TW200845331A - Thermally-conductive compositions - Google Patents

Thermally-conductive compositions Download PDF

Info

Publication number
TW200845331A
TW200845331A TW97113924A TW97113924A TW200845331A TW 200845331 A TW200845331 A TW 200845331A TW 97113924 A TW97113924 A TW 97113924A TW 97113924 A TW97113924 A TW 97113924A TW 200845331 A TW200845331 A TW 200845331A
Authority
TW
Taiwan
Prior art keywords
thermally conductive
package
conductive composition
composition
substrate
Prior art date
Application number
TW97113924A
Other languages
Chinese (zh)
Inventor
Chih-Min Cheng
Andrew Collins
Jing Fan
Original Assignee
Nat Starch Chem Invest
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Starch Chem Invest filed Critical Nat Starch Chem Invest
Publication of TW200845331A publication Critical patent/TW200845331A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The invention provides the art with a packaged thermally conductive composition, the package having discrete units of thermally conductive structures surrounded by adhesive units. The thermally conductive structure extends in a continuous manner from one end of the package face to the other face. The packaged thermally conductive composition provides high thermal properties with good application characteristics at low cost.

Description

200845331 九、發明說明: 【相關申請案參考】 本申請案主張2007年4月17日提出申請之美國臨時專 利申請案No· 60/912,236的利益,其全部内容以參考的方式 併入本文。 【發明所屬之技術領域】 本發明是關於封裝件中之導熱性組合物的運送,下文中稱 為「封裝的導熱性組合物」或「導熱性封裝件」或「封裝件」。 該封裝件特別適用於在電子裝置中去除熱。 【先前技術】 在電子裝置中’熱管理(thermal management)是很重要的。 高度精密且小型的電子裝置之開發,係產生極端的溫度。產生 於密封之電子裝置中的熱,可能會損害該裝置内的元件、減少 ϋ亥衣置的預期哥命、或是對使用者造成危害。 使電子裝置中的熱散逸之其中一種方法,是透過使用熱介 ^材料。齡面材料被用來改善熱裝置/基板/元件和散熱槽/散 ς器(cold SinkS/speaders)之間的熱通量。該材料可為各種形式, 知:魏、片狀、膠狀、塾狀、黏著劑、油脂及相變材料。 ^材料主妓由減性料氧雜體和導熱性填料材 20 200845331 熱管理活動多半著重於增加填料之填載(loading)&/或對齊 填料粒子,以達成聲子傳輸的最低阻抗路徑。然而,增加粒^ 之填載會犧牲效能特性(例如··黏著力、可撓性)及/或應用/處理 要件(例如··糊膏黏度、膜材料的處理特性)。氮化硼已被用來 5 作為導熱性填料,但其為異向性(anisotropic)且難以散佈在樹脂 基質(matrix)中,因為在樹脂系統中裝載氮化硼的典型限制約^ 40重量%。雖然將諸如碳纖維的填料粒子對齊會有益於熱效 此,但此方法無法隔絕電。在其中一種已提出的熱管理方法中, (US 5,695,847和US 5,849,130)導熱性纖維必須對齊大於約45。 1〇 角,以便可被壓縮於基板之間。對熱管理使用對齊之填料,成 本會相當高昂。 ' ^其他的熱管理活動著重於以柱狀排列方式配置固化於聚矽 氧基質中的氮化硼粒子(JP 2000108220)。然而,這些排列方式 15 包含基質中之自由通孔或孔隙。這些基質中之自由通孔或孔隙 可補捉屋氣,並開始裂開和故障,且因此降低熱循環狀態期間 的熱可罪度。在某些應用中,其亦所費甚高。 、在忒技術上,一直有改善封裝一導熱性組合物之設計的需 求以提供回熱性質及良好的應用特性,且成本低廉。當前之 發明即滿足此需求。 【發明内容】 —本發明為-種封裝的導熱性組合物,該封裝件具有由一黏 =匕圍的$熱性結構物之一離散單元。該導熱性結構 、、、貝方式從該封裝件之一端面延伸至另一面。 200845331 在本發明的另一實施例中,該封裝的導熱性組合物是黏性 地黏附至一熱源和一散熱器。該導熱性結構物大致垂直於該熱 源和該散熱器。 在另一實施例中,該封裝件之該導熱性結構物可為各種形 5 狀。 在又一實施例中,该封裝的導熱性組合物可為非膠黏 (non-tacky)膜或具有襯片之壓敏膜(pressure sensitive film)的形 式。 本發明的進一步之實施例指向一種封裝的導熱性組合物, 10 其中該導熱性結構物包含佔該組合物之體積的至少65%之填 料;而該黏著單元大致不含填料。 ' 在本發明的另一實施例中,該導熱性結構物包含氮化硼粒 子。在本發明的另一實施例中,該導熱性結構物包含金屬合金。 在又一實施例中,該導熱性結構物進一步包含透uv填料(uv 15 transparent filler)。 在本發明的另一實施例中,該封裝的導熱性組合物具有至 少2.0 W/mK的導熱率。 另一實施例指向製作或形成該封裝的導熱性組合物的方 法。ϋ些方法包含形成-黏著單元、去除一部份黏著劑以產生 20 Μ隔、將導熱性結構物置於该間隔中、以及加熱以形成封裝件 之一均勻的層。 另-實施例提供使用本發明之封裝的導熱性組合物所製造 之物品。所包含之物品包含··電腦和電腦配備、家用電器、感 200845331 測器、個人電子裝置、LED裝置、防禦/航空裝置等。 件的絲錢抒置和電子元 熱性組合物· μ含在電子裝置上使財㈣之封裝的導 【實施方式】 應用特性 專有名4封破的導熱性組合物」和「導埶性纟且人& 件」在此被域為含有至少—個由m二;/物封裝 結構物。 3有至夕個由黏者早續包圍的導熱性 專有名詞「導熱性結構物」在此被定義為從該封裂件 端面連續地延伸至另一面的柱狀結構。 & 〜 15 專有名3導熱性組合*」在此被㈣為組成該導熱性社 構物以提供高熱性質的材料。 …、% 專有名詞「黏著單元」在此被定義為包圍該導敎性 並可被活化以黏結至基板上的黏著材料。 …、、、、°構物 專有名詞「基板」在此被定義為生熱表面或散熱表面, 20 如:微處理器晶片、半導體裝置/元件或散熱槽/散熱器。 本文所述之發明提供另類的封裝設計或封裝的導熱性級人 物之技術,其可被用來以低成本提供高熱性質及良好的應用& 200845331 性 合物 接著將根據符合本發明之實施例來詳細論述導埶性被 封裝件之設計。 ..... 之一面 圖1描述根據符合本發明之實_的封裝的導熱性組合物 ί…、囷1和圖2,該封裝的導熱性組合物包含黏著單元1 和導熱性結構物2。該導熱性結構物具有長度X和寬度y。該導 熱性結構物的高度Z是從該封裝面的-端連續地延伸至另一 端。 、 1〇 圖3疋描述黏附於基板上之封裝的導熱性組合物的剖面 圖。 筝舨圖3,封裝的導熱性組合物3含有以連續方式從第一 基板4延伸至第二基板5的導熱性結構物2,且該導熱性結構 物2大致垂直於該基板。大致垂直表示該導熱性結構物正交於 /基板且。亥^熱性結構物與該基板之間的角度可從約8〇。至約 1⑻。之間。黏著單元i包圍導熱性結構物2。該封裝之面黏附於 基板4和5。 、,該封裝高度Z,從一端至另一端,約為3〇微米至約3〇〇微 米。该導熱性結構物的長度X、寬度y或直徑(若X與y相等) 20約為、3微米至約3毫米。該封祕長度和寬度可被形成為大於 3微米的任何尺寸,以配合該基板。 奋實施例中,該封裝的組合物為非膠黏之黏著膜。在另 貝&例中,該封裝的組合物為具有襯片的感壓黏著劑。該封 200845331 裝件稍後可由熱、輻射或壓力加以活化,以黏著至基板上。 該封裝件的形狀可為圓柱體、立方體、矩形棱柱體等。可 想像各種形狀來最適當地配合基板所欲之形狀。 在另-實施例中,該導熱性結構物可為各種形狀,諸如: 圓柱體、立方體、多面體、或稜柱體(例如:矩形稜柱體、 六紐柱體、八紐柱爾,且在此被稱為「柱體」。 料熱性結構物是從-面連續地延伸至另_面,而大致正 域結構。該_科需玲⑺ng_t),只 賴_每—相_方歧贿料之-端面延 面即可。該結構在z方向上從該封裝件之—面延續至 。任何多邊形皆可被用來作為該面的形狀,包含:正方 形、圓形、橢圓形、矩形、菱形、星形等。 々1^據_,該導熱性組合物包含至少65%的導姆粒子。 15 20 ;=性組合物進-步可包含:樹脂、空氣、溶劑、‘抗氧化劑、 塑化劑、安定劑、分崙南丨 … <几平 黏劑、防侧、硬化劑i。; s、流變改性劑、著色劑、增 録、ίΓ=非限制性範例包含:氧化硼、銘、銀、銅、 熱性粒子亦包含金私全。Μ 2、金屬合金及混合物。導 銅、鎵、金、銦、鐵、二;屬ί金的範例包含銘,、钻、 及錯之合金。導執性粒+且古、水、錄、鉀、銀、鈦、錫、鋅 尺寸。......子具有約1微米至約4G微米的平均粒子 該導熱性組合物進_牛 非限制性範例包含:奈米二广上透UV填料。透UV填料的 ^央、矛、米氫氧化鋁、奈米氧化錮錫 10 200845331 等。透uv填料可被添加至根據體積的60〇/〇。 黏著單元包圍該導熱性結構物。該黏著單元將該結構保持 妥當,並且將該封裝件黏著至基板上。該黏著單元大致不含填 料,最好是填料少於5重量百分比。 5 該黏著單元包含黏著樹脂。該樹脂的非限制性範例包含: 笨氧基、環氧基、乙烯基、聚酯基、盼酸基、丙稀酸基、聚酿 亞胺基、聚胺曱酸酯基、順丁烯二醯亞胺基、脲基、聚碳酸酯 基、聚芳颯、胺基、、纖維素基、苯氧基、三聚氰胺基、聚丙稀 酸酯基、氰酸酯基樹脂或其混合物。特佳之樹脂為熱塑性樹脂, 1〇 例如:苯氧基、聚乙烯、聚丙烯、及聚苯乙烯。 该黏著單元進一步可包含添加物,諸如:溶劑、催化劑及/ 或固化劑。溶劑的非限制性範例包含:酯、醚、酮或醇。合適 的催化劑及/或固化劑可被用來最適當地平衡固化條件或 劑的工作期(work—iife)。應了解的是,可能有廣範圍的固化劑和 15 固化條件,且其可經由適當的實驗而由從事者為所選擇之樹脂 加以決定。 該黏著單元進一步可包含其他非必要之成份,只要其不損 害該單元的黏性及可撓性(flexibility)性質即可。這些成份可^ 含抗氧化劑、透UV填料、塑化劑、安定劑、分散劑、消:劑二 流變改質劑(rheology modifier)、著色劑、增黏劑、防蝕二 化劑等。 β 法 下文中將詳述製造符合本發明之封裝的導熱性封襄件的方 11 200845331 首先將黏著單元形成為具有約30微米至約300微米的一高 °亥勘著單元中製作預製件(pre-form)並加以去除。將與 "占元同同的導熱性結構物置入該預製件中。接著加熱整 個=著單^和導熱性結構物’以將其溶合在一起來產生導&性 5組t物封裝件。該封裝件亦可被覆於作為壓敏黏著劑的剝離用 襯膜(release iine牡。接著可運送及/或儲存該封裝件。 ^ 了將該封料絲至紐上,魏將縣件裁切成適合 二基板。將該封裝件施加至—第—基板及/或—第二基板上。 ίο Π第一基板和該第二基板合在一起,使得該封裝件位於 w 基板和該第二基板之間。藉由熱、輻射、壓力或心且人 活化該封裝件會促使黏著單元固化及/或將該 ί : = 上。不需額外的機械式緊固件或夾具來將該 其于衣的#性組合物簡妥當。因此,可想㈣封裝件黏附至 基板上的生產速度(throughput)較快。 μ 縣的導齡組合物可被用於各種電抒置,以自敎穿置/ 基板/讀去除熱,並將祕輸缝鋪/散熱器。電 限制性範例包含:電腦和電腦配備, ^ ^ r,鍵盤等,電器;醫療 固人電子裝置,諸如電話、手機、計算機用m 〇播放器、DVD播放器、GPS導航_ .目機、CD 諸如飛彈、衛星、賴等。叹防禦/航空裝置, w二進二率〜^ 發明之範 下列範例是鎌·,林應雜何方式限制本 12 200845331 圍0 範例 導熱性封裝件之製備 5 苯氧樹脂(PKHS-40,InChem Corp·,Rocky Hill,South。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 [Technical Field of the Invention] The present invention relates to the transport of a thermally conductive composition in a package, hereinafter referred to as "packaged thermally conductive composition" or "thermally conductive package" or "package". The package is particularly suitable for removing heat from electronic devices. [Prior Art] Thermal management is important in electronic devices. The development of highly sophisticated and small electronic devices produces extreme temperatures. The heat generated in the sealed electronic device may damage the components within the device, reduce the expected life of the device, or cause harm to the user. One of the methods of dissipating heat in an electronic device is through the use of a thermal material. Ageing materials are used to improve the heat flux between the thermal device/substrate/component and the cold sink/speaders. The material can be in various forms, known as: Wei, sheet, gel, enamel, adhesive, grease and phase change materials. ^Materials are made of reduced oxides and thermally conductive fillers. 20 200845331 Thermal management activities are mostly focused on increasing the loading of fillers and/or aligning filler particles to achieve the lowest impedance path for phonon transport. However, increasing the loading of the particles will sacrifice performance characteristics (e.g., adhesion, flexibility) and/or application/treatment requirements (e.g., paste viscosity, processing characteristics of the film material). Boron nitride has been used as a thermally conductive filler, but it is anisotropic and difficult to spread in a resin matrix because the typical limitation of loading boron nitride in a resin system is about 40% by weight. . Although aligning filler particles such as carbon fibers can be beneficial for thermal effects, this method does not isolate electricity. In one of the proposed thermal management methods, (US 5,695,847 and US 5,849,130) thermally conductive fibers must be aligned greater than about 45. 1 角 angle so that it can be compressed between the substrates. The use of aligned packing for thermal management can be quite costly. ' ^ Other thermal management activities focus on the arrangement of boron nitride particles (JP 2000108220) that are solidified in the polyoxyl group in a columnar arrangement. However, these arrangements 15 include free through holes or pores in the matrix. The free through holes or pores in these matrices can trap the house and begin to crack and fail, and thus reduce the thermal sin during thermal cycling. In some applications, it is also very expensive. In the art, there has been a need to improve the design of a package of a thermally conductive composition to provide regenerative properties and good application characteristics at a low cost. The current invention satisfies this need. SUMMARY OF THE INVENTION - The present invention is a packaged thermally conductive composition having a discrete unit of one of a thermal structure surrounded by a bond. The thermally conductive structure extends from one end face to the other side of the package. In another embodiment of the invention, the thermally conductive composition of the package is adhesively adhered to a heat source and a heat sink. The thermally conductive structure is substantially perpendicular to the heat source and the heat sink. In another embodiment, the thermally conductive structure of the package can be in the form of a variety of shapes. In yet another embodiment, the thermally conductive composition of the package can be in the form of a non-tacky film or a pressure sensitive film having a backing. A further embodiment of the invention is directed to a packaged thermally conductive composition, wherein the thermally conductive structure comprises at least 65% of the volume of the composition; and the adhesive unit is substantially free of filler. In another embodiment of the invention, the thermally conductive structure comprises boron nitride particles. In another embodiment of the invention, the thermally conductive structure comprises a metal alloy. In yet another embodiment, the thermally conductive structure further comprises a uv 15 transparent filler. In another embodiment of the invention, the thermally conductive composition of the package has a thermal conductivity of at least 2.0 W/mK. Another embodiment is directed to a method of making or forming a thermally conductive composition of the package. Some of these methods include forming a bonding unit, removing a portion of the adhesive to create a 20 spacer, placing the thermally conductive structure in the spacer, and heating to form a uniform layer of the package. Another embodiment provides articles made using the encapsulated thermally conductive composition of the present invention. The items included include computer and computer equipment, household appliances, and sensors 200845331, personal electronic devices, LED devices, defense/aviation devices, etc. Piece of silk money and electronic heat-sensitive composition · μ contained in the electronic device to make the package of the fourth (fourth) package [the application of the characteristic name 4 sealed thermal conductivity composition" and "inductive properties and The person & component is herein comprised of at least one of the two structures. 3. Thermal conductivity surrounded by the viscous person. The term "thermally conductive structure" is defined herein as a columnar structure extending continuously from the end face of the fracture member to the other surface. & ~ 15 The proprietary name 3 thermal conductivity combination *" is here (4) is a material that constitutes the thermal conductive structure to provide high thermal properties. ..., % The proper term "adhesive unit" is defined herein as an adhesive material that surrounds the guiding property and can be activated to bond to the substrate. ..., , , , ° ° The proper term "substrate" is defined herein as a heat generating surface or a heat dissipating surface, such as a microprocessor chip, a semiconductor device/component, or a heat sink/heat sink. The invention described herein provides an alternative package design or packaged thermal conductivity grade technique that can be used to provide high thermal properties and good applications at low cost & 200845331. The composition will then be in accordance with an embodiment consistent with the present invention. The design of the conductive package is discussed in detail. 1 . 1 depicts a thermally conductive composition of a package according to the present invention, 囷 1 and FIG. 2 , the thermally conductive composition of the package comprising an adhesive unit 1 and a thermally conductive structure 2 . The thermally conductive structure has a length X and a width y. The height Z of the heat conducting structure extends continuously from the - end of the package face to the other end. Figure 3A is a cross-sectional view showing the thermally conductive composition of the package adhered to the substrate. Figure 3, the encapsulated thermally conductive composition 3 comprises a thermally conductive structure 2 extending from a first substrate 4 to a second substrate 5 in a continuous manner, and the thermally conductive structure 2 is substantially perpendicular to the substrate. Roughly perpendicular means that the thermally conductive structure is orthogonal to the / substrate. The angle between the thermal structure and the substrate can be from about 8 。. To about 1 (8). between. The adhesive unit i surrounds the thermally conductive structure 2. The surface of the package is adhered to the substrates 4 and 5. The package height Z is from about 3 microns to about 3 microns from one end to the other. The length X, width y or diameter (if X and y are equal) 20 of the thermally conductive structure is about 3 microns to about 3 mm. The seal length and width can be formed to any size greater than 3 microns to fit the substrate. In the embodiment, the encapsulated composition is a non-adhesive adhesive film. In the case of the shell &, the encapsulated composition is a pressure sensitive adhesive having a liner. The 200845331 assembly can later be activated by heat, radiation or pressure to adhere to the substrate. The shape of the package may be a cylinder, a cube, a rectangular prism, or the like. It is conceivable to have a variety of shapes to best fit the desired shape of the substrate. In another embodiment, the thermally conductive structure can be of various shapes, such as: a cylinder, a cube, a polyhedron, or a prism (eg, a rectangular prism, a six-column, a eight-column, and is here It is called “cylinder.” The heat-generating structure extends continuously from the - face to the other face, and is roughly positively structured. The _ke needs Ling (7) ng_t), only depends on the _ every phase - the party is bribed - The end face can be extended. The structure continues from the face of the package in the z direction. Any polygon can be used as the shape of the face, including: square, circle, ellipse, rectangle, diamond, star, and so on. According to _, the thermally conductive composition comprises at least 65% of the dam particles. 15 20 ;= Sex composition step-by-step may include: resin, air, solvent, 'antioxidant, plasticizer, stabilizer, bismuth ... < several flat adhesives, anti-side, hardener i. ; s, rheology modifier, colorant, addition, Γ Γ = non-limiting examples include: boron oxide, Ming, silver, copper, thermal particles also contain gold. Μ 2, metal alloys and mixtures. Leading copper, gallium, gold, indium, iron, and two; examples of gamma gold include the alloys of Ming, Drill, and Wrong. The size of the granules + ancient, water, recorded, potassium, silver, titanium, tin, zinc. The sub-particles have an average particle size of from about 1 micron to about 4 g microns. The thermally conductive composition is incorporated into a bovine non-limiting example comprising: a nano-wide UV-permeable filler. UV-permeable filler, spear, rice aluminum hydroxide, nano bismuth oxide 10 200845331 and so on. The permeable uv filler can be added to 60 〇/〇 depending on the volume. An adhesive unit surrounds the thermally conductive structure. The adhesive unit holds the structure and adheres the package to the substrate. The adhesive unit is substantially free of filler, preferably less than 5 weight percent of the filler. 5 The adhesive unit contains an adhesive resin. Non-limiting examples of the resin include: stupidoxy, epoxy, vinyl, polyester, expectorate, acrylate, polyanilino, polyamine phthalate, butylene Amidino group, ureido group, polycarbonate group, polyaryl fluorene, amine group, cellulose group, phenoxy group, melamine group, polyacrylate group, cyanate group-based resin or a mixture thereof. Particularly preferred resins are thermoplastic resins, such as phenoxy, polyethylene, polypropylene, and polystyrene. The adhesive unit may further comprise additives such as a solvent, a catalyst and/or a curing agent. Non-limiting examples of solvents include: esters, ethers, ketones or alcohols. Suitable catalysts and/or curing agents can be used to most suitably balance the curing conditions or the working period of the agent. It will be appreciated that a wide range of curing agents and 15 curing conditions may be present and that they may be determined by the practitioner for the resin selected by appropriate experimentation. The adhesive unit may further comprise other optional components as long as it does not impair the viscosity and flexibility properties of the unit. These ingredients can contain antioxidants, UV-permeable fillers, plasticizers, stabilizers, dispersants, rheology modifiers, colorants, tackifiers, and anti-corrosion agents. The β method will hereinafter detail the method of manufacturing the thermally conductive sealing member according to the package of the present invention. 200845331 Firstly, the adhesive unit is formed into a high-rise unit having a height of about 30 μm to about 300 μm to prepare a preform ( Pre-form) and removed. A thermal conductive structure similar to "Zhanyuan is placed in the preform. Next, the entire unit and the thermally conductive structure are heated to fuse them together to produce a conductive & 5 set of t-packages. The package can also be coated with a release liner as a pressure sensitive adhesive (release iine. The package can then be shipped and/or stored. ^ The seal is applied to the yarn, and the Weixian piece is cut. The package is applied to the first substrate and/or the second substrate. The first substrate and the second substrate are combined such that the package is located on the w substrate and the second substrate Between the activation of the package by heat, radiation, pressure or heart, the adhesive unit is cured and/or the ί : = is applied. No additional mechanical fasteners or clamps are required to coat the garment. The composition is simple. Therefore, it is conceivable that (4) the production speed of the package adhered to the substrate is faster. μ County's lead-in composition can be used for various electric devices to self-piercing/substrate /Read to remove heat, and will secretly sew / heat sink. Electric restrictions include: computer and computer equipment, ^ ^ r, keyboard, etc., electrical appliances; medical solid electronic devices, such as telephone, mobile phone, computer m 〇 Player, DVD player, GPS navigation _. Eye machine, CD such as fly , satellite, Lai, etc. Sigh defense / aeronautical device, w two into two rate ~ ^ The following examples of the invention are 镰 ·, Lin Ying miscellaneous ways to limit this 12 200845331 circumference 0 example thermal conductivity package preparation 5 phenoxy resin (PKHS-40, InChem Corp., Rocky Hill, South

Carolina)是溶於MEK(曱基乙基酮,Aldrich)中。其接著被洗矯 於離型MYLAR膜(DuPont)上,並以80°C乾燥20分鐘達15 之厚度。藉由在室溫下自該模(die)沖出圓形的部份來產生預製 件。 1〇 將來自日本Denka的FSB300之導熱性結構物沖製。 將咼度填充之導熱性結構物的切塊(c u t _ 〇 u t),置入該笨氧樹 脂的圓形預製件巾,⑽成封裝件。接著以15(rc加熱該封裝 件,以將該導熱性結構物和黏著單元溶合在一起,以形成一單 -膜。該封裝件具有可撓性,並可以手加以彎折而不破裂。 15 II封裝件之評杜 8G psi的彈黃夾將該製備之膜嵌 間。然後將其置於15(TC的料祕碟之Carolina) is soluble in MEK (mercaptoethyl ketone, Aldrich). It was then washed onto a release MYLAR film (DuPont) and dried at 80 ° C for 20 minutes to a thickness of 15. The preform is produced by punching a circular portion from the die at room temperature. 1〇 The thermally conductive structure of FSB300 from Denka, Japan was punched out. A diced (c u t _ 〇 u t) of the thermal-filled structure filled with the temperature is placed in the circular preform of the anaerobic resin, and (10) is packaged. The package is then heated at 15 (rc) to fuse the thermally conductive structure and the adhesive unit together to form a single-film. The package is flexible and can be bent by hand without breaking. 15 II package evaluation Du 8G psi elastic yellow clip to embed the prepared film. Then put it in 15 (TC's material secret disc

MiCr〇flash(Netzdie)機器的評估‘示二二猎由 LaSerFlash mils),總阻抗為〇.55 Kcm2/W /而導^厚度為0.1% mm (6 碟無法由指力分開,表示黏著力良好”广‘、、、2.78 W/mK。該銘 13 200845331 里丞範例~預示導急&^羞件之劁借 ,層驗咖蝴嵌於倾膜之焊嫩諸如苯氧樹脂膜 触二者膜起作用。以诸如MEK的溶劑去除s〇此如也的載 體膜,在該黏著膜上留下該焊料。根據所欲的黏著膜之厚度, 5可執行額外的層合步驟。現在可將其裁切為配合基板,以在稍 後加以活化。 熟習該項技藝者將可輕易地在不脫離本發明之精神與範圍 下,做出各種修飾與變更。此處所述之特定實施例僅供^範, 且本發明僅受限於所附申請專利範圍之用語,以及這些申請專 1〇 利範圍之等效物的最大範圍。 【圖式簡單說明】 圖1為封裝的導熱性組合物的一面之示意性俯視圖。 圖2為封裝的導熱性組合物的示意性立體侧視圖。 圖3為位於散熱器和熱源之間的封裝的導熱性組合物之示 意性剖面圖。 【主要元件符號說明】 1 黏著單元 2 導熱性結構物 3 封裝的導熱性組合物 4 第一基板 5 弟二基板 14The evaluation of the MiCr〇flash (Netzdie) machine 'shows the second and second hunting by LaSerFlash mils), the total impedance is 〇.55 Kcm2/W / and the thickness of the guide is 0.1% mm (6 discs cannot be separated by finger force, indicating good adhesion) "Guang",,, 2.78 W/mK. The Ming 13 200845331 丞 丞 ~ 预 预 预 预 预 预 预 预 预 预 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ The film acts. The carrier film, such as MEK, is removed by a solvent such as MEK, leaving the solder on the adhesive film. Depending on the thickness of the desired adhesive film, 5 an additional lamination step can be performed. It is cut to fit the substrate for activation at a later time. Various modifications and changes can be made by those skilled in the art without departing from the spirit and scope of the invention. The invention is to be limited only by the terms of the accompanying claims, and the maximum scope of the equivalents of the claims. FIG. 1 is a packaged thermally conductive composition. Schematic top view of one side. Figure 2 is a thermally conductive composition of the package Figure 3 is a schematic cross-sectional view of a thermally conductive composition of a package between a heat sink and a heat source. [Main component symbol description] 1 Adhesive unit 2 Thermally conductive structure 3 Thermally conductive composition of the package 4 first substrate 5 second substrate 14

Claims (1)

200845331 2· 3· 4· 5· 6· 申請專利範圍: 一種封裝的導熱性組合物,兮 單元所包圍的-導熱性結構^封襄的組合物包含被一黏著 如請求項第1項之封裝的導献 構物以連續方式從一面延伸物’其中該導熱性結 構二!ίϋ:封I的導熱性組合物,其中該導熱性結 構物包含導熱性填料和黏結劑。 員第3項之封裝的導熱性組合物,其中該導埶性结 構物包含佔該結構之總體積的至少65%之填料。… 項第4項之封裝的導熱性組合物,其中該導熱性填 料疋每:自下列所組成之群^ 入 & #、、、 ’、 鋼、鎂、Π .儿 孟屬合金、氮化硼、鋁、銀、 幻鎂Η銅、乳化紹、氧化鋅、石墨碳及其混合物。 5項之封裝的導熱性組合物,其中該導熱性填 H t求項第4項之封裝的導熱性組合物,其中該金屬合金 心自由下列所組成之合金:銘、麵、銘、銅、録、金、 、載金口、鎂、汞、鎳、鉀、銀、|太、锡、辞及錯。 求項第3項之封裝的導熱性組合物,其中該導熱性結 構物進一步包含透UV填料。 月长項第3項之封裝的導熱性組合物,其中絲結劑進 15 9. 200845331 著色劑、 二步包含抗氧化劑、塑化劑、钱劑、分散劑 增黏劑、防糊、魏航其組合。 ίο. 如睛求項第1項之封裝的 包含黏著樹脂。 導熱性組合物,其中該黏著單元 11. 該樹脂是笨 12. 如明求項第9項之封裝的導熱性組合物,其巾該黏著單_ 進一步包含催化劑、固化劑及其組合。 70 13. 14. 15. 、月求員弟9項之封裝的導熱性組合物,其中該黏著單元 進一步包含抗氧化劑、塑化劑、安定劑、分散劑、著7^ 增黏劑、防姓劑、硬化劑、透UV填料及其組合。巧 如明求項第1項之封裝的導熱性組合物,其巾該導熱性社 2物具有圓柱體、立方體、多面體、稜柱體及其組合之= I乍士明求項弟1項之封裝的導熱性組合物的方法, 包含: (a) 形成均質之一黏著單元; (b) 去除該黏著單元之—部份,以產生一空隙; ⑹將-導·結構物嵌人該空隙;以及 ⑹加熱以溶合该黏著單元和該導熱性結構物,以形成 裝件之一均勻層。 、 16 200845331 , 16· —種製作如請求項第15項之封裝的導熱性組合物的方 法,進/步包含對該封裝件之各面施加一剝離用襯膜。 17· —種製作如請求項第1項之封裝的導熱性組合物的方法, 包含: (a) 將一層合膜(laminate film)施加至焊料内嵌的一載體膜 上;以及 (b) 去除該載體膜;以及 其中該載體膜的厚度等於或大於該層合膜的厚度。 18. —種密封及/或製作電子裴置及/或元件的製程,該製程包 含·· (a) 將如請求項第1項之封裝的導熱性組合物施加至一第 一基板及/或一第二基板上; (b) 將該第一基板和該第二基板合在一起,使得該封裝件位 於該第一基板和該第二基板之間;以及 (c) 活化該封裝的導熱性組合物; 藉此,該第一基板變成黏結至該第二基板。 19. 如請求項第18項之密封及/或製作電子裝置及/或元件的製 程’其中活化是選自下列所組成之群組:熱、輕射、壓力 及其組合。 20. -種設備,包含如請求項第丨項之塊的導熱性組合物。 17200845331 2· 3· 4· 5· 6· Patent application scope: A packaged thermal conductive composition, the composition of the thermal conductive structure surrounded by the germanium unit contains a package that is adhered as in item 1 of the claim The conductive structure extends from one side in a continuous manner, wherein the thermally conductive structure is a heat-conducting composition, wherein the thermally conductive structure comprises a thermally conductive filler and a binder. The encapsulated thermally conductive composition of item 3, wherein the conductive structure comprises at least 65% filler by weight of the total volume of the structure. The thermally conductive composition of the package of item 4, wherein the thermally conductive filler is: from the group consisting of &#,,, ', steel, magnesium, strontium, genus, nitriding Boron, aluminum, silver, aluminum bismuth copper, emulsified, zinc oxide, graphite carbon and mixtures thereof. The thermally conductive composition of the package of 5, wherein the thermal conductivity is filled with the thermally conductive composition of the package of item 4, wherein the metal alloy core is free of the following alloys: Ming, face, Ming, copper, Record, gold, and gold, magnesium, mercury, nickel, potassium, silver, | Tai, tin, resignation and error. The thermally conductive composition of the package of claim 3, wherein the thermally conductive structure further comprises a UV permeable filler. The thermal conductive composition of the package of item 3 of the monthly term, wherein the silking agent enters 15 9. 200845331 coloring agent, two steps including antioxidant, plasticizer, money agent, dispersant tackifier, anti-paste, Wei Hang Its combination. Ίο. The encapsulation of item 1 contains adhesive resin. A thermally conductive composition, wherein the adhesive unit 11. The resin is stupid 12. The thermally conductive composition of the package of claim 9, wherein the adhesive sheet further comprises a catalyst, a curing agent, and combinations thereof. 70 13. 14. 15. The monthly thermal conductivity composition of the package of 9 members, wherein the adhesive unit further comprises an antioxidant, a plasticizer, a stabilizer, a dispersant, a 7^ tackifier, and an anti-surname Agent, hardener, UV permeable filler, and combinations thereof. The thermally conductive composition of the package of the first item of the present invention, the thermal conductivity of the material has a cylinder, a cube, a polyhedron, a prism, and a combination thereof. The method of thermally conductive composition, comprising: (a) forming a homogeneous one of the adhesive units; (b) removing a portion of the adhesive unit to create a void; (6) embedding the conductive structure into the void; (6) heating to dissolve the adhesive unit and the thermally conductive structure to form a uniform layer of the package. 16 200845331, a method of producing a thermally conductive composition of the package of claim 15 wherein the step of applying a release liner to each side of the package. 17. A method of making a thermally conductive composition as packaged in claim 1 comprising: (a) applying a laminate film to a carrier film embedded in the solder; and (b) removing The carrier film; and wherein the thickness of the carrier film is equal to or greater than the thickness of the laminate film. 18. A process for sealing and/or fabricating an electronic device and/or component, the process comprising: (a) applying a thermally conductive composition as packaged in claim 1 to a first substrate and/or a second substrate; (b) combining the first substrate and the second substrate such that the package is between the first substrate and the second substrate; and (c) activating thermal conductivity of the package a composition; whereby the first substrate becomes bonded to the second substrate. 19. The process of sealing and/or fabricating electronic devices and/or components of claim 18 wherein activation is selected from the group consisting of heat, light, pressure, and combinations thereof. 20. A device comprising a thermally conductive composition as in the bulk of the claim. 17
TW97113924A 2007-04-17 2008-04-17 Thermally-conductive compositions TW200845331A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US91223607P 2007-04-17 2007-04-17

Publications (1)

Publication Number Publication Date
TW200845331A true TW200845331A (en) 2008-11-16

Family

ID=39875867

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97113924A TW200845331A (en) 2007-04-17 2008-04-17 Thermally-conductive compositions

Country Status (2)

Country Link
TW (1) TW200845331A (en)
WO (1) WO2008130958A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486391B (en) * 2010-04-19 2015-06-01 Kaneka Corp High thermal conductivity of thermoplastic resin
CN104766845A (en) * 2014-01-07 2015-07-08 恩特日安 Heat transfer structure and manufacturing method thereof
US9234095B2 (en) 2009-09-16 2016-01-12 Kaneka Corporation Thermally-conductive organic additive, resin composition, and cured product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853622A (en) * 1990-02-09 1998-12-29 Ormet Corporation Transient liquid phase sintering conductive adhesives
US5672297A (en) * 1995-10-27 1997-09-30 The Dow Chemical Company Conductive composite articles based on expandable and contractible particulate matrices
US6884314B2 (en) * 1997-02-07 2005-04-26 Henkel Corporation Conducive, silicone-based compositions with improved initial adhesion reduced microvoiding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234095B2 (en) 2009-09-16 2016-01-12 Kaneka Corporation Thermally-conductive organic additive, resin composition, and cured product
TWI486391B (en) * 2010-04-19 2015-06-01 Kaneka Corp High thermal conductivity of thermoplastic resin
CN104766845A (en) * 2014-01-07 2015-07-08 恩特日安 Heat transfer structure and manufacturing method thereof
TWI558969B (en) * 2014-01-07 2016-11-21 恩特日安 Heat transfer structure and manufacturing method
CN104766845B (en) * 2014-01-07 2017-11-14 恩特日安 Heat transfer structure and its manufacture method

Also Published As

Publication number Publication date
WO2008130958A1 (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP4872587B2 (en) Sealing film and semiconductor device using the same
TWI427685B (en) Semiconductor device and method of manufacturing the same
JP6119950B2 (en) Hollow structure electronic components
US8822036B1 (en) Sintered silver joints via controlled topography of electronic packaging subcomponents
JP2019085486A (en) Film-like adhesive, and method for manufacturing semiconductor package using the film-like adhesive
JP4137827B2 (en) Conductive adhesive film and semiconductor device using the same
JP2005503467A5 (en)
JP5538739B2 (en) Thermally conductive composite sheet and method for producing the same
JP2002069392A (en) Heat-conductive adhesive film, method for producing the same and electronic part
US7906373B1 (en) Thermally enhanced electrically insulative adhesive paste
TW201205740A (en) Film for flip chip type semiconductor back surface, and its use
JP2004311577A (en) Thermally conductive composite sheet and method of manufacturing the same
JP2017108183A (en) Hollow structure electronic component
JP2011146731A (en) Adhesive composition and method of manufacturing semiconductor device
JP2012169414A (en) Encapsulation resin sheet, semiconductor device using the same and manufacturing method of semiconductor device
JPWO2020039560A1 (en) Semiconductor device manufacturing method, heat conductive sheet, and heat conductive sheet manufacturing method
JP2016050240A (en) Encapsulation sheet, encapsulation sheet having separator, semiconductor device and method for manufacturing semiconductor device
JP2008044009A (en) Method of joining members having different thermal expansion coefficients
TW200845331A (en) Thermally-conductive compositions
KR102073270B1 (en) Oled encapsulant, manufacturing thereof and encapsulation method of oled
JP4635412B2 (en) Conductive adhesive film and semiconductor device using the same
CN207347483U (en) One kind buffering Heat dissipation adhesive tape
JP2016096308A (en) Semiconductor device manufacturing method
JPWO2020039561A1 (en) Semiconductor device manufacturing method and heat conductive sheet
JP2003152147A (en) Heat conductive composite, heat conductive pressure sensitive adhesive sheet as well as jointing structure of heat generating body and heat dissipation body