TW200847340A - Semiconductor devices and methods for forming the same - Google Patents

Semiconductor devices and methods for forming the same Download PDF

Info

Publication number
TW200847340A
TW200847340A TW96117766A TW96117766A TW200847340A TW 200847340 A TW200847340 A TW 200847340A TW 96117766 A TW96117766 A TW 96117766A TW 96117766 A TW96117766 A TW 96117766A TW 200847340 A TW200847340 A TW 200847340A
Authority
TW
Taiwan
Prior art keywords
semiconductor device
substrate
layer
doped
telluride
Prior art date
Application number
TW96117766A
Other languages
Chinese (zh)
Other versions
TWI373100B (en
Inventor
Tzung-Han Lee
Original Assignee
Nanya Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanya Technology Corp filed Critical Nanya Technology Corp
Priority to TW096117766A priority Critical patent/TWI373100B/en
Publication of TW200847340A publication Critical patent/TW200847340A/en
Application granted granted Critical
Publication of TWI373100B publication Critical patent/TWI373100B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A semiconductor device is provided. The semiconductor device comprises a substrate. At least two deep trench capacitors are formed in the substrate. A recesses gate is in the substrate and between the deep trench capacitors. A plurality of word lines are formed on the substrate and pass the deep trench capacitors and the recesses gate. A doped silicon layer is formed on the substrate and between the word lines, wherein the doped silicon layer is a source/drain region.

Description

200847340 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種半導體裝置及其製造方法,且特 別有關於一種記憶體元件及其製造方法。 【先前技術】 隨著積體電路廣泛地運用,為因應不同使用目的,更 高效能與更低廉價格之各類半導體裝置相繼產出,其中, " 動態隨機存取記憶體(DRAM)在現今資訊電子業中更有 著不可或缺的地位。 現今大多數的DRAM單元是由一個電晶體與一個電 容器所構成。由於目前DRAM之記憶容量已達到256百 萬位甚至512百萬位元以上,在元件積集度要求越來越高 的情況下,記憶單元與電晶體的尺寸需要大幅縮小,才可 能製造出記憶容量更高,處理速度更快的DRAM。 然而,傳統的平面電晶體技術需要佔用更多的晶片面 , 積,且其難以達到上述高記憶容量、較高的整合度,以及 % 快處理速度的要求。因此,應用嵌入式閘極垂直電晶體技 術和嵌入式通道技術於DRAM產品,以減少位於半導體 基底上之電晶體和電容器之使用面積’使得傳統的平面電 晶體技術上述的缺點得以改善,因此,嵌入式閘極垂直電 晶體技術已成為重要的半導體製造技術。 第1圖係繪示習知之嵌入式閘極垂直電晶體之剖面 圖,在基底100中,嵌入式閘極129由深溝槽電容器108 所環繞,閘極介電層128形成於嵌入式閘極129與基底 100之間。摻雜區124形成於鄰接嵌入式閘極129之基底200847340 IX. Description of the Invention: TECHNICAL FIELD The present invention relates to a semiconductor device and a method of fabricating the same, and in particular to a memory device and a method of fabricating the same. [Prior Art] With the widespread use of integrated circuits, various types of semiconductor devices with higher performance and lower price are produced in succession for different purposes, among which, " Dynamic Random Access Memory (DRAM) is nowadays The information electronics industry has an indispensable position. Most DRAM cells today consist of a transistor and a capacitor. Since the memory capacity of DRAM has reached 256 million bits or even 512 million bits or more, the memory cell and the size of the transistor need to be greatly reduced in order to create a memory in the case where the component accumulation requirement is higher and higher. Higher capacity, faster processing DRAM. However, conventional planar transistor technology requires more wafer surface area and product, and it is difficult to achieve the above-mentioned high memory capacity, high integration, and high fast processing speed. Therefore, the application of embedded gate vertical transistor technology and embedded channel technology to DRAM products to reduce the area of use of transistors and capacitors on semiconductor substrates has improved the above-mentioned shortcomings of conventional planar transistor technology. Embedded gate vertical transistor technology has become an important semiconductor manufacturing technology. 1 is a cross-sectional view of a conventional embedded gate vertical transistor in which embedded gate 129 is surrounded by deep trench capacitor 108 and gate dielectric layer 128 is formed in embedded gate 129. Between the substrate 100 and the substrate 100. Doped region 124 is formed on the substrate adjacent to embedded gate 129

Client’s Docket No.: 94144 TTs Docket No:0548-A50829-TW/final/Claire 5 200847340 100中,作為嵌入式閘極垂直電晶體之通道區域。嵌入式 閘極垂直電晶體之源/汲極區101形成於嵌入式閘極129 之兩側的基底100中,源/汲極區101可藉由埋入帶111 與深溝槽電容器108電性連接。字元線146形成於基底 100上’且跨過後入式閘極129及深溝槽電容器108。由 於源/汲極區101緊鄰於嵌入式閘極129,因此易於對此嵌 入式閘極垂直電晶體之通道產生影響,為了解決此問題, 通常利用於内部絕緣層105隔離源/汲極區101對通道之 f 影響,以避免產生元件失效。 然而,製作内部絕緣層105勢必導致製程步驟增加, 而提高半導體裝置製程之複雜度,因此,目前需要一種可 解決習知問題之半導體裝置結構及製造方法。 【發明内容】 本發明之目的提供一種嵌入式電晶體之結構及其製 造方法,此嵌入式電晶體具有升起(raised)之源/汲極區, 其源極/汲區係位於基底上。 I 本發明提供一種半導體裝置的結構,包括:一基底; 至少兩個深溝槽電容器,形成於該基底中;一嵌入式閘 極’形成於該基底中’且位於該些深溝槽電容器之間;一 埋入帶,形成在該基底中,且位於該些深溝槽電容器及該 欲入式閘極之間,複數個字元線結構’位於該基底上且跨 過該些深溝槽電容器及該嵌入式閘極;一摻雜之矽晶層, 形成於該基底上,且位於該些字元線結構之間,其中該摻 雜之石夕晶層係作為一源/汲極區。 本發明另提供一種半導體裝置的結構,包括:一基Client's Docket No.: 94144 TTs Docket No: 0548-A50829-TW/final/Claire 5 200847340 100, as the channel area of the embedded gate vertical transistor. The source/drain region 101 of the embedded gate vertical transistor is formed in the substrate 100 on both sides of the embedded gate 129, and the source/drain region 101 can be electrically connected to the deep trench capacitor 108 by the buried strap 111. . The word line 146 is formed on the substrate 100' and spans the back-in gate 129 and the deep trench capacitor 108. Since the source/drain region 101 is adjacent to the embedded gate 129, it is easy to affect the channel of the embedded gate vertical transistor. To solve this problem, the source/drain region 101 is usually isolated by the internal insulating layer 105. Affect the channel f to avoid component failure. However, the fabrication of the internal insulating layer 105 tends to result in an increase in the number of processing steps and an increase in the complexity of the semiconductor device process. Therefore, there is a need for a semiconductor device structure and a manufacturing method that can solve the conventional problems. SUMMARY OF THE INVENTION It is an object of the present invention to provide a structure of an embedded transistor having a source/drain region raised and a source/deuterium region on a substrate, and a method of fabricating the same. The present invention provides a structure of a semiconductor device comprising: a substrate; at least two deep trench capacitors formed in the substrate; an embedded gate 'formed in the substrate' and located between the deep trench capacitors; a buried strap formed in the substrate between the deep trench capacitors and the desired gate, a plurality of word line structures 'on the substrate and across the deep trench capacitors and the embedding a gated layer; a doped twin layer formed on the substrate and located between the word line structures, wherein the doped layer is used as a source/drain region. The invention further provides a structure of a semiconductor device, comprising: a base

Client’s Docket No.: 94144 TT’s Docket No:0548-A50829-TW/final/Claire 6 200847340 底;至少兩個深溝槽電容器,形成於該基底中;一嵌入式 閘極,形成於該基底中,且位於該些深溝槽電容器之間; 一埋入帶,形成在該基底中,且位於該些深溝槽電容器及 該嵌入式閘極之間;複數個字元線結構,形成於該些深溝 槽電容器及該嵌入式閘極上;一摻雜之矽晶層,形成於該 些深溝槽電容器及該散入式閘極之間之該基底上,其中該 摻雜之矽晶層係作為一源/汲極區;以及一位元線插塞, 電性連接該摻雜之矽晶層。 本發明又提供一種半導體裝置的製造方法,包括:提 供一基底;形成至少兩個深溝槽電容器於該基底中;形成 一嵌入式閘極於該基底中,且位於該些深溝槽電容器之 間;在該基底中形成一埋入帶,且該埋入帶位於該些深溝 槽電容器及該嵌入式閘極之間;形成複數個字元線結構於 該基底上’且跨過該些深溝槽電容器'及該散入式閘極,形 成一摻雜之矽晶層於該些字元線結構之間之基底上。 【實施方式】 以下實施例將伴隨著圖式說明本發明之概念,在圖式 或說明中,相似或相同之部分係使用相同之標號,並且在 圖式中,元件之形狀或厚度可依據實際的需求擴大、縮小 或改變。需特別注意的是,圖中未繪示或描述之元件,可 以是熟習此技藝之人士所知之形式,此外,當敘述一層係 位於一基板或是另一層上時,此層可直接位於基板或是另 一層上,或是其間亦可有中介層。 第2至8圖係繪示本發明實施例之半導體裝置的製造 方法之剖面圖,其可適用於記憶裝置,如動態隨機存取記Client's Docket No.: 94144 TT's Docket No: 0548-A50829-TW/final/Claire 6 200847340 Bottom; at least two deep trench capacitors formed in the substrate; an embedded gate formed in the substrate and located Between the deep trench capacitors; a buried strap formed in the substrate and located between the deep trench capacitors and the embedded gate; a plurality of word line structures formed in the deep trench capacitors a doped twin layer formed on the substrate between the deep trench capacitor and the diffused gate, wherein the doped twin layer serves as a source/drain a region; and a bit line plug electrically connected to the doped twin layer. The present invention further provides a method of fabricating a semiconductor device, comprising: providing a substrate; forming at least two deep trench capacitors in the substrate; forming an embedded gate in the substrate and between the deep trench capacitors; Forming a buried strap in the substrate, and the buried strap is located between the deep trench capacitor and the embedded gate; forming a plurality of word line structures on the substrate and crossing the deep trench capacitors And the diffused gate forms a doped twin layer on the substrate between the word line structures. The embodiments of the present invention will be described with reference to the drawings, in which like or The demand expands, shrinks or changes. It is to be noted that elements not shown or described in the figures may be in a form known to those skilled in the art, and in addition, when a layer is placed on a substrate or another layer, the layer may be directly on the substrate. Or on another layer, or there may be an intermediation layer in between. 2 to 8 are cross-sectional views showing a method of fabricating a semiconductor device according to an embodiment of the present invention, which are applicable to a memory device such as dynamic random access memory.

Client’s Docket No.: 94144 TT’s Docket No:0548-A50829-TW/fmal/Claire 7 200847340 fe體(DRAM )。請參照第2圖,首先,提供一半導體基 底200,其可包括未摻雜或摻雜之矽晶圓,例如具有p型 摻雜質(dopant)之矽。基底200包括記憶陣列區以及周 邊電路區,為了簡化說明,此處僅以記憶陣列區作說明。 接著,於基底200中形成複數個深溝槽電容器2〇8,較佳 者’珠溝槽電容器208之下半部可包括由多晶石夕構成之上 電極210、由氧化矽-氮化矽_氧化矽(Ονο)堆疊層構成 之電容器介電層212、以及由基底200之掺雜區形成之下 黾極214。洙溝槽電容器208之上半部可包括領形介電層 216、電性連接上電極210之導電層218、位於溝槽頂部 之單邊絕緣層220,其中單邊絕緣層220僅絕緣溝槽之— 侧而暴露溝槽之另一侧,並且在後續製程中,暴露之一侧 將形成埋入帶。在深溝槽電容器208形成於基底200中之 後,可對基底200進行自行對準之蝕刻製程或圖案化製程 以形成位於深溝槽電容器208之間的嵌入式溝槽203。 請參照第3圖,對鄰接嵌入式溝槽203之基底200進 行摻雜以形成環繞嵌入式溝槽203之通道區域224,接 著,閘極介電層228係形成於基底200中之嵌入式溝槽 203之侧壁。在一貫施例中’可使用如熱氧化之熱製程以 形成閘極介電層228,而此閘極介電層228較佳地為包含 氧化矽。之後,填充導電材料,舉例而言,如多晶矽、鎢、 矽化鎢於嵌入式溝槽203之中以形成嵌入式閘極229。並 且可於形成閘極介電層228之熱製程及/或其他後續製程 所發生的熱製程期間於基底200中同時形成外擴散區域 以作為埋入帶222。此時,閘極介電層228及嵌入式閘極 229共同構成位於深溝槽電容器208之間的基底200中之Client’s Docket No.: 94144 TT’s Docket No: 0548-A50829-TW/fmal/Claire 7 200847340 fe body (DRAM). Referring to Figure 2, first, a semiconductor substrate 200 is provided which may include an undoped or doped germanium wafer, such as a germanium having a p-type dopant. The substrate 200 includes a memory array region and a peripheral circuit region. For the sake of simplicity of explanation, only the memory array region will be described herein. Next, a plurality of deep trench capacitors 2 〇 8 are formed in the substrate 200. Preferably, the lower half of the bead trench capacitor 208 may comprise an upper electrode 210 composed of polycrystalline slabs, and yttrium oxide-tantalum nitride. A capacitor dielectric layer 212 composed of a stack of yttrium oxide layers and a lower gate 214 formed by doped regions of the substrate 200. The upper half of the trench capacitor 208 may include a collar dielectric layer 216, a conductive layer 218 electrically connected to the upper electrode 210, and a unilateral insulating layer 220 at the top of the trench, wherein the unilateral insulating layer 220 only insulates the trench - the other side of the trench is exposed sideways, and in a subsequent process, one side of the exposure will form a buried strap. After the deep trench capacitor 208 is formed in the substrate 200, the substrate 200 can be self-aligned by an etch process or a patterning process to form the embedded trenches 203 between the deep trench capacitors 208. Referring to FIG. 3, the substrate 200 adjacent to the embedded trench 203 is doped to form a channel region 224 surrounding the embedded trench 203. Then, the gate dielectric layer 228 is formed in the embedded trench in the substrate 200. The side wall of the groove 203. In a consistent embodiment, a thermal process such as thermal oxidation can be used to form the gate dielectric layer 228, which preferably contains germanium oxide. Thereafter, a conductive material, such as polysilicon, tungsten, or tungsten telluride, is embedded in the embedded trench 203 to form the embedded gate 229. The outer diffusion region can be simultaneously formed in the substrate 200 as the buried strap 222 during the thermal process of forming the gate dielectric layer 228 and/or the thermal process occurring in other subsequent processes. At this time, the gate dielectric layer 228 and the embedded gate 229 together form a substrate 200 between the deep trench capacitors 208.

Client’s Docket No.: 94144 TT5s Docket No:0548-A50829-TW/fmal/Claire 8 200847340 嵌入式電晶體230。 請參照第4圖,形成閘極介電層228及嵌入式閘極229 之後,可利用化學機械研磨法(CMP )或回|虫刻(etching back)法對基底200表面進行平坦化製程。接著,依序於 基底200上全面性的沈積一或多層的導電材料層以及介 電材料層(圖中未繪示)。舉例而言,此導電材料層可包 括多晶石夕層或如鎢或石夕化鎢之金屬層,而介電材料層則可 包括如氮化矽或氧化矽。之後,利用微影及蝕刻製程圖案 化此導電材料層及介電材料層,以形成字元線導電層 23卜232及字元線蓋層234。如第4圖所示,在一實施例 中,字元線導電層可包括多晶石夕層231及金屬石夕化層 232,字元線導電層的製作方法可包括先以化學氣相沈積 法(CVD)沈積多晶矽層,再利用金屬矽化製程(silicide) 於多晶石夕層上形成如石夕化钻、石夕化鈦、石夕化鎢、石夕化钽或 矽化鉬之金屬矽化物材料;或者,亦可利用化學氣相沈積 法於多晶矽層上沈積金屬矽化物層。此時,字元線導電層 23卜232及字元線蓋層234共同構成字元線結構288。接 著,於字元線結構288之侧壁形成如氧化矽或碳化矽之絕 緣間隙壁236,其製作方法包括全面性的沈積絕緣間隙壁 材料於基底200上,接著利用乾式餘刻法(dry etching ) 回蝕刻此絕緣間隙壁材料,以於多晶矽層231及金屬矽化 層232之側壁留下絕緣間隙壁236,並暴露部分之基底 200 〇 請參照第5圖,接著將進行本發明之關鍵步驟之一, 於相鄰之字元線結構2 8 8之間的基底2 0 0上成長梦晶層 240 ’舉例而言’其可為蟲晶破(epitaxial Si)層。碎晶Client’s Docket No.: 94144 TT5s Docket No: 0548-A50829-TW/fmal/Claire 8 200847340 Embedded transistor 230. Referring to FIG. 4, after the gate dielectric layer 228 and the embedded gate 229 are formed, the surface of the substrate 200 may be planarized by a chemical mechanical polishing method (CMP) or an etching back method. Next, one or more layers of conductive material and a layer of dielectric material (not shown) are deposited in a comprehensive manner on the substrate 200. For example, the layer of conductive material may comprise a polycrystalline layer or a metal layer such as tungsten or stellite, and the dielectric material layer may comprise, for example, tantalum nitride or cerium oxide. Thereafter, the conductive material layer and the dielectric material layer are patterned by a lithography and etching process to form a word line conductive layer 23 and a word line cap layer 234. As shown in FIG. 4, in an embodiment, the word line conductive layer may include a polycrystalline layer 231 and a metal layer 232, and the word line conductive layer may be formed by chemical vapor deposition. A polycrystalline germanium layer is deposited by a method (CVD), and a metal silicide is formed on the polycrystalline stone layer to form a metal such as Shi Xihua, Tixi, Titan, Shihua, or Molybdenum. Material material; or, a metal halide layer may be deposited on the polysilicon layer by chemical vapor deposition. At this time, the word line conductive layer 23 232 and the word line cap layer 234 collectively constitute the word line structure 288. Next, an insulating spacer 236 such as hafnium oxide or tantalum carbide is formed on the sidewall of the word line structure 288, and the method includes the method of depositing the insulating spacer material on the substrate 200 in a comprehensive manner, followed by dry etching. Etching the insulating spacer material to leave insulating spacers 236 on the sidewalls of the polysilicon layer 231 and the metal germanium layer 232, and exposing portions of the substrate 200. Referring to FIG. 5, the key steps of the present invention will be followed. First, the dream layer 240' is grown on the substrate 200 between adjacent word line structures 2 8 8 'which may be an epitaxial Si layer. Broken crystal

Client’s Docket No.: 94144 TT?s Docket No:0548-A50829-TW/final/Claire 9 200847340 f 層240之成長厚度以低於字元線結構288之頂部為佳,也 就是說,矽晶層240之頂部低於字元線結構288之頂部為 佳,並且矽晶層240之成長厚度大體約字元線結構288高 度的二分之一為更佳。接著,可利用如離子佈植(i〇n implant)等方法對矽晶層240進行摻雜,以使位於通道區 域224兩側之基底200上之摻雜之矽晶層240作為嵌入式 電晶體230之源極區S與没極區D。在本發明實施例中, 喪入式電晶體230具有形成於基底200表面之源/没極S、 D ’藉此’可降低源/没極s、D對通道區域224之影響。 較佳者,在形成矽晶層240之後,更可於矽晶層240上形 成用以降低接觸電阻之金屬矽化物材料層245 ,其可包括 矽化鈷、矽化鈦、矽化鎢、矽化钽或矽化鉬,如第5圖所 示。金屬矽化物材料層245之形成方法可採用自動對準金 屬石夕化物製程(self-aligned silicidation,SALICIDE),此 製程可括一熱回火製程。 請參照第6圖,於基底200上方形成介電材料層25〇, 舉例而§ ’此介電材料層250可先沈積一層爛嶙石夕 $ (BPSG)’再進行熱回流製程(reflow process)以平土 肖 硼磷矽玻璃層。介電材料層250還可為其他介電村料此 如氮化矽、氧化矽、氮氧化矽;或者為低介電常數衬广例 例如聚烯銨(polyimide)、旋轉玻璃(SOG)氟矽坡續(料’ 等材料。 S〇) 電#料 出部分 I成於 請參照第7圖,藉由微影製程及蝕刻製程對介 層250進行圖案化以形成位元線插塞洞255並曝露 之矽晶層240上之金屬矽化物材料層245。 請參考第8圖,接著位元線材料層(未顯示)Client's Docket No.: 94144 TT?s Docket No: 0548-A50829-TW/final/Claire 9 200847340 f The growth thickness of layer 240 is preferably lower than the top of word line structure 288, that is, twin layer 240 The top is preferably below the top of the word line structure 288, and the grown thickness of the twin layer 240 is substantially greater than about one-half the height of the word line structure 288. Then, the twinned layer 240 may be doped by a method such as ion implantation to make the doped twin layer 240 on the substrate 200 on both sides of the channel region 224 as an embedded transistor. Source region S of 230 and non-polar region D. In the embodiment of the present invention, the immersed transistor 230 has a source/depolarization S, D' formed on the surface of the substrate 200, thereby reducing the influence of the source/no-polar s, D on the channel region 224. Preferably, after the formation of the twinned layer 240, a metal telluride material layer 245 for reducing the contact resistance may be formed on the twinned layer 240, which may include cobalt telluride, titanium telluride, tungsten telluride, germanium telluride or germanium. Molybdenum, as shown in Figure 5. The metal telluride material layer 245 can be formed by a self-aligned silicidation (SALICIDE) process, which can include a thermal tempering process. Referring to FIG. 6, a dielectric material layer 25 is formed over the substrate 200. For example, the dielectric material layer 250 may be deposited with a layer of ruthenium (BPSG) and then subjected to a reflow process. In order to flatten the borophosphorus bismuth glass layer. The dielectric material layer 250 may also be other dielectric materials such as tantalum nitride, hafnium oxide, niobium oxynitride; or a low dielectric constant liner such as polyimide, spin glass (SOG) flupe Slope (materials, etc. material). The material output portion I is formed. Referring to FIG. 7, the dielectric layer 250 is patterned by a lithography process and an etching process to form a bit line plug hole 255. The metal telluride material layer 245 on the exposed germanium layer 240. Please refer to Figure 8, followed by the bit line material layer (not shown)

Client’s Docket No.: 94144 TT^ Docket No:0548-A50829-TW/final/Claire 10 200847340 第一介電材料層250上,且填充至位元線插塞洞255以形 成位兀線插塞,然後,對位元線材料層進行圖案化以形成 平行位元線260。 在另—實施例中(未顯示),可選擇性地以傳統金屬 雙镶肷製程形成位元線與位元線插塞,位元線插塞洞255 係藉,選擇性自行對準反應性離子蝕刻回蝕刻製程而形 成並顯露出金屬矽化物材料層245,且可藉由施以簡單硼 磷f玻璃蝕刻穿透製程而形成位元線溝槽。接著,沈積金 ( 屬f、、泉(如化學氣相沈積或物理氣相沈積鈦/氮化鈦)與 化學ί相沈積鎢位元線並施以化學機械研磨以形成雙金 屬鑲篏位元線與位元線插塞。 印茶照第9圖,其係繪示本發明實施例之半導體裝置 之上視/圖’其中深溝槽電容器208係圍繞嵌入式閘極 229 ’平行排列之複數個淺溝槽隔離結構(STl) 211鄰接 冰溝槽電容器208及嵌入式閘極229之的邊緣區域,其可 用以隔絕電晶體並定義出主動區266。字元線結構288跨 ( 過深溝,電容器2〇8及嵌入式閘極299,絕緣間隙壁236 形成於字元線結構288之侧壁,而金屬矽化物材料層245 及下方之矽晶層(圖中未標示)形成於相鄰之字元線結構 288之間’而形成於深溝槽電容器2〇8及嵌入式閘極229 之間的金屬矽化物材料層245及下方之矽晶層240係作為 甘欠入式笔晶體之源/>及極區。 當與習知技術比較而言,本發明實施例之嵌入式電晶 體具有形成於基底上之源/汲區,因此,可有效降低源/汲 區對嵌入式電晶體之通道的影響。藉由本發明之實施例, 不需於嵌入式閘極之兩側額外製作内部絕緣層,故可降低Client's Docket No.: 94144 TT^ Docket No: 0548-A50829-TW/final/Claire 10 200847340 on the first dielectric material layer 250, and filled into the bit line plug hole 255 to form a bit line plug, and then The bit line material layer is patterned to form parallel bit lines 260. In another embodiment (not shown), the bit line and the bit line plug can be selectively formed by a conventional metal double damascene process, and the bit line plug hole 255 is coupled to selectively self-align the reactivity. An ion etch back etch process forms and exposes the metal telluride material layer 245, and the bit line trenches can be formed by applying a simple borophospho-f glass etch through process. Next, deposited gold (f, spring (such as chemical vapor deposition or physical vapor deposition titanium / titanium nitride) and chemical phase deposition tungsten bit line and chemical mechanical polishing to form a bimetallic inlaid bit The wire and the bit line plug. The printing tea photo is shown in Fig. 9, which is a schematic view of the semiconductor device according to the embodiment of the present invention. The deep trench capacitor 208 is arranged in parallel around the embedded gate 229'. A shallow trench isolation structure (ST1) 211 abuts an edge region of the ice trench capacitor 208 and the embedded gate 229, which can be used to isolate the transistor and define the active region 266. The word line structure 288 spans (over deep trenches, capacitors) 2〇8 and embedded gate 299, insulating spacer 236 is formed on the sidewall of the word line structure 288, and the metal telluride material layer 245 and the underlying twin layer (not shown) are formed in adjacent words. The metal telluride material layer 245 formed between the deep line capacitors 2〇8 and the embedded gate 229 and the underlying twin layer 240 are used as the source of the owe pen crystal/> And polar regions. When compared with conventional techniques, the present invention The embedded transistor of the embodiment has a source/german region formed on the substrate, thereby effectively reducing the influence of the source/turn region on the channel of the embedded transistor. With the embodiment of the present invention, the embedded gate is not required An additional inner insulating layer is formed on both sides of the pole, so it can be lowered

Client’s Docket No.: 94144 TT5s Docket No:0548-A50829-TW/fmal/Claire 11 200847340 半導體裝置製程之複雜度。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。Client’s Docket No.: 94144 TT5s Docket No: 0548-A50829-TW/fmal/Claire 11 200847340 The complexity of semiconductor device manufacturing. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

Client’s Docket No.: 94144 12 TT5s Docket No:0548-A50829-TW/final/Claire 200847340 【圖式簡單說明】 ^圖係纷示f知之嵌人式閘極垂直電晶體之剖面圖; 弟至8圖係繪示本發明實施例之半導體裝置的赞生 方法之剖面圖; κ 第9圖,其係繪示本發明實施例之半導體裝置之上視Client's Docket No.: 94144 12 TT5s Docket No:0548-A50829-TW/final/Claire 200847340 [Simple description of the diagram] ^The diagram shows the cross-section of the embedded vertical gate transistor of the knowing body; FIG. 9 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention; FIG. 9 is a top view of a semiconductor device according to an embodiment of the present invention;

【主要元件符號說明】 1〇〇〜基底; 105〜内部絕緣層; 111〜埋入帶; 128〜閘極介電層; 146〜字元線; 203〜後入式溝槽; 210〜上電極; 212〜電容器介電層; 216〜領形介電層; 220〜單邊絕緣層; 224〜通道區域; 229〜嵌入式閘極; 231、232〜字元線導電層; 236〜絕緣間隙壁; 245〜金屬矽化物材料層; 255〜位元線插塞洞; 266〜主動區; 101〜源/没極區; 108〜深溝槽電容器; 124〜通道區域; 129〜嵌入式閘極; 200〜基底; 208〜深溝槽電容器; 211〜淺溝槽隔離結構; 214〜下電極; 218〜導電層; 222〜埋入帶; 228〜閘極介電層; 230〜欲入式電晶體; 234〜字元線蓋層; 240〜石夕晶層; 250〜介電材料層; 260〜位元線; 288〜字元線結構。[Main component symbol description] 1〇〇~substrate; 105~internal insulating layer; 111~embedded tape; 128~gate dielectric layer; 146~word line; 203~post-inlet trench; 210~upper electrode 212~ capacitor dielectric layer; 216~ collar dielectric layer; 220~ unilateral insulating layer; 224~channel region; 229~embedded gate; 231,232~word line conductive layer; 236~insulation spacer 245~ metal bismuth material layer; 255~bit line plug hole; 266~ active area; 101~ source/nothing area; 108~deep trench capacitor; 124~channel area; 129~embedded gate; ~ substrate; 208 ~ deep trench capacitor; 211 ~ shallow trench isolation structure; 214 ~ lower electrode; 218 ~ conductive layer; 222 ~ buried band; 228 ~ gate dielectric layer; 230 ~ into transistor; ~ Word line cover layer; 240 ~ Shi Xijing layer; 250 ~ dielectric material layer; 260 ~ bit line; 288 ~ word line structure.

Client’s Docket No.: 94144 TT5s Docket No:0548-A50829-TW/final/Claire 13Client’s Docket No.: 94144 TT5s Docket No:0548-A50829-TW/final/Claire 13

Claims (1)

200847340 十、申請專利範圍: 1. 一種半導體裝置的結構,包括: 一基底; 至少兩個深溝槽電容器,形成於該基底中; 一嵌入式閘極,形成於該基底中,且位於該些深溝槽 電容器之間; 一埋入帶,形成在該基底中,且位於該些深溝槽電容 器及該嵌入式閘極之間; f 複數個字元線結構,位於該基底上且跨過該些深溝槽 電容器及該嵌入式閘極;以及 一摻雜之矽晶層,形成於該基底上,且位於該些字元 線結構之間,其中該摻雜之矽晶層係作為一源/汲極區。 2. 如申請專利範圍第1項所述之半導體裝置的結構, 其中該摻雜之矽晶層之頂部低於該些字元線結構之頂部。 3. 如申請專利範圍第1項所述之半導體裝置的結構, 更包括: 一金屬石夕化物材料層,形成於該摻雜之石夕晶層上。 4. 如申請專利範圍第3項所述之半導體裝置的結構, 其中該金屬矽化物材料層之頂部低於該些字元線結構之 頂部。 5. 如申請專利範圍第1項所述之半導體裝置的結構, 其中該掺雜之矽晶層包括磊晶矽。 6. 如申請專利範圍第1項所述之半導體裝置的結構, 更包括: 一位元線插塞,電性連接該摻雜之矽晶層。 7. 如申請專利範圍第1項所述之半導體裝置的結構, Client’s Docket No.: 94144 TT^ Docket No:0548-A50829-TW/final/Claire 14 200847340 其中鄰接該嵌入式閘極之該基底具有一摻雜區,以形成環 繞該嵌入式閘極之一通道區域。 8. 如申請專利範圍第3項所述之半導體裝置的結構, 其中該金屬矽化物材料層係包括矽化鈷、矽化鈦、矽化 鎢、矽化鈕或矽化鉬。 9. 如申請專利範圍第1項所述之半導體裝置的結構, 更包括: 一絕緣間隙壁,形成於該些字元線結構之侧壁,該絕 〃 緣間隙壁係隔離該些字元線結構及該矽晶層。 \ 10. 如申請專利範圍第1項所述之半導體裝置的結 構,其中該位元線結構包括多晶矽、矽化鈷、矽化鈦、矽 化鶴、梦化组或石夕化銦。 11. 一種半導體裝置的結構,包括: 一基底; 至少兩個深溝槽電容器,形成於該基底中; 一嵌入式閘極,形成於該基底中,且位於該些深溝槽 電容器之間; " 一埋入帶,形成在該基底中,且位於該些深溝槽電容 器及該嵌入式閘極之間; 複數個字元線結構,形成於該些深溝槽電容器及該嵌 入式閘極上, 一摻雜之矽晶層,形成於該些深溝槽電容器及該嵌入 式閘極之間之該基底上,其中該摻雜之矽晶層係作為一源 / >及極區,以及 一位元線插塞,電性連接該摻雜之矽晶層。 12. 如申請專利範圍第11項所述之半導體裝置的結 Client’s Docket No.: 94144 TT’s Docket No:0548_A50829-TW/final/Claire 15 200847340 構,其中該摻雜之矽晶層之頂部低於該些字元線結構之頂 部。 13. 如申請專利範圍第11項所述之半導體裝置的結 構,更包括: 一金屬石夕化物材料層,形成於該掺雜之石夕晶層上。 14. 如申請專利範圍第13項所述之半導體裝置的結 構,其中該金屬矽化物材料層之頂部低於該些字元線結構 之頂部。 ί 15.如申請專利範圍第11項所述之半導體裝置的結 % 構,其中該摻雜之矽晶層包括磊晶矽。 16. 如申請專利範圍第11項所述之半導體裝置的結 構,其中鄰接該嵌入式閘極之該基底具有一摻雜區,以形 成環繞該嵌入式閘極之一通道區域。 17. 如申請專利範圍第13項所述之半導體裝置的結 構,其中該金屬石夕化物材料層係包括石夕化钻、石夕化欽、石夕 化鎢、矽化钽或矽化鉬。 18. —種半導體裝置的製造方法,包括: f 提供一基底; 形成至少兩個深溝槽電容器於該基底中; 形成一嵌入式閘極於該基底中,且位於該些深溝槽電 容器之間; 在該基底中形成一埋入帶,且該埋入帶位於該些深溝 槽電容器及該嵌入式閘極之間; 形成複數個字元線結構於該基底上,且跨過該些深溝 槽電容器及該嵌入式閘極;以及 形成一摻雜之矽晶層於該些字元線結構之間之基底 Client’s Docket No.: 94144 TT?s Docket No:0548-A50829-TW/final/Claire 16 200847340 上。 19. 如申請專利範圍第18項所述之半導體裝置的製造 方法,其中形成該摻雜之矽晶層之步驟包括: 於該些字元線結構之間的該基底上成長一矽晶層;以 及 進行一離子植入製程,以對該^夕晶層進行摻雜。 20. 如申請專利範圍第18項所述之半導體裝置的製造 方法,其中該字元線結構包括多晶矽、矽化鈷、矽化鈦、 r 矽化鎢、矽化鉅或矽化鉬。 - 21. 如申請專利範圍第18項所述之半導體裝置的製造 方法,更包括: 形成一金屬石夕化物材料層於該摻雜之石夕晶層上。 22. 如申請專利範圍第21項所述之半導體裝置的製造 方法,其中該金屬矽化物材料層係以自動對準金屬矽化物 製程形成。 23. 如申請專利範圍第18項所述之半導體裝置的製造 方法,其中該摻雜之矽晶層之頂部低於該些字元線結構之 " 頂部。 24. 如申請專利範圍第21項所述之半導體裝置的製造 方法,其中該金屬矽化物材料層之頂部低於該些字元線結 構之頂部。 25. 如申請專利範圍第18項所述之半導體裝置的製造 方法,其中該摻雜之矽晶層包括磊晶矽。 26. 如申請專利範圍第18項所述之半導體裝置的製造 方法,更包括: 一位元線插塞,電性連接該摻雜之矽晶層。 Client’s Docket No.: 94144 TT’s Docket No:0548-A50829-TW/final/Claire 17 200847340 27. 如申請專利範圍第18項所述之半導體裝置的製造 方法,更包括: 對鄰接該嵌入式閘極之該基底進行摻雜,以形成環繞 該嵌入式閘極之一通道區域。 28. 如申請專利範圍第21項所述之半導體裝置的製造 方法,其中該金屬矽化物材料層係包括矽化銘、矽化鈦、 矽化鎢、矽化组或矽化鉬。 29. 如申請專利範圍第18項所述之半導體裝置的製造 方法,更包括: 形成一絕緣間隙壁,於該些字元線結構之侧壁,該絕 緣間隙壁係隔離該些字元線結構及該矽晶層。 30. 如申請專利範圍第18項所述之半導體裝置的製造 方法,其中該位元線結構包括多晶矽、矽化鈷、矽化鈦、 矽化鎢、矽化鈕或矽化鉬。 31. 如申請專利範圍第18項所述之半導體裝置的製造 方法,其中該摻雜之矽晶層係一源/汲極區。 Client’s Docket No.: 94144 18 TT’s Docket No:0548-A50829-TW/fmal/Claire200847340 X. Patent application scope: 1. The structure of a semiconductor device, comprising: a substrate; at least two deep trench capacitors formed in the substrate; an embedded gate formed in the substrate and located in the deep trenches Between the trench capacitors; a buried strap formed in the substrate between the deep trench capacitors and the embedded gate; f a plurality of word line structures on the substrate and spanning the deep trenches a trench capacitor and the embedded gate; and a doped twin layer formed on the substrate between the word line structures, wherein the doped twin layer acts as a source/drain Area. 2. The structure of the semiconductor device of claim 1, wherein the top of the doped twin layer is lower than the top of the word line structures. 3. The structure of the semiconductor device of claim 1, further comprising: a metal lithium material layer formed on the doped layer. 4. The structure of a semiconductor device according to claim 3, wherein the top of the metal halide material layer is lower than the top of the word line structures. 5. The structure of the semiconductor device of claim 1, wherein the doped twin layer comprises an epitaxial germanium. 6. The structure of the semiconductor device of claim 1, further comprising: a one-dimensional plug electrically connected to the doped twin layer. 7. The structure of the semiconductor device according to claim 1, Client's Docket No.: 94144 TT^ Docket No: 0548-A50829-TW/final/Claire 14 200847340 wherein the substrate adjacent to the embedded gate has a doped region to form a channel region surrounding the embedded gate. 8. The structure of a semiconductor device according to claim 3, wherein the metal halide material layer comprises cobalt telluride, titanium telluride, tungsten telluride, germanium telluride or germanium molybdenum. 9. The structure of the semiconductor device of claim 1, further comprising: an insulating spacer formed on a sidewall of the word line structure, the insulating gap spacer isolating the word lines Structure and the twin layer. The structure of the semiconductor device according to the first aspect of the invention, wherein the bit line structure comprises polycrystalline germanium, cobalt telluride, titanium telluride, germanium, or a group of indium. 11. A semiconductor device structure comprising: a substrate; at least two deep trench capacitors formed in the substrate; an embedded gate formed in the substrate and located between the deep trench capacitors; " a buried strap is formed in the substrate and located between the deep trench capacitors and the embedded gate; a plurality of word line structures are formed on the deep trench capacitors and the embedded gate, a doped germanium layer formed on the substrate between the deep trench capacitor and the embedded gate, wherein the doped twin layer acts as a source / > and a polar region, and a bit line A plug electrically connecting the doped twin layer. 12. The junction of the semiconductor device described in claim 11 of the invention, the client's Docket No.: 94144 TT's Docket No: 0548_A50829-TW/final/Claire 15 200847340, wherein the top of the doped twin layer is lower than the The top of these word line structures. 13. The structure of the semiconductor device of claim 11, further comprising: a layer of a metallization material formed on the doped layer. 14. The structure of a semiconductor device according to claim 13 wherein the top of the metal halide material layer is below the top of the word line structures. 15. The junction structure of a semiconductor device according to claim 11, wherein the doped twin layer comprises an epitaxial germanium. 16. The structure of a semiconductor device according to claim 11, wherein the substrate adjacent to the embedded gate has a doped region to form a channel region surrounding the embedded gate. 17. The structure of a semiconductor device according to claim 13, wherein the metallurgical material layer comprises a Shixihua drill, a Shixi Huaqin, a Shihua tungsten, a bismuth telluride or a molybdenum telluride. 18. A method of fabricating a semiconductor device, comprising: f providing a substrate; forming at least two deep trench capacitors in the substrate; forming an embedded gate in the substrate and between the deep trench capacitors; Forming a buried strap in the substrate, and the buried strap is located between the deep trench capacitors and the embedded gate; forming a plurality of word line structures on the substrate and crossing the deep trench capacitors And the embedded gate; and a substrate forming a doped twin layer between the word line structures. Client's Docket No.: 94144 TT?s Docket No: 0548-A50829-TW/final/Claire 16 200847340 on. 19. The method of fabricating a semiconductor device according to claim 18, wherein the step of forming the doped twin layer comprises: growing a twin layer on the substrate between the word line structures; And performing an ion implantation process to dope the layer. 20. The method of fabricating a semiconductor device according to claim 18, wherein the word line structure comprises polycrystalline germanium, cobalt telluride, titanium telluride, r tungsten germanium, germanium telluride or germanium molybdenum. The method of fabricating a semiconductor device according to claim 18, further comprising: forming a layer of a metallization material on the doped layer. 22. The method of fabricating a semiconductor device according to claim 21, wherein the metal halide material layer is formed by an automatic alignment metal halide process. 23. The method of fabricating a semiconductor device according to claim 18, wherein a top of the doped twin layer is lower than a " top of the word line structures. 24. The method of fabricating a semiconductor device according to claim 21, wherein the top of the metal halide material layer is lower than the top of the word line structures. 25. The method of fabricating a semiconductor device according to claim 18, wherein the doped twin layer comprises an epitaxial germanium. 26. The method of fabricating a semiconductor device according to claim 18, further comprising: a one-dimensional plug electrically connecting the doped twin layer. The method of manufacturing a semiconductor device according to claim 18, further comprising: abutting the embedded gate The substrate is doped to form a channel region surrounding the embedded gate. 28. The method of fabricating a semiconductor device according to claim 21, wherein the metal telluride material layer comprises bismuth telluride, titanium telluride, tungsten telluride, bismuth telluride or bismuth molybdenum. 29. The method of fabricating a semiconductor device according to claim 18, further comprising: forming an insulating spacer on the sidewall of the word line structure, the insulating spacer separating the word line structures And the twin layer. 30. The method of fabricating a semiconductor device according to claim 18, wherein the bit line structure comprises polycrystalline germanium, cobalt telluride, titanium telluride, tungsten telluride, germanium telluride or germanium molybdenum. The method of fabricating a semiconductor device according to claim 18, wherein the doped twin layer is a source/drain region. Client’s Docket No.: 94144 18 TT’s Docket No:0548-A50829-TW/fmal/Claire
TW096117766A 2007-05-18 2007-05-18 Semiconductor devices and methods for forming the same TWI373100B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096117766A TWI373100B (en) 2007-05-18 2007-05-18 Semiconductor devices and methods for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096117766A TWI373100B (en) 2007-05-18 2007-05-18 Semiconductor devices and methods for forming the same

Publications (2)

Publication Number Publication Date
TW200847340A true TW200847340A (en) 2008-12-01
TWI373100B TWI373100B (en) 2012-09-21

Family

ID=44823488

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096117766A TWI373100B (en) 2007-05-18 2007-05-18 Semiconductor devices and methods for forming the same

Country Status (1)

Country Link
TW (1) TWI373100B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779629B (en) * 2021-05-26 2022-10-01 南亞科技股份有限公司 Semiconductor structure and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779629B (en) * 2021-05-26 2022-10-01 南亞科技股份有限公司 Semiconductor structure and method of fabricating the same

Also Published As

Publication number Publication date
TWI373100B (en) 2012-09-21

Similar Documents

Publication Publication Date Title
US7741644B2 (en) Semiconductor device having stacked transistors
US6365452B1 (en) DRAM cell having a vertical transistor and a capacitor formed on the sidewalls of a trench isolation
JP5739210B2 (en) Semiconductor structure and manufacturing method thereof
US8586455B1 (en) Preventing shorting of adjacent devices
US20110068418A1 (en) Substrate symmetrical silicide source/drain surrounding gate transistor
US20090008714A1 (en) Semiconductor devices and methods of forming the same
US7511340B2 (en) Semiconductor devices having gate structures and contact pads that are lower than the gate structures
JPH10321813A (en) Semiconductor memory device and its manufacture
US11641730B2 (en) Semiconductor memory devices and methods of fabricating the same
US9548259B2 (en) Semiconductor device and method for manufacturing the same
US10224415B2 (en) Integrated vertical nanowire memory
US6365451B2 (en) Transistor and method
EP1287556A2 (en) Self-limiting polysilicon buffered locos for dram trench capacitor collar
JP2014146816A (en) Semiconductor devices having transistor gates containing cobalt silicide, and methods for fabricating transistor gates of memory devices
JP2003174101A (en) Semiconductor device and method of manufacturing semiconductor device
JP2003303830A (en) Semiconductor device and its manufacturing method
US6380589B1 (en) Semiconductor-on-insulator (SOI) tunneling junction transistor SRAM cell
US8933509B2 (en) Semiconductor device and method for fabricating the same
US10304839B2 (en) Metal strap for DRAM/FinFET combination
KR20110135768A (en) Fabricating method of a semiconductor device
WO2022222297A1 (en) Semiconductor structure manufacturing method and semiconductor structure
US20060003536A1 (en) Method for fabricating a trench capacitor with an insulation collar which is electrically connected to a substrate on one side via a buried contact, in particular for a semiconductor memory cell
TW200847340A (en) Semiconductor devices and methods for forming the same
JP2004040117A (en) Semiconductor memory device using damascene gate and epitaxial process, and its manufacturing method
US20060286756A1 (en) Semiconductor process and method for reducing parasitic capacitance