TW200846507A - Low temperature molten salts electrolyte and its preparing method, and preparing method applied the electrolyte to produce platinum thin film - Google Patents

Low temperature molten salts electrolyte and its preparing method, and preparing method applied the electrolyte to produce platinum thin film Download PDF

Info

Publication number
TW200846507A
TW200846507A TW96117661A TW96117661A TW200846507A TW 200846507 A TW200846507 A TW 200846507A TW 96117661 A TW96117661 A TW 96117661A TW 96117661 A TW96117661 A TW 96117661A TW 200846507 A TW200846507 A TW 200846507A
Authority
TW
Taiwan
Prior art keywords
electrolyte
platinum
molten salt
salt
low temperature
Prior art date
Application number
TW96117661A
Other languages
Chinese (zh)
Inventor
Chao-Chen Yang
Chen-Wei Chou
Original Assignee
Univ Nat Yunlin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yunlin Sci & Tech filed Critical Univ Nat Yunlin Sci & Tech
Priority to TW96117661A priority Critical patent/TW200846507A/en
Publication of TW200846507A publication Critical patent/TW200846507A/en

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

A low temperature molten salts electrolyte and its preparing method, and a preparing method applied the low temperature molten salts electrolyte to produce platinum thin film are disclosed. The low temperature molten salts electrolyte is ionic in room temperature, and having high conductivity, heat stable property and can be recycled. The low temperature molten salts electrolyte has high solubility for platinum and palladium. Furthermore, the Pt/Ti Ti-based platinum coating can be obtained from applying the low temperature molten salts electrolyte.

Description

200846507 九、發明說明: 【發明所屬之技術領域】 -促吸遍型熔融鹽電解質及其製備 方法,與應用該電解質製備白金薄膜1備 關於一種以電化學、,且备別是有 i化予沈積法製備白金薄膜之 及其製備方法。 峨|電解質 i无刖技術】 所謂溶融鹽(molten salts)是單一鹽類種 =編混合而成,在加熱至溶點或_由的: ::射原子間之離子鍵結,因為受熱而導致離子鍵 伤或全部解離而形成熔融的離 ·· 因具有賴的料導電純料蚊炫融鹽 专性為良好電解質材料,盘一舻 ΐ溶液或非水溶液電解f比較具有高導電率、又 :電流搶度等性質之外,更具有所謂低蒸氣 1、高溶解度等特性。 …谷 此種理想熱安定性機能材料,可作為金屬熱處理用睡 浴及燃料電池用電解質,及其它貴金屬或高融點金; :精鍊、電解電鍍用反應媒體。-般單-無機鹽類之溶融 孤具相當南之炫點,如氯化峨點4 614。0、氯化她 點為取)、氣化罐點為581。〇等,在裝置設計與 使用上是非常不方便的,基於省能源加以考量,可利用混 兩種或兩種以上之共融混合組成無機鹽類以達降低 -無機鹽類高的溶點問題,> AlCl3_Uci(最低共溶點為 200846507 114°c)及A1C13-KC1(最低共熔點為128它)等,這些熔融鹽 通稱為低溫型溶融鹽(low-temperature molten salts),而數 百度以上的熔融鹽系我們通稱為高温或中高溫型熔融鹽 (high or medium high-temperature molten salts) 〇 如 LiCl-KCl(最低共熔點為350°C)及LaCl3-NaCl(最低共熔點 為 798°C)。 另外熔融鹽的熔融溫度亦可降低至室溫甚至零度以 下,這類熔融鹽具有寬廣之操作溫度範圍在實際操作上較 為方便,對高溫時所涉及材料腐蝕及耗費能源等問題亦可 解決。例如:铭系鹵素化合物與有機化合物混合而成之電 解質,稱為室溫型或常溫型溶融鹽(room- or ambient -temperature molten salts)或離子性液體(ionic liquids)。 電解工業上為提升電解製造便利性及電解效率,高品 質、多機能性電極材料開發乃為相當重要的課題。隨著工 業電解發展,多種電極材料之品質要求日益嚴格,尤其是 腐蝕性明顯之鹽水電解製造氯化合物用不溶性金屬電極 (Dimensionally Stable Electrode ; DSE)所需具備之條件, 如電阻抗性小,反應觸媒能大,化學機械安定性及電化學 安定性等更為材料選擇所需考慮的因素。白金族金屬例如 鉑(Pt)、鈀(Pd)、釕(Ru)、錄(Rh)或銥(Ir)等均具有上述電 極材料之特殊性質。例如白金具有高純度及化學安定性, 乃過硫酸鹽、過氣酸鹽工業電解程序上廣為使用之電極材 料。多種電極基材表面進行貴金屬薄膜彼覆成形方法有真 空蒸鍍法、金屬有機化合物之熱分解法、氣相化學坡覆法 200846507 及水溶液電化學披覆法為主;為提升電極耐蝕性、電極使 用可°卩及电/瓜效率,改善白金披覆層厚度以及與金屬基材 間之結合特性均可以有效提升。尤其白金金屬價昂,故各 種基材表面處理,為達到貴重資源之有效利用,溶融鹽表 , 面電解披覆技術乃能滿足產業所需。 ,鉑金屬鍍層同時具有耐高温強度及耐蝕特性,一般鉑 •金屬鍍層之披覆技術主要是以電化學電解法及氣相蒸鐘 • &應法為主。電解法中則以溶融鹽浴電解披覆法被視為較 具=色。而炫融鹽電解披覆法依電解質組成異同,可概分 為咼溫電解及低溫電解法兩種。 综合目前研究文獻資料顯示,目前仍以高溫溶融鹽電 解法為主,包括操作溫度介於75〇〜8〇(rc之驗金屬氯化 *物、驗金屬氟化物及操作溫度介於350〜彻。C之驗金屬溴 化物等鹽浴電解操作,皆可獲得翻鑛層,然而高溫電解法 除容易產生高温腐蝕問題外’操作時亦需填充惰性氣體, • 以避免鉑氧化物鍍層形成,均待克服。 以電鍍工廢為例,為了達到開發目的,大量製作產品 而隨之所產生毒性物質,如A几此π & 初貝如鼠化物乃為極待克服之問題 點。室溫型溶融鹽因具有熱穩定性及不可燃性,而且對一 些有機與無機化合物有較高之溶解度,將可取代工業上常 !用有毒之有機溶劑,而轉融鹽電解質也因可回收再利 用,以達到有毒物質減量的目的。 轉明係藉由溶融鹽電解質具有極大互溶特性,利用 各種成份調配,探討並製得低溫溶融鹽電解質浴,期望在 200846507 降低電解操作溫度條件下,進行—般溶液中無法 金屬電解披覆反應。鈦金屬具優良之耐姓性及強 端技術產業廣為使狀基材。特別是於含有腐^盘^ 壤境中不銹鋼及銅合金等均不具抗練,相對的,欽=200846507 IX. Description of the invention: [Technical field to which the invention pertains] - a spurt-through molten salt electrolyte and a preparation method thereof, and a method for preparing a platinum film 1 by using the electrolyte, wherein one is electrochemical, and A platinum film is prepared by a deposition method and a preparation method thereof.峨|Electrolyte i-free technology】 The so-called molten salt (molten salts) is a single salt species = mixed, heated to the melting point or _ by: :: ionic bonding between the atoms, due to heat Ion bond injury or total dissociation to form a molten ion · Because of the conductive material, the conductive pure mosquito mosquito salt is specific to a good electrolyte material, and the disk-dip solution or non-aqueous solution electrolysis f has high conductivity, and: In addition to properties such as current rush, it has characteristics such as low vapor 1 and high solubility. ... Valley This ideal thermal stability functional material can be used as a bath for metal heat treatment and electrolyte for fuel cells, and other precious metals or high melting point gold; reaction medium for refining and electrolytic plating. - The single-inorganic salt is dissolved. The solitary is quite bright in the south, such as cesium chloride point 4 614. 0, chlorinated her point, and gasification tank point is 581. 〇, etc., is very inconvenient in the design and use of the device. Based on the consideration of energy saving, it is possible to use two or more kinds of eutectic mixtures to form inorganic salts to reduce the high melting point of inorganic salts. , > AlCl3_Uci (minimum co-melting point is 200846507 114°c) and A1C13-KC1 (lowest eutectic point is 128), etc. These molten salts are generally referred to as low-temperature molten salts, and hundreds of degrees or more The molten salt is commonly referred to as high or medium high-temperature molten salts such as LiCl-KCl (minimum eutectic melting point 350 ° C) and LaCl3-NaCl (minimum eutectic melting point is 798 ° C). ). In addition, the melting temperature of the molten salt can be lowered to room temperature or even below zero. Such a molten salt has a wide operating temperature range, which is convenient in practical operation, and can solve problems such as corrosion of materials involved in high temperature and energy consumption. For example, the electrolyte is a mixture of a halogen compound and an organic compound, and is called a room- or ambient-temperature molten salt or an ionic liquid. In the electrolysis industry, in order to improve the convenience of electrolysis and the efficiency of electrolysis, the development of high-quality, multi-functional electrode materials is a very important issue. With the development of industrial electrolysis, the quality requirements of various electrode materials are becoming more and more stringent, especially for the corrosion-sensitive salt electrolysis to produce the conditions required for the insoluble metal electrode (DSE) for chlorine compounds, such as low resistance and reaction. The catalyst can be large, chemical mechanical stability and electrochemical stability, etc. Platinum metals such as platinum (Pt), palladium (Pd), ruthenium (Ru), rhenium (Rh) or iridium (Ir) all have the special properties of the above-mentioned electrode materials. For example, platinum has high purity and chemical stability, and is an electrode material widely used in industrial persulfate and peroxylate industrial electrolysis procedures. The method for forming the noble metal film on the surface of various electrode substrates includes vacuum evaporation method, thermal decomposition method of metal organic compound, gas phase chemical slope method 200846507 and aqueous solution electrochemical coating method; in order to improve electrode corrosion resistance and electrode The use of 卩° and electric/melon efficiency can improve the thickness of the platinum coating layer and the bonding property with the metal substrate. In particular, the price of platinum metal is high, so the surface treatment of various substrates, in order to achieve the effective use of valuable resources, molten salt table, surface electrolytic coating technology can meet the needs of the industry. Platinum metal coating has high temperature strength and corrosion resistance at the same time. Generally, the coating technology of platinum/metal plating is mainly based on electrochemical electrolysis and gas phase steaming. In the electrolysis method, the electrolytic bathing method in the molten salt bath is regarded as having a color. The smelting and melting salt electrolysis coating method can be divided into two types according to the composition of the electrolyte and the low temperature electrolysis. According to the current research literature, the high temperature molten salt electrolysis method is still used, including the operating temperature of 75〇~8〇 (the metal chlorination of the rc, the metal fluoride and the operating temperature of 350~ C. The salt bath electrolysis operation such as metal bromide can obtain the tumbling layer. However, in addition to the high temperature corrosion problem, the high temperature electrolysis method needs to be filled with inert gas during operation. • To avoid the formation of platinum oxide coating. To be overcome, in the case of electroplating waste, in order to achieve the purpose of development, a large number of products are produced and the resulting toxic substances, such as A, π & first shell, such as ratification, are extremely difficult to overcome. Room temperature type melting Salts are thermally stable and non-flammable, and have high solubility for some organic and inorganic compounds. They will replace the industrial use of toxic organic solvents, and the remelted salt electrolytes can be recycled and reused. To achieve the purpose of reducing toxic substances. The transfer system is characterized by the extremely miscible nature of the molten salt electrolyte, and the formulation of various components is used to explore and prepare a low-temperature molten salt electrolyte bath. Under the condition of lowering the electrolysis operating temperature in 200846507, it is impossible to carry out the metal electrolytic coating reaction in the solution. The titanium metal has excellent resistance to the surname and the strong end technology industry is widely used as the substrate, especially in the case of containing rot Stainless steel and copper alloys in the territory are not resistant to practice, relative, Qin =

則具有耐孔蝕,耐應力腐蝕的特點。 、A 本發明以敛金屬為電極板基材,利用室溫型有機 機混合之溶融鹽具備良好傳導特性,以調配二至三_二 融氯化物電解質浴並添加二氯化始(Ptcl2)及或灿=: 類於鈦電極上以較佳㈣鍍膜組成之脈衝電位技術,= 熔融鹽浴法完成電解鍍鉑技術。 【發明内容】 本發明的目的就是在提供—種低溫型炫融鹽電解質。 本^明的另一目的就是在提供一種低溫 解質之製備方法。 本發明的又-目的就是在提供一種應用低溫型溶融 鹽電解質製備奈米級白金薄膜之方法。 一根據本發明之上述目的,此低溫型炼融鹽電解質包含 有機鹽類’一無機鹽類與一有機溶劑。有機鹽類為1·乙 ^ -3- f ^ a ^ ^ Μ II (l-Ethyl-3-Methyl Imidazolium Chloride ; EMIC) ’無機鹽類為二氯化鉑(p^),且有機鹽類與鱼機 鹽類組成-㈣鹽電解質,而有機溶劑為㈣碳酸醋 (Propylene Carbonate ; PG)。 根據本發明之另一目的,低溫型熔融鹽電解質之製備 200846507 方法,包含下列步驟: (a) 將所需使用之材料置於真空系統中,抽真空並加熱 24小時,加熱溫度為50°C〜150T:,材料包含EMIC,二氯 化鉑(PtCl2)與丙烯碳酸酯。 (b) 並測定材料之水份含量為0.1%以下,再將材料儲 存於手套箱内備用,箱内之水份含量需保持在1〜50 ppm; (c) 以氮氣充滿手套箱。 (d) 將預先配製好之EMIC、二氣化鉑(PtCl2)與丙烯碳 酸酯攪拌均勻為一混合物。 (e) 將步驟(d)之該混合物置於一電磁加熱器上,加熱溫 度為60〜80°C,將該混合物攪拌均勻混合至熟化完成。 根據本發明之又一目的,開發一種應用低溫型熔融鹽 電解質製備奈米級白金薄膜的方法,其製備步驟如下: (a) 以草酸(C2H204)於60°C〜95°C下浸蝕鈦金屬基材共 4 8 0分鐘。 (b) 以乙醇超音波震盪3分鐘後烘乾備用。 (c) 配製Pt(NH3)2(N02)2硝酸溶液適量塗佈於鈦基板。 (d) 於50 °C乾燥後,再於250°C〜550 °C之間熱分解30 分鐘,並反覆操作十次,以形成一沈積基板。 (e) 以一添加 0·1 〜0.5 mol% PtCl2 EMIC,一添加 0.1 〜0.5 mol% PtCl2之EMIC與一 30〜50 mol%之丙烯碳酸酯熔融鹽 做為電解質。 (f) 利用一電化學沈積法製作一白金鍍層30,此電化學 沈積法之電解操作條件為操作溫度30〜90°C,電壓大小 200846507 offOU 〜〇·9) (-0.5〜-0.9V)與脈衝電壓型式(υ(υτ 【實施方式】It has the characteristics of pitting corrosion resistance and stress corrosion resistance. A. The present invention uses a condensed metal as an electrode plate substrate, and a molten salt mixed by a room temperature type organic machine has good conductivity characteristics, and is formulated with a two to three fused chloride electrolyte bath and added with a chlorination start (Ptcl2) and Or Can =: A pulse potential technique consisting of a preferred (four) coating on a titanium electrode, = a molten salt bath method to complete an electrolytic platinum plating technique. SUMMARY OF THE INVENTION The object of the present invention is to provide a low temperature type molten salt electrolyte. Another object of the present invention is to provide a method for preparing a low temperature solution. A further object of the present invention is to provide a method for preparing a nano-scale platinum film using a low-temperature molten salt electrolyte. According to the above object of the present invention, the low temperature type smelting salt electrolyte comprises an organic salt of an inorganic salt and an organic solvent. The organic salt is 1·B^-3-f ^ a ^ ^ Μ II (l-Ethyl-3-Methyl Imidazolium Chloride; EMIC) 'Inorganic salts are platinum dichloride (p^), and organic salts and The fish machine salt composition - (iv) salt electrolyte, and the organic solvent is (four) carbonate vinegar (Propylene Carbonate; PG). According to another object of the present invention, the method for preparing a low temperature type molten salt electrolyte comprises the following steps: (a) placing a material to be used in a vacuum system, evacuating and heating for 24 hours, and heating at a temperature of 50 ° C. ~150T: The material contains EMIC, platinum dichloride (PtCl2) and propylene carbonate. (b) Determine the moisture content of the material to be less than 0.1%, store the material in a glove box, and keep the moisture content in the box at 1 to 50 ppm; (c) Fill the glove box with nitrogen. (d) Stir the pre-formulated EMIC, PtCl2, and propylene carbonate into a mixture. (e) The mixture of the step (d) is placed on an electromagnetic heater at a heating temperature of 60 to 80 ° C, and the mixture is stirred and uniformly mixed until the ripening is completed. According to still another object of the present invention, a method for preparing a nano-scale platinum film by using a low-temperature molten salt electrolyte is developed, and the preparation steps are as follows: (a) etching titanium metal with oxalic acid (C2H204) at 60 ° C to 95 ° C The substrate was a total of 480 minutes. (b) After shaking for 3 minutes with ethanol ultrasonic wave, dry it for later use. (c) Preparing a suitable amount of Pt(NH3)2(N02)2 nitric acid solution on a titanium substrate. (d) After drying at 50 ° C, it was thermally decomposed between 250 ° C and 550 ° C for 30 minutes and repeatedly operated ten times to form a deposition substrate. (e) Adding 0·1 to 0.5 mol% of PtCl2 EMIC, adding 0.1 to 0.5 mol% of PtCl2 of EMIC and a 30 to 50 mol% of propylene carbonate molten salt as an electrolyte. (f) A platinum plating layer 30 is formed by an electrochemical deposition method, and the electrolytic operating conditions of the electrochemical deposition method are an operating temperature of 30 to 90 ° C, and a voltage of 200846507 off OU ~ 〇 · 9) (-0.5 to -0.9 V) And pulse voltage type (υ(υτ [embodiment]

,參照第/圖,其繪示依照本發明一較佳實施例的 製備垂直式磁性薄膜之流程圖。此流程包人 ’步驟步驟13。’步驟14。’步驟15。:步3驟了二驟 步驟110為炫融鹽電解質材料之純化與儲存。首 所需使用之材料置於真空系統中,進行抽真空並加熱(加熱 溫度為50°C〜150。〇24小時之純化步驟,且測定材料中: 水份含量A G_1%以下後再將材料儲存於手套箱_内之 水伤含里需保持在1〜5 〇 ppm)予以備用。 步驟120為炼融鹽電解質之配製。以氮氣充填於手套 箱中,預先配製好i-乙基_3_甲基氯化咪嗤鹽類 U_ethyl_3_methylimidazoliUmchloride ; EMIC)添加 0.^0.5 m〇1% 船2,為一組成之電解質;及EMIC添加〇丨七福% PtCIA 30〜50 mol%丙烯碳酸酉旨為另—組成之電解質(為兩 組屯解貝),將上面化合物以適當温度於電磁加熱器上,加 熱60°C〜80°C並攪拌均勻混合至熟化完成。 步驟130為電化學系統之組裝,請參照第2圖,其繪 不依照本發明一較佳實施例的一種以電化學系統製作垂 直式磁性薄膜之示意圖。電化學系統2〇〇包含電解質2 J 〇, 參考電極220,對應電極230與工作電極24〇。 電化學系統200為一密閉式三電極系統,首先以抽真 二250配合填充氮氣260將電化學系統2〇〇内之水份除 200846507 去,再將電解質210放入電化學系統200内,並插入參考 電極220、對應電極230與工作電極240,而工作電極240 即為鈦金屬之基材。 步驟140為鈦金屬基材之表面粗化,本發明之實施例 所使用之鈦金屬基材32為99.99%之Ti,電解沉積前先以 濃度為10%〜50%的草酸(C2H204)於60°C〜95°C下浸蝕480 分鐘後,再以乙醇超音波震盪3分鐘後烘乾備用。進一步 配製Pt(NH3)2(N02)2硝酸溶液適量塗布鈦基板於50 °C乾燥 後再於250〜550 °C之間,熱分解30分鐘,循此步驟反覆 操作十次,形成Pt沈積基板31。 步驟150為電解沈積白金鍍層。本發明之實施例係以 EMIC添加0.1〜0.5 mol% PtCl2,為一組成之電解質;及 EMIC添加0·1〜0.5 mol% PtCl2與30〜50 mol%丙稀碳酸酯 為另一組成之電解質(為兩組電解質),利用電化學沈積技 術製作白金鍍層30,電解操作條件為操作溫度30〜90°C、 電壓大小 (-0.5〜-0.9V)、 脈衝電壓型式 (丁〇11/(1'。11+1&quot;(^)=:0.5〜0.9)以進行電沈積。 步驟160則為表面結構與白金含量之量測。依步驟140 所得之組成,進一步利用掃猫式電子顯微鏡(scanning electron microscope,SEM)與能量分散光譜儀(Energy dispersive X-ray spectroscope,EDS)分析表面結構鑛層與 白金元素之含量。 以上為本發明之實施例製備白金鍍層之步驟,借由調 配適當熔融鹽電解質配方與調整電壓大小〇0.5〜-0.9V)、與 11 200846507 脈衝電壓塑式(Ton/dn + Toff): 0.5〜0.9),將可得到具有奈米 級顆粒沉積之白金鍍層。以下將分別說明利用電化學沈積 法所製備白金鍍層之結果。在此所量測之儀器為掃瞄式電 子顯微鏡(scanning electron microscope,SEM)與能量分散 光譜儀(Energy dispersive X-ray spectroscope,EDS) ’ 量測 « 面積大小約1〜2公分。 第一實施例 赢 請參考第3A與3B圖,其係繪示以EMIC添加0.1〜0.5 mol% PtCl2為電解質,在30〜90 °C下,脈衝電壓 -0.5〜-0.9V,脈衝型式 1^/(1^+1^0=0.75,電量為 600 庫 侖下電解沉積,可得含鉑(Pt)量86.5%(Pt與Ti之含量比) 之白金锻層。 第二實施例 請參考第4A與4B圖,其係繪示以EMIC添加0.1〜0.5 mol% PtCl2為電解質,在30〜90 °C下,脈衝電壓 -0.5〜_0.9V,脈衝型式 ,電量為 600 庫 侖下電解沉積,可得含鉑(Pt)量91.29 % (Pt與Ti之含量比) 之白金鍍層。 第三實施例 請參考第5A與5B圖,其係繪示以EMIC添加0.1〜0.5 mol% PtCl2及30〜50 mol%丙烯碳酸酯為電解質,在30〜90 °C下,脈衝電壓-0.5〜-0.9V,脈衝型式1^/(1^+1^)=0.86, 12 200846507 電量為600庫侖下電解沉積,可得含鉑(Pt)量92.39 %(Pt 與Ti之含量比)之白金鍍層。 ^ 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾,因此本發明之保護 . 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖係繪示依照本發明一較佳實施例的一種製備白 金鍍層之流程圖。 第2圖係繪示依照本發明一較佳實施例的一種利用電 化學沈積法製作白金鍍層之密閉式三電極系統之示意圖。 第3A圖係繪示依照本發明之第一實施例的一種以 EMIC添加0.1〜0.5 mol% PtCl2熔融鹽電解質之配方所製備 之示意圖。 第3B圖係繪示依照本發明之第一實施例的一種所製 備之白金鍍層 Energy dispersive X-ray spectroscopy 之分析 圖。 第4A圖係繪示依照本發明之第二實施例的一種以 EMIC添加0.1〜0.5 mol%PtCl2熔融鹽電解質之配方所製備 之組成。 13 200846507 第4B圖係繪示依照本發明之第二實施例所製備之白 金鍍層 Energy dispersive X-ray spectroscopy 之分析圖。 第5A圖係繪示依照本發明之第三實施例的一種以 EMIC添加0.1〜0.5 mol% PtCl2熔融鹽電解質之配方所製備 之組成。 第5B圖係繪示依照本發明之第三實施例所製備之白 金鍍層 Energy dispersive X-ray spectroscopy 之分析圖。Referring to Figure /, there is shown a flow chart for preparing a vertical magnetic film in accordance with a preferred embodiment of the present invention. This process is packaged as 'Step Step 13. 'Step 14. 'Step 15. Step 3: Step 2 is the purification and storage of the molten salt electrolyte material. The first required material is placed in a vacuum system, vacuumed and heated (heating temperature is 50 ° C ~ 150. 〇 24 hours purification step, and in the measured material: water content A G_1% or less before the material Store in the glove box _ inside the water injury needs to be kept at 1~5 〇ppm) for use. Step 120 is the preparation of a smelting salt electrolyte. Filled in a glove box with nitrogen, pre-formulated i-ethyl_3_methyl chlorinated salt U_ethyl_3_methylimidazoliUmchloride; EMIC) added 0.^0.5 m〇1% ship 2, a composition of electrolyte; and EMIC Add 〇丨七福% PtCIA 30~50 mol% propylene carbonate 酉 为 另 另 另 另 另 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉 酉C and mix well until the ripening is completed. Step 130 is an assembly of an electrochemical system. Referring to Figure 2, a schematic diagram of a vertical magnetic film fabricated by an electrochemical system in accordance with a preferred embodiment of the present invention is shown. The electrochemical system 2 includes an electrolyte 2 J 〇, a reference electrode 220, a counter electrode 230 and a working electrode 24 〇. The electrochemical system 200 is a closed three-electrode system. First, the water in the electrochemical system 2 is removed by removing the nitrogen gas 260 from the pumping two 250, and then the electrolyte 210 is placed in the electrochemical system 200, and The reference electrode 220, the counter electrode 230 and the working electrode 240 are inserted, and the working electrode 240 is a substrate of titanium metal. Step 140 is to roughen the surface of the titanium metal substrate. The titanium metal substrate 32 used in the embodiment of the present invention is 99.99% Ti, and the concentration of 10% to 50% of oxalic acid (C2H204) is 60 before electroplating. After etching for 480 minutes at °C~95°C, it is vortexed with ethanol for 3 minutes and then dried for later use. Further prepare Pt(NH3)2(N02)2 nitric acid solution and apply a suitable amount of titanium substrate to dry at 50 °C, then at 250~550 °C, thermally decompose for 30 minutes, and repeat the operation ten times to form a Pt deposition substrate. 31. Step 150 is electrolytically depositing a platinum plating. In the embodiment of the present invention, 0.1 to 0.5 mol% of PtCl2 is added as an electrolyte of EMIC; and ECM is added with 0.1 to 0.5 mol% of PtCl2 and 30 to 50 mol% of propylene carbonate as another electrolyte ( For the two groups of electrolytes, the platinum plating layer 30 is formed by electrochemical deposition technique, and the electrolysis operating conditions are an operating temperature of 30 to 90 ° C, a voltage magnitude (-0.5 to -0.9 V), and a pulse voltage type (Ding 〇 11/(1'). 11+1&quot;(^)=: 0.5~0.9) for electrodeposition. Step 160 is the measurement of surface structure and platinum content. According to the composition obtained in step 140, further using a scanning electron microscope (scanning electron microscope) , SEM) and energy dispersive X-ray spectroscope (EDS) analysis of the surface structure of the mineral layer and the content of platinum elements. The above is the embodiment of the invention to prepare the platinum plating step, by formulating the appropriate molten salt electrolyte formula and Adjusting the voltage size 〇0.5~-0.9V), and 11 200846507 pulse voltage molding (Ton/dn + Toff): 0.5~0.9), a platinum plating with nano-particle deposition can be obtained. The results of the platinum plating prepared by the electrochemical deposition method will be separately described below. The instruments measured here are a scanning electron microscope (SEM) and an energy dispersive X-ray spectroscope (EDS) measuring 'area size of about 1 to 2 cm. For the first embodiment, please refer to Figures 3A and 3B, which are shown by adding 0.1~0.5 mol% PtCl2 as electrolyte to EMIC, pulse voltage -0.5~-0.9V at 30~90 °C, pulse type 1^ /(1^+1^0=0.75, the electrode is electrolytically deposited at 600 coulombs, and a platinum forged layer containing 86.5% of platinum (Pt) (content ratio of Pt to Ti) can be obtained. For the second embodiment, please refer to section 4A. With 4B, it is shown that ECl is added 0.1~0.5 mol% PtCl2 as electrolyte, at 30~90 °C, pulse voltage is -0.5~_0.9V, pulse type, electric quantity is 600 coulomb electrolytic deposition, available Platinum plating containing 91.29% (Pt to Ti content ratio) of platinum (Pt). For the third embodiment, please refer to Figures 5A and 5B, which are shown to add 0.1~0.5 mol% PtCl2 and 30~50 mol by EMIC. % propylene carbonate is electrolyte, at 30~90 °C, pulse voltage -0.5~-0.9V, pulse type 1^/(1^+1^)=0.86, 12 200846507 The electricity is 600 coulombs under electrolytic deposition. A platinum plating layer having a platinum (Pt) content of 92.39 % (the ratio of Pt to Ti) is obtained. ^ Although the present invention has been disclosed in the preferred embodiments as above, it is not intended to limit the invention, and any familiarity The scope of the invention is defined by the scope of the appended claims. The scope of the invention is defined by the scope of the appended claims. The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Figure 2 is a schematic view showing a closed three-electrode system for producing a platinum plating by electrochemical deposition according to a preferred embodiment of the present invention. Figure 3A is a first embodiment of the present invention. A schematic diagram of a formulation prepared by adding 0.1 to 0.5 mol% of a PtCl2 molten salt electrolyte by EMC. Fig. 3B is a diagram showing a prepared platinum disintegration energy dispersive X-ray spectroscopy according to a first embodiment of the present invention. Figure 4A is a diagram showing the composition prepared by adding a 0.1 to 0.5 mol% PtCl2 molten salt electrolyte to EMIC according to a second embodiment of the present invention. 13 200846507 FIG. 4B is an analysis diagram of a platinum disintegration energy dispersive X-ray spectroscopy prepared according to a second embodiment of the present invention. FIG. 5A is a diagram showing an EMIC addition according to a third embodiment of the present invention. The composition prepared by the formulation of 0.1~0.5 mol% PtCl2 molten salt electrolyte. Fig. 5B is a view showing an analysis of the energy dispersive X-ray spectroscopy of the platinum plating prepared in accordance with the third embodiment of the present invention.

【主要元件符號說明】 100 :流程 120 :步驟 140 :步驟 160 :步驟 210 :電解質 230 :對應電極 250 :抽真空 110 :步驟 130 :步驟 150 :步驟 200 :電化學系統 220 ··參考電極 240 :工作電極 260 :填充氮氣 14[Main component symbol description] 100: Flow 120: Step 140: Step 160: Step 210: Electrolyte 230: Corresponding electrode 250: Vacuum 110: Step 130: Step 150: Step 200: Electrochemical system 220 · Reference electrode 240: Working electrode 260: filled with nitrogen 14

Claims (1)

200846507 十、申請專利範圍: 1. 一種低溫型熔融鹽電解質,至少包含: 一有機鹽類,該有機鹽類為1-乙基-3-曱基氯化咪唑鹽 類(l-Ethyl-3-Methyl Imidazoliimi Chloride ; 、 k 一無機鹽類,該無機鹽類為5氯化鈿,該有機 鹽類與該無機鹽類|組成一熔融鹽電解質;以及 一有機溶齊&amp;,該有機溶劑為丙烯碳酸ϊ旨(Propylene Carbonate ; PC) 〇 2. —種低温型熔融鹽電解質之製備方法,至少包含下 列步驟: (a) 將所需使用之複數個材料置於真空系統中,抽真空 並加熱24小時,加熱溫度為50°C〜150°C,該些材料包含 EMIC,二氯化鉑(PtCl2)與丙烯碳酸酯; (b) 並測定該些材料之水份含量為0.1%以下,再將該 些材料儲存於手套箱内備用,箱内之水份含量需保持在 1 〜50 ppm ; (c) 以氮氣充滿手套箱,; (d) 將預先配製好之EMIC、二氯化鉑(PtCl2)與丙烯碳 酸酯攪拌均勻為一混合物;以及 (e) 將步驟(d)之該混合物置於一電磁加熱器上,加熱溫 度為60〜80°C,將該混合物攪拌均勻混合至熟化完成。 3. —種應用低溫型熔融鹽電解質製備白金薄膜之方 15 200846507 法,至少包含下列步驟: . (a)以草酸(C2H2〇1)於60〜95 °C下浸蝕鈦金屬基材共 480分鐘; (b) 以乙醇超音波震盪3分鐘後烘乾備用; (c) 配製pt(NH3)2(N02)2頌酸溶液適量塗佈於鈦基板; * ⑷於2 3 4〇 °C乾燥後,再於250°C〜550 °C之間熱分解30 分鐘’並反覆操作十次,以形成一沈積基板; ❿ ⑷以EMIC添加0·1〜〇·5 mol% PtCl2,為一組成之電 解質,友 EMIC 添加 〇.1 〜〇·5 m〇1% PtCl2 與 3〇〜5〇 m〇1% 丙 烯碳酸酯為另一組成之電解質;以及 ()矛】用 氣化學沈積法製作一白金鐘層3 0,此電化學 '尤積法之電解操作條件為操作溫度30〜90°C,電壓大小 (〇.5〇.9力與脈衝電壓型式(1^/(丁。11+1:。订)=0.5〜0.9)。 16 1 ·如申請專利範圍第3項所述之應用低溫型熔融鹽電 2 • 解質製備白全壤p + 3 參 1Λ0/ i厚膜之方法,其中該草酸(C2H204)濃度為 4 10%〜5〇〇/0 〇200846507 X. Patent application scope: 1. A low-temperature molten salt electrolyte comprising at least: an organic salt, which is 1-ethyl-3-indolyl chloride imidazolium salt (l-Ethyl-3- Methyl Imidazoliimi Chloride; k, an inorganic salt, the inorganic salt is cerium chloride, the organic salt and the inorganic salt constituting a molten salt electrolyte; and an organic solvent &amp; Propylene Carbonate (PC) 〇2. A method for preparing a low-temperature molten salt electrolyte, comprising at least the following steps: (a) placing a plurality of materials to be used in a vacuum system, evacuating and heating 24 Hours, heating temperature is 50 ° C ~ 150 ° C, these materials contain EMIC, platinum dichloride (PtCl2) and propylene carbonate; (b) and determine the moisture content of these materials is less than 0.1%, and then The materials are stored in a glove box and the moisture content in the box should be kept at 1 to 50 ppm; (c) filling the glove box with nitrogen; (d) pre-formulated EMIC, platinum dichloride (PtCl2) Stirring with propylene carbonate as a mixture And (e) placing the mixture of the step (d) on an electromagnetic heater at a heating temperature of 60 to 80 ° C, and uniformly mixing the mixture until the ripening is completed. 3. Application of a low temperature molten salt electrolyte The method for preparing a platinum film 15 200846507 comprises at least the following steps: (a) etching a titanium substrate with oxalic acid (C2H2〇1) at 60 to 95 ° C for 480 minutes; (b) oscillating with ethanol. After a minute, dry and set aside; (c) Prepare a suitable amount of pt(NH3)2(N02)2 citric acid solution on the titanium substrate; * (4) After drying at 2 3 4 ° ° C, then at 250 ° C ~ 550 ° C Thermal decomposition between 30 minutes' and repeated operation ten times to form a deposition substrate; ❿ (4) Add 0·1~〇·5 mol% PtCl2 to EMIC, as a composition of electrolyte, friend EMIC added 〇.1 ~〇· 5 m〇1% PtCl2 and 3〇~5〇m〇1% propylene carbonate is another electrolyte; and () spear] by gas chemical deposition method to make a platinum bell layer 30, this electrochemical 'special product The electrolysis operating conditions of the method are operating temperature 30~90 ° C, voltage magnitude (〇.5〇.9 force and pulse voltage type (1^/(丁. 11+1: .))) = 0.5~0.9) 16 1 · Apply low temperature type molten salt electricity as described in item 3 of the patent application. 2. Solve preparation of white whole soil p + 3 ginseng 1Λ0/i thick film The method wherein the concentration of the oxalic acid (C2H204) is 4 10%~5〇〇/0 〇
TW96117661A 2007-05-17 2007-05-17 Low temperature molten salts electrolyte and its preparing method, and preparing method applied the electrolyte to produce platinum thin film TW200846507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96117661A TW200846507A (en) 2007-05-17 2007-05-17 Low temperature molten salts electrolyte and its preparing method, and preparing method applied the electrolyte to produce platinum thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96117661A TW200846507A (en) 2007-05-17 2007-05-17 Low temperature molten salts electrolyte and its preparing method, and preparing method applied the electrolyte to produce platinum thin film

Publications (1)

Publication Number Publication Date
TW200846507A true TW200846507A (en) 2008-12-01

Family

ID=44823179

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96117661A TW200846507A (en) 2007-05-17 2007-05-17 Low temperature molten salts electrolyte and its preparing method, and preparing method applied the electrolyte to produce platinum thin film

Country Status (1)

Country Link
TW (1) TW200846507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113811640A (en) * 2018-12-28 2021-12-17 崔屹 Electrolytic production of high purity lithium from low purity feedstock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113811640A (en) * 2018-12-28 2021-12-17 崔屹 Electrolytic production of high purity lithium from low purity feedstock
US11965261B2 (en) 2018-12-28 2024-04-23 Metagenesis, Ltd. Electrolytic production of high-purity lithium from low-purity sources

Similar Documents

Publication Publication Date Title
Jiang et al. Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm] Cl) ionic liquids
Moradi et al. Addition of IrO2 to RuO2+ TiO2 coated anodes and its effect on electrochemical performance of anodes in acid media
Abbott et al. Electrodeposition of copper composites from deep eutectic solvents based on choline chloride
ZHENG et al. Low-temperature electrodeposition of aluminium from lewis acidic 1-allyl-3-methylimidazolium chloroaluminate ionic liquids
Trieu et al. RuO2-based anodes with tailored surface morphology for improved chlorine electro-activity
Xing et al. Preparation and characterization of a novel porous Ti/SnO 2–Sb 2 O 3–CNT/PbO 2 electrode for the anodic oxidation of phenol wastewater
Cvetković et al. Aluminium electrodeposition under novel conditions from AlCl3–urea deep eutectic solvent at room temperature
Ru et al. Morphology-controlled preparation of lead powders by electrodeposition from different PbO-containing choline chloride-urea deep eutectic solvent
Bernasconi et al. Copper electrodeposition from a chloride free deep eutectic solvent
CN102465312A (en) Electrode for electrolytic chlorine production
Leong et al. Electrochemical study of copper in the 1-ethyl-3-methylimidazolium dicyanamide room temperature ionic liquid
Lai et al. Temperature-dependent inhibition of PEG in acid copper plating: Theoretical analysis and experiment evidence
Li et al. Electrodeposition behavior of aluminum from urea-acetamide-lithium halide low-temperature molten salts
Ghosh et al. Characterization of tin films synthesized from ethaline deep eutectic solvent
Bernasconi et al. Ruthenium electrodeposition from deep eutectic solvents
Yang et al. Electrodeposition of Cu–Li alloy from room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate
Du et al. Effect of coordinated water of hexahydrate on nickel platings from choline–urea ionic liquid
JP2007070698A (en) Method for electrodepositing metal
US8430997B2 (en) Electrode for electrolytic production of chlorine
Kopczyński et al. Electrocatalytic properties of a cerium/nickel coating deposited using a deep eutectic solvent
Voigt et al. Electrodeposition of versatile nanostructured Sb/Sb2O3 microcomposites: A parameter study
da Silva Ries et al. Additive-free electrodeposition of cobalt on silicon from 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid
Rashkov et al. NiW/TiOx composite layers as cathode material for hydrogen evolution reaction
Sides et al. Ruthenium electrodeposition from water-in-salt electrolytes and the influence of tetrabutylammonium
TW200846507A (en) Low temperature molten salts electrolyte and its preparing method, and preparing method applied the electrolyte to produce platinum thin film