TW200848778A - Wide lens - Google Patents

Wide lens Download PDF

Info

Publication number
TW200848778A
TW200848778A TW96121846A TW96121846A TW200848778A TW 200848778 A TW200848778 A TW 200848778A TW 96121846 A TW96121846 A TW 96121846A TW 96121846 A TW96121846 A TW 96121846A TW 200848778 A TW200848778 A TW 200848778A
Authority
TW
Taiwan
Prior art keywords
lens
wide
angle
lenses
image
Prior art date
Application number
TW96121846A
Other languages
Chinese (zh)
Other versions
TWI351529B (en
Inventor
Sayuri Noda
Original Assignee
Largan Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Largan Precision Co Ltd filed Critical Largan Precision Co Ltd
Priority to TW96121846A priority Critical patent/TWI351529B/en
Publication of TW200848778A publication Critical patent/TW200848778A/en
Application granted granted Critical
Publication of TWI351529B publication Critical patent/TWI351529B/en

Links

Landscapes

  • Lenses (AREA)

Abstract

A wide lens from the object side comprises a first lens element, a second lens element, a third lens element, an aperture stop and a fourth lens element. With the above-mentioned four lens elements, even if the field of view can reach up to 140 degree, such a wide lens can avoid the extreme bent portions in a periphery of the image, and the image has high sharpness which is applicable to monitor and car lens.

Description

200848778 - 九、發明說明: 【發明所屬之技術領域】 本發明為一種廣角鏡頭,其具有依序排列的第一鏡片、 第二鏡片、第三鏡片、光圈及第四鏡片,且特別是指一種適 用在監視器或汽車上等固體取像用,視角高達140。的超廣 角鏡頭。 【先前技術】200848778 - IX. Description of the Invention: [Technical Field] The present invention is a wide-angle lens having a first lens, a second lens, a third lens, an aperture and a fourth lens arranged in sequence, and particularly refers to a suitable Solid image capture on monitors or cars, with a viewing angle of up to 140. Super wide-angle lens. [Prior Art]

長太長且重量太重的問題。 因此,P ---------The problem is that the length is too long and the weight is too heavy. Therefore, P ---------

只要4到5片鏡片, 只要3到4片鏡片,鏡頭視 ’鏡頭視角120。以上時,只 術普及化,便有許多小 球面鏡片後,鏡頭視角 角100°時,只要4到丨 5 200848778 , 要5到6片鏡片,可知鏡頭的確已朝向小型且輕量化邁進; 此外,如已公開的專利案:曰本專利特開2003-307674 的超廣角鏡頭、日本專利特開2005-227426的廣角鏡頭、曰 本專利特開2006-146016的廣角鏡頭、日本專利特開 2006- 292988的廣角鏡頭及取像裝置、日本專利特開 2007- 025499的光學裝置,其所使用的鏡片數量的確已降低 至4到5片,所以小型及輕量化是確定的; f 不過這些廣角鏡頭,其影像歪曲的問題仍然存在,一般 的鏡頭,通常是以y、f · tana的射影方式為基礎來補正成 像的歪曲,^為像素的像高,f為焦距,ω為半視角,其他 射影方式還有立體射影方式:y、2f · tan ( ω/2)、等距離 射影方式:y' = f· ω、等立體角射影方式:y、2f*sin(6J /2)及正射影方式:y、2f.sin6J,不過由這些公式,都可 推得在固定焦距f下,隨著視角與半視角ω的增加,像素的 I 像高〆也會隨之增加,當y'的值太大時,便無法在晝面内 形成完整的成像,必須壓縮其周邊的影像才可將成像完整呈 現在晝面内,但這便造成成像周邊的影像是難以辨別的,若 用在監視器上,可能因周邊影像模糊而無法看清犯人臉孔, 若用在汽車的倒車監視系統上,可能因周邊影像模糊使駕駛 人忽略而撞上物品或孩童; 雖說然目前影像處理的技術相當進步,鏡頭存在的歪曲 6 200848778 收差可用影像處理的技 免合失直,但在經處理過後的影像難 / ^夠直接避免周邊影像壓__缺陷,廣角 I兄頭的發展還是_片扫 /、角 〜主故本發明人以自身在鏡頭領域研 九夕年的經,驗,間恭Φ 一 ^ u出-種可避免極端的影像歪曲,且成 具有咼鮮銳度的廣角鏡頭。 【發明内容】 本發明在提供-種廣角鏡頭,其包含四鏡片及一光圈, 且由物侧至像侧依序排列為第—鏡片、第二鏡片、第 片、光圈及第四鏡片,且第—鏡片及第二鏡片是凸面向= 側的負半彎月形鏡片,第三鏡片及第四鏡片是兩面皆為凸面 的鏡片,另外該第—鏡片、第二鏡片及第三鏡片的鏡面中, 有叙面為非球面,且該第四鏡片的兩面鏡面皆為非球 面’由如此鏡片的配置’便能夠用最少的鏡片數達到補正收 差的效果; 且=廣角鏡頭在視角140。時,入射的光線會受該第一 f片及第二鏡片的負麟力作用,而以較緩和的角度射入該 第-鏡片’但由該第二鏡片射出的光線具有負歪曲收差、非 點收錢倍率色收差,其可由該第三鏡片及第四鏡片的正屈 折力來補正,故可知即使在視角14G。的超廣角條件下,本 發明的廣角鏡頭也能以最低數量的四片鏡片,來避免成像周 200848778 圍極:^而的影像歪曲,且成像可具有高鮮銳度。 此外,在該第-鏡片到第三鏡片的合成焦距為―,而 該廣角鏡頭整體焦距為f時,要滿足下列關係式·· -15· 0 < f 123/f < —8· 0 因為當Wf>-8. 〇時,該第一鏡片及第二鏡片的負屈 折力會太大’使成像周邊的影像壓縮過大,就必須使用影像 處理的技術來補正;當fl23/f<_15 G時,為導人視角14〇。 的光線,該第-鏡片的賴就必需相對的增加,如此便會提 升鏡頭小型化的困難度。 虽該第四鏡片焦距為㈣,要滿足下列關係式: -6· 5< f123/f4<—3. 〇 因為當fl23/f4>-3.〇時,該第四鏡片的正屈折力會降 冬’便热法完全補正負歪缝差,必須使用影像處理補正; =3/4<~6.5時’該第四鏡片的正屈折力會變的太高,必 及要增加—片鏡片才能夠成像。 鏡面曲4=:7物:的鏡面曲率半…,像側的 為r6日守,要滿足下列關係式: (r6+r5) / (r6-r5) <1.〇 200848778 因為(r6+r5) / (r6-r5) >1.0 日士 會變小,雖在補正歪曲收差上有助益,^的曲率半徑 像差收差的補正效果卻反而降低點^及慧星 低;當(,"一◦:二成^ 正的歪曲收差。 …会達成需要補 立以亥第四鏡片接近物侧的鏡面曲率半徑為^,像侧的 叙面曲率半徑為"時,要滿足下列關係式: 、 -〇.55< (r9+r8) / (r9-r8) <-0.45 正/i(r9+r8)/(r9—r8)>韻時,球面收差的補 …足;當(”_(,9,)《。.55時,球面收差 的補正會過多,晝財央成像的影料銳度會變的很低。 【實施方式】 本發明廣角鏡頭的實施例如第丨圖至第7 湘在視角約⑽。的鏡頭,可應用在監視器或汽車上:而寸 :1A圖至$ 7A圖為該廣角鏡頭各種實施方式的示意圖,★亥 廣角鏡頭立由物侧至像側依序排列為第-鏡片i、第二鏡片 2、第三鏡片3、光圈5、第四鏡片4、遽片6、玻璃罩7及 成像面8,其中: 。亥第一叙片1為凸面朝向物側的負半彎月形鏡片,該第 200848778 二鏡片2為凸面朝向物側的負半彎月 干弓料叙片,該第三鏡片3 ―面^為凸面的鏡片’該第四鏡片為兩面皆為凸面的鏡 片,且該四鏡片卜2、3、4皆為_材料以節省材料成本, 另外該第-鏡片卜第二鏡片2及第三鏡片3的鏡面中,至 少有四個鏡面為非球面的鏡面,而該第四鏡片4的兩鏡面皆 為非球面的鏡面,該濾片6及該_罩7皆由平面_構 成’該濾片6用以阻隔紅外線’該玻璃罩7設置在該成像面 8以保護CCD或CMOS等構件; 而在實施例中,分別以L1 (入射角r)、L2 (入射角 21°)、L3(入射角35d)、L4(入射角42。)、[5 (入射角仙 L)、L6(入射角56。)47(入射角63〇)、L8(入射角7〇。) 等乂種光、、泉人射角度射人該廣角鏡頭,並成像於該成像面8 上,而由圖式上可得知,成像的周邊影像並沒有極端壓縮, 而月b夠成型車乂凡整且正確的成像,且成像更具高鮮銳度; 而第1B圖至第7B圖為相應該第1A圖至第7A圖的收差 圖’其中(a)為球面收差的曲線圖,其中◦線、d線、e線、 F線及g線分別代表不同波長光的球面收差,單位為腿,(b) 為非點收差的曲線圖,表示不同波長光的非點收差大小,單 位為mm ’且S代表水平的收差,τ代表垂直的收差,(c)為 歪曲收差的曲線圖,表示不同波長光的歪曲收差大小,單位 為%’且由圖中可知’該廣角鏡頭已將各種收差補正到足以 10 200848778 , 實用的程度。 在下歹J各男、施例中,該廣角頭 值為FN0.,視 的焦距為{,光圈 角為2ω,並由物側開始 各個鏡面依序編號, ^亥廣角鏡頭的 二鏡片2的… 鏡面為L該第 兄月2的鏡面為幻 該井圃“… 哀弟-叙片3的鏡面為S5、S6, 。亥先圈5的鏡面為S7, 滹片6 Mm cm X乃4的鏡面為S8、S9,該 =L S11’該玻璃罩7的鏡面為犯'如, 非球面叙面的公式為·· x=(i/R)HV{i+[i_(1+K) (H/R)2]-}+Ar+BH6+CH8+DHl0 弁/、B、C、D為非球面係數,H為光軸開始的高度,X為 先軸方向的變位’且x為面頂點的基礎,r為近軸曲率半徑, K為圓錐錄,而舰tE代表科學記號,如e_q3表示ι〇3. 在第1A圖的實施例中,u〇.868mm,FN〇.為28,2 〇為140,且各鏡面的曲率半徑“單位麵)、面間隔d(單 位_)、屈折率nd及逆分散率vd如下列表^所示: 11 200848778 r d nd vd S1 37.482 1. 658 1. 53 56. 3 S2 5. 1 2.481 S3 13· 033 0. 703 1. 53 56. 3 S4 1. 3516 1. 098 S5 3. 094 3. 316 1. 63 23.4 S6 -50· 05 1. 076 S7 〇〇 0. 768 S8 3. 6223 2. 668 1. 53 56. 3 S9 -1·084 0. 549 S10 〇〇 0· 3 BSC7 S11 〇〇 0. 22 S12 〇〇 0.4 BSC7 S13 〇〇 表ΙΑ 表1Β所示為各鏡面的非球面係數,且除了該第一鏡片 1的鏡面S1為球面鏡面,該第一鏡片1的鏡面S2及其餘鏡 片2、3、4的鏡面S3、S4、S5、S6、S8、S9皆為非球面鏡 面,而K、A、B、C、D的數值如下列表1B所示: S2 S3 S4 S5 K -0.30617 K -130.592 K -2.22925 K 0.014399 A -1.4258E-04 A 2.06049E-05 A 0·019928 A 2.69735E-03 B -1.7796E-05 B 3.69527E-05 B -5.8237E-04 B -1.5359E-04 C -3.9258E-07 C -2.1735E-06 C 6.74317E-05 C 1.34546E-05 D -2.2476E-08 D 2.55094E-08 D 7.26238E-07 D 0. 0000 S6 S8 S9 表IB K 0.0000 K -10.2785 K -2.16306 A 0. 010417 A -2.5238E-03 A -0.014978 B -7.4480E-05 B 2.85871E-03 B 2.66345E-03 C -1.2656E-04 C -6.7331E-04 C 1. 1 0642E-04 D 0.0000 D 3.18772E-05 D -6.4109E-05 12 200848778 ' 且此貝施例中,該四鏡片1、2、3、4皆由塑膠所製, 遠遽片6及玻璃罩7為無色光學玻璃⑽⑺製成。 在第2A圖的實施例中,f為0.881mm,F N0·為2.8,2 ω為140°,各鏡面的曲率半徑r (單位腿)、面間隔d (單As long as 4 to 5 lenses, as long as 3 to 4 lenses, the lens looks at the lens angle of view 120. When the above is popular, there are many small spherical lenses. When the angle of view of the lens is 100°, as long as 4 to 丨5 200848778, 5 to 6 lenses are required, and the lens is indeed small and lightweight. For example, the disclosed patent case: the ultra wide-angle lens of Japanese Patent Laid-Open No. 2003-307674, the wide-angle lens of Japanese Patent Laid-Open No. 2005-227426, the wide-angle lens of Japanese Patent Laid-Open No. 2006-146016, and the wide-angle lens of Japanese Patent Laid-Open No. 2006-292988 The image pickup device, the optical device of Japanese Patent Laid-Open No. 2007-025499, has indeed reduced the number of lenses used to 4 to 5 pieces, so the size and weight are determined; f However, the problem of image distortion of these wide-angle lenses is still Existence, the general lens, usually based on the projection method of y, f · tana to correct the distortion of the image, ^ is the image height of the pixel, f is the focal length, ω is the half angle of view, and other projection methods also have stereoscopic projection: y, 2f · tan ( ω/2), equidistant projection method: y' = f · ω, and other solid angle projection methods: y, 2f * sin (6J /2) and orthophotograph: y, 2f.sin6J, but These formulas can be derived at a fixed focal length f. As the angle of view and the half angle of view ω increase, the I image height of the pixel increases. When the value of y' is too large, it cannot be in the plane. To form a complete image, the image of the surrounding area must be compressed to display the image completely inside the surface, but this makes the image around the image difficult to distinguish. If it is used on a monitor, it may not be visible because the surrounding image is blurred. Clear prisoner's face, if used in the car's reversing surveillance system, may cause the driver to ignore the object and ignore the child because of the blurring of the surrounding image; although the current image processing technology is quite advanced, the distortion of the lens exists 6 200848778 Image processing technology is not straightforward, but after processing the image is difficult / ^ enough to directly avoid the surrounding image pressure __ defects, the development of wide-angle I brothers is still _ film sweep /, angle ~ the main inventor himself In the field of the lens, the study of the nine years of the year, the test, the difference between the two, can avoid extreme image distortion, and into a wide-angle lens with sharp sharpness. SUMMARY OF THE INVENTION The present invention provides a wide-angle lens comprising four lenses and an aperture, and sequentially arranged from the object side to the image side as a first lens, a second lens, a second lens, an aperture, and a fourth lens, and - the lens and the second lens are negative half meniscus lenses convexly facing the side, the third lens and the fourth lens are lenses having convex surfaces on both sides, and the mirrors of the first lens, the second lens and the third lens are The face is aspherical, and the mirrors on both sides of the fourth lens are aspherical 'by the arrangement of the lens', the effect of correcting the difference can be achieved with a minimum number of lenses; and = the wide-angle lens is at the angle of view 140. The incident light is affected by the negative force of the first f-sheet and the second lens, and is incident on the first lens ' at a gentle angle, but the light emitted by the second lens has a negative distortion. The non-point payout magnification color difference is corrected by the positive refractive power of the third lens and the fourth lens, so that it is known that the viewing angle is 14G. Under the super wide-angle condition, the wide-angle lens of the present invention can also avoid the image distortion of the imaging week 200848778 with a minimum number of four lenses, and the imaging can have high sharpness. In addition, when the combined focal length of the first to third lenses is ―, and the overall focal length of the wide-angle lens is f, the following relationship is satisfied: -15· 0 < f 123/f < —8· 0 because When Wf>-8. ,, the negative refractive power of the first lens and the second lens will be too large to make the image around the imaging image too large, and it must be corrected by using image processing technology; when fl23/f<_15 G At the time of the guide, 14〇. The light of the first lens must be relatively increased, which will increase the difficulty of miniaturizing the lens. Although the focal length of the fourth lens is (4), the following relationship is satisfied: -6· 5<f123/f4<-3. 〇Because when fl23/f4>-3.〇, the positive refractive power of the fourth lens will decrease. Winter's heat method completely corrects the negative quilting difference, and must be corrected by image processing; =3/4<~6.5' The positive refractive power of the fourth lens will become too high, and it must be increased. Imaging. Mirror surface 4 =: 7 objects: the mirror curvature half..., the image side is r6 day guard, to satisfy the following relationship: (r6+r5) / (r6-r5) <1.〇200848778 because (r6+r5 ) / (r6-r5) >1.0 The Japanese will become smaller, although it is helpful in correcting the distortion of the distortion, the correction effect of the curvature radius aberration of ^ is reduced by the point ^ and the comet is low; , "一◦:20%^正歪曲收差. ... will achieve the need to make up the fourth lens to the object side of the mirror surface radius of curvature ^, the image side of the face radius of curvature is "quote, to meet The following relation: , -〇.55< (r9+r8) / (r9-r8) <-0.45 positive /i(r9+r8)/(r9-r8)> rhyme, spherical compensation... When ("_(,9,)"..55, the correction of the spherical aberration will be excessive, and the sharpness of the image of the image will be very low. [Embodiment] The implementation of the wide-angle lens of the present invention is, for example, From the third to the seventh, the angle of view (10) can be applied to a monitor or a car: and the inch: 1A to $7A is a schematic diagram of various embodiments of the wide-angle lens, and the wide-angle lens is placed from the object side to the object side. The side of the image is arranged in order - The sheet i, the second lens 2, the third lens 3, the aperture 5, the fourth lens 4, the cymbal 6, the glass cover 7, and the imaging surface 8, wherein: the first slice 1 is a negative half of the convex surface facing the object side The meniscus lens, the second lens 2 is a negative half-bend dry bow material with a convex surface facing the object side, and the third lens 3 is a convex lens. The fourth lens is convex on both sides. The lens, and the four lenses 2, 3, and 4 are all materials to save material cost, and in the mirror surface of the second lens 2 and the third lens 3, at least four mirror surfaces are aspherical mirrors. The mirrors of the fourth lens 4 are aspherical mirrors, and the filter 6 and the cover 7 are both formed by a plane _ which is used to block infrared rays. The glass cover 7 is disposed on the imaging surface. 8 to protect members such as CCD or CMOS; and in the embodiment, respectively, L1 (incident angle r), L2 (incident angle 21°), L3 (incident angle 35d), L4 (incident angle 42), [5 ( Incident angles L), L6 (incident angle 56.) 47 (incident angle 63 〇), L8 (incident angle 7 〇.), etc., and the angle of the person shooting the wide-angle lens Like on the imaging surface 8, as can be seen from the drawing, the peripheral image of the image is not extremely compressed, and the moon b is enough to form a holographic and correct image, and the image is more sharp and sharp; Figures 7B are graphs corresponding to the 1A to 7A graphs, wherein (a) is a spherical aberration graph, wherein the ◦ line, the d line, the e line, the F line, and the g line respectively represent different The spherical surface of the wavelength light is divided by the leg, and (b) is a graph of the non-point difference, indicating the non-point difference of the light of different wavelengths, the unit is mm ' and S represents the horizontal difference, and τ represents the vertical The difference is (c) is the curve of the distortion of the distortion, indicating the distortion of the different wavelengths of light, the unit is %' and it can be seen from the figure that the wide-angle lens has corrected various losses to enough for 10200848778, practical degree . In the lower jaw J males, in the example, the wide-angle head value is FN0. The apparent focal length is {, the aperture angle is 2ω, and the respective mirrors are numbered sequentially from the object side, and the two lenses of the wide-angle lens are... For the mirror of the second brother's month 2 is the illusion of the well 圃 "... The mirror of the mourning brother - the syllabary 3 is S5, S6, the mirror of the syllabary 5 is S7, the mirror of the cymbal 6 Mm cm X is 4 S8, S9, the =L S11' the mirror surface of the glass cover 7 is a crime. For example, the formula for the aspherical surface is ·· x=(i/R)HV{i+[i_(1+K) (H/R 2]-}+Ar+BH6+CH8+DHl0 弁/, B, C, D are aspheric coefficients, H is the height at which the optical axis starts, X is the displacement in the first axis direction, and x is the basis of the surface vertices r is the paraxial radius of curvature, K is the conical record, and ship tE represents the scientific notation, as e_q3 represents ι〇3. In the embodiment of Figure 1A, u〇.868mm, FN〇. is 28,2 〇 140, and the radius of curvature "unit surface", the interplanar spacing d (unit_), the inflection rate nd, and the inverse dispersion ratio vd of each mirror surface are as follows: 11 200848778 rd nd vd S1 37.482 1. 658 1. 53 56. 3 S2 5. 1 2.481 S3 13· 033 0. 703 1. 53 56. 3 S4 1. 3516 1. 098 S5 3. 094 3. 316 1. 63 23.4 S6 -50· 05 1. 076 S7 〇〇0. 768 S8 3. 6223 2. 668 1. 53 56. 3 S9 -1·084 0. 549 S10 〇〇0· 3 BSC7 S11 〇〇0. 22 S12 〇〇0.4 BSC7 S13 〇〇表ΙΑ Table 1Β shows the aspherical coefficients of the mirrors, and the mirror surface S2 of the first lens 1 except that the mirror surface S1 of the first lens 1 is a spherical mirror surface The mirrors S3, S4, S5, S6, S8, and S9 of the remaining lenses 2, 3, and 4 are all aspherical mirrors, and the values of K, A, B, C, and D are as shown in Table 1B below: S2 S3 S4 S5 K -0.30617 K -130.592 K -2.22925 K 0.014399 A -1.4258E-04 A 2.06049E-05 A 0·019928 A 2.69735E-03 B -1.7796E-05 B 3.69527E-05 B -5.8237E-04 B -1.5359 E-04 C -3.9258E-07 C -2.1735E-06 C 6.74317E-05 C 1.34546E-05 D -2.2476E-08 D 2.55094E-08 D 7.26238E-07 D 0. 0000 S6 S8 S9 Table IB K 0.0000 K -10.2785 K -2.16306 A 0. 010417 A -2.5238E-03 A -0.014978 B -7.4480E-05 B 2.85871E-03 B 2.66345E-03 C -1.2656E-04 C -6.7331E-04 C 1. 1 0642E-04 D 0.0000 D 3.18772E-05 D -6.4109E-05 12 200848778 ' And in this case The four lenses 1, 2, 3, and 4 are made of plastic, and the distal sheet 6 and the glass cover 7 are made of colorless optical glass (10) (7). In the embodiment of Fig. 2A, f is 0.881 mm, F N0· is 2.8, 2 ω is 140°, and the radius of curvature r (unit leg) of each mirror surface, the surface spacing d (single

下列表2B為各鏡面的非球面係數,此實施例中除了該 第一鏡片1的鏡面S1為球面鏡面,其鏡面S2及其餘鏡片2、 3、4的鏡面S3、S4、S5、S6、S8、S9皆為非球面鏡面,且 此實施例中’該四鏡片1、2、3、4皆由塑膠所製,該濾片 6及玻璃罩7為無色光學玻璃(BSC7)製成: 13 200848778 S2 S3 S4 S5 K -0.29195 K -307.964 K -2.26337 K 0.131281 A -3.6889E-04 A -2.8127E-05 A 0.023806 A 1.66395E-03 B -3.3492E-05 B 5.64126E-05 B -1. 0143E-03 B -2.2361E-04 C -9.0847E-07 C -4.1176E-06 C 1.67306E-04 C 2.78828E-05 D -5.1873E-08 D 5.76249E-08 D 1.12956E-05 D 0. 0000 S6 S8 S9 表2B K 0.00000 K -8.24701 K -2.28854 A 7.14915E-03 A -7.1405E-03 A -2·06280E-02 B 7.43519E-05 B 4.32695E-03 B 4.03999E-03 C -2.4614E-04 C -1.1861E-03 C 1.91367E-04 D 0.0000 D 4.46248E-05 D -1. 6005E-04 在第3A圖的實施例中,f為0. 885mm,F NO.為2. 8,2 ω為140°,各鏡面的曲率半徑r (單位mm)、面間隔d (單 位腿)、屈折率nd及逆分散率vd如下列表3A所示:The following table 2B is the aspherical coefficient of each mirror surface. In this embodiment, except that the mirror surface S1 of the first lens 1 is a spherical mirror surface, the mirror surface S2 and the mirror surfaces S3, S4, S5, S6, and S8 of the remaining lenses 2, 3, and 4 Both S9 and S9 are aspherical mirrors, and in this embodiment, the four lenses 1, 2, 3, and 4 are made of plastic, and the filter 6 and the cover glass 7 are made of colorless optical glass (BSC7): 13 200848778 S2 S3 S4 S5 K -0.29195 K -307.964 K -2.26337 K 0.131281 A -3.6889E-04 A -2.8127E-05 A 0.023806 A 1.66395E-03 B -3.3492E-05 B 5.64126E-05 B -1. 0143E -03 B -2.2361E-04 C -9.0847E-07 C -4.1176E-06 C 1.67306E-04 C 2.78828E-05 D -5.1873E-08 D 5.76249E-08 D 1.12956E-05 D 0. 0000 S6 S8 S9 Table 2B K 0.00000 K -8.24701 K -2.28854 A 7.14915E-03 A -7.1405E-03 A -2·06280E-02 B 7.43519E-05 B 4.32695E-03 B 4.03999E-03 C -2.4614E -04 C -1.1861E-03 C 1.91367E-04 D 0.0000 D 4.46248E-05 D -1. 6005E-04 In the embodiment of Fig. 3A, f is 0. 885mm, F NO. is 2. 8. 2 ω is 140°, the radius of curvature r (in mm) of each mirror surface, the surface spacing d (unit leg), and The folding rate nd and the inverse dispersion rate vd are as shown in Table 3A below:

r d nd vd SI 38.075 1. 658 BSC7 S2 4. 1006 2.481 S3 2· 6583 0. 703 1.53 56· 3 S4 0.9793 1. 098 S5 3· 0961 3. 316 1. 63 23.4 S6 -139. 7 1· 076 S7 OO 0. 768 S8 3· 3993 2. 668 1. 53 56· 3 S9 -1. 104 0. 549 S10 OO 0· 3 BSC7 Sll CO 0. 22 S12 CO 0.4 BSC7 S13 CORd nd vd SI 38.075 1. 658 BSC7 S2 4. 1006 2.481 S3 2· 6583 0. 703 1.53 56· 3 S4 0.9793 1. 098 S5 3· 0961 3. 316 1. 63 23.4 S6 -139. 7 1· 076 S7 OO 0. 768 S8 3· 3993 2. 668 1. 53 56· 3 S9 -1. 104 0. 549 S10 OO 0· 3 BSC7 Sll CO 0. 22 S12 CO 0.4 BSC7 S13 CO

表3A 14 200848778 下列表3B所示為各鏡面的非球面係數,此實施例中該 三鏡片2、3、4的鏡面S3、S4、S5、S6、S8、S9皆為非球 面鏡面: S3 S4 S5 K -8.3267 K -1. 8369 K -0.0685 A -4, 5736E-04 A 0. 018663 A 4.67170E-03 B 1.5069E-04 B -2. 0060E-03 B -7.8960E-04 C -6.8544E-06 C 7. 20489E-06 C 7.92671E-06 D 2.8798E-07 D 2.5550E-06 D 0.0000 S6 S8 S9 K 0.0000 K -17. 4520 K -2. 1555 A 6.48199E-03 A 1.0251E-02 A -1.6781E-02 B 3.0247E-03 B -9.9380E-04 B 2.7050E-03 C -1.1447E-04 C -1.0893E-04 C 4.99743E-04 D 0.0000 D -1.1820E-05 D -1.2380E-04Table 3A 14 200848778 Table 3B below shows the aspherical coefficients of the mirrors. In this embodiment, the mirrors S3, S4, S5, S6, S8, and S9 of the three lenses 2, 3, and 4 are all aspherical mirrors: S3 S4 S5 K -8.3267 K -1. 8369 K -0.0685 A -4, 5736E-04 A 0. 018663 A 4.67170E-03 B 1.5069E-04 B -2. 0060E-03 B -7.8960E-04 C -6.8544E -06 C 7. 20489E-06 C 7.92671E-06 D 2.8798E-07 D 2.5550E-06 D 0.0000 S6 S8 S9 K 0.0000 K -17. 4520 K -2. 1555 A 6.48199E-03 A 1.0251E-02 A -1.6781E-02 B 3.0247E-03 B -9.9380E-04 B 2.7050E-03 C -1.1447E-04 C -1.0893E-04 C 4.99743E-04 D 0.0000 D -1.1820E-05 D -1.2380 E-04

表3B 且此實施例中,該三鏡片2、3、4皆由塑膠所製,該第 一鏡片1、濾片6及玻璃罩7為無色光學玻璃(BSC7)製成。 在第4A圖的實施例中,f為0· 996mm,F N0.為2. 8,2 ω為140 °,各鏡面的曲率半徑r (單位mm)、面間隔d (單 位腿)、屈折率nd及逆分散率vd如下列表4A所示: 15 200848778 r D nd vd S1 33· 156 1. 042 L 53 56. 3 S2 4·6052 2. 11 S3 192. 48 0. 599 1. 53 56. 3 S4 1. 502 1. 075 S5 3·0814 3 1. 63 23. 4 S6 -15· 93 0. 977 S7 〇〇 0. 94 S8 3·5563 2. 571 1. 53 56. 3 S9 -1·256 0· 5 S10 〇〇 0· 3 BSC7 S11 〇〇 0· 2 S12 〇〇 0.4 BSC7 S13 〇〇In the embodiment, the three lenses 2, 3, and 4 are made of plastic, and the first lens 1, the filter 6 and the cover glass 7 are made of colorless optical glass (BSC7). In the embodiment of Fig. 4A, f is 0·996 mm, F N0. is 2. 8, 2 ω is 140 °, radius of curvature r (unit: mm) of each mirror surface, surface spacing d (unit leg), inflection rate The nd and inverse dispersion rate vd are shown in the following Table 4A: 15 200848778 r D nd vd S1 33· 156 1. 042 L 53 56. 3 S2 4·6052 2. 11 S3 192. 48 0. 599 1. 53 56. 3 S4 1. 502 1. 075 S5 3·0814 3 1. 63 23. 4 S6 -15· 93 0. 977 S7 〇〇0. 94 S8 3·5563 2. 571 1. 53 56. 3 S9 -1·256 0· 5 S10 〇〇0· 3 BSC7 S11 〇〇0· 2 S12 〇〇0.4 BSC7 S13 〇〇

表4A 下列表4B為各鏡面的非球面係數,此實施例中除了該 第一鏡片1的鏡面S1為球面鏡面,其鏡面S2及其餘鏡片2、 3、4的鏡面S3、S4、S5、S6、S8、S9皆為非球面鏡面: S2 S3 S4 S5 K -0. 31 7337 K -4061.767 K -2.627553 K -0.00068 A -3.7530E-04 A -2.7790E-05 A 2.5414E-02 A 7.8160E-04 B -3.2530E-05 B 5.7230E-05 B -1. 1710E-03 B -1.0110E-04 C -1.0739E-06 C -4.1046E-06 C 1.26077E-04 C 1.63242E-05 D -5.7570E-08 D 5.9822E-08 D 8.1789E-06 D 0.0000 S6 S8 S9 表4B K 0.0000 K -7.540089 K -2.573615 A 5. 0869E-03 A -6.5570E-03 A -1.9237E-02 B 4. 5473E-04 B 4.8564E-03 B 4.3423E-03 C -1.3770E-04 C -1.0794E-03 C 2.26471E-04 D 0.0000 D -1.3160E-04 D -1.5790E-04 16 200848778 _ 且此實齡it,t細則 該遽片6及破璃罩7為無色光學破璃⑽7)製成。Table 4A below is the aspherical coefficient of each mirror. In this embodiment, except that the mirror surface S1 of the first lens 1 is a spherical mirror surface, the mirror surface S2 and the mirrors S3, S4, S5, and S6 of the remaining lenses 2, 3, and 4 are shown. , S8, S9 are all aspherical mirrors: S2 S3 S4 S5 K -0. 31 7337 K -4061.767 K -2.627553 K -0.00068 A -3.7530E-04 A -2.7790E-05 A 2.5414E-02 A 7.8160E- 04 B -3.2530E-05 B 5.7230E-05 B -1. 1710E-03 B -1.0110E-04 C -1.0739E-06 C -4.1046E-06 C 1.26077E-04 C 1.63242E-05 D -5.7570 E-08 D 5.9822E-08 D 8.1789E-06 D 0.0000 S6 S8 S9 Table 4B K 0.0000 K -7.540089 K -2.573615 A 5. 0869E-03 A -6.5570E-03 A -1.9237E-02 B 4. 5473E -04 B 4.8564E-03 B 4.3423E-03 C -1.3770E-04 C -1.0794E-03 C 2.26471E-04 D 0.0000 D -1.3160E-04 D -1.5790E-04 16 200848778 _ and this age It, t rule that the cymbal 6 and the glaze 7 are made of colorless optical glass (10) 7).

下歹i表5B為各鏡面的非球面係數,此實施例中除了該 第一鏡片1的鏡面S1為球面鏡面,其鏡面S2及其餘鏡片2、 3、4的鏡面S3、S4、S5、S6、抑、邠皆為非球面鏡面,且 此貫施例中,該四鏡片1、2、3、4皆由塑膠所製,該濾片 6及玻璃罩7為無色光學玻璃(BSC7)製成: 17 200848778 S2 S3 S4 S5 K -0.31836 K -10571.8 K -2.70782 K -0. 0414 A 3.8168E-04 A -3. 4963E-05 A 0.024128 A 3. 20657E-04 B -3.2659E-05 B 5. 70299E-05 B -1. 1 978E-03 B -6.3624E-05 C -1.0854E-06 C -4. 1130E-06 C 1.33296E-04 C 1.74657E-05 D -5.8072E-08 D 5. 94099E-08 D 7.97304E-06 D 0.0000 S6 S8 S9 表5B K 0.0000 K -7.50242 K -2.56657 A 3. 03904E-03 A -7.1587E-03 A -1.9412E-02 B 2.46722E-04 B 4.68392E-03 B 4.10651E-03 C -1.1208E-04 C -1.1126E-03 C 2.15727E-04 D .0.0000 D -1.3618E-04 D -1.5421E-04 在第6A圖的實施例中,f為1. 003mm,F NO.為2· 8,2 ω為140°,各鏡面的曲率半徑r (單位mm)、面間隔d (單 位腿)、屈折率nd及逆分散率vd如下列表6A所示:The lower surface i5 is the aspherical coefficient of each mirror surface. In this embodiment, except that the mirror surface S1 of the first lens 1 is a spherical mirror surface, the mirror surface S2 and the mirror surfaces S3, S4, S5, and S6 of the remaining lenses 2, 3, and 4 are formed. The anti-spherical mirrors are all aspherical mirrors, and in the embodiment, the four lenses 1, 2, 3, and 4 are made of plastic, and the filter 6 and the glass cover 7 are made of colorless optical glass (BSC7). : 17 200848778 S2 S3 S4 S5 K -0.31836 K -10571.8 K -2.70782 K -0. 0414 A 3.8168E-04 A -3. 4963E-05 A 0.024128 A 3. 20657E-04 B -3.2659E-05 B 5. 70299E-05 B -1. 1 978E-03 B -6.3624E-05 C -1.0854E-06 C -4. 1130E-06 C 1.33296E-04 C 1.74657E-05 D -5.8072E-08 D 5. 94099E -08 D 7.97304E-06 D 0.0000 S6 S8 S9 Table 5B K 0.0000 K -7.50242 K -2.56657 A 3. 03904E-03 A -7.1587E-03 A -1.9412E-02 B 2.46722E-04 B 4.68392E-03 B 4.10651E-03 C -1.1208E-04 C -1.1126E-03 C 2.15727E-04 D .0.0000 D -1.3618E-04 D -1.5421E-04 In the embodiment of Fig. 6A, f is 1. 003mm, F NO. is 2· 8, 2 ω is 140°, radius of curvature r (unit: mm), face spacing d (unit leg) of each mirror surface The inflection rate nd and the inverse dispersion rate vd are as shown in Table 6A below:

r D nd vd SI 30. 758 0. 924 1. 53 56. 3 S2 4.6101 2· 706 S3 185. 22 0. 601 1· 53 56. 3 S4 1.5407 1. 161 S5 3.5803 3· 002 1· 72 22· 1 S6 -25.46 0. 977 S7 OO 0. 922 S8 3.6996 2. 6 1. 53 56· 3 S9 -1.26 0· 5 S10 OO 0· 3 BSC7 Sll OO 0· 2 S12 OO 0.4 BSC7 S13 OOr D nd vd SI 30. 758 0. 924 1. 53 56. 3 S2 4.6101 2· 706 S3 185. 22 0. 601 1· 53 56. 3 S4 1.5407 1. 161 S5 3.5803 3· 002 1· 72 22· 1 S6 -25.46 0. 977 S7 OO 0. 922 S8 3.6996 2. 6 1. 53 56· 3 S9 -1.26 0· 5 S10 OO 0· 3 BSC7 Sll OO 0· 2 S12 OO 0.4 BSC7 S13 OO

表6A 18 200848778 下列表6B為各鏡面的非球面係數,此實施例中除了該 第一鏡片1的鏡面S1為球面鏡面,其鏡面S2及其餘鏡片2、 3、4的鏡面S3、S4、S5、S6、S8、S9皆為非球面鏡面: S2 S3 S4 So K -0.3197 K -14138. 1 K -2.83595 K -0.02563 A -3.8715E-04 A -2.9065E-05 A 0.023262 A 1.11572E-04 B -3.3001E-05 B 5. 72669E-05 B -1.3038E-03 B -1.8981E-05 C -1.0993E-08 C -4.1075E-06 C 1. 1 9092E-04 C 1.85755E-07 D -5.8638E-08 D 5.93717E-08 D 6.54210E-06 D 0.0000 S6 S8 S9 表6B K 0. 0000 K -7.74769 K -2. 5039 A 2. 19456E-03 A -7.5497E-03 A -1. 9654E-02 B 1. 87412E-04 B 4. 65994E-03 B 4.01053E-03 C -7.5339E-05 C -1.0953E-03 C 2.07026E-04 D 0.0000 D -1.2958E-04 D -1. 5236E-04 且此實施例中,該四鏡片1、2、3、4皆由塑膠所製, 該濾片6及玻璃罩7為無色光學玻璃(BSC7)製成。 在第7A圖的實施例中,f為0· 819mm,F N0.為2. 8,2 ω為140 °,各鏡面的曲率半徑r (單位mm)、面間隔d (單 位醒)、屈折率nd及逆分散率vd如下列表7A所示: 19 200848778Table 6A 18 200848778 Table 6B below shows the aspherical coefficients of the mirrors. In this embodiment, except that the mirror surface S1 of the first lens 1 is a spherical mirror surface, the mirror surface S2 and the mirror surfaces S3, S4, and S5 of the remaining lenses 2, 3, and 4 are shown. , S6, S8, S9 are all aspherical mirrors: S2 S3 S4 So K -0.3197 K -14138. 1 K -2.83595 K -0.02563 A -3.8715E-04 A -2.9065E-05 A 0.023262 A 1.11572E-04 B -3.3001E-05 B 5. 72669E-05 B -1.3038E-03 B -1.8981E-05 C -1.0993E-08 C -4.1075E-06 C 1. 1 9092E-04 C 1.85755E-07 D -5.8638 E-08 D 5.93717E-08 D 6.54210E-06 D 0.0000 S6 S8 S9 Table 6B K 0. 0000 K -7.74769 K -2. 5039 A 2. 19456E-03 A -7.5497E-03 A -1. 9654E- 02 B 1. 87412E-04 B 4. 65994E-03 B 4.01053E-03 C -7.5339E-05 C -1.0953E-03 C 2.07026E-04 D 0.0000 D -1.2958E-04 D -1. 5236E-04 In this embodiment, the four lenses 1, 2, 3, and 4 are made of plastic, and the filter 6 and the cover glass 7 are made of colorless optical glass (BSC7). In the embodiment of Fig. 7A, f is 0·819 mm, F N0. is 2. 8, 2 ω is 140 °, radius of curvature r (unit: mm) of each mirror surface, surface spacing d (unit wakes up), inflection rate The nd and inverse dispersion rate vd are shown in the following list 7A: 19 200848778

r d nd vd S1 38· 075 1. 658 BSC7 S2 4· 1516 2.481 S3 3· 8988 0. 703 1. 53 56. 3 S4 1·0926 1. 098 S5 3. 0394 3. 316 1. 63 23· 4 S6 -139·7 1. 076 S7 〇〇 0. 768 S8 3.4666 2. 668 1. 53 56. 3 S9 -1.051 0. 549 S10 〇〇 0· 3 BSC7 S11 〇〇 0. 22 S12 〇〇 0.4 BSC7 S13 CORd nd vd S1 38· 075 1. 658 BSC7 S2 4· 1516 2.481 S3 3· 8988 0. 703 1. 53 56. 3 S4 1·0926 1. 098 S5 3. 0394 3. 316 1. 63 23· 4 S6 -139·7 1. 076 S7 〇〇0. 768 S8 3.4666 2. 668 1. 53 56. 3 S9 -1.051 0. 549 S10 〇〇0· 3 BSC7 S11 〇〇0. 22 S12 〇〇0.4 BSC7 S13 CO

表7A 下列表7B所示為各鏡面的非球面係數,此實施例中該 三鏡片2、3、4的鏡面S3、S4、S5、S6、S8、S9皆為非球 面鏡面: S3 S4 S5 K -26.1724 K -2.30334 K 0.068542 A -4.1612E-04 A 0.025581 A 2.20443E-03 B 1.9828E-04 B -2, 5630E-03 B -1.4690E-04 C -1.0493E-05 C 8.76466E-05 C -1.3458E-05 D 5.6127E-07 D 2.3923E-05 D 0.0000 S6 S8 S9 K 0.0000 K -23.5699 K -2·22357 A 9.60776E-03 A 1.2804E-02 A -3.0414E-02 B -2.8160E-04 B 1. 1178E-03 B 4.7420E-03 C -3.1147E-04 C -6.9335E-04 C 1.25882E-03 D 0.0000 D -5.2700E-05 D -2.6640E-04Table 7A shows the aspherical coefficients of the mirrors in Table 7B. In this embodiment, the mirrors S3, S4, S5, S6, S8, and S9 of the three lenses 2, 3, and 4 are all aspherical mirrors: S3 S4 S5 K -26.1724 K -2.30334 K 0.068542 A -4.1612E-04 A 0.025581 A 2.20443E-03 B 1.9828E-04 B -2, 5630E-03 B -1.4690E-04 C -1.0493E-05 C 8.76466E-05 C -1.3458E-05 D 5.6127E-07 D 2.3923E-05 D 0.0000 S6 S8 S9 K 0.0000 K -23.5699 K -2·22357 A 9.60776E-03 A 1.2804E-02 A -3.0414E-02 B -2.8160E -04 B 1. 1178E-03 B 4.7420E-03 C -3.1147E-04 C -6.9335E-04 C 1.25882E-03 D 0.0000 D -5.2700E-05 D -2.6640E-04

表7B 20 200848778 且此貝施例中’该二鏡片2、3、4皆由塑膠所製,該第 1兄片1、渡片6及玻璃罩7為無色光學玻璃(BSC7)製成。 由$述可知’忒廣角鏡碩是由四鏡片卜234組成, 且射入的光線會先經由該第—鏡片丨及第二鏡片2依序調整 光泉的入射肖度’使其更為緩和,然、後光線才人射至該第三 ^片3,不過通捕第二鏡片2的光線仍有很大的負歪曲收 差、非點收差及倍率色收差,因此在該第―鏡片到第三鏡片 的合成焦距為f123,而該廣角鏡頭整體焦距為f時,必須滿 足下列關係式: ' 關係式 1 : -15· 〇 < f 123/f < u \ 因為當f123/f>-8. 〇時,該第—鏡片及第二鏡片的負屈 折力會太大’使成像周邊的影像壓縮過大,就必須使用影像 處理的技術來補正;當fl23/f<45.0時,為導入視角刚。 的光線’該第-鏡片的外徑就必需相對的增加,如此便會提 升鏡頭小型化的困難度。 曰 當該第四鏡片焦距為f4a夺,要滿足下列關係式: 關係式 2 ·· -6. 5<f123/f4<-3. 〇 因為當Wf4>-3.〇時,該第四鏡片的正屈折力會降 低’便無法完全補正負歪曲收差’必須使用影像處理補正; 21 200848778 ,必 決定 备f123/f4<-6.5日寺,該第四鏡片的正屈折力會變的太高 須^增加-片鏡片才能夠成像,不過以關係、式^為基礎 6亥弟二鏡片3的正屈折力,便能夠解決前述問題。 且當該第三鏡片接近物侧的鏡面曲率半徑為r5,像側 的鏡面曲率半徑為r6時,要滿足下列關係式: 關係式 3:〇·6< (r6+r5)/(r6_r5) <1〇 因為(r6+r5) / (r6_r5) >1〇時,物侧的曲率半經 會變小,、雖在補正歪曲收差上有助益,但在非點收差及慧^ 像差收差的補正效果卻反而降低,使成像的影像鮮銳度降 -田(r6+r5) / (r6-r5) <0. 6時,便無法達成需要補 正的歪曲收差。 由於光線在經該第一鏡片卜第二鏡片2及第三鏡片3 折射後會人射至該第四鏡片4成像,可知該第四鏡片4為該 廣角鏡頭成像的主要鏡片,故下列關係式可決定該第四鏡片 4的形狀,當該第四鏡片接近物侧的鏡面曲率半徑為r8,像 側的鏡面曲率半徑為r9時,要滿足下列關係式·· 關係式 4 · -〇. 55 < ( r9+r8 ) / ( r9-r8 ) < -〇· 45 因為(r9+r8) / (r9-r8) >-〇·45時,球面收差的補 正曰不足,當(r9+r8) / (r9-r8) <-〇· 55時,球面收差 22 200848778 • 的補正會過多,晝面中央成像的影像鮮銳度會變的很低; 故符合關係式4的該第四鏡片4,隨著其兩鏡面皆為非 球面的特性,可保持成像中間及周邊的影像清晰完整。 而符合前述各關係式的數值實施例如下列表8 : 實施例1 實施例2 實施例3 實施例4 實酬5 實施例6 實施例7 fWi -9. 42 -10. 7 -8. 25 -13. 7 -12. 2 -11.6 -8. 47 fm/ii -4. 14 -4. 77 -3. 66 -6. 28 -5. 53 -5. 31 -3. 60 (r6+r5)/(r6-r5) 0. 88 0. 77 0. 96 0. 68 0. 70 0. 75 0. 96 Cr9+r8)/(r9-r8) -0· 54 -0. 54 -0. 51 -0.48 -0. 49 -0· 49 -0. 53 表8 可知,該廣角鏡頭即使視角高達140°,只使用四鏡片便 可避免成像周邊的部份極端歪曲,且可使成像具有高鮮銳 度,故相當適用於監視器及車用鏡頭。 23 200848778 . 【圖式簡單說明】 第1A圖本發明第一實施例的結構示意圖。 第1B圖本發明第一實施例球面、非點及歪曲收差的示意圖。 第2A圖本發明第二實施例的結構示意圖。 第2B圖本發明第二實施例球面、非點及歪曲收差的示意圖。 第3A圖本發明第三實施例的結構示意圖。 第3B圖本發明第三實施例球面、非點及歪曲收差的示意圖。 , 第4A圖本發明第四實施例的結構示意圖。 第4B圖本發明第四實施例球面、非點及歪曲收差的示意圖。 第5A圖本發明第五實施例的結構示意圖。 第5B圖本發明第五實施例球面、非點及歪曲收差的示意圖。 第6A圖本發明第六實施例的結構示意圖。 第6B圖本發明第六實施例球面、非點及歪曲收差的示意圖。 第7A圖本發明第七實施例的結構示意圖。 ί 第7Β圖本發明第七實施例球面、非點及歪曲收差的示意圖。 【主要元件符號說明】 《本發明》 第一鏡片1 弟二鏡片2 第三鏡片3 24 200848778 第四鏡片4 光圈5 濾片6 玻璃罩7 成像面8Table 7B 20 200848778 and in the embodiment of the present invention, the two lenses 2, 3, and 4 are made of plastic, and the first brother piece 1, the cross piece 6 and the glass cover 7 are made of colorless optical glass (BSC7). It can be seen from the description that the 忒 wide-angle lens is composed of four lens 234, and the incident light will first adjust the incident lightness of the light spring through the first lens 丨 and the second lens 2 to make it more moderate. However, after the light is directed to the third piece 3, the light that passes through the second lens 2 still has a large negative distortion, a non-point difference, and a magnification of the magnification, so the first lens The composite focal length to the third lens is f123, and when the overall focal length of the wide-angle lens is f, the following relationship must be satisfied: 'Relationship 1: -15· 〇< f 123/f < u \ because when f123/f> -8. When 〇, the negative refractive power of the first lens and the second lens will be too large to make the image around the imaging image too large, and it must be corrected by image processing technology; when fl23/f<45.0, it is imported. The perspective is just right. The light ray 'the outer diameter of the first lens must be relatively increased, which will increase the difficulty of miniaturizing the lens.曰When the fourth lens focal length is f4a, the following relationship is satisfied: Relation 2 ·· -6. 5<f123/f4<-3. 〇Because Wf4>-3.〇, the fourth lens The positive refractive power will decrease, so it will not be able to completely correct the negative distortion. You must use image processing correction; 21 200848778, you must decide to prepare f123/f4<-6.5 day temple, the positive refractive power of the fourth lens will become too high ^ The addition-piece lens can be imaged, but the positive refractive power of the 6-Dimensional lens 3 based on the relationship and formula can solve the aforementioned problems. And when the mirror radius of the third lens approaching the object side is r5, and the mirror radius of curvature of the image side is r6, the following relationship is satisfied: Relation 3: 〇·6< (r6+r5)/(r6_r5) <;1〇(R6+r5) / (r6_r5) >1〇, the curvature of the object side will become smaller, although it is helpful in correcting the distortion of the distortion, but in the non-point collection and Hui ^ The correction effect of the aberration difference is reduced, and the sharpness of the imaged image is reduced - (R6+r5) / (r6-r5) < 0.6, the distortion of the distortion that needs to be corrected cannot be achieved. Since the light is incident on the fourth lens 4 after being refracted by the second lens 2 and the third lens 3, it is known that the fourth lens 4 is the main lens for imaging the wide-angle lens, so the following relationship may be The shape of the fourth lens 4 is determined. When the radius of curvature of the mirror on the object side of the fourth lens is r8 and the radius of curvature of the mirror side of the image side is r9, the following relationship is satisfied: · Relationship 4 · -〇. 55 &lt ; ( r9+r8 ) / ( r9-r8 ) < -〇· 45 Because (r9+r8) / (r9-r8) >-〇·45, the correction of the spherical aberration is insufficient, when (r9+ R8) / (r9-r8) <-〇· 55, the spherical aberration 22 200848778 • There will be too many corrections, and the image sharpness of the imaged at the center of the face will become very low; therefore, the same as the relationship 4 The four lenses 4, with the aspherical features of both mirrors, keep the image in the middle and periphery of the image clear and complete. Numerical implementations conforming to the foregoing relationships are as follows: Example 8: Embodiment 1 Embodiment 2 Embodiment 3 Embodiment 4 Remuneration 5 Embodiment 6 Embodiment 7 fWi -9. 42 -10. 7 -8. 25 -13 7 -12. 2 -11.6 -8. 47 fm/ii -4. 14 -4. 77 -3. 66 -6. 28 -5. 53 -5. 31 -3. 60 (r6+r5)/( R6-r5) 0. 88 0. 77 0. 96 0. 68 0. 70 0. 75 0. 96 Cr9+r8)/(r9-r8) -0· 54 -0. 54 -0. 51 -0.48 - 0. 49 -0· 49 -0. 53 Table 8 It can be seen that even if the angle of view of the wide-angle lens is as high as 140°, only four lenses can be used to avoid extreme distortion of the periphery of the image, and the image can have high sharpness, so it is suitable for use. Monitor and car lens. 23 200848778 . BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a schematic view showing the structure of a first embodiment of the present invention. Fig. 1B is a schematic view showing the spherical, non-dot and distortion of the first embodiment of the present invention. 2A is a schematic view showing the structure of a second embodiment of the present invention. Fig. 2B is a schematic view showing the spherical, non-dot and distortion of the second embodiment of the present invention. Fig. 3A is a schematic view showing the structure of a third embodiment of the present invention. Fig. 3B is a schematic view showing the spherical, non-dot and distortion of the third embodiment of the present invention. 4A is a schematic structural view of a fourth embodiment of the present invention. Fig. 4B is a schematic view showing the spherical surface, the non-dot and the distortion of the fourth embodiment of the present invention. Fig. 5A is a schematic view showing the structure of a fifth embodiment of the present invention. Fig. 5B is a schematic view showing the spherical surface, the non-dot and the distortion of the fifth embodiment of the present invention. Fig. 6A is a schematic view showing the structure of a sixth embodiment of the present invention. Fig. 6B is a schematic view showing the spherical, non-dot and distortion of the sixth embodiment of the present invention. Fig. 7A is a schematic view showing the structure of a seventh embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 7 is a schematic view showing a spherical, non-dot and distortion of a seventh embodiment of the present invention. [Main component symbol description] "Invention" First lens 1 Second lens 2 Third lens 3 24 200848778 Fourth lens 4 Aperture 5 Filter 6 Glass cover 7 Imaging surface 8

Claims (1)

200848778 $r - 十、申請專利範圍·· 1. -種廣角鏡頭’其包含—第一鏡片、一第二鏡片、— 第三鏡片、一第四鏡片及一光圈,其特徵在於: 由物側開始,該第一鏡片、第二鏡片、第三鏡片、光 圈及第四鏡片依序排列設置,且該第一鏡片及第二鏡片皆為 凸面向著物側的負半彎月型鏡片,該第三鏡片及第四鏡片都 是兩面皆為凸面的鏡片; 另外該第一鏡片、第二鏡片及第三鏡片的鏡面中,至 少有四鏡面為非球面,該第四鏡片的兩面鏡面皆為非球面。 2·如申凊專利範圍第1項所述的廣角鏡頭,其中該第— 叙片到弟二叙片的合成焦距為f123 ’该廣角鏡頭整體焦距為 f ’ 且&quot;~15· 0 &lt; f 123/f &lt; -8· 〇。 3·如申請專利範圍第1項所述的廣角鏡頭,其中該第〜 鏡片到第三鏡片的合成焦距為fm,該第四鏡片焦距為L, 且-6· 5 &lt; f i23/f4&lt; -3· 0 〇 4.如申請專利範圍第1項所述的廣角鏡頭,其中該第〜 鏡片到第三鏡片的合成焦距為,該第四鏡片焦距為f4 該廣角鏡頭整體焦距為f,且-15· 〇&lt; fm/f &lt;—8. 〇,—6 26 200848778 f 123/f4〈〜3· 〇 0 b. 如甲請專利範圍第!項所述的廣角鏡頭 : :片接近物侧的鏡面曲率半徑為r5,另—侧的鏡面曲:: 徑為 r6,且 〇· 6&lt; (r6+r5) / (r6-r5) &lt;!· 〇。 f 6·如申請專利範圍第!項所述的廣角鏡頭,其中該第 鏡片接近物侧的鏡面曲率半徑為r8,另一側的鏡面曲率半 徑為 r9,且-〇· 55&lt; (r9+r8) / (r9—γ8) &lt;〜〇·45。 十一、圖式: 27200848778 $r - X. Patent application scope · 1. 1. A wide-angle lens comprising: a first lens, a second lens, a third lens, a fourth lens and an aperture, characterized by: starting from the object side The first lens, the second lens, the third lens, the aperture and the fourth lens are arranged in sequence, and the first lens and the second lens are negative half meniscus lenses convexly facing the object side, the first lens The three lenses and the fourth lens are lenses having convex surfaces on both sides; in addition, at least four of the mirror surfaces of the first lens, the second lens and the third lens are aspherical surfaces, and the mirror faces of the fourth lens are both non-spherical Spherical. 2. The wide-angle lens according to claim 1, wherein the composite focal length of the first to the second film is f123 'the overall focal length of the wide-angle lens is f ' and &quot;~15· 0 &lt; f 123 /f &lt; -8· 〇. 3. The wide-angle lens of claim 1, wherein the composite focal length of the first to third lenses is fm, the focal length of the fourth lens is L, and -6·5 &lt; f i23/f4&lt; 3. The wide-angle lens of claim 1, wherein the composite focal length of the first to third lenses is f4, the focal length of the fourth lens is f4, and the overall focal length of the wide-angle lens is f, and -15· 〇&lt; fm/f &lt;-8. 〇,—6 26 200848778 f 123/f4<~3· 〇0 b. The wide-angle lens described in the item: the radius of curvature of the mirror near the object side is r5, and the mirror curvature of the other side is: r6, and 〇·6&lt; (r6+r5) / (r6-r5) &lt;!· Hey. f 6·If you apply for the patent scope! The wide-angle lens according to the item, wherein a radius of curvature of a mirror surface of the first lens near the object side is r8, and a radius of curvature of the mirror surface of the other side is r9, and -〇·55&lt; (r9+r8) / (r9-γ8) &lt;~ 〇·45. XI. Schema: 27
TW96121846A 2007-06-15 2007-06-15 Wide lens TWI351529B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96121846A TWI351529B (en) 2007-06-15 2007-06-15 Wide lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96121846A TWI351529B (en) 2007-06-15 2007-06-15 Wide lens

Publications (2)

Publication Number Publication Date
TW200848778A true TW200848778A (en) 2008-12-16
TWI351529B TWI351529B (en) 2011-11-01

Family

ID=44823960

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96121846A TWI351529B (en) 2007-06-15 2007-06-15 Wide lens

Country Status (1)

Country Link
TW (1) TWI351529B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453490B (en) * 2009-10-21 2014-09-21 Hon Hai Prec Ind Co Ltd Imaging lens
CN113646684A (en) * 2019-12-31 2021-11-12 深圳市大疆创新科技有限公司 Optical viewfinder and camera

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020548B (en) 2014-01-27 2016-08-17 玉晶光电(厦门)有限公司 Optical imaging lens and apply the electronic installation of this camera lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453490B (en) * 2009-10-21 2014-09-21 Hon Hai Prec Ind Co Ltd Imaging lens
CN113646684A (en) * 2019-12-31 2021-11-12 深圳市大疆创新科技有限公司 Optical viewfinder and camera

Also Published As

Publication number Publication date
TWI351529B (en) 2011-11-01

Similar Documents

Publication Publication Date Title
US20210063700A1 (en) Optical Assembly for a Wide Field of View Point Action Camera with Low Field Curvature
TWI598621B (en) Wide-angle lens
US20200292788A1 (en) Optical Assembly for a Wide Field of View Point Action Camera with a Low Sag Aspheric Lens Element
EP2626733B1 (en) Imaging lens system
TWI533018B (en) Fixed-focus lens
US10317652B1 (en) Optical assembly for a wide field of view point action camera with low astigmatism
JP2007017984A (en) Optical imaging system
WO2009020195A1 (en) Wide angle lens and image picking-up device provided with this wide angle lens
TW201224569A (en) Optical lens system
TWM360370U (en) Photographic lens and photographic device
CN206321862U (en) A kind of 360 ° of panorama fish eye lenses
KR101215826B1 (en) Photographic lens optical system
CN107153259A (en) A kind of wide-angle high definition day and night miniature imaging lens
TWI438472B (en) Lens module system
JPH10301022A (en) Image forming lens
JP2020112835A (en) Image capturing lens system and image capturing device
TW201626042A (en) Zoom lens
TW200931056A (en) Wide-angle optics system and imaging device using the same
KR101118910B1 (en) Photographic lens optical system
TW200848778A (en) Wide lens
TWI537595B (en) Zoom lens
US20150177486A1 (en) Photographic Lens Optical System
JP3595897B2 (en) Imaging lens
JP6062137B1 (en) Endoscope objective optical system
KR102369803B1 (en) Fisheye lens system