TW200844625A - Optical projection system to project the output of color lights containing image signals - Google Patents

Optical projection system to project the output of color lights containing image signals Download PDF

Info

Publication number
TW200844625A
TW200844625A TW96116878A TW96116878A TW200844625A TW 200844625 A TW200844625 A TW 200844625A TW 96116878 A TW96116878 A TW 96116878A TW 96116878 A TW96116878 A TW 96116878A TW 200844625 A TW200844625 A TW 200844625A
Authority
TW
Taiwan
Prior art keywords
light
module
color
color light
projection system
Prior art date
Application number
TW96116878A
Other languages
Chinese (zh)
Other versions
TWI354179B (en
Inventor
yue-cong Li
Ming-Hsin Chang
Original Assignee
Asia Optical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Optical Co Inc filed Critical Asia Optical Co Inc
Priority to TW96116878A priority Critical patent/TW200844625A/en
Publication of TW200844625A publication Critical patent/TW200844625A/en
Application granted granted Critical
Publication of TWI354179B publication Critical patent/TWI354179B/zh

Links

Abstract

The invention discloses an optical projection system, which includes a light-source module, a beam splitting module, a signal module, a beam combing module and a projection lens. The light-source outputs a light beam; the beam splitting module includes a first beam splitting device dividing the light-beam into a first color light and a bicolor light, a second beam splitting device dividing the bicolor light into a second color light and a third color light, a reflection device group, and three total reflection prism sets totally reflecting the above color light respectively. The signal module includes three bistable spatial light modulation device respectively reflecting the said color light containing image signals. The beam combing module includes a first beam combing face capable of reflecting the first color light, and a second beam combing face capable of intersecting the first beam combing face and still reflecting the third color light. The projection lens is used to project the output of said color lights containing image signals.

Description

200844625 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種投影系統,特別是指一種具有三 個雙穩態空間光源調變元件的光學投影系統。 【先前技術】 在我們世界裡的視覺是一類比形式,但當我們利用電 子訊號來獲取、儲存和傳送該類比現象時,採用數位技術 卻能帶來許多重大優點;而數位投影和顯示技術能接受敦 位視訊之後,產生一系列的數位光脈衝;當這些光脈衝進 入我們的眼睛後,大腦會把它解譯成為彩色類比影像;而 使用具有多數個反射性光開關的雙穩態空間光源調變元件 (Bistable Spatial light modulator),例如:數位微型反射鏡 元件(Digital Micromirror Device,簡稱 DMD),或者是 微型反射鏡陣列元件(Micro-mirror Array),即是一種用 來達到數位投影和顯示的技術。 參閱圖1,一種現有光學投影系統丨,包含一光源模組 11、一中繼透鏡組12、——全反射稜鏡組13、一分合光模組 14、一訊號模組15 ,及一投影鏡頭16。該光源模組“輸出 一白色光束111 ;該中繼透鏡組12供會聚並傳送該光束lu ;該全反射稜鏡組13具有一可供該光束U1進行全反射的 反射面m ;該分合光模組14具有二呈三角柱形的棱鏡 141、一呈四邊形的稜鏡142,及分別位於該等稜鏡141、 1:2之間的一第一分光面143與一第二分光φ !化該訊號 模組15,具有三分別鄰近該分合光模組14的數位微型反射 5 200844625 鏡元件151。 當該白色光束ill經該全反射稜鏡組13反射面131全 反射之後,進入該分合光模組14内,由該第一分光面143 將該光束ill分離出一第一色光112及一雙色光113,其中 該第一色光112經該數位微型反射鏡元件151反射後含有影 像訊號,而該雙色光113再經由該第二分光面j44分離出一 第二色光114及一第三色光115,如此該第二、第三色光 114、115分別再經該等位微型反射鏡元件15ι反射後含有 影像訊號,最後,該等色光112、114、115再會合於該分合 光模組14内一起射出,並經由該投影鏡頭16投影和顯示 於一螢幕(圖未示)上。 現有光學投影系統1的光路設計是讓該等數位微型反 射鏡元件151位於該投影鏡頭16的後焦點(Back Focus)上, 但因為現有的光學投影系統1在該投影鏡頭1 6與各數位微 型反射鏡元件151之間需要存在有該全反射稜鏡組13,及 該分合光模組14的三個稜鏡141、142,所以該投影鏡頭 16需要有一極長的後焦長度(Back Focal Length,簡稱BFL) 用以容置上述元件,例如,需要大於1 〇〇mrn以上的後焦長 度才足夠容納;因此,該投影鏡頭16為具有如此長的後焦 長度’需要數量眾多的透鏡才能製成,例如,十片以上的 透鏡;造成了該投影鏡頭16的生產良率下降的問題。另外 ’整體光學投影糸統1的體積尺寸也因為該投影鏡頭16的 後焦長度過長而妨礙朝向小型化的設計。 【發明内容】 , 200844625 因此’本發明之目的,即在提供一種可以使用短後焦 長度的投影鏡頭的光學投影系統。 “於是,本發明光學投影系統,包含一光源模組、一分 光模組、-訊號模組、一合光模組,及一投影鏡頭;其中 光源挺組輸出一光束;該分光模組包括一分離該光束成 第色光與一雙色光的第一分光件、——分離該雙色光成 第一色光與一第三色光的第二分光件、一反射並導引該 等色光的反射件群,及三分別供該等反射件導引後之該等 色光進行全反射的全反射稜鏡組;該訊號模組包括三分別 可反射經該等全反射稜鏡組全反射後之該等色光並使其含 有影像訊號的雙穩態空間光源調變元件;該合光模組包括 一會反射含有影像訊號的該第一色光的第一合光面,及一 與該第一合光面交叉並會反射含有影像訊號的該第三色光 的第二合光面;該投影鏡頭與該等雙穩態空間光源調變元 件分別圍繞於該合光模組,並供含有影像訊號的該等色光 投影輸出。 本發明之功效在於··該投影鏡頭與各雙穩態空間光源 調變元件之間,只存在該合光模組與一個全反射稜鏡組, 所以使用具有一短後焦長度的投影鏡頭,即可以容置上述 元件,確實能達到本發明之目的。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 200844625 參閱圖2、圖3、圖4, 光源模組3、一分光模組4、 ,及一投影鏡頭7。 本發明光學投影系統2包含一 一訊號模組5、一合光模組6 該光源杈組3,包括一可輸出一白色光束31的光源32 該分光模組4,包括一可供該光束31會聚並傳送的中 繼透鏡組41(Relay Lens)、一分離該光束31成一第一色光 311與一雙色光311’的第一分光件42、一分離該雙色光 311’成一第二色光312與一第三色光313的第二分光件43 、一介於該等分光件42、43之間的聚光透鏡44、一具有二 中繼反射件45’及三主反射件45,,並且可反射並導引該等色 光311、312、313的反射件群45、三分別供該反射件群45 導引後之該等色光311、312、313進行全反射的全反射稜鏡 組46,及三分別介於該等全反射稜鏡組46與該等主反射件 45’之間的聚光透鏡47。其中,該反射件群45的該等中繼 反射件45’是分別供自該第二分光件42離開的該第二、第 二色光312、313反射轉向,而該等主反射件45,,則是分別 鄰近於該等全反射稜鏡組46並且分別供經該等中繼反射件 45’的該第二、第三色光312、313反射轉向。另外,在該第 一、第二分光件42、43上分別覆蓋有只會反射該第一、第 二色光311、312的材料,如此,該第一分光件42上只會反 射該第一色光311而使得該雙色光311,通過;而該第二分 光件43則只會反射該第二色光312而使得該第三色光313 通過,達到將該光束31分離成三道個別色光的目的。例如 200844625 ’在本實施例中,該第一分光件42只會反射紅色光、而該 第二分光件43則只會反射該藍色光,如此,被分離的該第 一色光311即是紅色光,被分離的該第二色光312即是藍色 光’而第三色光313即是綠色光;另外,如果改變該第一 分光件42與第二分光件43的覆蓋材料,則該等色光311、 312、313所代表的顏色也可以跟著改變。 另外’如圖4所示’該第一、第二分光件42、43的設 置角度可使該第一色光311離開該第一分光件42時的方向 ,與該第二色光312離開該第二分光件43時的方向是呈相 反方向,而且該第三色光313離開該第二分光件43時的方 向則是分別與該第二色光312離開該第二分光件43時的方 向呈相互垂直(如圖4所示)。另外,該中繼透鏡組41、該等 分光件42、43、介於該等分光件42、43之間的該聚光透鏡 44,及該反射件群45均是位於一上層位置(如圖3所示” 而該等全反射稜鏡組46等元件則是位於一下層位置(如圖3 所示);藉由該反射件群45其中分別鄰近該等全反射稜鏡組 46的三個主反射件45”在一上、下層方向上轉動45度(如 圖3所示)、三個聚光透鏡47在該上、下層方向上轉動45 度(如圖3所示),及該等全反射稜鏡組46在該上、下層方 向上也轉動45度(如圖3所示),可將該等色光311、312、 313分別由上層位置導引到下層位置。 該訊號模組5,位於該下層位置,並包括三分別可反射 經忒等全反射稜鏡組46全反射後之該等色光3 11、3丨2、 313,並使其含有影像訊號的雙穩態空間光源調變元件 200844625 51 (Bistable Spatial light modulator);在本實施例中,每一 雙穩態空間光源調變元件51各是一數位微型反射鏡元件 (Digital Micr⑽irror Device,簡稱 DMD),或者,也可 以是微型反射鏡陣列元件(Micro—mirr〇r Array);均可在 接受數位視訊之後,產生一系列的數位光脈衝。 3亥合光模組6,位於該下層位置,並包括四個直角三角 形的稜鏡61,及由該等稜鏡61組合成一矩形並形成相互交 叉的一第一合光面62與一第二合光面63;其中,在該第一 、第二合光面62、63分別覆蓋有只會反射該第一、第三色 光311、313的材料,如此,該第一合光面62上只會反射含 有影像訊號的該第一色光3 11,而該第二合光面63則只會 反射含有影像訊號的該第三色光313。例如,在本實施例中 ’該第一合光面02只會反射呈紅、色的第一色光311、而該 第二合光面63則只會反射呈綠色的第三色光313。 該投影鏡頭7,位於該下層位置並與該等雙穩態空間光 源調變元件51分別圍繞於該合光模組6,且供含有影像訊 就的該等色光311、312、313投影輸出。 在本實施例中,該投影鏡頭7與其中之一雙穩態空間 光源調變元件51是沿一第一轴向X分別排列於該合光模組 6的其中二側,而另外二個雙穩態空間光源調變元件η則 是沿一第二軸向γ分別排列於該合光模組6的另外二側, 且該第一、第二轴向χ、γ是相互垂直;另外,該等全反射 稜鏡組46則是分別介於該合光模組6與該等雙穩態空間光 源調變元件51之間。以上詳細地說明位於該下層位置的其 10 200844625 中各元件彼此之間的相對位置。 以下說明本發明光學投影系統2内的光路設計及運作 機制: 參閱圖4,首先說明由該光源32輸出的該光束31如何 在該分光模組4中行進以便達到分光的效果。當該光束31 由該光源32出射,會先經該中繼透鏡組41的會聚與傳送 ,接著經該第一分光件42,此時,該光束被分離成該第一 色光311與該雙色光311,;其中的該第一色光3 ^經該第 一分光件42反射後,再經在該上、下層方向上轉動45度 的一主反射件45 ’,、一聚光透鏡47,進入一全反射稜鏡組 46 ’最後全反射進入對應的一雙穩態空間光源調變元件51 。另外的雙色光311’在通過該第一分光件42後,經過該聚 光透鏡44,接著經該第二分光件43,此時,該雙色光3 i j, 被分離成該第二色光312與第三色光313,其中的該第二色 光312經該第二分光件43反射後,經一中繼反射件45,, 再經在該上、下層方向上轉動45度的一主反射件45”、一 聚光透鏡47,進入一全反射稜鏡組46,最後全反射進入對 應的一雙穩態空間光源調變元件51 ;而該第三色光313也 在通過該第二分光件43後,經一中繼反射件45,,再經在 忒上、下層方向上轉動45度的一主反射件45,,、一聚光透 鏡47,進入一全反射稜鏡組46,最後全反射進入對應的一 雙穩態空間光源調變元件51。 參閱圖5,接著說明該等色光311、312、313如何分別 由該等雙穩態空間光源調變元件51、經該合光模組6,再 11 200844625 進入該投影鏡頭7。當該第一色光311進入對應的雙穩態空 間光源調變元件51後,該雙穩態空間光源調變元件51會 反射該第一色光311並使其含有影像訊號,接著,該第一色 光311經該全反射稜鏡組46後進入該合光模組6,再經該 第一合光面62的反射後轉換方向。另外,該第三色光313 也如同該第一色光311 —樣,由相應的雙穩態空間光源調變 . 元件51反射後,經該全反射稜鏡組4 6後進入該合光模組6 馨 ,不同之處在於該第三色光313會被該第二合光面63反射 而轉換方向。另外該第二色光312也如同該第一色光311 — 樣,由相應的雙穩態空間光源調變元件51反射後,經該全 反射稜鏡組46後進入該合光模組6,不同之處在於該第二 色光312可直接穿過該合光模組6而沒有經任何的反射。 如此,被該第一合光面62反射轉向的該第一色光311 、與被该弟二合光面03反射轉向的該第三色光313,及直 接穿過的該第一色光312在該合光模組6内合併,·形成一 鲁含有各雙穩態空間光源調變元件51影像訊號的光束,最後 • 經該投影鏡頭7投影並輸出於一螢幕上(圖未示>。 綵合上述,將本發明光學投影系統2可達到的功效及 優點詳細說明如下: 〇 凡旦可以使用短後焦長度的投影鏡頭7:在本發明光學 技影糸統2的光路設計中’該等雙穩態空間光源調變元件 =旦是位於該投影鏡頭7的一後焦點㈣心⑽叫上,而在該 才又〇鏡頭7與各雙穩態空間光源調變it件51之間,只需要 存在有該合域組6與―個全反射稜餘46即可,相較於 12 200844625 現有的光學投影系統1需要存在有該全反射稜鏡組13,及 該分合光模組14中具有分光與合光作用的三個棱鏡141、 142,本發明光學投影系統2確實可以使用一具有一短後焦 長度的投影鏡頭7’即可容納上述的全反射稜鏡組46與合 光模組6。如此,改善了該投影鏡頭7因為需要長後焦長度 所造成生產良率下降的問題。 一、整體光學投影系統2的體積尺寸可以朝向小型化 設計·現有的光學投影系統1的設計,因為該投影鏡頭! 6 與各數位微型反射鏡元件151之間,需要存在有該全反射 稜鏡組13,及該分合光模組14中具有分光與合光作用的三 個稜鏡141、142,所以無法縮短整體的一長度尺寸;另外 ,因為該光束1Π是由一橫向側引入,所以整體的一寬度尺 寸必須容納該中繼透鏡組12及該全反射稜鏡組14而無法 縮短;但是本發明光學投影系統2使用了短後焦長度的投 影鏡頭7,使得整體的一長度尺寸可縮短,另外,將該光束 31的入射方向也經改向設計,使得該光束η入射於該中繼 透鏡組41的方向是平行於該投影鏡頭7投影輸出的方向, 所以整體的一寬度尺寸也可縮短,如此,達到小型化設計 的目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 13 200844625 圖1是現有一種光學投影系統的一光路示意圖; 圖2是一俯視示意圖,說明本發明光學投影系統的一 較佳實施例; 圖3是該較佳實施例一側視示意圖; 圖4是一光路示意圖,說明該較佳實施例其中一分光 模組的光路;及 圖5是一光路示意圖,說明該較佳實施例其中一訊號 模組、一合光模組,及一投影鏡頭的光路。 200844625200844625 IX. Description of the Invention: [Technical Field] The present invention relates to a projection system, and more particularly to an optical projection system having three bistable spatial light source modulation elements. [Prior Art] Vision in our world is an analogy, but when we use electronic signals to acquire, store, and transmit this analogy, digital technology can bring many significant advantages; digital projection and display technology can After receiving the Dun video, a series of digital light pulses are generated; when these light pulses enter our eyes, the brain interprets them as color analog images; and uses a bistable spatial light source with a plurality of reflective optical switches. A Bistable Spatial Light modulator, such as a Digital Micromirror Device (DMD), or a Micro-mirror Array, is used to achieve digital projection and display. Technology. Referring to FIG. 1 , a conventional optical projection system includes a light source module 11 , a relay lens group 12 , a total reflection group 13 , a split light module 14 , a signal module 15 , and a Projection lens 16. The light source module "outputs a white light beam 111; the relay lens group 12 is configured to converge and transmit the light beam lu; the total reflection yoke group 13 has a reflection surface m for the total reflection of the light beam U1; The optical module 14 has two prisms 141 having a triangular prism shape, a quadrangular ridge 142, and a first beam splitting surface 143 and a second beam splitting φ between the 稜鏡 141 and 1:2, respectively. The signal module 15 has three digital micro-reflections 5 200844625 mirror elements 151 adjacent to the split light module 14 respectively. After the white light beam ill is totally reflected by the reflection surface 131 of the total reflection 稜鏡 group 13, the signal is entered. The light beam ill is separated by the first light splitting surface 143 into a first color light 112 and a two-color light 113, wherein the first color light 112 is reflected by the digital micro mirror element 151. An image signal, and the two-color light 113 further separates a second color light 114 and a third color light 115 via the second beam splitting surface j44, such that the second and third color lights 114 and 115 respectively pass through the equipotential micro mirrors The element 15ι reflects the image signal, and finally, the color light 112, 114, 115 is again combined with the split light module 14 to be emitted together, and projected and displayed on a screen (not shown) via the projection lens 16. The optical path of the existing optical projection system 1 is designed to allow the digital micro-cameras The mirror element 151 is located on the Back Focus of the projection lens 16, but since the existing optical projection system 1 needs to have the total reflection between the projection lens 16 and each of the digital mirror elements 151 The group 13 and the three turns 141 and 142 of the split light module 14 need to have a very long Back Focal Length (BFL) for accommodating the above components, for example, It is necessary to have a back focus length greater than 1 〇〇mrn to accommodate; therefore, the projection lens 16 is made up of a lens having such a long back focal length that requires a large number of lenses, for example, more than ten lenses; The production yield of the projection lens 16 is lowered. In addition, the volume size of the overall optical projection system 1 is also prevented from being miniaturized because the back focus length of the projection lens 16 is too long.容容], 200844625 Therefore, the object of the present invention is to provide an optical projection system that can use a projection lens having a short back focal length. "Therefore, the optical projection system of the present invention comprises a light source module, a light splitting module, - a signal module, a light combining module, and a projection lens; wherein the light source group outputs a light beam; the light splitting module includes a first light splitting member that separates the light beam into a first color light and a two color light, and separates the two color lights a second beam splitter that is a first color light and a third color light, a reflector group that reflects and guides the color light, and a total reflection of the color lights that are respectively guided by the reflectors a reflective 稜鏡 group; the signal module includes three bistable spatial light source modulating elements respectively reflecting the color light totally reflected by the total reflection 稜鏡 group and containing the image signal; the light combining module The first light combining surface that reflects the first color light containing the image signal, and a second light combining surface that intersects the first light combining surface and reflects the third color light containing the image signal; the projection Lens and the The bistable spatial light source modulating elements respectively surround the illuminating module and are outputted by the color light containing the image signal. The effect of the invention lies in that: between the projection lens and each bistable spatial light source modulation component, only the light combining module and one total reflection 稜鏡 group exist, so a projection lens having a short back focal length is used. That is, the above components can be accommodated, and the object of the present invention can be achieved. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. 200844625 Referring to FIG. 2, FIG. 3, FIG. 4, the light source module 3, a beam splitting module 4, and a projection lens 7. The optical projection system 2 of the present invention comprises a signal module 5, a light combining module 6, the light source unit 3, and a light source 32 for outputting a white light beam 31. The light splitting module 4 includes a light beam 31. A relay lens group 41 (relay Lens) that is converged and transmitted, a first beam splitter 42 that separates the light beam 31 into a first color light 311 and a two-color light 311', and a second color light 312 that separates the two-color light 311' into a second color light 312 a second beam splitter 43 with a third color light 313, a condenser lens 44 interposed between the beam splitters 42, 43, a second relay reflector 45' and a three main reflector 45, and can be reflected And guiding the reflector group 45 of the color lights 311, 312, and 313, and the total reflection group 46 for totally reflecting the color lights 311, 312, and 313 respectively guided by the reflector group 45, and A collecting lens 47 is interposed between the total reflection iridium group 46 and the main reflection members 45', respectively. The relay reflectors 45 ′ of the reflector group 45 are respectively reflected and steered by the second and second color lights 312 , 313 respectively separated from the second beam splitter 42 , and the main reflectors 45 , Then, the second and third color lights 312, 313 are respectively reflected and steered adjacent to the total reflection yoke group 46 and respectively passed through the relay reflection members 45'. In addition, the first and second beam splitters 42 and 43 are respectively covered with a material that reflects only the first and second color lights 311 and 312. Thus, only the first color is reflected on the first beam splitter 42. The light 311 causes the two-color light 311 to pass; and the second beam splitter 43 reflects only the second color light 312 to pass the third color light 313, thereby achieving the purpose of separating the light beam 31 into three individual color lights. For example, in the present embodiment, the first beam splitter 42 only reflects red light, and the second beam splitter 43 reflects only the blue light. Thus, the separated first color light 311 is red. The light, the separated second color light 312 is blue light', and the third color light 313 is green light; in addition, if the covering materials of the first beam splitter 42 and the second beam splitter 43 are changed, the color light 311 The colors represented by 312 and 313 can also be changed. In addition, as shown in FIG. 4, the first and second beam splitters 42 and 43 are disposed at an angle that allows the first color light 311 to leave the first beam splitter 42 and exit from the second color light 312. The direction of the dichroic member 43 is opposite, and the direction of the third color light 313 away from the second beam splitter 43 is perpendicular to the direction when the second color light 312 leaves the second beam splitter 43 respectively. (As shown in Figure 4). In addition, the relay lens group 41, the beam splitters 42, 43 and the collecting lens 44 between the beam splitters 42 and 43 and the reflector group 45 are located at an upper layer position (as shown in the figure). 3" and the elements such as the total reflection 稜鏡 group 46 are located at the lower layer position (as shown in FIG. 3); by the reflector group 45, respectively, adjacent to the three groups of the total reflection 稜鏡 group 46 The main reflector 45" is rotated 45 degrees in an upper and lower direction (as shown in FIG. 3), and the three condenser lenses 47 are rotated 45 degrees in the upper and lower directions (as shown in FIG. 3), and the like. The total reflection enthalpy group 46 is also rotated 45 degrees in the upper and lower layers (as shown in FIG. 3), and the chromatic light rays 311, 312, and 313 are respectively guided from the upper layer position to the lower layer position. Located at the lower layer position, and including three bistable spatial light sources respectively reflecting the color light 3 11 , 3 丨 2, and 313 which are totally reflected by the total reflection 稜鏡 group 46 such as 忒, and containing the image signal Variable element 200844625 51 (Bistable Spatial light modulator); in this embodiment, each bistable spatial light source modulation element 51 each is a digital micro mirror element (Digital Micr (10)irror device, referred to as DMD), or may be a micro mirror array element (Micro-mirr〇r Array); can generate a series of digits after receiving digital video a light pulse. The 3H light module 6 is located at the lower layer position and includes four right triangles 稜鏡61, and the 稜鏡61 is combined into a rectangle and forms a first light combining surface 62 and intersecting each other. a second light combining surface 63; wherein the first and second light combining surfaces 62, 63 are respectively covered with a material that reflects only the first and third color lights 311, 313, and thus the first light combining surface 62, only the first color light 3 11 containing the image signal is reflected, and the second light combining surface 63 reflects only the third color light 313 containing the image signal. For example, in the embodiment, the first color light The light combining surface 02 only reflects the first color light 311 which is red and colored, and the second light combining surface 63 only reflects the green color third color light 313. The projection lens 7 is located at the lower layer position and The bistable spatial light source modulation element 51 surrounds the combined light mode The group 6 and the projection output of the color light 311, 312, 313 containing the image signal. In the embodiment, the projection lens 7 and one of the bistable spatial light source modulation elements 51 are along a first axis. The X is arranged on the two sides of the light combining module 6 respectively, and the other two bistable spatial light source modulation elements η are respectively arranged along the second axial direction γ in the other two of the light combining module 6 a side, and the first and second axial turns γ, γ are perpendicular to each other; in addition, the total reflection 稜鏡 group 46 is respectively disposed between the light combining module 6 and the bistable spatial light source modulation components Between 51. The relative positions of the elements in the 10 200844625 located at the lower layer position are explained in detail above. The optical path design and operation mechanism in the optical projection system 2 of the present invention will be described below. Referring to Fig. 4, first, how the light beam 31 outputted from the light source 32 travels in the beam splitting module 4 to achieve the effect of splitting is explained. When the light beam 31 is emitted from the light source 32, it is first concentrated and transmitted through the relay lens group 41, and then passes through the first beam splitter 42. At this time, the light beam is separated into the first color light 311 and the two colors. The light 311, wherein the first color light 3 is reflected by the first beam splitter 42 and then rotated by 45 degrees in the upper and lower layers, a main reflector 45', a collecting lens 47, Entering a total reflection 稜鏡 group 46' finally total reflection into a corresponding bistable spatial light source modulation element 51. The other two-color light 311 ′ passes through the first beam splitter 42 , passes through the collecting lens 44 , and then passes through the second beam splitter 43 . At this time, the two-color light 3 ij is separated into the second color light 312 and The third color light 313, wherein the second color light 312 is reflected by the second beam splitter 43 and then passed through a relay reflector 45, and then rotated by 45 degrees in the upper and lower layers by a main reflector 45" A concentrating lens 47 enters a total reflection yoke group 46 and is finally totally reflected into a corresponding bistable spatial light source modulating element 51; and the third color ray 313 is also passed through the second beam splitter 43. After passing through a relay reflector 45, a main reflector 45, which is rotated 45 degrees in the upper and lower layers, and a collecting lens 47, enters a total reflection group 46, and finally the total reflection enters the corresponding a bistable spatial light source modulating element 51. Referring to Figure 5, it is next explained how the chromatic light 311, 312, 313 are respectively modulated by the bistable spatial light source modulation element 51, through the light combining module 6, and then 11 200844625 Entering the projection lens 7. When the first color light 311 enters the corresponding bistable space After the source modulation component 51, the bistable spatial light source modulation component 51 reflects the first color light 311 and includes an image signal, and then the first color light 311 enters through the total reflection 稜鏡 group 46. The light combining module 6 is further converted by the reflection of the first light combining surface 62. In addition, the third color light 313 is also modulated by the corresponding bistable spatial light source like the first color light 311. After the element 51 is reflected, the light-receiving module 6 is entered through the total reflection 稜鏡 group 46, except that the third color light 313 is reflected by the second light-combining surface 63 to change direction. The second color light 312 is also reflected by the corresponding bistable spatial light source modulation component 51 as the first color light 311, and then enters the light combining module 6 through the total reflection 稜鏡 group 46, and the difference is different. The first color light 312 can pass through the light combining module 6 without any reflection. Thus, the first color light 311 that is reflected and deflected by the first light combining surface 62 is combined with the light of the second light. The third color light 313 reflected by the surface 03 and the first color light 312 directly passing through are combined in the light combining module 6 Forming a light beam containing image signals of each bistable spatial light source modulation component 51, and finally, projecting through the projection lens 7 and outputting it on a screen (not shown). Coloring the above, the optical of the present invention The achievable functions and advantages of the projection system 2 are described in detail as follows: 〇凡旦 can use a projection lens with a short back focal length 7: In the optical path design of the optical imaging system 2 of the present invention, the bistable spatial light source modulation The component = is located at a back focus (four) of the projection lens 7 (10), and between the lens 7 and each bistable spatial source modulation member 51, only the combination group needs to exist. 6 and a total reflection edge 46, compared to 12 200844625, the existing optical projection system 1 needs to have the total reflection group 13 and the split light module 14 has the function of splitting and combining light. The three prisms 141, 142, the optical projection system 2 of the present invention can indeed accommodate the above-mentioned total reflection group 46 and the light combining module 6 by using a projection lens 7' having a short back focal length. Thus, the problem that the projection lens 7 has a decrease in production yield due to the need for a long back focal length is improved. 1. The overall optical projection system 2 can be dimensioned towards miniaturization. The design of the existing optical projection system 1 is because of this projection lens! 6 and the respective micro-mirror elements 151 need to have the total reflection group 13 and the three apertures 141 and 142 of the split-light module 14 having the functions of splitting and combining light, so the shortening cannot be shortened. In addition, since the beam 1 引入 is introduced by a lateral side, the overall width dimension must accommodate the relay lens group 12 and the total reflection 稜鏡 group 14 without being shortened; however, the optical projection of the present invention The system 2 uses a projection lens 7 having a short back focal length so that the length of the entire length can be shortened. In addition, the incident direction of the light beam 31 is also reoriented so that the light beam η is incident on the relay lens group 41. The direction is parallel to the direction in which the projection lens 7 projects the output, so that the overall width dimension can also be shortened, thus achieving the purpose of miniaturization design. The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of an optical path of a prior art optical projection system; FIG. 2 is a top plan view showing a preferred embodiment of the optical projection system of the present invention; FIG. 3 is a preferred embodiment of the present invention. FIG. 4 is a schematic diagram of an optical path illustrating the optical path of one of the light splitting modules of the preferred embodiment; and FIG. 5 is a schematic diagram of an optical path illustrating one of the signal modules and the optical module of the preferred embodiment. And the light path of a projection lens. 200844625

【主要元件符號說明】 2…·……光學投影系統 3…·……光源模組 31………光束 311…·…第一色光 311’……雙色光 312 ·……第二色光 313……第三色光 32………光源 4………·分光模組 41··•……中繼透鏡組 42*·…·…第一分光件 43·…·…·第二分光件 44………聚光透鏡 45………反射件群 45, ·· ……中繼反射件 45”、 ……主反射件 46… ……全反射稜鏡組 47··. ……聚光透鏡 ‘ 5 •… ……訊號模組 51… •雙穩態空間光源調變元件 6… ……合光模組 61… ……棱鏡 62" —· *第一合光面 63… ……苐一合光面 7 ···· ……投影鏡頭 X· · ......苐一轴向 Y.… ……弟"一轴向[Description of main component symbols] 2...............optical projection system 3...light source module 31...light beam 311...·...first color light 311'...two-color light 312......second color light 313... ...the third color light 32...the light source 4.........the beam splitting module 41··•...the relay lens group 42*·...the first beam splitter 43·...the second beam splitter 44... Condenser lens 45...reflector group 45, .... relay reflector 45", ... main reflector 46... ...... total reflection 47 group 47··. ...... concentrating lens ' 5 • ... ... signal module 51... • bistable spatial light source modulation element 6... ...... light combining module 61... ...... prism 62" —· * first light combining surface 63... 苐 合 合 7 7 ···· ...... Projection lens X· · ...... an axis Y.... ...... brother " an axial

1515

Claims (1)

200844625 十、申請專利範圍: 1. 一種光學投影系統,包含: -光源模組’輪出—光束; 光模、’且’包括一分離該光束成一第一色光與一 雙色光的第一合Φ 4 ^一 刀先件、一分離該雙色光成一第二色光與 -第二色光的第二分光件、一反射並導引該等色光的反 射件群,及三分別供該反射件群導引後之該等色光進行 全反射的全反射稜鏡組; 一訊號模级,包括三分別可反射經該等全反射棱鏡 組全反射後之該等色光並使其含有影像訊號的雙穩態空 間光源調變元件; 一合光模組,包括一會反射含有影像訊號的該第一 色光的第一合光面,及一與該第一合光面交叉並會反射 含有影像訊號的該第三色光的第二合光面;及 一投影鏡頭’與該等雙穩態空間光源調變元件分別 圍繞於該合光模組,並供含有影像訊號的該等色光投影 輸出。 2·依據申請專利範圍第1項所述之光學投影系統,其中, 該合光模組更包括四個直角三角形的稜鏡,該等稜鏡組 合成一矩形並形成相互交叉的該第一合光面與第二合光 面。 3.依據申請專利範圍第2項所述之光學投影系統,其中, 該分光模組的該等全反射稜鏡組分別介於該合光模組與 該等雙穩態空間光源調變元件之間。 16 200844625 4·依據申請專利範圍第3項所述之光學投影系統,其中, 該第一色光離開該第一分光件的方向與第二色光離開該 第二分光件的方向是呈相反方向。 5·依據申請專利範圍第4項所述之光學投影系統,其中, 遠第二色光離開該第二分光件的方向與該第二色光離開 - 該第二分光件的方向是呈相互垂直。 6_依據申請專利範圍第5項所述之光學投影系統,其中, _ 該分光模組更包括多數分別介於該等反射件與全反射稜 鏡組之間的聚光透鏡。 7·依據申請專利範圍第6項所述之光學投影系統,其中, 該分光模組更包括一分別介於該光源模組與第一分色件 之間的中繼透鏡組。 8·依據申請專利範圍第7項所述之光學投影系統,其中, 該光源模組光束入射於該中繼透鏡組的方向是平行於該 才又衫鏡頭投影輸出的方向。 _ 9·依據申請專利範圍第1項所述之光學投影系統,其中, 該訊號模組的每一雙穩態空間光源調變元件各是一數位 微型反射鏡元件。 ’ 10·依據申請專利範圍第2項所述之光學投影系統,其中, 該投影鏡頭與其中之一雙穩態空間光源調變 ^ 又7^件是沿一 第一軸向分別排列於該合光模組的其中二侧, 而另外二 個雙穩態空間光源調變元件則是沿一第二軸 赖向分別排列 於該合光模組的另外二側,且該第一、第^ 〜袖向是相互 垂直。 17 200844625 11 ·依據申請專利範圍第1 〇頊戶斤述之光學投影系統,其中, 該分光模組的第一、第二分光件與該反射件群均是位於 /上層位置,而該等全反射稜鏡組、該等雙穩態空間光 源調變元件、該合光模組、與該投影鏡頭均是位於一下 層位置。200844625 X. Patent application scope: 1. An optical projection system comprising: - a light source module 'wheeling out-beam"; a light mode, 'and' including a first combination of separating the beam into a first color light and a pair of color lights Φ 4 ^ a first piece, a second beam splitter separating the two-color light into a second color light and a second color light, a reflection member group reflecting and guiding the color light, and three for guiding the reflector group respectively The total reflection group of the total color light is totally reflected; a signal mode includes three bistable spaces respectively reflecting the color light totally reflected by the total reflection prism groups and containing the image signal a light modulating component; a light combining module, comprising: a first light combining surface that reflects the first color light containing the image signal, and a first light combining surface intersecting the first light combining surface and reflecting the image signal The second light combining surface of the three-color light; and a projection lens' and the bistable spatial light source modulation components respectively surround the light combining module, and are outputted by the color light containing the image signal. The optical projection system of claim 1, wherein the light combining module further comprises four right-angled triangular ridges, and the cymbals are combined into a rectangle and form the first combined light that intersects each other. The surface and the second combined surface. 3. The optical projection system of claim 2, wherein the total reflection group of the beam splitting module is interposed between the light combining module and the bistable spatial light source modulation component between. The optical projection system of claim 3, wherein the direction in which the first color light exits the first beam splitter is opposite to the direction in which the second color light exits the second beam splitter. 5. The optical projection system of claim 4, wherein the direction of the far second color light exiting the second beam splitter is different from the direction of the second color light beam - the direction of the second beam splitter is perpendicular to each other. The optical projection system of claim 5, wherein the astigmatism module further comprises a plurality of concentrating lenses respectively interposed between the reflecting members and the total reflection prism group. The optical projection system of claim 6, wherein the optical splitting module further comprises a relay lens group interposed between the light source module and the first color separation member. 8. The optical projection system of claim 7, wherein the direction in which the light source module beam is incident on the relay lens group is parallel to the direction in which the lens projection output is. The optical projection system of claim 1, wherein each of the bistable spatial light source modulation elements of the signal module is a digital micro mirror element. According to the optical projection system of claim 2, wherein the projection lens and one of the bistable spatial light sources are modulated, and the components are arranged along the first axial direction respectively. The two sides of the optical module, and the other two bistable spatial light source modulation components are respectively arranged along the second axis of the other two sides of the light combining module, and the first and the second The sleeves are perpendicular to each other. 17 200844625 11 · According to the patent application scope of the first embodiment of the optical projection system of the household, wherein the first and second beam splitting members of the beam splitting module and the reflector group are located in the upper layer position, and the whole The reflection 稜鏡 group, the bistable spatial light source modulation components, the light combining module, and the projection lens are located at a lower layer position. 1818
TW96116878A 2007-05-11 2007-05-11 Optical projection system to project the output of color lights containing image signals TW200844625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96116878A TW200844625A (en) 2007-05-11 2007-05-11 Optical projection system to project the output of color lights containing image signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96116878A TW200844625A (en) 2007-05-11 2007-05-11 Optical projection system to project the output of color lights containing image signals

Publications (2)

Publication Number Publication Date
TW200844625A true TW200844625A (en) 2008-11-16
TWI354179B TWI354179B (en) 2011-12-11

Family

ID=44822679

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96116878A TW200844625A (en) 2007-05-11 2007-05-11 Optical projection system to project the output of color lights containing image signals

Country Status (1)

Country Link
TW (1) TW200844625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472805B (en) * 2013-07-15 2015-02-11 Delta Electronics Inc Autostereoscopic Display Device and Projecting Method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562638B (en) * 2012-07-25 2016-12-11 Chiun Mai Comm Systems Inc System and method for projection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472805B (en) * 2013-07-15 2015-02-11 Delta Electronics Inc Autostereoscopic Display Device and Projecting Method using the same
US9454013B2 (en) 2013-07-15 2016-09-27 Delta Electronics, Inc. Autostereoscopic display device and projecting method using the same

Also Published As

Publication number Publication date
TWI354179B (en) 2011-12-11

Similar Documents

Publication Publication Date Title
JP5360683B2 (en) projector
US9519204B2 (en) Light source apparatus used in a projection type image display apparatus
US6961194B2 (en) Integrated TIR prism and lens element
EP1333308A2 (en) Compact illumination system and projection display device employing the same
EP1626585A1 (en) Illumination unit for an image projecting apparatus
US6714353B2 (en) Optical device with a function of homogenizing and color separation, and optical illumination system for a projector using the same
JP2001092005A (en) Projector for display of electronic picture
JP5807430B2 (en) projector
JP6632231B2 (en) Light source device, lighting device using the same, and projection display device
TWI243273B (en) Optical combiner module and digital light-processing projector using the same
JP4183663B2 (en) Illumination device and projection display device
JP6717197B2 (en) Light source device and projector
US8888290B2 (en) Polarization beam splitters for image projection apparatus
JP5239237B2 (en) Image projection device
CN108803217B (en) Excitation light source system and projection device
CN111323997A (en) LCOS projection display system
CN114185232A (en) Display device
TW200844625A (en) Optical projection system to project the output of color lights containing image signals
US20060187417A1 (en) Projector
US5951135A (en) Color image projection system
JPH11202129A (en) Polarized light converting element and projection type liquid crystal display device
CN111837073B (en) Image display apparatus
JP2010113285A (en) Optical system and multi-plate type projecting apparatus equipped with the same
US20040207769A1 (en) Projection display device
KR100424767B1 (en) Apparatus for tracing image

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees