TW200848388A - Chain extenders - Google Patents

Chain extenders Download PDF

Info

Publication number
TW200848388A
TW200848388A TW097105142A TW97105142A TW200848388A TW 200848388 A TW200848388 A TW 200848388A TW 097105142 A TW097105142 A TW 097105142A TW 97105142 A TW97105142 A TW 97105142A TW 200848388 A TW200848388 A TW 200848388A
Authority
TW
Taiwan
Prior art keywords
diamine
group
cyclohexyl
aliphatic
aliphatic secondary
Prior art date
Application number
TW097105142A
Other languages
Chinese (zh)
Inventor
John Y Lee
Paul L Wiggins
Original Assignee
Albemarle Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albemarle Corp filed Critical Albemarle Corp
Publication of TW200848388A publication Critical patent/TW200848388A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • C07C211/121,6-Diaminohexanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/33Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C211/34Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton
    • C07C211/35Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton containing only non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

This invention provides chain extender compositions. These compositions comprise aliphatic secondary diamines in which the amino hydrocarbyl groups are different from each other. Processes for producing polyurethanes, polyureas, and polyurea-urethanes using these aliphatic secondary diamines are also provided.

Description

200848388 九、發明說明: 【發明所屬之技術領域】 本發明關於使用脂族二胺形成聚胺基甲酸酯、聚脲與 聚脲-胺基甲酸酯。 【先前技術】 現有許多種多官能基化合物,包括二醇與芳族二胺, 其在聚胺基甲酸酯、聚脲與聚脲-胺基甲酸酯聚合物之製備 中可作爲鏈延長劑及/或作爲環氧樹脂之硬化劑。這些化合 物均無使其普遍地理想之反應性,而且在使用其製造之產 物中多無法提供令人滿意之性質。因此仍有尋求可作爲鏈 延長劑或硬化劑之化合物的需求。美國專利第 4,8 0 6,6 1 6 號教示在製備聚胺基甲酸酯與聚脲時使用特定之N,N’-二 烷基伸苯二胺作爲鏈延長劑。關於此點亦參見例如美國專 利第4,5 28,3 6 3號,其教示使用二級脂族二胺作爲樹脂黏合 劑之一部分,及美國專利第6,2 1 8,4 8 0 B1號,其揭示使用 芳族二胺作爲聚胺基甲酸酯之固化劑。二級芳族二胺亦已 作爲橡膠之抗降解劑,參見美國專利第4,90 0,8 6 8號。 現在更爲需要硬化速率慢之鏈延長劑,若脂族二胺呈 現較目前可得鏈延長劑慢之硬化速率,則其爲進一步之優 點。 【發明內容】 本發明部分爲提供脂族二級二胺鏈延長劑。這些二胺 在包括於聚胺基甲酸酯、聚脲與聚脲-胺基甲酸酯之調配物 時以所需硬化速率製造具有所需物理性質之聚合物。 200848388 本發明之一個具體實施例提供一種包括其中胺基烴基 . 彼此不同之脂族二級二胺的組成物。 本發明之另一個具體實施例爲一種用於製備其中胺基 烴基彼此不同之脂族二級二胺的方法。此方法包括將a)氫 化劑,b )至少一種脂族一級二胺,及c )至少兩種不同之酮 、或至少兩種不同之醛、或至少一種酮與至少一種醛混合 在一起,使得形成其中胺基烴基彼此不同之脂族二級二胺 〇 ^ 本發明之又一個具體實施例爲一種用於製造聚胺基甲 酸酯、聚脲或聚脲-胺基甲酸酯之聚合物的方法。此方法包 括至少將(A)脂族多異氰酸酯,(B)至少一種多醇及/或至少 一種聚醚胺,及(C)其中胺基烴基彼此不同之脂族二級二胺 混合在一起。 本發明之再一個具體實施例爲一種聚胺基甲酸酯、聚 脲或聚脲-胺基甲酸酯之聚合物,此聚合物係由至少包括(A) 脂族多異氰酸酯,(B)至少一種多醇及/或至少一種聚醚胺 ’及(C)其中胺基烴基彼此不同之脂族二級二胺的成分形成 〇 本發明之這些及其他具體實施例由以下說明及所附申 請專利範圍更爲顯而易知。 【實施方式】 主·發明之細成物 本發明之組成物係由其中兩個胺基烴基彼此不同之脂 族二級二胺組成。名詞「兩個胺基烴基彼此不同」表示在 -6- 200848388 脂族二級二胺分子中一個氮原子上之煙基與在相同脂族二 級二胺分子中另一個氮原子上之烴基不同。應了解,本發 明之組成物因其製備方式而經常亦含少量其中胺基烴基相 同之脂族二級二胺。 本發明組成物之脂族二級二胺爲其中二胺之烴基部分 爲脂族之烴基二級二胺,「烴基部分」指鍵結胺基之部分 。脂族二級二胺之烴基部分可爲環形、分支、或較佳爲直 鏈。脂族二級二胺之胺基烴基可爲環形、分支或直鏈。較 Γ 佳爲胺基烴基爲具有3至約1 2個碳原子之環形及/或分支 鏈烷基。合適胺基烴基之實例包括乙基、丙基、異丙基、 正丁基、第二丁基、第三丁基、3,3-二甲基-2-丁基、戊基 、3-甲基-2-戊基、4-甲基-2-戊基、環戊基、己基、環己基 、甲基環己基、庚基、辛基、環辛基、壬基、癸基、十二 碳基等。較佳之胺基烴基包括異丙基、環己基與3,3-二甲 基-2-丁基。較佳爲脂族二級二胺具有約8至約40個碳原 子;更佳爲脂族二級二胺具有約1 0至約3 0個碳原子。特 I 佳脂族二級二胺具有環形或直鏈烴基部分,具有環形或分 支鏈胺基烴基,及具有約12至約25個碳原子。 本發明之脂族二級二胺包括但不限於N-乙基-Ν’-異丙 基乙一胺、Ν -異丙基-Ν’ -第二丁基-1,2 -二胺基丙院、Ν -異 丙基-Ν’-( 2-丁烯基)·1,3-二胺基丙烷、Ν-環戊基-Ν’-異丙 基-1,4-二胺基丁烷、Ν-第二丁基-Ν,-3-己基-1,4-二胺基丁 烷、Ν-第二丁基-Ν,-5-壬基-1,5-二胺基戊烷、Ν-異丙基-Ν,-環己基-1,5-二胺基戊烷、Ν-環戊基-Ν’- (3,3-二甲基-2-丁 -7- 200848388 基)-1,5 - 一*胺基-2 -甲基戊院、N -異丙基-Ν’- ( 3,3-•2· 丁基)-1,6-二胺基己烷、N-異丙基-Ν’-環己基q, 基己烷、N-環己基-N’-(3,3-二甲基-2-丁基)-1,6_ 己烷、N-環己基- Ν’- (4-甲基-2-戊基)-1,6-二胺基 Ν-第二丁基-Ν’-甲基環己基-1,6-二胺基己烷、Να 、 環戊基 -1,6-二胺基 己烷、 Ν-( 3-戊基 ) -Ν’-環己 二甲基·2,5-己二胺、Ν-異丙基-Ν’-(3-己基)-1,2-環己烷、Ν-第二丁基-Ν’-環己基-1,3·二胺基環己烷 3,3-二甲基-2-丁基)-Ν’-環戊基-1,4-二胺基己烷、 丁基_Ν’_環戊基-1,3-環己烷貳(甲胺)、Ν-異丙基 己基-1,4-環己烷貳(甲胺)、1異丙基-?^-(3,3-二丨 丁基)-1,7-二胺基庚烷、Ν-第二丁基-Ν’-環己基-1: 基辛烷、Ν-異丙基-Ν’ - ( 2-戊基)-1,10·二胺基癸烷 二丁基-Ν’-(3-己基)-1,12-二胺基十二烷、Ν-異丙 環戊基異佛爾酮二胺、與Ν-(5_壬基)-Ν’-環己基 酮二胺。較佳之脂族二級二胺包括Ν-異丙基-Ν’-( 甲基-2-丁基)-1,6-二胺基己烷、Ν-異丙基-Ν,-環己 二胺基己烷、Ν-環己基·Ν,-(4 -甲基-2-戊基)-1,6-己烷、與Ν-環己基_Ν,_(3,3-二甲基-2-丁基)-1,6-己烷。 本發明之合成方法 在形成其中胺基烴基彼此不同之脂族二級二胺 明方法(即「合成方法」)中,其將a)氫化劑,b)至 脂族一級二胺,及c)至少兩種不同之酮、或至少兩 二甲基 6-二胺 二胺基 己烷、 異丙基 m -2,5-二胺基 、N-( N-第二 -N ’ -環 甲基-2-,8 -二胺 、N -第 基-N,-異佛爾 3,3-二 基-1,6-二胺基 •二胺基 的本發 少一種 種不同 200848388 之醛、或至少一種酮與至少一種醛混合在一起,而形成其 中胺基烴基彼此不同之脂族二級二胺。 I·用於本發明方法之成分 A. 酮與醛 爲了形成其中胺基烴基彼此不同之脂族二級二胺,其 使用至少兩種不同之酮、或至少兩種不同之醛、或至少一 種酮與至少一種醛。雖然較佳爲使用兩種酮、兩種醛、或 一種酮與一種醛,其可使用混合物。此混合物可包括例如 f 一 % 三或更多種酮、三或更多種醛、兩種酮與一種醛、或一種 酮與兩種醛。 用於本發明方法之酮與醛爲烴基酮與烴基醛。酮或醛 之烴基部分爲脂族(環形、分支或直鏈),較佳爲環形或 分支鏈。較佳爲用於本發明實務之酮與醛具有3至約20個 碳原子。更佳爲具有3至約15個碳原子之酮與醛。特佳之 酮與醛具有環形或分支脂族基之烴基部分,而且具有3至 約1 〇個碳原子。 酮及/或醛對脂族一級二胺之總莫耳比例通常爲每莫 耳胺基至少約1莫耳酮及/或酸,即每莫耳二胺至少約2莫 耳酮及/或醛。由於兩個胺基各有至少一種酮及/或醛,其 通常且較佳爲每莫耳胺基至少約1莫耳酮及/或醛。因此在 僅有2種酮及/或醛,或僅有一種酮與一種醛時,其通常且 較佳爲每莫耳胺基至少各約1莫耳酮或醛。在某些情形使 用過量酮及/或醛,其一般爲相對一級二胺約5 %至約丨〇 % 莫耳過量之酮或醛。 -9- 200848388 合適之酮包括丙酮(2_丙酮)、甲乙酮(2-丁酮)、 2-戊酮、3-戊酮、2-己酮、3-己酮、2-庚酮、4-庚酮、3-辛 酮、4-辛酮、3-壬酮、5-壬酮、2-十一碳酮、6-十一碳酮、 二正己酮、8-十五碳酮' 9-十七碳酮、10-十九碳酮、環丁 酮、環戊酮、環己酮、環丙基甲基酮(1-(環丙基)乙酮 )、環丁基甲基酮、環戊基甲基酮、環己基甲基酮、3 -甲 基-2-戊酮、4-甲基-2-戊酮(甲基異丁基酮)、環戊酮、2-甲基環戊酮、3-甲基環戊酮、5-甲基己酮、4-甲基-3-庚酮 ί 、3,3-二甲基-2-丁酮(甲基第三丁基酮)、2,4-二甲基- 3- 戊酮、環己酮、2,6-二甲基-3-庚酮、3,5-二甲基-4-庚酮、 2-甲基環己酮、2,5-二甲基環戊酮、薄荷酮、異佛爾酮等。 較佳之酮包括丙酮、甲乙酮、3,3-二甲基-2-丁酮、4-甲基 -2 -戊酮、環己酮、4 -庚酮、與5_壬酮。丙酮、環己酮、4-甲基-2-戊酮、與3,3-二甲基-2-丁酮在本發明之實務中爲特 佳之酮。 可用於本發明實務之醛包括乙醛ν丙醛、丁醛、戊醛 I 、異戊醛、己醛、環己烷甲醛、庚醛、辛醛、壬醛、癸醛 、十一碳醛、十二碳醛、2-乙基丁醛、十一烯醛(10-十一 烯醛)等。 通常酮及/或醛在用於本發明方法時爲液體形式。對於 某些酮與醛,高溫及/或增壓將酮或醛液化。如果不使用此 條件,則可使用溶劑提供液體形式之酮或醛。 Β.氫化劑 各種氫化劑均可用於本發明之合成方法。可使用之合 -10- 200848388 適氫化劑包括氫化物轉移劑,如氰基硼氫化鈉、硼氫化鈉 、氫化鈉銘、氫化鋰銘等;「溶解金屬」劑,如A1與醇、 Al/Hg、Al/Pd 與 HC1、Na 與醇、Na/Hg、Mg 與醇、Fe 與 HC1、Zn 與 HC1、Zn/Cu 與 HC1、Zn/Hg 與 HC1、Zn/Pd 與 HC1、Zn/Cu/Pd與HC1等;硼烷反應物,包括B H 3 -吡啶與 BH3-二甲胺;及氫與氫化觸媒,其中氫化觸媒可爲鉑碳、 鈀碳、硫化鉑碳、硫化鈀碳、或其任二或更多種之混合物 。較佳型式之氫化劑爲氫與氫化觸媒。 (、 在選擇氫化劑時,特別是結合酸使用之「溶解金屬」 劑及其中存在酸之氫與氫化觸媒,切記強酸可造成某些酮 之二聚合及/或聚合。 在氫化劑爲氫與氫化觸媒時,合適量之氫化觸媒可爲 相當低,即相對一級二胺爲約0.5重量%至約10重量%之 範圍。更適合地,其可使用相對一級二胺爲約0.7 5重量% 至約6重量%之範圍。現已發現,使用大量氫化觸媒較快 速地發生反應。因此約20:1至約1:20範圍之一級二胺對 ^ 觸媒重量比例爲適合的,而且較佳爲約10:1至約1:10範 圍之一級二胺對氫化觸媒重量比例。更佳爲約1 : 1至約1 : 5 範圍之一級二胺對氫化觸媒重量比例。較佳範圍之觸媒使 用量在相當短之反應時間以高產率提供二級二胺。 氫化觸媒可爲粉末形式或粒狀形式。粒狀形式之氫化 觸媒較粉末形式易自溶液沉降,而且粒狀形式趨於具有較 粉末形式慢之反應速率。然而在氫化觸媒爲粒狀形式時側 反應最小。因此氫化觸媒之較佳形式可隨選擇之特定一級 -11- 200848388 二胺與酮及/或醛而不同,因爲使側反應最小在某些系 較重要,而在其他則增加反應速率可能較重要。 C · 脂族一級二胺 用於本發明方法之脂族一級二胺爲其中二胺之烴 分爲脂族之烴基一級二胺。脂族二胺之烴基部分可爲 、分支或直鏈。較佳爲脂族一級二胺具有約2至約2 0 原子;更佳爲脂族一級二胺具有約4至約1 0個碳原子 佳脂族二胺具有環形或直鏈烴基部分且具有約4至約 碳原子。合適之脂族一級二胺包括但不限於乙二胺、 二胺基丙烷、1,3-二胺基丙烷、1,4-二胺基丁烷、1,5-基戊烷、1,5·二胺基-2-甲基戊烷、二胺基己烷、 二甲基- 2,5-己二胺、1,2-二胺基環己烷、;1,3_二胺基環 、1,4-二胺基環己烷、2,4-二乙基-6-甲基-1,3-環己二 4,6 -二乙基-2-甲基-1,3 -環己二胺、ι,3 -環己垸戴(甲f 1,4 -環己烷貳(甲胺)、異佛爾酮二胺、貳(對胺基環 )甲院、戴(3 -甲基-4-胺基環己基)甲院、ι,8 -二胺 孟、1,7-二胺基庚烷、1,8-二胺基辛烷、^ο·二胺基癸 1,12-二胺基十二烷、與3(4),8(9)·貳(胺基甲基) [5.2.1.0(2,6)]癸烷(TCD二胺;亦稱爲八氫-4,7 -甲 -1(2),5(6)-二甲胺、或八氫-4,7-甲醇-1H-茚二甲胺)。 之脂族一級二胺包括異佛爾酮二胺與1,6 -二胺基己烷 發明方法中之特佳組合爲使用1,6 -二胺基己烷與丙_ 己酮、使用1,6 -二胺基己烷與丙酮及3, 3 -二甲基-2 -丁 使用1,6-二胺基己烷與環己酮及4-甲基-2-戊酮、及 統中 基部 環形 個碳 ‘。特 10個 1,2- 二胺 2,5- 己烷 胺、 i安)、 己基 基對 $烷、 三環 醇茚 較佳 。本 及環 酮、 使用 -12- 200848388 1,6-二胺基己烷與環己酮及3,3-二甲基-2-丁酮。 D · 溶劑 酮及/或醛可在本發明之方法中作爲溶劑;然而在本 發明方法期間可存在一或多種溶劑。溶劑之存在並非必要 ,但是推薦包括溶劑且較佳。選擇溶劑之童要考量爲其不 干擾所選擇氫化劑之作用;例如選擇之溶劑應不破壞氫化 觸媒。可使用之溶劑型式包括但不限於液態芳族烴、液態 脂族烴、液態鹵化脂族烴、醚、酯、醇、及二或更多種之 ί 混合物。 合適之液態烴包括苯、甲苯、二甲苯、采、異丙苯、 散、戊烷、己烷、異己烷、環己烷、甲基環己烷、庚烷、 辛烷、環辛烷、壬烷等。可使用之液態鹵化脂族烴的實例 包括二氯甲烷、三氯甲烷、1,2 ·二氯乙烷、1 -溴-2 -氯乙烷 、(氯甲基)環丙烷、1 -溴丁烷、氯環丁烷、氯新戊烷、1 -溴-5 -氯戊烷、溴環戊烷、1,6 -二溴己烷、反-1,2 -二氯環己 院、1-氯庚院、1,8 -二氯辛院等。適合用於本發明之醚包括 I 二乙醚、二正丙醚、二異丙醚、二正丁醚、丁基乙基醚、 環己基甲基醚、四氫呋喃、1,3-二噁烷、ι,3-二氧戊環、甘 醇二甲醚(乙二醇之二甲醚)、2-甲氧基乙基醚(二甘二甲 醚)等。可使用之酯的實例包括乙酸乙酯、乙酸異丙酯、 乙酸正丁酯、乙酸異丁酯、乙酸第三丁酯、乙酸正戊酯、 乙酸異戊酯、乙酸己酯、丙酸甲酯、丙酸乙酯、丁酸乙酯 等。可用於本發明實務之醇包括甲醇、乙醇、1-丙醇、2-丙醇、卜丁醇、2 -甲基-1-丙醇、1-甲基-1—丙醇、環丙基甲 -13- 200848388 醇、環丁醇、環戊醇、順-2-甲基環己醇等。在氫化劑存在 時之較佳溶劑包括二氯甲烷、乙酸乙酯與甲苯。 E. 水去除劑 不希望以理論限制,在本發明之方法中,據信二胺係 形成中間產物而製造水作爲副產物,據信此水使平衡偏向 酮及/或醛與一級二胺;因此在此方法中通常不希望有大 量水。雖然已發現反應中製造之水之存在可能較先前在本 發明方法中得知無害,在至少某些情形,其希望使反應混 " 合物中之水量最小。 一種使反應混合物中之水量最小的方法爲使用水去除 劑。水去除劑可包括於反應混合物以在方法中製造水時去 除水。唯一之要求爲水去除劑不負面地影響反應或其產物 。合適之水去除劑包括分子篩、矽膠、氯化鈣等。在本發 明實務中分子篩爲較佳水去除劑。 使用水去除劑之一個替代方案推薦爲包括溶劑或足夠 之過量酮或醛作爲有效地稀釋水之溶劑且較佳。在使用溶 。 劑時’在方法期間可在製造時與水共沸因而去除水之溶劑 爲較佳操作方式。去除水之特佳溶劑爲己烷與甲苯。另一 種使用溶劑時之較佳操作方式爲使用將水溶入與發生反應 分離之相中的溶劑;此操作方式之較佳溶劑包括甲苯與二 氯甲院。包括溶劑或足夠之過量酮或醛作爲溶劑及使用水 去除劑均可用以使水量最小。特佳之操作方式爲使用足夠 之過量酮或醛稀釋水。 II·合成方法之進行 -14- 200848388 一般而言,在方法開始時水不存在作爲本發明方法之 成分,除了偶而存在之水(例如相對反應團塊總重量爲小 於約1重量%之水)。關於此點應注意,無水條件對本發明 方法之成功進行並非必要。 在氫化劑爲氫與氫化觸媒時,在氫氣氈下之操作爲較 佳。在氫化期間氧之存在通常無益,因爲據信氧至少促成 氫化觸媒之破壞。不在氫大氣下操作時,包括一或多種惰 氣(例如氮、氦或氬)之惰性大氣之存在經常較佳。 f 在本發明之方法中,其中胺基烴基彼此不同之脂族二 級二胺係藉由將將a)氫化劑,b)至少一種脂族一級二胺, 及c)至少兩種不同之酮、或至少兩種不同之醛、或至少一 種酮與至少一種醛混合在一起而製備。此方法通常在約2 0 °C至約1 4 0 °C範圍之溫度及在每平方英吋約1至約1 5 0磅 (9·65χ104至1.03xl06Pa)範圍之壓力進行。溫度較佳爲 約 2 0 °C至約 8 0 °C之範圍,而且壓力較佳爲每平方英吋約 50 至約 125 磅(3·45χ105 至 8.62xl05Pa)之範圍。 i 在氫化劑爲氫及氫化觸媒時,用於製備二級二胺之特 佳方法爲將一級二胺、氫化觸媒與溶劑置於反應容器中, 然後在氫氣壓力下密封反應容器。然後在攪拌反應混合物 時如所需將容器加熱。在實驗室規模,反應時間一般爲約 5小時至約20小時。 III·本發明方法之加工及回收 本發明方法製造之脂族二級二胺通常爲液體,而且如 果需要則可分隔或以未分隔形式使用。其可使用此技藝已 -15- 200848388 知分離液體之方法分離至少一部分脂族二級二胺與反應混 合物之其他成分。此方法包括例如層析及蒸餾;蒸餾爲較 佳之分離方法。在製造之脂族二級二胺爲固體時,其可使 用標準固-液分離方法(如離心、過濾或再結晶)自反應混 合物之液體部分分離至少一部分產物。 回收及再循環過量之酮或醛通常具經濟性。自反應混 合物分離酮或醛可藉蒸餾、分離含任何共沸物之水性部分 、或傾析水層繼而蒸餾酮或醛層而實行。一旦已自反應混 f 合物去除產物二亞胺或二級二胺之至少一部分時,則可將 未反應原料再循環至反應器形成一部分進料。 灰發明之聚合方法 在本發明之聚合方法中,聚合物聚胺基甲酸酯、聚脲 或聚脲-胺基甲酸酯係藉由將至少一種脂族多異氰酸酯、至 少一種多醇及/或至少一種聚醚胺、及本發明之脂族二級二 胺組成物混合在一起而製造。如此技藝所已知,在製造聚 胺基甲酸酯、聚脲或聚胺基甲酸酯-脲時亦可包括其他成分 ί、 ,如一或多種阻燃劑、熱安定劑及/或界面活性劑。在某些 本發明方法中,其將多醇或聚醚胺、脂族二級二胺組成物 、及選用配方(使用時)摻合在一起形成第一混合物,繼 而摻合此第一混合物與異氰酸酯形成第二混合物;使此第 二混合物硬化。在其他之本發明方法中,其將異氰酸酯與 多醇或聚醚胺摻合在一起形成預聚物,然後將此預聚物與 脂族二級二胺組成物混合在一起形成所需聚合物。在又其 他之本發明方法中,其將異氰酸酯與多醇或聚醚胺摻合在 •16- 200848388 一起形成準預聚物;將多醇或聚醚胺與脂族二級二胺組$ 物混合以形成混合物;然後將混合物與準預聚物混合以_ 成所需聚合物。如此將脂族二級二胺組成物與脂族多異氣 酸酯及至少一種多醇及/或至少一種多醚胺、或與異氰酸酉旨 及多醇或多醚胺之預聚物或準預聚物反應。在本發明之胃 務中,使用準預聚物爲製造聚脲之較佳方式。 脂族多異氰酸酯爲具有至少2個異氰酸基之有機多胃 氰酸酯。通常異氰酸酯具有至少約0.1重量%之自由 含量。可用於本發明實務之脂族多異氰酸酯包括異佛爾_ 二異氰酸酯(IPDI)、二異氰酸環伸己酯、二異氰酸4,4、岛 甲基二環己酯(HI 2 MDI);混合芳烷基二異氰酸酯,包括四 甲基二甲苯基二異氰酸酯;及多亞甲基異氰酸酯,包括 1,4-伸丁基二異氰酸酯、1,5-伸戊基二異氰酸酯、1,6-伸己 基二異氰酸酯(HMDI)、1,7-伸庚基二異氰酸酯、2,2,4、與 2,4,4 -三甲基伸己基二異氰酸酯、1,1 〇 -伸癸基二異氰酸酷 、及2 -甲基-1,5 -伸戊基二異氰酸酯。二或更多種脂族多舞 氰酸酯之混合物可用於本發明之實務。較佳之脂族多異氰 酸酯爲異佛爾酮二異氰酸酯(IPDI)。可使用之異氰酸酯的 實例亦教示於例如美國專利第4,5 9 5,7 4 2號。 一般用於製造聚胺基甲酸酯、聚脲及聚脲-胺基甲酸酯 之異氰酸酯反應性多醇與聚醚胺(有時稱爲胺終端多醇) 的分子量範圍爲約60至超過6,000。多醇可爲二經基、三 羥基或多羥基多醇,但是通常爲二羥基。合適多醇之實例 包括聚(伸乙氧基)二醇、二丙二醇、聚(伸丙氧基)二 -17- 200848388 醇、二丁二醇、聚(伸丁氧基)二醇、及得自己內酯之聚 合二醇(通常已知爲聚己內酯)。二或更多種二醇之混合物 可用於本發明之實務。用於製造聚胺基甲酸酯、聚脲及聚 脲-胺基甲酸酯之聚醚胺爲胺封端多醇(其爲多醇、胺與環 氧烷之反應產物)及胺封端含羥基聚酯。二或更多種聚醚 胺之混合物可用於本發明之實務。聚醚胺一般具有約2 0 0 至約6000之分子量。已知許多種得自Huntsman Chemical Company 之 Jeffamines®的市售聚醚胺,而且包括 i Jeffamines® T-5000 (分子量爲約5000之聚環氧丙院三胺 )、XTJ-5 09(分子量爲約3 000之聚環氧丙烷三胺)、XTJ-510 (分子量爲約 4000之聚環氧丙烷二胺)、及Jeffamines® D-2000(分子量爲約2000之聚環氧丙烷二胺)。在本發明 實務中較佳爲 Jeffamines® T-5 000 及 Jeffamines® D-2000。 在一個較佳之本發明聚合方法中,脂族二級二胺組成 物爲N-異丙基-N’-(3,3-二甲基-2-丁基)-1,6-二胺基己烷 。在另一個較佳之本發明聚合方法中,脂族二級二胺組成 L/ 物爲N-異丙基-Ν’-環己基-1,6-二胺基己烷。在又一個較佳 之本發明聚合方法中,脂族二級二胺組成物爲Ν _環己基 -Ν’-(3,3-二甲基-2-丁基)-1,6-二胺基己烷。 左發明形成之聚合物 本發明形成之聚合物爲聚胺基甲酸酯、聚脲及聚脲-胺基甲酸酯(有時稱爲聚脲-聚胺基甲酸酯)。因爲其凝膠 時間(硬化速率)不同,這些聚合物可用於不同之應用。 以本發明之脂族二級二胺組成物製造之聚胺基甲酸酯、聚 -18- 200848388 脲及聚脲·胺基甲酸酯具有所需凝膠時間,而且至少聚合物 之物理性質不因使用本發明之脂族二級二胺組成物而負面 地影響。 一種本發明形成之較佳聚合物係由包括異佛爾酮二異 氰酸酯、至少一種多醚胺、及脂族二級二胺之成分形成, 其中脂族二級二胺之烴基部分爲直鏈;及/或胺基烴基爲 環形及/或分支鏈烷基;及/或脂族二級二胺具有約1 〇至約 3 0個碳原子。 ί 另一種本發明形成之較佳聚合物係由包括脂族二級二 胺爲Ν-異丙基-Ν’ - (3,3-二甲基-2-丁基)-1,6-二胺基己烷 之成分形成,或由包括脂族二級二胺爲Ν-異丙基-Ν’-環己 基-1,6 -二胺基己院之成分形成,或由包括脂族二級二胺爲 Ν-環己基·Ν’_(3,3-二甲基-2-丁基)-1,6-二胺基己烷之成 分形成。 以下實例係爲了描述之目的而提出,而且不意圖對本 發明之範圍施加限制。 f i I 實例1 N-環己基-Ν’ - (4-甲基-2-戊基)-1,6-二胺基己烷之合成 將乙醇(15克)、l,6 -二胺基己烷(12.2克,0.105莫 耳,17.4克之水溶液)、及環己酮(11克,〇·ΐΐ莫耳)裝 至燒瓶,而且將此混合物在22 °C攪拌1 〇分鐘。將甲基異 丁基酮(2 0克,〇 · 2莫耳)加入燒瓶,而且將所得混合物 在 20-65 °C 攪拌 40 分鐘。將濕 Pt(S)/C(Engelhard,3 重量 % Pt,0.61克,對l,6-二胺基己烷爲5重量%)加入混合 -19- 200848388 物,然後在22°C以95 psig之H2將其沖洗3 應混合物在1 〇 〇 °C加熱4小時,然後在1 2 0 °C 然後在1 2 5 °C加熱3小時,其均在9 5 p s i g之 應混合物冷卻及脫氣。GC ( 1 00 °C /5分鐘/每3 /2 8 0 °C )顯示轉化率爲100%之1,6-二胺基己 N-環己基·Ν’-2_(4·甲基戊基)-1,6-二胺基Ξ 1>1’-二環己基-1,6-二胺基己烷、與19.1%之 4-甲基戊基)-1,6-二胺基己烷。GC-MS證實Ν. f(4-甲基戊基)-1,6-二胺基己烷之身分。在 空(1 · 3毫米汞)下自反應混合物去除溶劑與 實例2 在此實例中,異氰酸酯爲異佛爾酮二異 1 6.4% NCO)。使用 Jeffamine⑧ D-2000 (聚醚 Chemical)製造聚脲。將二筒針筒結合靜態 靜態混合器具有20個元件及0.37英吋之內ί Ellsworth Adhesives)。 k 製備含異氰酸酯、Jeff amine® D-2000、 族二級二胺組成物的聚脲調配物。將異氰ί Jeffamine® D-2000混合在一起形成準預聚 J e f f a m i n e ® D - 2 0 0 0摻合脂族二級二胺形成混 此混合物加入二筒針筒之一個筒;將準預聚 筒。藉由將其經靜態混合器推向鋼板而將混 物混合(反應),及在室溫硬化。 用於聚脲調配物之脂族二級二胺爲N - 51 次。然後將反 加熱2小時, :H2下。將反 于鐘1 (TC速率 t 烷、5 8 . 1 % 之 :烷、2 2.1 % 之 N,N,-二-2-( -環己基-Ν’-2-22至85 °C真 I水。 氰酸酯(IPDI; 胺,Huntsman 混合器使用。 S (EA 3 70-2 0, 與本發明之脂 駿酯與一部分 物。將其餘之 合物。然後將 物加入另一個 合物與準預聚 !己基-N,· ( 4- -20- 200848388 甲基-2-戊基)-1,6-二胺基己烷。結果歸納於表1。 表1 樣品1 B側配方 B側重量% N-環己基-N’-2- (4-甲基_苯基) -1,6-二胺基己烷 54.8 Jeffamine D-2000 29.6 Jeffamine T-5000 8.6 Ti〇2 7.0 A側配方 IPDI (16.4%NCO) 性質 凝膠時間 8秒 應了解,在本文件任意處之化學名稱或化學式所指之 反應物及組分,不論指單數或複數,均以其在接觸以化學 名稱或化學型式所指之其他物質(例如其他反應物、溶劑 等)前存在而證驗。在所得混合物或溶液或反應介質中發 生之預備化學變化、轉變及/或反應(若有)均無關,因爲 此變化、轉變及/或反應爲在依照本揭示之條件下使指定反 應物及/或組分在一起之自然結果。因此反應物及組分係證 驗爲關於實行所需化學操作或反應、或形成用於進行所需 操作或反應之混合物而在一起之成分。又即使具體實施例 可能以現在式(「包括」、「包含」、「爲」等)指稱物質、組 分及/或配方’此指稱爲其恰在依照本揭示最先接觸、摻合 -21- 200848388 或混合一或多種其他物質、組分及/或成分前存在之物質或 配方。 又即使可能以現在式(「包括」、「爲」等)指稱物質, 此指稱爲其恰在依照本揭示最先接觸、摻合或混合一或& 種其他物質前存在之物質。 除了另有明確地表示,在此使用之名詞”a,,或”an”不意 圖限制,而且不應視爲將說明或申請專利範圍限制爲名詞 所指之單一元素。而是在此使用之名詞“a”或“an”意圖 ^ 涵蓋一或多種此元素,除了另有明確地表示。 本發明在實務上可大幅變動。 【圖式簡單說明】 Μ 〇 【元件符號說明】 ΛΕ 〇 y \ \\ -22-200848388 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to the formation of polyurethanes, polyureas and polyurea-urethanes using aliphatic diamines. [Prior Art] There are many kinds of polyfunctional compounds, including diols and aromatic diamines, which can be used as chain extension in the preparation of polyurethane, polyurea and polyurea-urethane polymers. And/or as a hardener for epoxy resins. None of these compounds provide a generally desirable reactivity, and many of the products used in their manufacture do not provide satisfactory properties. There is therefore a need to find compounds that act as chain extenders or hardeners. U.S. Patent No. 4,800,61,6, teaches the use of specific N,N'-dialkylphenylene diamine as a chain extender in the preparation of polyurethanes and polyureas. See also, for example, U.S. Patent No. 4,5,28,336, which teaches the use of a secondary aliphatic diamine as part of a resin binder, and U.S. Patent No. 6,2 1,8,8,0 B1 It discloses the use of an aromatic diamine as a curing agent for polyurethanes. Secondary aromatic diamines have also been used as antidegradants for rubber, see U.S. Patent No. 4,90,086. There is now a greater need for chain extenders which have a slower rate of hardening, which is a further advantage if the aliphatic diamine exhibits a slower rate of hardening than currently available chain extenders. SUMMARY OF THE INVENTION The present invention is in part to provide an aliphatic secondary diamine chain extender. These diamines produce polymers having the desired physical properties at the desired hardening rate when included in the formulation of polyurethane, polyurea and polyurea-urethane. 200848388 A specific embodiment of the present invention provides a composition comprising an aliphatic secondary diamine in which an aminohydrocarbyl group is different from each other. Another embodiment of the present invention is a process for producing an aliphatic secondary diamine in which an amino group is different from each other. The method comprises mixing a) a hydrogenating agent, b) at least one aliphatic primary diamine, and c) at least two different ketones, or at least two different aldehydes, or at least one ketone with at least one aldehyde, such that Forming an aliphatic secondary diamine having an amine hydrocarbon group different from each other. Yet another embodiment of the present invention is a polymer for producing a polyurethane, a polyurea or a polyurea-urethane. Methods. The method comprises mixing at least (A) an aliphatic polyisocyanate, (B) at least one polyol and/or at least one polyether amine, and (C) an aliphatic secondary diamine in which the amino hydrocarbon groups are different from each other. A further embodiment of the invention is a polymer of a polyurethane, polyurea or polyurea-urethane comprising at least (A) an aliphatic polyisocyanate, (B) Compositions of at least one polyol and/or at least one polyetheramine 'and (C) an aliphatic secondary diamine in which the aminohydrocarbyl groups are different from each other. These and other specific embodiments of the invention are illustrated by the following description and the accompanying application The scope of patents is more obvious and easy to understand. [Embodiment] The fine composition of the main invention The composition of the present invention is composed of an aliphatic secondary diamine in which two amino hydrocarbon groups are different from each other. The term "two aminohydrocarbyl groups are different from each other" means that the nicotine group on one nitrogen atom in the aliphatic secondary diamine molecule is different from the hydrocarbyl group on the other nitrogen atom in the same aliphatic secondary diamine molecule in the -6-200848388 aliphatic secondary diamine molecule. . It will be appreciated that the compositions of the present invention will often also contain minor amounts of aliphatic secondary diamines having the same amine hydrocarbyl group, depending on the manner in which they are prepared. The aliphatic secondary diamine of the composition of the present invention is a hydrocarbon-based secondary diamine wherein the hydrocarbyl moiety of the diamine is aliphatic, and the "hydrocarbyl moiety" means a moiety bonded to the amine group. The hydrocarbyl moiety of the aliphatic secondary diamine may be cyclic, branched, or preferably straight. The amine hydrocarbyl group of the aliphatic secondary diamine may be in the form of a ring, a branch or a straight chain. More preferably, the aminoalkyl group is a cyclic and/or branched alkyl group having from 3 to about 12 carbon atoms. Examples of suitable aminoalkyl groups include ethyl, propyl, isopropyl, n-butyl, t-butyl, t-butyl, 3,3-dimethyl-2-butyl, pentyl, 3-methyl 2-yl-2-pentyl, 4-methyl-2-pentyl, cyclopentyl, hexyl, cyclohexyl, methylcyclohexyl, heptyl, octyl, cyclooctyl, decyl, decyl, dodecyl Base. Preferred aminoalkyl groups include isopropyl, cyclohexyl and 3,3-dimethyl-2-butyl. Preferably, the aliphatic secondary diamine has from about 8 to about 40 carbon atoms; more preferably the aliphatic secondary diamine has from about 10 to about 30 carbon atoms. The polyaliphatic secondary diamine has a cyclic or straight chain hydrocarbyl moiety having a cyclic or branched branched amine hydrocarbyl group and having from about 12 to about 25 carbon atoms. The aliphatic secondary diamines of the present invention include, but are not limited to, N-ethyl-Ν'-isopropylethylamine, Ν-isopropyl-Ν'-t-butyl-1,2-diaminopropyl , Ν-isopropyl-Ν'-(2-butenyl)·1,3-diaminopropane, Ν-cyclopentyl-Ν'-isopropyl-1,4-diaminobutane, Ν-second butyl-hydrazine,-3-hexyl-1,4-diaminobutane, hydrazine-t-butyl-hydrazine,-5-mercapto-1,5-diaminopentane, hydrazine -isopropyl-indole,-cyclohexyl-1,5-diaminopentane, fluorenyl-cyclopentyl-indole-(3,3-dimethyl-2-but-7-200848388)-1 ,5-mono-amino-2-methylpentanol, N-isopropyl-Ν'-(3,3-•2·butyl)-1,6-diaminohexane, N-isopropyl Base-Ν'-cyclohexyl q, hexane, N-cyclohexyl-N'-(3,3-dimethyl-2-butyl)-1,6-hexane, N-cyclohexyl-Ν'- (4-Methyl-2-pentyl)-1,6-diaminoguanidine-t-butyl-oxime-methyl perhexyl-1,6-diaminohexane, Να, cyclopentyl- 1,6-Diaminohexane, Ν-(3-pentyl)-Ν'-cyclohexanedimethyl-2,5-hexanediamine, Ν-isopropyl-Ν'-(3-hexyl) -1,2-cyclohexane, hydrazine-t-butyl-Ν'-cyclohexyl- 1,3·Diaminocyclohexane 3,3-dimethyl-2-butyl)-indole-cyclopentyl-1,4-diaminohexane, butyl-Ν'_cyclopentyl -1,3-cyclohexane oxime (methylamine), Ν-isopropylhexyl-1,4-cyclohexane oxime (methylamine), 1 isopropyl-?^-(3,3-dioxine -1,7-diaminoheptane, hydrazine-t-butyl-hydrazone-cyclohexyl-1: octyl octane, hydrazine-isopropyl-hydrazide-(2-pentyl)-1, 10. Diaminodecanedibutyl-hydrazone--(3-hexyl)-1,12-diaminododecane, Ν-isopropylcyclopentylisophoronediamine, and Ν-(5 _ 壬 ))-Ν'-cyclohexyl ketone diamine. Preferred aliphatic secondary diamines include Ν-isopropyl-Ν'-(methyl-2-butyl)-1,6-diaminohexane, hydrazine-isopropyl-hydrazine, cyclohexyl Aminohexane, Ν-cyclohexyl hydrazine, -(4-methyl-2-pentyl)-1,6-hexane, and Ν-cyclohexyl Ν, _(3,3-dimethyl- 2-butyl)-1,6-hexane. The synthesis method of the present invention, in the method of forming an aliphatic secondary diamine wherein the amino group is different from each other (i.e., "synthesis method"), which will a) a hydrogenating agent, b) to an aliphatic primary diamine, and c) At least two different ketones, or at least two dimethyl 6-diamine diamino hexane, isopropyl m -2,5-diamino, N-(N-second-N '-cyclomethyl -2-,8-diamine, N-diyl-N,-isophor 3,3-diyl-1,6-diaminodiamine has less than one kind of aldehyde, 200848388, or At least one ketone is mixed with at least one aldehyde to form an aliphatic secondary diamine in which the amino hydrocarbon groups are different from each other. I. A component used in the method of the present invention A. a ketone and an aldehyde in order to form an amine hydrocarbon group different from each other An aliphatic secondary diamine using at least two different ketones, or at least two different aldehydes, or at least one ketone and at least one aldehyde. Although it is preferred to use two ketones, two aldehydes, or one ketone An aldehyde which may use a mixture. This mixture may include, for example, f-% three or more ketones, three or more aldehydes, two ketones and one aldehyde, or one Ketones and two aldehydes. The ketones and aldehydes used in the process of the invention are hydrocarbyl ketones and hydrocarbyl aldehydes. The hydrocarbyl moieties of the ketone or aldehyde are aliphatic (ring, branched or linear), preferably ring or branched. The ketone and aldehyde used in the practice of the present invention have from 3 to about 20 carbon atoms, more preferably a ketone and an aldehyde having from 3 to about 15 carbon atoms. The particularly preferred ketone and aldehyde have a hydrocarbyl moiety having a cyclic or branched aliphatic group. And having from 3 to about 1 carbon atoms. The total molar ratio of the ketone and/or aldehyde to the aliphatic primary diamine is usually at least about 1 mole per mole of ol and/or acid per mole of amine group, ie per mole The diamine is at least about 2 moles and/or aldehyde. Since the two amine groups each have at least one ketone and/or aldehyde, it is typically and preferably at least about 1 mole of ketone and/or aldehyde per mole of amine group. Thus, in the case of only two ketones and/or aldehydes, or only one ketone and one aldehyde, it is usually and preferably at least about 1 mole per aldehyde or aldehyde per mole of amine group. In some cases, an excess of ketone is used. And/or an aldehyde, which is generally from about 5% to about 丨〇% molar excess of the ketone or aldehyde relative to the primary diamine. -9- 200848388 Suitable ketones include acetone (2_propyl Ketone), methyl ethyl ketone (2-butanone), 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, 2-heptanone, 4-heptanone, 3-octanone, 4-octanone , 3-fluorenone, 5-fluorenone, 2-undecoketone, 6-undecenone, di-n-hexanone, 8-pentadecanone '9-heptadecanone, 10-n-nonone, Cyclobutanone, cyclopentanone, cyclohexanone, cyclopropylmethylketone (1-(cyclopropyl)ethanone), cyclobutylmethylketone, cyclopentylmethylketone, cyclohexylmethylketone, 3 - Methyl-2-pentanone, 4-methyl-2-pentanone (methyl isobutyl ketone), cyclopentanone, 2-methylcyclopentanone, 3-methylcyclopentanone, 5-methyl Hexanone, 4-methyl-3-heptanone, 3,3-dimethyl-2-butanone (methyl tert-butyl ketone), 2,4-dimethyl-3-pentanone, ring Hexanone, 2,6-dimethyl-3-heptanone, 3,5-dimethyl-4-heptanone, 2-methylcyclohexanone, 2,5-dimethylcyclopentanone, menthone , isophorone and the like. Preferred ketones include acetone, methyl ethyl ketone, 3,3-dimethyl-2-butanone, 4-methyl-2-butanone, cyclohexanone, 4-heptanone, and 5-ketone. Acetone, cyclohexanone, 4-methyl-2-pentanone, and 3,3-dimethyl-2-butanone are preferred ketones in the practice of the present invention. Aldehydes useful in the practice of the invention include acetaldehyde ν propionaldehyde, butyraldehyde, valeraldehyde I, isovaleraldehyde, hexanal, cyclohexane formaldehyde, heptaldehyde, octanal, furfural, furfural, undecalaldehyde, Dodecaldehyde, 2-ethylbutyraldehyde, undecenal (10-undecenal), and the like. Generally, ketones and/or aldehydes are in liquid form when used in the process of the invention. For certain ketones and aldehydes, ketones or aldehydes are liquefied at elevated temperatures and/or pressurization. If this condition is not used, a solvent can be used to provide a ketone or aldehyde in liquid form.氢化. Hydrogenating Agents Various hydrogenating agents can be used in the synthesis method of the present invention. It can be used as a -10-200848388 suitable hydrogenating agent including hydride transfer agent, such as sodium cyanoborohydride, sodium borohydride, sodium hydride, lithium hydride, etc.; "dissolved metal" agent, such as A1 and alcohol, Al / Hg, Al/Pd and HCl, Na and alcohol, Na/Hg, Mg and alcohol, Fe and HCl, Zn and HCl, Zn/Cu and HCl, Zn/Hg and HCl, Zn/Pd and HCl, Zn/Cu/ Pd and HCl1; borane reactants, including BH 3 -pyridine and BH3-dimethylamine; and hydrogen and hydrogenation catalyst, wherein the hydrogenation catalyst may be platinum carbon, palladium carbon, platinum sulfide carbon, palladium sulfide carbon, or It is a mixture of two or more thereof. A preferred type of hydrogenating agent is hydrogen and a hydrogenation catalyst. (When selecting a hydrogenating agent, especially a "dissolving metal" agent used in combination with an acid and hydrogen and a hydrogenation catalyst in which an acid is present, it is considered that a strong acid may cause polymerization and/or polymerization of certain ketones. In the case of a hydrogenation catalyst, a suitable amount of hydrogenation catalyst can be relatively low, i.e., in the range of from about 0.5% by weight to about 10% by weight relative to the primary diamine. More suitably, it can be used in an amount of about 0.75 relative to the primary diamine. From about % by weight to about 6% by weight. It has now been found that the reaction takes place relatively quickly using a large amount of hydrogenation catalyst. Therefore, a weight ratio of one-stage diamine to catalyst in the range of from about 20:1 to about 1:20 is suitable, Further preferably, the ratio of the diamine to hydrogenation catalyst is from about 10:1 to about 1:10, more preferably from about 1:1 to about 1:5 by weight of the diamine to hydrogenation catalyst. A good range of catalyst usage provides a secondary diamine in high yields over a relatively short reaction time. The hydrogenation catalyst can be in powder form or in granular form. The hydrogenated catalyst in granular form is easier to settle from solution than the powder form, and Granular form tends to be slower than powder form Rate. However, the side reaction is minimal when the hydrogenation catalyst is in the granular form. Therefore, the preferred form of the hydrogenation catalyst may vary depending on the particular stage of the selection of the -11-200848388 diamine and the ketone and/or aldehyde, since the side reaction is minimized. It is important to increase the reaction rate in some systems, and it may be important to increase the reaction rate in others. C · Aliphatic primary diamine The aliphatic primary diamine used in the process of the present invention is a hydrocarbon in which the diamine is classified into an aliphatic hydrocarbon group. The hydrocarbyl moiety of the aliphatic diamine may be, branched or linear. Preferably, the aliphatic primary diamine has from about 2 to about 20 atoms; more preferably the aliphatic primary diamine has from about 4 to about 10 The carbon atom preferably has a cyclic or straight chain hydrocarbyl moiety and has from about 4 to about carbon atoms. Suitable aliphatic primary diamines include, but are not limited to, ethylenediamine, diaminopropane, and 1,3-diamine. Propane, 1,4-diaminobutane, 1,5-pentane, 1,5-diamino-2-methylpentane, diaminohexane, dimethyl-2,5-hexyl Diamine, 1,2-diaminocyclohexane, 1,3-diamino ring, 1,4-diaminocyclohexane, 2,4-diethyl-6-methyl-1, 3-cyclohexane 2,6 - Ethyl-2-methyl-1,3-cyclohexanediamine, iota, 3-cyclohexanide (methyl f 1,4-cyclohexane oxime (methylamine), isophorone diamine, hydrazine ( Amino ring) A hospital, Dai (3-methyl-4-aminocyclohexyl) a hospital, ι,8-diamine, 1,7-diaminoheptane, 1,8-diamino Octane, ^ο·diaminopurine 1,12-diaminododecane, and 3(4),8(9)·贰(aminomethyl) [5.2.1.0(2,6)]癸Alkane (TCD diamine; also known as octahydro-4,7-methyl-1(2),5(6)-dimethylamine, or octahydro-4,7-methanol-1H-indole dimethylamine). The preferred combination of the aliphatic primary diamines including isophorone diamine and 1,6-diaminohexane in the method of the invention is the use of 1,6-diaminohexane and propanone, using 1, 6-Diaminohexane with acetone and 3,3-dimethyl-2-butane using 1,6-diaminohexane and cyclohexanone and 4-methyl-2-pentanone, and the base of the system Ring carbon'. Particularly, 10, 1,2-diamine 2,5-hexaneamine, i-an), hexyl-p-, alkane, tricyclic alcohol are preferred. Ben and ketone, using -12- 200848388 1,6-diaminohexane and cyclohexanone and 3,3-dimethyl-2-butanone. D. Solvents Ketones and/or aldehydes may be employed as solvents in the process of the invention; however, one or more solvents may be present during the process of the invention. The presence of a solvent is not necessary, but it is recommended to include a solvent and is preferred. The choice of solvent should be such that it does not interfere with the choice of hydrogenation agent; for example, the solvent chosen should not destroy the hydrogenation catalyst. Solvent forms which may be used include, but are not limited to, liquid aromatic hydrocarbons, liquid aliphatic hydrocarbons, liquid halogenated aliphatic hydrocarbons, ethers, esters, alcohols, and mixtures of two or more. Suitable liquid hydrocarbons include benzene, toluene, xylene, cumene, cumene, pentane, hexane, isohexane, cyclohexane, methylcyclohexane, heptane, octane, cyclooctane, hydrazine Alkane, etc. Examples of liquid halogenated aliphatic hydrocarbons which may be used include dichloromethane, chloroform, 1,2,dichloroethane, 1-bromo-2-chloroethane, (chloromethyl)cyclopropane, 1-bromobutyl Alkane, chlorocyclobutane, chloropentane, 1-bromo-5-chloropentane, bromocyclopentane, 1,6-dibromohexane, trans-1,2-dichlorocyclohexane, 1- Chlorine Gent, 1,8-Dichloroxin Institute, etc. Ethers suitable for use in the present invention include I diethyl ether, di-n-propyl ether, diisopropyl ether, di-n-butyl ether, butyl ethyl ether, cyclohexyl methyl ether, tetrahydrofuran, 1,3-dioxane, ι , 3-dioxolane, glyme (dimethyl ether of ethylene glycol), 2-methoxyethyl ether (diglyme), and the like. Examples of esters which may be used include ethyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, tert-butyl acetate, n-amyl acetate, isoamyl acetate, hexyl acetate, methyl propionate. , ethyl propionate, ethyl butyrate and the like. Alcohols useful in the practice of the invention include methanol, ethanol, 1-propanol, 2-propanol, butanol, 2-methyl-1-propanol, 1-methyl-1-propanol, cyclopropylmethyl -13- 200848388 Alcohol, cyclobutanol, cyclopentanol, cis-2-methylcyclohexanol, and the like. Preferred solvents in the presence of a hydrogenating agent include dichloromethane, ethyl acetate and toluene. E. Water remover is not intended to be limited by theory. In the process of the present invention, it is believed that the diamine forms an intermediate product to produce water as a by-product which is believed to bias the equilibrium towards the ketone and/or aldehyde with the primary diamine; A large amount of water is generally not desired in this process. Although it has been found that the presence of water produced in the reaction may be known to be harmless in the prior art process, in at least some instances it is desirable to minimize the amount of water in the reaction mixture. One method of minimizing the amount of water in the reaction mixture is to use a water remover. A water remover can be included in the reaction mixture to remove water when the water is produced in the process. The only requirement is that the water remover does not negatively affect the reaction or its product. Suitable water removal agents include molecular sieves, silicones, calcium chloride, and the like. Molecular sieves are preferred water removers in the practice of the invention. An alternative to the use of a water remover is preferably a solvent comprising a solvent or a sufficient excess of ketone or aldehyde as a solvent to effectively dilute water and is preferred. Dissolved in use. In the case of a solvent, a solvent which can be azeotroped with water at the time of production and thus removes water is a preferred mode of operation. The most preferred solvent for removing water is hexane and toluene. Another preferred mode of operation when using a solvent is to use a solvent which dissolves water into the phase in which the reaction is separated; preferred solvents for this mode of operation include toluene and dichlorocarbyl. A solvent or a sufficient excess of ketone or aldehyde as a solvent and a water remover can be used to minimize the amount of water. A particularly preferred mode of operation is to use enough excess ketone or aldehyde to dilute the water. II. Progress of the synthesis method-14- 200848388 In general, water is not present as a component of the process of the invention at the beginning of the process, except for occasional water (e.g., less than about 1% by weight relative to the total weight of the reaction mass) . It should be noted in this regard that anhydrous conditions are not necessary for the success of the process of the invention. When the hydrogenating agent is hydrogen and a hydrogenation catalyst, the operation under a hydrogen felt is preferred. The presence of oxygen during hydrogenation is generally not beneficial because it is believed that the oxygen contributes at least to the destruction of the hydrogenation catalyst. The presence of an inert atmosphere comprising one or more inert gases (e.g., nitrogen, helium or argon) is often preferred when not operating under a hydrogen atmosphere. f In the process of the present invention, wherein the aliphatic secondary diamine differing from each other in the amino group is by a) a hydrogenating agent, b) at least one aliphatic primary diamine, and c) at least two different ketones Prepared by mixing at least two different aldehydes, or at least one ketone, with at least one aldehyde. The process is typically carried out at a temperature in the range of from about 20 ° C to about 140 ° C and at a pressure in the range of from about 1 to about 150 pounds per square inch (9·65 χ 104 to 1.03 x 106 Pa). The temperature is preferably in the range of from about 20 ° C to about 80 ° C, and the pressure is preferably in the range of from about 50 to about 125 lbs per square inch (3·45 χ 105 to 8.62 x 105 Pa). i When the hydrogenating agent is hydrogen and a hydrogenation catalyst, a preferred method for preparing the secondary diamine is to place the primary diamine, the hydrogenation catalyst and the solvent in a reaction vessel, and then seal the reaction vessel under hydrogen pressure. The vessel is then heated as needed while stirring the reaction mixture. On a laboratory scale, the reaction time is generally from about 5 hours to about 20 hours. III. Processing and Recovery of the Process of the Invention The aliphatic secondary diamines produced by the process of the invention are typically liquid and, if desired, may be separated or used in undivided form. It is possible to separate at least a portion of the aliphatic secondary diamine from the other components of the reaction mixture by the method of separating the liquid using the technique of -15-200848388. This method includes, for example, chromatography and distillation; distillation is a preferred separation method. When the aliphatic secondary diamine produced is a solid, it can be separated from at least a portion of the product from the liquid portion of the reaction mixture by standard solid-liquid separation methods such as centrifugation, filtration or recrystallization. It is generally economical to recycle and recycle excess ketone or aldehyde. Separation of the ketone or aldehyde from the reaction mixture can be carried out by distillation, separation of the aqueous portion containing any azeotrope, or decantation of the aqueous layer followed by distillation of the ketone or aldehyde layer. Once at least a portion of the product diimine or secondary diamine has been removed from the reaction mixture, the unreacted feed can be recycled to the reactor to form a portion of the feed. Polymerization Process of Ash Invention In the polymerization process of the present invention, the polymer polyurethane, polyurea or polyurea-urethane is obtained by using at least one aliphatic polyisocyanate, at least one polyol and/or Or at least one polyetheramine, and the aliphatic secondary diamine composition of the invention are mixed together to produce. It is known in the art to include other components, such as one or more flame retardants, thermal stabilizers and/or interfacial activity, in the manufacture of polyurethanes, polyureas or polyurethane-ureas. Agent. In certain methods of the invention, a polyol or polyetheramine, an aliphatic secondary diamine composition, and an optional formulation (when used) are blended together to form a first mixture, which is then blended with the first mixture. The isocyanate forms a second mixture; the second mixture is hardened. In other methods of the invention, the isocyanate is blended with a polyol or polyetheramine to form a prepolymer which is then combined with the aliphatic secondary diamine composition to form the desired polymer. . In still other methods of the invention, the isocyanate is blended with a polyol or polyetheramine to form a quasi-prepolymer together in the period of 16 to 200848388; the polyol or polyetheramine and the aliphatic secondary diamine group are Mixing to form a mixture; the mixture is then mixed with a quasi-prepolymer to form the desired polymer. The prepolymer of the aliphatic secondary diamine composition and the aliphatic polyisophthalate and at least one polyol and/or at least one polyetheramine, or with isocyanate and polyol or polyetheramine Or quasi-prepolymer reaction. In the stomach of the present invention, the use of a quasi-prepolymer is a preferred mode of making polyurea. The aliphatic polyisocyanate is an organic polythocyanate having at least 2 isocyanate groups. Typically the isocyanate has a free content of at least about 0.1% by weight. Aliphatic polyisocyanates useful in the practice of the invention include isophoric-diisocyanate (IPDI), cyclohexyl diisocyanate, diisocyanate 4,4, and island methyl dicyclohexyl ester (HI 2 MDI). Mixed aralkyl diisocyanate, including tetramethyl xylylene diisocyanate; and polymethylene isocyanate, including 1,4-butylene diisocyanate, 1,5-amyl diisocyanate, 1,6- Hexyl diisocyanate (HMDI), 1,7-heptyl diisocyanate, 2,2,4, and 2,4,4-trimethylhexyl diisocyanate, 1,1 〇-extension decyl diisocyanate Acidic, and 2-methyl-1,5-exopentyl diisocyanate. Mixtures of two or more aliphatic polycyanamides can be used in the practice of the present invention. A preferred aliphatic polyisocyanate is isophorone diisocyanate (IPDI). Examples of isocyanates that can be used are also taught, for example, in U.S. Patent No. 4,5,5,7,42. Isocyanate-reactive polyols and polyetheramines (sometimes referred to as amine-terminated polyols) typically used in the manufacture of polyurethanes, polyureas, and polyurea-urethanes have molecular weights ranging from about 60 to over 6,000. The polyol can be a di-, tri- or polyhydric polyol, but is typically a dihydroxy group. Examples of suitable polyols include poly(ethyleneoxy) diol, dipropylene glycol, poly(propoxy)di-17-200848388 alcohol, dibutyl diol, poly(butoxy) diol, and A polymeric diol of its own lactone (commonly known as polycaprolactone). Mixtures of two or more diols can be used in the practice of the present invention. Polyetheramines for the manufacture of polyurethanes, polyureas and polyurea-urethanes are amine-terminated polyols which are the reaction products of polyols, amines and alkylene oxides and amine terminated Hydroxyl-containing polyester. Mixtures of two or more polyetheramines can be used in the practice of the present invention. Polyetheramines generally have a molecular weight of from about 200 to about 6,000. Many commercially available polyetheramines from Jeffamines® from Huntsman Chemical Company are known, and include i Jeffamines® T-5000 (polyethylene oxide triamine having a molecular weight of about 5,000), XTJ-5 09 (molecular weight is about 3 000 polypropylene oxide triamine), XTJ-510 (polypropylene oxide diamine having a molecular weight of about 4,000), and Jeffamines® D-2000 (polypropylene oxide diamine having a molecular weight of about 2000). Preferred in the practice of the invention are Jeffamines® T-5 000 and Jeffamines® D-2000. In a preferred polymerization process of the invention, the aliphatic secondary diamine composition is N-isopropyl-N'-(3,3-dimethyl-2-butyl)-1,6-diamino Hexane. In another preferred polymerization process of the invention, the aliphatic secondary diamine composition L/ is N-isopropyl-oxime-cyclohexyl-1,6-diaminohexane. In still another preferred polymerization process of the invention, the aliphatic secondary diamine composition is Ν-cyclohexyl-Ν'-(3,3-dimethyl-2-butyl)-1,6-diamino Hexane. Polymers Formed by the Left Invention The polymers formed by the present invention are polyurethanes, polyureas, and polyurea-urethanes (sometimes referred to as polyurea-polyurethanes). Because of their different gel times (hardening rates), these polymers can be used in a variety of applications. Polyurethane, poly-18-200848388 urea and polyurea-urethane manufactured by the aliphatic secondary diamine composition of the present invention have a desired gel time and at least physical properties of the polymer It is not adversely affected by the use of the aliphatic secondary diamine composition of the present invention. A preferred polymer formed by the present invention is formed from a component comprising isophorone diisocyanate, at least one polyetheramine, and an aliphatic secondary diamine, wherein the hydrocarbyl moiety of the aliphatic secondary diamine is linear; And/or the amine hydrocarbyl group is a cyclic and/or branched alkyl group; and/or the aliphatic secondary diamine has from about 1 Torr to about 30 carbon atoms. Another preferred polymer formed by the present invention consists of an aliphatic secondary diamine which is Ν-isopropyl-Ν'-(3,3-dimethyl-2-butyl)-1,6-di The component of the aminohexane is formed or formed of a component comprising an aliphatic secondary diamine which is an oxime-isopropyl-anthracene-cyclohexyl-1,6-diamine hexanyl, or an aliphatic secondary The diamine is formed as a component of Ν-cyclohexyl Ν'_(3,3-dimethyl-2-butyl)-1,6-diaminohexane. The following examples are presented for the purpose of description and are not intended to limit the scope of the invention. Fi I Example 1 Synthesis of N-cyclohexyl-Ν'-(4-methyl-2-pentyl)-1,6-diaminohexane Ethanol (15 g), 1,6-diamino group Alkane (12.2 g, 0.105 mol, 17.4 g of an aqueous solution), and cyclohexanone (11 g, 〇·ΐΐm) were charged to the flask, and the mixture was stirred at 22 ° C for 1 Torr. Methyl isobutyl ketone (20 g, 〇 2 mol) was added to the flask, and the resulting mixture was stirred at 20-65 ° C for 40 minutes. Wet Pt(S)/C (Engelhard, 3 wt% Pt, 0.61 g, 5% to 1,6-diaminohexane) was added to Mix -19-200848388 and then at 95 psig at 22 °C. The H2 was rinsed and the mixture was heated at 1 ° C for 4 hours, then at 1 20 ° C and then at 1 2 5 ° C for 3 hours, both of which were cooled and degassed at 95 ° psig. GC (1 00 ° C /5 min / every 3 /2 80 ° C) shows a conversion of 100% of 1,6-diaminohexyl N-cyclohexyl·Ν'-2_(4·methylpentyl) -1,6-diaminopurine 1>1'-dicyclohexyl-1,6-diaminohexane, and 19.1% of 4-methylpentyl)-1,6-diaminohexane . The identity of Ν.f(4-methylpentyl)-1,6-diaminohexane was confirmed by GC-MS. The solvent was removed from the reaction mixture under air (1.3 mm Hg) and Example 2 In this example, the isocyanate was isophorone diiso 1 6.4% NCO). Polyurea was produced using Jeffamine 8 D-2000 (Polyether Chemical). Combine the two-cylinder syringe with a static static mixer with 20 components and within 0.37 inches of ί Ellsworth Adhesives). k Preparation of polyurea formulations containing isocyanate, Jeff amine® D-2000, and a secondary diamine composition. Mixing isocyanate Jeffamine® D-2000 to form a quasi-prepolymerized J effamine ® D - 2 0 0 0 blended aliphatic secondary diamine to form a mixture of the mixture into a two-cylinder syringe; . The mixture was mixed (reacted) by pushing it through a static mixer to the steel sheet, and hardened at room temperature. The aliphatic secondary diamine used in the polyurea formulation is N - 51 times. Then the mixture was heated back for 2 hours, under H2. Will be opposite to clock 1 (TC rate t alkane, 58.1%: alkane, 2 2.1% N,N,-di-2-(-cyclohexyl-Ν'-2-22 to 85 °C true I Cyanate ester (IPDI; amine, used in a Huntsman mixer. S (EA 3 70-2 0, with the lipid ester of the present invention and a portion of the compound. The remaining compound is then added to the other compound with Quasi-prepolymerization! Hexyl-N, · (4- -20- 200848388 methyl-2-pentyl)-1,6-diaminohexane. The results are summarized in Table 1. Table 1 Sample 1 B side formulation B side % by weight N-cyclohexyl-N'-2-(4-methyl-phenyl)-1,6-diaminohexane 54.8 Jeffamine D-2000 29.6 Jeffamine T-5000 8.6 Ti〇2 7.0 A side formulation IPDI (16.4% NCO) The gel time is 8 seconds. It should be understood that the chemical names or chemical formulas referred to in any part of this document, whether singular or plural, are referred to by chemical name or chemical type. The other substances referred to (eg, other reactants, solvents, etc.) are present and verified. The preparatory chemical changes, transitions, and/or reactions (if any) that occur in the resulting mixture or solution or reaction medium are irrelevant. Because such changes, transformations, and/or reactions are natural results of bringing the specified reactants and/or components together under the conditions of the present disclosure, the reactants and components are therefore verified as being related to the desired chemical operation or reaction, Or forming a component that is used to carry out the desired operation or reaction mixture. Even if the specific embodiment may refer to the substance, component and/or formula in the present formula ("include", "include", "for", etc.) 'This refers to a substance or formula that is present prior to the first exposure, blending of -21-200848388 or mixing one or more other substances, components and/or ingredients in accordance with the present disclosure. Even if it is possible to use the present formula ("include "," "for", etc., refers to a substance, which is referred to as a substance that exists prior to the first contact, blending, or mixing of one or the other of the substances in accordance with the present disclosure. Unless otherwise expressly stated, it is used herein. The term "a," or "an" is not intended to be limiting, and should not be construed as limiting the scope of the description or claim to the single element of the noun. Instead, the term "a" or "an" is used herein. The disclosure of one or more of such elements is expressly stated otherwise. The present invention can be substantially modified in practice. [Simple description of the drawing] Μ 〇 [Description of component symbols] ΛΕ 〇 y \ \\ -22-

Claims (1)

200848388 十、申請專利範圍: 1 · 一種脂族二級二胺組成物,其係包括其中胺基烴基彼此 不同之脂族二級二胺。 2 ·如申請專利範圍第1項之組成物,其中該組成物具有至 少一個以下特點: 二胺之烴基部分爲直鏈; 胺基烴基爲直鏈或分支鏈烷基; 脂族二級二胺具有約1 0至約3 0個碳原子。 f ~ 3 .如申請專利範圍第1項之組成物,其中該胺基烴基係選 自異丙基、3,3-二甲基-2-丁基與環己基。 4 .如申請專利範圍第1項之組成物,其中該脂族二級二胺 爲N-異丙基-Ν’-(3, 3-二甲基-2-丁基)-1,6-二胺基己烷 、Ν-異丙基-Ν’-環己基-1,6-二胺基己烷、Ν-環己基-Ν’-(4-甲基-2-戊基)-1,6-二胺基己烷、或Ν-環己基-Ν’-(3,3·二甲基-2-丁基)-1,6 -二胺基己烷。 5 . —種用於形成其中胺基烴基彼此不同之脂族二級二胺 的方法,此方法包括將 氫化劑, 至少一種脂族一級二胺,及 至少兩種不同之酮、或至少兩種不同之醛、或至少 一種酮與至少一種醛 混合在一起,使得形成其中胺基烴基彼此不同之脂 族二級二胺。 6 .如申請專利範圍第5項之方法,其中此方法具有至少一 -23- 200848388 個以下特點: 該氫化劑爲氫與氫化觸媒; 該脂族一級二胺爲1,6 -二胺基己院; c)爲至少兩種不同之酮,及其中該酮係選自丙_、 環己酮、3,3-二甲基-2-丁酮、與4-甲基-2-戊酮。 7·—種聚合物,其係包括至少由(A)脂族多異氰酸酯,(B) 至少一種多醇及/或至少一種多醚胺,及(C)其中胺基烴 基彼此不同之脂族二級二胺所形成之配方。 ^ 8 .如申請專利範圍第7項之聚合物,其中 該多異氰酸酯爲異佛爾酮二異氰酸酯,及/或 (B )爲至少一種多醚胺。 9 .如申請專利範圍第7項之聚合物,其中該脂族二級二胺 具有至少一個以下特點·· 二胺之烴基部分爲直鏈; 胺基烴基爲直鏈或分支鏈烷基; 脂族二級二胺具有約1 0至約3 0個碳原子。 10.如申請專利範圍第7項之聚合物,其中該胺基烴基係選 自異丙基、3,3-二甲基-2-丁基與環己基。 1 1 ·如申請專利範圍第7項之聚合物,其中該脂族二級二胺 爲N-異丙基-Ν’-( 3, 3-二甲基-2-丁基)-1,6-二胺基己烷 、Ν -異丙基-Ν’-環己基-1,6 -二胺基己院、Ν -環己基-Ν’-(4-甲基-2-戊基)-;ι,6_二胺基己烷、或Ν-環己基-Ν,-(3,3-二甲基-2-丁基)-ΐ,6-二胺基己烷。 1 2 · —種用於製造聚合物之方法,此方法包括至少將(Α)脂 -24- 200848388 族多異氰酸酯,(B)至少一種多醇及/或至少一種多醚胺 ’及(C)其中胺基烴基彼此不同之脂族二級二胺混合在一 起。 1 3 ·如申請專利範圍第i 2項之方法,其中: 該多異氰酸酯爲異佛爾酮二異氰酸酯,及/或 (B)爲至少一種多醚胺。 1 4 ·如申請專利範圍第丨2項之方法,其中該脂族二級二胺 具有至少一個以下特點: 1 二胺之烴基部分爲直鏈; 胺基烴基爲直鏈或分支鏈烷基; 脂族二級二胺具有約1 0至約3 0個碳原子。 1 5 ·如申請專利範圍第! 2項之方法,其中該胺基烴基係選 自異丙基、3,3-二甲基-2-丁基與環己基。 1 6 ·如申請專利範圍第1 2項之方法,其中該脂族二級二胺 爲N-異丙基-Ν’-( 3, 3-二甲基-2-丁基)-1,6-二胺基己烷 、Ν-異丙基_Ν’-環己基-1,6-二胺基己烷、Ν-環己基-Ν、 r (4 -甲基-2-戊基)·1,6 -二胺基己院、或N -環己基-N,-(3,3-二甲基-2-丁基)-1,6-二胺基己烷。 1 7 ·如申請專利範圍第1 2或1 6項之方法,其中在方法期間 形成準預聚物。 1 8 .如申請專利範圍第1 2項之方法,其中在方法期間形成 預聚物。 -25- 200848388 七、指定代表圖·· (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: Μ j\\\ 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 無200848388 X. Patent Application Range: 1 · An aliphatic secondary diamine composition comprising an aliphatic secondary diamine in which the amino hydrocarbon groups are different from each other. 2. The composition of claim 1, wherein the composition has at least one of the following characteristics: a hydrocarbyl moiety of the diamine is a straight chain; an amine hydrocarbyl group is a linear or branched alkyl group; an aliphatic secondary diamine It has from about 10 to about 30 carbon atoms. The composition of claim 1, wherein the aminoalkyl group is selected from the group consisting of isopropyl, 3,3-dimethyl-2-butyl and cyclohexyl. 4. The composition of claim 1, wherein the aliphatic secondary diamine is N-isopropyl-Ν'-(3,3-dimethyl-2-butyl)-1,6- Diaminohexane, Ν-isopropyl-Ν'-cyclohexyl-1,6-diaminohexane, Ν-cyclohexyl-Ν'-(4-methyl-2-pentyl)-1, 6-Diaminohexane, or Ν-cyclohexyl-fluorene'-(3,3·dimethyl-2-butyl)-1,6-diaminohexane. A method for forming an aliphatic secondary diamine in which an amino group is different from each other, the method comprising: a hydrogenating agent, at least one aliphatic primary diamine, and at least two different ketones, or at least two A different aldehyde, or at least one ketone, is mixed with at least one aldehyde such that an aliphatic secondary diamine in which the amino hydrocarbon groups are different from each other is formed. 6. The method of claim 5, wherein the method has at least one of -23-200848388 of the following characteristics: the hydrogenating agent is hydrogen and a hydrogenation catalyst; the aliphatic primary diamine is 1,6-diamino a hospital; c) is at least two different ketones, and wherein the ketone is selected from the group consisting of C-, cyclohexanone, 3,3-dimethyl-2-butanone, and 4-methyl-2-pentanone . a polymer comprising at least (A) an aliphatic polyisocyanate, (B) at least one polyol and/or at least one polyether amine, and (C) an aliphatic group in which the amino hydrocarbon groups are different from each other A formulation formed from a diamine. The polymer of claim 7 wherein the polyisocyanate is isophorone diisocyanate and/or (B) is at least one polyetheramine. 9. The polymer of claim 7, wherein the aliphatic secondary diamine has at least one of the following characteristics: the hydrocarbyl moiety of the diamine is a straight chain; the aminohydrocarbyl group is a linear or branched alkyl group; The Group 2 diamine has from about 10 to about 30 carbon atoms. 10. The polymer of claim 7 wherein the amine hydrocarbyl group is selected from the group consisting of isopropyl, 3,3-dimethyl-2-butyl and cyclohexyl. 1 1 The polymer of claim 7 wherein the aliphatic secondary diamine is N-isopropyl-Ν'-(3,3-dimethyl-2-butyl)-1,6 -diaminohexane, Ν-isopropyl-Ν'-cyclohexyl-1,6-diaminohexyl, Ν-cyclohexyl-Ν'-(4-methyl-2-pentyl)-; Io,6-diaminohexane, or fluorene-cyclohexyl-indole, -(3,3-dimethyl-2-butyl)-indole, 6-diaminohexane. 1 2 - a method for producing a polymer, the method comprising at least (Α)lip-24-200848388 family polyisocyanate, (B) at least one polyol and / or at least one polyether amine ' and (C) An aliphatic secondary diamine in which an amino group is different from each other is mixed together. The method of claim i, wherein: the polyisocyanate is isophorone diisocyanate, and/or (B) is at least one polyetheramine. The method of claim 2, wherein the aliphatic secondary diamine has at least one of the following characteristics: 1 the hydrocarbyl moiety of the diamine is a straight chain; the aminohydrocarbyl group is a linear or branched alkyl group; The aliphatic secondary diamine has from about 10 to about 30 carbon atoms. 1 5 · If you apply for a patent scope! The method of item 2, wherein the aminoalkyl group is selected from the group consisting of isopropyl, 3,3-dimethyl-2-butyl and cyclohexyl. The method of claim 12, wherein the aliphatic secondary diamine is N-isopropyl-Ν'-(3,3-dimethyl-2-butyl)-1,6 -diaminohexane, Ν-isopropyl-Ν'-cyclohexyl-1,6-diaminohexane, Ν-cyclohexyl-fluorene, r (4-methyl-2-pentyl)·1 , 6-Diaminohexyl, or N-cyclohexyl-N,-(3,3-dimethyl-2-butyl)-1,6-diaminohexane. The method of claim 12, wherein the quasi-prepolymer is formed during the method. 18. The method of claim 12, wherein the prepolymer is formed during the method. -25- 200848388 VII. Designation of Representative Representatives (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: Μ j\\\ VIII. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW097105142A 2007-02-16 2008-02-14 Chain extenders TW200848388A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US89027007P 2007-02-16 2007-02-16

Publications (1)

Publication Number Publication Date
TW200848388A true TW200848388A (en) 2008-12-16

Family

ID=38330155

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097105142A TW200848388A (en) 2007-02-16 2008-02-14 Chain extenders

Country Status (2)

Country Link
TW (1) TW200848388A (en)
WO (1) WO2008100772A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170327627A1 (en) * 2014-10-28 2017-11-16 The Board Of Trustees Of The University Of Illinois Dynamic urea bonds for polymers
CN107686548B (en) * 2017-08-22 2021-12-10 山西省建筑科学研究院 Preparation method of water-based pure polyurea

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900868A (en) * 1982-01-18 1990-02-13 Monsanto Company Process for producing N,N'-disubstituted paraphenylene diamine mixtures by sequential reductive alkylation
EP0309980A1 (en) * 1987-10-02 1989-04-05 The B.F. Goodrich Company Alkylated polyalkylene polyamines and process for selective alkylation
EP0420426A3 (en) * 1989-09-29 1991-09-04 Texaco Chemical Company Sprayable and pourable polyurea elastomer
CA2151672C (en) * 1994-06-24 2007-05-29 Dudley Joseph Ii Primeaux Preparation of sprayable aliphatic polyurea elastomers having improved properties

Also Published As

Publication number Publication date
WO2008100772A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
US8212078B2 (en) Diimines and secondary diamines
US7964695B2 (en) Chain extenders
JP2007510053A (en) High functionality hyperbranched polyurea
US8076518B2 (en) Chain extenders
US8143365B2 (en) Formulations for reaction injection molding and for spray systems
TW200848388A (en) Chain extenders
JPH03106932A (en) Preparation of polyether having secondary amine at its terminal and its use
WO1988008009A1 (en) Flexible polyurea or polyurea-polyurethane foams prepared from high equivalent weight amine-terminated compounds and process for preparing the same
JPH04270274A (en) Piperazine derivative as chain extender comprising polyurea elastomer and preparation thereof
US5072020A (en) Aliphatic polyamines from polynitro compounds
US20140234546A1 (en) Polyureas made from aminocrotonates
JP2013522381A (en) Multi-amine functional oligomers and their preparation by reduction of the corresponding oximes
WO2008089010A1 (en) Preparation of secondary diamines
WO2008112636A1 (en) Chain extenders
JPH0436315A (en) Polyoxyalkylene polyol derivative and its preparation