TW200846744A - Liquid crystal display apparatus, liquid crystal display panel and its manufacturing method - Google Patents
Liquid crystal display apparatus, liquid crystal display panel and its manufacturing method Download PDFInfo
- Publication number
- TW200846744A TW200846744A TW96119041A TW96119041A TW200846744A TW 200846744 A TW200846744 A TW 200846744A TW 96119041 A TW96119041 A TW 96119041A TW 96119041 A TW96119041 A TW 96119041A TW 200846744 A TW200846744 A TW 200846744A
- Authority
- TW
- Taiwan
- Prior art keywords
- liquid crystal
- layer
- voltage control
- crystal display
- substrate
- Prior art date
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
200846744 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種液晶顯示萝 , 製造方法。 衣置、以顯示面板及其 【先前技術】 隨著顯示科技的發展,平面顯示 一200846744 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a liquid crystal display, a manufacturing method. Clothing, display panel and its [Prior Art] With the development of display technology, the flat display
泛地被人們使用,而液晶顯示裝置因星雕一 八 率消耗以及咖等優越特性,已經漸二 射線管顯示裝置,並且應用至許多種類之陰極 :據照明光線的來源可將液晶顯;裝置:顯示 =模式分為穿透式、反射式及半穿反式液晶顯示 衣置。其中’穿透式液晶顯示裝置是由—液晶顯示面 ,與:背光模組所組成,整個液晶顯示面板的光量 是由背光模組所提供。反射式液晶顯示裝置則是以 "衣+兄光作為光源’並利用液晶顯示面板中之反 射層將外界環境光予以反射,可省去背光模組的設 置’故能降低整個液晶顯示裝置的製作成本,且大 中田減少電源的消耗功率。另外,半穿反式液晶顯示 裝置則是兼具二者的結構。 °月茶知圖1所示,習知之穿透式液晶顯不面板1 係包含一彩色濾光片基板11、/薄膜電晶體基板 12、一液晶層13及二偏光片14、15。彩色濾光片基 板11係具有一玻璃基板111、/紅色濾光層112、 200846744 -綠,濾光層113、一藍色渡光層114及—對向電極 115〃。溥膜電晶體基板12係至少具有一玻璃基板^ 及複數個晝素電極122、123、124。 液晶層13係設置於對向電極115及晝素電極 122、123、124 之間。滤光層 112、ιΐ3 及·分 別與晝素電極122、123、124相對應,且濾 113及m亦分別與液晶層13之複數個區域、 相對應。二偏光片14、15之偏光軸互 父且分別設置於彩色濾光片基板u 4正 晶體基板12的一側。 、厚膜電 運作時,-背光模組(圖巾未示)所發出 經過偏光片15以且有料定的值担士 尤線係 、丹诂# I, /、有彳寸疋的偏振方向’然後依序經 匕玻肖基板121、畫素電極m、123、I液 13及對向電極115以依據液s 日日运 爆液日日層13所承受電壓的 同而改變背光源的偏振方向(因# 。又电&的不 產生相位延遲),接著分別經由紅 曰3 色濾光層113及藍色嘑氺s , 芯光層12、綠 光、终光及^ 4 J"分別過遽輸出紅 九;先及監先至偏光片14。其中 據紅光、綠光及藍光各自 士 / 係依 ώ , . . τ 的偏振方向以輸出不同強 度的紅光、綠光及藍光來形成各種顏色。 一般來說,為了拐弁祖A 、 列關係式而設計: 、,液晶層13係依據下 δ〇η=Αηοη(Ι = 〇.5λ〇+Ιιλ〇 ㈣, 〇〇ίί-Δηοίί(1 = 0 + ηλπ η==〇,1,253···· 7 200846744The pan-Earth is used by people, and the liquid crystal display device has been gradually dimmed-tube display device due to the superior consumption characteristics of the star carving and the coffee, and is applied to many kinds of cathodes: liquid crystal can be displayed according to the source of the illumination light; : Display = mode is divided into transmissive, reflective and trans-transparent liquid crystal display. The transmissive liquid crystal display device is composed of a liquid crystal display surface and a backlight module, and the light amount of the entire liquid crystal display panel is provided by the backlight module. The reflective liquid crystal display device uses the "clothing + brother light as the light source" and reflects the external ambient light by using the reflective layer in the liquid crystal display panel, thereby eliminating the setting of the backlight module, thereby reducing the overall liquid crystal display device. Production costs, and Dazhongtian reduces the power consumption of the power supply. In addition, the transflective liquid crystal display device has both structures. As shown in Fig. 1, the conventional transmissive liquid crystal display panel 1 comprises a color filter substrate 11, a thin film transistor substrate 12, a liquid crystal layer 13, and two polarizers 14, 15. The color filter substrate 11 has a glass substrate 111, a red filter layer 112, 200846744 - green, a filter layer 113, a blue light-emitting layer 114, and a counter electrode 115. The ruthenium film substrate 12 has at least one glass substrate and a plurality of halogen electrodes 122, 123, and 124. The liquid crystal layer 13 is provided between the counter electrode 115 and the halogen electrodes 122, 123, and 124. The filter layers 112, ι3, and # correspond to the halogen electrodes 122, 123, and 124, respectively, and the filters 113 and m also correspond to a plurality of regions of the liquid crystal layer 13, respectively. The polarization axes of the two polarizers 14, 15 are mutually arranged and disposed on one side of the positive crystal substrate 12 of the color filter substrate u 4 , respectively. When the thick film is operated, the backlight module (not shown) passes through the polarizer 15 and has a predetermined value of the load of the line, the tanzanite # I, /, the polarization direction of the inch Then, the polarization direction of the backlight is changed in sequence according to the voltage of the liquid crystal s, the liquid electrode s, the liquid electrode 13 and the counter electrode 115 according to the liquid s (Because #. and electric & does not produce phase delay), then through the red 曰 3 color filter layer 113 and blue 嘑氺 s, core layer 12, green light, final light and ^ 4 J"遽 Output red nine; first and first to the polarizer 14. According to the red, green and blue light, the polarization direction of τ forms different colors by outputting red, green and blue light of different strengths. Generally speaking, in order to turn the ancestor A, the column relationship is designed:,, the liquid crystal layer 13 is based on the lower δ〇η=Αηοη(Ι = 〇.5λ〇+Ιιλ〇(4), 〇〇ίί-Δηοίί (1 = 0 + ηλπ η==〇,1,253···· 7 200846744
其中,δ。n係液晶顯示面板1為亮態時(液晶展 13承受最大電壓時),光線穿過液晶層13的相值^ 遲;5cff係液晶顯示面板χ為暗態時(液晶層13承受 敢小電壓8^ )’光線穿過液晶層13的相位延遲; 係為亮態時,液晶層13的非尋常折射率 (extraordinary index 〇f refracti〇n)與尋常折射率 (〇rdlnary index 〇f refracti〇n)之間的差值·,咐係為 暗悲%,液晶層i 3的非尋常折射率與尋常折射率2 =的差值;λ0係為光線的波長;d係為液晶層13的 厚度。 热而,由於對向電極Where δ. When the n-type liquid crystal display panel 1 is in a bright state (when the liquid crystal display 13 is subjected to a maximum voltage), the phase value of the light passing through the liquid crystal layer 13 is delayed; when the 5cff liquid crystal display panel is in a dark state (the liquid crystal layer 13 is subjected to a small voltage) 8^) 'the phase delay of the light passing through the liquid crystal layer 13; the extraordinary refractive index (extraordinary index 〇f refracti〇n) and the ordinary refractive index of the liquid crystal layer 13 when in the bright state (〇rdlnary index 〇f refracti〇n The difference between the · is 暗 %, the difference between the extraordinary refractive index of the liquid crystal layer i 3 and the ordinary refractive index 2 =; λ0 is the wavelength of the light; d is the thickness of the liquid crystal layer 13. Hot, due to the counter electrode
—,上上宣I电極丄二 124之間的外加最大電壓係為固定,換言之,液晶> 各個區域131、132、133所承受最大電壓亦 固定;另外,液晶層之各個區域131、132、13^ 2 U為相同。因此’當不同波長的光線通過》 曰曰^ 13七',則會因不同波長的光線對液晶層13 t =較長比队八)不同,不僅無法如預她 、’、、卜,甚至會產生色偏(C〇ior Shift )的現象 ::來說’以n=〇’且紅光、綠光及藍光幻 55〇nWm 為例。其 *,^ :、表光對液晶^的相位延遲波長比祕” ^而:計’換言之,Δη。#設計為Μ·, 液日日顯示面板1對綠念 π 對液曰 I表色有取么的對比。然而,紅 θθ 的相位延遲波長比(δση/λ0)係J 200846744 L42(275nm+650nm),且藍光對液晶層13的相位延 κ 皮長比(δοη/λ0)係為 CL61(275nm+450nm),而使液 曰曰顯示面板1之紅色及藍色的對比不佳。另外,若 Ϊ設相位延遲波長比(δ°η/、)與液晶層13所受·外加 包壓成線性關係時,請同時參照圖1及圖2所示, 八中圖2之曲線Su、S12、S13分別表示紅光、綠光 ^監光對液晶層13的相位延遲波長比(δ。〆、)及液 晶層13所受電壓V〇之間的關係。由於曲線SU、S12、 Sl3的斜率不同,所以使液晶顯示面板i產生色偏的 另,於半穿反式之液晶顯示裝置中 、、、 一, 八无線來—, the applied maximum voltage between the upper electrodes I and the electrodes 124 is fixed, in other words, the liquid crystals > the maximum voltages of the respective regions 131, 132, 133 are also fixed; in addition, the respective regions 131, 132 of the liquid crystal layer , 13^ 2 U is the same. Therefore, 'When different wavelengths of light pass through 曰曰^137', it will be different because the light of different wavelengths is different for the liquid crystal layer 13 t = longer than the team eight), not only can not be like her, ',, Bu, or even The phenomenon of color shift (C〇ior Shift): For example, 'n=〇' and red, green and blue illusion 55〇nWm are taken as examples. Its *, ^ :, surface light on the liquid crystal ^ phase delay wavelength ratio secret "^ and: meter" in other words, Δη. # design for Μ ·, liquid day display panel 1 pair of green π 曰 liquid 曰 I color However, the phase retardation wavelength ratio (δση/λ0) of red θθ is J 200846744 L42 (275 nm+650 nm), and the phase delay κ skin length ratio (δοη/λ0) of blue light to liquid crystal layer 13 is CL61. (275nm+450nm), the red and blue contrast of the liquid helium display panel 1 is not good. In addition, if the phase retardation wavelength ratio (δ°η/,) is applied to the liquid crystal layer 13 and the applied voltage is applied In the case of a linear relationship, please refer to FIG. 1 and FIG. 2 at the same time, and the curves Su, S12, and S13 of FIG. 2 of FIG. 2 respectively indicate the phase retardation wavelength ratio of the red light and the green light to the liquid crystal layer 13 (δ.〆. And the relationship between the voltage V〇 received by the liquid crystal layer 13. Since the slopes of the curves SU, S12, and S3 are different, the liquid crystal display panel i is colored, and in the transflective liquid crystal display device, ,, one, eight wireless
源為外界環境與背光模組,若未經過適當調整,外 界環境光線經由液晶層之路徑係為背光模組所發出 之光線經過液晶層之路徑的兩倍,因此外界環境光 線經過液晶層所產生相位延遲量亦為背光模組所發 出之光線經過液晶層所產生相位延遲的兩倍,所以 導致半穿反式液晶顯示面板容易具有色偏。 是以,業者設計習知之半穿反式液晶顯示面板 2’如圖3所示,習知之半穿反式液晶顯示面板2係 包含一彩色濾光片基板21、一薄膜電晶體基板22、 液·晶層23及二偏振板24、25。彩色濾光片基板 21係具有一玻璃基板211、複數個濾光層212及一 對向電極213。薄膜電晶體基板22係至少具有一玻 璃基板221及複數個晝素電極222。各個晝素電極 200846744 ι 222係具有至少一穿透區T2及至少一反射區R2。 ^ 液晶層23係設置於對向電極213及畫素電極 222之間。二偏振板24、25分別設置於彩色濾光片 基板21的一側及薄膜電晶體基板22的一侧。 於半穿反式液.晶顯示面板2中,反射區R2所對 應之液晶層23的厚度d32設計為穿透區T2所對應之 液晶層23的厚度d31的1/2俾使背光模組所產生的 光線經由液晶層23所產生.的相位延遲與外界環境光 • 線經由液晶層23所產生的相位延遲相同,以期可減 少色偏的產生。然而,此類半穿反式液晶顯示面板2 之製造過程相當繁複,易造成良率損失。 因此,如何提供一種能夠改善色偏之液晶顯示裝置、 液晶顯示面板及其製造方法,正是當前液晶顯示器產業的 重要課題之一。 _ 【發明内容】 有鑑於上述課題,本發明之目的為提供一種能夠改善 色偏之液晶顯示裝置、液晶顯示面板及其製造方法。. ‘ 緣是,為達上述目的,依本發明之一種液晶顯示面板 係包含一第一基板、一第二基板、一電壓控制層及一液晶 層。第一基板係至少具有一第一電極層;第二基板係至少 具有一第二電極層,其中第一電極層係與第二電極層相對 而設;電壓控制層係設置於第一電極層之上,其中電壓控 制層具有一第一電壓控制部及一第二電壓控制部;液晶層 10 200846744 … 係位於第一基板及第二基板之間。 < 另外,為達上述目的,依本發明之一種液晶顯示面板 之製造方法係包含下列步驟:形成一第一基板,其係至少 具有一第一電極層;設置一電壓控制層於第一電極層’其 中電壓控制層係具有一第一電壓控制部及一第二電壓控 制部;形成一第二基板,其係至少具有一第二電極層;以 及形成一液晶層於第一基板與第二基板之間。 再者,為達上述目的,依本發明之一種液晶顯示裝置 ⑩ 係包含一液晶顯示面板及一背光模組。液晶顯示面板係具 有一第一基板、一第二基板、一電壓控制層及一液晶層。-第一基板係至少具有一第一電極層;第二基板係至少具有 一第二電極層,第一電極層係與第二電極層相對而設;電 壓控制層係設置於第一電極層之上,電壓控制層具有一第 一電壓控制部及一第二電壓控制部;液晶層係位於第一基 板及弟二基板之間。 承上所述,因依本發明之液晶顯示裝置、液晶顯示面 ® 板及其製造方法係具有一至少包含第一電壓控制部及第 二電壓控制部之電壓控制層,當第一電極層與第二電極 * 層之間外加一電壓時,透過電壓控制層之第一電壓控制 部與第二電壓控制部,可使不同區域之液晶層實際承受之 電壓不同,進而使通過液晶顯示面板特定區域之光線具 有適當的相位延遲,不僅可以減少色偏的產生,而且 製程簡易因此液晶顯示面板的製造良率得以提升。 11 200846744 【實施方式】 曰η以下將參照相關式,說明依本發明較佳實施例 晶頒示裝置、液晶顯示面板及其製造方法。 " [弟一貫施例之液晶顯不面板] 請茶照圖4所示,第一實施例之液晶顯示 為穿透式、反射式或半穿反式之液晶顯示面板,_ H 以穿透式液晶顯示面板4為例,並包含一 貝⑪歹’ 狄一符、 ^ ^ I扳41、一 基板42、-液晶層43以及—電餘制層料。 第-基板係以-薄膜電晶體基板為例, 具有一透光本體41i及一第—電極層412。而—第二透= 本體411可至少具有一玻璃基板及一薄膜電晶體,且第一 電極層412係由複數個晝素電極Pw、j>42所構成。另外, 第二基板42係以一彩色濾光片基板為例,並至少具有一 第二透光本體421、一第一濾光層422、一第二濾光層423 及一第二電極層424,其中,第二透光本體421可為一玻 璃基板/且第一基板41之第一電極層412係與第二基板 42之第二電極層424相對而設。當然,第一基板μ亦可 為一彩色濾光片基板,且第二騎42亦可為—薄膜電晶 體基板。 一,壓控制層44係設置於第〜電極層412之上,其具 ^第”包壓控制部441及第二電壓控制部442,其中, 第一電壓控制部441係與晝素電杻P41相對應,且第二電 二制郤442係與晝素電極Be相對應。另外,第一電壓 控tUM41及第二電塵控制部442的材質可依據實際設計 12 200846744 而決定。舉例來說’第一電壓控制部44ι 、丄的材質 聚亞乙烯(Polyvinylidene Fluoride ·,介蕾火 貝^為氣化 兒吊數約為] 樹脂(hexaphenol resin,介電常數約為14 ”、' i〇)或 酚 電常數 &烯_ 〜中歎約為! 樹脂(hexaphenol resin,介電常數約為14〜如、> 之材料,而第二電壓控制部442的松拼」网;1 1貝π (Polyethylene,介電常數約為2.3〜2 .〇)、聚四气 (Polytetrafluoroethylene,介電常數約小於2 取虱乙綿 (PI,約為3.4)或SiLK(介電常數約Α 眾亞釅胺 材料。 ^數、从2.6)錢介電常一 ,晶層43係位於第—基板41與第二基板 在本實施例中,液晶S仏在/ 之間, 從日日層43係位於電壓控制層44及 極層424之間,曰、、右曰a /1。 久第〜雷 I / 0曰層43之複數個區域431、 別與弟一電壓控制部441芬笙-432係分 、各少 卩441及弟一電壓控制部442相料* 弟一渡光層422爲楚-、忐τ +應。 控制部_及第^=;;=層423係分別與第1墨 壓控制部441之;_!!!: 442 ««^,第1 之卜入 弟 ;1私¥數^1與第二電壓押告,丨& 之—弟二介電常數ε42係不相等。U A控制部442 —承上’由於第1壓控制部 人 共弟二電壓控制部442 八/之弟一 7丨笔常數ε4ι 當畫素電極Ρ41、ϊ>42 * ”電常數S42係不相等,所以 時,液晶層43與裳、电亟層424之間的外加一電壓 承受之電壓及液日:電壓控制部441對應之區域431所 域432所承受電汽 /、—电壓控制部442對應之區 與第二介電常數相二。換言之,第一介電常數〜 光層422(與第〜泰1田地被設計,例如,若第一濾 SUe 441 _應)所濾出光線的波長 13 200846744 係大於第二濾光層423(與第二電壓控制部442對應)所濾 出光線的波長時,則第一介電常數ε4ι係設計大於第二介電 常數ε42,以使液晶層43·之區域431實際所承受之電壓大 於液晶層43之區域432實際所承受電壓。由於相位延 遲量(δϋη)與液晶層43實際所承受電壓實質上為正相 關,所以使不同波長的光線穿過液晶層43之區域431的 相位延遲量大於液晶層43之區域432的相位延遲量, 進而使不.同波長的光線穿過液晶層43後仍可具有相同的 相位延遲波長比(δϋη/λ〇),不僅可提升對比,而且可減少 色偏的產生。 除此之外,液晶顯示面板4可更包含二偏光片45、46, 其係分別設置於第二基板42的一側及第一基板41的一 侧,在本實施例中,偏光片45、46之偏光軸係以正 交設置為例。 請參照圖5所示,液晶顯示面板4可更包含二配向層 47、47’,配向層47.、47’係分別位於第一基板41及第二基 板42上,俾使液晶層43可依特定方向排列。當然,配向 層47亦可依據實際設計而整合於第一電壓控制部441或 第二電壓控制部442。換言之,電壓控制部441、442可直 接選用具有液晶配向功能之材料,例如聚亞醯胺(ΡΙ)等以 節省配向層47的製造成本。 另外5請參照圖6所示,液晶顯示面板4之電壓控制 層44更可包含一第三電壓控制部443,且第二基板42更 包含一第三濾光層425。第三電壓控制部443係分別位於 14 200846744 液晶層43之區域433及晝素電極P43之間,且第三濾光層 425係與第三電壓控制部443相對應,其中,第三電壓控 制部443之第三介電常數ε43、第一電壓控制部441之第一 介電常數ε41及第二電壓控制部442之第二介電常數ε42可 適當的設計以使不同波長的光線穿過液晶層43可具有相 同的相位延遲波長比(δοη/λ〇),不僅可提升對比,而且可 減少色偏的產生。 再者,第一電壓控制部441、第二電壓控制部442或 第三電壓控制部443可依據實際需求而設計為複合結構 層。舉例來說,請參照圖7所示,第三電壓控制部443可 具有一下層L41及一上層L42,其中,上層L42之介電常數 ε45與下層L41之介電常數ε44可依據實際狀況而設計。其 中,第一濾光層422、第二濾光層423及第三濾光層425 係分別以紅色濾光層、藍色濾光層及綠色濾光層為例,且 第一濾光層422所過濾輸出光線的波長、第二濾光層423 所過濾輸出光線的波長及第三濾光層425所過濾輸出光線 的波長係以650nm、450nm及550nm為例。 業者若以紅光對液晶層43的相位延遲波長比 (δοη/λ〇)為0.5而設計,換言之δ〇η=Δη〇η(1需設計為 275nm,其中,為光線對液晶層43所承受最大電 壓(5V為例)時的相位延遲。此時,藍光(45Onm)對液 晶層 43的相位延遲波長比(δ^/λο)計算出為 0.72(275nm/450nm),且綠光(550nm)對液晶層 43 的 相位延遲波長比(δοη/λ〇)為計算出 200846744 I5 9(27 5nm/550nm)。其中,為了使不同光線對液晶層 ^ 43之區域431、432、433的相位延遲波長比(δ^/λο) 相同,以減少色偏的產生,因此業者可先計算出不同光 線對液晶層43之區域431、432、433的相位延遲波 長比δοη/λ〇皆為0.5時,液晶層43之區域431、432、 433各別所需承受之電壓。 +例來說,請同時參照圖7及圖8所示,圖8假設 相位延遲波長比δ〇η/λ〇及液晶層43所需承受之電壓 L王線性關係,其中曲線分別表示紅 光、、表光及監光對液晶層43的相位延遲波長比 (kn/λο)及液晶層43所受電壓v4之間的關係。由曲 線Sc中可找出若要使藍光(45〇nm)對液晶層43的相 位延遲,長比δ^/λο為〇.5時,則液晶層43之區域 上第一濾光層425相對應)所需承受之電壓需設 σ十為3.47V,由曲線S42中可找出若要使綠光(550nm) 對液晶層43㈣位延遲波長比^為係為〇·5時, ::曰:層43之區域432(與第二濾光層423相對應) 二尚承受之電壓4.24v。因此,當液晶層43之區域 1 432、433所需承受之電壓分別為5v、4.2心、 料47V時’液晶層43之區域431、432、433所分 應的等效介電常數可依照圖9而得出。 液曰照圖7及圖9所示,本實施例所使用 阳層43叫性係以圖9為例,其係顯示液 承受電壓V4盥液a爲μ ^ 所 /、液日日層43的等效介電常數SLC4之間的關係 16 200846744The source is the external environment and the backlight module. If not properly adjusted, the path of the ambient light passing through the liquid crystal layer is twice the path of the light emitted by the backlight module through the liquid crystal layer, so the ambient light is generated through the liquid crystal layer. The phase delay amount is also twice the phase delay generated by the light emitted by the backlight module through the liquid crystal layer, so that the transflective liquid crystal display panel is easy to have color shift. As shown in FIG. 3, the conventional transflective liquid crystal display panel 2 includes a color filter substrate 21, a thin film transistor substrate 22, and a liquid. Crystal layer 23 and two polarizing plates 24, 25. The color filter substrate 21 has a glass substrate 211, a plurality of filter layers 212, and a counter electrode 213. The thin film transistor substrate 22 has at least one glass substrate 221 and a plurality of halogen electrodes 222. Each of the halogen electrodes 200846744 ι 222 has at least one penetration zone T2 and at least one reflection zone R2. The liquid crystal layer 23 is disposed between the counter electrode 213 and the pixel electrode 222. The two polarizing plates 24 and 25 are provided on one side of the color filter substrate 21 and one side of the thin film transistor substrate 22, respectively. In the transflective liquid crystal display panel 2, the thickness d32 of the liquid crystal layer 23 corresponding to the reflective region R2 is designed to be 1/2 of the thickness d31 of the liquid crystal layer 23 corresponding to the transmissive region T2, so that the backlight module is The phase difference generated by the generated light passing through the liquid crystal layer 23 is the same as the phase delay generated by the ambient light line via the liquid crystal layer 23, so that the generation of color shift can be reduced. However, the manufacturing process of such a transflective liquid crystal display panel 2 is quite complicated and is liable to cause a loss in yield. Therefore, how to provide a liquid crystal display device, a liquid crystal display panel, and a method of manufacturing the same that can improve color shift is one of the important topics in the current liquid crystal display industry. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a liquid crystal display device, a liquid crystal display panel, and a method of manufacturing the same that can improve color shift. In order to achieve the above object, a liquid crystal display panel according to the present invention comprises a first substrate, a second substrate, a voltage control layer and a liquid crystal layer. The first substrate has at least one first electrode layer; the second substrate has at least one second electrode layer, wherein the first electrode layer is opposite to the second electrode layer; and the voltage control layer is disposed on the first electrode layer The voltage control layer has a first voltage control unit and a second voltage control unit; the liquid crystal layer 10 200846744 is located between the first substrate and the second substrate. < In addition, in order to achieve the above object, a method of manufacturing a liquid crystal display panel according to the present invention comprises the steps of: forming a first substrate having at least a first electrode layer; and providing a voltage control layer on the first electrode a layer of the voltage control layer having a first voltage control portion and a second voltage control portion; forming a second substrate having at least a second electrode layer; and forming a liquid crystal layer on the first substrate and the second Between the substrates. Furthermore, in order to achieve the above object, a liquid crystal display device 10 according to the present invention comprises a liquid crystal display panel and a backlight module. The liquid crystal display panel has a first substrate, a second substrate, a voltage control layer and a liquid crystal layer. - the first substrate has at least one first electrode layer; the second substrate has at least one second electrode layer, the first electrode layer is opposite to the second electrode layer; and the voltage control layer is disposed on the first electrode layer The voltage control layer has a first voltage control unit and a second voltage control unit; the liquid crystal layer is located between the first substrate and the second substrate. According to the present invention, a liquid crystal display device, a liquid crystal display panel, and a method of manufacturing the same have a voltage control layer including at least a first voltage control portion and a second voltage control portion, when the first electrode layer is When a voltage is applied between the second electrode* layers, the first voltage control portion and the second voltage control portion of the voltage control layer can pass different voltages of the liquid crystal layers in different regions, thereby passing through a specific region of the liquid crystal display panel. The light has an appropriate phase delay, which not only reduces the generation of color shift, but also improves the manufacturing yield of the liquid crystal display panel. 11 200846744 [Embodiment] Hereinafter, a crystal presenting apparatus, a liquid crystal display panel, and a method of manufacturing the same according to a preferred embodiment of the present invention will be described with reference to the related art. "[The same is true for the liquid crystal display panel of the brother] Please see the tea shown in Figure 4. The liquid crystal display of the first embodiment is a transmissive, reflective or transflective liquid crystal display panel, _H to penetrate The liquid crystal display panel 4 is taken as an example, and includes a shell 11 歹 'di hex, a ^ 41, a substrate 42, a liquid crystal layer 43 and an electric lamination layer. The first substrate is exemplified by a thin film transistor substrate, and has a light transmitting body 41i and a first electrode layer 412. The second through body 411 can have at least one glass substrate and a thin film transistor, and the first electrode layer 412 is composed of a plurality of halogen electrodes Pw, j > 42. In addition, the second substrate 42 is exemplified by a color filter substrate, and has at least a second transparent body 421, a first filter layer 422, a second filter layer 423, and a second electrode layer 424. The second transparent body 421 can be a glass substrate / and the first electrode layer 412 of the first substrate 41 is opposite to the second electrode layer 424 of the second substrate 42 . Of course, the first substrate μ can also be a color filter substrate, and the second ride 42 can also be a thin film transistor. The voltage control layer 44 is disposed on the first electrode layer 412, and has a first voltage control unit 441 and a second voltage control unit 442, wherein the first voltage control unit 441 is connected to the pixel device P41. Correspondingly, the second electrical system 442 is corresponding to the halogen electrode Be. In addition, the materials of the first voltage control tUM41 and the second dust control unit 442 can be determined according to the actual design 12 200846744. For example, Polyvinylidene Fluoride, the material of the first voltage control unit 44ι, 丄, is a resin (hexaphenol resin, dielectric constant is about 14 ”, 'i〇) or The phenolic electric constant & ene s ~ sigh is about! Resin (hexaphenol resin, dielectric constant of about 14 ~, such as > material, and the second voltage control part 442 loose) net; 1 1 π ( Polyethylene, dielectric constant is about 2.3~2. 〇), polytetrafluoroethylene (Polytetrafluoroethylene, dielectric constant is less than 2 虱 虱 绵 (PI, about 3.4) or SiLK (dielectric constant about 酽 酽 酽 材料 材料 material ^ number, from 2.6) money dielectric constant one, the crystal layer 43 is located on the first substrate 41 and the second substrate In this embodiment, the liquid crystal S is between /, and the day-to-day layer 43 is located between the voltage control layer 44 and the pole layer 424, 曰, and right 曰 a / 1. Long-lei I / 0 曰 layer 43 The plurality of regions 431, the other ones are connected to the voltage control unit 441, the Fen- 432, the respective 441 and the second voltage control unit 442, and the second light-emitting layer 422 is Chu-, 忐τ+. The control unit_and the ^=;;= layer 423 are respectively associated with the first ink pressure control unit 441; _!!!: 442 ««^, the first one is the younger brother; the first one is the second one; The voltage acknowledgment, 丨 & - brother two dielectric constant ε42 is not equal. UA control unit 442 - bearing 'because of the first pressure control part of the two brothers voltage control unit 442 eight / brother a 7 丨 pen constant Ε4ι When the pixel electrode Ρ41, ϊ>42* ” electric constant S42 is not equal, the voltage between the liquid crystal layer 43 and the skirt and the electric layer 424 is subjected to a voltage and the liquid day: the voltage control unit 441 corresponds to The region corresponding to the electric steam/voltage control unit 442 in the region 432 of the region 431 is in phase with the second dielectric constant. In other words, the first dielectric constant ~ the optical layer 422 (designed with the first taiy 1 field, For example, if the wavelength 13 200846744 of the filtered light of the first filter SUe 441 _ is greater than the wavelength of the filtered light of the second filter layer 423 (corresponding to the second voltage control unit 442), the first dielectric The constant ε4ι is designed to be larger than the second dielectric constant ε42 such that the voltage actually received by the region 431 of the liquid crystal layer 43· is greater than the voltage actually received by the region 432 of the liquid crystal layer 43. Since the phase retardation amount (δϋη) is substantially positively correlated with the voltage actually received by the liquid crystal layer 43, the phase retardation amount of the region 431 in which the light of different wavelengths passes through the liquid crystal layer 43 is larger than the phase retardation amount of the region 432 of the liquid crystal layer 43. Further, even if the light of the same wavelength passes through the liquid crystal layer 43, the same phase retardation wavelength ratio (δϋη/λ〇) can be obtained, which not only improves the contrast but also reduces the generation of the color shift. In addition, the liquid crystal display panel 4 may further include two polarizers 45 and 46 respectively disposed on one side of the second substrate 42 and one side of the first substrate 41. In this embodiment, the polarizer 45, The polarization axis of 46 is exemplified by an orthogonal setting. Referring to FIG. 5, the liquid crystal display panel 4 further includes two alignment layers 47, 47'. The alignment layers 47. and 47' are respectively disposed on the first substrate 41 and the second substrate 42, so that the liquid crystal layer 43 can be used. Arrange in a specific direction. Of course, the alignment layer 47 may be integrated in the first voltage control unit 441 or the second voltage control unit 442 depending on the actual design. In other words, the voltage control portions 441, 442 can directly select a material having a liquid crystal alignment function, such as polyamine, to save the manufacturing cost of the alignment layer 47. In addition, as shown in FIG. 6, the voltage control layer 44 of the liquid crystal display panel 4 further includes a third voltage control unit 443, and the second substrate 42 further includes a third filter layer 425. The third voltage control unit 443 is located between the region 433 of the liquid crystal layer 43 and the pixel electrode P43, respectively, and the third filter layer 425 corresponds to the third voltage control unit 443, wherein the third voltage control unit The third dielectric constant ε43 of 443, the first dielectric constant ε41 of the first voltage control unit 441, and the second dielectric constant ε42 of the second voltage control unit 442 can be appropriately designed to allow light of different wavelengths to pass through the liquid crystal layer. 43 can have the same phase retardation wavelength ratio (δοη/λ〇), which not only improves the contrast but also reduces the generation of color shift. Furthermore, the first voltage control unit 441, the second voltage control unit 442, or the third voltage control unit 443 can be designed as a composite structure layer according to actual needs. For example, as shown in FIG. 7, the third voltage control unit 443 may have a lower layer L41 and an upper layer L42, wherein the dielectric constant ε45 of the upper layer L42 and the dielectric constant ε44 of the lower layer L41 may be designed according to actual conditions. . The first filter layer 422, the second filter layer 423, and the third filter layer 425 are respectively exemplified by a red filter layer, a blue filter layer, and a green filter layer, and the first filter layer 422 is used as an example. The wavelength of the filtered output light, the wavelength of the filtered output light of the second filter layer 423, and the wavelength of the output light filtered by the third filter layer 425 are exemplified by 650 nm, 450 nm, and 550 nm. If the phase retardation wavelength ratio (δοη/λ〇) of the liquid crystal layer 43 is 0.5, in other words, δ〇η=Δη〇η (1 is designed to be 275 nm, wherein the light is applied to the liquid crystal layer 43 The phase delay at the maximum voltage (5V is an example). At this time, the phase retardation wavelength ratio (δ^/λο) of the blue light (45Onm) to the liquid crystal layer 43 is calculated to be 0.72 (275 nm/450 nm), and the green light (550 nm) The phase retardation wavelength ratio (δοη/λ〇) to the liquid crystal layer 43 is calculated as 200846744 I5 9 (27 5 nm/550 nm) in which the phase retardation wavelengths of the regions 431, 432, and 433 of the liquid crystal layer 43 are made different rays. The ratio is the same as (δ^/λο) to reduce the color shift. Therefore, the operator can first calculate the phase retardation wavelength ratio δοη/λ〇 of the regions 431, 432, and 433 of the liquid crystal layer 43 to 0.5. The voltages required for the regions 431, 432, and 433 of the layer 43 are respectively required. For example, please refer to FIG. 7 and FIG. 8 simultaneously. FIG. 8 assumes a phase retardation wavelength ratio δ〇η/λ〇 and a liquid crystal layer 43. The linear relationship of the voltages to be withstood, where the curves represent red, specular, and illuminating pairs, respectively. The phase retardation wavelength ratio (kn/λο) of the crystal layer 43 and the voltage v4 received by the liquid crystal layer 43. It can be found from the curve Sc that the phase retardation of the blue light (45 〇 nm) to the liquid crystal layer 43 is found. When the length ratio δ^/λο is 〇.5, the voltage corresponding to the first filter layer 425 on the region of the liquid crystal layer 43 is required to be subjected to a voltage of σ10 of 3.47V, which can be found by the curve S42. When the green light (550 nm) to the liquid crystal layer 43 (four)-bit retardation wavelength ratio is 〇·5, ::曰: the region 43 of the layer 43 (corresponding to the second filter layer 423) The voltage that is still tolerated is 4.24V . Therefore, when the voltages required for the regions 1 432, 433 of the liquid crystal layer 43 are 5v, 4.2, and 47V, respectively, the equivalent dielectric constant of the regions 431, 432, and 433 of the liquid crystal layer 43 can be in accordance with the figure. 9 and got. Referring to FIG. 7 and FIG. 9 , the positive layer 43 used in the present embodiment is exemplified by FIG. 9 , which is a display liquid withstand voltage V4 , a liquid a is μ ^ /, and a liquid daily layer 43 Relationship between the equivalent dielectric constant SLC4 16 200846744
圖,其中,假設顯示液晶層43所承受電壓V4與液晶層 43的等效介電常數sLC4呈線性關係。例如,當液晶層43 承受電壓V4為5V時,液晶層43之等效介電常數sLC4 為8 ;且當液晶層承受電壓V4為0V時,液晶層43 之等效介電常數為3。 其中,由圖9中可找出當液晶層43所承受之電 壓為3.47V時,液晶層43之等效介電常數為· 6.47 ; 且當液晶層43所承受之電壓為4·24Υ時,液晶層43 之等效介電常數為7.24。 此時,根據上述,當液晶層43之區域43卜432、 433所承受之電壓分別為5V、4.24V、3.47V時,液 晶層43之區域431.、432、433所對應的等效介電常 數分別為8、7·24、6·47 ;另外再搭配液晶層43之 厚度d4、第一電壓控制部441之介電常數ε41及厚度D41、 第二電壓控制部442之介電常數ε42及厚度D42、第三電壓 控制部443下層L41之介電常數ε44及厚度D43、第三電壓 控制部443上層L42的介電常數ε45及厚度D44、及晝素電 '極P41、P42、P43與第二電極層424之間所外加的電壓等參 數以依據下列關係式而設計,俾使不同波長的光線穿 過液晶層43之區域431、432、433可具有相同的相位廷 遲波長比(δϋη/λ〇): 17 200846744In the figure, it is assumed that the voltage V4 with which the liquid crystal layer 43 is subjected is linearly related to the equivalent dielectric constant sLC4 of the liquid crystal layer 43. For example, when the liquid crystal layer 43 is subjected to a voltage V4 of 5 V, the equivalent dielectric constant sLC4 of the liquid crystal layer 43 is 8; and when the liquid crystal layer withstand voltage V4 is 0 V, the equivalent dielectric constant of the liquid crystal layer 43 is 3. It can be seen from FIG. 9 that when the voltage applied by the liquid crystal layer 43 is 3.47 V, the equivalent dielectric constant of the liquid crystal layer 43 is 6.47; and when the voltage of the liquid crystal layer 43 is 4.24 ,, The equivalent dielectric constant of the liquid crystal layer 43 is 7.24. At this time, according to the above, when the voltages of the regions 43 432 and 433 of the liquid crystal layer 43 are 5 V, 4.24 V, and 3.47 V, respectively, the equivalent dielectric corresponding to the regions 431., 432, and 433 of the liquid crystal layer 43. The constants are 8, 7, 24, and 6.47, respectively, and the thickness d4 of the liquid crystal layer 43, the dielectric constant ε41 of the first voltage control unit 441, the thickness D41, and the dielectric constant ε42 of the second voltage control unit 442. The thickness D42, the dielectric constant ε44 and the thickness D43 of the lower layer L41 of the third voltage control unit 443, the dielectric constant ε45 and the thickness D44 of the upper layer L42 of the third voltage control unit 443, and the halogen electric poles P41, P42, and P43 The parameters such as the voltage applied between the two electrode layers 424 are designed according to the following relationship, so that the regions 431, 432, and 433 through which the light of different wavelengths pass through the liquid crystal layer 43 can have the same phase-to-late wavelength ratio (δϋη/ Λ〇): 17 200846744
VV
4R v4ax4R v4ax
VV
4G v4ax4G v4ax
VV
4B v4ax d4〜 £41 8 d4 7.24 •^43 , D44 h d4 卞 £44 £45 7.24 i 6.47, ^ 3.47 D42 ! d4 卞 £42 6.47 ^ 4.24 其中’ V4R、V4B、V4G分別為液晶層4 3之區域4 3 1、 432、433實際承受之電壓;V4a為晝素電極P41、P42、 P43與第二電極層424之間所外加之電壓。另,為簡化製程 及材料之使用,第三電壓控制部443之下層L41可選用與 第一電壓控制部441相同之材料,而第三電壓控制部443 之上層L42可選用與第二電壓控制部442相同之材料。 在此,若選擇ε44=ε4ΐ = 10、845=^42=3等常見的材料、並 希望〇41=〇42、〇43+〇44=〇41、£14=40111時’依據前述公式可 求得得 D41=D42=1.75)im、D44 =0·65μιη、V4a=6.75V。 另外若以 £44=841=20、845=^42=2 等材料、配合 〇4ΐ=〇42、 〇43+〇44=1^41、¢14=4 的言曼計時’貝1J 可 4隹 4寻 〇41=〇42=〇-66όΠ1、 D44二〇·32υιη、V4a = 5.33V。當然,業者亦可依據實際需求 18 200846744 而啕其他參數的設計,你,、+ ^ 1 H 夜晶顯示面板4可設計為 V4a隶低以節省電力的指私 〕才貝耗’或者以找尋較便宜的第4B v4ax d4 ~ £41 8 d4 7.24 •^43 , D44 h d4 卞£44 £45 7.24 i 6.47, ^ 3.47 D42 ! d4 卞£42 6.47 ^ 4.24 where 'V4R, V4B, V4G are liquid crystal layers 4 3 The voltage actually applied to the region 4 3 1, 432, 433; V4a is the voltage applied between the halogen electrodes P41, P42, P43 and the second electrode layer 424. In addition, in order to simplify the process and the use of the material, the lower layer L41 of the third voltage control unit 443 may be selected from the same material as the first voltage control unit 441, and the upper layer L42 of the third voltage control unit 443 may be selected from the second voltage control unit. 442 the same material. Here, if a common material such as ε44=ε4ΐ = 10, 845=^42=3 is selected, and 〇41=〇42, 〇43+〇44=〇41, £14=40111 are selected, 'According to the above formula Obtained D41=D42=1.75)im, D44=0.65μιη, and V4a=6.75V. In addition, if you use materials such as £44=841=20, 845=^42=2, and 〇4ΐ=〇42, 〇43+〇44=1^41, ¢14=4, you can count 贝1J can be 4隹4 〇41=〇42=〇-66όΠ1, D44二〇·32υιη, V4a = 5.33V. Of course, the industry can also design according to the actual needs of 18 200846744 and other parameters, you, + ^ 1 H night crystal display panel 4 can be designed to V4a low to save power of the finger-only] to find or compare Cheap number
-電屋控制部441、第二電壓控制部椒及第三電壓控制 部443咖斗以節省成本等。另外,上述係以 d4广d42、D43+D44=d4i為例,然而,實際設計上,心可分 H二E>42及D43+D44相兴。再者,第一電壓控制部441及 第-1壓控制部443之下層L41的材質可同為氣化聚亞乙 稀(Polyvinyiidene Flu〇ride,介電常數約為1〇)或紛樹脂 (hexaphenoi resin,介電常數約為14,等材料;第二電 壓控制部442及第三電壓控制部443之上層&的材質可 同為聚乙烯類(Polyethylene,介電常數約為2·3~2 35)、聚 四氟乙稀(P〇lytetrafluoroethylene,約小於21)、聚亞醯胺 (PI ’約為3.4)或SiLK (介電常數約為2·6)等。 承上所述,因本發明之液晶顯示面板係包含一至少具 有第電壓控制部及第二電壓控制部之電壓控制層,由於 第龟極層與弟一電極層之間的外加電壓固定,故需 藉由一電壓控制層,來調節不同區域液晶層所承受之 電壓,進而使不同波長的光線穿過液晶層可具有相同的 相位延遲波長比,不僅可提升對比,而且可減少色偏的 產生。另’利用複合結構層的方式使電壓控制層之第一電 壓控制部及第二電壓控制部,甚至第三電壓控制部具有相 同厚度,亦即,電壓控制層厚度均一,故在電壓控制層上 方之液Β曰層的尽度亦相等,液晶顯示面板之製造良率可因 此提升。 19 200846744The electric house control unit 441, the second voltage control unit, and the third voltage control unit 443 are used to save costs. In addition, the above is exemplified by d4 wide d42 and D43+D44=d4i. However, in actual design, the heart can be divided into H 2 E > 42 and D43 + D44. Furthermore, the material of the lower layer L41 of the first voltage control unit 441 and the first voltage control unit 443 may be a vaporized polyethylene (Polyvinyiidene Flu〇ride, dielectric constant of about 1 〇) or a resin (hexaphenoi). The resin has a dielectric constant of about 14, and the like; the material of the upper layer & the second voltage control unit 442 and the third voltage control unit 443 can be made of polyethylene (Polyethylene, dielectric constant is about 2. 3~2) 35), polytetrafluoroethylene (P〇lytetrafluoroethylene, about less than 21), polyamidamine (PI 'about 3.4) or SiLK (dielectric constant is about 2·6), etc. The liquid crystal display panel of the invention comprises a voltage control layer having at least a voltage control unit and a second voltage control unit. Since the applied voltage between the first tomographic layer and the first electrode layer is fixed, a voltage control layer is required. To adjust the voltage of the liquid crystal layer in different regions, so that different wavelengths of light can pass through the liquid crystal layer to have the same phase retardation wavelength ratio, which not only improves the contrast, but also reduces the generation of color shift. Way to make the first voltage of the voltage control layer The voltage control unit and the second voltage control unit, even the third voltage control unit have the same thickness, that is, the thickness of the voltage control layer is uniform, so the liquid layer of the liquid layer above the voltage control layer is also equal, and the liquid crystal display panel is Manufacturing yield can be improved. 19 200846744
[第二實施例之液晶顯示面板] 办明二妝圖10所示,第二實施例之液晶顯示面板以 :穿透式液晶顯示面板5為例,並包含一第一基板51、一 弟土板52〜液晶層53以及一電壓控制層54。 —^其中第一基板51、第二基板52及液晶層53係與第一 貝加例之液日日頌示面板4之第一基板、第二基板C及 液晶層43相同,在此容不贅述。 電壓控制層54係設置於第一電極層512之上,並具 有一第一電壓控制部541及一第二電壓控制部542,其中, 電壓控制層54為一聚合型液晶材料,塗佈一層聚合型液 曰曰材料於第一電極層上之後,透過分別外加不同電壓至電 壓控制層54之第一區域及第二區域,使兩個區域中聚合 型液晶材料之排列傾斜角度不同造成兩區之介電常數不 同’以形成一第一電壓控制部541及一第二電壓控制部 542 ’而聚合型液晶材料可為光聚合型液晶材料或者熱聚 &型液晶材料等,故以電壓調變聚合型液晶材料之排列傾 斜角度後,可利用光或熱固定聚合型液晶材料之排列傾斜 角度,使其不再受外部電壓影響。值得注意的是,可先於 第一電極層512上設置一配向層,再於此配向層上塗佈聚 5型液晶材料,以使聚合型液晶材料一特定方向排列。 電壓控制層54係位於液晶層53及畫素電極P51、p52 之間。第一電壓控制部541及第二電壓控制部542係分別 與第—濾光層522及第二濾光層523相對應,且第—電壓 控制部541及第二電壓控制部542分別與液晶層53之複 20 200846744 數個區域531、532相對雍。甘丄 之介電常數ε51與第二電壓;:中,第-電壓控制部541 當的被設計,例如,若二542之介電常數h可適 長係小於第二濾光層523 2層522所濾出光線的波 數h係設計大於介電常數二出光線的波長時,則介電常 提升對比,而且可減少色偏 乂上°η/λ〇),不僅可 Μ 54 A ^ 、產生。本貫施例之電壓控制 g 54由早材枓形成,各電壓控制部⑷ 個穿透式液晶顯示面板5中的液晶層5=度 f目同,液晶顯示面板的製造方式及良率亦得以簡化及提 τρ ° [第三實施例之液晶顯示面板] —:月麥知、S1 11所不’第三實施例之半穿反式液晶顯 =面板6包含一第一基板61、一第二基板62、—液晶層 63及一電壓控制層64。 第一基板61係以一薄膜電晶體基板為例,其係至少 具有一第一透光本體611及一第一電極層612。第一透光 本體611至少具有一玻璃基板及一薄膜電晶體,且第一電 極層612係由複數個晝素電極?6〇所構成,其中各書素電 極?6。係具有至少一穿透區Τ6及至少—反射二',、: 本實施例中,係以各晝素電極Ρ6〇係具有二穿透區h及 -反射g R6為例。第二基板62係以一彩色遽光°片^板 為例’並至少具有-第二透光本體621、複數個滤光層 622a、622b、622c及一第二電極層623,其中,第二透光 21 200846744 本體621可至少具有一玻璃基板,且第一基板61之第一 電極層612係與第二基板62之第二電極層623相對而設。 電壓控制層64係設置於第一電極層612之上,且電 壓控制層64係具有至少一第一電壓控制部丨及一第二 電壓控制部642,其中,第一電壓控制部641係與晝素^ 極?6〇之穿透區I相對應,且第二電壓控制部642係與書 素電極1>6〇之反射區R_6相對應且第一電壓控制部之― 第一介電常數^係大於第二電壓控制部642之一第二介命 常數εό2。在本實施例中,第一電壓控制部641及第二電壓 控制部642的材質可依據實際設計而決定,舉例來說电^ 一電壓控制部641的材質可為氟化聚亞乙烯 (Polyvinyiidene Fluoride,介電常數約為1〇)或酚樹脂 (hexaphenol resin,介電常數約為14~3〇)等高介電常數^ 材料’而第二電壓控制冑642 &材質可為聚乙烯類 (P〇lyethylene,介電常數約為2.3~2.35)、聚四氟乙烯 _y她afluo喊hylene,約小於2 υ、聚亞醯胺(ρι, 3.4)或SiLK(介電常數約為2.6)等低介電常數的材料。 液晶層63係位於第一恭厫 ° 乐私壓控制部641及第二電極層 623之間’在本實_中,液晶層〇係位於 声 =及第二電極層必之間,且液^ 63之複數個輯 1 632係刀別與弟一電壓控制部641及第二電壓控制部 642相對應.。 舉例來說,為了使環境光經過與反射區尺6相對 應之液曰曰』63之區域632所產生的相位延遲與背光 200846744 源經過與穿透區T6相對應之液晶層63之區域.631 所產生的相位延遲相同,所以液晶層63之區域631 f際承,電以以5V為例)可設計為液晶層〇之區 632貫際承受電壓(以2 5v為例)的兩倍。另外, 當液晶層63之區域631、632實際所承受之電壓分 別為5V、2.5V時,液晶層63之區域631、632所分 別對應的等效介電常數可依照目12而得出。 用r r Γ時麥如圖11及圖12所示,本實施例所使 液Γ的特性係以圖12為例’其軸示液晶層63 ::=壓V6與液晶層63的等效介電常數心之間的關 ’、θ -中,饭设顯不液晶層63所承受電壓%與液晶 :63的等效介電常數心呈線性關係。當液晶層6 承受電壓〜6為5V時,浚曰μ a >么 τ液曰曰層63之專效介電常數心 為8,且當液晶層所承受電壓%為〇ν時,液晶声 介電常數心為3。其中由圖12中可找出曰當液 日日層63所承受電屢為2.5卩時,液晶層〇之介 電常數為5.5。 其中,根據上述,當液晶層63之區域631、632 2受之電壓分別為5V、2.5V時,液晶層63之區 域如、632所對應的等效介電常數分別為8、55· 另外再搭配液晶層63之厚度d6、第-電壓控制部641 之介電常數ε61及厚度D61、第二電麈控制部642之介電 ,及厚度〇62及晝素電極?6。與第二電極層6 外加之電壓等參數以依據下列關係式而設計,俾^ 23 200846744 線經與反射區&相對應之液晶層63之區域M2所 產生的相位延遲與光線經與穿透區L相對應之液晶 層63之區域631所產生的相位延遲相同: 阳 d61 61 + ε61 8 d6 — 5.5 ^62 , --r d6 S62 5.5 2.5[Liquid Crystal Display Panel of the Second Embodiment] The liquid crystal display panel of the second embodiment is exemplified by the transmissive liquid crystal display panel 5 and includes a first substrate 51 and a younger soil. The plate 52 is connected to the liquid crystal layer 53 and a voltage control layer 54. The first substrate 51, the second substrate 52, and the liquid crystal layer 53 are the same as the first substrate, the second substrate C, and the liquid crystal layer 43 of the first solar energy display panel 4 of the first Bayan example. Narration. The voltage control layer 54 is disposed on the first electrode layer 512 and has a first voltage control portion 541 and a second voltage control portion 542. The voltage control layer 54 is a polymeric liquid crystal material coated with a layer of polymerization. After the liquid helium material is applied to the first electrode layer, the first region and the second region of the voltage control layer 54 are respectively applied by applying different voltages, so that the arrangement angles of the polymerized liquid crystal materials in the two regions are different. The dielectric constant is different to form a first voltage control unit 541 and a second voltage control unit 542', and the polymerizable liquid crystal material may be a photopolymerizable liquid crystal material or a thermal poly-amplifier type liquid crystal material, etc., so that the voltage is modulated. After the arrangement angle of the polymerized liquid crystal material is inclined, the alignment angle of the polymeric liquid crystal material can be fixed by light or heat so that it is no longer affected by the external voltage. It should be noted that an alignment layer may be disposed on the first electrode layer 512, and a polytype 5 liquid crystal material is coated on the alignment layer to align the polymeric liquid crystal material in a specific direction. The voltage control layer 54 is located between the liquid crystal layer 53 and the pixel electrodes P51 and p52. The first voltage control unit 541 and the second voltage control unit 542 correspond to the first filter layer 522 and the second filter layer 523, respectively, and the first voltage control unit 541 and the second voltage control unit 542 respectively correspond to the liquid crystal layer. 53 复复20 200846744 Several regions 531, 532 are relatively embarrassing. The dielectric constant ε51 of the ganache and the second voltage; wherein, the first voltage control unit 541 is designed, for example, if the dielectric constant h of the second 542 is longer than the second filter layer 523 2 layer 522 When the wave number h of the filtered light is designed to be larger than the wavelength of the dielectric constant diffracted light, the dielectric often improves the contrast, and the color deviation °(ηη/λ〇) can be reduced, not only A 54 A ^ , produce. The voltage control g 54 of the present embodiment is formed by the early material ,, and the liquid crystal layer 5 in the voltage control unit (4) transmissive liquid crystal display panels 5 is the same, and the manufacturing method and yield of the liquid crystal display panel are also Simplified and improved τρ ° [Liquid crystal display panel of the third embodiment] -: Moon Maizhi, S1 11 is not the third embodiment of the transflective liquid crystal display panel 6 includes a first substrate 61, a second The substrate 62, the liquid crystal layer 63 and a voltage control layer 64. The first substrate 61 is exemplified by a thin film transistor substrate having at least a first transparent body 611 and a first electrode layer 612. The first light-transmitting body 611 has at least one glass substrate and a thin film transistor, and the first electrode layer 612 is composed of a plurality of halogen electrodes. 6〇, in which each book is an electrode? The system has at least one penetration zone Τ6 and at least-reflection two ′, and: In this embodiment, each of the halogen electrodes Ρ6 〇 has two penetration zones h and − reflection g R6 as an example. The second substrate 62 is exemplified by a color light-emitting plate and has at least a second light-transmitting body 621, a plurality of filter layers 622a, 622b, 622c and a second electrode layer 623, wherein the second substrate 62 Light transmission 21 200846744 The body 621 can have at least one glass substrate, and the first electrode layer 612 of the first substrate 61 is opposite to the second electrode layer 623 of the second substrate 62. The voltage control layer 64 is disposed on the first electrode layer 612, and the voltage control layer 64 has at least a first voltage control unit 丨 and a second voltage control unit 642, wherein the first voltage control unit 641 is connected to the 电压Prime ^ Extreme? The penetration area I of 6〇 corresponds, and the second voltage control unit 642 corresponds to the reflection area R_6 of the pixel electrode 1>6〇 and the first dielectric constant of the first voltage control unit is greater than the second One of the voltage control units 642 has a second dielectric constant ε ό 2 . In this embodiment, the materials of the first voltage control unit 641 and the second voltage control unit 642 may be determined according to actual design. For example, the voltage control unit 641 may be made of fluorinated polyvinylidene (Polyvinyiidene Fluoride). a dielectric constant of about 1 〇) or a high dielectric constant ^ material such as a hexaphenol resin (dielectric constant of about 14 to 3 Å) and a second voltage control 胄 642 & P〇lyethylene, dielectric constant is about 2.3~2.35), PTFE yy her afluo shouts hylene, about less than 2 υ, polyamidamine (ρι, 3.4) or SiLK (dielectric constant is about 2.6), etc. Low dielectric constant material. The liquid crystal layer 63 is located between the first Christie pressure control unit 641 and the second electrode layer 623. In the present embodiment, the liquid crystal layer is located between the sound = and the second electrode layer, and the liquid ^ A plurality of 63 632 series knives correspond to the first voltage control unit 641 and the second voltage control unit 642. For example, the phase delay caused by the ambient light passing through the region 632 of the liquid 曰曰 63 corresponding to the reflective area 6 is the area where the backlight 200846744 source passes through the liquid crystal layer 63 corresponding to the penetration region T6. The phase delays generated are the same, so that the region 631 of the liquid crystal layer 63 is exemplified by the example of 5V, which can be designed to be twice the voltage of the region 162 of the liquid crystal layer (for example, 2 5v). Further, when the voltages actually applied to the regions 631, 632 of the liquid crystal layer 63 are 5 V and 2.5 V, respectively, the equivalent dielectric constants corresponding to the regions 631 and 632 of the liquid crystal layer 63 can be obtained according to the purpose 12. As shown in FIG. 11 and FIG. 12, the characteristics of the liquid helium in the present embodiment are as shown in FIG. 12, which shows the equivalent dielectric of the liquid crystal layer 63 ::=pressure V6 and the liquid crystal layer 63. In the relationship between the constant cores, θ - , the rice device exhibits a linear relationship between the voltage % of the liquid crystal layer 63 and the equivalent dielectric constant of the liquid crystal: 63. When the liquid crystal layer 6 is subjected to a voltage of ~6 of 5 V, the specific dielectric constant of the τμ a > τ liquid 曰曰 layer 63 is 8, and when the voltage of the liquid crystal layer is 〇ν, the liquid crystal sound The dielectric constant is 3 . It can be found from Fig. 12 that the dielectric constant of the liquid crystal layer is 5.5 when the electric current of the solar layer 63 is repeatedly 2.5 卩. According to the above, when the voltages of the regions 631 and 632 2 of the liquid crystal layer 63 are 5 V and 2.5 V, respectively, the equivalent dielectric constants of the regions of the liquid crystal layer 63 such as 632 are 8, 55, respectively. The thickness d6 of the liquid crystal layer 63, the dielectric constant ε61 of the first voltage control unit 641, the thickness D61, the dielectric of the second power control unit 642, and the thickness 〇62 and the halogen electrode 6 are matched. The parameters such as the voltage applied to the second electrode layer 6 are designed according to the following relationship, and the phase delay generated by the line M2 of the liquid crystal layer 63 corresponding to the reflection area & The phase 631 of the liquid crystal layer 63 corresponding to the region L produces the same phase delay: yang d61 61 + ε61 8 d6 — 5.5 ^ 62 , --r d6 S62 5.5 2.5
Vst = V6a X —~^ 5Vst = V6a X —~^ 5
VV
6R v6ax /、中VgT及分別為液晶層63之區域ο途 穿=T6對應)與區域632(與反射區&對應)所承^ 之電廢’ V6a為晝素電極p6〇與第二電極層62 的電壓。 4间外永 在此’若以εό1=1 〇、〜=3等常見的材料、配合D 的設計時,則可推得D6i=D62=i7 2^、6R v6ax /, medium VgT and the area of the liquid crystal layer 63 respectively (transfer = T6 corresponds) and the area 632 (corresponding to the reflection area &), the electric waste 'V6a is the halogen electrode p6〇 and the second electrode The voltage of layer 62. 4 outside the permanent here, if you use εό1=1 〇, ~=3 and other common materials, with the design of D, you can get D6i=D62=i7 2^,
另外,若以ε61=20、ε62=2等材料、配合D 田然’業者亦可依據實際需求而有其 =,液晶顯示面板6可設計為V6a最低以節:二 抽耗,或者利用較便宜的材料 64以豁念士、士 、* 杆末形成電壓控制; ^ 本。又或者以複合材料形成電壓栌制屌 之第一電齡制部⑷及第二電壓控㈣6m層第< 24 200846744 c 電壓控制部641與第二電壓控制部642可同時滿足介電常 _ 數值相異但厚度相等之要求。本實施例更可搭配第一實施 例應用,除了考慮半穿反式液晶顯示器的穿透區與反射區 之相位延遲外,更考慮各色層之相位延遲而設計適當之電 壓控制層。 除此之外,液晶顯示面板6可更包含二偏光片65、66, 其係分別設置於第二基板62的一側及第一基板61的一 侧。 . ⑩ 液晶顯示面板6可更包含二配向層(圖中未示),其係 分別位於第一基板61與第二基板62.之表面,使液晶層63 依特定方向排列。當然,配向層亦可依據實際設計作為電 壓控制層64,換言之,電壓控制層64可直接選用具有配 向功能之材料,例如聚亞醯胺等以節省配向層的製造成 本0 . 又,對應於反射區之第二電壓控制部642之表面可呈 波浪狀(圖中未示)俾使反射光可均勻擴散。 — 承上,由於第一電壓控制部641之第一介電常數ε61 大於第二電壓控制部642之第二介電常數ε62,所以當晝素 • 電極Ρ6〇與第二電極層623之間的外加一電壓時,液 晶層63之區域631(與第一電壓控制部641對應之穿透區) 實際承受之電壓大於液晶層63之區域632(與第二電壓 控制部642對應之反射區)實際承受之電壓,使反射光 與穿透光具有實質相同之相位延遲,不僅可以減少 色偏的產生,而且電壓控制層64之第一電壓控制部 25 200846744 641及第二電壓控制部642經設計可調整成相等厚 度,使液晶層63的厚度得以均一化,製程良率因而 可較圖3所示之習知結構高。 [第四實施例之液晶顯示面板] 請參照圖13所示,第四實施例之半穿反式液晶顯 示面板7包含一·第一基板71、一第二基板72、一液晶層 73以及一電壓控制層74。 其中第一基板71、第二基板72及液晶.層73與第一基 板61、第二基板62及液晶層63相同(第三實施例之液晶 顯示面板6),在此容不贅述。 電壓控制層74係設置於第一電極層712,並具有一第 一電壓控制部741及一第二電壓控制部742,其中,電壓 控制層74為一聚合型液晶材料,塗佈一層聚合型液晶材 料於第一電極層上之後,透過分別外加不同電壓至電壓控 制層74之第一區域及第二區域,使兩個區域中聚合型液 晶材料之排列傾斜角度不同造成兩區之介電常數不同,以 形成一第一電壓控制部541及一第二電壓控制部542,而 聚合型液晶材料可為光聚合型液晶材料或者熱聚合型液 晶材料等,故以電壓調變聚合型液晶材料之排列傾斜角度 後,可利用光或熱固3定聚合型液晶材料之排列傾斜角度, 使其不再受外部電壓影響。值得注意的是,可先於第一電 極層712上設置一配向層,再於此配向層上塗佈聚合型液 晶材料,以使聚合型液晶材料一特定方向排列。 第一電壓控制部741係位於液晶層73及穿透區T7之 26 200846744 間,且第二電壓控制部 之間’所以當晝素電極P一第173及反射區R7In addition, if ε61=20, ε62=2, etc., and D Tianran's industry can also have its = according to actual needs, the liquid crystal display panel 6 can be designed as V6a minimum: section: two pumping, or cheaper The material 64 is controlled by the voltage of the priest, the priest, and the * pole; ^ this. Alternatively, the first electrical ageing section (4) and the second voltage-controlled (four) 6m layer of the composite voltage-forming enthalpy can be simultaneously satisfied by the voltage control unit 641 and the second voltage control unit 642. Different but equal thickness requirements. This embodiment can be applied in combination with the first embodiment. In addition to considering the phase delay of the transmissive area and the reflective area of the transflective liquid crystal display, an appropriate voltage control layer is designed in consideration of the phase retardation of each color layer. In addition, the liquid crystal display panel 6 may further include two polarizers 65, 66 which are respectively disposed on one side of the second substrate 62 and one side of the first substrate 61. The liquid crystal display panel 6 may further include two alignment layers (not shown) which are respectively disposed on the surfaces of the first substrate 61 and the second substrate 62. The liquid crystal layers 63 are arranged in a specific direction. Of course, the alignment layer can also be used as the voltage control layer 64 according to the actual design. In other words, the voltage control layer 64 can directly select a material having an alignment function, such as polyamine, to save the manufacturing cost of the alignment layer. The surface of the second voltage control portion 642 of the region may be wavy (not shown) so that the reflected light can be uniformly diffused. The first dielectric constant ε61 of the first voltage control unit 641 is larger than the second dielectric constant ε62 of the second voltage control unit 642, so that between the halogen electrode Ρ6〇 and the second electrode layer 623 When a voltage is applied, the region 631 of the liquid crystal layer 63 (the penetration region corresponding to the first voltage control portion 641) is actually subjected to a voltage greater than the region 632 of the liquid crystal layer 63 (the reflection region corresponding to the second voltage control portion 642). The voltage withstand is such that the reflected light and the transmitted light have substantially the same phase delay, which not only reduces the generation of color shift, but also the first voltage control unit 25 200846744 641 and the second voltage control unit 642 of the voltage control layer 64 are designed. The thickness is adjusted to be equal, so that the thickness of the liquid crystal layer 63 is uniformized, and the process yield can be made higher than that of the conventional structure shown in FIG. [Liquid Crystal Display Panel of Fourth Embodiment] Referring to FIG. 13, the transflective liquid crystal display panel 7 of the fourth embodiment includes a first substrate 71, a second substrate 72, a liquid crystal layer 73, and a liquid crystal layer 73. Voltage control layer 74. The first substrate 71, the second substrate 72, and the liquid crystal layer 73 are the same as the first substrate 61, the second substrate 62, and the liquid crystal layer 63 (the liquid crystal display panel 6 of the third embodiment), and are not described herein. The voltage control layer 74 is disposed on the first electrode layer 712 and has a first voltage control unit 741 and a second voltage control unit 742. The voltage control layer 74 is a polymerized liquid crystal material coated with a layer of polymerized liquid crystal. After the material is applied to the first electrode layer, respectively, different voltages are applied to the first region and the second region of the voltage control layer 74, so that the alignment angles of the polymerized liquid crystal materials in the two regions are different, and the dielectric constants of the two regions are different. The first voltage control unit 541 and the second voltage control unit 542 are formed, and the polymerizable liquid crystal material may be a photopolymerizable liquid crystal material or a thermal polymerization liquid crystal material, so that the voltage modulation polymerized liquid crystal material is arranged. After the tilt angle, the alignment angle of the liquid crystal material can be determined by light or thermosetting, so that it is no longer affected by the external voltage. It should be noted that an alignment layer may be disposed on the first electrode layer 712, and a polymer type liquid crystal material may be coated on the alignment layer to align the polymer liquid crystal materials in a specific direction. The first voltage control unit 741 is located between the liquid crystal layer 73 and the penetration region T7 26 200846744, and between the second voltage control portions, so that the pixel electrode P is the 173th and the reflection region R7.
^ t γ, 0Ϋ , f I 大於第二電壓控制部742之介 吊數W係 域731(與第一電壓押 數72,液晶層73之區 電壓大於液晶層73\區對應之穿透區)實際承受之 應之反射區)二電壓控制部742對 相對應之區域二又所之二',使光線經與反射區〜 同,不區域732所產生的相位延遲實質相 :二C色偏的產*,而且電壓控制層” 計可調整:;二部厚:1〜第二電壓控制部742經設 化,制程^ f 液晶層的厚度得以均一 實施例更可枭第-每 、口冓问本 曰顧示哭. 應用’除了考慮半穿反式液 曰曰,、’、'/ 、牙透區與反射區之相位延 之相位延遲”物谓蝴。繼、。色層 請參照同 1 含下列步驟Ί ’液晶顯示面板之製造方法係包 w W10至步驟S140。 步驟S 1 1 Λ 係形成一第一基板,其中第一基板係至少 具有-弟-電極層。 〆 步驟S]〇n ^ 中錢控制Γ係設置電麼控制層於第一電極層之上,其 制部。 k係具有一第一電壓控制部及一第二電 步驟^ 係形成一第二基板,其中第二基板係j 27 200846744 具有一第二電極層。 步驟S140係形成一液晶層於第一基板與第二基板之 間。 以下舉三個實施例以說明上述液晶顯示面板之製 造方法。 [第一實施例之液晶顯示面板之製造方法] 以製造圖4所不液晶顯不面板4為例’請蒼照圖15 a 至圖15g.所示,首先,如圖15a所示,形成一第一基板41, 其係至少具有一第一透光本體411及一第一電極層412, 其中,第一電極層412係具有複數個晝素電極P41、P42。 然後,如圖15b所示,設置一第一介電型材料M41於第一 電極層412。接著,如圖15c所示,以壓模ΡΜι壓印第一 介電型材料M41及以形成第一電壓控制部441於第一電極 層412之晝素電極Ρ4ι之上(如圖15d所示)。再來,如圖 15e所示,塗佈第二介電型材料M42於第一電極層412以 形成第二電壓控制部442於第一電極層412之晝素電極P42 之上(如圖15f所示),第一電壓控制部441與第二電壓控 制部442共同形成一電壓控制層44。然後,如圖15g所示, 形成一第二基板42,其係至少具有一第二透光本體421、 一第一濾光層422、一第二濾光層423及一第二電極層 424。接著,形成一液晶層43於電壓控制層44與第二電 極層424之間,並分別設置偏光片45、46於第二基板42 之一侧及第一基板41之一侧以完成液晶顯示面板4的製 造0^ t γ, 0 Ϋ , f I is greater than the number of the second voltage control unit 742 W system 731 (with the first voltage number 72, the voltage of the liquid crystal layer 73 is greater than the penetration area corresponding to the liquid crystal layer 73\ area) The actual reflection zone) the two voltage control unit 742 pairs the corresponding region two and two, so that the light passes through the same phase as the reflection region, and the phase retardation generated by the region 732 is substantially phased: two C color deviation Production*, and the voltage control layer can be adjusted:; two thickness: 1~ the second voltage control unit 742 is set, the process ^ f liquid crystal layer thickness can be uniform, the first This is a crying. The application of 'in addition to considering the trans-liquid sputum, ', ' /, the phase delay of the phase of the tooth-permeable zone and the reflection zone" is called a butterfly. Following. Color layer Please refer to the same procedure for the following steps: 液晶 ’ LCD panel manufacturing method package w W10 to step S140. Step S1 1 Λ forms a first substrate, wherein the first substrate has at least a di-electrode layer. 〆 Step S]〇n ^ The money control system sets the control layer above the first electrode layer, and its part. The k-series has a first voltage control unit and a second electrical circuit to form a second substrate, wherein the second substrate system j 27 200846744 has a second electrode layer. Step S140 forms a liquid crystal layer between the first substrate and the second substrate. Three embodiments will be described below to explain the method of manufacturing the above liquid crystal display panel. [Manufacturing Method of Liquid Crystal Display Panel of First Embodiment] Taking the liquid crystal display panel 4 of FIG. 4 as an example, please refer to FIG. 15a to FIG. 15g. First, as shown in FIG. 15a, a method is formed. The first substrate 41 has at least a first transparent body 411 and a first electrode layer 412. The first electrode layer 412 has a plurality of halogen electrodes P41 and P42. Then, as shown in Fig. 15b, a first dielectric material M41 is disposed on the first electrode layer 412. Next, as shown in FIG. 15c, the first dielectric material M41 is embossed with a stamper to form a first voltage control portion 441 over the pixel electrode Ρ4 of the first electrode layer 412 (as shown in FIG. 15d). . Then, as shown in FIG. 15e, a second dielectric material M42 is applied to the first electrode layer 412 to form a second voltage control portion 442 over the pixel electrode P42 of the first electrode layer 412 (as shown in FIG. 15f). The first voltage control unit 441 and the second voltage control unit 442 together form a voltage control layer 44. Then, as shown in FIG. 15g, a second substrate 42 having at least a second transparent body 421, a first filter layer 422, a second filter layer 423, and a second electrode layer 424 is formed. Then, a liquid crystal layer 43 is formed between the voltage control layer 44 and the second electrode layer 424, and polarizers 45 and 46 are respectively disposed on one side of the second substrate 42 and one side of the first substrate 41 to complete the liquid crystal display panel. 4 manufacturing 0
2S 200846744 另外,以製造圖7所示之液晶顯示面板4為例,請參 照圖16a至圖16g所示,首先,如圖16a所示,形成一第 一基板41,其係至少具有一第一透光本體411及一第一電 極層412,其中,第一電極層412係具有複數個晝素電極 P41、P42、P43。然後,如圖16b所示,設置一第一介電型 材料M41於第一電極部412。接著,如圖16 c所示,以一 壓模PM2壓印第一介電型材料M41以分別形成第一電壓控 制部441及第三電壓控制部443之下層L41於晝素電極P41 及P42上(如圖16d所示)。再來,如圖16e所示,塗佈一第 二介.電型材料M42於第一電極層412及第三電壓控制部 443之下層L41上以形成第二電壓控制部442及第三電壓 控制部443之上層L42(如圖16f所示),如此即可形成由第 一電壓控制部441、第二電壓控制部442以及第三電壓控 制部443共同組成之厚度均一之一電壓控制層44。再來, 如圖16g所示,形成一第二基板42,其係至少具有一第二 透光本體、一第一濾光層422、一第二濾光層423、一第 二電極層424及一第三濾光層425。然後,形成一液晶層 43於電壓控制層44與第二電極層424之間,並分別設置 偏光片45、46於第二基板42之一側及第一基板41之一 側以完成液晶顯示面板4的製造。 [第二實施例之液晶顯示面板之製造方法] 以製造如圖4所示之液晶顯示面板4為例,與第一 實施例之液晶顯示面板之製造方法(如圖15a至圖15g)不 同的是圖15c之步驟可由圖17取代,其中圖17之步驟係 29 200846744 ^ 藉由一光罩〇Mi來圖案化一第一介電型材料Μ41α形成第 一電壓控制部441(如圖15d所示)。^ 另外,以製造如圖7所示之液晶顯示面板4為例,與 第一實施例之液晶顯示面板之製造方法(如圖16a至圖 16g)不同的是圖16c之步驟可由圖18取代,其中圖18之 步驟係藉由一半色階光罩(half tone) OM2來圖案化一第一 介電型材料M41以形成第一電壓控制部層441及第三電壓 控制部443之下層L41(如圖16d所示)。 :⑩ [第三實施例之液晶顯示面板之製造方法] 以製造如圖10所示之液晶顯示面板5為例,請參照 丨圖19a至圖19e所示,首先,如圖19a所示,形成一第一 基板51,其係至少具有一第一透光本體511及一第一電極 層512,其中,第一電極層512係具有複數個晝素電極P51、 P52。然後,如圖19b所示,塗佈一聚合型液晶材料M51於 第一電極層512。接著,如圖19 c所示,透過一電極板EPi 及晝素電極P51、P52以分別施加一第一電壓V51及一第二 :⑩ 電壓V52於聚合型液晶材料Μ51之一第一區域R51及一第 一^區域R52 ’並固化聚合型液晶材料以形成*^電壓控 , 制層54之一第一電壓控制部541及一第二電壓控制部 542(如圖19d所示),接著,請參照圖19d所示,解除第一 電壓V51及第二電壓V52,並移除電極板EP51。然後,如 圖19e所示,形成一第二基板52,其係至少具有一第二透 。 光本體521、一第一濾光層522、一第二濾光層523及一 第二電極層524。然後,再形成一液晶層53於電壓控制部 30 200846744 541、542與第二電極層524之間以完成液晶顯示面板 製造。 j [較么貫施例之液晶顯示裝置之製造方法] 一 ^佳實施例之液晶顯示裝置係包含一液晶顯示面板 及者光模組。液晶顯示面板係具有一第一基板、一第二 ,板電;t控制層及—液晶層。第—基板係至少具有— 第電極層;第二基板係至少具有一第二電極層,第一 + ,層係與第二電極層相對而設;電壓控制層係設置於第二 電極層之上,電壓控制層具有一第一電壓控制部及一第二 電壓控制部;液晶層係位於第一基板及第二基板之間;北 光模組係設置於液晶顯示面板之一側。 其中,液晶顯示面板已於前述第一、第二、第三 第四貫施例之液晶顯示面板中詳述,在此容不贅述。 外,背光模組係提供液晶顯示面板所需的光源,% 可依照即有技術而設計,在此亦容不贅述。 ^、、且 綜上所达,因依本發明之液晶顯示裝置、液 板:其製造方法係具有一至少包含第一電壓控制^ 一電壓控制部之電壓控制層,當第一電極層與带 層之間外加一電壓時,透過電壓控制層之第、電極 部與第二電壓控制部,可使不同區域之液晶層實制 電壓不同’進而使通過液晶顯示面板特定/域了之7 ^之 有適當的相位延遲,不僅可以減少色偏的產生九線具 ‘程簡易因此液晶顯示面板的製造良率得以且 以上所述僅為舉例性,而非為限制性j 升 4.任何未脫離 31 200846744 本發明之精神與範.,而對 入 向對其進仃之等效修改或變更,灼 應包含於後附之申請專利範圍中。 飞又更均 【圖式簡單說明】 圖1顯示習知之一種液晶顯示面板; 層所1:17光,對液晶層的相位延遲波長比及液晶 層所又電屋之間的關係圖; 圖3顯7F習知之再—種液晶顯示面板; 二^圖:顯不本發明第一實施例之液晶顯示面板; _ 8係顯示相位征、+ 乙遲波長比及液晶層所承受電壓 义間的關係圖; 之門^顯不液晶層所承受電壓與液晶層的等效介電常數 之間的關係圖; 圖!〇顯示本發明筮_ ^ , Θ弟一貫施例之液晶顯示面板; 圖11顯示本發明笙一 6 ^ d弟二貫施例之液晶顯示面板; 圖 12 顯千、曰、 盤夕„ ^、敬日日層所承受電壓與液晶層的等效介電常 數之間的關係圖; 顯Y本發明第四實施例之液減示面板; 二1 .、、員不本發明之一種液晶顯示面板之製造方法; 圖15a至圖ί — 杯制、 不本發明第一實施例之液晶顯示面 锻< W造方法; 圖16a至圖ί ^ 刼 "g顯示本發明第一實施例之液晶顯示面 扳之製造方法; 圖17至圖- -員示本發明第二實施例之液晶顯示面板 32 200846744 … 之製造方法的一步驟;以及 _ 圖19a至圖19e顯示本發明第三實施例之液晶顯示面 板之製造方法。 .元件符號說明: 1 ·液晶顯不面板 11 :彩色濾光片基板 111 :玻璃基板 ⑩ 112 :紅色濾光層 113 :綠色濾光層 i 114 :藍色濾光層 115 :對向電極 12 :薄膜電晶體基板 121 :玻璃基板 122、123、124 :晝素電極 13 :液晶層 ⑩ 131、132、133 :區域 ’ 14、15 :偏光片 ’ 2 ·液晶顯不面板 21 :彩色濾光片基板 211 :玻璃基板 212 :濾光層 213 :對向電極 22 :薄膜電晶體基板 33 200846744 < _ 221 :玻璃基板 222 :晝素電極 # 、 23 :液晶層 24、25 :偏振板 4 ·液晶顯不面板 41 :第一基板 411 :透光本體 412 :第一電極層 | φ 42 :第二基板 I 421 :第二透光本體 I 422 :第一濾光層 i 423 :第二濾光層 424 :第二電極層 425 :第三濾光層 43 :液晶層 431、432、433 ··區域 • 44 :電壓控制層 ' 441 :第一電壓控制部 - 442 ··第二電壓控制部 443:第三電壓控制部 45、46 :偏光片 47、47’ :配向層 5 ·液晶顯不面板 51 :第一基板 200846744 . 511 :第一透光本體 512 ··第一電極層 52 :第二基板 521 :第二透光本體 522 :第一濾光層 523 :第二濾光層 524 :第二電極層 5 3 ·液晶層 _ 54 :電壓控制層 541 :第一電壓控制部 542 :第二電壓控制部 531、532 :區域 6 _液晶顯不面板 61 :第一基板 611 :第一透光本體 612 ··第一電極層 丨· 62 :第二基板 I 621 :第二透光本體 • 622a、622b、622c :濾光層 623 :第二電極層 63 :液晶層 631、632 :區域 64 :電壓控制層 641 :第一電壓控制部 35 2008467442S 200846744 In addition, taking the liquid crystal display panel 4 shown in FIG. 7 as an example, please refer to FIG. 16a to FIG. 16g. First, as shown in FIG. 16a, a first substrate 41 having at least one first is formed. The transparent body 411 and a first electrode layer 412, wherein the first electrode layer 412 has a plurality of halogen electrodes P41, P42, and P43. Then, as shown in Fig. 16b, a first dielectric material M41 is disposed on the first electrode portion 412. Next, as shown in FIG. 16c, the first dielectric material M41 is imprinted by a stamper PM2 to form the first voltage control portion 441 and the lower layer L41 of the third voltage control portion 443 on the pixel electrodes P41 and P42, respectively. (as shown in Figure 16d). Then, as shown in FIG. 16e, a second dielectric material M42 is applied on the first electrode layer 412 and the lower layer L41 of the third voltage control portion 443 to form a second voltage control portion 442 and a third voltage control. The upper layer L42 of the portion 443 (shown in FIG. 16f) forms a voltage control layer 44 of uniform thickness composed of the first voltage control unit 441, the second voltage control unit 442, and the third voltage control unit 443. Then, as shown in FIG. 16g, a second substrate 42 is formed, which has at least a second transparent body, a first filter layer 422, a second filter layer 423, and a second electrode layer 424. A third filter layer 425. Then, a liquid crystal layer 43 is formed between the voltage control layer 44 and the second electrode layer 424, and polarizers 45 and 46 are respectively disposed on one side of the second substrate 42 and one side of the first substrate 41 to complete the liquid crystal display panel. 4 manufacturing. [Manufacturing Method of Liquid Crystal Display Panel of Second Embodiment] The liquid crystal display panel 4 shown in FIG. 4 is manufactured as an example, and is different from the manufacturing method of the liquid crystal display panel of the first embodiment (FIG. 15a to FIG. 15g). The step of FIG. 15c can be replaced by FIG. 17, wherein the step of FIG. 17 is 29 200846744. A first dielectric material Μ41α is patterned by a mask 〇Mi to form a first voltage control unit 441 (as shown in FIG. 15d). ). In addition, taking the liquid crystal display panel 4 shown in FIG. 7 as an example, unlike the manufacturing method of the liquid crystal display panel of the first embodiment (FIG. 16a to FIG. 16g), the steps of FIG. 16c can be replaced by FIG. The step of FIG. 18 is to pattern a first dielectric material M41 by a half tone tone OM2 to form a first voltage control layer 441 and a third voltage control portion 443 below the layer L41 (eg, Figure 16d). [10. [Manufacturing Method of Liquid Crystal Display Panel of Third Embodiment] For the manufacture of the liquid crystal display panel 5 as shown in FIG. 10, please refer to FIGS. 19a to 19e, first, as shown in FIG. 19a, A first substrate 51 has at least a first transparent body 511 and a first electrode layer 512. The first electrode layer 512 has a plurality of halogen electrodes P51 and P52. Then, as shown in Fig. 19b, a polymerization type liquid crystal material M51 is applied to the first electrode layer 512. Next, as shown in FIG. 19c, a first voltage V51 and a second: 10 voltage V52 are respectively applied to the first region R51 of the polymeric liquid crystal material Μ51 through an electrode plate EPi and the halogen electrodes P51 and P52. a first region R52' and curing the polymeric liquid crystal material to form a voltage control layer, the first voltage control portion 541 of the layer 54 and a second voltage control portion 542 (as shown in FIG. 19d), then, please Referring to FIG. 19d, the first voltage V51 and the second voltage V52 are released, and the electrode plate EP51 is removed. Then, as shown in Fig. 19e, a second substrate 52 is formed which has at least a second pass. The light body 521, a first filter layer 522, a second filter layer 523, and a second electrode layer 524. Then, a liquid crystal layer 53 is formed between the voltage control portions 30 200846744 541, 542 and the second electrode layer 524 to complete the liquid crystal display panel fabrication. j [Manufacturing method of a liquid crystal display device according to a preferred embodiment] A liquid crystal display device of a preferred embodiment comprises a liquid crystal display panel and an optical module. The liquid crystal display panel has a first substrate, a second, a plate, a t control layer and a liquid crystal layer. The first substrate has at least a first electrode layer; the second substrate has at least a second electrode layer, the first +, the layer is opposite to the second electrode layer; and the voltage control layer is disposed on the second electrode layer The voltage control layer has a first voltage control unit and a second voltage control unit; the liquid crystal layer is located between the first substrate and the second substrate; and the north light module is disposed on one side of the liquid crystal display panel. The liquid crystal display panel has been described in detail in the liquid crystal display panels of the first, second, and third embodiments, and will not be described herein. In addition, the backlight module provides the light source required for the liquid crystal display panel, and the % can be designed according to the prior art, and will not be described here. And, in summary, the liquid crystal display device and the liquid plate according to the present invention have a voltage control layer including at least a first voltage control voltage control portion, when the first electrode layer and the strip When a voltage is applied between the layers, the first electrode portion of the voltage control layer, the electrode portion and the second voltage control portion can make the liquid crystal layer in different regions have different voltages, and thus pass through the liquid crystal display panel specific/domain. With proper phase delay, not only can the color shift be reduced, but the production of the liquid crystal display panel is simple and the above is only an example, rather than limiting j. 4. Any undisengaged 31 200846744 The spirit and scope of the present invention, and equivalent modifications or alterations to the invention are included in the scope of the appended claims. Flying and more uniform [Simple description of the drawing] Figure 1 shows a conventional liquid crystal display panel; layer 1:17 light, phase retardation wavelength ratio to the liquid crystal layer and relationship between the liquid crystal layer and the electric house; The liquid crystal display panel of the first embodiment of the present invention; the liquid crystal display panel of the first embodiment of the present invention; _ 8 shows the relationship between the phase sign, the + late wavelength ratio and the voltage sense of the liquid crystal layer. Figure; The gate ^ shows the relationship between the voltage withstand the liquid crystal layer and the equivalent dielectric constant of the liquid crystal layer; 〇 shows the liquid crystal display panel of the invention 筮 ^ ^ , Θ 一贯 一贯 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 液晶 液晶 液晶 液晶 液晶 液晶 液晶 液晶 液晶 液晶 液晶 液晶 液晶 液晶 液晶 液晶 液晶 液晶 液晶A diagram showing the relationship between the voltage with respect to the solar layer and the equivalent dielectric constant of the liquid crystal layer; the liquid reduction panel of the fourth embodiment of the present invention; and the liquid crystal display panel of the present invention The manufacturing method of the first embodiment of the present invention; FIG. 15a to FIG. FIG. 17 is a view showing a step of manufacturing a liquid crystal display panel 32 200846744 of the second embodiment of the present invention; and FIG. 19a to FIG. 19e showing a third embodiment of the present invention. Manufacturing method of liquid crystal display panel. Description of component symbols: 1 · Liquid crystal display panel 11 : Color filter substrate 111 : Glass substrate 10 112 : Red filter layer 113 : Green filter layer i 114 : Blue filter layer 115: opposite electrode 12: thin film transistor substrate 121: glass Substrate 122, 123, 124: Alizarin electrode 13: Liquid crystal layer 10 131, 132, 133: Area '14, 15: Polarizer' 2 · Liquid crystal display panel 21: Color filter substrate 211: Glass substrate 212: Filter Light layer 213: counter electrode 22: thin film transistor substrate 33 200846744 < 221 : glass substrate 222 : halogen electrode # , 23 : liquid crystal layer 24 , 25 : polarizing plate 4 · liquid crystal display panel 41 : first substrate 411: light-transmitting body 412: first electrode layer | φ 42 : second substrate I 421 : second light-transmitting body I 422 : first filter layer i 423 : second filter layer 424 : second electrode layer 425 : Third filter layer 43: liquid crystal layer 431, 432, 433 · · region · 44 : voltage control layer ' 441 : first voltage control unit - 442 · second voltage control unit 443 : third voltage control unit 45 , 46 Polarizing sheet 47, 47': alignment layer 5: liquid crystal display panel 51: first substrate 200846744. 511: first light transmitting body 512 · first electrode layer 52: second substrate 521: second light transmitting body 522 : first filter layer 523 : second filter layer 524 : second electrode layer 5 3 · liquid crystal layer _ 54 : voltage control layer 541 : first voltage 542: second voltage control unit 531, 532: region 6 _ liquid crystal display panel 61: first substrate 611: first light-transmitting body 612 · first electrode layer 丨 · 62 : second substrate I 621 : Two light-transmitting bodies • 622a, 622b, 622c: filter layer 623: second electrode layer 63: liquid crystal layer 631, 632: region 64: voltage control layer 641: first voltage control unit 35 200846744
642 :第二電壓控制部 65、66 :偏光片 7 ·液晶顯不面板 71 :第一基板 712 :第一電極層 72 :第二基板 723 :第二電極層 73 液晶層 731、732 :區域 74:電壓控制層 741 :第一電壓控制部 742 :第二電壓控制部 C3 :彎折處 d、d4、d6、d3i、d32·厚度 D41、D42、D43、D44 :厚度 EPi :電極板 Sll、Si2、Sl3·曲線 S41、S42、S43 ·曲線 L41 :下層 L42 ·上層 M41、M42、M43、M44 ·介電型材料 M51 ·聚合型液晶材料 OM!:光罩 0M2:半色階光罩 36 200846744 ΐ、, Ρ41、?42、?43 ·晝素電極 ^ P51、P52、P53 :晝素電極 ?60、?70 :晝素電極 PMi、PM2 :壓模 丨 R2 :反射區 R51 :第一區域642 : second voltage control unit 65 , 66 : polarizer 7 • liquid crystal display panel 71 : first substrate 712 : first electrode layer 72 : second substrate 723 : second electrode layer 73 liquid crystal layer 731 , 732 : region 74 : Voltage control layer 741 : First voltage control unit 742 : Second voltage control unit C3 : Bending points d, d4, d6, d3i, d32 · Thickness D41, D42, D43, D44 : Thickness EPi : Electrode plates S11, Si2 , Sl3 · Curves S41, S42, S43 · Curve L41 : Lower layer L42 · Upper layer M41, M42, M43, M44 · Dielectric material M51 · Polymeric liquid crystal material OM!: Photomask 0M2: Half-tone mask 36 200846744 ΐ ,, Ρ41,? 42, 43 · Alizarin electrodes ^ P51, P52, P53: Alizarin electrodes ? 60,? 70: Alizarin electrode PMi, PM2: stamper 丨 R2: reflection zone R51: first zone
R52 ··第一區域 R 6、卫7 .反射區 S110-S140 :步驟 τ2、τ6、τ7:穿透區 ν〇、ν4、ν6 :電壓R52 ··First region R 6, Wei 7 .Reflective zone S110-S140 :Step τ2 , τ6 , τ7 : Penetration zone ν〇, ν4, ν6 : Voltage
Vsi :第一電壓 V52 :第二電壓 δοη/λ〇 :相位延遲波長比 ε4ΐ、ε42、ε43、ε44、ε45 :介電常數 ε5ι、ε52、ε53、ε54、ε55 ··介電常數 ε61、ε62 ··介電常數 ε7ι、ε72 :介電常數 SLC4、sLC6 :等效介電常數 37Vsi: first voltage V52: second voltage δοη/λ〇: phase retardation wavelength ratio ε4ΐ, ε42, ε43, ε44, ε45: dielectric constant ε5ι, ε52, ε53, ε54, ε55 ·· dielectric constant ε61, ε62 · ·Dielectric constant ε7ι, ε72: dielectric constant SLC4, sLC6: equivalent dielectric constant 37
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096119041A TWI370917B (en) | 2007-05-28 | 2007-05-28 | Liquid crystal display apparatus, liquid crystal display panel and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096119041A TWI370917B (en) | 2007-05-28 | 2007-05-28 | Liquid crystal display apparatus, liquid crystal display panel and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200846744A true TW200846744A (en) | 2008-12-01 |
TWI370917B TWI370917B (en) | 2012-08-21 |
Family
ID=44823304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096119041A TWI370917B (en) | 2007-05-28 | 2007-05-28 | Liquid crystal display apparatus, liquid crystal display panel and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI370917B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI411849B (en) * | 2009-05-15 | 2013-10-11 | Innolux Corp | Liquid crystal display and substrate thereof |
TWI514032B (en) * | 2009-06-18 | 2015-12-21 | Merck Patent Gmbh | Process of preparing a liquid crystal display |
-
2007
- 2007-05-28 TW TW096119041A patent/TWI370917B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI411849B (en) * | 2009-05-15 | 2013-10-11 | Innolux Corp | Liquid crystal display and substrate thereof |
TWI514032B (en) * | 2009-06-18 | 2015-12-21 | Merck Patent Gmbh | Process of preparing a liquid crystal display |
Also Published As
Publication number | Publication date |
---|---|
TWI370917B (en) | 2012-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6658818B2 (en) | Polymerizable liquid crystal composition and optical film | |
JP5520601B2 (en) | Optical element, display device, and optical device | |
TWI360700B (en) | ||
JP6629243B2 (en) | Grating, display device, and grating manufacturing method | |
TWI290650B (en) | Liquid crystal display and method for manufacturing the same | |
TWI316623B (en) | Liquid crystal panel | |
CN101672990B (en) | Zoom liquid crystal lens | |
TWI255354B (en) | Method for producing polarizing plate, polarizing plate and image display device using the same | |
CN102870033B (en) | Bendable liquid crystal polarization switch for direct view stereoscopic display | |
JP2019049758A (en) | Polarization element, circularly polarizing plate, and method of manufacturing those | |
TW200413787A (en) | Optical interference type reflection panel and the manufacturing method thereof | |
TW200907497A (en) | Double-sided turning film | |
TWI833932B (en) | Anti-reflective circular polarizing plate and image display device using the same | |
TW200408299A (en) | Electroluminescent device | |
JPWO2009090778A1 (en) | Liquid crystal display device | |
TW200523582A (en) | Optical film and highly distinct image display | |
TW200946992A (en) | Low color shift polarizer assembly and the back light units, liquid crystal displays therein | |
TW200846744A (en) | Liquid crystal display apparatus, liquid crystal display panel and its manufacturing method | |
CN202886787U (en) | Phase difference plate and display device | |
WO2000079337A1 (en) | Reflection liquid crystal display device | |
TWI326377B (en) | Transflective color filter, transflective liquid display using the same and method of manufacturing the same | |
JP2003177385A5 (en) | ||
JP2012063387A (en) | Polymerizable liquid crystal composition and optical film | |
TW201109788A (en) | Filter unit and its related manufacturing method, and display panel and display apparatus thereof | |
TW201248272A (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |