TW200844677A - Image forming optical system, exposure equipment and device manufacturing method - Google Patents
Image forming optical system, exposure equipment and device manufacturing method Download PDFInfo
- Publication number
- TW200844677A TW200844677A TW097101424A TW97101424A TW200844677A TW 200844677 A TW200844677 A TW 200844677A TW 097101424 A TW097101424 A TW 097101424A TW 97101424 A TW97101424 A TW 97101424A TW 200844677 A TW200844677 A TW 200844677A
- Authority
- TW
- Taiwan
- Prior art keywords
- imaging
- optical system
- image
- imaging optical
- pattern
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70341—Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0804—Catadioptric systems using two curved mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0892—Catadioptric systems specially adapted for the UV
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70225—Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
200844677 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種成像光學系統、曝光裝置、及元件 製造方法,尤其是關於一種以光微影製程製造半導體元件 或液晶顯示元件等之元件時所使用之曝光裝置所適用的投 影光學系統。 【先前技術】 於用以製造半導體元件等之光微影製程,使用將光罩 (或標線片)之圖案像透過投影光學系統投影曝光於感光性 基板(塗布光阻之晶圓、玻璃板等)上的曝光裝置。於曝光 裝置’隨著半導體元件等之集成度的提昇,投影光學系統 所要求之解析力(解析度)亦日益升高。為了滿足對投影光 學系統之解析力的要求’必須縮短照明光(曝光用光)的波 長久’且加大投影光學系統之像側數值孔徑να。因此, 已知一種液浸技術,其藉由在投影光學系統與感光性基板 之間之光路中充滿折射率高之液體般的介質,謀求像侧數 值孔徑的增大。 一般而言,於像侧數值孔徑大的投影光學系統,不限 於液浸系統即使是乾燥系統,從使珀茲伐條件(Petzval condition)成立以獲得像之平坦性的觀點來看,較佳為採用 反射折射型的成像光學系統,從對各種微細圖案之對應力 的觀點來看,較佳為採用有效視野(或有效成像區域)不含 光軸之轴外視野型的成像光學系統。以往,揭示各種適於 6 200844677 曝光裝置之軸外視野型之反射折射型的成像光 蒼照專利文獻1)。 學系統(例 如 專利文獻1 ··美國再發行專利第RE3 843 8號 【發明内容】 於曝光裝置,伴隨半導體電路之微細化, 士 &半圖案亦 持續微細化。然而,光罩圖案之微細化導致光罩 ^ 、 ^造成 本的增加,於非使用一個光罩大量生產之多品種少量生產 的半導體,亦導致晶片成本的增加。因此,為了不伴隨光 罩圖案之微細化來實現半導體電路之微細化,考慮將浐影 光學系統之投影倍率(成像倍率)之絕對值設定較小。然而, 於一邊使光罩及感光性基板相對投影光學系統移動、一邊 使圖案掃描曝光於一個照射區域之掃描型曝光裝置,將於 影光學系統之倍率之絕對值設定較小時,因用以掃描光罩 之光罩載台之速度限制,無法避免產率的降低。 另一方面,於使光罩圖案一次曝光於感光性基板上之 一個照射區域之一次型曝光裝置,即使將投影光學系統之 投影倍率之絕對值設定較小,亦可避免產率的降低。然而, 於專利文獻1等所揭示之習知軸外視野型之反射折射型的 成像光學糸統’由於將反射鏡所反射之光的光路與射入該 反射鏡之光的光路分離’因此僅能確保比較細長之矩形或 圓弧狀的有效成像區域(有效投影區域),即使能適用於掃 描型曝光裝置,實際上亦不易適用於一次型曝光裝置。 本發明係有鑑於上述問題而構成,其目的在於提供一 7 200844677 種例如具有適於一次型曝光裝置之形狀之有效成像區域, 且^象倍率之絕對值小之高數值孔徑之反射折射型的成像 一予系克又本發明之目的在於提供一種能使用具有適 於一次型曝光裝置之形狀之有效成像區域、且成像倍率之 絕對值小之高數值孔徑之反射折射型的成像光學系統,使 u、、’田圖案以冋精度且高產率投影曝光的曝光裝置。 / : 了解決上述問題’本發明第1形態之成像光學系統, 係將第1面之像形成於第2 ®,其特徵在於,具備:第i 成像:系統,係配置於與該第丨面光學共軛之第i共軛位置 …亥第1面之間’帛2成像系統,係配置於與該第1共輛 位f光學共輛之第2共輛位置與該第1共輛位置之間;以 及第^ ium係配置於該第2共李厄位置與該第2面之 間;設該第1成像系統之成像倍率為Ml、該第2成像系 統之成像倍率為M2、該第3成㈣統之成像倍率為M3時, 滿足下述條件: 0.8 < |M1| < 2 0.8< |M2|< 2 〇·〇3〈丨Μ3|< 〇·2。 本發明第2形態之曝光裝置,其特徵在於:具備根據 來自設定於該第1面夕#闰安& 面之既疋圖案之先,將該圖案像投影至 設定於該f 2面之感光性基板上之第i形態之成像光學系 統0 本發明第3形態之元件製造方法,其特徵在於,包含: 曝光步驟,使用第2形態之曝光裝置使該既定圖案曝光於 8 200844677 使經過該曝光步驟之該感 該感光性基板;以及顯影步驟 光性基板顯影。 於本發明,於3 攻像尘之反射折射型的成像光學系 統,使折射型之第丨成像系統之成像倍率、1備反射面之 第2成像系統之成像倍率、及折㈣之第3成㈣統之成 像倍率分別滿;1所欲之條件式。其結果,即使將成像光學 糸統整體之成像倍率之絕對值設定較小,例如Μ程度,200844677 IX. The invention relates to an imaging optical system, an exposure apparatus, and a component manufacturing method, and more particularly to a component for manufacturing a semiconductor element or a liquid crystal display element by a photolithography process. A projection optical system to which the exposure apparatus used is applied. [Prior Art] In the photolithography process for manufacturing a semiconductor element or the like, a pattern image of a photomask (or a reticle) is projected and exposed to a photosensitive substrate through a projection optical system (a wafer or a glass plate coated with a photoresist) Etc. on the exposure device. In the exposure apparatus, as the degree of integration of semiconductor elements and the like is increased, the resolution (resolution) required for the projection optical system is also increasing. In order to satisfy the requirements for the resolution of the projection optical system, it is necessary to shorten the wavelength of the illumination light (exposure light) and increase the image side numerical aperture να of the projection optical system. Therefore, a liquid immersion technique is known in which an optical path between a projection optical system and a photosensitive substrate is filled with a liquid having a high refractive index to increase the image side numerical aperture. In general, a projection optical system having a large numerical aperture on the image side is not limited to a liquid immersion system, and even a drying system is preferable from the viewpoint of establishing a Petzval condition to obtain flatness of an image. In the reflection-refractive type imaging optical system, from the viewpoint of the stress on various fine patterns, an imaging optical system of an off-axis type having an effective field of view (or an effective imaging area) excluding an optical axis is preferably used. Conventionally, various types of refraction type imaging light suitable for the off-axis field type of the exposure apparatus of the 200844677 have been disclosed. In the exposure apparatus, as the semiconductor circuit is miniaturized, the semi-pattern is continuously refined. However, the mask pattern is fine. The resulting increase in the size of the reticle ^, ^, the use of a small number of small-scale production of a large number of semiconductors produced by a large number of masks, also led to an increase in the cost of the wafer. Therefore, in order to achieve semiconductor circuit without the reticle pattern miniaturization In order to reduce the absolute value of the projection magnification (imaging magnification) of the photographic optical system, it is considered to be small. However, while the reticle and the photosensitive substrate are moved relative to the projection optical system, the pattern is scanned and exposed to one irradiation region. In the scanning type exposure apparatus, when the absolute value of the magnification of the shadow optical system is set small, the speed reduction of the mask holder for scanning the mask cannot be avoided. A single-type exposure apparatus in which one cover image is exposed to one illumination area on a photosensitive substrate at a time, even if the projection optical system is cast The absolute value of the image magnification is set to be small, and the yield can be prevented from being lowered. However, the conventional off-axis field-type reflection-optical imaging optical system disclosed in Patent Document 1 and the like is reflected by the mirror. The optical path of the light is separated from the optical path of the light incident on the mirror. Therefore, only a relatively thin rectangular or arc-shaped effective imaging area (effective projection area) can be ensured, and even if it is suitable for a scanning type exposure apparatus, it is actually not easy. It is suitable for a primary exposure apparatus. The present invention has been made in view of the above problems, and an object thereof is to provide an effective imaging area having a shape suitable for a primary exposure apparatus, for example, and an absolute value of the magnification of the image is small. The present invention aims to provide a refraction that can be used with an effective imaging area having a shape suitable for a primary exposure apparatus and having a high numerical aperture with a small absolute value of imaging magnification. The type of imaging optical system enables u, and 'field patterns to be exposed to the exposure device with high precision and high yield. / : In the imaging optical system according to the first aspect of the present invention, the image of the first surface is formed in the second ®, and the ith imaging system is disposed in the optical conjugate with the third surface. i conjugate position... between the first surface of the first 成像2 imaging system, is disposed between the second common vehicle position and the first common vehicle position of the first common vehicle position f optical; and The ium system is disposed between the second total Lie position and the second surface; the imaging magnification of the first imaging system is M1, the imaging magnification of the second imaging system is M2, and the imaging of the third imaging system is performed. When the magnification is M3, the following conditions are satisfied: 0.8 < |M1| < 2 0.8<|M2|< 2 〇·〇3<丨Μ3|< 〇·2. The exposure apparatus of the second aspect of the present invention Further, the image is projected onto the first form of the photosensitive substrate set on the f 2 surface, based on the pattern from the first surface set on the first surface of the first surface. The imaging optical system according to a third aspect of the present invention, comprising: an exposure step of using the exposure apparatus of the second aspect; The pattern is exposed to 8 200844677, and the photosensitive substrate is subjected to the exposure step; and the developing step is performed on the photosensitive substrate. According to the present invention, the imaging optical system of the catadioptric reflection type of the three-dimensional image is used to make the imaging magnification of the refractive second imaging system, the imaging magnification of the second imaging system of the preparation surface, and the third of the folding (four). (4) The imaging magnification of the system is full; 1 the conditional formula of the desire. As a result, even if the absolute value of the imaging magnification of the imaging optical system as a whole is set small, for example, the degree of sputum,
亦可確保較大且接近正方形之矩形(亦即適於_次型曝光裝 置之形狀)的有效成像區域。 口此本毛明可K現例如具有適於一次型曝光裝置之 形狀之有效成像區域,且成像倍率之絕對值小之高數值孔 徑之反射折射型的成像光學系統。又,本發明之曝光裝置, 能使用具有適於-次型曝光裝置之形狀之有效成像區域、 且成像倍率之絕對值小之高數值孔徑之反射折射型的成像 光:系統’使微細圖案以高精度且高產率投影曝光,或能 以1¾精度且咼產率製造良好的元件。 【實施方式】 本發明之成像光學系統,具備根據來自第】面(物體面) 之光形成第1中間像的折射型第i成像系統,具備反射面、 根據來自第1中間像之光形成第2中間像的第2成像系統, 及根據來自第2中間像之光將最終像形成在第2面(像面) 上的折射型第3成像系統。亦即,本發明之成像光學系統, 係3次成像型之反射折射型成像光學系統。 9 200844677 分別滿足下列條件式 、(3)。 〇.8< |M1|< 2 0) 〇.8< |M2|< 2 (2) 0.03 < |M31< 0.2 (3) 超過條件式(1)之上限值時 於本發明之具有上述基本構成之3次成像型之反射折 射型成像光學系統’第!成像系統之成像倍率m、第2 成像系統之成像倍率M2、及第3成像系統之成像倍率⑽ 分別滿屈下别德杜1、 之絕對值|M1|過大,於第2虚德备 ’、、、、风像倍率 ㈣2成像糸統往光線最初射入之 1反射鏡之入射光的光線高度過 料丄上 ^、、、、口禾’鏡同之尺寸 .交大,或不易製造光學系統。 ^ H 入不易修正歪曲像差,且 亦不易修正光瞳之球面像差。此 日日夕4里^ 卜為了更有效發揮本發 效果,較佳為,將條件式⑴之上限值設定成17。 之式⑴之下限料,第1成像純之成像倍率 、、巴對值丨Μ1丨過小,來自透過第 間像之光束的财變大,;象系統形成之第1中 ^ 1 ^ Jl+ ^ ΑΑ 、 成像系統光線最初射入之 弟反射鏡的光線分離變困難。其釺杲, 光線之像高變大,不易修正 U像差修正 # ^ 〇 ^ 〜、形像差、非點像差、歪曲像 差寻。此外,為了更有效發揮曲像 條件式(1)之下限值設定成G9。 ’,父佳為’將 超過條件式(2)之上限值時 之絕對值|Μ2ί過大,^ 2 ^ 成像糸統之成像倍率 第2反射成像系統往光線第2個射入之 弟2反射鏡之人射光的錢高度過大。i 寸變大,或不易製造光學系殊。又一果,鏡同之尺 糸、,先。又,不易修正歪曲像差, 200844677 且亦不易修正光瞳之球面傻莫 囬像差。此外,為 發明之效果,較佳為,將條件^毛揮本 肝怿件式(2)之上限值設定成17。 未達條件式(2)之下限值時,第 乐2成像糸統之成像倍牽 之絕對值|M2丨過小,來自透過第 半 罘2成像糸統形成之第2中It is also possible to ensure an effective imaging area of a large and nearly square rectangle (i.e., suitable for the shape of the _-type exposure apparatus). The present invention is, for example, a reflection-refractive type imaging optical system having an effective imaging area suitable for the shape of a primary exposure apparatus and having a high numerical value of an aperture value which is small in absolute value. Further, in the exposure apparatus of the present invention, it is possible to use a reflection-refractive type imaging light having an effective imaging area suitable for the shape of the -type exposure apparatus and having a high numerical aperture of an absolute magnification of the imaging magnification: the system 'make the fine pattern High-precision and high-yield projection exposure, or good components can be fabricated with 13⁄4 precision and 咼 yield. [Embodiment] The imaging optical system of the present invention includes a refractive ith imaging system that forms a first intermediate image based on light from a first surface (object surface), and includes a reflecting surface and light formation from the first intermediate image. The second imaging system of the intermediate image and the refraction type third imaging system in which the final image is formed on the second surface (image surface) based on the light from the second intermediate image. That is, the imaging optical system of the present invention is a three-order imaging type catadioptric imaging optical system. 9 200844677 The following conditional formulas, (3), are respectively satisfied. 〇.8<|M1|< 2 0) 〇.8<|M2|< 2 (2) 0.03 <|M31< 0.2 (3) When the upper limit value of the conditional expression (1) is exceeded, the present invention The cathodic reflection type imaging optical system of the third-order imaging type having the above basic configuration is the first! The imaging magnification m of the imaging system, the imaging magnification M2 of the second imaging system, and the imaging magnification of the third imaging system (10) are respectively under the limit of Budedu 1, absolute value | M1| is too large, and is in the second virtual , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ^ H is not easy to correct the distortion aberration, and it is not easy to correct the spherical aberration of the aperture. In order to more effectively perform the present effect, it is preferable to set the upper limit value of the conditional expression (1) to 17. The lower limit of the formula (1), the imaging magnification of the first imaging image, the value of the bar 丨Μ1丨 is too small, the wealth from the beam passing through the first image is large, and the first in the formation of the system is ^1 ^ Jl+ ^ ΑΑ It is difficult to separate the light from the mirror of the imaging system. In other words, the image of the light becomes large and large, and it is difficult to correct the U aberration correction #^ 〇 ^ 〜, the form aberration, the astigmatism, and the distortion image search. In addition, in order to play the image more effectively, the lower limit of the conditional expression (1) is set to G9. ', the father is good' will exceed the absolute value of the conditional (2) upper limit | Μ 2ί too large, ^ 2 ^ imaging system imaging magnification 2nd reflection imaging system to the second light into the brother 2 reflection The money that the mirror person shoots is too high. The i-inch becomes larger, or it is not easy to manufacture optical systems. Another fruit, the mirror with the same size, first, first. Moreover, it is not easy to correct the distortion aberration, 200844677 and it is not easy to correct the spherical aberration of the pupil. Further, in order to achieve the effect of the invention, it is preferable to set the upper limit value of the condition (2) to 17 in the condition of the liver. When the lower limit value of the conditional expression (2) is not reached, the absolute value of the imaging magnification of the first music imaging system is too small, from the second through the formation of the first half of the imaging system.
間像之光束的NA變大,於第2 士、你么 T ^ 、弟2成像糸統光線第2個射入 之第2反射鏡的光線分離變 U m 其結果,必須使像差修 正光線之像高變大,不易修正彗 " 卜勿U正慧形像差、非點像差、歪The NA of the beam of the image becomes larger, and the light of the second mirror of the 2nd shot, the T^, and the 2nd image of the 2nd shot is separated by U m. As a result, the aberration must be corrected. The image becomes taller and bigger, and it is not easy to correct 彗" Bu Dou U positive coma aberration, astigmatism, 歪
像差等。此外,為了更有效發揮本發明之效果,較佳為, 將條件式(2)之下限值設定成ο;。 於滿足條件式⑴及(2)之本發明之成像光學系統,為了 獲得所欲之縮小倍率(例如成像光學系統整體之成像倍率之 、、巴對值/5 - 1/8程度),第3成像系統之成像倍率之絕對值 必須滿足條件式(3)。第3成像系統之成像倍率之絕對 值|M3|未滿足條件式(3)時,無法將第i成像系統之成像户 率之絕對值_及帛2成像系統之成像倍率之絕對值丨⑽丨 設定在條件式⑴及條件式(2)的範圍内,產生上述像差修正 上的缺陷。此外,為了更有效發揮本發明之效果,較佳為, 將條件式(3)之上限值設定成〇.16、下限值設定成〇.〇4。 因此,於本發明之具有上述基本構成之3次成像型之 反射折射型成像光學系統,即使將成像光學系統整體之成 像倍率之絕對值沒設定成小至例# 1/8程度,亦可確保較 大且接近正方形之矩形(亦即適於一次型曝光裝置之形狀) 的有效成像區域。亦即,於本發明,可實現例如具有適於 一-人型曝光裝置之形狀之有效成像區域,且成像倍率之絕 11 200844677 對值小之高數值孔徑之反射折射型的成像光學系統。Aberration, etc. Further, in order to more effectively exert the effects of the present invention, it is preferable to set the lower limit value of the conditional expression (2) to ο;. In the imaging optical system of the present invention which satisfies the conditional expressions (1) and (2), in order to obtain a desired reduction ratio (for example, the imaging magnification of the entire imaging optical system, the value of the bar value of /5 - 1 / 8), the third The absolute value of the imaging magnification of the imaging system must satisfy the conditional expression (3). Absolute value of imaging magnification of the third imaging system | M3| When the conditional expression (3) is not satisfied, the absolute value of the imaging rate of the i-th imaging system _ and the absolute value of the imaging magnification of the 帛2 imaging system 丨 (10) 丨The defect in the above-described aberration correction is generated within the range of the conditional expression (1) and the conditional expression (2). Further, in order to more effectively exhibit the effects of the present invention, it is preferable to set the upper limit value of the conditional expression (3) to 〇.16 and the lower limit value to 〇.〇4. Therefore, in the cathodic reflection type imaging optical system of the third-order imaging type having the above-described basic configuration of the present invention, even if the absolute value of the imaging magnification of the entire imaging optical system is not set to be as small as the example #1/8, it is ensured. An effective imaging area of a larger and nearly square rectangle (i.e., suitable for the shape of a one-shot exposure apparatus). That is, in the present invention, for example, an antireflection type imaging optical system having an effective imaging area suitable for the shape of a one-person type exposure apparatus and having an imaging magnification of a high numerical aperture of a large numerical aperture can be realized.
又,本發明之曝光裝置’能使用具有適於一次型曝光 裝置之形狀之有效成像區域、且成像倍率之絕對值小之高 數值孔徑之反射折射型的成像光學系統,使微細圖案以高 精度且高產率投影曝光。此外,本發明之成像光學系統, 較佳為,能以液體充滿與像面之間的光路。如此,藉由採 用在像侧形成液浸區域之液浸型光學系統,可確保較大有 實際效果的像侧數值孔徑,且確保較大的有效成像區域。 使用附圖說明本發明之實施形態。目1係概略顯示本 發明實施形態之曝光裝置之構成的圖。圖丨中,將X轴及 y轴設定成與晶圓w平行的方向,將z軸設定成與晶圓w 正交的方向。更具體而言’冑χγ平面設定成平行於水平 面,將+ Ζ軸設定成沿著鉛垂方向朝上。 如圖1所示,本實施形態之曝光裝置,具備照明光a 糸統卜該照明光學系統!,包含例如曝光光源之㈣^ 分子雷射光源,由光學積分器(等化器)、視野光圈、聚; 還鏡等構成。由從光源射出之㈣193nm之紫外脈衝光相 =的曝光用光(曝光束)IL,通過照明光學系統i,照明標朝 (光罩)R。在標線片卩形成待轉印圖案,照明沿著x ^ 向有長邊且沿著丫方向有短邊的矩形圖案區域。 通過標線片R的光,择读、两 成像光> 像型之反射折射型 严先…之液浸型投影光學系統扎,在塗 ® (感光性基板)w上之提忠p A / 率_ 射區域)以既定縮小倍 彻片圖案。亦即,以光學上對應標線片R上之矩 12 200844677 形照明區域之方式,在晶圓W上之沿著χ方向有長邊且 沿著Y方向有短邊的矩形曝光區域形成圖案像。 圖2係顯示本實施形態中形成在晶圓上之矩形之曝光 區域與光軸之位置關係的圖。如圖2所示,於本實施形態, 在具有以光軸AX為中心之半徑B的圓形區域(影像圓)IF 内,在與光軸ΑΧ於Y方向離開軸偏量a的位置設定具有 所欲大小之矩形曝光區域ER。曝光區向之長 度為LX,Y方向之長度為LY。雖省略圖示,但在標線片 R上,對應矩形曝光區域ER,在與光軸八又於丫方向離開 對應軸偏量A之距離的位置形成具有對應曝光區域er I 大小及形狀的矩形照明區域。 標線片R在標線片載台RST上係保持成平行於平 面,在標線片載台RST裝入使標線片R在χ方向、γ方 向、及旋轉方向微動的機構。標線片載台咖,係藉由標 線片雷射干涉儀(未圖示)即時測量且控制χ方向、γ方向丁 及旋轉方向的位置。晶K w,係透過晶_持具(未圖^ 於Z載台9上固定成平行於χγ平面。 又載台9’係固定於沿著與投影光學系統 ^貫質上平行之XY平面移動的χγ載台iq上, W之聚焦位置(Z方向的位置)及傾斜角。z 奸 使用叹於Ζ載台9上之移動鏡12之晶圓雷 即時測量且控制χ方向、γ方_ ^ vx 向及旋轉方向的位置。又, XY載台10係裝載於基座u Y方向、及旋轉方向。 ““曰困W之X方向、 13 200844677 另方面,設於本實施形態之曝光裝置之主控制系統 ⑷係根據標線片雷射干涉儀所測量之測量值,進行找線 片R之X方向、γ方向、及旋轉方向之位置的調整。亦 主控制系統14,將控制訊號傳至裝入標線片載纟咖的 機構’使標線片載台RST微動以進行標線片㈣位置調整。 又’主控制系% 14,為了以自動聚焦方式及自動調平方式 ^晶圓W上之表面—致於投影光學系統PL的像面,進; _ 曰曰圓w之聚焦位置(z方向的位置)及傾斜角的調整。 ^亦即,主控制系統14,將控制訊號傳至晶圓載台驅動 =統15,藉由晶圓載台驅動系統15驅動z載台9以進行 日:圓w之聚焦位置及傾斜角的調整。再者,主控制系統μ, 係根據晶圓雷射干涉儀13所測量之測量值,進行晶圓W 之X方向、γ方向、及旋轉方向之位置的調整。亦即,主 控制系統14,將控制訊號傳至晶圓載台驅動系統15,藉 由晶圓載台驅動系統15驅動χγ載台1〇以進行晶圓w之 • Χ方向、Υ方向、及旋轉方向之位置調整。 在曝光時,使標線片R之圖案像一次投影曝光於晶圓 W上的既定照射區域内。之後,主控制系統14,將控制訊 旒傳至晶圓載台驅動系統15,藉由晶圓載台驅動系統Μ 驅動XY載台1〇以使晶圓w上之另一個照射區域步進移 動至曝光位置。如此,藉由步進重複方式,反覆使標線片 R之圖案像一次曝光於晶圓w上的動作。 、圖3係以示意方式顯示本實施形態之各實施例之邊界 、兄一日日圓之間之構成的圖。如圖3所示,於本實施形雜, 14 200844677 以液體Lm充滿邊界透鏡Lb與晶圓W之間的光路。邊界 透鏡Lb,係凸面朝向標線片R侧且平面朝向晶圓w側的 正透鏡。如圖1所示,於本實施形態,使用供排水機構21, 使液體Lm循環於邊界透鏡Lb與晶圓W之間的光路中。 於本實施形態,液體Lm係使用可輕易在半導體製造工廢 等大量取得的純水(脫離子水)。 為了使液體Lm持續充滿投影光學系統pL之邊界透鏡 _ Lb與晶圓W之間的光路中,可使用例如國際公開編= WO99/495 04唬公報所揭示之技術、或日本特開平μ 號公報所揭示之技術等。國際公開編號w〇99/495〇4號公 報所揭示之技術,係從液體供應裝置透過供應管及排出嘴 部將已調整成既定溫度之液體供應成充滿邊界透鏡Lb與 晶圓W之間的光路,從液體供應裝置透過回收管及流入嘴 部從晶圓W上回收液體。 ,另一方面,日本特開平10-303U4號公報所揭示之技 鲁術,係將晶圓保持具台構成為容器狀以收容液體,在直内 f部之中央(液體中)藉由真空吸附定位保持晶圓w。又, 投影光學系統PL之鏡筒前端部到達液體中,或邊界透鏡 之晶圓侧之光學面到達液體中。如此,能使作為浸液之液 體以微小流量循環,以防腐、防菌等之效果防止液體變質。 又’能防止曝光用光之熱吸收造成的像差變動。 ;本貝把开少恶之各實施例之非球面,設垂直於光軸之 方向的高度為y、從非球面之頂點之切平面至高度y之非 球面上之位置之沿著光轴的距離(垂量)為z、頂點曲率半徑 15 200844677 為Γ、圓錐係數為π、^次之非球面係數為 载苟時,係以下 述數學式⑷表示。於後述表⑴及⑺,形成為非球面形狀 之透鏡面在面編號之右側附加*標記。 (y2/r)/[l + (1 _ (1 + ^ )xy2/r2}l/2] + c^y4+ C6Xy6 + w _ ί π , Λ ι … (a) :y C8xy8+ CI〇xy10+ C12xy12+ C14xy14+ c; 又,於本實施形態之各實施例,投影光學系統pL,具 備用以形成配置在物體面(第!面)之標線片r目案之第^ 中間像的第1成像系統G1、根攄來自漦 w “ 很艨术自弟1中間像之光形成 ;線片圖案之第2中間像(第1中間像之像、亦即標線片圖 案之一二人像)的第2成像系、统G2、根據來自第2中間像之 光在配置於像面(第2面)之晶 m 上开〆成標線片圖荦之最 終像(標線片圖案之縮小像)的第 八 系絲p ,二 川弟3成像糸統G3。第!成像 系、、先G1及弟3成像系統G3皆為折射 像系統Μ係由彼此相對向配 予=、、、,弟 ⑽構成的反射型光學系統。對凹面反射鏡髓及 又,各實施例之投影光學季 外 第2成像“ G2、及第弟1讀线⑴、 垂方向直線狀延伸之共通的 〃有例如者起 統⑴、第2成像系統02、及第轴3:。亦即,第1成像系 λ L 成像糸統G3互相jt轴。 如此,構成標線片R、晶圓w 互相八軸 的光透射構件及構成第3 成像糸統G1之所有 件,係沿著與重力方向正六/先G3之所有的光透射構 又,於各實施例,投影光二:(水平面)互相平行配置。 方構成為大致遠心。 …先PL在物體侧及像侧之雙 16 200844677 (第1實施例) 圖4係顯示本實施形態之第i實施例之投影光學系統Further, the exposure apparatus of the present invention can use a reflection-refractive type imaging optical system having an effective imaging area suitable for the shape of the primary exposure apparatus and having a high numerical value of the imaging magnification, so that the fine pattern is highly precise. And high yield projection exposure. Further, in the image forming optical system of the present invention, it is preferable that the optical path between the image surface and the image surface can be filled with a liquid. Thus, by using the liquid immersion type optical system in which the liquid immersion area is formed on the image side, it is possible to secure a large practical image side numerical aperture and to secure a large effective imaging area. Embodiments of the present invention will be described with reference to the drawings. Item 1 is a view schematically showing the configuration of an exposure apparatus according to an embodiment of the present invention. In the figure, the X-axis and the y-axis are set to be parallel to the wafer w, and the z-axis is set to be orthogonal to the wafer w. More specifically, the '胄χγ plane is set to be parallel to the horizontal plane, and the +Ζ axis is set to face upward in the vertical direction. As shown in Fig. 1, the exposure apparatus of this embodiment is provided with illumination light a 照明 illumination optical system! A molecular laser source comprising, for example, an exposure source, consisting of an optical integrator (equalizer), a field of view aperture, a polyscope, and a mirror. The exposure light (exposure beam) IL, which is emitted from the light source by the (four) 193 nm ultraviolet pulse light phase, passes through the illumination optical system i to illuminate the target (mask) R. A pattern to be transferred is formed on the reticle, and a rectangular pattern region having a long side in the x^ direction and a short side along the 丫 direction is illuminated. Through the light of the reticle R, the selective reading, the two imaging lights, the image-type reflection-refraction type, the first liquid-immersed projection optical system, and the coating on the coated substrate (photosensitive substrate) w. The rate _ the shot area is reduced by a predetermined pattern. That is, a pattern image is formed on the wafer W by a rectangular exposure region having a long side along the χ direction and a short side along the Y direction, optically corresponding to the illumination region of the moment 12 200844677 on the reticle R . Fig. 2 is a view showing the positional relationship between the rectangular exposure region formed on the wafer and the optical axis in the embodiment. As shown in Fig. 2, in the circular region (image circle) IF having a radius B centered on the optical axis AX, the position is set at a position away from the axial axis y in the Y direction. A rectangular exposure area ER of a desired size. The exposure area has a length of LX, and the length of the Y direction is LY. Although not shown in the figure, on the reticle R, a rectangle having a size and shape corresponding to the exposure area er I is formed at a position away from the corresponding axis deviation amount A from the optical axis eight in the 丫 direction corresponding to the rectangular exposure area ER. Lighting area. The reticle R is held parallel to the plane on the reticle stage RST, and the reticle stage RST is loaded with a mechanism for causing the reticle R to be slightly moved in the χ direction, the γ direction, and the rotation direction. The reticle-loaded table coffee is instantaneously measured by a reticle laser interferometer (not shown) and controls the position of the χ direction, the γ direction, and the rotational direction. The crystal K w is transmitted through the crystal holder (not shown on the Z stage 9 to be parallel to the χ γ plane. The stage 9 ′ is fixed to move along the XY plane parallel to the projection optical system. On the χγ stage iq, the focus position of W (the position in the Z direction) and the tilt angle. Z 奸 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时 即时The position of the vx direction and the direction of rotation. The XY stage 10 is mounted on the susceptor u Y direction and the direction of rotation. ""X direction of the sleepy W, 13 200844677. In addition, the exposure apparatus of the present embodiment is provided. The main control system (4) adjusts the position of the X direction, the γ direction, and the rotation direction of the line R according to the measured value measured by the reticle laser interferometer. The main control system 14 transmits the control signal to The mechanism for loading the reticle on the enamel 'move the reticle stage RST to move the reticle (4) position adjustment. Also 'main control system % 14, in order to auto focus mode and auto leveling method ^ wafer W The upper surface—the image plane of the projection optical system PL, enters; _ the focus position of the circle w The position in the z direction) and the adjustment of the tilt angle. ^ That is, the main control system 14 transmits the control signal to the wafer stage drive = system 15, and the wafer stage drive system 15 drives the z stage 9 to perform the day: The focus position and the tilt angle of the circle w are adjusted. Further, the main control system μ performs the X-direction, the γ-direction, and the rotational direction of the wafer W based on the measured values measured by the wafer laser interferometer 13. That is, the main control system 14 transmits the control signal to the wafer stage driving system 15, and the wafer stage driving system 15 drives the χγ stage 1 进行 to perform the wafer 之 direction, the Υ direction, Position adjustment in the direction of rotation. During exposure, the pattern of the reticle R is exposed to a predetermined illumination area on the wafer W in one projection. Thereafter, the main control system 14 transmits the control signal to the wafer stage drive. The system 15 drives the XY stage 1〇 by the wafer stage driving system 〇 to move the other irradiation area on the wafer w to the exposure position step by step. Thus, the step line R is repeatedly used to make the reticle R The pattern is like a single exposure on the wafer w Fig. 3 is a view schematically showing the structure between the boundary of each embodiment of the present embodiment and the day and day of the circle. As shown in Fig. 3, in the present embodiment, 14 200844677 fills the boundary with liquid Lm. The optical path between the lens Lb and the wafer W. The boundary lens Lb is a positive lens whose convex surface faces the reticle R side and faces the wafer w side. As shown in Fig. 1, in the present embodiment, the water supply and drainage mechanism 21 is used. The liquid Lm is circulated in the optical path between the boundary lens Lb and the wafer W. In the present embodiment, the liquid Lm is made of pure water (deionized water) which can be easily obtained in a large amount by semiconductor manufacturing workers. The Lm continues to fill the optical path between the boundary lens _Lb of the projection optical system pL and the wafer W, and can be disclosed, for example, in the technique disclosed in International Publication No. WO99/495 04唬, or in Japanese Laid-Open Patent Publication No. Technology, etc. The technique disclosed in the International Publication No. WO 99/495〇4 is to supply a liquid adjusted to a predetermined temperature from the liquid supply device through the supply pipe and the discharge nozzle to fill the boundary lens Lb and the wafer W. The optical path recovers liquid from the wafer W from the liquid supply device through the recovery tube and the inflow nozzle. On the other hand, the technique disclosed in Japanese Laid-Open Patent Publication No. H10-303U4 is to form a wafer holder in a container shape to accommodate a liquid, and to absorb the liquid in the center of the straight portion f (in the liquid) by vacuum adsorption. Positioning and holding the wafer w. Further, the front end portion of the barrel of the projection optical system PL reaches the liquid, or the optical surface on the wafer side of the boundary lens reaches the liquid. In this way, the liquid as the immersion liquid can be circulated at a small flow rate to prevent deterioration of the liquid by the effects of corrosion prevention and antibacterial action. Further, it is possible to prevent aberration variation caused by heat absorption of exposure light. The aspherical surface of each embodiment of the present invention is set such that the height perpendicular to the optical axis is y, the tangent plane from the vertex of the aspheric surface, and the position on the aspheric surface of the height y along the optical axis. When the distance (sagittal) is z, the radius of curvature of the vertex 15 is 200844677, the conic coefficient is π, and the aspherical coefficient is 苟, it is expressed by the following formula (4). In the following Tables (1) and (7), the lens surface formed into an aspherical shape is marked with * on the right side of the surface number. (y2/r)/[l + (1 _ (1 + ^ )xy2/r2}l/2] + c^y4+ C6Xy6 + w _ ί π , Λ ι ... (a) :y C8xy8+ CI〇xy10+ C12xy12+ C14xy14+ Further, in each of the embodiments of the present embodiment, the projection optical system pL includes the first imaging system G1 for forming the second intermediate image of the reticle r-object placed on the object surface (the first surface). The second image system of the second intermediate image of the line pattern (the image of the first intermediate image, that is, one of the reticle patterns) is formed by the light from the middle image of the 漦w The second system of the final image (the reduced image of the reticle pattern) which is opened on the crystal m of the image plane (the second surface) by the light from the second intermediate image Silk p, Erchuandi 3 imaging system G3. The first imaging system, the first G1 and the third imaging system G3 are all refraction optics of the refracting image system, which are made up of opposite each other, =, ,,, (10) For the concave mirror mirror and the projection optical outside of the second embodiment, the second imaging "G2, the first reading line (1), and the straight line extending in the vertical direction are common to the system (1), The second imaging system 02 and the first axis 3: that is, the first imaging system λ L imaging system G3 is mutually jt-axis. Thus, the light transmitting member and the constituting the octagonal sheet R and the wafer w are eight-axis. 3 All the elements of the imaging system G1 are along the light transmission structure of the positive six/first G3 with the gravity direction. In each embodiment, the projection light two: (horizontal plane) are arranged parallel to each other. The square is formed to be substantially telecentric. Double on the object side and the image side 16 200844677 (first embodiment) FIG. 4 is a projection optical system showing an i-th embodiment of the present embodiment
之透鏡構成的圖。圖4中,第1實施例之投影光學系統PL 中,第1成像系統G1,從標線片侧依序具有平行平面板P1、 2球面朝向晶圓侧的正透鏡L11、凸面朝向標線片侧的正 彎月面透鏡L12、凸面朝向標線片側的正彎月面透鏡l13、 凸面朝向標線片侧的正彎月面透鏡L14、雙凸透鏡5、 _ 凸面朝向標線片側的正彎月面透鏡L16、凹面朝向標線片 側的負弓月面透鏡L17、非球面朝向晶圓侧的透鏡[18、 凹面朝向標線片侧的正彎月面透鏡L19、凹面朝向標線片 側的正_月面透鏡L11G、及非球面朝向標線片側的正透鏡 L 1 1 1 〇 弟2成像系統G2,沿著光之行進往路從光之入射側依 序具有非球面形狀之凹面朝向入射侧的第i凹面反射鏡 CM1、及非球面形狀之凹面朝向入射侧的第2凹面反射鏡A diagram of the lens. In the projection optical system PL of the first embodiment, the first imaging system G1 has a parallel plane plate P1, a positive lens L11 whose spherical surface faces the wafer side, and a convex surface toward the reticle from the reticle side. The positive meniscus lens L12 on the side, the positive meniscus lens l13 on the side of the reticle, the positive meniscus lens L14 on the side of the reticle, the lenticular lens 5, and the positive meniscus on the side of the reticle The lens L16, the negative meniscus lens L17 whose concave surface faces the reticle side, the lens [18 with the aspherical surface toward the wafer side, the positive meniscus lens L19 whose concave surface faces the reticle side, and the positive _ month when the concave surface faces the reticle side The surface lens L11G and the positive lens L 1 1 1 on the side of the reticle side, the imaging system G2, the second imaging system G2, along the direction of travel of the light, the concave surface of the aspherical shape from the incident side of the light toward the ith side of the incident side Concave mirror CM1, and a concave mirror with an aspherical shape facing the incident side of the second concave mirror
2亦即,第2成像系統G2,係由彼此相對向配置之一 對凹面反射鏡CM1及CM2構成。 弟3成像系統G3,從標線片側(亦即光之入射側)依序 具有凸面朝向標線片側的正彎月面透鏡L31、非球面形狀 之凹面朝向晶圓側的負彎月面錢L32、非球面形狀之凹 =朝向晶圓側的雙凹透豸⑶、非球面形狀之凸面朝向晶 二:樓面透鏡°4、非球面形狀之凹面朝向標線片 ΓΓ月面透鏡L35、非球面形狀之凹面朝向標線片侧 正弓月面透鏡L36、非球面形狀之凸面朝向標線片側的 17 200844677 雙凸透鏡L37、凹面朝向標線片側的正彎月面透鏡[Μ、 ,凸透鏡L 3 9、用以變更投影光學系統p L之數值孔徑的可 變孔徑光圈AS、平面朝向晶圓侧的平凸透鏡L3i〇、非球 面形狀之凹面朝向晶圓側的正彎月面透鏡L3u、非球面/ ^凹面朝向晶圓侧的正彎月面透鏡L312、及平面朝向^ 囫側的平凸透鏡L313(邊界透境Lb)。 於第1實施例,在邊界透境Lb與晶圓w之間之光路, 充滿對使用光(曝光用光)之ArF準分子雷射光(中心波長i = 193.306nm)具有14358760之折射率的純水仏瓜)。 包含邊界透鏡Lb之所有光透射構件,係由對使用光之中 心波長具有1.5603261之折射率的石英(Si〇2)形成。 下述表(1)表示第1實施例之投影光學系統PL之各要 素的值。表⑴之主要各要素,λ係表示曝光用光之中心波 長、/5係、表示投影倍率(整個系統之成像倍率)的大小(絕對 值)、να係表示像側(晶圓側)數值孔徑、β係表示晶圓w 上之輯圓IF的半徑(最大像高)、Α係表示曝光區域现 的軸偏ϊ、LX係表示曝光區域ER之沿著χ方向的尺寸(長 邊尺寸)、LY絲示曝絲域ER之沿著γ方向的尺寸 邊尺寸)。 又’表⑴之光學元件各要素’面編號係表示沿著光線 行進路徑(從物體面(第1面)之標線片面至像面(第2面)之 晶圓面)之從標線片侧的面順序、r係表示各面的曲率钟 (非球面時為頂點曲率半徑:_)、d係表示各面的軸上; 隔亦即面間隔—)、n係表示對中心波長的折射率。此外, 18 200844677 表(1)之表記,在之後的表(2)亦相同。 表⑴ (主要各要素) λ = 193.306nm,β = 1/8, NA= 1.3 ® = 17.5mm,A = 2mm,LX = 16.5mm, LY = 13mm (光學元件各要素)In other words, the second imaging system G2 is composed of one of the concave mirrors CM1 and CM2 disposed opposite to each other. The third imaging system G3, from the side of the reticle (that is, the incident side of the light), has a convex meniscus lens L31 whose convex surface faces the reticle side, and a negative meniscus L32 whose concave surface of the aspherical shape faces the wafer side. The concave shape of the aspherical shape = the double concave 豸 (3) toward the wafer side, the convex surface of the aspherical shape toward the crystal 2: the floor lens °4, the concave surface of the aspherical shape toward the reticle, the lunar lens L35, the aspherical surface The concave surface of the shape faces the reticle side positive bow lunar lens L36, the convex surface of the aspherical shape faces the reticle side 17 200844677 lenticular lens L37, and the positive meniscus lens whose concave surface faces the reticle side [Μ, , convex lens L 3 9 , The variable aperture aperture AS for changing the numerical aperture of the projection optical system p L , the plano-convex lens L3i 平面 facing the wafer side, the concave surface of the aspherical shape toward the wafer side, the positive meniscus lens L3u, the aspheric surface / ^ A positive meniscus lens L312 having a concave surface facing the wafer side and a plano-convex lens L313 (boundary boundary Lb) having a plane facing the side of the wafer. In the first embodiment, the optical path between the boundary transparent space Lb and the wafer w is filled with pure ArF excimer laser light (center wavelength i = 193.306 nm) having a light (exposure light) having a refractive index of 14358760. Water melon). All of the light-transmitting members including the boundary lens Lb are formed of quartz (Si〇2) having a refractive index of 1.5603261 in the center of the light. Table (1) below shows the values of the respective elements of the projection optical system PL of the first embodiment. In the main elements of Table (1), λ is the center wavelength of exposure light, /5 system, the magnification (absolute value) indicating the projection magnification (the imaging magnification of the entire system), and να is the image side (wafer side) numerical aperture. The β system indicates the radius (maximum image height) of the circle IF on the wafer w, the Α indicates the axial deviation of the exposure region, and the LX indicates the dimension along the χ direction (long side dimension) of the exposure region ER, The LY silk shows the size of the dimension along the γ direction of the exposed filament region ER). Further, the 'elements of the optical elements of the table (1)' face number indicates the reticle along the ray path (from the reticle plane of the object plane (the first surface) to the wafer surface of the image plane (the second surface). The surface order of the side, the r system indicates the curvature clock of each surface (the radius of curvature of the vertex when the aspherical surface is: _), the d system indicates the axis of each surface; the interval is the surface spacing—), and the n system indicates the refraction of the center wavelength. rate. In addition, 18 200844677 Table (1) is the same as Table 2 (2). Table (1) (Main elements) λ = 193.306nm, β = 1/8, NA= 1.3 ® = 17.5mm, A = 2mm, LX = 16.5mm, LY = 13mm (optical elements)
面編號 r d η 光學元件 (標線片面) 30.000 1 00 8.000 1.5603261 (Ρ1) 2 00 3.000 3 281.524 44.425 1.5603261 (L11) 4氺 6304.702 1.000 5 535.226 26.268 1.5603261 (L12) 6 2042.624 2.179 7 514.833 30.178 1.5603261 (L13) 8 8900.237 13.253 9 176.189 37.760 1.5603261 (L14) 10 316.462 18.609 11 820.595 21.568 1.5603261 (L15) 12 -1871.727 40.144 13 244.560 18.612 1.5603261 (L16) 14 2797.080 22.981 15 一 317.081 12.000 1.5603261 (L17) 16 -599.622 1.000 17 -4345.651 15.000 1.5603261 (L18) 19 200844677Face number rd η Optical element (line side) 30.000 1 00 8.000 1.5603261 (Ρ1) 2 00 3.000 3 281.524 44.425 1.5603261 (L11) 4氺6304.702 1.000 5 535.226 26.268 1.5603261 (L12) 6 2042.624 2.179 7 514.833 30.178 1.5603261 (L13) 8 8900.237 13.253 9 176.189 37.760 1.5603261 (L14) 10 316.462 18.609 11 820.595 21.568 1.5603261 (L15) 12 -1871.727 40.144 13 244.560 18.612 1.5603261 (L16) 14 2797.080 22.981 15 a 317.081 12.000 1.5603261 (L17) 16 -599.622 1.000 17 -4345.651 15.000 1.5603261 (L18) 19 200844677
18氺 -623.618 7.705 19 -247.522 20.625 1.5603261 (L19) 20 -172.529 14.886 21 -1200.542 20.000 1.5603261 (L110) 22 -399.728 1.000 23氺 -3380.520 55.000 1.5603261 (L111) 24 -168.314 44.360 25氺 282.356 336.278 (CM1) 26氺 -257.961 20.000 (CM2) 27 177.263 39.207 1.5603261 (L31) 28 250.595 111.529 29 1627.882 25.000 1.5603261 (L32) 30氺 105.608 50.419 31 -341.126 19.720 1.5603261 (L33) 32氺 201.582 31.730 33 -487.394 15.000 1.5603261 (L34) 34氺 -294.551 39.124 35氺 -687.854 12.000 1.5603261 (L35) 36 -1352.245 17.149 37* -448.801 60.392 1.5603261 (L36) 38 -178.544 27.466 39氺 5491.140 40.434 1.5603261 (L37) 40 -614.606 1.000 41 -1456.883 49.774 1.5603261 (L38) 20 20084467718氺-623.618 7.705 19 -247.522 20.625 1.5603261 (L19) 20 -172.529 14.886 21 -1200.542 20.000 1.5603261 (L110) 22 -399.728 1.000 23氺-3380.520 55.000 1.5603261 (L111) 24 -168.314 44.360 25氺282.356 336.278 (CM1) 26氺 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 -294.551 39.124 35氺-687.854 12.000 1.5603261 (L35) 36 -1352.245 17.149 37* -448.801 60.392 1.5603261 (L36) 38 -178.544 27.466 39氺5491.140 40.434 1.5603261 (L37) 40 -614.606 1.000 41 -1456.883 49.774 1.5603261 (L38) 20 200844677
42 -432.005 43 1 1 80.673 44 -1052.283 45 00 46 315.965 47 00 48 186.588 49氺 472.768 50 120.926 51氺 341.002 52 84.288 53 00 (晶圓面) (非球面資料) 3.782 40.916 1.5603261 (L39) 5.745 5.746 (AS) 61.491 1.5603261 (L310) 17.205 50.220 1.5603261 (L311) 1.000 47.947 1.5603261 (L312) 1.000 56.172 1.5603261 (L313:Lb) 3.000 1.4358760 (Lm) 4面 • /c = 0 C4 = 1.773740xl0'8 c8 = I.672971x|〇·17 C 12 = :2.646746X10·26 Ci6 二 :7.01 lOOOxlO·36 18面 :/c = 0 C4 = 1.797982xl0*7 Cg = -4.008106xl0'15 Ci2 = :-9·961646χ10·23 Ci6 = :-8.50824〇xl〇-31 C6= - 2.712955xl0*13 C10= - 6.556591 xi〇·22 C14= - 6.172415xl〇·31 C6= 1.045443X 10·11 C10= 6.521334xl〇·19 C14= 1.304304xl〇·26 21 200844677 /c = - 3.401919X10·142 -432.005 43 1 1 80.673 44 -1052.283 45 00 46 315.965 47 00 48 186.588 49氺472.768 50 120.926 51氺341.002 52 84.288 53 00 (wafer surface) (aspherical material) 3.782 40.916 1.5603261 (L39) 5.745 5.746 (AS 61.491 1.5603261 (L310) 17.205 50.220 1.5603261 (L311) 1.000 47.947 1.5603261 (L312) 1.000 56.172 1.5603261 (L313:Lb) 3.000 1.4358760 (Lm) 4 faces • /c = 0 C4 = 1.773740xl0'8 c8 = I.672971x| 〇·17 C 12 = :2.646746X10·26 Ci6 2:7.01 lOOOxlO·36 18 faces: /c = 0 C4 = 1.797982xl0*7 Cg = -4.008106xl0'15 Ci2 = :-9·961646χ10·23 Ci6 = : -8.50824〇xl〇-31 C6= - 2.712955xl0*13 C10= - 6.556591 xi〇·22 C14= - 6.172415xl〇·31 C6= 1.045443X 10·11 C10= 6.521334xl〇·19 C14= 1.304304xl〇· 26 21 200844677 /c = - 3.401919X10·1
-1.675903X10-1-1.675903X10-1
23 面:/c = 0 C4= 2·907195χ10·8 C8= - 1.843491χ1〇·16 C12= - 7.1 13591 xl〇·25 C16= — 3.236499X10·34 25面: C4= - 7.668009xl〇-10 C8= - 1.235234xl〇·20 C12= - 5.810164xl〇·30 C16= - 7.218893xl〇-40 26 面:/c = C4= 4.715829X10*10 C8= 7.059017xl〇-20 C12= 4.916326xl〇·29 C16= 8.42217〇xl〇·39 30 面:/c = 0 C4= - 1.232920χί0*7 Cg= - 1.970289xl〇-16 C12 二一3.622728X10·25 C16= - 1.902778xl〇-33 32 面:/c = 0 C4= 1.1 1 5835xl0·7 C8= - 6.708189X 10'17 C12= - l_719883xl〇-24 C6= 5.48997〇xl〇·13 C10= 1.450339xl〇·20 C14= 2.188614x1 O'29 C6 = — 5.76825 6χ 10'15 C10= - 3.874191 X 10-26 C14 = 1 ·06078〇χ 1 0·34 C6 = 6.3 10549x 10_15 C10= - 3.235909xl〇-25 C14= — 7.266564x 1 O'34 c6=- -8.987161xl〇·14 Ci〇=- - 7·867015χ10·21 C14 = -2.129891xl〇·29 C6= - 6.257146xl〇-12 C10= 3.414395xlO*20 C14= 8.297704X10"29 22 200844677 c16 = -9.267285X10'33 34面 :/c = 0 c4=- -2.499642xl〇-8 Cg =" -4.663736X10·17 c12 = -3.453021X10'24 Ci6 = -2.691373xl〇-32 35面 :/c = 0 C4=- -9.3 1 1896xl〇·8 Cg=- -3.659506xl〇·17 C12 = -6.654624xl〇-25 Ci6 = -2.449999xl〇·33 37面 :/c = 0 C4= 4·886924χ1〇-9 c8=- -4.517936X10'17 ^12 ~ -2.054763xl〇-27 C〗6 = -2.142254xl〇-34 39面 :/c = 0 C4 = 4 .059477X10·9 c8=- -8.915583xl0*19 c12 = -2.183253xl〇·27 Ci6 = 1.435636xl〇-37 49面 :/c = 0 C4 = 6 • 613743xl0_9 c8=— -3.733304xl0*1723 faces: /c = 0 C4= 2·907195χ10·8 C8= - 1.843491χ1〇·16 C12= - 7.1 13591 xl〇·25 C16= — 3.236499X10·34 25 faces: C4= - 7.668009xl〇-10 C8 = - 1.235234xl〇·20 C12= - 5.810164xl〇·30 C16= - 7.218893xl〇-40 26 face: /c = C4= 4.715829X10*10 C8= 7.059017xl〇-20 C12= 4.916326xl〇·29 C16 = 8.42217〇xl〇·39 30 face: /c = 0 C4= - 1.232920χί0*7 Cg= - 1.970289xl〇-16 C12 二一3.622728X10·25 C16= - 1.902778xl〇-33 32 face: /c = 0 C4= 1.1 1 5835xl0·7 C8= - 6.708189X 10'17 C12= - l_719883xl〇-24 C6= 5.48997〇xl〇·13 C10= 1.450339xl〇·20 C14= 2.188614x1 O'29 C6 = — 5.76825 6χ 10'15 C10= - 3.874191 X 10-26 C14 = 1 ·06078〇χ 1 0·34 C6 = 6.3 10549x 10_15 C10= - 3.235909xl〇-25 C14= — 7.266564x 1 O'34 c6=- -8.987161xl 〇·14 Ci〇=- - 7·867015χ10·21 C14 = -2.129891xl〇·29 C6= - 6.257146xl〇-12 C10= 3.414395xlO*20 C14= 8.297704X10"29 22 200844677 c16 = -9.267285X10'33 34 faces: /c = 0 c4=- -2.499642xl〇-8 Cg =" -4.663736X10·17 c12 = -3.4530 21X10'24 Ci6 = -2.691373xl〇-32 35 faces: /c = 0 C4=- -9.3 1 1896xl〇·8 Cg=- -3.659506xl〇·17 C12 = -6.654624xl〇-25 Ci6 = -2.449999xl 〇·33 37 faces: /c = 0 C4= 4·886924χ1〇-9 c8=- -4.517936X10'17 ^12 ~ -2.054763xl〇-27 C〗 6 = -2.142254xl〇-34 39: /c = 0 C4 = 4 .059477X10·9 c8=- -8.915583xl0*19 c12 = -2.183253xl〇·27 Ci6 = 1.435636xl〇-37 49面:/c = 0 C4 = 6 • 613743xl0_9 c8=— -3.733304xl0 *17
C6 = 5.647136χ 1 Ο'12 C10= 2.495244χ10·20 C14= 4.123744χ1〇-28 C6= 1.72197〇xl〇-12 C10= 8·942724χ10,21 C14= 6.941057xl0·29 C6= 1.026475xl〇·12 C10= - 1.590462X10'21 C14 = 6.198944x 1 O'30 C6= - 1.381500xl0*13 C10= 1.397321 xl〇·22 C14 = 0 C6= 3.893491 xl〇-15 C10= 2.277028X10-21 23 200844677C6 = 5.647136χ 1 Ο'12 C10= 2.495244χ10·20 C14= 4.123744χ1〇-28 C6= 1.72197〇xl〇-12 C10= 8·942724χ10,21 C14= 6.941057xl0·29 C6= 1.026475xl〇·12 C10 = - 1.590462X10'21 C14 = 6.198944x 1 O'30 C6= - 1.381500xl0*13 C10= 1.397321 xl〇·22 C14 = 0 C6= 3.893491 xl〇-15 C10= 2.277028X10-21 23 200844677
C12= - 2.637163X10*26 C16= 2·825371χ10·35 5 1 面:/c = 0 C4= 4.019193xl〇·8 C8= - 3.129836xl〇-16 C12= - 2.210986xl0·24 C16= — 2.558382X10·33 (條件對應值) (1) 1M1|= 1.347 (2) |M2|= 1.133 C14= - l.〇72989xl〇·30 C6= 3.323708X10·12 C10= 2.775896X10·20 C14= l_〇6401〇xl〇·28 (3)|M3|= 0.082C12= - 2.637163X10*26 C16= 2·825371χ10·35 5 1 Face: /c = 0 C4= 4.019193xl〇·8 C8= - 3.129836xl〇-16 C12= - 2.210986xl0·24 C16= — 2.558382X10· 33 (conditional corresponding value) (1) 1M1|= 1.347 (2) |M2|= 1.133 C14= - l.〇72989xl〇·30 C6= 3.323708X10·12 C10= 2.775896X10·20 C14= l_〇6401〇 Xl〇·28 (3)|M3|= 0.082
圖5係顯示第1實施例之投影光學系統之球面像差、 像面彎曲、歪曲像差的圖。圖6係顯示第丨實施例之投影 光學糸統之橫像差的圖。像差圖中,να係表示投影光學 系統PL之像側(晶圓侧)數值孔徑,γ係表示像高(mm)。從 圖5及圖6之像差圖可明確得知,於第!實施例,儘管確 保非常大的像側數值孔徑(NA=丨.3)及較大且接近正方形之 矩形曝光區域ER(16.5mmxl3mm),亦可對波長為193 3〇6nm 之準为子雷射光良好地修正各像差。 (第2實施例) 圖7係顯示本實施形態之f 2 f施例之投影光學系統 之透鏡構成的圖。圖7中,f 2實施例之投影光學系訊 中’第1成像系統⑴,從標線片側依序具有平行平面板ρι、 非球面形狀之凹面朝向晶圓側的正彎月面透鏡⑴、雙凸 24 200844677 透鏡L12、雙凸透镑T1q ^ 、兄L13、雙凸透鏡L14、凹面朝向標線 片侧的負%、月面透鏡U5、凸面朝向標線片侧的正彎月面 、兄6非球面朝向標線片側的正透鏡L· 17、雙凹透鏡 L18、凸面朝向標線片侧的正彎月面透鏡⑴、凹面朝向標 線片側的正彎月®;类# τ η Λ 月面透鏡LI 10、及非球面形狀之凹面朝向標 線片側的彎月面透鏡L111。 第2成像系統仍,沿著光之行進往路從光之入射側依Fig. 5 is a view showing spherical aberration, field curvature, and distortion of the projection optical system of the first embodiment. Fig. 6 is a view showing the lateral aberration of the projection optical system of the second embodiment. In the aberration diagram, να represents the numerical aperture on the image side (wafer side) of the projection optical system PL, and γ represents the image height (mm). It can be clearly seen from the aberration diagrams in Figures 5 and 6, in the first! In the embodiment, although a very large image side numerical aperture (NA = 丨. 3) and a large and nearly square rectangular exposure area ER (16.5 mm x 13 mm) are ensured, sub-laser light can be applied to a wavelength of 193 3 〇 6 nm. Correctly correct various aberrations. (Second Embodiment) Fig. 7 is a view showing a lens configuration of a projection optical system of the f 2 f embodiment of the present embodiment. In Fig. 7, in the projection optical system of the f 2 embodiment, the first imaging system (1) has a parallel plane plate ρι, a concave surface of the aspherical shape toward the wafer side, and a positive meniscus lens (1) from the reticle side. Double convex 24 200844677 L12, double convex T1q ^, brother L13, lenticular lens L14, negative % of the concave surface toward the reticle side, lunar lens U5, positive meniscus with the convex surface facing the reticle side, brother 6 Positive lens L·17 with aspherical surface facing the reticle side, biconcave lens L18, positive meniscus lens with convex surface facing the reticle side, positive meniscus® with concave surface facing the reticle side; class# τ η Λ lunar lens The LI 10 and the concave surface of the aspherical shape face the meniscus lens L111 on the reticle side. The second imaging system still follows the path of light travel from the incident side of the light.
序具有非球面形狀之凹面朝向入射侧的第工凹面反射鏡 CM1、及非球面形狀之凹面朝向入射側的帛2凹面反射鏡 亦P第2成像系統G2,係由彼此相對向配置之一 對凹面反射鏡CM1及CM2構成。 弟3成像系、统G3,從標線片側(亦即光之入射側)依序 具有凹面朝向標線片側的正彎月面透鏡⑶、非球面形狀 之凹面朝向晶圓側的雙凹透鏡L32、非球面形狀之凹面朝 的雙凹…3、非球面形狀之凸面朝向晶圓側 自心面透鏡LK、非球面形狀之凹面朝向標線片側的 心面透鏡L35、非球面形狀之凹面朝向標線片側的正 弓月面透鏡L36、非球面朝向標線片侧的正透鏡⑶、雙 凸透鏡L38、雙凸透鏡L39、用以變更投影光學系統之 數值孔徑的可變孔徑光圈AS、平面朝向晶圓側的平 ⑶〇:非球面形狀之凹面朝向晶圓側的正弯月面透‘ 3 11、非球面形狀之凹面朝向晶圓側的正彎月面透鏡 L312二及平面朝向晶圓侧的平凸透鏡邊界透境[…二 第2實施例亦與第丨實施例相同,在邊界透境兄以與 25 200844677 晶圓w之間之光路,充滿對使用光之ArF準分子雷射光(中 心波長Λ=193·3〇6ηπι)具有1 435876〇之折射率的純水 (Lm) °又’包含邊界透鏡Lb之所有光透射構件,係由對 使用光之中心波長具有1·56〇3261之折射率的石英形成。 下述表(2)表示第2實施例之投影光學系統p]L之各要素的 值。 表⑺The second concave imaging mirror CM1 having a concave surface having an aspherical shape toward the incident side and the concave surface of the aspherical shape facing the incident side, the second imaging system G2, are disposed opposite to each other. Concave mirrors CM1 and CM2 are formed. The 3 imaging system and the system G3 sequentially have a positive meniscus lens (3) having a concave surface toward the reticle side and a concave lens L32 having a concave surface facing the wafer side from the reticle side (ie, the incident side of the light). The concave surface of the aspherical shape is concave... 3, the convex surface of the aspherical shape faces the wafer side from the core surface lens LK, the concave surface of the aspherical shape faces the face lens L35 on the reticle side, and the concave surface of the aspherical shape faces the reticle a positive-angle lunar lens L36 on the sheet side, a positive lens (3) on the side of the aspherical surface toward the reticle, a lenticular lens L38, a lenticular lens L39, a variable aperture aperture AS for changing the numerical aperture of the projection optical system, and a plane facing the wafer side Flat (3) 〇: the concave surface of the aspherical shape faces the positive meniscus of the wafer side ' 3 11 , the concave surface of the aspherical shape faces the positive meniscus lens L312 of the wafer side, and the plane convex lens boundary of the plane toward the wafer side The second embodiment of the permeable environment is also the same as the third embodiment. The optical path between the border and the wafer is filled with ArF excimer laser light (center wavelength Λ=193). ·3〇6ηπι) Pure water (Lm) having a refractive index of 1,435,876 Å and all of the light-transmitting members including the boundary lens Lb are formed of quartz having a refractive index of 1.56 to 3261 at the center wavelength of light. Table (2) below shows the values of the respective elements of the projection optical system p]L of the second embodiment. Table (7)
(主要各要素)λ = 193.306nm,/5 = 1/8, ΝΑ= 1.3 Β = 17.5mm,A = 2mm,LX = 16.5mm,LY= 13mm (光學元件各要素) 面編號 r d η 光學元件 (標線片面) 30.000 1 00 8.000 1.5603261 (Ρ1) 2 00 3.000 3 354.1 18 25.000 1.5603261 (L11) 4氺 482.658 21.715 5 1539.378 39.910 1.5603261 (L12) 6 -512.239 1.000 7 1224.052 30.443 1.5603261 (L13) 8 -916.651 41.382 9 1444.324 30.983 1.5603261 (L14) 10 -532.385 72.845 11 -437.737 17.818 1.5603261 (L15) 12 -300.049 1.000 26 200844677(Main elements) λ = 193.306nm, /5 = 1/8, ΝΑ = 1.3 Β = 17.5mm, A = 2mm, LX = 16.5mm, LY = 13mm (each element of the optical element) Face number rd η Optical component ( Marking surface) 30.000 1 00 8.000 1.5603261 (Ρ1) 2 00 3.000 3 354.1 18 25.000 1.5603261 (L11) 4氺482.658 21.715 5 1539.378 39.910 1.5603261 (L12) 6 -512.239 1.000 7 1224.052 30.443 1.5603261 (L13) 8 -916.651 41.382 9 1444.324 30.983 1.5603261 (L14) 10 -532.385 72.845 11 -437.737 17.818 1.5603261 (L15) 12 -300.049 1.000 26 200844677
13 172.952 19.229 1.5603261 (L16) 14 627.068 6.458 15 * 865.020 60.101 1.5603261 (L17) 16 -143.465 1.000 17 -213.025 15.000 1.5603261 (L18) 18 4814.255 4.756 19 867.139 18.000 1.5603261 (L19) 20 13 190.353 6.620 21 -448.309 26.866 1.5603261 (L110) 22 -116.198 8.429 23 * -101.161 54.543 1.5603261 (L111) 24 -196.241 28.437 25 * 290.405 371.980 (CM1) 26氺 -269.122 77.166 (CM2) 27 -771.521 20.720 1.5603261 (L31) 28 -336.553 4.021 29 -303.297 25.000 1.5603261 (L32) 30* 297.950 84.529 31 -382.946 12.000 1.5603261 (L33) 32 * 152.462 43.968 33 -606.760 17.628 1.5603261 (L34) 34氺 -298.594 43.605 35氺 -253.854 23.167 1.5603261 (L35) 36 -319.569 12.332 27 20084467713 172.952 19.229 1.5603261 (L16) 14 627.068 6.458 15 * 865.020 60.101 1.5603261 (L17) 16 -143.465 1.000 17 -213.025 15.000 1.5603261 (L18) 18 4814.255 4.756 19 867.139 18.000 1.5603261 (L19) 20 13 190.353 6.620 21 -448.309 26.866 1.5603261 ( L110) 22 -116.198 8.429 23 * -101.161 54.543 1.5603261 (L111) 24 -196.241 28.437 25 * 290.405 371.980 (CM1) 26氺-269.122 77.166 (CM2) 27 -771.521 20.720 1.5603261 (L31) 28 -336.553 4.021 29 -303.297 25.000 1.5603261 (L32) 30* 297.950 84.529 31 -382.946 12.000 1.5603261 (L33) 32 * 152.462 43.968 33 -606.760 17.628 1.5603261 (L34) 34氺-298.594 43.605 35氺-253.854 23.167 1.5603261 (L35) 36 -319.569 12.332 27 200844677
37 * -488.145 58.760 1.5603261 (L36) 38 -170.040 19.929 39* -6353.3 18 25.000 1.5603261 (L37) 40 -940.51 1 1.000 41 709.837 49.046 1.5603261 (L38) 42 一 777.441 1.000 43 464.646 49.037 1.5603261 (L39) 44 -1702.000 1.000 45 00 1.000 (AS) 46 440.106 38.516 1.5603261 (L310) 47 00 1.000 48 166.329 48.192 1.5603261 (L311) 49* 373.829 1.000 50 156.640 36.083 1.5603261 (L312) 51氺 395.371 1.000 52 68.768 56.786 1.5603261 (L313:Lb) 53 00 3.000 1.4358760 (Lm) (晶圓面) (非球面資料) 4面 • κ = 0 C4 = 1.21221〇xl〇·8 -3.845009x10- 13 Cg = 5.1 19436Χ10-18 Ci〇 — 6·47479〇χ10·23 C12= - 1.997456X10·27 C14= 1.323078χ 10'32 ◦16 = 〇 28 20084467737 * -488.145 58.760 1.5603261 (L36) 38 -170.040 19.929 39* -6353.3 18 25.000 1.5603261 (L37) 40 -940.51 1 1.000 41 709.837 49.046 1.5603261 (L38) 42 One 777.441 1.000 43 464.646 49.037 1.5603261 (L39) 44 -1702.000 1.000 45 00 1.000 (AS) 46 440.106 38.516 1.5603261 (L310) 47 00 1.000 48 166.329 48.192 1.5603261 (L311) 49* 373.829 1.000 50 156.640 36.083 1.5603261 (L312) 51氺395.371 1.000 52 68.768 56.786 1.5603261 (L313:Lb) 53 00 3.000 1.4358760 (Lm) (wafer surface) (aspherical data) 4 faces • κ = 0 C4 = 1.21221〇xl〇·8 -3.845009x10- 13 Cg = 5.1 19436Χ10-18 Ci〇— 6·47479〇χ10·23 C12 = - 1.997456X10·27 C14= 1.323078χ 10'32 ◦16 = 〇28 200844677
15 面:/c = 0 C4= - 3.85063〇χ1〇·7 C8=,2·568295χ10·15 C12= - 3.40678〇xl〇·22 C16= 〇 23 面:/c = 〇 C4= 1.329704xl0·7 C8 = 3.346355xl〇·16 C12= 7.373225XHT24 C|6 — 9.606865^1032 25 面:/c = - 2.665106x C4= - 1.066975xl0·10 C8= — 5.590667X 10·21 C12= - 6·239338χ10·31 C16= 〇 26 面:/c = 一 2.588777x C4= - 1.819317xl〇-10 C8= — 8.748792xl0·21 C12= 1.120376X10'3015 faces: /c = 0 C4= - 3.85063〇χ1〇·7 C8=,2·568295χ10·15 C12= - 3.40678〇xl〇·22 C16= 〇23 face: /c = 〇C4= 1.329704xl0·7 C8 = 3.346355xl〇·16 C12= 7.373225XHT24 C|6 — 9.606865^1032 25 Side: /c = - 2.665106x C4= - 1.066975xl0·10 C8= — 5.590667X 10·21 C12= - 6·239338χ10·31 C16 = 〇26 face: /c = a 2.588777x C4= - 1.819317xl〇-10 C8= — 8.748792xl0·21 C12= 1.120376X10'30
Ci6 = 〇 30 面:/c = 0 C4= - 1.043858xl〇-7 C8= 8.574530xl0'18 C12= — l_629028xl0_25 C6= - 5.281084xl〇·13 C10= 1.930263xl〇·18 C14= 1·973551 χ1〇-26 C6 = 1.216643 x 1 O'11 C10= 4.14791〇xl〇·21 C14= - 9.486592xl〇-28 10-1 C6= - 7.672457xl〇-16 C10= 6.905673xl〇-27 C14= 2.454988X 10*36 10·1 C6= — 1.486666x 1 O'15 C10= — 1.655271 x 1 O'25 C14= - 2.083659xl〇·35 C6= 1.979297xl〇-12 C10= - 6.571971 X 10,22 C14= 1.09713〇xl〇·29 29 200844677Ci6 = 〇30 face: /c = 0 C4= - 1.043858xl〇-7 C8= 8.574530xl0'18 C12= — l_629028xl0_25 C6= - 5.281084xl〇·13 C10= 1.930263xl〇·18 C14= 1·973551 χ1〇 -26 C6 = 1.216643 x 1 O'11 C10= 4.14791〇xl〇·21 C14= - 9.486592xl〇-28 10-1 C6= - 7.672457xl〇-16 C10= 6.905673xl〇-27 C14= 2.454988X 10* 36 10·1 C6= — 1.486666x 1 O'15 C10= — 1.655271 x 1 O'25 C14= - 2.083659xl〇·35 C6= 1.979297xl〇-12 C10= - 6.571971 X 10,22 C14= 1.09713〇xl 〇·29 29 200844677
C ! 6 二 〇 32 面:/c = 0 C4= 1.239136χ10*7 Cg= - 4.464856χ1〇·16 C12= 5.670647xl〇·24 C16= 1.45 1485χ10'32 34 面:/c = 0 C4= - 1·865339χ10·8 C8= 8.017181X10'17 C12= - 4.300977X10"25 C16= — 6.012233X 10-33 35 面:/c = 0 C4= - 8.61051〇xl〇-8 C8= - 9.671 128xl〇·18 C12= - 4.359344xl0*25 C16= - 2.36409〇xl〇·33 37 面:/c = 0 C4= - 1.282338xl0·8 C8= - 6.809619X10·17 C12= 2.350885X 10'26 C16= 0 39 面:/c = 0 C4= 3.207823xl(T9 C8= 7.902094xl〇·19 C6= - 7.350385xl0*12 C10= 2.806543xl〇·20 C14= - 5.859490xl0·28 C6= 1.579588xl〇-12 C10= 4.868532xl0*21 C14= 8.949767X10·29 C6= - 2.359035xl〇·12 C10= - 4.677184xl〇·21 C14= 2.838307X 10'29 C6= 1.229961 X10·12 C10= 8.124958xl0'22 C14= - 1.033414X 10·30 C6= - 1.834369xl0·13 C10= 1.077742xl〇·22 30 200844677 C12= - 1.743502X10-27 C14= 〇 C 16 = 〇 49 面:/c = 〇C ! 6 二〇32 Face: /c = 0 C4= 1.239136χ10*7 Cg= - 4.464856χ1〇·16 C12= 5.670647xl〇·24 C16= 1.45 1485χ10'32 34 Face: /c = 0 C4= - 1 ·865339χ10·8 C8= 8.017181X10'17 C12= - 4.300977X10"25 C16= — 6.012233X 10-33 35 Face: /c = 0 C4= - 8.61051〇xl〇-8 C8= - 9.671 128xl〇·18 C12 = - 4.359344xl0*25 C16= - 2.36409〇xl〇·33 37 Face: /c = 0 C4= - 1.282338xl0·8 C8= - 6.809619X10·17 C12= 2.350885X 10'26 C16= 0 39 Face: / c = 0 C4= 3.207823xl(T9 C8= 7.902094xl〇·19 C6= - 7.350385xl0*12 C10= 2.806543xl〇·20 C14= - 5.859490xl0·28 C6= 1.579588xl〇-12 C10= 4.868532xl0*21 C14= 8.949767X10·29 C6= - 2.359035xl〇·12 C10= - 4.677184xl〇·21 C14= 2.838307X 10'29 C6= 1.229961 X10·12 C10= 8.124958xl0'22 C14= - 1.033414X 10·30 C6 = - 1.834369xl0·13 C10= 1.077742xl〇·22 30 200844677 C12= - 1.743502X10-27 C14= 〇C 16 = 〇49 Face: /c = 〇
C4= - 2.954763χ1〇-9 C8= - 8.095129xl〇·17 C12= - 1.436563xl〇·25 C16= 9·661656χ10_35 5 1 面:/c = 〇 C4= 3.487417x1ο.8 C8= - 3.161584x 1ο-16 C12= - 2.49985 1 xl〇·24 C16= - 3.703232xl〇-33 (條件對應值) (1) |M1| = 1.386 (2) |M2|= 1.529 (3) |M3|= 0.059 C6= 3.1 13771 xl〇·13 C10= 6.387662xl〇-21 C14= 一 1.622621X10·30 C6= 4.154451 xl〇-12 C10= 2.815056xl〇·20 C14= 1.307082xl〇-28 圖8係顯示第2實施例之投影光學系統之球面像差、 像面彎曲、歪曲像差的圖。圖9係顯示第2實施例之投影 光學系統之橫像差的圖。像差圖中,NA係表示投影光學 系統PL之像側(晶圓侧)數值孔徑,Υ係表示像高(mm)。從 圖8及圖9之像差圖可明確得知,第2實施例亦與第1實 施例相同,儘管確保非常大的像側數值孔徑(NA =丨·3)及較 大且接近正方形之矩形曝光區域ER(16.5mmxl3mm),亦可 對波長為193.306nm之準分子雷射光良好地修正各像差。 31 200844677 於本實施形態之投影光學系統PL,由於採用液浸型投 影光學系統,因此可一邊確保大的像侧數值孔徑,一邊確 保比較大的有效成像區域。亦即,於各實施例,對中心波 長為193.306nm之ArF準分子雷射光,可確保i 3之高像 侧數值孔徑,且確保16.5mmx 13mm之矩形有效成像區域, 可於例如16.5mmxl3mm之矩形曝光區域ER内以高精度且 高產率使電路圖案一次曝光。C4= - 2.954763χ1〇-9 C8= - 8.095129xl〇·17 C12= - 1.436563xl〇·25 C16= 9·661656χ10_35 5 1 Face: /c = 〇C4= 3.487417x1ο.8 C8= - 3.161584x 1ο- 16 C12= - 2.49985 1 xl〇·24 C16= - 3.703232xl〇-33 (conditional value) (1) |M1| = 1.386 (2) |M2|= 1.529 (3) |M3|= 0.059 C6= 3.1 13771 xl〇·13 C10= 6.387662xl〇-21 C14=1.662021X10·30 C6= 4.154451 xl〇-12 C10= 2.815056xl〇·20 C14= 1.307082xl〇-28 Figure 8 shows the projection of the second embodiment A diagram of the spherical aberration, curvature of field, and distortion of the optical system. Fig. 9 is a view showing the lateral aberration of the projection optical system of the second embodiment. In the aberration diagram, NA indicates the numerical aperture on the image side (wafer side) of the projection optical system PL, and Υ indicates the image height (mm). As is clear from the aberration diagrams of Figs. 8 and 9, the second embodiment is also the same as the first embodiment, although a very large image side numerical aperture (NA = 丨·3) and a large and close square are ensured. The rectangular exposure area ER (16.5 mm x 13 mm) can also correct various aberrations for excimer laser light having a wavelength of 193.306 nm. 31 200844677 In the projection optical system PL of the present embodiment, since the liquid immersion type projection optical system is used, it is possible to secure a large effective image area while ensuring a large image side numerical aperture. That is, in each of the embodiments, the ArF excimer laser light having a center wavelength of 193.306 nm can ensure a high image side numerical aperture of i 3 and ensure a rectangular effective imaging area of 16.5 mm x 13 mm, which can be, for example, a rectangle of 16.5 mm x 13 mm. The circuit pattern is exposed once in the exposure region ER with high precision and high yield.
此外,於上述實施形態,於3次成像型之反射折射型 成像光學系統,第2成像系統G2,係由彼此相對向配置之 一對凹面反射鏡CM1及CM2構成。然而,並不限於此, 第2成像系統G2可有各種構成例。例如,第2成像系統 G2亦可構成為具有2個反射鏡的光學系統、或具備反射面 的光學系統。又,於上述實施形態,在彼此相對向配置之 一對凹面反射鏡CMi及CM2之間之光路未配置透鏡等的 折射構件,但亦可在之間之光路配置折射構件。 又,於上述實施形態,將本發明適用於液浸型成像光 學系統,但並不限於此,亦可將本發明適用於在像侧區域 未使用液浸的乾燥型成像光學系統。又,於上述實施形態, 第1成像系統G1、第2成像系統G2、及第3成像系統⑺ 係彼此共軸配置。然而,並不限於此,第1 取1冢糸統G1 之光軸、第2成像系統G2之光軸、及第3成像系統⑺之 光軸之配置關係可有各種構成例。 又,如上述實施形態,於液浸型投影光學系統,其數 值孔徑NA會有超過丨.〇而變大之情形。從以往使用為曝 32 200844677Further, in the above-described embodiment, in the third-order imaging type catadioptric imaging optical system, the second imaging system G2 is composed of a pair of concave reflecting mirrors CM1 and CM2 which are disposed to face each other. However, the present invention is not limited thereto, and the second imaging system G2 may have various configuration examples. For example, the second imaging system G2 may be configured as an optical system having two mirrors or an optical system having a reflecting surface. Further, in the above-described embodiment, the refractive member such as a lens is not disposed in the optical path between the pair of concave mirrors CMi and CM2 disposed to face each other, but the refractive member may be disposed in the optical path therebetween. Further, in the above embodiment, the present invention is applied to a liquid immersion type imaging optical system. However, the present invention is not limited thereto, and the present invention can also be applied to a dry type imaging optical system in which no liquid immersion is used in the image side region. Further, in the above embodiment, the first imaging system G1, the second imaging system G2, and the third imaging system (7) are arranged coaxially with each other. However, the present invention is not limited thereto, and various configurations may be employed in the arrangement relationship between the optical axis of the first system G1, the optical axis of the second imaging system G2, and the optical axis of the third imaging system (7). Further, as in the above embodiment, in the liquid immersion type projection optical system, the numerical aperture NA may increase beyond 丨. Used from the past for exposure 32 200844677
光用光之隨機偏振光’由於會因偏振效果導致成像性能惡 化’因此使用液浸型投影光學系統時,較佳為,以偏振照 明來照明作為物體的光罩(標線片)。此時,進行與光罩(標 線片)之線寬與線距圖案之線寬圖案之長邊方向—致的直線 偏振照明,從光罩(標線片)之圖案射出較多S偏振成分(TE 偏振成分)、亦即沿著線寬圖案之長邊方向之偏振方向成分 的繞射光即可。In the case of using a liquid immersion type projection optical system, it is preferable to illuminate a photomask (a reticle) as an object with a polarized illumination when the random polarized light of the light is used to deteriorate the imaging performance due to the polarization effect. At this time, the linearly polarized illumination of the line width of the mask (the reticle) and the line width pattern of the line-distance pattern is performed, and more S-polarized components are emitted from the pattern of the mask (the reticle). (TE polarization component), that is, diffracted light of a polarization direction component along the longitudinal direction of the line width pattern.
田杈影光學系統PL與塗布於晶圓w(基板)之表面的光 阻之間充滿液體時,相較於投影光學系統PL肖塗布於晶 圓的光阻之間充滿空氣(氣體)之情形,由於有助於= 比提昇之S偏振成分(TE偏振成分)之繞射光在光阻表面的 透射率高’因此即使投影光學系統之數值孔徑na超過! 〇 時’亦可獲得高成像性能。 一 右將私相光罩與曰本特開平6— 188169號公報所 揭不之與線見圖案之長邊方向一致的斜入射照明法(尤盆是 偶極照明法)等適當組合,則更有效果。尤其是,直線偏振 照明法與偶極照明法的組合,在線寬與線距圖案之周期方又 向限於既定一方向時、或孔圖案沿著既定一方向密集時有 例如併用直線偏振照明法與偶極照明法來照明透射 率6%之半色調型移相光罩(半間距45nm程度之圖案)時, 設於照明“之光瞳面形成偶極之二光束之外切圓所限定 之^明σ & G·95、該光瞳面之各光束之半徑為G.125 σ、 投衫光學系統PL之數值孔徑為ΝΑ = 12時,相較於使用 隨機偏振光,能使焦點深度(〇〇1?)增加i5〇nm程度。 33 200844677 又,直線偏振照明與小σ照明法(表示照明系統之數值 孔徑NAi與投影光學系統之數值孔徑NAp之比的σ值為0.4 以下的照明法)之組合亦有效。 又,例如以ArF準分子雷射光作為曝光用光,使用1/4 程度之縮小倍率之投影光學系統PL,使細微線寬與線距圖 案(例如25〜5Onm程度之線寬與線距)曝光於基板p上時, 根據光罩Μ之構造(例如圖案之細微度或鉻的厚度),因波 導(Wave guide)效應光罩Μ作用為偏振板,從光罩μ射出 多於降低對比之Ρ偏振成分(ΤΜ偏振成分)之繞射光的8偏 振成分(ΤΕ偏振成分)之繞射光。然而,如本實施形態般使 用1/8程度之縮小倍率之投影光學系統時,由於在光罩側 之數值孔徑ΝΑ變小’因此可忽視此波導效應的影響。此 外,進一步提高晶圓侧之數值孔徑ΝΑ時,較佳為使用上 述直線偏振照明,但以隨機偏振光照明光罩Μ亦可獲得高 解析性能。 • 再者,不僅與光罩(標線片)之線寬圖案之長邊方向一 致的直線偏振照明(S偏振照明),如日本特開平6_5312〇 號公報所揭示,在以光軸為中心之圓之切線(周)方向直線 偏振之偏振照明法與斜入射照明法的組合亦有效。尤其 不僅光罩(標線片)之圖案延伸於既定_方向的線寬圖 木’延伸於不同方向之複數個綠官同安 後数個綠見圖案混合(周期方向不 之線寬與線距圖案混合)時,同樣地,如日本特開平6〜 53120號公報所揭示,藉由併用在以光軸為中心:〜 線方向直線偏振之偏振照明法與輪帶照明法,投影光學系刀 34 200844677 統之再Τ:ΝΑ大時亦可獲得高成像性能。 I⑽/公^各本種/料外,將例如日本特開平4 現Α報或日本特開2〇 之累進焦點曝光法、或 45245遽公報所揭示 光而獲得與累❹點曝光法、(例如二波長)之曝光用 於本發明亦有效。I目效果的多波長曝光法適用 又,於上述實施形態,接觸 以斜虛, 接觸液體Lm之邊界透鏡,係When the field shadow optical system PL is filled with liquid between the photoresist applied to the surface of the wafer w (substrate), the air (gas) is filled between the photoresists coated on the wafer by the projection optical system PL. Since the transmittance of the diffracted light which contributes to the S-polarized component (TE polarization component) on the resist surface is high, the numerical aperture na of the projection optical system exceeds even! High imaging performance is also achieved when 〇. A proper combination of the private phase mask and the oblique incident illumination method (the special basin is dipole illumination method), which is the same as the longitudinal direction of the pattern, which is not disclosed in the Japanese Patent Publication No. 6-188169, is more appropriate. effective. In particular, in combination with the linear polarization illumination method and the dipole illumination method, when the period of the line width and the line pitch pattern is limited to a predetermined direction, or when the hole pattern is dense along a predetermined direction, for example, a linear polarization illumination method is used in combination with The dipole illumination method is used to illuminate a halftone-type phase-shifting reticle with a transmittance of 6% (a pattern with a half-pitch of 45 nm), which is defined by the tangential circle of the two beams of the dipole that form the dipole of the illumination. Ming σ & G·95, the radius of each beam of the pupil plane is G.125 σ, and the numerical aperture of the shirting optical system PL is ΝΑ = 12, which enables the depth of focus compared to the use of randomly polarized light ( 〇〇1?) Increase the degree of i5〇nm. 33 200844677 In addition, the linear illuminating illumination and the small σ illumination method (the σ value indicating the ratio of the numerical aperture NAi of the illumination system to the numerical aperture NAp of the projection optical system is 0.4 or less) In addition, for example, ArF excimer laser light is used as the exposure light, and a projection optical system PL of a 1/4 degree reduction ratio is used to make a fine line width and a line pitch pattern (for example, a line of 25 to 5 nm). Width and line spacing) exposure On the substrate p, according to the structure of the mask (for example, the fineness of the pattern or the thickness of the chrome), the mask is acted as a polarizing plate due to the Wave guide effect, and the polarized light is emitted from the mask μ more than the contrast. The diffracted light of the 8-polarized component (the ΤΕ-polarized component) of the diffracted light of the component (the ΤΜ-polarized component). However, when the projection optical system of the reduction ratio of 1/8 is used as in the present embodiment, the value on the reticle side is The aperture ΝΑ becomes smaller, so the influence of the waveguide effect can be neglected. Further, when the numerical aperture ΝΑ on the wafer side is further increased, it is preferable to use the linearly polarized illumination described above, but the illuminating mask of the random polarized light can also obtain high resolution performance. • In addition, linearly polarized illumination (S-polarized illumination) that coincides with the long-side direction of the line-width pattern of the reticle (the reticle), as disclosed in Japanese Patent Laid-Open No. Hei 6-5312, is centered on the optical axis. The combination of the linearly polarized polarization illumination method and the oblique incident illumination method in the tangential (circumference) direction of the circle is also effective. In particular, not only the pattern of the reticle (the reticle) extends in the predetermined _ direction When a plurality of green-green patterns are mixed in a plurality of green officials and in different directions (the line width is not mixed with the line-distance pattern), the same as disclosed in Japanese Laid-Open Patent Publication No. Hei 6-53120 By using the polarized illumination method and the belt illumination method which are centered on the optical axis: the linear direction of the line direction, the projection optical system knife 34 200844677 is also a re-enactment: high imaging performance can also be obtained when I am large. I(10)/gong ^ In addition to the various types of materials, the exposure point exposure method, for example, the two-wavelength exposure method, (for example, two wavelengths) is obtained by, for example, the method disclosed in Japanese Laid-Open Patent Publication No. Hei. The exposure is also effective for the present invention. The multi-wavelength exposure method of the I mesh effect is applied. Further, in the above embodiment, the boundary lens which contacts the liquid Lm is obliquely imaginary.
乂對曝光用光之波長呈右狀 .,^ 反長八有折射率156程度的石英玻璃形 烕’但亦能以具有較石筮& > 、玻耦為鬲之折射率的材料形成。 此日守’作為液體Lm,亦取获姑k /太m 取代、、、屯水而使用具有較純水為高 之折射率的介質。 、例如,形成邊界透鏡之材料,可使用對使用光之中心 波長具有2.1435之折射率的镏鋁石榴石([Lutetium Aluminum Gamet]LuAG)、對使用光具有21之折射率的氧 化鎂(MgO)、對使用光具有2·7之折射率的氧化鈣(Ca〇)、 對使用光之中心波長具有187之折射率的尖晶石 ([crystalline magnesium aluminum spinel]MgAl2〇4)等。又, 液體Lm,可使用對使用光之中心波長具有大於丨·5之折射 率的高折射率液體,此高折射率液體例如可使用碳化氫系 的介質(液體)。 於上述實施形態之曝光裝置,以照明裝置照明標線片 (光罩)(照明步驟),使用投影光學系統使形成於光罩之轉印 用圖案曝光於感光性基板(曝光步驟),藉此製造微元件(半 導體元件、攝影元件、液晶顯示元件、薄膜磁頭等)。以下, 35 200844677 參照圖ι〇之流程圖說明使用本實施形態之曝光裝置在作 為感光性基板之晶圓等形成既定電路圖案,以獲得作為微 兀件之半導體元件時之方法的一例。 首先於圖10之步驟3〇1,在i批量之晶圓上蒸鐘金 屬膜。接著,於㈣3〇2,在該】批量之晶圓上之金屬膜 上塗布光阻。之後’於步驟⑽,使用本實施形態之曝光 裝置’使光罩上之圖案像透過投影光學系統依序曝光轉印 於該/批1之晶圓上之各照射區域。之後,於步驟綱, 進打該1批量之晶圓上之光阻的顯影後,於步驟州,在 該1批量之晶圓上將光阻圖案作為光罩而進行餘刻,藉此 將對應光罩上之圖案的電路圖案形成於各晶圓上之各照射 區域。 i丰S’進一步進订上層之電路圖案的形成等,藉此製 …件等之元件。根據上述半導體元件製造方法, 月匕^產率製得具有極細微電路圖案的半㈣元件。又, 於步驟301〜305,在晶圓上菹鲈厶 ., “、、鍍金屬,在該金屬膜上塗布 光阻,接著進行曝光、顯影、餘 ϋ @ i 蚀刻之各步驟,但當然地, 在邊4步驟之前,在晶圓上形成 气几心 夕之氧化膜後,在該矽之 乳化胰上塗布光阻,接著進行曝 亦可。 光、顯影、姓刻之各步驟 又’於本貫施形恶之曝光裝著 ,, 夏’可藉由在板(玻璃基板) 上化成既定圖案(電路圖案、電極 # t %曰β , 柽圖案等),獲得作為微元 仵之液日日顯示元件。以下,表昭 夕n认 / “、、圖11之流程圖說明此時 之方去的一例。圖i i中,於 系形成步驟401,使用本實 36 200844677 施形態之曝光裝置使光罩之圖案轉印曝光於感光性基板C塗 布光阻之玻璃基板等),即進行所明光微影步驟。藉由此光 微影步驟,在感光性基板上形成包含多數電極等之既定圖 案。之後,經曝光之基板,係藉由經過顯影步驟、蝕刻步 驟、光阻剝離步驟等之各步驟,在基板上形成既定圖案, 接著移至濾色器形成步驟402。 接著,於濾色器形成步驟402,對應R(Red)、G(Green)、 ⑩ B(Blue)之3個點之組多數排列成陣列狀,或R、〇、b之3 條直線之濾色器之組在複數水平掃描線方向排列,形成渡 色器。接著,在濾色器形成步驟402之後,進行單元組裝 步403。於單元組裝步驟403,使用圖案形成步驟4〇1 所製得之具有既定圖案的基板、及濾色器形成步驟4〇2所 製得之濾色器等來組裝液晶面板(液晶單元)。 於單兀組裝步驟403,例如,在圖案形成步驟4〇1所 製得之具有既定圖案的基板、及濾色器形成步驟4〇2所製 φ 侍之濾色器之間注入液晶,以製造液晶面板(液晶單元)。 之後,於模組組裝步驟404,安裝進行已組裝液晶面板(液 晶早7G)之顯示動作的電路、背光等各元件以完成液晶顯示 元件。根據上述液晶顯示元件之製造方法,能以高產率製 得具有極細微電路圖案的液晶顯示元件。 又,於上述實施形態,雖使用ArF準分子雷射光源, 但亚不限於此,亦可使用例如h雷射光源等其他適當的光 源。然而,使用F2雷射光作為曝光用光時,液體係使用F2 田射光可透射之例如氟系油或過氟化聚_ (pFpE)等之氣系 37 200844677 液體。 又,於上述實施形態,本發明雖適用一次曝光型之曝 光裝置,但並不限於此,本發明亦可適用一岸使標線片(光 罩)及晶圓(感光性基板)相對投影光學系統移動一邊進行掃 描曝光之掃描型曝光裝置。又,於上述實施形態,本發明 雖適用I載於曝光裝置之投影光學系統,但並不限於此, 本發明亦可適用其他適當之3次成像型之反射折射型之成 像光學系統。 【圖式簡單說明】 圖1係概略顯示本發明實施形態之曝光裝置之構成的 圖。 圖2係顯示矩形之曝光區域與光軸之位置關係的圖。 圖3係以示意方式顯示邊界透鏡與晶圓之間之構成的 圖。 ❿ 圖4係顯示第1實施例之投影光學系統之透鏡構成的 圖。 圖5係顯示第i實施例之球面像差、像面彎曲、歪曲 像差的圖。 圖6係顯示第1實施例之投影光學系統之橫像差的圖。 圖7係顯示第2實施例之投影光學系統之透鏡構成的 圖。 圖8係顯示第2實施例之球面像差、像面彎曲、歪曲 像差的圖。 38 200844677 圖9係顯示第2實施例之投影光學系統之橫像差的圖。 圖1 0係製得半導體元件時之方法的流程圖。 圖11係製得液晶顯示元件時之方法的流程圖。 【主要元件符號說明】乂The wavelength of the exposure light is right. ·^ The anti-long eight-shaped quartz glass-shaped 有 with a refractive index of 156' can also be formed with a material having a refractive index of 筮 筮 &> . This day, as the liquid Lm, it is also used to replace the water, and to use water with a higher refractive index than pure water. For example, as the material for forming the boundary lens, yttrium aluminum garnet ([Lutetium Aluminum Gamet] LuAG) having a refractive index of 2.1435 for the center wavelength of light and magnesium oxide (MgO) having a refractive index of 21 for use light can be used. Calcium oxide (Ca〇) having a refractive index of 2. 7 for light and spinel ([crystalline magnesium aluminum spinel] MgAl2〇4) having a refractive index of 187 at a center wavelength of light used. Further, as the liquid Lm, a high refractive index liquid having a refractive index greater than 丨·5 for the center wavelength of the used light can be used. For the high refractive index liquid, for example, a hydrocarbon-based medium (liquid) can be used. In the exposure apparatus according to the above embodiment, the illuminating device illuminates the reticle (mask) (illumination step), and the transfer pattern formed on the reticle is exposed to the photosensitive substrate (exposure step) by using the projection optical system. Manufacturing micro-elements (semiconductor elements, photographic elements, liquid crystal display elements, thin film magnetic heads, etc.). In the following, a description will be given of a method for forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate by using the exposure apparatus of the present embodiment to obtain a semiconductor element as a micro-clamp. First, in step 3 of Figure 10, the metal film is vaporized on the i-row wafer. Next, at (4) 3, 2, a photoresist is coated on the metal film on the wafer of the batch. Thereafter, in step (10), the pattern image on the photomask is sequentially exposed to each of the irradiation regions on the wafer of the batch 1 by the exposure optical system using the exposure device of the present embodiment. Then, in the step of stepping, after developing the photoresist on the wafer of the one batch, in the step state, the photoresist pattern is used as a mask on the wafer of one batch, and the corresponding A circuit pattern of the pattern on the photomask is formed on each of the illumination regions on each of the wafers. i Feng S' further advances the formation of the circuit pattern of the upper layer, etc., thereby fabricating components such as parts. According to the above semiconductor element manufacturing method, a half (four) element having a very fine circuit pattern is obtained. Further, in steps 301 to 305, on the wafer, ", metallization, applying a photoresist to the metal film, followed by exposure, development, and ember @ i etching, but of course Before the step 4 is formed, after forming an oxide film on the wafer, the photoresist is coated on the emulsified pancreas of the crucible, and then exposed. The steps of light, development, and surname are In the exposure of the sinister sinus, Xia' can be obtained as a micro-element liquid day by forming a predetermined pattern (circuit pattern, electrode #t%曰β, 柽 pattern, etc.) on a plate (glass substrate). Japanese display element. The following is an example of the flowchart of FIG. In Fig. 1 i, in the step of forming the film 401, the exposure of the mask is performed by exposing the pattern of the mask to the glass substrate on which the photoresist is applied to the photosensitive substrate C, that is, the step of performing the light lithography. By this photolithography step, a predetermined pattern including a plurality of electrodes or the like is formed on the photosensitive substrate. Thereafter, the exposed substrate is formed into a predetermined pattern on the substrate by a respective steps of a developing step, an etching step, a photoresist stripping step, and the like, and then moved to the color filter forming step 402. Next, in the color filter forming step 402, a plurality of groups of three points corresponding to R (Red), G (Green), and 10 B (Blue) are arranged in an array, or three straight lines of R, 〇, and b are filtered. The color filter group is arranged in the direction of the plurality of horizontal scanning lines to form a color former. Next, after the color filter forming step 402, the cell assembly step 403 is performed. In the unit assembling step 403, the liquid crystal panel (liquid crystal cell) is assembled by using the substrate having the predetermined pattern obtained by the pattern forming step 4〇1 and the color filter obtained by the color filter forming step 4〇2. In the unit assembly step 403, for example, a liquid crystal is injected between a substrate having a predetermined pattern prepared in the pattern forming step 4〇1 and a color filter formed by the color filter forming step 4〇2 to fabricate Liquid crystal panel (liquid crystal cell). Thereafter, in the module assembling step 404, each element such as a circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal 7G) is mounted to complete the liquid crystal display element. According to the above method for producing a liquid crystal display element, a liquid crystal display element having an extremely fine circuit pattern can be obtained with high yield. Further, in the above embodiment, an ArF excimer laser light source is used, but the present invention is not limited thereto, and other suitable light sources such as a h laser light source may be used. However, when F2 laser light is used as the exposure light, the liquid system uses a gas system such as a fluorine-based oil or a superfluorinated poly-(pFpE), which is transmissive to F2 field light, 37 200844677 liquid. Further, in the above embodiment, the present invention is applied to an exposure apparatus of a single exposure type. However, the present invention is not limited thereto, and the present invention is also applicable to a projection optical of a reticle (photomask) and a wafer (photosensitive substrate). The system moves a scanning exposure device that performs scanning exposure. Further, in the above embodiment, the present invention is applied to a projection optical system in which the exposure apparatus is mounted. However, the present invention is not limited thereto, and the present invention can also be applied to other suitable three-time imaging type catadioptric imaging optical systems. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view schematically showing the configuration of an exposure apparatus according to an embodiment of the present invention. Fig. 2 is a view showing the positional relationship between the exposed area of the rectangle and the optical axis. Fig. 3 is a view schematically showing the configuration between a boundary lens and a wafer. Fig. 4 is a view showing the lens configuration of the projection optical system of the first embodiment. Fig. 5 is a view showing spherical aberration, field curvature, and distortion of the i-th embodiment. Fig. 6 is a view showing the lateral aberration of the projection optical system of the first embodiment. Fig. 7 is a view showing the lens configuration of the projection optical system of the second embodiment. Fig. 8 is a view showing spherical aberration, field curvature, and distortion of the second embodiment. 38 200844677 Fig. 9 is a view showing the lateral aberration of the projection optical system of the second embodiment. Figure 10 is a flow chart of a method for fabricating a semiconductor device. Figure 11 is a flow chart showing the method of producing a liquid crystal display element. [Main component symbol description]
Lb 邊界透鏡 Lm 液體(純水) PL 投影光學系統 R 標線片(光罩) RST 標線片載台 W 晶圓 1 照明光學系統 14 主控制系統 21 供排水機構 39Lb boundary lens Lm liquid (pure water) PL projection optical system R reticle (mask) RST reticle stage W wafer 1 illumination optical system 14 main control system 21 water supply and drainage mechanism 39
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007006844 | 2007-01-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200844677A true TW200844677A (en) | 2008-11-16 |
Family
ID=39635832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097101424A TW200844677A (en) | 2007-01-16 | 2008-01-15 | Image forming optical system, exposure equipment and device manufacturing method |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW200844677A (en) |
WO (1) | WO2008087827A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8208198B2 (en) | 2004-01-14 | 2012-06-26 | Carl Zeiss Smt Gmbh | Catadioptric projection objective |
US20080151365A1 (en) | 2004-01-14 | 2008-06-26 | Carl Zeiss Smt Ag | Catadioptric projection objective |
KR101213831B1 (en) | 2004-05-17 | 2012-12-24 | 칼 짜이스 에스엠티 게엠베하 | Catadioptric projection objective with intermediate images |
CN103278912B (en) * | 2013-06-19 | 2015-07-08 | 中国科学院光电技术研究所 | Catadioptric ultraviolet lithography objective lens |
CN104111515B (en) * | 2014-07-11 | 2016-09-28 | 中国科学院光电技术研究所 | Large-numerical-aperture immersion type projection objective lens |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4245286B2 (en) * | 2000-10-23 | 2009-03-25 | 株式会社ニコン | Catadioptric optical system and exposure apparatus provided with the optical system |
WO2005059654A1 (en) * | 2003-12-15 | 2005-06-30 | Carl Zeiss Smt Ag | Objective as a microlithography projection objective with at least one liquid lens |
DE602005018648D1 (en) * | 2004-07-14 | 2010-02-11 | Zeiss Carl Smt Ag | CATADIOPRIC PROJECTION LENS |
EP1852745A1 (en) * | 2006-05-05 | 2007-11-07 | Carl Zeiss SMT AG | High-NA projection objective |
DE102006038398A1 (en) * | 2006-08-15 | 2008-02-21 | Carl Zeiss Smt Ag | Projection objective for microlithographic projection exposure apparatus, has lens composed of lens elements which are arranged to follow each other along optical axis, where lens has curved lens surfaces put together by elements |
-
2007
- 2007-12-19 WO PCT/JP2007/074376 patent/WO2008087827A1/en active Application Filing
-
2008
- 2008-01-15 TW TW097101424A patent/TW200844677A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2008087827A1 (en) | 2008-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW503466B (en) | Reflection/refraction optical system and projection exposure apparatus comprising the optical system, exposure method and manufacturing method of micro-device | |
JP4717974B2 (en) | Catadioptric optical system and projection exposure apparatus provided with the optical system | |
KR100678484B1 (en) | Projection optical system, exposure apparatus, and device manufacturing method | |
TW200305786A (en) | Projection system, exposure device and espousing method | |
JP2004205698A (en) | Projection optical system, exposure device and exposing method | |
US20130321935A1 (en) | Unit magnification large-format catadioptric lens for microlithography | |
JP2012168543A (en) | Projection optical system, exposure device, and exposure method | |
US9146475B2 (en) | Projection exposure system and projection exposure method | |
TWI237307B (en) | Optical projection system, light exposing apparatus and light exposing method | |
JP2004333761A (en) | Catadioptric projection optical system, projection aligner, and exposure method | |
TW200844677A (en) | Image forming optical system, exposure equipment and device manufacturing method | |
JPWO2007086220A1 (en) | Catadioptric imaging optical system, exposure apparatus, and device manufacturing method | |
US7283294B2 (en) | Catadioptric projection optical system, exposure apparatus having the same, device fabrication method | |
JP2008085328A (en) | Liquid immersion objective optical system, exposure apparatus, device manufacturing method, and border optical element | |
JP2007305821A (en) | Projection optical system, exposure device, and device manufacturing method | |
JP4706171B2 (en) | Catadioptric projection optical system, exposure apparatus and exposure method | |
JP2005003982A (en) | Projection optical system, and device and method of exposure | |
JP2005115127A (en) | Catadioptric projection optical system, exposure device and exposing method | |
JP2002082285A (en) | Catadioptric system and exposure device using the system | |
WO2007071569A1 (en) | Projection objective of a microlithographic projection exposure apparatus | |
JP2005209769A (en) | Aligner | |
JP4868209B2 (en) | Projection optical system, exposure apparatus, and exposure method | |
WO2007132619A1 (en) | Imaging optical system, exposure system, and device production method | |
JP5786919B2 (en) | Projection optical system, exposure apparatus and exposure method | |
JP2000208396A (en) | Visual field stop projection optical system and projection aligner |