TW200848942A - A method and an apparatus for producing microchips - Google Patents

A method and an apparatus for producing microchips Download PDF

Info

Publication number
TW200848942A
TW200848942A TW096140773A TW96140773A TW200848942A TW 200848942 A TW200848942 A TW 200848942A TW 096140773 A TW096140773 A TW 096140773A TW 96140773 A TW96140773 A TW 96140773A TW 200848942 A TW200848942 A TW 200848942A
Authority
TW
Taiwan
Prior art keywords
fluid
refractive index
particles
immersion
less
Prior art date
Application number
TW096140773A
Other languages
Chinese (zh)
Inventor
Shahab Jahromi
Leonardus Gerardus Bernardus Bremer
Original Assignee
Dsm Ip Assets Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dsm Ip Assets Bv filed Critical Dsm Ip Assets Bv
Publication of TW200848942A publication Critical patent/TW200848942A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

The invention relates to a method for producing microchips by using immersion lithography, while using immersion fluids comprising a host fluid having at least about 40 wt% of at least one organic fluid with a refractive index of 1. 5 or higher the immersion fluid further comprising particles with a refractive index substantially equal to that of the neat host fluid, the particles being present in about 10 wt% or more.

Description

200848942 九、發明說明: 本發明係有關於一種使用沈浸式微影餘刻製造微晶片 之方法以及設備。 5 10 15 20 C先前技術3 自從1959年發明積體電路以來,微處理器之計算能力 每隔18個月就會增進一倍,且每三年便會引入新一代的微 晶片,每次都會使電子裝置之尺寸縮小。此現象係為眾人 所知的摩爾定律(M〇0re,s law)。微晶片之性能有相當大的程 度係由個別電路元件的尺寸所掌握,諸如位於微晶片中之 銅與鋁線路。一微晶片一般包含一交替且具有圖案之導 體、电介質以及半導體薄腹層的複雜三維構造。通則而言, 电路凡件愈小,則微晶片處理速度愈快,且其每單位時間 ,夠進行更多的運算操作。微晶片之整合密度方面增加的 駕人速率大部伤由於光學微影糊方面的進步所持續,業 界己經選定該方式做為用以生產微晶片之方法。 μ曰正合域較馬之電路需要在藉由光學微影钱刻生產 =片之方法中使用—波長較短的曝光光線。將曝光光線 為#χ短波長的確係為增加解析度之選擇方法。然而, =到較短波長逐漸成為令人氣_工作,因為必須設計 作,如光Γ"*’1之新的曝光工具與材料。此係為艱難之工 傾^通*會產生貫行問題與延遲。因此晶片製造商-般 =可:延緩導入―新的曝光波長,並試圖利用另擇方 長現有技術之使用壽命。業界己經有-段時間認為沈 5 200848942 浸式微影餘刻對於改進-特定曝光波長之解析度限制而、 係為-種有效方法。此處用以製造微晶片之設備的底部= 片與頂部具有一層光阻劑的石夕晶圓之間的空氣係 流體加以取代,實質上導致減少有效波長,參看例如3 5專利案第4,480,910號、美國糊案第6,781,67峨以及美國 專利案第6,788,477號。該流體較佳至少在曝光光線之波長 具有一高透明度,不會影響位於用以製造微晶片的矽晶圓 之頂部上的光阻劑之化學性質,並且不會降低鏡片表面之 品質。 10 沈浸式微影蝕刻對於例如248奈米、193奈米與157奈米 之波長係為可行。因為本身之透明度在193奈米,故水係為 用於此波長之沈浸流體的主要侯選者(參看例如J H.200848942 IX. INSTRUCTIONS: The present invention relates to a method and apparatus for fabricating a microchip using immersion lithography. 5 10 15 20 C Prior Art 3 Since the invention of the integrated circuit in 1959, the computing power of the microprocessor has doubled every 18 months, and a new generation of microchips will be introduced every three years, every time. The size of the electronic device is reduced. This phenomenon is known as Moore's Law (M〇0re, s law). The performance of microchips is quite large, as is the size of individual circuit components, such as copper and aluminum circuitry in microchips. A microchip typically comprises a complex three-dimensional configuration of alternating and patterned conductors, dielectrics, and thin semiconductor layers. In general, the smaller the circuit, the faster the microchip processing speed, and more operations per unit time. Increased integration density of microchips. Most of the driving speed is due to advances in optical lithography. The industry has chosen this method as a method for producing microchips. The μ曰 positive domain is required to be used in a method of producing a film by optical micro-etching—a shorter wavelength of exposure light. The exposure light is #χ short wavelength is indeed the choice method to increase the resolution. However, = to a shorter wavelength gradually becomes irritating, because it must be designed to work with new exposure tools and materials such as Optics "*’1. This is a difficult job. It will cause problems and delays. Therefore, the chip manufacturer can: delay the introduction of the new exposure wavelength and attempt to exploit the useful life of the alternative technology. The industry has been in existence for some time to consider that Shen 5 200848942 immersion lithography remnant is an effective method for improving the resolution limit of specific exposure wavelengths. The replacement of the bottom layer of the device used to fabricate the microchip here with the air-based fluid between the wafer and the top of the wafer with a photoresist on the top essentially reduces the effective wavelength. See, for example, Patent No. 4,480,910 U.S. Patent No. 6,781,67, and U.S. Patent No. 6,788,477. Preferably, the fluid has a high degree of transparency at least at the wavelength of the exposure light, without affecting the chemistry of the photoresist located on top of the germanium wafer used to fabricate the microchip, and does not degrade the quality of the lens surface. 10 Immersion lithography is feasible for wavelengths such as 248 nm, 193 nm and 157 nm. Because its transparency is 193 nm, the water system is the primary candidate for immersion fluids at this wavelength (see for example J H.

Burnett,S.Kaplan,Proceedings of SPIE,Vol. 5040,Ρ· 1742, 2003年)。由於氟化且以矽氧烷為主之化合物在157奈米的 15優異透明度,此等流體係考慮用於157奈米沈浸式微影蝕 刻。 歐洲專利第1557721號描述具有添加物之沈浸微影蝕 刻流體。該參考案描述主要以水為主之系統。水在193奈米 具有1.44之折射率,使其本身成為用以印刷最細達45奈米 20 之適當流體。如果能夠發展出具有更高折射率之流體,沈 浸技術之應用能夠用以列印甚至更小的特徵。 依照曝光波長,能夠使用各種類型之有機溶劑,不同 類型之線性或環烷烴在紫外光(400奈米以下)與深紫外光 (250奈米以下)區域中顯現出具有非常低的吸收性,且同時 6 200848942 具有一高折射率。在193奈米之曝光波長,不同的有機液體 經報告私出係確實結合高透明度(亦即低吸收率)以及高折 射率。儘官有機流體具有一些優點,其亦具有數個缺點。 此等液體之最重要的缺點係在於諸如折射率之物理性貿傾 5向由於溫度改變而展現出強烈變化。此一折射率對溫度之 變化(dn/dT)並不為業者所樂見,因為其會導致列印影像之 衰退。此外,有機流體在曝露於高能量波長下傾向產生分 解,導致喪失透明度,並從而產生光子暗化 (photo-darkening)。因此,儘管存在一些具有一較高折射率 10之有機流體,但卻由於一些實用方面的問題而尚未能加以 使用。 【發明内容3 本發明之目的係在於提供一種用以藉著使用沈浸式微 影蝕刻製造微晶片之方法,其利用沈浸流體展現進一步的 15解析度增強,該沈浸流體包含一主要流體(host fluid),其具 有至少約為40重量百分比(4〇 wt%)的一有機流體,該有機 流體帶有1.47或更高之折射率,且具有較佳性質。 t實施方式3 令人驚奇地,此目的係以一沈浸流體加以達成,其包 20含帶有一折射率大體上等於純淨主要流體之折射率的顆 粒,該等顆粒係存在約10 wt〇/〇或更多。 令人訝異地’吾人發現能夠藉著散佈些許無機顆粒使 有機流體穩定化,使得折射率隨著溫度之變化減少訐多, 並降低光分解。經發現如此能夠藉由散佈折射率接近或相 7 200848942 同於主要液體之折射率的顆粒理想地加以達成。使顆粒之 折射率與液體配合’導致顯著地緩和如世界專利 2005/050324號中所描述之沈浸流體案例中對於顆粒尺寸 方面的嚴厲需求。另外吾人觀察到的是,散佈帶有與主要 5 液體折射率相同的顆粒係較兩種折射率之間差異甚大的宰 例更為容易。 純淨主要流體以及顆粒之折射率的差異較佳最多約為 〇.〇3或更少,更佳最多約為〇.02或更少,而更佳則最多約為 0.01或更少。 10 在其他實施例中,純淨主要流體之折射率差異係小於 1%,較佳約為0.9%或更少。 有機流體之範例係為各種就其本身而論即係建議作為 沈浸流體之不同類型的流體,諸如烧烴、環式或多環烧烴、 腈烷烴(alkane-nitrile)、以矽氧烷為主之流體或是環碾 (cyclic sulfone)與四氟磺内酯(sultone)化合物,以及來自於 任何含有院烴化合物之氟化變化物。 適合用以作為本發明之沈浸流體中的稀釋液之烷烴較 佳包含6個碳原子或更多碳原子。該等烷烴能夠包含3〇個碳 原子或更少,較佳約為20個碳原子或更少,且甚至更佳為 20 15個碳原子或更少。該等烷烴較佳包含一個或更多環狀構 造,諸如十氫萘、環辛烧、環十二烧(cyclo-dodecane)與類 似物。 含有用以作為本發明之沈浸流體中的稀釋液之化合物 的適合之腈基係為單體、雙體或三體腈化合物。較佳之腈 8 200848942 基包含的化合物係為院基二腈(alkyl-dinitrile)化合物,其具 有5到16個碳原子;或者是帶有腈尾基之支鏈烷烴。腈化合 物之適當範例包括二丁腈(di-nitrile butane)、二腈己燒 (dinitrile-hexane)、二腈辛烧(di-nitrile_octane)、二腈癸燒 5 (di-nitrile-decane)及類似物。 吾人發現例如在193奈米,十氫萘係特別透明,且具有 高折射率。順式十氫萘具有較反式十氫萘更高的折射率。 依照這兩個同質異構物之濃度,十氫萘在193奈米之折射率 可能在1.63與1.65之間變化。 10 該主要流體較佳之存在量係為35體積百分比(35Burnett, S. Kaplan, Proceedings of SPIE, Vol. 5040, Ρ 1742, 2003). Due to the excellent transparency of the fluorinated and azepine-based compound at 157 nm, these flow systems are considered for 157 nm immersion microetching. European Patent No. 1557721 describes immersion lithography fluids with additives. This reference describes a system that is primarily water based. The water has a refractive index of 1.44 at 193 nm, making it a suitable fluid for printing up to 45 nm. If a fluid with a higher refractive index can be developed, the application of the immersion technique can be used to print even smaller features. Depending on the exposure wavelength, various types of organic solvents can be used, and different types of linear or naphthenic hydrocarbons exhibit very low absorption in areas of ultraviolet light (below 400 nm) and deep ultraviolet light (below 250 nm), and At the same time 6 200848942 has a high refractive index. At an exposure wavelength of 193 nm, different organic liquids have been reported to have a combination of high transparency (i.e., low absorption) and high refractive index. There are some advantages to doing organic fluids, which also have several disadvantages. The most important disadvantage of such liquids is that the physical trade rate, such as refractive index, exhibits a strong change due to temperature changes. This change in refractive index versus temperature (dn/dT) is not desirable to the industry because it can result in degradation of the printed image. In addition, organic fluids tend to decompose when exposed to high energy wavelengths, resulting in loss of transparency and, in turn, photo-darkening. Therefore, although there are some organic fluids having a higher refractive index 10, they have not been used due to some practical problems. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for fabricating a microchip by using immersion lithography, which exhibits a further 15 resolution enhancement using an immersion fluid comprising a host fluid It has at least about 40 weight percent (4% by weight) of an organic fluid having a refractive index of 1.47 or higher and having preferred properties. t Embodiment 3 Surprisingly, this object is achieved by an immersion fluid comprising a particle having a refractive index substantially equal to the refractive index of the neat primary fluid, the particles being present at about 10 wt〇/〇. Or more. Surprisingly, we have found that by stabilizing the organic fluid by dispersing some inorganic particles, the refractive index decreases more with temperature and reduces photolysis. It has been found that such a particle can be achieved by scattering particles having a refractive index close to or phase 7 200848942 which is the same as the refractive index of the main liquid. Reinforcing the refractive index of the particles with the liquid' results in a significant mitigation of the stringent requirements for particle size in the case of immersion fluids as described in World Patent 2005/050324. In addition, it has been observed that it is easier to disperse a particle system having the same refractive index as that of the main five liquids than a slug having a large difference between the two refractive indices. The difference in refractive index between the pure primary fluid and the particles is preferably at most about 〇.〇3 or less, more preferably at most about 02.02 or less, and even more preferably at most about 0.01 or less. In other embodiments, the refractive index difference of the neat primary fluid is less than 1%, preferably about 0.9% or less. Examples of organic fluids are, for their part, suggested different types of fluids for immersing fluids, such as hydrocarbons, cyclic or polycyclic hydrocarbons, alkane-nitrile, and alkane. The fluid is either a cyclic sulfone and a sultone compound, and a fluorinated change from any hydrocarbon containing compound. The alkane suitable for use as the diluent in the immersion fluid of the present invention preferably contains 6 carbon atoms or more. The alkane can contain 3 碳 carbon atoms or less, preferably about 20 carbon atoms or less, and even more preferably 20 15 carbon atoms or less. The alkane preferably comprises one or more cyclic structures such as decalin, cyclooctane, cyclo-dodecane and the like. Suitable nitrile groups containing a compound for use as a diluent in the immersion fluid of the present invention are monomeric, dimeric or trimeric nitrile compounds. Preferably, the nitrile 8 200848942 comprises a compound which is an alkyl-dinitrile compound having 5 to 16 carbon atoms; or a branched alkane having a nitrile tail group. Suitable examples of nitrile compounds include di-nitrile butane, dinitrile-hexane, di-nitrile-octane, di-nitrile-decane and the like. Things. I have found that, for example, at 193 nm, decalin is particularly transparent and has a high refractive index. Cis-decahydronaphthalene has a higher refractive index than trans-decahydronaphthalene. Depending on the concentration of these two isomeric isomers, the refractive index of decalin at 193 nm may vary between 1.63 and 1.65. 10 The primary fluid is preferably present in an amount of 35 volume percent (35

Vol·%) 〇 較佳地,該有機流體構成主要流體的約70 wt%或更 多,更佳約為80 wt%或更多,且甚至更佳地,該有機流體 構成主要流體的約95 wt%或更多。主要流體表示沈浸流體 15 之部分(如果扣除顆粒加以量測)在加工狀態係為液體。該有 機流體能夠包含其他的成分,像是例如有機固體或液體之 較大分子,像是例如多環烧烴。這些分子對於折射率11以及 dn/dT能夠具有某些程度的增加效果。有機流體能夠包含較 小分子,諸如乙腈、硫酸、甲醇與其他醇以及水。較小分 20 子能夠使顆粒穩定,並且對於η以及dn/dT具有些許影響。 有機流體較佳能夠不具氧分子以及其他會導致(環)烧烴產 生氧化的分子。如此能夠藉著例如將諸如氦之一鈍氣沸騰 通過該流體加以達成。一般而言,微影蝕刻係在一良好控 制的溫度下(例如2〇°C)加以進行’其他溫度亦為可行,諸如 9 200848942 約o°c或更南的溫度’或者是約紙或更低的溫度。 在本發明之-實施例中,該有機流體包含一種以上的 有機化合物,各種化合物在248、193或157奈米具有約】5 之一折射率,較佳各化合物在該波長具有約L55或更高的 5 一折射率’且更佳至少其中—種有機化合物在該波長具有 約1.6或更高之一折射率。 沈浸流體進-步包含約1〇 wt%或更多之顆粒,該等顆 粒係不會溶解在主要流體中,且因而係散佈成為顆粒。 顆粒之範例包括有機、無機或金屬奈米顆粒。 10 無機顆粒之範例包括:磷酸鹽、聚磷酸鹽、硫酸鹽、 過氯酸鹽、氟化物、氯化物、硼酸鹽、矽酸鹽與鋁酸鹽所 形成如同稍後加以界定之化合物,其中X、丫與2代表以下: X=氫(H),鋰(Li),鈉(Na),鉀(Ka),#a(Rb),鉋(Cs) Y=鈹(Be),鎂(Mg),鈣(Ca),銷(Sr),鋇(Ba) 15 Z=硼(B),鋁(Al) 石粦酸鹽與聚構酸鹽之範例包括:χ3ρ〇4、χ2ΗΡ〇4、 X3P〇4、P2O5與一0-4等價水進行反應、藉由與χ2〇、γ〇或 ζ2ο3、γχρ〇4、υηρο4、(ΧΡ03)6以及其他聚磷酸鹽所獲得 之Ρ2〇5玻璃化合物。 20 矽酸鹽之範例包括:x2so4與YS04。 過氣酸鹽之範例包括:XC104、Y(C104)2與z(cio4)3。 氟化物與氯化物之範例包括:XF、XC1、YF2、YC12、 YXF3 與 ZF3。 硼酸鹽與鋁酸鹽之範例包括:Χ3Ζ03、ΥΧΖ03與Z203。 10 200848942 石夕酸鹽之範例包括:二氧化石夕、石英與x2Sl〇4。 進一步之範例包括各種來自於這些族之混合晶體 璃,像是來_4族與第6族、A卿4F2)之以下範例。 進八祀例包括經過水合作用所獲得的材料,諸如 AI(OH)3 (水蓉土)、Naiis〇4、H2〇。 進例包括主要以氟為主但帶有稀土金屬、 釔、銃與錯的材料,例如γ(紀。 10 該等顆粒較佳包括炫融二氧化石夕、石英、氧化物(諸如 g CaD A12〇3)、尖刺相關(spinal related)材料(諸如Vol. %) Preferably, the organic fluid constitutes about 70 wt% or more of the main fluid, more preferably about 80 wt% or more, and even more preferably, the organic fluid constitutes about 95 of the main fluid. Wt% or more. The primary fluid indicates that part of the immersion fluid 15 (measured if particles are subtracted) is liquid in the process state. The organic fluid can contain other components such as larger molecules such as organic solids or liquids, such as, for example, polycyclic hydrocarbons. These molecules can have some degree of increase in refractive index 11 and dn/dT. Organic fluids can contain smaller molecules such as acetonitrile, sulfuric acid, methanol and other alcohols, and water. A smaller fraction of 20 can stabilize the particles and has a slight effect on η and dn/dT. The organic fluid is preferably capable of not having oxygen molecules and other molecules which cause oxidation of the (ring) hydrocarbons. This can be achieved by, for example, boiling one of the gases such as helium through the fluid. In general, lithography is performed at a well controlled temperature (eg, 2 ° C). Other temperatures are also possible, such as 9 200848942 about o°c or more, or about paper or more. Low temperature. In an embodiment of the invention, the organic fluid comprises more than one organic compound, each compound having a refractive index of about 5% at 248, 193 or 157 nm, preferably each compound having about L55 or more at this wavelength A high 5-refractive index 'and more preferably at least one of the organic compounds has a refractive index of about 1.6 or higher at this wavelength. The immersion fluid further comprises particles of about 1% by weight or more, which are not dissolved in the primary fluid and are thus dispersed into particles. Examples of particles include organic, inorganic or metallic nanoparticles. 10 Examples of inorganic particles include: phosphates, polyphosphates, sulfates, perchlorates, fluorides, chlorides, borates, citrates and aluminates which are formed as defined later, X , 丫 and 2 represent the following: X = hydrogen (H), lithium (Li), sodium (Na), potassium (Ka), #a (Rb), planer (Cs) Y = 铍 (Be), magnesium (Mg) , Calcium (Ca), Pin (Sr), Barium (Ba) 15 Z = Boron (B), Aluminum (Al) Examples of strontium silicate and polyacid salt include: χ3ρ〇4, χ2ΗΡ〇4, X3P〇 4. A ruthenium 2〇5 glass compound obtained by reacting P2O5 with a 0-4 equivalent water by using χ2〇, γ〇 or ζ2ο3, γχρ〇4, υηρο4, (ΧΡ03)6 and other polyphosphates. Examples of 20 citrates include: x2so4 and YS04. Examples of peroxyacid salts include: XC104, Y(C104)2, and z(cio4)3. Examples of fluorides and chlorides include: XF, XC1, YF2, YC12, YXF3 and ZF3. Examples of borate and aluminate include: Χ3Ζ03, ΥΧΖ03 and Z203. 10 200848942 Examples of astragalus salts include: dioxide dioxide, quartz and x2Sl〇4. Further examples include various examples of mixed crystals from these families, such as _4 and 6 and A Qing 4F2. The gossip case includes materials obtained through hydration, such as AI(OH)3 (Hydraulic soil), Naiis〇4, H2〇. Further examples include materials mainly composed of fluorine but having rare earth metals, lanthanum, cerium and lanthanum, such as gamma (10). These particles preferably include sulphur dioxide, quartz, oxides (such as g CaD A12). 〇 3), spike related materials (such as

MgAl2〇4)、石梅石(諸如Lu3Ali5〇i2),各種氣化材料諸如 氟化鋇與KY3F1(),BaLiF3。 透明顆粒能夠由—材料所構成,該材料在248、192或 ⑸奈米之所需微·刻波長具有至少40%之傳播率(對於! 毫米之-理論光線路徑進行量測)。較佳地,此傳播率至少 15係為60 /。,更佳至少為,而更佳至少為9抓最佳為至 少95%。適用之透明顆粒的範例係為透明晶體,例如吨、MgAl2〇4), pyrite (such as Lu3Ali5〇i2), various gasification materials such as barium fluoride and KY3F1(), BaLiF3. The transparent particles can be composed of a material having a propagation rate of at least 40% at a desired micro-etching wavelength of 248, 192 or (5) nanometers (measured for a millimeter-theoretical ray path). Preferably, the propagation rate is at least 15 for 60 /. Preferably, at least, and preferably at least 9 is best at least 95%. Examples of suitable transparent particles are transparent crystals, such as tons,

Al2〇3、MgO與Hf〇2。較佳係使用非結晶Si〇2顆粒、藍寶石 顆粒或是MgO顆粒。 較佳係使用熔融非結晶Si〇2顆粒,其具有至少99 wt% 20之純度,更佳為至少99·5 wt%,且更佳為至少99.9 wt%。以 此方式得到進一步增進透明度的一流體。 適合用於沈浸流體之熔融非結晶Si〇2顆粒的範例係為 Lithsil™糸列產品,較佳為LithsilTMQ〇/l-E193以及 LithsilTMQ〇/i_E248(Schott Lithotec公司之產品),且康寧編 11 200848942 碼7980(康寧公司產品)之HpFS系列的熔融非結晶si〇2係用 於生產製造晶片用的設備之鏡片。此熔融非結晶Si02係非 常純淨,且因而能夠具有超過99%之一透明度。一種生產 此等顆粒之方法係藉由火焰水解法,其對於熟諳此技藝之 5人士而言係為一種已知的方法。 為了增加、熔融非結晶Si02顆粒之折射率,能夠以少量 之適當摻雜元件摻雜該等顆粒,例如鍺。 藉著使用一材料之顆粒能夠獲得非常良好的結果,該 材料對於曝光波長(例如248、193或157奈米之一波長)的輻 10射係鬲度透明,例如對於1毫米的一理論光線路徑進行量測 而具有至少50%的傳播率之材料。 該等顆粒之平均尺寸較佳係約為波長的尺寸或稍小, 車父佳約為2倍小或更小,更佳約為4倍小或更小,而更佳約 為彳°】、或更小’甚至更佳為20倍小或小於對應的曝光波 15 又,其係為該方法中所使用之曝光光線的波長。 奈米顆粒之平均尺寸可約為1000奈米或更小,較佳約 為1〇〇奈米或更小,且較佳約為50奈米或更小,更佳約為30 奈米或更小,更佳約為20奈米或更小,且如果使用一非常 ㈣波長(193奈米或I57奈米),則其較佳具有約10奈米或更 小的尺寸。如此導致沈浸流體之高度透明性,特別是在曝 光光線之波長。約2〇奈米或更小之越小的尺寸在主要液體 &顆粒之間具有_折射率差異的實施例中係特別有用。 顆粒之最小尺寸並非關鍵,且係依照製造方法而定, 車乂〗、的顆粒係更為難以製造。該等顆粒能夠具有〇1奈米之 12 200848942 一最小尺寸’且較佳為1奈米或更大的最小尺寸,更佳約為 2奈米或更大。 對於Ϊ測奈米級顆粒之尺寸而言,該等顆粒係位於以 非常稀薄之混合物方式施加在-表面上的一薄膜中,以致 5於能夠觀察到該層單獨奈米顆粒之〆顯微(例如眼随(場 發射電子掃瞒顯微鏡)或是afm(原子力顯微鏡))攝影影 ’ 像。除了 100奈米以外係隨機選擇訂定尺寸,並且採用平均 # i °如果顆粒具有之長寬比大於卜像是小減、桿狀或是 _狀奈米獅,則尾端到最遠另—尾端的距離。 10 I米顆粒在流體中之體積百分比係約為1G%或更高, 較佳約為20%或更高,更佳約為挪或更高, 而更佳約為 40%或更高。體積百分比最佳係約為5〇%或更高 ,如此導致 產生一具有非常適當性質的流體,諸如低如/(1丁、高透明性 以及使入射光線少量散射。一般而言,該體積百分比係約 15 為80%或更低,更佳約為70%或更低。 • 對於熟諳此技藝之人士係已知如何製造奈米顆粒以及 在沈浸流體中穩定散佈該等奈米顆粒。 為了製備奈米顆粒,能夠使用濕式與固態技術。濕式 方法包括溶膠-凝膠技術、熱液加工、在超臨界流體中進行 2〇 合成、沈澱技術以及微乳化技術。固態技術包括像是火焰/ 電漿技術之氣相法以及機械化學加工。以諸如溶膠·凝膠技 術之濕式方法能夠獲得尤其良好的效果。該溶膠_凝膠反應 能夠在水介質中進行,其中該等顆粒係進行帶電荷平衡 化。反離子係以此一方式加以選擇,以便在對應波長確保 13 200848942 高度之光學透明性,較佳係使用諸如磷酸之含磷反離子。 或者該溶膠-凝膠反應能夠在非水介質中進行,例如烷烴狀 癸烷或是環烷烴狀癸烷。在此案例中,該等奈米顆粒係藉 由添加適當的分散劑而穩定。以此方式係獲得高濃度、從 而具有南折射率以及低黏性。欲確保在深紫外光波長具有 低吸收性,較佳係使用含氟之分散劑。在大氣壓力進行溶 膠-凝膠合成之後,該含有奈米顆粒之流體能夠在壓力環境 下進行加熱,以增加其密度,並改變顆粒之晶體結構。以 此方式,便能夠製造具有諸如高折射率之優異光學性質的 10 顆粒。 另外亦能夠使用火焰水解以及一濕式方法之組合,其 中该等在升高溫度製成之顆粒係直接沈積在諸如水或烷烴 (諸如癸烷或例如十氫萘之環烷烴)的流體中。此方法具有之 優點係在於其能夠避免高純度奈米顆粒之聚料與結塊。 在根據本發明之程序中亦能夠使用一種沈浸流體,其 包各一種以上的有機流體且/或一種以上顆粒之混合物。 在另一較佳實施例中係使用一種包含透明顆粒之流 體,該等顆粒具有之折射率大體上等於流體材料之一混合 物的折射率。 2〇 在另一較佳實施例中係使用一種包含透明顆粒之流 體,該等顆粒在其表面上係以此—方式進行表面功能化, 使其變得能夠在沈浸流體中立即分散。如此係能夠藉著例 如以-表面活性劑移植該等顆粒,較佳為一聚合表面活性 劑。為了分散該等透明顆粒,亦能夠將一表面活性劑添加 14 200848942 到包含該等透明顆粒的沈浸流體。在另—較佳實施例中, 該等顆粒係㈣—具找氧·魏絲以及-_鏈、氣原 子或其他合適基之化合物使其表面功能化。該烧氧石夕氧烧 基可為例如一種三甲氧或雙或者三乙氧基,該脂肪鏈可為 5例,硬脂、異癸、環已醋或正丁基。此一化合物能夠透過 石夕氧燒基與該等顆粒進行反應。位於分子之另-側的疏水 鏈使得顆粒在例如脂肪有機液體中容易分散。 在一較佳實施例中,根據本發明之方法進一步包含的 步驟為: 10 ^直接或間接量測沈浸流體之折射率; b)將任一種有機流體或是任一種顆粒添加到該沈浸流 體,以便將該沈浸流體之折射率調整在一預定值。 以此方式,便能夠補償有機流體或是顆粒由於溫度與 濃度方面之變化所導致的折射率波動。 15 折射率能夠如此直接進行量測。亦能夠量測其中一個 或更夕其他的參數,成為折射率之一種基準。由於沈浸流 體包含帶有-折射率等於流體之折射率的顆粒,故能夠判 定該等顆粒之光線散射,並且添加某些其他流體或是添加 劑,以降低光線散射。添加此一流體能夠藉著使添加流體 2〇與沈浸流體混合而適當地進行。添加額外的顆粒能夠藉著 使位於純淨流體中之一濃縮分散顆粒與沈浸流體相混合而 適當地進行。 在本發明之其他貫施例中,沈浸流體之溫度係加以改 變,以便調整主要流體對於顆粒之折射帛。以此方式,便 15 200848942 能夠容易地修正主要流體與顆粒之間的微小差異。主要流 體之dn/dT—般大體上會較該等顆粒的dn/dT為大。因此, 藉著降低溫度,主要液體之折射率降低會比顆粒的折射率 降低更多。主要流體之dn/dT —般約為-400到-700 ppm·1,而 5 該等顆粒一般具有+70到-30 ppm_1的dn/dT。一ppm係為溫度 每度變化之折射率變化;-400°C_1之一dn/dT表示溫度每增 加1°C便會使折射率降低400 X 10·6(0.0004)。 根據本發明之方法的另一較佳實施例包含之步驟為: a) 在將用以製造一微晶片之後的沈浸流體運送到一清 10 潔單元; b) 清潔該沈浸流體; c) 使經過清潔的沈浸流體循環回到用以製造晶片之程 序。 由於從晶圓之頂部上的光阻劑層萃取成分、曝光步驟 15期間流體成分可能產生的化學變化以及進一步的原因,沈 浸流體將容易遭受污染。如此表示,在將流體使用在本發 明之程序中經過一段時間以後,該流體必須加以更換。然 而,如此會增加流體耗損量,並對於程序經濟性造成負面 影響。令人驚訝地,能夠清潔該流體,並且使該經過清潔 20 之流體循環回到本發明的程序中。 清潔流體能夠藉著使用例如用於微過濾、超過濾、奈 過濾或是逆滲透之薄膜的橫流過濾或是端流過濾加以適當 地進行。如果使用一擾動壓力胞體,則能夠得到良好的效 果。擾動壓力胞體之一範例係描述於世界專利第 16 200848942 2005/050324號中。 另一種能夠使用之清潔技術係為以強酸(諸如硫酸)或 疋驗性/谷液進行沖洗,後續以水進行沖洗,且接著藉著通 過-列CaCWP205進行乾燥。酸、驗或水層能夠與沈浸流 5 體分離,並且包含大多數的污染物。 進一步的清潔能夠藉著以一列活化礬土進行吸收所達 成。如果顆粒能夠抵抗強酸與水,便能夠使用這些技術代 替過濾、。或者僅以此方式對於主要液體進行清潔。 沈浸流體較佳在248、193與157奈米群組的其中一個或 10更多波長通過1公分之路徑長度具有至少1〇%的傳播率,較 佳至少為30%,更佳至少為40%,更佳至少為5〇%,更佳至 少為60%。BaLiFs在193奈米係非常透明,並且在193奈米具 有1.64的折射率。吾人發現到的是,藉著改變順式與反式 異構物之濃度,能夠在十氫萘中散mBaLiF3顆粒,並且符 15合折射率。所產生的散佈顯示幾乎沒有散射,並且使折射 率隨著溫度的變化小了許多。另外則是顯著地抑制了十氫 萘之光分解。 本發明亦有關於一種用於沈浸式微影蝕刻而用以製造 微晶片之設備,其包含沈浸流體。 20 範例 石英奈米晶體之奈米顆粒的散佈能夠藉由一如同奈米 刊物Nano Lett·第3冊第5號(2003年)第655〜659頁中所描述 的熱水合成而產生。使用美國J.A.Woollam股份有限公司所 生產的VUV-VASE橢圓偏光計量測在丨92奈米與248奈米之 17 200848942 折射率。結果係顯示於第1表之中。 ^ 第1表 各種奈米顆粒與十氫萘主要液體在193奈米以及 — 248^j量測之折射率(ri) 產品 溫度(°c) 平均顆粒尺寸 __^奈米) 193奈米之RI 248奈米之RI 非結晶石英 20 50 1.560 1.508 石英晶體 20 20 1.660 1.600 順式十氫萘 31 - 1.645 1.547 反式十氫萘 31 - 1.629 1.534 反式十氫萘 70 - - 1.514 反式十氫萘 50 - 1.524 順式十氫萘 10 - 1.655 5 如表清晰顯示,沈浸流體能夠使其(在適當的溫度)具有 一大體上或準確符合主要流體與顆粒之間的折射率。反式 十氫萘在30°C能夠與石英破璃結合,用於248奈米,但較佳 為在5〇°c ’且更佳為在7(TC。順式十氫萘在193奈米與30°c 能夠與結晶石英結合,但較佳為在1(rc。沈浸流體能夠用 10於一種以248或193奈米之波長為主的沈浸技術而製造微晶 片的設備中。亦能夠使顆粒帶有一折射率,該折射率係在 例如順式與反式十氫萘的折射率之間,並且以使用於主要 流體中的有機流體調整折射率差異。 t固式簡單明】 15 (無) 【主要元件符號說明】 (無) 18Al2〇3, MgO and Hf〇2. It is preferred to use amorphous Si 2 particles, sapphire particles or MgO particles. It is preferred to use molten amorphous Si〇2 particles having a purity of at least 99 wt% 20, more preferably at least 99.5% by weight, and even more preferably at least 99.9% by weight. In this way, a fluid that further enhances transparency is obtained. Examples of molten amorphous Si〇2 particles suitable for use in immersing fluids are LithsilTM tantalum products, preferably LithsilTM Q〇/l-E193 and LithsilTM Q〇/i_E248 (products of Schott Lithotec), and Corning Ed. 11 200848942 The HpFS series of molten non-crystalline si〇2 of Code 7980 (commercial product of Corning) is used to produce lenses for equipment for wafer production. This molten amorphous SiO 2 is very pure and thus can have a transparency of more than 99%. One method of producing such particles is by flame hydrolysis, which is a known method for those skilled in the art. In order to increase and melt the refractive index of the amorphous SiO 2 particles, the particles, such as ruthenium, can be doped with a small amount of suitable doping elements. Very good results can be obtained by using particles of a material that is transparent to the radiation of the exposure wavelength (for example one of 248, 193 or 157 nm), for example for a theoretical ray path of 1 mm. A material that is measured to have a propagation rate of at least 50%. The average size of the particles is preferably about the size of the wavelength or slightly smaller, preferably about 2 times smaller or smaller, more preferably about 4 times smaller or smaller, and more preferably about 彳°, Or smaller 'even more preferably 20 times smaller or smaller than the corresponding exposure wave 15 again, which is the wavelength of the exposure light used in the method. The average size of the nanoparticles may be about 1000 nm or less, preferably about 1 nm or less, and preferably about 50 nm or less, more preferably about 30 nm or more. Small, more preferably about 20 nm or less, and if a very (four) wavelength (193 nm or I57 nm) is used, it preferably has a size of about 10 nm or less. This results in a high degree of transparency of the immersion fluid, especially at the wavelength of the exposed light. A smaller size of about 2 nanometers or less is particularly useful in embodiments having a difference in refractive index between the primary liquid & The minimum size of the granules is not critical and is determined by the method of manufacture, and the granules of the rut are more difficult to manufacture. The particles can have a minimum size of 20081 nm 12 200848942 and preferably a minimum size of 1 nm or more, more preferably about 2 nm or more. For the size of the nanometer-sized particles, the particles are placed in a film applied to the surface in a very thin mixture such that the microstructure of the individual nanoparticles of the layer can be observed ( For example, an eye-following (field-emitting electronic broom microscope) or an afm (atomic force microscope) photographic image. In addition to 100 nm, the size is randomly selected, and the average # i ° is used. If the particle has an aspect ratio larger than that of the image, the tail is the farthest and the other is the farthest. The distance from the end. The volume percentage of the 10 I meter particles in the fluid is about 1 G% or more, preferably about 20% or more, more preferably about or more, and more preferably about 40% or more. The volume percentage is preferably about 5% or higher, which results in a fluid having very suitable properties, such as low as / (1 butyl, high transparency, and a small amount of scattering of incident light. In general, the volume percentage The ratio of about 15 is 80% or less, more preferably about 70% or less. • It is known to those skilled in the art how to make nanoparticles and to stably spread the nanoparticles in a immersion fluid. Nanoparticles can be used in wet and solid state technologies. Wet methods include sol-gel technology, hydrothermal processing, 2-inch synthesis in supercritical fluids, precipitation techniques, and microemulsification techniques. Solid state technologies include flames/ Gas phase method of plasma technology and mechanochemical processing. Particularly good effects can be obtained by a wet method such as a sol-gel technique. The sol-gel reaction can be carried out in an aqueous medium in which the particles are carried out. Charge balancing. The counterion is selected in such a way as to ensure the optical transparency of the height of 13 200848942 at the corresponding wavelength, preferably using phosphorus such as phosphoric acid. Or the sol-gel reaction can be carried out in a non-aqueous medium, such as an alkane-like decane or a cycloalkane-like decane. In this case, the nanoparticles are prepared by adding a suitable dispersant. Stable in this way to obtain high concentration, thus having a south refractive index and low viscosity. To ensure low absorption at deep ultraviolet wavelengths, it is preferred to use a fluorine-containing dispersant. Sol-gel at atmospheric pressure After the synthesis, the nanoparticle-containing fluid can be heated under a pressure environment to increase its density and change the crystal structure of the particles. In this way, it is possible to produce 10 particles having excellent optical properties such as high refractive index. It is also possible to use a combination of flame hydrolysis and a wet process in which the particles produced at elevated temperatures are deposited directly in a fluid such as water or an alkane such as decane or a cycloalkane such as decalin. This method has the advantage that it avoids the agglomeration and agglomeration of high purity nanoparticle. It is also possible to use an immersion fluid in the procedure according to the invention. It comprises a mixture of more than one organic fluid and/or more than one particle. In another preferred embodiment a fluid comprising transparent particles having a refractive index substantially equal to a mixture of one of the fluid materials is used. Refractive index. In another preferred embodiment, a fluid comprising transparent particles is used which is surface functionalized on its surface to enable it to be immediately dispersed in the immersion fluid. Thus, the particles can be grafted, for example, by a surfactant, preferably a polymeric surfactant. To disperse the transparent particles, a surfactant can also be added 14 200848942 to the inclusion of the transparent particles. Immersion of the fluid. In another preferred embodiment, the particles are (4) - a compound having an oxygen-seeking and a - chain, a gas atom or other suitable group to functionalize the surface. The azeoxylate may be, for example, a trimethoxy or di or triethoxy group, and the aliphatic chain may be 5 cases, stearin, isoindole, cycline or n-butyl. This compound is capable of reacting with the particles through a sulphur oxide base. The hydrophobic chain located on the other side of the molecule allows the particles to be easily dispersed in, for example, a fatty organic liquid. In a preferred embodiment, the method according to the present invention further comprises the steps of: 10 ^ directly or indirectly measuring the refractive index of the immersion fluid; b) adding any one of the organic fluids or any of the particles to the immersion fluid, In order to adjust the refractive index of the immersion fluid to a predetermined value. In this way, it is possible to compensate for refractive index fluctuations of the organic fluid or the particles due to changes in temperature and concentration. 15 The refractive index can be measured directly as such. It is also possible to measure one of the other parameters or other parameters as a reference for the refractive index. Since the immersion fluid contains particles having a refractive index equal to the refractive index of the fluid, it is possible to determine the light scattering of the particles and to add some other fluid or additive to reduce light scattering. The addition of this fluid can be suitably carried out by mixing the additive fluid 2〇 with the immersion fluid. The addition of additional particles can be suitably carried out by mixing one of the concentrated dispersed particles in the pure fluid with the immersion fluid. In other embodiments of the invention, the temperature of the immersion fluid is varied to adjust the refractive index of the primary fluid to the particles. In this way, 15 200848942 can easily correct minor differences between the primary fluid and the particles. The dn/dT of the main fluid will generally be larger than the dn/dT of the particles. Therefore, by lowering the temperature, the refractive index of the primary liquid decreases more than the refractive index of the particles. The primary fluid has a dn/dT of about -400 to -700 ppm·1, while 5 of these particles typically have a dn/dT of +70 to -30 ppm_1. One ppm is the change in refractive index per degree of change; one of -400 °C_1 dn/dT means that for every 1 °C increase in temperature, the refractive index is lowered by 400 X 10·6 (0.0004). Another preferred embodiment of the method according to the invention comprises the steps of: a) transporting the immersion fluid after fabrication of a microchip to a cleaning unit; b) cleaning the immersion fluid; c) passing The clean immersion fluid is recycled back to the process used to make the wafer. The immersion fluid will be susceptible to contamination due to the extraction of components from the photoresist layer on top of the wafer, chemical changes that may occur during the exposure step 15, and further causes. This means that the fluid must be replaced after a period of time after the fluid has been used in the procedure of the present invention. However, this increases fluid loss and has a negative impact on program economy. Surprisingly, the fluid can be cleaned and the cleaned 20 fluid recycled back into the procedure of the present invention. The cleaning fluid can be suitably carried out by cross-flow filtration or end-flow filtration using, for example, a membrane for microfiltration, ultrafiltration, filtration or reverse osmosis. If a disturbing pressure cell body is used, good results can be obtained. An example of a disturbing pressure cell is described in World Patent No. 16 200848942 2005/050324. Another cleaning technique that can be used is to rinse with a strong acid (such as sulfuric acid) or a test/cold solution, followed by rinsing with water, and then drying by passing through a column of CaCWP 205. The acid, test or water layer can be separated from the immersion stream and contains most of the contaminants. Further cleaning can be achieved by absorption in a row of activated alumina. If the particles are resistant to strong acids and water, these techniques can be used instead of filtration. Or only clean the main liquid in this way. The immersion fluid preferably has a propagation rate of at least 1%, preferably at least 30%, more preferably at least 40%, over one or more of the 248, 193, and 157 nanometer groups through a path length of 1 cm. Preferably, it is at least 5%, more preferably at least 60%. BaLiFs are very transparent in the 193 nm series and have a refractive index of 1.64 in 193 nm. What we have found is that by changing the concentration of the cis and trans isomers, mBaLiF3 particles can be dispersed in decalin and have a refractive index of 15 . The resulting dispersion shows little scattering and makes the refractive index much smaller with temperature. In addition, the photodecomposition of decalin is remarkably suppressed. The invention also relates to an apparatus for immersive lithography etching for fabricating microchips comprising an immersion fluid. 20 Example The dispersion of nanoparticles of quartz nanocrystals can be produced by a hot water synthesis as described in Nano Publications Nano Lett, Vol. 3, No. 5 (2003), pp. 655-659. The refractive index of 200892 nm and 248 nm 17 200848942 was measured using VUV-VASE ellipsometry produced by J.A. Woollam Co., Ltd., USA. The results are shown in Table 1. ^ Table 1 Various nano particles and decalin main liquid at 193 nm and - 248 ^j measured refractive index (ri) Product temperature (°c) Average particle size __^Nano) 193 nm RI 248 nm RI amorphous quartz 20 50 1.560 1.508 quartz crystal 20 20 1.660 1.600 cis decalin 31 - 1.645 1.547 trans decahydronaphthalene 31 - 1.629 1.534 trans decahydronaphthalene 70 - - 1.514 trans decahydrogen Naphthalene 50 - 1.524 cis decahydronaphthalene 10 - 1.655 5 As clearly shown, the immersion fluid is capable of having (at the appropriate temperature) a refractive index substantially or accurately conforming to the primary fluid to the particle. Trans-decahydronaphthalene can be combined with quartz glass at 30 ° C for 248 nm, but preferably at 5 ° C ' and more preferably at 7 (TC. cis decalin at 193 nm) It can be combined with crystalline quartz at 30 ° C, but preferably in 1 (rc. immersion fluid can be used in an apparatus for manufacturing microchips with an immersion technique based on a wavelength of 248 or 193 nm. The particles have a refractive index between, for example, the refractive indices of cis and trans-decahydronaphthalene, and the refractive index difference is adjusted by the organic fluid used in the main fluid. t solid simple] 15 (none ) [Main component symbol description] (none) 18

Claims (1)

200848942 十、申請專利範圍: L 一種用以藉著使用沈浸式微純刻製造微晶片的方 法,其使用包含—主要流體之沈浸流體,該主要流體具 有至少4G wt%的至少__種有機频,其在193奈米帶: 5約M或更高的一折射率’·並且包含顆粒,該等顆粒帶有 ,大體上等於純淨主要流體之折射率的—折射率,該等顆 粒係存在約10 wt%或更多。 2.如々申請專利範圍第丨項之使用—越成分的方法,其中 忒等顆粒之折射率與主要流體的折射率之間的差異在 193奈米係約為〇⑽或更小。 3·如申請專利範圍第2項之使用一流體成分的方法,其中 该等顆粒之折射率與主要流體的折射率之間的差異在 193奈米係約為〇·〇2或更小。 ΐ5 4·如申請專利範圍第3項之使用-流體成分的方法,其中 遠等顆粒之折射率與主要流體的折射率之間的差異在 I93奈米係約為0.01或更小。 5·如申請專利範圍第1到4項其中任一項之使用一流體成 的方法’其中该主要流體包含至少約40 wt%之至少一 2〇 種有機流體,其帶有約1·6或更高之一折射率。 如申凊專利範圍第1到5項其中任一項之使用一流體成 的方去’其中该主要液體包含(環)烧烴作為有機流體。 如申睛專利範圍第1到5項其中任一項之使用一流體成 分的方法’其中該主要液體包含(部分)氟化之(環)烷烴。 •如申請專利範圍第6項之使用 一流體成分的方法,其中 19 7 200848942 該主要液體係為順式十氫萘、反式十氫萘或是二者之一 混合物。 9·如申請專利範圍第丨到8項其中任一項之使用一流體成 为的方法,其中該等顆粒係為結晶或是非結晶無機材 5 料。 10.如申請專利範圍第9項之使用一流體成分的方法,其中 名等顆粒可為熔融二氧化矽、石英、氧化物(諸如氧化 鎂、氧化鈣、氧化鋁)、尖刺相關材料(諸如MgAi^)、 石榴石(諸如LusAbOi2)、各種氟化材料,諸如氟化鋇與 10 KY3F10、BaLiF3。 11·如申請專利範圍第1〇項之使用一流體成分的方法,其中 該顆粒較佳係為BaLiF3,且主要流體較佳為十氣蔡。 12·如申請專利範圍第1到11項其中任一項之方法,其中該 沈浸流體包含約35 vol%或更多的主要流體,該主要流 15 體包含約90 wt%或更多的有機流體。 I3·如申請專利範圍第1到12項其中任一項之方法,其中該 等顆粒之存在量係約為30 wt%或更多。 14·如申請專利範圍第1到13項其中任一項之方法,其中該 沈浸流體包含奈米顆粒,其尺寸約較曝光光線之波長小 20 2倍或更小。 15·如申請專利範圍第14項之方法,其中該等奈米顆粒具有 約1000奈米或更小的一平均尺寸。 16·如申請專利範圍第1到15項其中任一項之方法,其中該 等奈米顆粒具有約1〇〇奈米或更小的一平均尺寸。 20 200848942 17.如申請專·圍第_6項其中任—項之方法,其中該 沈浸流體包含至少40體積百分比的奈米顆粒。 !8_如申請專利||_W7項其中任—項之方法,其中該 5 t 10 15 等顆粒係為一種材料,其對於1毫米之一理論光線路徑 進行量測具有至少50%的傳播率。 a如申請專職項其中任—項之方法,其中該 方法包含之步驟為: a)在將用以製造一微晶片之後的沈浸流體運送到 一清潔單元; b) 清潔該沈浸流體; c) 使經過清潔的沈浸流體循環回到用以製造晶片 之程序。 2〇· —種用以基於沈浸式微影蝕刻製造為晶片的設備,其中 該設備包含如申請專利範圍第1到19項其中任一項的程 序中所使用的沈浸流體。 21 200848942 七、指定代表圖: (一) 本案指定代表圖為:第()圖。(無) (二) 本代表圖之元件符號簡單說明: 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:200848942 X. Patent Application Range: L A method for manufacturing a microchip by using immersive micro-pure, using an immersion fluid containing a primary fluid having at least 4 G wt% of at least _ organic frequency, It has a refractive index in the 193 nm band: 5 about M or higher and contains particles having a refractive index substantially equal to the refractive index of the pure primary fluid, which is present at about 10 Wt% or more. 2. The method of using the component of the patent application, wherein the difference between the refractive index of the particles and the refractive index of the primary fluid is about 〇(10) or less at 193 nm. 3. A method of using a fluid component as in claim 2, wherein the difference between the refractive index of the particles and the refractive index of the primary fluid is about 193·〇2 or less at 193 nm. The method of using the fluid component of claim 3, wherein the difference between the refractive index of the far particles and the refractive index of the main fluid is about 0.01 or less at the I93 nm system. 5. A method of using a fluid as in any one of claims 1 to 4 wherein the primary fluid comprises at least about 40% by weight of at least one organic fluid having about 1.6 or One of the higher refractive indices. As used in any one of claims 1 to 5, a fluid is used in which the main liquid contains (ring) a hydrocarbon as an organic fluid. A method of using a fluid component as claimed in any one of claims 1 to 5 wherein the main liquid comprises (partially) fluorinated (cyclo)alkane. • A method of using a fluid component as claimed in claim 6 wherein 19 7 200848942 the primary liquid system is cis decalin, trans-decahydronaphthalene or a mixture of the two. 9. A method of using a fluid process as claimed in any one of claims 8 to 8, wherein the particles are crystalline or amorphous inorganic materials. 10. The method of using a fluid component according to claim 9 wherein the particle of the name may be molten cerium oxide, quartz, an oxide (such as magnesium oxide, calcium oxide, aluminum oxide), a spike-related material (such as MgAi^), garnet (such as LusAbOi2), various fluorinated materials such as cesium fluoride and 10 KY3F10, BaLiF3. 11. A method of using a fluid component as claimed in claim 1 wherein the particle is preferably BaLiF3 and the primary fluid is preferably ten gas. The method of any one of claims 1 to 11, wherein the immersion fluid comprises about 35 vol% or more of a main fluid, the main stream 15 comprising about 90 wt% or more of an organic fluid . The method of any one of claims 1 to 12, wherein the particles are present in an amount of about 30 wt% or more. The method of any one of claims 1 to 13, wherein the immersion fluid comprises nanoparticle having a size that is about 20 times or less smaller than the wavelength of the exposure light. The method of claim 14, wherein the nanoparticles have an average size of about 1000 nm or less. The method of any one of claims 1 to 15, wherein the nanoparticles have an average size of about 1 nanometer or less. The method of claim 1, wherein the immersion fluid comprises at least 40 volume percent of nanoparticle. The method of claim 1, wherein the particle of 5 t 10 15 is a material having a propagation rate of at least 50% for measuring one theoretical light path of 1 mm. a method of applying the full-time item, wherein the method comprises the steps of: a) transporting the immersion fluid after manufacturing the microchip to a cleaning unit; b) cleaning the immersion fluid; c) The cleaned immersion fluid is recycled back to the process used to make the wafer. An apparatus for manufacturing a wafer based on immersion lithography, wherein the apparatus comprises the immersion fluid used in the procedure of any one of claims 1 to 19. 21 200848942 VII. Designation of representative representatives: (1) The representative representative of the case is: (). (None) (2) A brief description of the symbol of the representative figure: 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW096140773A 2007-06-07 2007-10-30 A method and an apparatus for producing microchips TW200848942A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/005051 WO2008148411A1 (en) 2007-06-07 2007-06-07 A method and an apparatus for producing microchips

Publications (1)

Publication Number Publication Date
TW200848942A true TW200848942A (en) 2008-12-16

Family

ID=39156109

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096140773A TW200848942A (en) 2007-06-07 2007-10-30 A method and an apparatus for producing microchips

Country Status (2)

Country Link
TW (1) TW200848942A (en)
WO (1) WO2008148411A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134684B2 (en) 2008-02-22 2012-03-13 Sematech, Inc. Immersion lithography using hafnium-based nanoparticles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4219287A1 (en) * 1992-06-12 1993-12-16 Merck Patent Gmbh Inorganic fillers and organic matrix materials with refractive index adjustment
EP1685446A2 (en) * 2003-11-05 2006-08-02 DSM IP Assets B.V. A method and apparatus for producing microchips

Also Published As

Publication number Publication date
WO2008148411A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
US20070105050A1 (en) Method and apparatus for producing microchips
Kalo et al. Large scale melt synthesis in an open crucible of Na-fluorohectorite with superb charge homogeneity and particle size
Bezerra et al. Structural and optical study of CaF2 nanoparticles produced by a microwave-assisted hydrothermal method
CN107209293B (en) Materials, assemblies and methods for photolithography using extreme ultraviolet radiation, and other applications
US20080170979A1 (en) Method for Making Alkali Resistant Ultra Pure Colloidal Silica
US20090201478A1 (en) Transmitting optical element and objective for a microlithographic projection exposure apparatus
Yang et al. Ultrafast direct laser writing of 2D materials for multifunctional photonics devices
CN107367900A (en) With the EUV in photoetching and other application associated with material, component and method
Thijssen et al. Characterization of photonic colloidal single crystals by microradian x‐ray diffraction
Rothschild et al. Recent trends in optical lithography
Huang et al. Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4: Yb, Er (Tm)/FC transparent nanocomposite thin films
TW200848942A (en) A method and an apparatus for producing microchips
Choi et al. Effect of ceria abrasive synthesized by supercritical hydrothermal method for chemical mechanical planarization
JP2005503313A (en) UV light transmitting fluoride crystal for photolithography
JP5606100B2 (en) Glass composition and optical device using the same
JP2011037677A (en) Composition and carbon nanotube-containing film
Castañeda-Uribe et al. Fabrication and optical characterization of a high-quality fcc-opal-based photonic crystal grown by the vertical convective self-assembly method
Moon et al. Room temperature chemical vapor deposition for fabrication of titania inverse opals: Fabrication, morphology analysis and optical characterization
WO2008080521A2 (en) Immersion fluid and method for producing microchips
Chumanov et al. Nanocomposite liquids for 193 nm immersion lithography: a progress report
US20080063982A1 (en) Fluids and methods of forming thereof
Miyata Chemically prepared silica films with single crystalline mesoporous structures
JP2007234704A (en) Liquid for liquid immersion lithography process, and resist-pattern forming method using same
JP2007157757A (en) Liquid for liquid immersion exposure process, and method of forming resist-pattern using same
Costner et al. New high-index fluids: exploiting anomalous dispersion for immersion lithography