TW200846578A - Transmission, power unit having the same, vehicle, controller for transmission, and method of controlling transmission - Google Patents
Transmission, power unit having the same, vehicle, controller for transmission, and method of controlling transmission Download PDFInfo
- Publication number
- TW200846578A TW200846578A TW97105966A TW97105966A TW200846578A TW 200846578 A TW200846578 A TW 200846578A TW 97105966 A TW97105966 A TW 97105966A TW 97105966 A TW97105966 A TW 97105966A TW 200846578 A TW200846578 A TW 200846578A
- Authority
- TW
- Taiwan
- Prior art keywords
- speed
- target
- output shaft
- sheave
- gear ratio
- Prior art date
Links
Landscapes
- Control Of Transmission Device (AREA)
Abstract
Description
200846578 九、發明說明: 【發明所屬之技術領域】 本發明關於-種傳動裝置’ 一種具有該傳動裝置之動力 單元,一種車輛,-種用於傳動裝置之控制器,及一種控 .制傳動裝置之方法。 【先前技術】 +貝例來說#利文獻!揭示_種如下所述控制一電 子控制皮帶無段變速傳動裝置(電子控制無段變速傳動裝 置以下簡稱,’ECVT”)的方法。 由-節流閥開Π度信號及—車迷信號衫—目標變速齒 輪比。由該已決定的目標變速齒輪比算出一主槽輪之一可 動槽輪半體之-目標槽輪位置。然後,將一會使該主槽輪 可動槽輪半體移位至該計算所得目標槽輪位置的電壓施加 於-用來驅動該主槽輪可動槽輪半體之電動馬達。藉此控 制該變速齒輪比以達到該目標變速齒輪比。 [專利文獻l]W〇2006/009014,小冊子 【發明内容】 [本發明欲解決的問題] 但疋’在專利文獻!揭示之控制變速窗輪比的方法 有-問題發生。也就是說’由於一設置在Ε〇ντ之一:出 :與主動輪間之離心式離合器會隨著時間經過而磨耗1 速率會在-低速運作期間提高。此種引擎速率提高的 題特別會在空轉期間發生。 。’ 本發明係有鑑於上述問題而提出,且本發明之一目標是 129217.doc 200846578 防止引擎速率在低速運作期間提高。 [解決問題的手段] 本發明係針對一種傳動裝置,1勺八 構;-離心式離合器;一控制單元、二變速齒輪機 器。該變速齒輪機構具有—輸〜、_—=軸轉速= 裔。該致動器改變該輸入軸與間二要 比。兮Μ、、A 叫干均1日〗 < 一變速齒輪 s亥離〜式離合器連接於該輪出軸 致舍7哭。兮认1 ·»· I 早7〇控制5亥 U輸出軸轉速感測器偵 輸出軸轉速感測器輸出該輸出轴”出轴之-轉速。该 元β Mr 翰出軸之實測轉速給該控制單 兀忒抆制早元依據一目標變去 g ^ 、闰輪比控制該致動器,該 目軚k速齒輪比係由將該輸入 軸之該轉速所獲得。 t目―以該輸出 本發明係針對一種包含本發 之傳動裝置的動力單元。 本兔明係針對一種包含一動力 目士 去 動力早兀的車輛。該動力單元 具有一驅動源和一傳動裝置。 n 寻動裝置包含:一變速齒 輪機構;一離心式離合器;一 ,,t σ 卫制早70,及一輸出軸轉速 感測器。該變速齒輪機構具有一 ^輸入軸、一輸出軸及一致 動器。該致動器改變該輸入軸與該輪出軸間之一變速齒輪 比。該離心式離合11連接於該L。該控制單元控制該 致動器。該輸出軸轉速感測器偵測該輪出軸之一轉速。該 輸出軸轉速感測器輸出該輸出軸之實測轉速給該控制單 凡。該控制單元依據一目標變速齒輪比控制該致動器,該 目標變速齒輪比係由將該輸人軸之—目標轉⑽以該輪出 軸之該轉速所獲得。 129217.doc 200846578 本發明係針對一種用於控制一傳動裝置之控制器,該傳 動裝置包含··一變速齒輪機構,其具有一輸入軸、一輸出 轴、及一用於改變該輸入軸與該輸出轴間之一變速齒輪比 的致動ι§ ; 一連接於該輸出軸的離心式離合器;一用於控 制該致動器之控制單元;及_用於制該輸出軸之一轉速 的輸出軸轉速感測器。 •本叙明之控制器依據一目標變速齒輪比控制該致動器,200846578 IX. Description of the invention: [Technical field of the invention] The invention relates to a transmission device, a power unit having the transmission device, a vehicle, a controller for the transmission device, and a control transmission device The method. [Prior technology] + Bay example for #利文! The invention discloses a method for controlling an electronically controlled belt stepless speed change transmission device (electronically controlled stepless speed change transmission, hereinafter referred to as 'ECVT') as follows: By - throttle valve opening degree signal and - driver signal shirt - Target shift gear ratio. The target shift gear ratio of one of the main sheaves is calculated from the determined target shift gear ratio. Then, the movable sheave half of the main sheave is displaced. The voltage to the calculated target sheave position is applied to an electric motor for driving the movable sheave half of the main sheave, thereby controlling the shifting gear ratio to achieve the target shifting gear ratio. [Patent Document 1] 〇2006/009014, booklet [Summary of the invention] [Problem to be solved by the present invention] However, the method of controlling the variable speed window wheel ratio disclosed in the patent document has a problem occurring. That is, because one is set at Ε〇ντ One: Out: The centrifugal clutch with the drive wheel will wear out over time. The rate will increase during the low-speed operation. This engine speed increase problem will occur especially during idling. It is proposed in view of the above problems, and one of the objects of the present invention is 129217.doc 200846578 to prevent the engine speed from increasing during low speed operation. [Means for Solving the Problem] The present invention is directed to a transmission device, 1 scoop and 8 configurations; Clutch; a control unit, a two-speed gearing machine. The shifting gear mechanism has a --~, _-= shaft speed = idiot. The actuator changes the input shaft to the second. 兮Μ, A 1日〗 < A shifting gear s Hai away ~ type clutch connected to the wheel out of the shaft to give 7 cry. 兮 recognize 1 ·»· I early 7 〇 control 5 Hai U output shaft speed sensor detection output shaft speed sense The detector outputs the output shaft "out of the shaft - the speed. The actual measured rotational speed of the element β Mr Han is given to the control unit, and the actuator is controlled according to a target, and the k-speed gear ratio is controlled by the input shaft. This speed is obtained. The present invention is directed to a power unit incorporating the transmission of the present invention. This rabbit system is aimed at a vehicle that includes a power trainer to drive early. The power unit has a drive source and a transmission. n The oscillating device comprises: a shifting gear mechanism; a centrifugal clutch; a , t σ 早 early 70, and an output shaft speed sensor. The shifting gear mechanism has an input shaft, an output shaft, and a synchronizer. The actuator changes a shift gear ratio between the input shaft and the wheel-out shaft. The centrifugal clutch 11 is connected to the L. The control unit controls the actuator. The output shaft speed sensor detects one of the rotational speeds of the wheel. The output shaft speed sensor outputs the measured speed of the output shaft to the control unit. The control unit controls the actuator in accordance with a target shifting gear ratio obtained by rotating the target shaft (10) at the rotational speed of the wheel output shaft. 129217.doc 200846578 The present invention is directed to a controller for controlling a transmission, the transmission comprising a shifting gear mechanism having an input shaft, an output shaft, and a function for changing the input shaft An actuation of a shifting gear ratio between the output shafts; a centrifugal clutch coupled to the output shaft; a control unit for controlling the actuator; and an output for one of the output shafts Shaft speed sensor. • The controller of the present description controls the actuator in accordance with a target shifting gear ratio,
該目標變速齒輪比係由將該輸入軸之一目標轉速除以該輪 出軸之該轉速所獲得。 本發明係針對—種控制—傳動裝置之方法,該傳動裝置 包含:—變速齒輪機構,其具有—輸人軸、—輸出轴、及 一用於改變該輸人軸與該輸出軸間之—變速齒輪比的致動 -連接於該輸出軸的離心式離合器;―用於控制該致 動态之控制單元;及一用於福、、則兮认 用於偵測該輸出軸之一轉速的輸出 軸轉速感測器。 標變速齒輪比控制該致 輪入軸之一目標轉速除 本發明之控制方法包含依據一目 動器,該目標變速齒輪比係由將該 以該輸出軸之該轉速所獲得。 [發明功效] ¥速率提高 本發明能夠抑制低速運作期間之引 【實施方式】 -兩輪機動車輛1之總體構造_ 1詳細說明本發明之較 輪機動車輛1具有一主 以下將利用圖1所示兩輪機動車輛 佳實施例之一實例。如圖1所示,兩 129217. doc 200846578 體車架(圖中未示)一動力單元2懸吊於該主體車架。一後 輪3設置在動力單元2之一後 在本叙月μ施例中,後輪 3構成-利用動力單元2之動力驅動一車輪的主動輪。 該主體車架具有一從轉向車把4往下延伸的車頭管(圖中 :示)。前又5連接於該車頭管之-底端。-前輪6可旋轉 地前又5之下端。未連接於動力單元2的 一從動輪。 -動力單元2之構造- 以下參照圖2和3說明動力單元2之構造。 [引擎10之構造] 圖和3所不,動力單元2具有一引擎⑺燃機引擎)⑺ =傳動裝置20。在本發明實施例中,引擎lG被敘述成一 气7四衝転引擎 '然引擎j 〇可為其他類型的引擎。舉例來 說’引擎1G可為水冷引擎。引擎H)可為二衝程引擎。 人圖3所不,引擎10具有一曲柄軸11。一套筒12以栓槽 己合方式套在曲柄軸11之外周上。套筒12被-殼體!4經由 表13可旋轉地支撐著。一連接於一馬達3〇(其當作致 動器)的單向離合器31安裝在套筒12之—周圍上。 [傳動裝置20之構造] ^圖3所示,傳動裝置20係由一變速齒輪機構2〇a及一用 於乜制變速齒輪機構20a之控制單元9組成。控制單元9係 由一當作―計算單元的咖7及-當作-驅動單元的驅動 且成。在本發明實施例中,變速齒輪單元施係以一 皮贡型ECVT作為一實例說明。該ECVT之皮帶可為樹脂 129217.doc 200846578 帶、金屬帶或其他類型之皮帶。又,齒輪變速機構2〇a不 侷限在皮帶型ECVT。舉例來說,變速齒輪機構2〇a可為超 環型ECVT 〇 變速齒輪機構20a具備一主槽輪21、一副槽輪22及一 V形 皮帶23。V形皮帶23纏繞於主槽輪21和副槽輪22。v形皮 帶23被形成為具有大致v形斷面形狀。 主槽輪21連接於當作輸入軸21d的曲柄軸^。主槽輪以 與曲柄軸11 一起轉動。主槽輪21包含一固定主槽輪半體 2U和一可動主槽輪半體21b。固定主槽輪半體2la固定於 曲柄轴11之一端。可動主槽輪半體21b被定位為與固定主 槽輪半體21a相對。可動主槽輪半體21b可依曲柄軸n之軸 向方向移動。固定主槽輪半體21&之一表面和可動主槽輪 半體21b之一表面彼此相對,該等表面形成一讓v形皮帶23 纏繞於其上的皮帶槽21c。皮帶槽21c被形成為朝主槽輪21 之徑向外側加寬。 如圖3所示,可動主槽輪半體21b具有一柱狀輪轂21e, 曲柄軸π穿過該輪轂。一柱狀滑件24固定於輪轂21e之一 内側。與滑件24呈一體的可動主槽輪半體21b可依曲柄軸 U之軸向方向移動。據此,皮帶槽21c之寬度係可變的。 主槽輪21之皮帶槽21c的寬度在馬達30依曲柄軸^之軸 向方向作動可動主槽輪半體21b時改變。也就是說,傳動 裝置20是一種變速齒輪比被電子控制的ECVT。在本發明 實施例中,馬達30係由脈衝寬度調變(pwM)驅動器帶動。 但帶動馬達30的方法並不特別侷限在pwM驅動器。舉例來 129217.doc -9 - 200846578 況,馬達30可由脈衝振幅調變帶動。另一選擇,馬達3〇玎 為:步進馬達。又,在本發明實施例中,馬達30係當作致 二之Λ例。另一選擇,舉例來說可用一液壓致動器而 非馬達30當作致動器。 、】槽輪22被疋位在主槽輪2丨後方。副槽輪經由一離心 式=合器25安裝於一副槽輪軸27。更特定言之,副槽輪22 包3固定副槽輪半體22a和一可動副槽輪半體22b。可動 田j槽輪半體22b與固定副槽輪半體相對。固定副槽輪半 體22a包含一柱狀部分22al。在本發明實施例中,柱狀部 刀22al構成傳動裝置2〇之一輸出軸22d。固定副槽輪半體 22a經由離心式離合器25連接於副槽輪軸27。可動副槽輪 半體22b可依副槽輪軸27之軸向方向移動。固定副槽輪半 體22a之一表面與可動副槽輪半體22b之一表面彼此相對, 該等表面形成一讓V形皮帶23纏繞於其上的皮帶槽22c。皮 帶槽22c被形成為朝副槽輪22之徑向外側加寬。 可動副槽輪半體22b被一彈簧26依皮帶槽22c之寬度減小 的方向推動。有鑑於此,當馬達30被帶動且主槽輪21之皮 帶槽21c之寬度減小時,v形皮帶23纏繞於主槽輪21上的直 杈加大’同時副槽輪22之側上的V形皮帶23被徑向向内地 拉扯。因此,可動副槽輪半體22b抗拒彈簧26之推力依使 皮帶槽22c之寬度加大的方向移動。因此,v形皮帶23纏繞 於副槽輪22上的直徑減小。這造成變速齒輪機構2〇a之變 速齒輪比之變化。 離心式離合器25依據固定副槽輪半體22a所含當作輸出 1292l7.doc •10- 200846578 軸22d之柱狀部分22al的轉速而咬合或放開。也就是說, 如果輸出軸22d之轉速低於一預定轉速’離心式離合器25 是放開的。因此,固定副槽輪半體22a之旋轉不會傳輸到 副槽輪軸27。相對而言,如果輸出軸22d之轉速等於或大 於一預定轉速,離心式離合器25是咬合的。因此,固定副 槽輪半體22a之旋轉會傳輸到副槽輪軸27。 [離心式離合器25之構造] 如圖3所示,離心式離合器25包含一離心板25a、一離心 重體25b、及一離合器殼體25c。離心板25a與固定槽輪半 體22a—起轉動。也就是說,離心板25a與輸出軸22d—起 轉動。離心重體25b被離心板25a支撐以使其可依離心板 25a之徑向方向移位。離心器殼體25c固定於副槽輪軸27之 一端。一減速機構28連接於副槽輪軸27。副槽輪軸27經由 減速機構28連接於一輪軸29。後輪3安裝於輪軸29。因 此’離合器殼體25c經由副槽輪軸27、減速機構28及輪軸 29連接於主動輪或後輪3。 離合器殼體25 c依據輸出軸22d之轉速而咬合或放開離心 板25a°明確地說,如果輸出軸22d之轉速等於或大於一預 定轉速’離心重體25b利用一離心力朝離心板25a之徑向外 側移動以接觸離合器殼體25c。這允許離心板25&和離心器 殼體25c彼此咬合,輸出軸22(1之旋轉經由離心器殼體 25c、副槽輪軸27、減速機構28、及輪軸29傳輸到主動輪 或後輪3。相對而言,如果輸出軸22d之轉速低於一預定轉 速’施加於離心重體25b的離心力減小,故離心重體25b移 129217.doc 200846578 離離心器殼體25c。因此,輸出軸22d之旋轉不會傳輸到離 心器殼體2 5 c。所以後輪3不會轉動。 [用於控制兩輪機動車輛1的系統] 今參照圖4詳細說明用於控制兩輪機動車輛〗的系統。 -兩輪機動車輛1之控制系統之構造的概述- 如圖4所示,一槽輪位置感測器4〇連接於ECU 7。槽輪位 置感測器40偵測主槽輪21之可動主槽輪半體21b相對於固 定主槽輪半體21a的位置。換句話說,槽輪位置感測器仂 偵測在曲柄軸11之軸向方向中固定主槽輪半體2u與可動 主槽輪半體21b間之一距離(1)。槽輪位置感測器4〇將實測 距離(I)輸出給ECU 7作為一槽輪位置偵測信號。槽輪位置 感測斋40舉例來說可由一電位計構成。 又,一當作輸入軸轉速感測器的主槽輪旋轉感測器43、 一當作輸出軸轉速感測器的副槽輪旋轉感測器41及一車速 感測為42連接於ECU 7。主槽輪旋轉感測器43偵測主槽輪 21之轉速或輸人軸21d之轉速。主槽輪旋轉感測器43將輪 入軸21d之實測轉速輸出給ECU 7作為一實際輸入軸轉速信 號。副槽輪旋轉感測器41偵測副槽輪22之轉速或輸出軸 22d之轉速。副槽輪旋轉感測器41將輪出軸22d之實測轉速 輸出、、、口 ECU 7作為一實際輸出軸轉速信號。車速感測器 债測後輪3之轉速。車速感測器42依據實測轉速輸出一車 速信號給ECU 7。 一附接於轉向車把4的車把開關連接至ECU 7。該車把開 關在騎士操作該車把開關時輸出一車把sw信號。 129217.doc •12- 200846578 如前所述’一節流閥開口度感測器1 8&輸出一節流闊開 口度信號給ECU 7。 ECU 7包含一當作一計算單元的中央處理單元(cpu)7a 及一連接於CPU 7a的記憶體%。記憶體几貯存各項設定, 4如一用於決定一目標引擎速率的圖表7〇,詳見下文。 -傳動裝置20之控制-The target shifting gear ratio is obtained by dividing a target rotational speed of one of the input shafts by the rotational speed of the rotational shaft. The present invention is directed to a method of controlling a transmission, the transmission comprising: a transmission gear mechanism having a transmission shaft, an output shaft, and a means for changing between the input shaft and the output shaft - Actuation of the shifting gear ratio - a centrifugal clutch coupled to the output shaft; - a control unit for controlling the dynamics; and an output for detecting a rotational speed of the output shaft Shaft speed sensor. The target speed ratio is controlled by one of the target speeds of the wheel input shaft. The control method of the present invention comprises the fact that the target speed ratio is obtained by the speed of the output shaft. [Effect of the Invention] The present invention can suppress the low-speed operation period of the present invention. [Embodiment] - The overall structure of the two-wheeled motor vehicle 1 - Detailed description of the motor-driven vehicle 1 of the present invention having a main body and the following will be utilized in FIG. An example of a preferred embodiment of a two-wheeled motor vehicle is shown. As shown in Fig. 1, two 129217. doc 200846578 body frame (not shown) a power unit 2 is suspended from the main body frame. After the rear wheel 3 is disposed in one of the power units 2, in the present embodiment, the rear wheel 3 constitutes a driving wheel that drives the wheel using the power of the power unit 2. The main body frame has a head tube (shown in the figure) extending downward from the steering handlebar 4. The front 5 is connected to the bottom end of the head tube. - The front wheel 6 can be rotated forward and at the lower 5 end. A driven wheel that is not connected to the power unit 2. - Configuration of Power Unit 2 - The configuration of the power unit 2 will be described below with reference to Figs. [Configuration of Engine 10] FIGS. 3 and 3, the power unit 2 has an engine (7) gas turbine engine) (7) = transmission 20. In the embodiment of the present invention, the engine 1G is described as a gas 7 rush engine "other engine j 〇 can be other types of engines. For example, the engine 1G can be a water-cooled engine. Engine H) can be a two-stroke engine. The human engine 10 has a crankshaft 11 as shown in FIG. A sleeve 12 is fitted over the outer circumference of the crankshaft 11 in a manner that the bolts are fitted. Sleeve 12 is -shell! 4 is rotatably supported via Table 13. A one-way clutch 31 connected to a motor 3 (which acts as an actuator) is mounted around the sleeve 12. [Configuration of Transmission Device] As shown in Fig. 3, the transmission device 20 is composed of a transmission gear mechanism 2A and a control unit 9 for the transmission gear mechanism 20a. The control unit 9 is driven by a coffee maker 7 as a "computing unit" and as a drive unit. In the embodiment of the present invention, the shift gear unit is embodied by a picotype ECVT as an example. The ECVT belt can be a resin 129217.doc 200846578 belt, metal belt or other type of belt. Further, the gear shifting mechanism 2〇a is not limited to the belt type ECVT. For example, the transmission gear mechanism 2〇a may be a toroidal type ECVT. The transmission gear mechanism 20a is provided with a main sheave 21, a pair of sheaves 22 and a V-belt 23. The V-belt 23 is wound around the main sheave 21 and the auxiliary sheave 22 . The v-shaped belt 23 is formed to have a substantially v-shaped cross-sectional shape. The main sheave 21 is coupled to a crankshaft ^ which is an input shaft 21d. The main sheave rotates with the crankshaft 11. The main sheave 21 includes a fixed main sheave half 2U and a movable main sheave half 21b. The fixed main sheave half 2la is fixed to one end of the crankshaft 11. The movable main sheave half 21b is positioned opposite the fixed main sheave half 21a. The movable main sheave half 21b is movable in the axial direction of the crankshaft n. One surface of the fixed main sheave half 21 & and one of the surfaces of the movable main sheave half 21b are opposed to each other, and the surfaces form a belt groove 21c on which the v-belt 23 is wound. The belt groove 21c is formed to be widened toward the radially outer side of the main sheave 21. As shown in Fig. 3, the movable main sheave half 21b has a cylindrical hub 21e through which the crankshaft π passes. A columnar slider 24 is fixed to the inside of one of the hubs 21e. The movable main sheave half 21b integral with the slider 24 is movable in the axial direction of the crankshaft U. Accordingly, the width of the belt groove 21c is variable. The width of the belt groove 21c of the main sheave 21 is changed when the motor 30 moves the movable main sheave half 21b in the axial direction of the crankshaft. That is, the transmission 20 is an ECVT in which the shifting gear ratio is electronically controlled. In an embodiment of the invention, motor 30 is driven by a pulse width modulation (pwM) driver. However, the method of driving the motor 30 is not particularly limited to the pwM driver. For example, 129217.doc -9 - 200846578, motor 30 can be driven by pulse amplitude modulation. Alternatively, the motor 3〇玎 is: a stepper motor. Further, in the embodiment of the present invention, the motor 30 is taken as an example of the second. Alternatively, a hydraulic actuator may be used instead of the motor 30 as an actuator. The pulley 22 is clamped behind the main sheave 2丨. The auxiliary sheave is mounted to a pair of sheave shafts 27 via a centrifugal = combiner 25. More specifically, the sub-tank 22 pack 3 fixes the sub-slot half 22a and a movable sub-slot half 22b. The movable j-slot wheel half 22b is opposite to the fixed auxiliary sheave half. The fixed auxiliary sheave half 22a includes a cylindrical portion 22al. In the embodiment of the present invention, the cylindrical cutter 22al constitutes an output shaft 22d of the transmission unit 2''. The fixed auxiliary sheave half 22a is connected to the auxiliary sheave shaft 27 via a centrifugal clutch 25. The movable sub-slot half 22b is movable in the axial direction of the sub-slot shaft 27. One surface of the fixed auxiliary sheave half 22a and the surface of one of the movable auxiliary sheave half 22b are opposed to each other, and the surfaces form a belt groove 22c on which the V-belt 23 is wound. The belt groove 22c is formed to widen toward the radially outer side of the auxiliary sheave 22. The movable auxiliary sheave half 22b is urged by a spring 26 in a direction in which the width of the belt groove 22c is reduced. In view of this, when the motor 30 is driven and the width of the belt groove 21c of the main sheave 21 is reduced, the straight groove of the v-belt 23 wound around the main sheave 21 is enlarged' while the V on the side of the auxiliary sheave 22 The belt 23 is pulled radially inward. Therefore, the movable auxiliary sheave half 22b resists the thrust of the spring 26 from moving in the direction in which the width of the belt groove 22c is increased. Therefore, the diameter of the v-belt 23 wound around the auxiliary sheave 22 is reduced. This causes a change in the gear ratio of the shift gear mechanism 2〇a. The centrifugal clutch 25 is engaged or released in accordance with the rotational speed of the columnar portion 22a1 of the shaft 22d as the output of the fixed auxiliary sheave half 22a. That is, if the rotational speed of the output shaft 22d is lower than a predetermined rotational speed, the centrifugal clutch 25 is released. Therefore, the rotation of the fixed sub-slot half 22a is not transmitted to the sub-slot shaft 27. In contrast, if the rotational speed of the output shaft 22d is equal to or greater than a predetermined rotational speed, the centrifugal clutch 25 is engaged. Therefore, the rotation of the fixed auxiliary sheave half 22a is transmitted to the auxiliary sheave shaft 27. [Configuration of Centrifugal Clutch 25] As shown in Fig. 3, the centrifugal clutch 25 includes a centrifugal plate 25a, a centrifugal weight 25b, and a clutch housing 25c. The centrifugal plate 25a rotates together with the fixed sheave half 22a. That is, the centrifugal plate 25a rotates together with the output shaft 22d. The centrifugal weight 25b is supported by the centrifugal plate 25a so as to be displaceable in the radial direction of the centrifugal plate 25a. The centrifuge housing 25c is fixed to one end of the auxiliary sheave shaft 27. A speed reduction mechanism 28 is coupled to the auxiliary sheave shaft 27. The sub-slot shaft 27 is coupled to an axle 29 via a speed reduction mechanism 28. The rear wheel 3 is mounted to the axle 29. Therefore, the clutch housing 25c is coupled to the driving pulley or the rear wheel 3 via the sub-disc shaft 27, the speed reduction mechanism 28, and the axle 29. The clutch housing 25c engages or releases the centrifugal plate 25a according to the rotational speed of the output shaft 22d. Specifically, if the rotational speed of the output shaft 22d is equal to or greater than a predetermined rotational speed, the centrifugal weight 25b uses a centrifugal force toward the centrifugal plate 25a. Move to the outside to contact the clutch housing 25c. This allows the centrifugal plate 25 & and the centrifuge housing 25c to engage with each other, and the output shaft 22 (the rotation of 1 is transmitted to the driving wheel or the rear wheel 3 via the centrifugal housing 25c, the auxiliary sheave shaft 27, the speed reducing mechanism 28, and the axle 29). In contrast, if the rotational speed of the output shaft 22d is lower than a predetermined rotational speed 'the centrifugal force applied to the centrifugal weight 25b is reduced, the centrifugal weight 25b is moved 129217.doc 200846578 away from the centrifuge housing 25c. Therefore, the output shaft 22d The rotation is not transmitted to the centrifuge housing 2 5 c. Therefore, the rear wheel 3 does not rotate. [System for controlling the two-wheeled motor vehicle 1] A system for controlling a two-wheeled motor vehicle will now be described in detail with reference to FIG. - Overview of the construction of the control system of the two-wheeled motor vehicle 1 - As shown in Fig. 4, a sheave position sensor 4 is connected to the ECU 7. The sheave position sensor 40 detects the movable main of the main sheave 21 The position of the sheave half 21b relative to the fixed main sheave half 21a. In other words, the sheave position sensor 仂 detects that the main sheave half 2u and the movable main groove are fixed in the axial direction of the crankshaft 11. One distance between the wheel halves 21b (1). The sheave position sensor 4〇 will measure the distance The (I) output is output to the ECU 7 as a sheave position detecting signal. The sheave position sensing fast 40 can be constituted by, for example, a potentiometer. Also, a main sheave rotation feeling as an input shaft rotational speed sensor The detector 43, a sub-slot rotation sensor 41 as an output shaft speed sensor, and a vehicle speed sensing 42 are connected to the ECU 7. The main sheave rotation sensor 43 detects the rotation speed of the main sheave 21 Or the rotational speed of the input shaft 21d. The main sheave rotation sensor 43 outputs the measured rotational speed of the wheeled shaft 21d to the ECU 7 as an actual input shaft rotational speed signal. The auxiliary sheave rotation sensor 41 detects the auxiliary sheave 22 The rotational speed or the rotational speed of the output shaft 22d. The auxiliary sheave rotation sensor 41 outputs the measured rotational speed output of the wheel-out shaft 22d, and the port ECU 7 as an actual output shaft rotational speed signal. The vehicle speed sensor measures the rear wheel 3 The vehicle speed sensor 42 outputs a vehicle speed signal to the ECU 7 based on the measured speed. A handlebar switch attached to the steering handlebar 4 is coupled to the ECU 7. The handlebar switch outputs a vehicle when the rider operates the handlebar switch. Put the sw signal. 129217.doc •12- 200846578 As mentioned above, the 'flow valve feels the sense of opening The controller 1 8& outputs a flow opening degree signal to the ECU 7. The ECU 7 includes a central processing unit (cpu) 7a as a computing unit and a memory % connected to the CPU 7a. 4, such as a chart used to determine the speed of a target engine, see below. - Control of the transmission 20 -
以下爹胲圖5说明依據本發明之實施例控制傳動裝置 的方法。在此實施例中,如圖5所示,當作致動器的電動 馬達30經控制以使一目標變速齒輪比%與一實際變速 比57之間的差異減小,該目標變速齒輪比係由一目標輸: 軸轉速53除以-實際輸出轴轉速54獲得,該實際變速齒輪 比係由-實際輸人㈣速55除以—實際輸出軸轉速抑 得。明確地說,馬達3G經控制以使目標變速齒輪比%與實 際變速齒輪比5 7大約相等。 ' 以下參照圖5詳細說明依據本發明之實施例的控制傳動 裝置20方法。首先,銘、、☆ g 即极閥開口度感測器18a輸出一節流 閥開口度5〇給一位於CHJ〜中之目標引擎速率決定= _。車速感測器42輸出—車速51給目標料速率 1〇0。目標引擎速率決定區⑽從記憶㈣獲取用於決定: =1:速:的圖表7°。如圖6所例示,對應於不同節流 闊開口度之車速與一目;敬、* t 平目h 5!擎速率之間的關係在用於 一目標引擎速率的圖表7〇中確 、Figure 5 below illustrates a method of controlling a transmission in accordance with an embodiment of the present invention. In this embodiment, as shown in FIG. 5, the electric motor 30 as an actuator is controlled to reduce the difference between a target shift gear ratio % and an actual shift ratio 57, the target shift ratio system It is obtained by a target transmission: the shaft speed 53 is divided by the actual output shaft speed 54 which is divided by the - actual input (four) speed 55 - the actual output shaft speed is suppressed. Specifically, the motor 3G is controlled such that the target shift gear ratio % is approximately equal to the actual shift gear ratio 57. The method of controlling the transmission 20 in accordance with an embodiment of the present invention will be described in detail below with reference to FIG. First, Ming, ☆ g, the pole valve opening degree sensor 18a outputs a throttle valve opening degree of 5 〇 to a target engine rate decision in CHJ~ = _. The vehicle speed sensor 42 outputs - the vehicle speed 51 to the target material rate of 1 〇 0. The target engine rate decision zone (10) is obtained from memory (four) for decision: =1: speed: chart 7°. As illustrated in Fig. 6, the relationship between the vehicle speed corresponding to the different throttle opening degrees and the one-eye; respect, * t level, and the engine speed rate is determined in the graph 7 for a target engine speed.
^ ^ S 引擎速率決定民 100依據詩決定—目標5|擎 D 洚snB垂、古。丄一 卞心口衣/0、即流閥開口 車速決疋—目標引擎速㈣。舉例來說,目榡引 129217.doc -13· 200846578 擎速率52被決定為心,此時節流閥開口度是〇%且車速是 ri,如圖6所示。目標引擎速率決定區1〇〇將已決定的目標 引擎速率52輸出給一目標輸入軸轉速計算區ιοί。 為方便解釋,圖6僅例示節流閥開口度(Th開口度)是 0%、15%、50%、及100%之情況的關係。^ ^ S engine rate determines the number of people based on poetry - goal 5 | engine D 洚snB hang, ancient.丄一卞心口衣/0, that is, the flow valve opening speed limit - target engine speed (four). For example, the target 129217.doc -13· 200846578 engine speed 52 is determined as the heart, at this time the throttle opening degree is 〇% and the vehicle speed is ri, as shown in Figure 6. The target engine speed determining area 1 outputs the determined target engine speed 52 to a target input shaft speed calculating area ιοί. For convenience of explanation, Fig. 6 only illustrates the relationship of the throttle opening degree (Th opening degree) being 0%, 15%, 50%, and 100%.
目標輸入軸轉速計算區101從已輸入的目標引擎速率52 算出一目標輸入軸轉速53。也就是說,目標輸入轴轉速計 算區101從已輸入的目標引擎速率52算出輸入軸21d之一目 標轉速。目標輸入軸轉速計算區101將已算出的目標輸入 軸轉速53輸出給一除法區11〇。在此實施例中,由於引擎 10之曲柄軸11與輸入軸21d是一共同構件,目標引擎速率 52和目標輸人軸轉速53是相㈣。也就是說,目標輸入轴 轉速計算區101以目標引擎速率52輸出為目標輸入軸轉速 除法區110以從目標輪人軸轉速計算區⑻輸人之目標輪 入軸轉速53除以從副槽輪旋轉感測器 ,以便算出-目標變速齒輪比561法區 出的目標變速齒輪比56輪出給一減法區⑴。 ^ 然後,除法區1〇9以從主槽輪旋轉感測器们輸出 輪入軸轉速55除以實際輪出軸轉速5 、- 齒輪比57。除法區109將更;^出--際變速 給減法區ill。實際變迷二貝際變速齒輪比57輸出 變速會輪比。逮齒輪比57是傳動裝置-之-實際 減法區⑴以目標變速齒輪㈣減實際變逮齒輪比57以 129217.doc -14- 200846578 便算出一變速齒輪比差58。減法區lu將已算出的變速齒 輪比差58輸出給一變速齒輪比操作量計算區1〇2。變速齒 輪比操作量計算區102依據變速齒輪比差58減小目標變速 函輪比5 6與實際變速齒輪比5 7間之差。明確地說,變速舎 輪比操作量計算區102算出變速齒輪比操作量59以使目標 變速齒輪比56與實際變速齒輪比57大約相等。變速齒輪比 操作量計算區102將已算出的變速齒輪比操作量59輸出給 一目標槽輪速率計算區103。在此實施例中,變速齒輪2 刼作S 59是一目前變速齒輪比與一使目標變速齒輪比和實 IV、文速齒輪比57大致相等之變速齒輪比之間的差。換句話 。兒欠速齒輪比操作量59是一為了使目標變速齒輪比56和 實際變速齒輪比57彼此大致等化而變動的變速齒輪比旦 值。 里 目私槽輪速率計算區! 〇3依據已輸入的變速齒輪比操作 量59算出一目標槽輪速率71。目標槽輪速率計算區工们將 已^出的目標槽輪速率71輸出給一減法區112。目標槽輪 γ率71疋可動主槽輪半體21b之移動速率,其被用來藉由 k速齒輪比操作量59改變變速齒輪機構20a之變速齒輪 比。 @ 另一方面,一位於CPU 7a中的實際槽輪速率計算區1〇8 依據從槽輪位置感測器40輸出的實際槽輪位置68算出一實 際槽輪速率72。實際槽輪速率計算區108將已算出的實際 槽輪速率72輸出給減法區112。實際槽輪速率72是可動主 槽輪半體21b之目前移動速率。 129217.doc -15- 200846578 減法區112以目標槽輪速率71減實際槽輪速率”以便算 出一槽輪速率差73。減法區112將槽輪速率差乃輸出給一 馬達驅動信號估算區丨〇4。 馬達驅動信號估算區i 0 4依據槽輪速率差7 3估算一 p w M 信號60。馬達驅動信號估算區1〇4將已算出的顺信號6〇 輸出給驅動電路8。驅動電路8依據已輸入的信號㈣The target input shaft rotational speed calculation area 101 calculates a target input shaft rotational speed 53 from the input target engine speed 52. That is, the target input shaft rotational speed calculation area 101 calculates a target rotational speed of the input shaft 21d from the input target engine speed 52. The target input shaft rotational speed calculation area 101 outputs the calculated target input shaft rotational speed 53 to a division area 11A. In this embodiment, since the crankshaft 11 and the input shaft 21d of the engine 10 are a common member, the target engine speed 52 and the target input shaft rotational speed 53 are phase (four). That is, the target input shaft rotational speed calculation area 101 is outputted at the target engine speed 52 as the target input shaft rotational speed division area 110 to divide the target wheel input shaft rotational speed 53 from the target wheel human axis rotational speed calculation area (8) by the secondary sheave. The sensor is rotated to calculate that the target shift gear ratio is 561 to the target shift gear ratio 56 for a subtraction zone (1). ^ Then, the division area 1〇9 is output from the main sheave rotation sensor output wheel input shaft speed 55 divided by the actual wheel shaft speed 5, - gear ratio 57. Division divide 109 will be more; ^ out-shift to subtraction zone ill. Actually fascinated by the two-speed shift gear ratio 57 output shift ratio wheel ratio. The gear ratio 57 is the transmission-actual subtraction zone (1). The target gear ratio (4) minus the actual gear ratio 57 is calculated as 129217.doc -14-200846578. The subtraction zone lu outputs the calculated shift gear ratio difference 58 to a shift gear ratio operation amount calculation area 1〇2. The shift gear ratio operation amount calculation area 102 reduces the difference between the target shifting gear ratio ratio 56 and the actual shift gear ratio 57 based on the shift gear ratio difference 58. Specifically, the shifting wheel ratio calculation operation area 102 calculates the shift gear ratio operation amount 59 such that the target shift gear ratio 56 is approximately equal to the actual shift gear ratio 57. The shift gear ratio operation amount calculation area 102 outputs the calculated shift gear ratio operation amount 59 to a target sheave speed calculating area 103. In this embodiment, the shifting gear 2 S S 59 is the difference between the current shifting gear ratio and a shifting gear ratio that substantially equals the target shifting gear ratio and the real IV and text speed gear ratios 57. In other words. The underspeed gear ratio operation amount 59 is a shift gear ratio denier which is varied in order to substantially equalize the target shift gear ratio 56 and the actual shift gear ratio 57 with each other. In the private groove speed calculation area! 〇3 calculates a target sheave speed 71 based on the input shift gear ratio operation amount 59. The target sheave rate calculation zone outputs the output target sheave rate 71 to a subtraction zone 112. The moving speed of the target sheave γ rate 71 疋 movable main sheave half 21b is used to change the shifting gear ratio of the shifting gear mechanism 20a by the k-speed gear ratio operation amount 59. @ On the other hand, an actual sheave rate calculation zone 1〇8 located in the CPU 7a calculates an actual sheave rate 72 based on the actual sheave position 68 output from the sheave position sensor 40. The actual sheave rate calculation area 108 outputs the calculated actual sheave rate 72 to the subtraction zone 112. The actual sheave speed 72 is the current rate of movement of the movable main sheave half 21b. 129217.doc -15- 200846578 The subtraction zone 112 subtracts the actual sheave rate from the target sheave rate 71 to calculate a sheave rate difference 73. The subtraction zone 112 outputs the sheave rate difference to a motor drive signal estimation zone. 4. The motor drive signal estimation area i 0 4 estimates a pw M signal 60 based on the sheave speed difference 7 3. The motor drive signal estimation area 1〇4 outputs the calculated forward signal 6〇 to the drive circuit 8. The drive circuit 8 is based on Input signal (4)
一脈衝電壓61施加於電動馬達3〇。藉此,可動主槽輪半體 21b被帶動以改變傳動裝置2〇之變速齒輪比。 [功能和功效] 舉-實例來說,可想見傳動裝置被以一下文所述方式杵 制。⑽依據從節流閥開口度感測器輸出的節流閥開口度 及從車速感:器輸出的車速計算一目標變速齒輪比。咖 將-依據已#出目標變速齒輪比的pWM信號輸出給驅動電 路。驅動電路依據該PWM信號將—脈衝電壓施加於電動馬 達。依此方式,傳動裝置經控制以使該傳動裝置之變速齒 輪比錢等於目標變速齒輪比,如圖7所示。 伟二4控制傳動裝置的方法中’目標變速齒輪比 係依據“ 度和車速決定。因此 度和車速不變,目標齒輪變速比保持怪定。開: 相應變速齒輪比係大致相等的圖㈤所示,只要節 2和車速保持不變變速齒輪比就會保持不 使二 :離合器隨著時間經過而劣化且因此變得更難咬合:如 當離心式離合器隨時間經過 而劣化且因此變得更難咬合 129217.doc 200846578 時,低速引擎負荷減小。更明確地說,當離心式離合器為 咬合且轉速因該離心式離合器之磨損而提高時,引擎上的 負荷在離心式離合器無法咬合之一轉速範圍内及在離心式 離合器之咬合度減小之一轉速範圍内減小。因此,圖8所 示實際輸入軸轉速高於在傳動裝置之初始使用中獲得的目 標輸入軸轉速。也就是說,實際輸入軸轉速和引擎速率提 高0 相反地,在本實施例中,如圖5所示,目標引擎速率52A pulse voltage 61 is applied to the electric motor 3A. Thereby, the movable main sheave half 21b is driven to change the shift gear ratio of the transmission 2〇. [Function and Efficacy] For example, it is conceivable that the transmission is clamped in the manner described below. (10) A target shift gear ratio is calculated based on the throttle opening degree output from the throttle opening degree sensor and the vehicle speed output from the vehicle speed senser. The coffee will output the pWM signal based on the target gear ratio to the drive circuit. The drive circuit applies a pulse voltage to the motor in accordance with the PWM signal. In this manner, the transmission is controlled such that the transmission gear ratio of the transmission is equal to the target transmission ratio, as shown in FIG. In the method of controlling the transmission device of Wei 2 4, the 'target gear ratio is determined according to the degree and the speed of the vehicle. Therefore, the speed and the vehicle speed are constant, and the target gear ratio remains strange. On: The corresponding gear ratio is approximately equal (5) It is shown that as long as the pitch 2 and the vehicle speed remain constant, the gear ratio will remain the same: the clutch will deteriorate over time and thus become more difficult to bite: as the centrifugal clutch deteriorates over time and thus becomes more Difficult to bite 129217.doc 200846578, the low speed engine load is reduced. More specifically, when the centrifugal clutch is engaged and the speed is increased by the wear of the centrifugal clutch, the load on the engine cannot be engaged in the centrifugal clutch. The speed range is reduced and the speed of the centrifugal clutch is reduced. Therefore, the actual input shaft speed shown in Figure 8 is higher than the target input shaft speed obtained in the initial use of the transmission. Actual input shaft speed and engine speed increase by 0. In contrast, in this embodiment, as shown in FIG. 5, the target engine speed is 52.
和目標輸入軸轉速53係依據節流閥開口度50、車速51、及 用於決定一目標引擎速率之圖表70決定。只要節流閥開口 度50和車速51保持不變,目標引擎速率52和目標輸入軸轉 速53就會保持恆定。 另方面’目標變速齒輪比56係由目標輸入軸轉速53除 以實際輸出軸轉速54算出。實際輸出軸轉速54隨條件變化 譬如離心式離合器25之劣化而變動。因此,目標變速齒輪 比56會因為諸如離心、式離合器25之劣化等條件而變動。 牛例來《兒,當離心式離合器25隨時間經過而劣化時,因 離心式離合器25之咬合而在引擎1()上產生的負荷減小。因 此’實際輸出軸轉速54隨引擎速率提高。這得到—較小目 ㈣❹輪比56’如圖9所示。#目標變速齒輪_變得 ’實際輸出軸轉速54變得較大。這有助於離心式離 百态25易於咬合。又, _ 因為較小的目標變速齒輪比56,引 擎10上的負荷變成相對 古 成相對較大。因此抑制了引擎速率之提 面0 129217.doc 200846578 此外’在此實施例中’馬達30經控制以使目標變速齒輪 比56與實際變速齒輪比57間之差減小。也就是說,馬達% 經控制以使目標輸入軸轉速53與實際輪入軸轉速55間之差 減小。因此,引擎速率之提高被更確實地抑制。在此實施 - 例中,由於馬達30經控制以使目標變速齒輪比56和實際變 - 速齒輪比57大約相等,引擎速率之提高被以一確實方式特 別地抑制。 >前所述’可藉由依據目標變速齒輪比56控制馬達30來 拳 抑制引擎速率之提高,該目標變速齒輪比係由目標輸入軸 轉速53除以實際輸出轴轉速54獲得。本發明並不㈣_ 在依據目標變速齒輪比56控制馬達3〇的控制方法。依據目 標變速齒輪比56控制馬達30的控制方法可被以一特定方式 施行’例如像下列變型1至4所示。 下述k型1至4係參照在發明實施例說明中共用之圖1至4 說明。此外,具有與發明實施例所述組件大致相同之功能 φ ㈤組件將以共同參考數字標示,且不重複其說明。 〈<第一變型>> 以下》兒月本發明之實施例的變型。在以下變型說明中, … #有與發明實施例所述組件大致相同之功能的組件將以共 -- 同參考數字標示,且不重複其說明。 在前述發明實施例中,如圖5所示,提出變速齒輪比差 係由目私欠速齒輪比56減實際變速齒輪比57算出。秋變 速齒輪比差58可為依-如圖10所示之方式算出。’、、、 明確地說’在發明實施例之第一變型中,減法區113以 129217.doc -18- 200846578 從目標輸入軸轉速計算區101輸出之目標輸入軸轉速53減 實際輸入軸轉速55以便算出—輪人軸轉速差62。減法區 113將已算出的輸入軸轉速差62輸出給一除法區114。除法 區114以輸入到除法區114之已輸入的輸入軸轉速差62除以 實際輸出軸轉速54以便算出變逮齒輪比差以。已算出的變 速齒輪比差58如同上文發明實施例所述被輸出給變速齒輪 比操作量計算區1 02。 <<第二變型》The target input shaft speed 53 is determined based on the throttle opening 50, the vehicle speed 51, and a chart 70 for determining a target engine speed. As long as the throttle opening 50 and the vehicle speed 51 remain the same, the target engine speed 52 and the target input shaft speed 53 remain constant. On the other hand, the target shift gear ratio 56 is calculated by dividing the target input shaft rotational speed 53 by the actual output shaft rotational speed 54. The actual output shaft speed 54 varies depending on conditions such as deterioration of the centrifugal clutch 25. Therefore, the target shifting gear ratio 56 may vary due to conditions such as the centrifugal, the deterioration of the clutch 25, and the like. As a result, when the centrifugal clutch 25 deteriorates over time, the load generated on the engine 1 () due to the engagement of the centrifugal clutch 25 is reduced. Therefore, the actual output shaft speed 54 increases with the engine speed. This results in a smaller (four) turn ratio 56' as shown in FIG. #Target shift gear_ becomes 'The actual output shaft speed 54 becomes larger. This helps the centrifuge to be easily occluded. Also, _ because the smaller target shifting gear ratio 56, the load on the engine 10 becomes relatively large relative to the ancient one. Therefore, the engine speed is suppressed. 0 129217.doc 200846578 Further, in this embodiment, the motor 30 is controlled to reduce the difference between the target shift gear ratio 56 and the actual shift gear ratio 57. That is, the motor % is controlled such that the difference between the target input shaft speed 53 and the actual wheeled shaft speed 55 is reduced. Therefore, the increase in engine speed is more reliably suppressed. In this embodiment - in the example, since the motor 30 is controlled such that the target shifting gear ratio 56 and the actual variable speed gear ratio 57 are approximately equal, the increase in the engine speed is specifically suppressed in a positive manner. > The foregoing can be used to suppress an increase in the engine speed by controlling the motor 30 in accordance with the target shift gear ratio 56, which is obtained by dividing the target input shaft speed 53 by the actual output shaft speed 54. The present invention does not (4)_ control method of controlling the motor 3〇 in accordance with the target shift gear ratio 56. The control method of controlling the motor 30 in accordance with the target shift gear ratio 56 can be performed in a specific manner as shown, for example, in the following variants 1 to 4. The following k-types 1 to 4 are explained with reference to Figs. 1 to 4 which are common in the description of the embodiment of the invention. Further, functions having substantially the same components as those described in the embodiments of the invention are indicated by the common reference numerals, and the description thereof will not be repeated. <<First Modification>>> The following is a modification of the embodiment of the present invention. In the following description, components that have substantially the same functions as those described in the embodiments of the invention will be denoted by the same reference numerals, and the description thereof will not be repeated. In the foregoing embodiment of the invention, as shown in Fig. 5, it is proposed that the shift gear ratio difference is calculated from the meshing underspeed gear ratio 56 minus the actual shift gear ratio 57. The autumn variable gear ratio difference 58 can be calculated as shown in Fig. 10. ',,, specifically, 'In the first variation of the embodiment of the invention, the subtraction zone 113 is 129217.doc -18-200846578 from the target input shaft rotational speed calculation zone 101 output target input shaft rotational speed 53 minus the actual input shaft rotational speed 55 In order to calculate - the wheel axle speed difference 62. The subtraction area 113 outputs the calculated input shaft rotational speed difference 62 to a division area 114. The division area 114 divides the input shaft speed difference 62 input to the division area 114 by the actual output shaft speed 54 to calculate the ratio of the gear ratio. The calculated gear ratio difference 58 is output to the shift gear ratio operation amount calculation area 102 as described in the above embodiment of the invention. <<Second Variant
在本發明之實施例及其第_變型中’提及變速齒輪比操 作量59係依據變速齒輪比差58算出之—實例。但本發明並 不侷限於上述計算方》。變速齒輪比操作量59舉例來說可 如圖11所示計算。 明確地說,在發明實施例之第二變型中,減法區以 從目標輸入軸轉速計算區101輸出之實際轉速53減實際輸 入軸轉速55以便算出輸入軸轉速差62。咸法區116將輸: 軸轉速差62輸出給輸入軸轉速操作量計算區ι〇5。輸入軸 轉速操作量計算區1〇5依據輸人軸轉速差62算出輸入轴轉 速操作量64。輸入軸轉速操作量計算區1〇5將已算出的輪 入軸轉速操作量64輸出給—除法區117。輸人轴轉速操: 里64係一刼縱使目標變速齒輪比%與實際變速齒輪比η間 之差減小所需之輸入軸轉速的量。換句話說,輪入軸轉: 操作量64經設計用來以輸人軸轉速操作量64操縱或改變輪 入軸2ld之轉速。藉此,目標輸人軸轉速53與實際輸入二 轉速55間之差被減小。這導致目標變速齒輪比㈣實際變 129217.doc -19- 200846578 速齒輪比57間的差減小。 量64除以實際輸出軸轉速 。已算出的變速齒輪比操 算區103。 除法區117以輪入軸轉速操作 54以便算出變速齒輪比操作量59 作量59被輸出到目標槽輪速率計 «第三變型》 在發明實施例之第r轉%, + 弟一艾型中,參照圖12說明一實例,其 中馬達3 0係藉由依攄可翻 像了動主槽輪半體21b之槽輪位置⑴算 出槽輪速率差73來控制。In the embodiment of the present invention and its first modification, the reference to the shift gear ratio operation amount 59 is calculated based on the shift gear ratio difference 58. However, the present invention is not limited to the above calculations. The shift gear ratio operation amount 59 can be calculated, for example, as shown in Fig. 11. Specifically, in the second modification of the embodiment of the invention, the subtraction zone is decremented from the actual rotational speed 55 output from the target input shaft rotational speed calculating zone 101 by the actual input shaft rotational speed 55 to calculate the input shaft rotational speed difference 62. The Xianfa District 116 outputs the shaft speed difference 62 to the input shaft speed operation amount calculation area ι〇5. Input shaft The rotational speed operation amount calculation area 1〇5 calculates the input shaft rotational speed operation amount 64 based on the input shaft rotational speed difference 62. The input shaft rotational speed operation amount calculation area 1〇5 outputs the calculated wheel input shaft rotational speed operation amount 64 to the division area 117. Input shaft speed operation: The difference between the target shift gear ratio % and the actual shift gear ratio η reduces the amount of input shaft speed required. In other words, the wheel-in shaft rotation: The operating amount 64 is designed to operate or change the speed of the wheel-in shaft 2ld with the input shaft speed operation amount 64. Thereby, the difference between the target input shaft speed 53 and the actual input two speed 55 is reduced. This results in a reduction in the target gear ratio (4) actual change 129217.doc -19- 200846578 speed gear ratio 57. The amount 64 is divided by the actual output shaft speed. The calculated shift gear ratio operation area 103. The division section 117 operates at the wheel-in-shaft rotational speed 54 to calculate the shift-gear ratio operation amount 59. The amount 59 is output to the target sheave rate meter «third modification" in the r-th turn %, + 弟一艾 type of the embodiment of the invention. An example will be described with reference to Fig. 12, in which the motor 30 is controlled by calculating the sheave speed difference 73 by the sheave position (1) of the movable main sheave half 21b.
士圖12所不’在發明實施例之第三變型中,除法區119 以從目標輸人軸轉速計算區1G1輸㈣目標輸人軸轉速53 除以實際輸出軸轉速54以便算出目標變速齒輪比%。除法 區119將已算出的目標變速齒輪㈣輸出給一目標槽輪位 置計算區106。目標槽輪位置計算區1〇6依據目標變速齒輪 比56算出一目標槽輪位置6。目標槽輪位置計算區1〇6將 已算出的目標槽輪位置輸出給一減法區121。目標槽輪位 置65疋s傳動裝置2〇之變速齒輪比到達目標變速齒輪比% 時可動主槽輪半體21b之槽輪位置(1)。 另一方面,除法區120以實際輸入軸轉速55除以實際輸 出軸轉速54以便算出實際變速齒輪比57。除法區12〇將已 算出的實際變速齒輪比57輸出給減法區。實際槽輪位 置66是當傳動裝置20之變速齒輪比為實際變速齒輪比時 可動主槽輪半體21b之槽輪位置(I)。 減法區121以目標槽輪位置65減實際槽輪位置66以便管 出一槽輪位置差67。減法區121將已算出的槽輪位置差67 1292l7.doc -20- 200846578 輸出給目標槽輪速率計算區103。 目標槽輪速率計算區103依據已輸入的槽輪位置差67算 出目標槽輪速率71。目標槽輪速率計算區103將已算出的 目標槽輪速率71輸出給一減法區122。 減法區122以目標槽輪速率71減實際槽輪速率72以便算 出槽輪速率差73。減法區122將已算出的槽輪速率差73輸 出給馬達驅動信號估算區1 〇4。然後,馬達驅動信號估算 區104如同本發明實施例所述算出PWM信號60。 <<第四變型>> 示於圖13之實施例第四變型係為第三變型之更進一步變 型。在第三變型中提及減法區121以,從目標槽輪位置計算 區1〇6輸出之目標槽輪位置65減依據實際輸出軸轉速“和 實際輸入軸轉速55算出之實際槽輪位置66的實例。但計算 貝際槽輪位置66的方法不侷限於前述方法。舉例來說,如 實施例第四變型所述,減法區12丨可以從目標槽輪位置古十 异區106輸出之目標槽輪位置65減槽輪位置感測器測得 之實際槽輪位置68。 «其他變型》 主槽輪21可能不一定要安裝在曲柄軸丨丨。舉例來說,主 槽輪21可安裝在與曲柄軸丨丨嚙合且與曲柄軸u_起旋轉的 另一轉軸。 副槽輪22可能不一定要安裝在副槽輪軸27。副槽輪。可 安裝在與副槽輪軸27嚙合且與副槽輪軸27一起旋轉的另一 轉軸。 129217.doc -21 - 200846578 變速齒輪機構20a不侷限於皮帶型ECVT。舉例來說,變 速齒輪機構20a可為超環型ECVT。 馬達30不侷限於PWM控制型馬達。舉例來說,馬達3〇 可為脈衝振幅調變(PAM)控制型馬達。另一選擇,馬達3〇 • 可為步進馬達。 - 在上述發明實施例中,提及可動主槽輪半體21b係由馬 . 達3〇,動之一實例。然可動副槽輪半體22b可為由馬達30 帶動。 m 在本發明實施例中,提及目標引擎速率52係依據節流闊 ^度50、車速51、及用於決定一目標引擎速率之圖表70 、疋的貝例。然本發明並不特別限制決定目標引擎速率52 之方法。 «說明書術語定義》 λ在本發明說明書中,"兩輪機動車輛”一辭意指廣義的一 般所稱兩輪機動車輛。也就是說,在本發明中,兩輪機動 • 車辅不僅包含狹義的摩托車還包含例如速可達(scooters)及 一般所稱機器腳踏車(mopeds)。 /,驅動源”一辭意指產生動力者。|,驅動源"可為内燃機引 * 擎、電動馬達及類似物。 -- "連接於"―辭意指直接連接及經由其他構件間接連接。 [產業應用性] *本發明適詩傳動裝置,具有傳動裝置之車輛譬如兩輪 機動車輛,及類似物。 【圖式簡單說明】 129217.doc -22- 200846578 圖1是一實施本發明之兩輪機動 闰0日, 早軸的側視圖。 圖2疋一引擎單元的剖面圖。 圖?-例示一 ECVT之構造的局部剖面圖。 圖圖4是一例示一用於控制兩輪機動車輛之系統的方塊 圖5是一例示傳動裝置控制的方塊圖。 圖6例示一用於決定一目標 竽返率之圖表的實例。 圖7是一例示當一傳動裝詈虛、 ;初始使用時一輸入軸和 一輸出軸之轉速的曲線圖,盆中— ^ ^ 八中—目私變速齒輪比56a係 依據一節流閥開口度5 〇和一車速5 j決定。 圖8是一例示當傳動裝f p陏 心間經過而劣化之後其輸 入軸和輸出軸之轉速的曲線圖,其 ‘虻速齒輪比56a 係依據卽流閥開口度5〇和車速51決定。 圖9是一例示在本發明實施例 ^ ^ ^ ^ 牙初衣置已時間經過 之後其輸入軸和輸出軸之轉速的曲線圖。 圖10是一依據變型1之控制傳動裝置的方塊圖。 圖11是一依據變型2之控制傳動裝置的方塊圖。 圖12是一依據變型3之控制傳動裝置的方塊圖。 圖13是一依據變型4之控制傳動裝置的方塊圖。 【主要元件符號說明】 1 兩輪機動車輛 2 動力單元 7 ECU 7a CPU(計算單元) 129217.doc -23- 200846578 7b 記憶體 8 驅動電路(驅動單元) 9 控制單元 10 引擎 - 18a 節流閥開口度感測器 4 20 傳動裝置 20 a 變速齒輪機構 21 主槽輪 響 21a 固定主槽輪半體 21b 可動主槽輪半體 21c 皮帶槽(第一皮帶槽) 21d 輸入軸 22 副槽輪 22a 固定副槽輪半體 22b 可動副槽輪半體 • 22c 皮帶槽(第二皮帶槽) 22d 輸出軸 23 V形皮帶 * > 25 離心式離合器 25a 離心板 25b 離心重體 25c 離心器殼體 27 副槽輪軸 30 馬達(致動器) 129217.doc -24- 200846578 40 槽輪位置感測器 41 副槽輪旋轉感測器(輸出軸轉速感測器) 42 車速感測器 43 主槽輪旋轉感測器(輸入軸轉速感測器) 50 節流閥開口度In the third modification of the embodiment of the invention, the division section 119 divides the target input shaft rotation speed 53 from the target input shaft rotation speed calculation area 1G1 by the (four) target input shaft rotation speed 54 to calculate the target transmission gear ratio. %. The division area 119 outputs the calculated target shift gear (4) to a target sheave position calculation area 106. The target sheave position calculation zone 1〇6 calculates a target sheave position 6 based on the target shift gear ratio 56. The target sheave position calculation area 1〇6 outputs the calculated target sheave position to a subtraction zone 121. When the target gear wheel position is 65 疋, the transmission gear ratio of the transmission 2〇 reaches the target transmission gear ratio %, and the groove position of the main sheave half 21b is movable (1). On the other hand, the division area 120 is divided by the actual input shaft rotational speed 55 by the actual output shaft rotational speed 54 to calculate the actual shift gear ratio 57. The division area 12〇 outputs the calculated actual gear ratio 57 to the subtraction zone. The actual sheave position 66 is the sheave position (I) of the movable main sheave half 21b when the shifting gear ratio of the transmission 20 is the actual shifting gear ratio. The subtraction zone 121 subtracts the actual sheave position 66 from the target sheave position 65 to account for a sheave position difference 67. The subtraction area 121 outputs the calculated sheave position difference 67 1292l7.doc -20- 200846578 to the target sheave rate calculation area 103. The target sheave speed calculation area 103 calculates the target sheave speed 71 based on the input sheave position difference 67. The target sheave speed calculation area 103 outputs the calculated target sheave speed 71 to a subtraction zone 122. The subtraction zone 122 reduces the actual sheave speed 72 by the target sheave rate 71 to calculate the sheave speed difference 73. The subtraction area 122 outputs the calculated sheave speed difference 73 to the motor drive signal estimation area 1 〇 4. The motor drive signal estimation region 104 then calculates the PWM signal 60 as described in the embodiment of the present invention. <<Fourth Modification>> The fourth modification of the embodiment shown in Fig. 13 is a further modification of the third modification. In the third modification, the subtraction zone 121 is referred to, from the target sheave position 65 output from the target sheave position calculation zone 1 〇 6 minus the actual sheave position 66 calculated from the actual output shaft rotational speed "and the actual input shaft rotational speed 55". The method of calculating the bay wheel position 66 is not limited to the foregoing method. For example, as described in the fourth variation of the embodiment, the subtraction zone 12丨 can be output from the target slot position of the target slot position 106. The wheel position 65 reduces the actual sheave position 68 measured by the sheave wheel position sensor. «Other variants> The main sheave 21 may not necessarily be mounted on the crank axle. For example, the main sheave 21 can be mounted in The crankshaft 丨丨 engages and rotates with the crankshaft u_. The secondary sheave 22 may not necessarily be mounted on the secondary sheave axle 27. The secondary sheave may be mounted in engagement with the secondary sheave axle 27 and with the secondary slot The other shaft that rotates together with the axle 27. 129217.doc -21 - 200846578 The transmission gear mechanism 20a is not limited to the belt type ECVT. For example, the transmission gear mechanism 20a may be a super-ring type ECVT. The motor 30 is not limited to the PWM control type. Motor. For example, horse Up to 3 〇 can be a pulse amplitude modulation (PAM) control type motor. Alternatively, the motor 3 〇 can be a stepping motor. - In the above-described embodiment of the invention, the movable main sheave half 21b is referred to as a horse. An example of the movement of the auxiliary sheave half 22b can be driven by the motor 30. In the embodiment of the invention, the target engine speed 52 is based on the throttle width 50, the vehicle speed 51. And a chart for determining a target engine rate, and a case of 疋. However, the present invention does not particularly limit the method of determining the target engine rate 52. «Instructions Definitions λ In the present specification, "two-wheel The term "vehicle" refers to the general term of the two-wheeled motor vehicle. That is to say, in the present invention, the two-wheeled motor vehicle includes not only a narrow-range motorcycle but also, for example, scooters and generally called mopeds. /, drive source" means the person who generates power. |, drive source " can be used for internal combustion engines, electric motors and the like. -- "Connected to "-word means direct connection and via other components Indirect connection [Industrial Applicability] * The invention is suitable for a transmission device, a vehicle having a transmission device such as a two-wheeled vehicle, and the like. [Simple description of the drawing] 129217.doc -22- 200846578 FIG. 1 is an embodiment Fig. 2 is a partial cross-sectional view showing the structure of an ECVT. Fig. 4 is an example showing an example for controlling two wheels. Fig. 5 is a block diagram showing an example of a transmission control. Fig. 6 is a diagram showing an example of a chart for determining a target return rate. Fig. 7 is an example showing the operation of a transmission device; The graph of the rotational speed of an input shaft and an output shaft, the basin - ^ ^ 八中 - 目私齿轮 gear ratio 56a is determined according to the throttle opening degree 5 〇 and a vehicle speed 5 j. Figure 8 is an example of Transmission fp陏 deteriorated between the hearts A graph of the rotational speeds of the input shaft and the output shaft, the 'idle gear ratio 56a is determined according to the opening degree of the choke valve 5 〇 and the vehicle speed 51. Fig. 9 is an example of the embodiment of the present invention ^ ^ ^ ^ Fig. 10 is a block diagram of a control transmission according to Modification 1. Fig. 11 is a block diagram of a control transmission according to Modification 2. Fig. 12 is a block diagram of a control transmission according to Modification 1. It is a block diagram of a control transmission according to Modification 3. Figure 13 is a block diagram of a control transmission according to Modification 4. [Main component symbol description] 1 Two-wheeled motor vehicle 2 Power unit 7 ECU 7a CPU (computing unit) 129217.doc -23- 200846578 7b Memory 8 Drive Circuit (Drive Unit) 9 Control Unit 10 Engine - 18a Throttle Openness Sensor 4 20 Transmission 20 a Transmission Gear Mechanism 21 Main Slot Ring 21a Fixed Main Slot Wheel half 21b movable main sheave half 21c belt groove (first belt groove) 21d input shaft 22 auxiliary sheave 22a fixed auxiliary sheave half 22b movable auxiliary sheave half body • 22c leather Slot (second belt groove) 22d Output shaft 23 V-belt* > 25 Centrifugal clutch 25a Centrifugal plate 25b Centrifugal heavy body 25c Centrifuge housing 27 Sub-slot axle 30 Motor (actuator) 129217.doc -24- 200846578 40 Slot wheel position sensor 41 Sub-slot wheel rotation sensor (output shaft speed sensor) 42 Vehicle speed sensor 43 Main groove rotation sensor (input shaft speed sensor) 50 Throttle valve opening degree
129217.doc -25·129217.doc -25·
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007072359 | 2007-03-20 | ||
JP2007277114A JP5253786B2 (en) | 2007-03-20 | 2007-10-25 | Transmission, power unit including the same, vehicle, transmission control device, and transmission control method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200846578A true TW200846578A (en) | 2008-12-01 |
TWI342370B TWI342370B (en) | 2011-05-21 |
Family
ID=39984105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97105966A TWI342370B (en) | 2007-03-20 | 2008-02-20 | Transmission, power unit having the same, vehicle, controller for transmission, and method of controlling transmission |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5253786B2 (en) |
CN (1) | CN101270806B (en) |
ES (1) | ES2400169T3 (en) |
TW (1) | TWI342370B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI392598B (en) * | 2010-03-08 | 2013-04-11 | Chuan Yu Tseng | Gearshift apparatus for vehicle |
TWI624405B (en) * | 2016-02-04 | 2018-05-21 | Yamaha Motor Co Ltd | Tilting vehicle |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5369195B2 (en) * | 2009-12-04 | 2013-12-18 | 本田技研工業株式会社 | Control device for automatic transmission |
DE102010002764A1 (en) * | 2010-03-11 | 2011-09-15 | Zf Friedrichshafen Ag | Method for controlling a transmission brake |
JP2018071552A (en) * | 2015-02-26 | 2018-05-10 | ヤマハ発動機株式会社 | Power unit and saddle ride-type vehicle with the same |
JP6907960B2 (en) * | 2018-01-29 | 2021-07-21 | トヨタ自動車株式会社 | Control device for vehicle power transmission device |
CN110094500B (en) * | 2019-04-25 | 2021-09-28 | 江苏理工学院 | CVT electronic control system and method |
CN110219975B (en) * | 2019-05-07 | 2021-08-24 | 江苏理工学院 | Double-motor-regulated CVT electronic control system and method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2900282B2 (en) * | 1990-08-22 | 1999-06-02 | 富士重工業株式会社 | Control device for continuously variable transmission |
JP3375362B2 (en) * | 1993-02-24 | 2003-02-10 | 本田技研工業株式会社 | Continuously variable transmission control device for vehicles |
JP3513314B2 (en) * | 1996-02-20 | 2004-03-31 | 富士重工業株式会社 | Control device for continuously variable transmission for vehicles |
JP3475670B2 (en) * | 1996-09-18 | 2003-12-08 | 日産自動車株式会社 | Transmission control device for continuously variable transmission |
JP3358553B2 (en) * | 1998-08-11 | 2002-12-24 | 日産自動車株式会社 | Shift control device for toroidal type continuously variable transmission |
EP1010920A3 (en) * | 1998-12-15 | 2001-09-12 | Nissan Motor Co., Ltd. | Speed ratio controller and control method of continuously variable transmission |
JP3882417B2 (en) * | 1999-09-09 | 2007-02-14 | 日産自動車株式会社 | Vehicle driving force control device |
JP2002340171A (en) * | 2002-03-11 | 2002-11-27 | Hitachi Ltd | Control device and control method for automatic transmission |
JP2005028915A (en) * | 2003-07-08 | 2005-02-03 | Suzuki Motor Corp | Motorcycle having non-stage transmission |
WO2006009014A1 (en) * | 2004-07-16 | 2006-01-26 | Yamaha Hatsudoki Kabushiki Kaisha | Belt type continuously variable transmission, method of controlling belt type continuously variable transmission, and saddle-riding type vehicle |
JP4005062B2 (en) * | 2004-08-05 | 2007-11-07 | 本田技研工業株式会社 | Hybrid vehicle power switching device |
-
2007
- 2007-10-25 JP JP2007277114A patent/JP5253786B2/en active Active
-
2008
- 2008-02-20 TW TW97105966A patent/TWI342370B/en active
- 2008-03-19 ES ES08250971T patent/ES2400169T3/en active Active
- 2008-03-20 CN CN 200810084108 patent/CN101270806B/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI392598B (en) * | 2010-03-08 | 2013-04-11 | Chuan Yu Tseng | Gearshift apparatus for vehicle |
TWI624405B (en) * | 2016-02-04 | 2018-05-21 | Yamaha Motor Co Ltd | Tilting vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN101270806A (en) | 2008-09-24 |
ES2400169T3 (en) | 2013-04-08 |
TWI342370B (en) | 2011-05-21 |
JP2008261486A (en) | 2008-10-30 |
JP5253786B2 (en) | 2013-07-31 |
CN101270806B (en) | 2013-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200846578A (en) | Transmission, power unit having the same, vehicle, controller for transmission, and method of controlling transmission | |
US8646560B2 (en) | Motor having an integrated torque sensor | |
JP6567983B2 (en) | Bicycle control device and bicycle transmission system | |
JP2008144858A5 (en) | ||
TWI361865B (en) | Continuously variable transmission, vehicle having the continuously variable transmission, and control device and control method for the continuously variable transmission | |
TWI378199B (en) | Continuously variable transmission control device, continuously variable transmission, and vehicle equipped with the same | |
US8755980B2 (en) | Vehicle and control device and control method thereof | |
EP1972836B1 (en) | Electronically-controlled continuously variable transmission | |
JP7373909B2 (en) | Transmission control device and transmission system | |
JP6663951B2 (en) | Control device for continuously variable transmission, control method therefor, continuously variable transmission using the same, vehicle | |
TW200909714A (en) | Continuously variable transmission and straddle type vehicle | |
TWI375764B (en) | Transmission, vehicle having the transmission, and control method | |
JPWO2019013330A1 (en) | vehicle | |
JP2009532638A (en) | Variable speed direct drive transmission | |
JP4582813B2 (en) | Belt-type continuously variable transmission, control method for belt-type continuously variable transmission, and straddle-type vehicle | |
JP5286426B2 (en) | Vehicle, control device thereof, and control method thereof | |
EP2211069B1 (en) | Clutch control apparatus and method of controlling a clutch device | |
JP2006199174A (en) | Device for reverse driving for scooter | |
JP2022118267A (en) | Control device and gear shift system | |
JP7412889B2 (en) | Control device for human-powered vehicles | |
TWI335392B (en) | Control apparatus for transmission mechanism, transmission, vehicle provided therewith, method of controlling the transmission mechanism, and method of estimating heat value of electric motor in the transmission mechanism | |
JP7261944B1 (en) | straddled vehicle | |
TW200900609A (en) | Straddle-type vehicle, power unit and continuously variable transmission | |
JP2018071552A (en) | Power unit and saddle ride-type vehicle with the same | |
EP2990697B1 (en) | Vehicle v-belt continuously variable transmission |