The illustrated image 23 1 0) can exhibit a gradual density conversion from a maximum internal 23 20 density, via an overlap region 23 25 to a minimum density outside the transition region 2 3 2 5 2 4 4 0. Figure 63 depicts a composite image 2 3 1 The grayscale appearance of 5, where the density of the composite image varies depending on the number of overlapping image images in each region. In fact, optical aberrations, diffraction, and other effects will tend to further smooth the gradient across the transition region. The image 23 15 is used as a FOV to control the synthesized image, and if the size of the synthesized image 2 3 1 5 is larger than the synthesized image controlled by it, the on/off conversion of the controlled synthesized image will be soft because of the density of the synthesized image being controlled. It will fade out as the transition edge region of the composite image 2315 passes. The film composite image pattern typically has a length - indicating that the FOV control synthetic image does not exist in the length, instead of presenting the edge When the film is in its engaged imagewise " closed "state, because the light is scattered through or around the focusing optics, the film synthetic slight ghost image remains visible. When a film composite image is combined with an overall deep, ultra-deep, floating, super-floating, floating or moving composite image, the presentation of the scattered light provided by the second composite image greatly reduces the visibility of "off" movie ghosts. In a consistent material that combines isolated film-compositing images, the visibility of "closed" movie ghosts can be suppressed by introducing a graphic pattern that provides the same degree of background tones as the movie ghosts. It can be designed to deliberately not coordinate the period of the pattern with the period of the focusing element array, while -137-200902339 does not form a consistent composite image. The movie ghost suppression graphic pattern can be random, virtual random, loop, focus Unreasonable multiplexing, Penrose paving or other suitable geometry during the component to avoid the formation of synthetic images. The combination of similar random patterns in large imagery is often required for different reasons. Sometimes in the gravure-scraping step In the case where the larger gaps and smaller gaps are not maintained during the period, the gaps and the filling method are formed. The random, virtually random, cyclic or other non-synthetic image is formed into a columnar shape, A ridge or other suitable shape breaks into a larger void' to obtain an improved representation of the retention of the entanglement material, making it effectively function as small as it is. The exemplified embodiments have been shown and described, and it will be apparent to those skilled in the art that many modifications, modifications, BRIEF DESCRIPTION OF THE DRAWINGS [0009] A number of points of the present invention are best understood by reference to the drawings. In order to clearly illustrate the principles of the invention, the components in the drawings are not required to be scaled. The same reference numerals are assigned to the corresponding parts throughout the multi-figure. Figure 1a is a cross-sectional view of a micro-optical system illustrating an embodiment of the present invention providing positive parallax movement of the image of the system. Figure 1 b is an implementation of Figure 1a Figure 2b depicts the deep and floating visual effects of the system. Figure 2b depicts the deep and floating visual effects of the system. Figure 2 df depicts the visual effect obtained by the floating rotation of the system. Figures 3a-i are plan views showing the different versions of the different embodiments of the various embodiments and the lenses of the system. Figure 4 depicts different combinations of effects of deep, uniform, floating, and floating embodiments resulting from variations in the period of the element/lens. Figures 5a-c are plan views depicting how the composite magnification of the illustrated image can be made by the system The lens array is controlled by the relative angle between the lens array and the illustrated array axis. Figures 6a-c are plan views 'depicting the deformation effect of the synthetic enlarged image of the system. Figure 7a-c is a cross-sectional view showing the graphical layer of the system Figures 8a-b are plan views, depicting, positive, and negative, illustrated component embodiments. Figure 9 is a cross-sectional view depicting a multilayer material used to fabricate regions of synthetically magnified images having different properties. Embodiments Figure 1 is a cross-sectional view depicting an embodiment of a multilayer material for fabricating regions of synthetically magnified images having different properties. Figures 11a-b are cross-sectional views showing optical and pinhole optical embodiments of the present system. Figures 1a-b are cross-sectional views comparing the structure of an embodiment of a fully refractive material with the structure of an embodiment of a hybrid refractive/reflective material. Figure 13 is a cross-sectional view showing the stripping to reveal, tamper indicating material embodiment. -139- 200902339 Figure 1-4 is a cross-sectional view depicting the stripping to change/tamper indication material embodiment. Figures 15a-d are cross-sectional views showing various embodiments of a double sided system. Figures 16a-f are cross-sectional views and corresponding plan views depicting three different methods of fabricating a grayscale or tone graphical component pattern and subsequent synthesis of a magnified image by the present system. Figure 1 7a-d is a cross-sectional view showing the use of the system in conjunction with printed information. Figure 1 8 a-f is a cross-sectional view depicting the application of the system to or in combination with various substrates and for printing information. Figures 19a-b are cross-sectional views of the field of view of the spherical lens and the field of view of the non-spherical lens of the flat field of view when each is incorporated into the system. Figure 2 0 a — c is a cross-sectional view depicting the two advantages of using the thick layer of the system in this system. Figure 2 1 a, b is a plan view showing the application of the system as currency "windowing" security thread. Figure 22 depicts an embodiment of a positive parallax shift of the present system of a "windowed" security thread related image. Figure 23 depicts a halftone composite image of the system. Figure 24a depicts the use of the system to produce a combined composite image that is smaller in size than the smallest feature of the individual composite image. Figure 24b depicts the use of the system to create a narrow pattern of gaps between the illustrated image elements. Figure 2 5 depicts a pictorial image that captures hidden and hidden information into the system. -140- 200902339 Figure 2 6 depicts the creation of a full 3D image with this system. 27a-b depict a method for designing a pictorial image of the three dimensional embodiment of Fig. 26. Figure 28 depicts a pictorial image produced by the method of Figure 27. Figure 29 depicts how the method of Figure 27 can be applied to complex three-dimensional synthetic images. Figure 30 depicts the central region focus properties of an exemplary hexagonal base multi-tape lens having an effective diameter of 28 microns. Figure 31 depicts the central region focus properties of a spherical lens having a diameter of 28 microns. Figure 32 depicts the performance of the side regions of the hexagonal lens of Figure 30. Figure 3 3 depicts the performance of the outer region of the spherical lens of Figure 31. Figure 3 4a, b depicts another embodiment of a microstructured graphic element. Figures 35a, b depict the microstructured elements of Figures 34a, b further including a cladding material. Figures 36a, b depict the microstructured graphic elements of Figures 34a, b further comprising a laminate cladding material. Figures 3a-c depict positive and negative graphic elements. Figures 38a-c depict combinations of filled and coated microstructured elements. Figure 3 Figures 9a-c depict the application and combination of the shaped cladding material for the microstructured elements of Figures 34a, b. Figures 40a-c depict the use of a shaped cladding material to make the illustrated image elements. - 141 - 200902339 Figure 4 1 a, b depicting the "key and key" embodiment of the micro-optic system disclosed herein. Figure 42 depicts another embodiment of the "key and key" embodiment of Figure 41. 43 depicts a further embodiment of the embodiment of the present invention. Figures 44a, b depict an immersible embodiment of the micro-optic system disclosed herein. Figures 45a, b, c depict Figure 44a, b Another embodiment of the embodiment can be immersed. Figure 46 depicts an embodiment of a micro-optic system based on azimuth viewing angles. Figure 47 depicts another embodiment of the micro-optic system of Figure 46. Figure 48 af depicts micro-optics Figure 49a is a top plan view illustrating still another embodiment of a micro-optic system in which a synthetic image is modulated or controlled by the system. Figure 49b, c is an enlarged plan view of the in-plane image area of the embodiment of Figure 49a. Figure 49d is a perspective view of the embodiment of Figure 49a. Figure 50a is a view of Figure 49a from different viewing angles. Top view of the embodiment Figure 5 0b is a perspective view of an embodiment of Figure 94 from a different viewing angle - 142 - 200902339 Figure 51a-d is an interpolated image illustrating a design method 'to control one or more synthetic images of the embodiment of Figures 49a-d The field of view is selectively combined with another composite image. Figure 52 is an enlarged view of the exemplary composite combination of the image diagrams of the embodiment of Figures 5a-d. Figure 5 3 aj inserts three different image representation arrays Each of the illustrated examples combines 'to create three different synthetic images. Figures 54a-c depict an embodiment of an in-plane synthetic image that produces a mastodon lens combined with a deep synthetic image of Zuni Bear. Figure 5 5 a-c depicts Figure 5 Alternative versions of the embodiment of 4 a-c. Figures 56a-c depict another alternative version of the embodiment of Figures 54a-c. Figures 57a-c depict yet another alternative version of the embodiment of Figures 54a-c. An embodiment depicting a graphical representation of a moving triangle image combined with a deep Zuni bear image is depicted. Figure 59 ab depicts an enlarged segment of Figure 58. Figure 60 depicts the non-uniformity of the intersecting graphical representation of Figure 58. 6 1 a- f depicting the combination of the graphic representation of Figure 58 Application of the forest intersection function. Figures 62a-b depict the application of the gray scale method to obtain a view field of view (F Ο V ) of the embodiment of Figures 49_61 to control soft on/off transitions in the composite image. Figure 63 depicts relative to Figure 62 Another grayscale method in which the density of the synthesized image changes according to the number of overlapping image images in each region. [Key Symbol Description] -143 - 200902339 1, 2, 3, 9, 48, 52, 62 , 192, 215, 234, 240, 262, 266, 274, 280, 292, 302, 308, 316' 374' 400, 413, 45 6, 463, 484, 48 6 , 4 8 8 , 9 86 , 1 056 , 1 080: lenses 4, 108, 112' 129, 137, 162, 164, 172, 184, 313, 315, 317, 323, 325, 327, 329, 330, 331, 332, 410, 462, 474, 610 611, 910, 912' 996, 1 020: illustrated elements 5, 200, 398, 408, 420, 442, 458, 1081: optical spacers 6, 321, 340, 3 8 8 : sealing layer 7: total thickness 8, 510, 775, 820, 834, 842, 866, 896, 930, 966, 990: substrates 10, 106, 123, 134, 146, 174, 206, 2 28, 248, 258, 268, 270, 282, 286, 294, 304, 318, 322, 424, 428, 496, 500, 504, 522, 613: image 1 1 : repeating period 1 2 : micro-optical system 1 2 : — to move materials 14 , 28 , 34 , 38 , 89 , 9〇 , 91 , 1〇 2 : Synthesized magnified image 1 6 : Horizontal axis 1 8 : Swing or rotated 2 0 : Positive parallax movement 2 2, 2 4 : Point profile 2 6 : — Deepening material 30 , 2020 : Observer 144- 200902339 3 2 : - Floating material 3 6 : - Floating material 3 7 : Azimuth orientation reference 3 8 : - Floating image 4 〇: Six Angular array pattern 4〇, 42, 44: array pattern dashed line 42: square array 44: equilateral triangle array 4 6 : circular base geometry 1098, 1112: 46, 60' 210, 1008, 1028, 1042, 1066, Microlens 48, 50: Round 5 2 : Incomplete hexagon 5 4 : Incomplete square 5 8 : Incomplete triangle 60: Hexagonal base Geometry 62 : Square 64 · · Triangle 6 6 : Dotted lines 68 , 70 , 72 , 74, 76, 78, 436: ® 8 〇: Lens Array 8 2: Regular Periodic Array Interval 84: Illustration Array 8 6 = Array Axis Azimuth - 145 - 200902339 88, 307, 348, 360, 362, 1006, 1018, 1050, 1052, 1 07 0 : Material 92, 94: Component Types 96, 100: Zoom Insert 98: Synthesized magnified OPM image 98. Circular image unloaded 102: Star-shaped graphic element 104, 2140, 4013: Boundary 1 〇7: Right side 1 1 0: Support material 1 1 3 : Microstructure 1 1 3 : voids 114, 822-832, 844-856: microstructured graphic elements 1 15 : solid regions 116, 872, 876, 904, 920: element 1 1 8: transparent background 1 20: colored, dyed Or colored background 122, 874, 924, 928: negative graphic element 124: short focus lens 126, 130, 168, 198, 309: optical isolation plate 128' 132, 152, 156, 182, 194, 208, 242 , 246, 264, 276 ' 278 ' 402, 422 ' 442 ' 471 ' 1030 : illustrated plane 1 3 6 : long focus lens 1 4 0 : raised lens -146- 200902339 144 : lens support table 148 : non-liter Cartridge lens 150: optical isolation 152, 170, 182, 208, 276, 278, 296, 298, 300, 310' 3 14, 376 , 442 ' 460 , 492 , 821 , 836 , 837 , 868 , 898 , 932 , 994 , 1030 , 1058 , 1082 , 1102 , 1510 : graphic layer 154 : illustrated isolation plate 158 , 1 6 0 : distance 166 : focusing Mirror 167: metallized mirror 176: opaque upper layer 178: aperture 180: optical spacer element 188: total refractive material 190, 610, 611, 616, 618, 640, 642, 650, 652' 660, 662, 696, 704, 7 1 6 , 2075 , 2080 , 2085 , 2305 , 2310 : Graphic 195 : Selective sealing layer 196 : Total refractive system thickness 199 : Mixed refraction / reflective material 202 : Reflective layer 212 : Total system thickness 214 , 232, 230: refractive system 2 15' 240 : positive lens - 147 - 200902339 2 1 6 , 2 3 2 : top layer 218, 236, 820, 834, 866, 896, 930, 984: selected substrate 218, 23 6 Selected film substrate 220, 232, 238: peelable layer 2 2 0, 2 3 8 : negative lens structure 222: scattered light 224, 226, 252, 254, 936, 938, 956: region 252 '254: 窜2 5 6 : peeling 2 5 6 : peeling layer 260, 290, 306: double-sided material 268, 270, 274, 280, 282, 284, 286, 288, 294, 304, 318, 322: imaging 272: double-sided implementation Examples 277, 298: illustrated layer spacers 287, 289: systems 306, 348, 364: system material 3 1 1 : transparent microstructured layers 313, 315, 317: relief surface 3 1 9 : dashed line 3 2 0 3 2 4: Light scattering 323, 325, 327: Colored or dyed material 323, 325, 327: 塡 filling material 3 2 5: thickness variation -148- 200902339 326, 3 3 3 : Example 3 2 8 : High refractive index material 3 29, 331 : high refractive index coated element 3 3 4 : phase interface 3 3 5 : transparent relief microstructure 3 3 6 : quantity 337, 339, 341, 342, 344, 882, 972, 978: plan 3 3 8 : selected adhesives 347, 375, 520: printing 350, 838, 839 · • laminating adhesives 352, 372, 375, 377, 380, 382, 384, 386 , 390 , 392 , 394 ' 396 , 404 , 406 , 414 , 416 , 518 : printing elements 354 , 510 : fiber substrate 3 5 8 , 3 6 8 : non-fibrous substrate 3 66: Adhesive element 3 70: selected printing elements 373, 775, 820, 834, 842, 866, 896, 930, 966: transparent substrate 374, 400: lens area 3 78: non-optical substrate 402, 2050, 2055 , 2065 , 2270 : illustrations 412 , 570 , 632 , 634 , 636 , 640 , 650 , 660 , 2072 : 1i ^ 418 , 438 , 792 : spherical lens - 149 - 200902339 4 3 8 : aspherical lens 426 , 430 ' 446 , 450 , 470 , 475 , 478 , 482 , 498 , 502 ' 506 , 802 , 998 , 1022 , 1088 , 1118 , 1132 : focus 432 , 954 , 960 , 1516 : arrows 434 , 454 : focus area 4 4 4 : Vertical viewing angle 4 4 8 : Tilt viewing angle 4 5 2 : Flat field of view 461 : Thin graphic element 4 6 4 : Vertical direction 4 6 6 : Vertical image focus 4 6 8 : Tilt angle image 471, 472: Thick Graphical plane 4 7 6 : Vertical image 4 8 0 : Tilt image 492 : Thick graphic layer 493, 495, 498, 1004, 1024, 1086, 1116, 1130: focal length 494: thick graphic element 496: center 5 〇 8 : Thread 5 1 0 : Fiber File Substrate 5 1 2 : Internal Zone 5 1 4 : Windowed Zone 5 1 6 : Covered Seal Layer-150- 200902339 5 1 6 : Sealing or masking layer 5 1 7 : Adhesive layer 521 : Upper surface 522 : Image effect 524 : Width 570 , 572 ' 574 , 576 , 578 , 596 , 598 , 698 , 700 ' 702, 706, 708, 710, 714, 718, 2075, 2080, 208 5: illustrated image elements 580, 584, 586, 600, 602, 604, 612, 626 '670, 672, 686, 690, 694, 1048 , 1095, 1114, 1126, 1134, 1126, 23 15 : synthetic image 582 ' 606, 608: overlap region 588, 605: non-overlapping region 5 94: hexagonal graphic patterns 596, 598, 1084, 1117, 2045, 2050, 2055: Graphical Pattern 609: Hexagonal Graphic Regions 620, 622, 626: Synthesized Composite Image 624: Interior 628: Color Density Edge 630: Color Density Interior 632: Triangle 640: Single Graphic Region 644, 654 664: foreground frame 646, 656, 667: corner elements - 151 - 200902339 648, 658, 668: background frame 646, 667: stacked cone gap pattern 6 5 6 : corner pattern 672, 674: hollow Tube 674: Nearest end 674: Hollow tube image 676: Corner 6 76: Nearest surface 6 7 8 . The fastest speed 而 and 6 7 8 : Most Dimensional 6 8 0, 7 3 8 : Single Image Projector 6 8 2, 6 8 6 : Conical 684, 688 ' 692: Depth Plane 684, 688, 692: Image Plane 684, 690, 692: Ultra Deep image plane 6 84: shallowest depth plane 684, 688, 692: composite image plane 68 6, 690, 6 94 : UNISON word 6 8 6, 690, 694: UNISON image 6 8 8 : intermediate depth plane 692: deepest depth Plane 730: Single graphic image 7 3 2 · Combined image 740: Plane - 152 - 200902339 742: Miss Brassempouy (art) 7 4 2 : Object 742 : Fully synthetic image 744 : Deep synthetic image space 746 : Floating synthetic image space 7 4 8, 7 5 2 - 7 6 2 : Deep image plane 750, 764-774: Floating image plane 756-774: Selected depth plane 777: Covered graphic layers 780, 788, 922: Central area 7 8 2, 7 9 0 : Focus attribute 7 84 : Hexagonal base multi-strip lens 78 6 , 794 : Polymer base 7 9 6 : Side area 7 9 8 : Vertical blur 80 0 : External area 804: Graphical area 8 0 6 : Corner area 808 : Scattering 7 7 9 , 8 2 2 : Asymmetric void pattern 7 8 1 , 8 2 3 : Symmetrical void pattern 7 8 3, 824 : Light trap pattern 7 8 5, 82 5 : Full-image photographic surface relief printing pattern 7 8 7、8 2 6 : Universal diffraction surface relief printing pattern-153- 200902339 7 8 9、8 2 7 : binary Structural pattern 79 1 , 82 8 : General stepped relief printing pattern 7 9 3, 9 5 2, 9 6 2 : directional covering material 793, 840, 934, 1016: cladding layer 7 9 5, 8 2 9 : Random rough and virtual random rough pattern 797, 8 3 0 : nominal flat surface pattern 799, 831: concave pattern 801, 832: convex pattern 838, 840, 841, 870: cladding material layer 843: Laminated substrate 844-864: microstructured image element 870, 1016: selected cladding material 8 7 1 : recess or void 8 7 2 : image element 8 7 2 is shown • front area 874: negative Image element 875: recess 876: positive icon 878, 902, 948, 997, 1512, 1520: graphic filling material 880: negative negative image 880, 892: negative negative graphic Element 884, 888: surrounding background appearance 884: surrounding background area 8 8 6 : object type -154- 200902339 886, 890: suffixed positive graphic element 8 93 : high concentration 8 9 4 : less than 900, 934, 967 , 968' 969, 970, 1016: cladding material 98 8: object-type microstructure 916: first illustrated charging material 918: second graphic filling material 920: filled area 9 2 6,928 , 1 5 08 : Graphical microstructure 926 : Positive microstructured graphic element 928 : Negative microstructured graphic element 931 : Inhibited shape 9 3 1 : Suppressed area 9 3 5 : Presentation 936, 938, 946, 950, 951, 956, 958, 964: bracket 93 9: flat portion 940: thermal adhesive layer 942: thermal stamp foil cover 942: foil layer 944: frangible lacquer layer 946: single piece 950, 951: combination 9 6 7: Shaped cladding material 968, 982: full thickness cladding material - 155 - 200902339 969: partial thickness cladding material 970: zero thickness cladding material 976: background 980: partial or zero thickness cladding material 984, 990: Selected transparent substrate 9 8 8 : optical transmission material 992, 1012, 1065: gap 1000, 1010: lens sheet 1002, 1014: graphic sheet 1 026 : corrugated amplification system 1 0 2 8 : amplification system lens 1032, 1034, 1059 , 1060 : Concealed graphic type 1 0 3 8 : Openly viewable synthetic image 1 040, 1 064 : Covert identification lens piece 1 042, 1 066: concealed discriminating lens sheet lens 1 044 : optical coupling material 1 0 5 4, 1 0 5 6 : amplification system 1 〇 5 6 : magnifying lens 1058, 1102: first graphic layer 1 06 3 : floating synthetic image 1 0 6 3 : Concealed synthetic image 1 06 3 : First concealed synthetic image 1 0 6 8 : Second synthetic image 1 0 7 8 , 1 0 9 6 : Water uniform corrugated magnification system -156- 200902339 1 0 8 8 : Air focus 1 090 : Synthetic image projection in air 1091 : Center height 1092, 1128: Fluid 1 092 : Selected immersion fluid 1 0 9 6 : Multiple image water consistency system 1 09 8 : Water uniform microlens 1100: First optical spacer 1102, 1117: first graphic pattern 1 104: second optical spacer 1106: second illustrated layer 1 1 0 8 : third optical spacer 1110: second figure is not layer 1 1 1 1 ·· third Graphical pattern 1112, 1120, 1128: Medium 1 1 1 6 : Focal length in air 1 11 9 : Second graphic pattern 1120: Water 1 1 2 0 : Liquid 1 122 : Fluid immersion focal length 1 1 2 4 : Water immersion into focus 1510: Polymerized coating layer 1 5 02 : Gel or liquid polymer 1 5 02 : Gel or liquid polymer coating -157- 200902339 1 5 0 4 : Graphical microstructure With 1 5 1 4: Squeegee 2000: Consistent Film Film 2005: Formatted Tooth Head 2005 ' 2052, 2057, 2110, 2145 : Movie Image 2005 : Movie Image Area 200 5 : Movie In-Plane Image 2 0 0 5 : In-plane imagery mastodon head 200 5: film mastodon boundary 2007: field of view control synthetic image 2007: floating FOV control synthetic image 2007, 20 10: field of view synthetically magnified image 2015: visual intersection 2025: visual projection 2030, 2120, 2122, 2124: View point 2045: Zuni superstitious bear icon pattern array 2045, 2050, 2055: Graphic information 2 0 5 0: Field of view control icon 2 0 5 0, 2 0 5 5 : Field of view control icon Array pattern 2050: Movie Lascaux cave horse graphic pattern 2052: Lascaux cave horse 2052: movie image Lascaux cave horse 205 5: movie mastodon graphic image 2 0 5 7 : mastodon-158- 200902339 2057 : movie Image mastodon 2 0 6 5 : Additional mode 2065 ' 2 160' 2215' 2245, 2280: Composite icon set 2070 ' 2162, 2187, 2217, 2250, 2285 : Consistent material 2 0 72 : Graphic area 2072: Virtual Boundary 2 0 7 3: axis 2075, 2080, 2085: Synthetic graphic image 2090: representative focus 2 095: deep Zuni bear synthetic image type 2095: deep background Zuni bear synthetic image 2 1 0 0, 2 1 1 0 : movie mastodon composite image 2 1 1 0 : In-plane movie mastodon head 2 1 1 0, 2 1 4 5 : film composite image 2115: position 2115: point 2125, 2130, 2135: angle 2145: movie Lascaux cave horse-shaped synthetic image 2 1 6 1 : pattern 2 1 6 1 : In-plane image type 2 165 : All black Zuni bear deep synthetic enlarged image type 2165 : All black Zuni bear pattern 2 170 : White milk tooth pictographic in-plane area 2175: Black deciduous pictographic in-plane area -159 - 200902339 2180, 2200, 223 0 : Negative (white) Zuni bear deep type 2 190: All black Zuni bear deep type 2 190, 2200: Zuni bear synthetic image 2195, 2225, 2260: black plane in the mastodon 2 1 9 5 : Synthetic image of black mastodon in the plane 2 195 : In-plane mastodon 2205 : Black Zuni bear synthetic image 2210 : White Zuni bear synthetic image 2220 : All black Zuni bear deep synthetic image pattern 2 2 3 5 · Black painted Zuni into synthetic image 2240: white deep Zuni bear synthetic image 225 5: all black deep Zuni bear pattern 226 5: Overlapping graphic set or array 2270: Triangle moving graphic set 2275: Deep Zuni bear graphic set 2275: Deep graphic set 2280: Composite graphic type 2290: Deep Zuni bear image 2290, 2 3 00: Deep Zuni Bear Synthetic Image 2295: Triangle Moving FOV Image 229 5 ··Triangle Moving Composite Image 2295: Moving FOV Controlled Synthetic Image 2 3 0 0 : Interactive 23 00: Deep Zuni Bear-160 - 200902339 23 10 : Depth Swirling Edge 2 3 2 0 : Maximum internal 23 25 : Overlapping area 23 25 : Conversion area 2340 : Minimum density 4017: Section 4 0 1 9 : Synthetic film in-plane image -161 -

Claims (1)

200902339 十、申請專利範圍 1 . 一種微光學系統,包含: 一平面內影像,具有邊界及該邊界內的影像區域,其 視覺上實質置於基底的平面中,在該基底上載運該平面內 影像; 涵蓋在該平面內影像的該邊界內之圖示的一或多個控 制型樣;及 圖示聚焦元件的陣列,其定位以形成該圖示的一或多 個控制型樣之至少一部分的至少一合成放大影像,該合成 放大影像提供用於檢視該平面內影像的侷限視場,其操作 以調變該平面內影像的出現。 2 .如申請專利範圍第1項的微光學系統,其中該合成 放大影像藉由移動該合成放大影像進和出該合成放大影像 與該平面內影像之影像區域的視覺相交,提供用於檢視該 平面內影像的視場。 3 .如申請專利範圍第1項的微光學系統,其中當該合 成放大影像視覺上與該平面內影像之影像區域相交時,該 平面內影像是可見的,且當該合成放大影像視覺上未與該 平面內影像之影像區域的任何部分相交時,則爲不可見的 〇 4 .如申請專利範圍第1項的微光學系統,其中該合成 放大影像之視覺投射的外觀尺寸大於該平面內影像的影像 區域。 5 .如申請專利範圍第1項的微光學系統,其中該平面 -162- 200902339 內影像的所見量係由該合成放大影像與該平面內影像2 ^ 像區域視覺上相交的量來決定。 6. 如申請專利範圍第1項的微光學系統,其中圖示之 控制型樣具有暗及亮圖示的區域。 7. 如申請專利範圍第1項的微光學系統,其中該圖示 的一或多個控制型樣包括具有在其平面內之對稱軸的影像 圖示的平面陣列,該影像圖示具有在該陣列內的重複期間 ,且該圖示聚焦元件的陣列包括具有在其平面內之對稱軸 及具有在該陣列內的重複期間之影像圖示聚焦元件的平面 陣列,該影像圖示聚焦元件的平面陣列係相關於該影像圖 示的陣列來配置,其足夠該影像圖示聚焦元件形成該影像 圖不之至少一部分的至少一合成放大影像。 8 .如申請專利範圍第7項的微光學系統,其中該影像 圖示之重複期間對該影像圖示聚焦元件之重複期間的比例 實質上等於1,且該影像圖示之平面陣列的對稱軸與該影 像圖示聚焦元件之平面陣列的相對應對稱軸係轉動地偏差 〇 9 .如申請專利範圍第8項的微光學系統,其中提供正 視差移動效果。 1 0.如申請專利範圍第7項的微光學系統,其中該影像 圖示之重複期間對該影像圖示聚焦元件之重複期間的該比 例大於1。 1 1.如申請專利範圍第1項的微光學系統,其中該影像 圖示之重複期間對該影像圖示聚焦元件之重複期間的該比 -163- 200902339 例小於1。 12.如申請專利範圍第7項的微光學系統,其中該影像 圖示之重複期間對該影像圖示聚焦元件之重複期間的該比 例在該影像圖示及該聚焦元件的平面中是軸向地非對稱, 在一對稱軸中縮放比小於1,及在其他對稱軸中縮放比大 於1。 1 3 ·如申請專利範圍第1項的微光學系統,其中平面內 影像及該合成放大影像產生不同的視覺影像。 1 4 ·如申請專利範圍第1項的微光學系統,其中該圖示 的一或多個控制型樣包括複數個圖示陣列的複合組合,以 產生視覺上不同的影像。 1 5 ·如申請專利範圍第1 4項的微光學系統,其中該複 數個圖示陣列包括具有不同重複期間的至少二圖示陣列, 以產生視覺上不同的影像。 1 6 .如申請專利範圍第丨4項的微光學系統,其中該影 像的至少之一呈現可變的合成視覺效果。 1 7 .如申請專利範圍第丨4項的微光學系統,其中該複 數個圖示陣列係藉由圖形的附加而結合以形成該複合組合 〇 1 8 ·如申請專利範圍第i 7項的微光學系統,其中該圖 形的附加爲圖形的布林函數。 1 9 .如申請專利範圍第3項的微光學系統,其中當該平 面內影像爲可見與不可見之間的轉換爲硬開/關轉換。 2 0 ·如申請專利範圍第3項的微光學系統,其中當該平 -164- 200902339 面內影像爲可見與不可見之間的轉換爲軟開/關轉換。 2 1 .如申請專利範圍第20項的微光學系統,其中灰階 效果被倂入至該合成放大影像的邊緣,以產生該軟開/關 轉換。 2 2.如申請專利範圍第1項的微光學系統,其中該圖示 的控制型樣的至少之一包括該圖示的至少一控制型樣的背 景,該背景包括一色調。 23.如申請專利範圍第1項的微光學系統,其中該圖示 的一或多個控制型樣包括具有在該圖示陣列內的不同重複 期間之至少二圖示陣列,以形成至少二視覺上不同的合成 放大影像。 2 4.如申請專利範圍第1項的微光學系統,其中該圖示 聚焦元件的陣列包括具有小於5 0微米之有效直徑的聚焦元 件。 2 5 .如申請專利範圍第1項的微光學系統,其中該系統 具有小於50微米的厚度。 2 6.如申請專利範圍第1項的微光學系統,其中該聚焦 元件爲非圓柱形聚焦元件。 2 7 ·如申請專利範圍第1項的微光學系統,其中該聚焦 元件爲非球狀聚焦元件。 28.如申請專利範圍第1項的微光學系統,其中該圖示 聚焦元件的陣列包括具有10微米至30微米間之有效直徑的 聚焦元件。 2 9.如申請專利範圍第1項的微光學系統,其中該聚焦 -165- 200902339 元件的陣列包括具有等於4或更少之F數的聚焦元f牛。 3 〇 如申請專利範圍第1項的微光學系統,;a由# 、T妓聚焦 元件的陣列包括具有等於2或更少之F數的聚焦元件。 3 1.如申請專利範圍第1項的微光學系統,其中每―聚 焦元件具有小於3 0微米的有效直徑。 3 2.如申請專利範圍第1項的微光學系統,其中該$,統 具有小於約4 5微米的總厚度。 3 3 ·如申請專利範圍第1項的微光學系統,宜由# 、个较糸統 具有約1 〇至約40微米的總厚度。 3 4 ·如申請專利範圍第1項的微光學系統,其中包括具 有小於約40微米之焦距的聚焦元件。 3 5 .如申請專利範圍第1項的微光學系統,其中包括具 有1 〇至小於5 0微米之焦距的聚焦元件。 36. 如申請專利範圍第1項的微光學系統,其中該圖示 形成爲基底中的凹處,該凹處形成可選擇地以具有與該基 底不同折射率的材料、染料、金屬、著色的材料、或其組 合來塡充之空隙。 37. 如申請專利範圍第1項的微光學系統,其中該系統 包括置於該聚焦元件上之透明的竄改指示材料。 3 8.如申請專利範圍第7項的微光學系統,其中該系統 倂入至安全或鑑別裝置。 3 9 ·如申請專利範圍第3 8項的微光學系統,其中該系 統操作爲文件的安全或鑑別系統,該文件係選自包括身份 證、信用卡、簽帳卡、駕照、財務文件、紙幣、支票及貨 -166- 200902339 幣等群組。 4 0.如申請專利範圍第38項的微光學系統,其中該系 統被倂入至貨幣文件的安全執行緒。 41.如申請專利範圍第38項的微光學系統,其中該系 統被倂入至貨幣並包括機器可偵測特徵。 42 .如申請專利範圍第40項的微光學系統,其中該安 全執行緒爲視窗化安全執行緒。 4 3.如申請專利範圍第42項的微光學系統,其中該市見 窗化安全執行緒結合一或多個著色的、染色的、塡充的$ 包覆的密封層,以增加影像對比或提供附加的鑑別特徵$ 二者皆然。 4 4.如申請專利範圍第42項的微光學系統,其中該視 窗化安全執行緒包括導電性、磁性、NMR可偵測性或其 組合。 4 5 .如申請專利範圍第4 2項的微光學系統,其中該視 窗化安全執行緒包括該聚焦元件背後的一或多個著色的、 密封或掩蔽層。 46. 如申請專利範圍第1項的微光學系統,其中該系統 進一步包括一或多個定位於該圖示的一或多個控制型樣與 該影像圖示聚焦元件的陣列之間的光學隔片。 47. 如申請專利範圍第1項的微光學系統,其中該圖示 係由無色的、透明的、不透明的、塗墨的、彩色的、著色 的或染色的材料的型樣來形成。 4 8.如申請專利範圍第1項的微光學系統,其中該圖示 -167- 200902339 係形成爲基底之表面中的突出物,該突出物之間的空間可 選擇地以具有與該基底不同折射率的材料、染料、金屬、 著色的材料或其組合來塡充。 49.如申請專利範圍第丨項的微光學系統,其中該圖示 爲與其出現之背景相關的正或負圖示。 5 0 ·如申請專利範圍第丨項的微光學系統,其中該合成 放大影像顯現爲置於較該系統更深的空間平面上。 5 1 .如申請專利範圍第丨項的微光學系統,其中該合成 放大影像顯現爲置於該系統上方的空間平面上。 52.如申請專利範圍第丨項的微光學系統,其中當該系 統繞者與該系統之平面相交的軸線旋轉時,該合成放大影 像顯現爲在較該系統更深的空間平面與該系統上方的空間 平面之間移動。 5 3,如申請專利範圍第1項的微光學系統,其中當該系 統繞著軸線傾斜時,該軸線實質上平行該系統的平面,該 合成放大影像顯現爲在平行於該傾斜軸線的方向上移動。 5 4 _如申請專利範圍第1項的微光學系統,其中該合成 放大影像顯現爲從一或多個的形式、形狀、大小或顏色轉 換爲另一個的形式、形狀、大小或顏色。 5 5 _如申請專利範圍第5 4項的微光學系統,其中該轉 換係藉由圖示重複期間或聚焦元件重複期間中一者或二者 的縮放變形而產生。 56.如申請專利範圍第54項的微光學系統,其中該轉 換係藉由結合該圖示的一或多個型樣中空間改變資訊而產 -168- 200902339 生。 5 7 .如申請專利範圍第1項的微光學系統,其中該合成 放大影像顯現爲三維的。 5 8 .如申請專利範圍第1項的微光學系統,其中該聚焦 元件爲非球狀聚焦元件,且其中該圖示係形成爲基底中的 凹處,該凹處形成可選擇地以具有與該基底不同折射率的 材料、染料、金屬、著色的材料、或其組合來塡充之空隙 〇 5 9 .如申請專利範圍第1項的微光學系統,其中該系統 被併入至應用於物件的安全或鑑別裝置,其中該物件係選 自下列群組: 護照、身份證、駕照、簽證、出生證明、器官記錄、 選舉人登記卡、選票、社會安全卡、債券、食物券、郵票 及稅單; 貨幣、紙幣中安全執行緒、聚合物貨幣中特徵及紙幣 中特徵; 所有權狀、契據、許可證、執照及證書; 保付銀行支票、公司支票、個人支票、銀行收據、股 票證書、旅行支票、匯票、信用卡、簽帳卡、ATM卡、 慈善信用卡、預付電話卡及禮物卡; 電影劇本、法律文件、智慧財產、醫療記錄/醫院記 錄、處方簽/條簽及秘密處方; 毛線及家庭護理商品; 化妝品; -169- 200902339 嬰兒及家庭護理商品; 健康用品; 食物及飲料包裝; 乾貨包裝: 電器、零件及組件; 服飾、運動裝及鞋類商品; 生技製藥; 航太組件及零件; 汽車組件及零件; 運動商品; 薛品; 軟體; 光碟片及DVD ; 爆竹; 新穎物件、禮物紙及緞帶; 書及雜誌; 學校商品及辦公室用品; 名片; 運送文件及包裝; 筆記本套; 書套; 書籤; 比賽入場券及車票; 博奕商品及裝置; -170- 200902339 家具商品; 地毯及壁紙; 珠寶及手錶; 手提袋; 藝術品、珍藏品及紀念品; 玩具; 採購地點及推銷呈現;及 應用於品牌產品或文件的產品標示及標籤物件,用於 鑑別或提升,例如仿冒品,或用於資產追蹤。 6 0.—種合成微光學系統,包含至少二合成影像,該 合成影像其中之一爲平面內合成影像,該合成影像其中另 一爲合成放大影像,其中該合成放大影像係操作以調變或 判定該平面內合成影像之出現的量。 -171 -200902339 X. Patent Application Range 1. A micro-optical system comprising: an in-plane image having a boundary and an image region within the boundary, the optically substantially in the plane of the substrate on which the in-plane image is carried One or more control patterns of the illustration within the boundary of the image in the in-plane; and an array of focusing elements illustrated to form at least a portion of one or more of the control patterns of the illustration At least one synthetically magnified image providing a confined field of view for viewing the in-plane image, the operation of which modulates the occurrence of the in-plane image. 2. The micro-optical system of claim 1, wherein the synthetically magnified image is provided for viewing by moving the synthetically magnified image into and out of the visually magnified image and the image area of the in-plane image. The field of view of the in-plane image. 3. The micro-optical system of claim 1, wherein the in-plane image is visible when the synthetically magnified image visually intersects the image region of the in-plane image, and when the synthetically magnified image is visually absent When intersecting with any portion of the image area of the in-plane image, it is invisible. 4. The micro-optic system of claim 1, wherein the apparent size of the visual projection of the synthetically magnified image is larger than the in-plane image. Image area. 5. The micro-optic system of claim 1, wherein the amount of the image in the plane -162 - 200902339 is determined by the amount by which the synthetically magnified image visually intersects the in-plane image 2^ image region. 6. The micro-optic system of claim 1, wherein the illustrated control pattern has a dark and lightly illuminated area. 7. The micro-optic system of claim 1, wherein the one or more control patterns of the illustration comprise a planar array having an image representation of an axis of symmetry in its plane, the image representation having The repeating period within the array, and the array of illustrated focusing elements includes a planar array having symmetry axes in its plane and image-representing focusing elements having repeating periods within the array, the image illustrating the plane of the focusing elements The array is configured in relation to the array of image representations sufficient for the image to illustrate that the focusing element forms at least one composite magnified image of at least a portion of the image. 8. The micro-optical system of claim 7, wherein the ratio of the repetition period of the image representation to the repeating period of the image indicating focusing element is substantially equal to 1, and the axis of symmetry of the planar array of the image representation The corresponding symmetry axis of the planar array of the image focusing elements is rotationally offset 〇9. The micro-optic system of claim 8 wherein a positive parallax movement effect is provided. 10. The micro-optic system of claim 7, wherein the ratio of the repetition period of the image representation to the image during which the focusing element is repeated is greater than one. 1 1. The micro-optical system of claim 1, wherein the ratio of -163 to 200902339 of the repetition period of the image indicating the focusing element during the repetition of the image is less than one. 12. The micro-optic system of claim 7, wherein the ratio of the repetition period of the image representation during the repetition of the image indicating the focusing element is axial in the plane of the image and the plane of the focusing element The ground is asymmetrical, with a zoom ratio less than 1 in one axis of symmetry and a scaling ratio greater than 1 in other axes of symmetry. 1 3 . The micro-optical system of claim 1, wherein the in-plane image and the synthetically magnified image produce different visual images. A micro-optic system as claimed in claim 1, wherein the one or more control patterns of the illustration comprise a composite combination of a plurality of graphic arrays to produce visually distinct images. A micro-optic system as claimed in claim 14 wherein the plurality of illustrated arrays comprises at least two illustrated arrays having different repeating periods to produce visually distinct images. 16. The micro-optic system of claim 4, wherein at least one of the images exhibits a variable synthetic visual effect. 17. The micro-optic system of claim 4, wherein the plurality of illustrated arrays are combined by a pattern addition to form the composite composition ·18 as described in claim i. An optical system in which the graphic is attached as a Boolean function of the graphic. A micro-optical system according to claim 3, wherein the conversion between visible and invisible images in the plane is a hard on/off transition. 2 0. A micro-optical system as claimed in claim 3, wherein the in-plane image is a soft on/off transition between visible and invisible when the flat-164-200902339 is in-plane. 2 1. The micro-optic system of claim 20, wherein the grayscale effect is broken into the edge of the synthetically magnified image to produce the soft on/off transition. 2. The micro-optic system of claim 1, wherein at least one of the illustrated control patterns comprises a background of at least one control pattern of the illustration, the background comprising a hue. 23. The micro-optic system of claim 1, wherein the one or more control patterns of the illustration comprise at least two graphic arrays having different repeating periods within the illustrated array to form at least two visions Different synthetic enlarged images. 2. The micro-optic system of claim 1 wherein the array of focusing elements comprises a focusing element having an effective diameter of less than 50 microns. The micro-optic system of claim 1, wherein the system has a thickness of less than 50 microns. 2. The micro-optic system of claim 1, wherein the focusing element is a non-cylindrical focusing element. The micro-optical system of claim 1, wherein the focusing element is a non-spherical focusing element. 28. The micro-optic system of claim 1, wherein the array of illustrated focusing elements comprises a focusing element having an effective diameter between 10 microns and 30 microns. 2 9. The micro-optic system of claim 1, wherein the array of focus-165-200902339 elements comprises a focus element f cow having an F number equal to 4 or less. 3 微 For example, the micro-optical system of claim 1; a array of focusing elements by #, T妓 includes a focusing element having an F number equal to 2 or less. 3. A micro-optic system according to claim 1 wherein each of the "focus elements" has an effective diameter of less than 30 microns. 3. 2. The micro-optic system of claim 1, wherein the system has a total thickness of less than about 45 microns. 3 3 · The micro-optical system of claim 1 of the patent scope should have a total thickness of from about 1 〇 to about 40 μm. 3. A micro-optic system as claimed in claim 1, which comprises a focusing element having a focal length of less than about 40 microns. 3 5. A micro-optic system according to claim 1, which comprises a focusing element having a focal length of from 1 小于 to less than 50 μm. 36. The micro-optic system of claim 1, wherein the illustration is formed as a recess in the substrate, the recess forming a material, dye, metal, colored, optionally having a different refractive index than the substrate The material, or a combination thereof, fills the gap. 37. The micro-optic system of claim 1, wherein the system comprises a transparent tamper indicating material disposed on the focusing element. 3 8. The micro-optic system of claim 7, wherein the system breaks into a security or authentication device. 3 9 · A micro-optic system as claimed in claim 3, wherein the system operates as a document security or authentication system, the file being selected from the group consisting of an identity card, a credit card, a charge card, a driver's license, a financial document, a banknote, Cheques and goods -166- 200902339 coins and other groups. 4 0. The micro-optic system of claim 38, wherein the system is broken into a security thread of a currency document. 41. The micro-optic system of claim 38, wherein the system is incorporated into currency and includes machine detectable features. 42. The micro-optic system of claim 40, wherein the security thread is a windowed security thread. 4 3. The micro-optical system of claim 42, wherein the city sees a windowed security thread in combination with one or more colored, dyed, squeezing, over-clad sealing layers to increase image contrast or Provide additional authentication features $ both. 4. The micro-optic system of claim 42, wherein the visual security thread comprises conductivity, magnetic properties, NMR detectability, or a combination thereof. The micro-optic system of claim 4, wherein the visual security thread includes one or more colored, sealed or masked layers behind the focusing element. 46. The micro-optic system of claim 1, wherein the system further comprises one or more optical spacers positioned between the one or more control patterns of the graphic and the array of imaging elements of the image. sheet. 47. The micro-optic system of claim 1, wherein the illustration is formed from a colorless, transparent, opaque, inked, colored, colored or dyed material. 4. The micro-optic system of claim 1, wherein the drawing -167-200902339 is formed as a protrusion in the surface of the substrate, the space between the protrusions being optionally different from the substrate Refractive index materials, dyes, metals, pigmented materials, or combinations thereof. 49. A micro-optic system according to the scope of the patent application, wherein the illustration is a positive or negative illustration relating to the background in which it appears. 5 0. The micro-optic system of claim 3, wherein the synthetically magnified image appears to be placed on a deeper spatial plane than the system. 5 1. The micro-optic system of claim 3, wherein the synthetically magnified image appears to be placed on a spatial plane above the system. 52. The micro-optic system of claim </ RTI> wherein the synthetically magnified image appears to be deeper in a spatial plane than the system and above the system when the system is rotated about an axis intersecting the plane of the system Move between space planes. 5. The micro-optic system of claim 1, wherein the axis is substantially parallel to a plane of the system when the system is tilted about an axis, the synthetically magnified image appearing in a direction parallel to the tilt axis mobile. 5 4 _ The micro-optic system of claim 1, wherein the synthetically magnified image appears as a form, shape, size or color that is converted from one or more forms, shapes, sizes or colors to another. 5 5 _ The micro-optic system of claim 5, wherein the conversion is produced by scaling deformation of one or both of the repetition periods of the illustration or the repetition period of the focusing elements. 56. The micro-optic system of claim 54, wherein the conversion is produced by combining spatial change information in one or more of the patterns of the illustration. 5 7. The micro-optic system of claim 1, wherein the synthetically magnified image appears to be three-dimensional. 5. The micro-optic system of claim 1, wherein the focusing element is a non-spherical focusing element, and wherein the graphic is formed as a recess in the substrate, the recess forming optionally having a substrate having a different refractive index of the substrate, a dye, a metal, a colored material, or a combination thereof to fill the voids. The micro-optic system of claim 1, wherein the system is incorporated into the object. Security or authentication device, wherein the object is selected from the following groups: passport, ID card, driver's license, visa, birth certificate, organ record, voter registration card, ballot paper, social security card, bond, food stamp, stamp and tax form Currency, security thread in banknotes, characteristics in polymer currency and characteristics in banknotes; ownership, deed, license, license and certificate; bank check, company cheque, personal cheque, bank receipt, stock certificate, traveler's cheque , money order, credit card, charge card, ATM card, charity credit card, prepaid calling card and gift card; film script, legal documents, wisdom Production, medical records/hospital records, prescriptions/bars and secret prescriptions; wool and home care products; cosmetics; -169- 200902339 Baby and home care products; health products; food and beverage packaging; dry goods packaging: electrical appliances, parts and Components; apparel, sportswear and footwear; biotech pharmaceuticals; aerospace components and parts; automotive components and parts; sports goods; Xue Pin; software; optical discs and DVDs; firecrackers; novelty items, gift papers and ribbons; Books and magazines; School goods and office supplies; Business cards; Shipping documents and packaging; Notebook sets; Book covers; Bookmarks; Competition tickets and tickets; Boss goods and equipment; -170- 200902339 Furniture goods; Carpets and wallpapers; Handbags; Artwork, Collectibles and Souvenirs; Toys; Place of Purchase and Promotion; and Product Labeling and Labeling Objects for Branded Products or Documents for identification or promotion, such as counterfeit goods, or for asset tracking. 6 0. A synthetic micro-optical system comprising at least two synthetic images, one of which is an in-plane synthetic image, wherein the synthetic image is another synthetically magnified image, wherein the synthetic magnified image is manipulated to be modulated or The amount of occurrence of the synthetic image in the plane is determined. -171 -
TW096123997A 2006-06-28 2007-07-02 Micro-optic security and image presentation system TWI527714B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81729706P 2006-06-28 2006-06-28

Publications (2)

Publication Number Publication Date
TW200902339A true TW200902339A (en) 2009-01-16
TWI527714B TWI527714B (en) 2016-04-01

Family

ID=44764260

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096123997A TWI527714B (en) 2006-06-28 2007-07-02 Micro-optic security and image presentation system

Country Status (1)

Country Link
TW (1) TWI527714B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9418282B2 (en) 2010-12-22 2016-08-16 U-Nica Technology Ag Method and device for authenticating documents marked with photochromic systems
CN112130235A (en) * 2020-09-24 2020-12-25 北京北方华创微电子装备有限公司 Combined micro-lens array structure and processing method thereof
IT201900021285A1 (en) * 2019-11-15 2021-05-15 Francesco Casorati METHOD FOR THE TREATMENT OF A LENS ACCORDING TO THE PRINCIPLES OF AYURVEDIC MEDICINE AND LENS OBTAINED
TWI757048B (en) * 2020-01-20 2022-03-01 新加坡商視覺技術創投私人有限公司 3D raster and 3D display device
TWI829314B (en) * 2021-12-10 2024-01-11 美商萬國商業機器公司 Security device and method for displaying a security information to a user

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9418282B2 (en) 2010-12-22 2016-08-16 U-Nica Technology Ag Method and device for authenticating documents marked with photochromic systems
TWI654566B (en) 2010-12-22 2019-03-21 瑞士商U Nica科技股份有限公司 Method and apparatus for authenticating documents marked using photochromic systems
IT201900021285A1 (en) * 2019-11-15 2021-05-15 Francesco Casorati METHOD FOR THE TREATMENT OF A LENS ACCORDING TO THE PRINCIPLES OF AYURVEDIC MEDICINE AND LENS OBTAINED
TWI757048B (en) * 2020-01-20 2022-03-01 新加坡商視覺技術創投私人有限公司 3D raster and 3D display device
CN112130235A (en) * 2020-09-24 2020-12-25 北京北方华创微电子装备有限公司 Combined micro-lens array structure and processing method thereof
TWI829314B (en) * 2021-12-10 2024-01-11 美商萬國商業機器公司 Security device and method for displaying a security information to a user

Also Published As

Publication number Publication date
TWI527714B (en) 2016-04-01

Similar Documents

Publication Publication Date Title
RU2478998C9 (en) Image reproducing system and microoptic security system
KR101265368B1 (en) Image presentation and micro-optic security system
JP2011175259A (en) Micro-optic security and image presentation system
TWI527714B (en) Micro-optic security and image presentation system
AU2013204869A1 (en) Micro-optic security and image presentation system