TW200844416A - A tactile sensor, the manufacturing method thereof, and a film for a tactile sensor - Google Patents

A tactile sensor, the manufacturing method thereof, and a film for a tactile sensor Download PDF

Info

Publication number
TW200844416A
TW200844416A TW96117005A TW96117005A TW200844416A TW 200844416 A TW200844416 A TW 200844416A TW 96117005 A TW96117005 A TW 96117005A TW 96117005 A TW96117005 A TW 96117005A TW 200844416 A TW200844416 A TW 200844416A
Authority
TW
Taiwan
Prior art keywords
elastic
contact pads
contact pad
film
circuit substrate
Prior art date
Application number
TW96117005A
Other languages
Chinese (zh)
Inventor
Li-Chi Tsao
Wen-Pin Shiih
Yao-Joe Yang
Fuh-Yu Chang
Kuang-Chao Fan
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96117005A priority Critical patent/TW200844416A/en
Publication of TW200844416A publication Critical patent/TW200844416A/en

Links

Abstract

A tactile sensor is capable of sensing shear force and press force, comprising a circuit substrate and an elastic nub. The circuit substrate, comprising a surface, has at least one contact pad set with several signal pads and at least one power pad on the surface. The elastic nub is positioned on the contact pad set and substantially consists of elastic material evenly mixed with conductive particle therein. The elastic nub electrically couples the signal pads to the power pad. Thus, sensing the resistance variation between each signal pad and the power pad can recognize the deformation of the elastic nub, thereby obtaining the shear force and press force thereon the elastic nub.

Description

200844416 九、發明說明: 【發明所屬之技術領域】 本發明係關於可用於一觸覺感測器之一薄膜,尤指可 以同時感測壓力與剪力之一觸覺感測器、其所使用之薄 膜、以及其製程。 【先前技術】 , 感測器(sensor)是用於許多的先進的裝置與轉換器 (transducer)中。其中,觸覺感測器(tactile sens〇r)更是適用 於一些像是電腦硬體與機器人(robotic)的各式各樣之應用 中。在機器人中,觸覺感測器可以提供像是機器手(r〇b〇t hand)與一物品的接觸狀態之資訊。感測器也可以指出一物 體是否在手上、該物體的形狀、當下的位置、以及機器手 接觸該物體的力道。然而,大多數用於機器人之感測哭都 是架構於偵測壓力(pressure)而已,而沒有考慮剪力(she对 ( force)。剪力感測器可以用來偵測一個機器手中的物品是否 有滑動或是移動。 大夕數跟電腦產品相關的控制器都是針對愿力種 維方向作感測的,舉例來說,按鍵就是一種壓力感測哭, 用以偵測壓力的程度。而滑鼠(mouse)或是搖桿(」〇乃对^) 是可以偵測二維方向上的移動,只是,其製作上比較複雜, 而且機構上比較容易故障。因此,一個易製作、簡單:可 用於機器人或是電腦硬體之觸覺感測器是有其需求的。高 角午析度的觸覺感測器可以用在高度精確控制襄置上,像: 0968-A22067TWF(N2);P53950124TW;edward 200844416 高密度、微形電腦產品,用來作為機器人的感測皮膚,或 是觸感虛擬實境裝置(touch-sensitive virtual reality device),譬如說戴在作遠端操作者手上的操控手套,或是 對病人進行手術之機器手臂上的手指。 美國專利弟6,286,226號,標題為「Tactile Sensor Comprising Nanowires and Method for Making the same」,教導了一種觸覺感測器,基本上是運用採用一邊 懸空的石炭奈米管(carbon nanowire)。200844416 IX. Description of the Invention: [Technical Field] The present invention relates to a film which can be used for a tactile sensor, in particular, a tactile sensor capable of simultaneously sensing pressure and shear force, and a film used therefor And its process. [Prior Art] A sensor is used in many advanced devices and transducers. Among them, the tactile sensor (tactile sens〇r) is suitable for a variety of applications such as computer hardware and robotics. In a robot, a tactile sensor can provide information such as a contact state of a robot (r〇b〇t hand) with an item. The sensor can also indicate whether an object is on the hand, the shape of the object, the current position, and the force with which the robot touches the object. However, most sensory crying for robots is based on detecting pressure, but without considering shear force. Shear sensors can be used to detect items in a robotic hand. Whether there is sliding or moving. The controllers related to computer products are sensitive to the direction of the force. For example, the button is a kind of pressure sensing crying to detect the degree of pressure. The mouse or the joystick ("〇" is able to detect the movement in the two-dimensional direction, but the production is more complicated, and the mechanism is more prone to failure. Therefore, an easy to make, simple : Tactile sensors that can be used for robots or computer hardware are needed. High-angle haptic sensors can be used on highly precise control devices like: 0968-A22067TWF(N2); P53950124TW; Edward 200844416 High-density, micro-computer product used as a sensing skin for a robot, or as a touch-sensitive virtual reality device, such as a manipulation on the hands of a remote operator. a set, or a finger on a robotic arm that performs surgery on a patient. U.S. Patent No. 6,286,226, entitled "Tactile Sensor Comprising Nanowires and Method for Making the Same," teaches a tactile sensor that basically uses one side. A suspended carbon nanowire.

Kentaro Noda 在 2005,於一篇標題為「A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material」的論文中, 教導了在懸臂樑(cantilever)的基部彎曲部分裝設壓電材 料,利用懸臂樑所受到的折壓來感測剪力。 美國專利第 5,313,840,標題為「Tacti le Shear Sensor Using Anisotropically Conductive Material」,教導了 使用排列整齊,非等向的導電物,以及在導電物上之一個 可滑動的導電板(cursor)。導電板受到剪力後,在導電物上 滑動’進而增加或是破壞了 一些電性連接。判別電形連接 的產生與消失便可以辨識剪力的有無。 【發明内容】 本發明實施例提供一種可同時偵測剪力(shear化仏幻與 壓力(press force)的觸覺感測器(tactile sens〇r)。觸覺感測器 包含有一電路基板以及一彈性凸狀物。該電路基板至少一 接觸墊組,設於該電路基板上,具有數個信號接觸墊,以 0968-A22067TWF(N2);P53950124TW;edward 200844416 及至少—電源接觸墊。該彈性凸狀物(elaStlc nub)設於該接 觸=組上。該彈性凸狀物係以一彈性材料為主體,其中均 導電性之粒子。該彈性凸狀物電性連接該等信號 源接觸墊。其中,侧測每-該等信號接 接觸墊的電阻值變化,來辨識是否該彈性凸 狀物^形,則貞測施加於該彈性凸狀物的剪力與壓力。 本發明實施例提供—種觸覺感測器 一模具,其上具有數個排成—陣列之數個=方法士供 導電性之粒子粉末混合攙人—高分子材料中。(=:) = 雜子粉末之該高分子材料注人該模 ^ ^有 化該凹孔中之該高分子材料,並進行脫模中。固 性凸狀物。將該等彈性凸狀物貼附於_ 4數個舞 一彈性凸狀物與該電路基板上之—接觸塾組=上,使每 本發明實施例另提供一種觸覺感測电接觸。 裝置包含有一電路基板、數個彈性凸狀物:亥觸覺感測 路。該電路基板,,包含有數個接觸純及^掃描電 設於該電路基板上,每—接觸墊組具有數個;^接觸塾組 以及至少-電源接觸墊。該等彈性凸狀物,j接觸墊’ 該等接觸墊組上。每-彈性凸狀物係對一的設於 體,其中均勻混雜有導電性之粒子。每^生材料為主 連接數個對應信號接觸墊至—對應電 凸狀物电陡 路電性_至該等接觸墊組,用以偵 該掃描電 墊至該電源接觸墊的電阻值變化,來“信號接觸 凸狀物有變形,以_施加於該對對應彈性 干1生凸狀物的剪力與 09明 A22067TWF(N2):P53950124TW;edwarci 200844416 壓力 【實施方式】 第1圖為依據本發明之實施例中的之一觸覺感_哭 1〇〇。觸覺感測器100包含有一電路基板1〇2以及一: 104。 ,寻膜 第2圖顯示第1圖中的薄膜1〇4,其具有數個彈性凸 狀物106以及連結膜1〇8。彈性凸狀物1〇6排成一個 之陣列,而連結膜108大致上連結也固定了彈性凸狀物 的位置。第2圖中的連結膜108與彈性凸狀物1〇6是採 相同材料,一體成形;但是連結膜1〇8也可以採用不同於 彈性凸狀物106之材料,稍後會加以解釋。雖然第2圖白、 陣列大小是3X3,但是本發明並不受限於此,其他大2 陣列也可適用。每個彈性凸狀物1〇6以一彈性材料為主 體’可以隨著外界的施力而變形。譬如說,可能的材料曰 矽膠、橡膠或是樹脂,也可以是聚二曱基矽氧= (P〇1ydimethyl Sll。腿e,PDMS)。彈性㈣ + 均勻混雜^ 電性之粒子,其材質可以是導φ Μ ^ 疋V私的石墨粉 P〇Wer)、碳黑㈣-11恤叫或是碳奈米管(Carb〇n n—O,或是任何其他可能的導電材料。在第丨圖 2圖中,每個彈性凸狀物106具有—八〜 ” $ 至予塔(pyramid)形狀。 但是’彈性凸狀物⑽也可能是別種形狀,像是圓柱形、 半球形、或是具有一正方形上表面的凸狀物等等。務後會 介紹薄膜104的一種可能的製造方法。 第3 A圖顯示第1圖中的電路其& 土板1 〇2之一種例子。電 0968-A22067TWF(N2);P53950124TW;edward 200844416 路基板1〇2可以是一軟性電路基板(flexible printed circuit) ’好處是可以使觸覺感測器1〇〇服貼於一彎曲表 面,像是機器人的手指或是手臂表面。電路基板丨〇2的表 面上具有許多的接觸墊組(contact pad set)l 10。接觸墊組 110大致上與薄膜1〇4中的彈性凸狀物1〇6呈現一對一的 關係,所以在第3A圖中,接觸墊組110排成一陣列。第 3B圖顯示第3A圖中最右上角的接觸墊組11〇之放大圖, 其中,虛線的正方型112表示第2圖中之彈性凸狀物106 金字塔底部的相對應區域。第3B圖中,接觸墊組11 〇有 四個信號接觸墊PV1、PV2、PH1與PH2,以及四個電源 接觸墊PVG與PHG。信號接觸墊pvi、PV2、電源接觸墊 PVG沿著垂直方向設置,信號接觸墊pH1、pH2、電源接 觸墊PHG沿著水平方向設置。信號接觸墊pvi、pV2、pHi、 與PH2设於正方型112之四邊内侧,而電源接觸墊 與PHG设於正方型112之四邊外侧。四個信號接觸墊 PV;l、PV2、PH1與PH2分別電性連接到信號線V_S1、 V—S2、H—S1與H—S2。電源接觸墊pVG與PHG則分別電 性連接到電源線V—GND與H—GND。 第4A圖顯示第1圖中,於未受外力狀熊時,沿aa 線的剖面示意圖。當薄膜104貼附於電路基板1〇2上時, 每一彈性凸狀物106與電路基板102上之一接觸墊組1〇〇 呈現電性接觸。第4A圖同時也顯示了電路基板1〇2有多 層的結構,用以隔絕信號線之間的電性連接。 因為彈性凸狀物106可以隨著外界的施力而變形,而 0968-A22067TWF(N2);P53950124TW;edward 9 200844416 •、又形之後,導電性之粒子分佈就會改變,粒子分佈的改變 έ〜a彈('生凸狀物1 〇6中兩點之間的電阻值。換言之,彈 性凸狀物106的變形會導致彈性凸狀物106内點到點之間 的電阻值改變。只要偵測或是計算凸狀物1〇6中數個兩點 對之間的電阻值變化,便可以得知彈性凸狀物100的變形 與雙力狀態,進而推算出剪力與/或壓力。 第4B圖顯示第4A圖之觸覺感測器1 〇〇僅僅受到上下 壓力時的情形。與第4A圖相較之下,第4B圖之觸覺感測 為100受到外物114的壓力,因此,彈性凸狀物106被擠 壓而局度減低。假設第4A圖中的信號接觸墊si,透過其 上的彈性凸狀物1〇6,到電源接觸墊〇的阻值為RlQ ;信 號接觸墊S2,透過彈性凸狀物106,到電源接觸墊G的阻 值為R2〇 ;第4B圖中的信號接觸墊S1,透過受壓變形的 彈性凸狀物106,到電源接觸墊G的阻值為Rll ;信號接 觸墊S2 ’透過受壓變形的彈性凸狀物1 〇6,到電源接觸墊 G的阻值為R2l。理想狀態下,彈性凸狀物1〇6準確地對 齊一對應的接觸墊組100,因為左右對稱的關係,R1()=Il2〇 且Rli= R2i。比較第4A圖與第4B圖可知,rl(或R2〇 或應該是小於Rl〇(或R2〇),因為彈性凸狀物1〇6受壓變 形,彈性凸狀物106中有許多導電性之粒子被壓更靠近了 "is號接觸墊S1 (或S2)與電源接觸墊G,提供了一個阻值較 低的導電路徑。也許在貼附薄膜104貼附於電路基板1〇2 上時,彈性凸狀物106並沒有非常準確地對齊電路基板1〇2 上之一對應的接觸墊組100。但是,可以了解的是,壓力 0968-A22067TWF(N2);P53950124TW;edward 10 200844416 必然使得Rli< Rl〇以及R2i< R2〇。換言之,被檢測信號接 觸墊S1到電源接觸墊G之間,以及信號接觸墊S2到電源 接觸塾G之間,電阻值變化的共同量(c〇mmon resistance variation),等效反映了彈性凸狀物l〇6所受的壓力大小。 第4C圖顯示第4A圖之觸覺感測器1〇〇受到剪力時的 情形。第4C圖之觸覺感測器100受到外物114所產生延 著左右方向之剪力,因此,彈性凸狀物106的上端往右平 移(相對於其底部與電路基板102),在此假定第4C圖中彈 性凸狀物106的高度與第4A圖彈性凸狀物106的高度大 致相等。一樣假設第4A圖中的信號接觸墊S1,透過其上 的彈性凸狀物106,到電源接觸墊G的阻值為R1G ;信號 接觸墊S2 ’透過彈性凸狀物1〇6,到電源接觸墊g的阻值 為R20 ;但是假設第4C圖中的信號接觸墊S1,透過受剪 力變形的彈性凸狀物1〇6,到電源接觸墊G的阻值為Rl2; 信號接觸墊S2,透過受剪力變形的彈性凸狀物1〇6,到電 源接觸墊G的咀值為R22。比較第4c圖與第4A圖可知, Rh應該是大於Rl〇,而R22應該是小於R2〇,因為因為剪 力所產生的變形,有許多導電性之粒子被拉遠離了信號接 觸墊S1,但是反而比較靠近了信號接觸墊S2。負責傳導信 號接觸墊S2到電源接觸墊G之間的導電性之粒子數量增 多了,其間之電阻值便降低;相反的,因為負責傳導信號 接觸墊S1到電源接觸墊G之間的導電性之粒子數量減少 了,其間之電阻值便增高。換言之,信號接觸墊S1到電源 接觸墊G之間,以及信號接觸墊S2到電源接觸墊G之間, 0968-A22067TWF(N2);P53950124TW;edward 200844416 笔阻值受化的差異量(differential resistance variation),等效 反映了彈座凸狀物106所受的剪力大小。 舉例來說,假設第4A圖受了壓力與剪力之後,檢測到 ^#ϋ接觸勢S1到電源接觸墊G之間電阻,從Rl〇=10單位 變成 R1 τ > s 〇口, 又义 L 8早位;信號接觸墊S2到電源接觸墊G之間電 阻’攸R2q=10單位變成R2L=4單位。信號接觸墊S1到電 源接觸塾G之間電阻變化量(R1V)為2單位,信號接觸塾 S2到電源接觸墊G之間電阻變化量(R1V)為6單位。可以 推异的出來’電阻值變化量的共同量為4(=(2+6)/2)單位, 所以第4A圖中彈性凸狀物106所受的壓力可以透過查表 或疋"十^公式,推算出4單位的共同量應該是多少壓力; 類似的’電阻值變化的差異量為2(=(6-2)/2)單位,也可以 透過查表或是計算公式,推算出2單位的差異量應該是多 少剪力。 由以上關於第4A-4C圖分析與解釋可知,第4A圖之 觸覺感測器1〇〇可以檢測左右方向之剪力。另一個方向(垂 直於第4A圖之圖示)之剪力也可以用類似的原理,算出電 阻值變化的差異量而求得。 第5A-5F圖顯示薄膜1〇4的一種可能的製造方法。在 此方法中,薄膜1〇4是用模具定型(molding)方式而產生。 第5A-5D圖描述所採用的母模製作過程;第5E-5F圖則描 述薄膜104的產生。 第5A圖顯示半導體基底500上形成一硬罩幕(hard mask)層502。半導體基底500可以是具有<100>的表面方 0968-A22067TWF(N2);P53950124TW;edward 200844416 向之一矽基底。而硬罩幕502可以是氮化矽(SiN),譬如說, 以一般的化學氣相沉積(chemical vapor deposition)方式形 成0 第5B圖顯示硬罩幕層上形成一圖案化光阻層504。圖 案化之光阻層可以先以光阻液塗佈一層平坦的光阻層於硬 罩幕層502上’然後以微影製程(lithography)方式,把希望 的圖案定義,而圖案化光阻層504。 笫5 C圖顯示圖案化光阻層5 04上之圖案轉印到硬罩幕 層502上◦轉印的動作可以是一蝕刻製程,用蝕刻液體或 是氣體,將圖案化光阻層504未遮住的部分硬罩幕層502 去除。換言之,硬罩幕層502被圖案化。之後,再把圖案 化光阻層504去除,殘留下的結構便如第5C圖所示。 第5D圖顯示半導體基底500上的凹孔506之形成。以 硬罩幕層502作為一罩幕,對第5C圖中沒有被硬罩幕層 502遮蓋之半導體基底500進行乾或是濕儀刻,產生凹孔 506。如果半導體基底500是表面方向為<1〇〇>的石夕基底, 此處可以採用K0H溶液的濕蝕刻製程。K0H溶液對於石夕 的蝕刻速度,會與晶格方向有關。所以,會在表面方向為 <100>的矽基底上,形成如第5D上所示的倒角錐凹孔 (recess)506。凹孔的四個面分別會與半導體基底5〇〇之參 面有54.74°的夾角。凹孔506之孔面積的一較佳範圍是^ 於。在一實施例中,半導體基底5〇〇的厚度為 500微米(micrometer),倒角錐凹孔之孔面積為一 550微米 *550微米之正方形,倒角錐凹孔的深度為317.5微米。 0968-A22067TWF(N2);P53950124TW;edward 13 200844416 第5D圖的具有凹孔506之半導體基底500形成後,可 以經脫膜處理,以便於未來洗注後的脫膜。而第5D圖中 的半導體基底500便成為一晶圓母模508。 弟5E圖顯示半導體基底500上的凹孔506洗注了局分 子材料。將導電性之粒子或是粉末混合攙入一高分子材料 中。高分子材料是矽膠、橡膠或是樹脂,也可以是聚二曱 基石夕氧:^。導電性之粒子或是粉末可以是碳粒子或碳粉 末,例如石墨粉、碳黑或是碳奈米管等等,其中該導電性 之粒子或是粉末重量比例為3%以上。混合均勻後的高分子 材料’淹注入晶圓母模508上的凹孔5〇6中。為了避免氣 泡的產生,日日日圓母模508,連帶著其上的高分子材料51〇, 运入真空腔體中,以去除氣泡。去除氣泡後,接著進行平 坦化的動作。譬如關刀將具料電餘子或是粉末的高 分子材料51〇平整刮覆。接著是固化高分子㈣。譬如將 晶圓母模508以及其上平坦化後的高分子材料51() 一起放 入烤箱中,烘烤固化,而得到第5£圖的結果。 第5F圖顯示高分子材料51〇命θ 1 14晶圓母模508脫模後的 結果。脫模後,高分子材料51 〇 # ^ 同刀于冊川砘形成一張可以用於觸覺 感測器的薄膜104。因為高分子抽刺^ 性材料,使得薄膜1〇4上對應於 卞衬枓508可以選用一種彈 晶圓母模508上每個凹孔 506的凸狀物都具有彈性,且_样 、 „ “ 铋岣勻混雜有導電粒子。 薄月吴104中,凸狀物以外的部分可 ^ π 刀」从視為一連結膜,用以 大致固定料雜凸狀物之㈣㈣。纽實施例中,連 結版與凸狀物是-體成形的,都是使用高分子材料51〇。 0968-A22067TWF(N2);P53950124TW;edward 14 200844416 脫模後,晶圓母模5〇8可以繼續的用μ 形成後的薄膜1〇4可以貼附於〜=製作另—個薄膜。 彈性凸狀物與該電路基板上之一接‘兔路基板上,使每一 第1圖所示。 尋勢組電性接觸,如同 第5A-5F圖僅僅顯示薄膜丨〇4 、 法,依據本發明實施的薄膜也可能以的種可能的製造方 作,且具有與薄膜104不一樣的外觀不:樣的製造方式製 中的凹孔如果有不同於倒角錐凹孔之形譬如說,晶圓母模 方式所製作出來的薄膜上之彈性凸:狀’則以模具定型 塔(pyramid)形狀’譬如說可能是,主邢更::具有非金字 有一正方形上表面的凸狀物。 ^+球形、或是具 -薄膜中的連結膜與凸狀物可能是分 成。第6A圖顯示作為本發明之_ ♦ ; 5材料構 貝施例的_ 也適用於一觸覺感測器。第6Α圖鱼第 哥胰604,其 膜604巾的彈性凸狀物_依然是以一 ^大致類似’薄 其中均勻混雜有導電性之粒子;但是早ν才料為主體’ 是。譬如說,連結膜608的部分61〇也/的連結膜則不 Η 4丄士丄、 、., 吧彈性材料,但 疋其中〉又有混雜有導電性之粒子。雖然塗 …、禾圖的薄膜 之製作方法會比較複雜,但是,其好處是、、 疋建、、勝608的部 分610可以隔絕彈性凸狀物606彼此之間的電 1 第6Β圖顯示作為本發明之一實施例 干& 〜的另一缚膜614。 第6B圖與第4A圖大致類似,其中,也笛 、 — 共弟4Α圖不同的, 弟0Β圖中的彈性凸狀物616的金字塔底 —觸墊組。 _ 1凡王復盍住接 〇968-A22067TWF(N2);P53950124TW;edward 15 200844416 第6C圖顯示作為本發明之一實施例的另一薄膜624, 其組合了第6A圖與第6B圖中的部分特徵。薄臈624的連 結膜628的材料與彈性凸狀物626的材料不同,且彈性凸 狀物626的底部完全覆蓋住接一觸墊組。 7 ®顯示依據本發明實施的一觸覺感測裂置。 觸覺感測裝置700具有一電路基板7〇2以及一薄膜·。 電路基板702與薄膜704可以椟田,^ 搬與薄膜刚,因此不再多同第1圖的電路基板 掃描電路7G8與71G,_接电路基板上多設置了 v_S1-v_S6、H—S1_HS6、以^;'專膜 704 上的信號線 薄膜704巾的一個彈性 =V-GND與H—GND。 力),可能導致四條信號線對變形(因為壓力或是剪 譬如說,彈性凸狀物70“Γ電源線的電阻值改變。 電源線V—GND、信號線V__S2對^可以使信號'線V-S1對 H_S1對電源、線H_GND、以及^源線V-GND、信號線 H—GND之電阻值產生變化。° #b線H-^對電源線 V—S1-V—S6以及h_S1_H_S6 a ’只要持續監視信號線 H—GND之電阻,便可—以知道是否?對電源線V—漏與 物產生變形。如同先前所述的,^膜704中之彈性凸狀 表了屢力,而電阻值變化的差^P且值變=量的共同量預 接觸墊組11〇陣列中,電源線v、=表了剪力。當然,在 只有兩條,也可以是一陣列之〜H-GND並不限於 V—GND,且-陣列之一行配置^酉己置一對應之電源線 如此,各個彈性凸狀物的:"應之電源線H—GND。 V所導致的電阻值變化可 0968-A2206丌 WF(N2);P5395〇124TW;edward 200844416 以更清楚的被掃描電路給偵測出來。 使用於本發明之一電路基板的接觸墊組的排列可以不 同於第3A圖與第3B圖之接觸墊組110。第8圖顯示依據 本發明實施之一接觸墊組810,其中,虛線的正方型112 表示第2圖中之彈性凸狀物106金字塔底部的相對應區 域。與第3B圖類似的,第8圖的接觸墊組810有四個信 號接觸墊PV1、PV2、PH1與PH2,放置於虛線的正方型 112的四邊内侧。與第3B圖不同的,第8圖的接觸墊組 810僅有一電源接觸墊GND,放置於虛線的正方型112的 正中間。 本發明之一實施例所產生的薄膜,可以用以偵測剪力 與壓力,且可貼附於一軟性電路基板上,非常適用於機器 人手指或是手臂之表面皮膚的觸覺。並且,薄膜可以使用 模具定型(molding)方式來產生,不論是薄膜的材料準備或 是製程過程,相對於習知技術,都是非常簡單且實用。 本發明雖以較佳實施例揭露如上,然其並非用以限定 本發明,任何熟習此項技藝者,在不脫離本發明之精神和 範圍内,當可做些許的更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 0968-A22067TWF(N2);P53950124TW;edward 17 200844416 , 【圖式簡單說明】 第1圖為依據本發明之實施例中的之一觸覺感測器。 第2圖顯示第1圖中的薄膜。 第3A圖顯示第1圖中的電路基板之一種例子。 第3B圖顯示第3A圖中最右上角的接觸墊組之放大 圖。 第4A圖顯示第1圖中,於未受外力狀態時,沿著AA …線的剖面示意圖。 第4B圖顯示第4A圖之觸覺感測器僅僅受到上下壓力 時的情形。 第4C圖顯示第4A圖之觸覺感測器受到剪力時的情 形。 第5A-5F圖顯示第1圖中之薄膜的一種可能的製造方 法。 第6A-6C圖顯示作為本發明之實施例的三薄膜。 I 第7圖顯示依據本發明實施的一觸覺感測裝置。 第8圖顯示依據本發明實施之另一接觸墊組。 【主要元件符號說明】 100〜觸覺感測器 10 2〜電路基板 104〜薄膜 106〜彈性凸狀物 108〜連結膜 0968-A22067TWF(N2);P53950124TW;edward 18 200844416 110〜接觸墊組 112〜正方型 114〜外物 500〜半導體基底 502〜硬罩幕 504〜光阻層 5 06〜凹孔 508〜晶圓母模 510〜南分子材料 604〜薄膜 606〜彈性凸狀物 608〜連結膜 614〜薄膜 616〜彈性凸狀物 624〜薄膜 628〜連結膜 700〜觸覺感測裝置 7 02〜電路基板 704〜薄膜 706〜彈性凸狀物 810〜接觸墊組 0968-A22067TWF(N2);P53950124TW;edward 19Kentaro Noda in 2005, in a paper entitled "A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material", teaches the installation of piezoelectric materials in the bent portion of the cantilever base, using The cantilever beam is subjected to a folding force to sense the shear force. U.S. Patent No. 5,313,840, entitled "Tacti le Shear Sensor Using Anisotropically Conductive Material", teaches the use of aligned, non-isotropic conductive materials, as well as a slidable conductive shield on the conductive material. After the conductive plate is sheared, it slides on the conductive material to increase or destroy some electrical connections. Discrimination of the occurrence and disappearance of the electrical connection can identify the presence or absence of shear. SUMMARY OF THE INVENTION Embodiments of the present invention provide a tactile sensor (tactile sens〇r) capable of simultaneously detecting a shear force (shearing illusion and pressure). The tactile sensor includes a circuit substrate and an elastic At least one contact pad set on the circuit substrate, disposed on the circuit substrate, having a plurality of signal contact pads, 0968-A22067TWF (N2); P53950124TW; edward 200844416 and at least - power contact pad. The elastic protrusions are mainly composed of an elastic material, wherein the elastic protrusions are electrically connected to the signal source contact pads, wherein the elastic protrusions are electrically connected to the signal source contact pads. The side-measurement of each of the signals is changed by the resistance value of the contact pad to identify whether the elastic protrusion is shaped, and then the shear force and pressure applied to the elastic protrusion are measured. The embodiment of the present invention provides a tactile sensation. A mold has a plurality of rows arranged in an array of = method for mixing the conductive particles into a human-polymer material. (=:) = the polymer material of the hybrid powder is injected. The module ^ ^ has The polymer material in the recessed hole is subjected to demolding. The solid convex material is attached to the conductive protrusion of the _4 dance-elastic protrusions on the circuit substrate. Each of the embodiments of the present invention further provides a tactile sensing electrical contact. The device includes a circuit substrate and a plurality of elastic protrusions: a twilight sensing circuit. The circuit substrate includes a plurality of contact pure The scanning circuit is disposed on the circuit substrate, each of the contact pad sets has a plurality of contacts, and at least the power contact pads. The elastic bumps, the j contact pads are on the contact pad groups. The convex objects are arranged in a body, wherein the conductive particles are uniformly mixed. Each of the raw materials is mainly connected with a plurality of corresponding signal contact pads to - corresponding to the electric bumps, electrical steepness _ to the contacts a pad set for detecting a change in resistance value of the scan pad to the power contact pad, "the signal contact protrusion is deformed, and the shear force applied to the pair of corresponding elastic dry 1 protrusions is A22067TWF(N2): P53950124TW; edwarci 200844416 Pressure [implementer 1 is a tactile sense _ crying according to an embodiment of the present invention. The haptic sensor 100 includes a circuit substrate 1 〇 2 and a: 104. The filming 2 shows the first image. The film 1〇4 has a plurality of elastic protrusions 106 and a connecting film 1〇8. The elastic protrusions 1〇6 are arranged in an array, and the connecting film 108 is substantially connected and also fixed with elastic protrusions. The connecting film 108 and the elastic protrusion 1〇6 in Fig. 2 are formed of the same material and integrally formed; however, the connecting film 1〇8 may also be made of a material different from the elastic protrusion 106, which will be later added. Explanation. Although the second figure is white and the array size is 3X3, the present invention is not limited thereto, and other large 2 arrays are also applicable. Each of the elastic projections 1〇6 is deformed by an external force by an elastic material. For example, the possible material 矽 silicone, rubber or resin can also be polydioxyl 矽 = (P〇1ydimethyl Sll. Leg e, PDMS). Elasticity (4) + Uniform Hybrid ^ Electrochemical particles, which can be made of graphite powder P〇Wer), carbon black (4)-11 or carbon nanotubes (Carb〇nn-O, Or any other possible conductive material. In Figure 2, each of the elastic protrusions 106 has a shape of -eight~"$ to a pyramid. However, the 'elastic protrusions (10) may also be of other shapes. , such as a cylindrical shape, a hemispherical shape, or a convex shape having a square upper surface, etc. A possible manufacturing method of the film 104 will be described later. Fig. 3A shows the circuit of Fig. 1 & An example of a soil plate 1 〇 2. An electric 0968-A22067TWF (N2); P53950124TW; edward 200844416 The road substrate 1 〇 2 can be a flexible printed circuit (the advantage is that the tactile sensor 1 can be convinced Attached to a curved surface, such as a finger or arm surface of a robot. The surface of the circuit substrate 2 has a plurality of contact pad sets 10. The contact pad set 110 is substantially in contact with the film 1〇4. The elastic convex 1〇6 presents a one-to-one relationship. In Fig. 3A, the contact pad groups 110 are arranged in an array. Fig. 3B is an enlarged view of the contact pad group 11A at the uppermost right corner in Fig. 3A, wherein the square shape 112 of the broken line indicates the elasticity in Fig. 2 The corresponding area of the bottom of the pyramid 106. In Fig. 3B, the contact pad group 11 has four signal contact pads PV1, PV2, PH1 and PH2, and four power contact pads PVG and PHG. The signal contact pad pvi, The PV2, the power contact pad PVG is disposed along the vertical direction, the signal contact pads pH1, pH2, and the power contact pad PHG are disposed along the horizontal direction. The signal contact pads pvi, pV2, pHi, and PH2 are disposed on the inner sides of the square shape 112, and The power contact pad and the PHG are disposed on the outer sides of the square shape 112. The four signal contact pads PV; l, PV2, PH1 and PH2 are electrically connected to the signal lines V_S1, V-S2, H-S1 and H-S2, respectively. The contact pads pVG and PHG are electrically connected to the power lines V-GND and H-GND, respectively. Figure 4A shows a cross-sectional view along the aa line when the external force bear is not in the first figure. When the film 104 is attached On the circuit substrate 1〇2, each of the elastic protrusions 106 and the circuit substrate 102 One of the contact pad sets 1 〇〇 exhibits electrical contact. Fig. 4A also shows that the circuit substrate 1 〇 2 has a multi-layer structure for isolating the electrical connection between the signal lines. Because the elastic protrusions 106 can follow The external force is deformed, and 0968-A22067TWF(N2); P53950124TW; edward 9 200844416 • After the shape, the distribution of the conductive particles will change, and the distribution of the particles will change. 1 电阻6 The resistance value between two points. In other words, the deformation of the elastic protrusions 106 causes a change in the resistance value between the points in the elastic protrusions 106. As long as the resistance value between the two pairs of points in the protrusion 1〇6 is detected or calculated, the deformation and the double force state of the elastic protrusion 100 can be known, and the shear force and/or pressure can be derived. . Fig. 4B shows the situation when the tactile sensor 1 of Fig. 4A is only subjected to the up and down pressure. In contrast to Fig. 4A, the tactile sense of Fig. 4B is 100 by the pressure of the foreign object 114, and therefore, the elastic projection 106 is squeezed and reduced. Assume that the signal contact pad si in Fig. 4A passes through the elastic protrusion 1〇6 on it, the resistance to the power contact pad is RlQ; the signal contact pad S2, through the elastic protrusion 106, to the power contact pad The resistance of G is R2〇; the signal contact pad S1 in FIG. 4B passes through the elastically deformed elastic protrusion 106, and the resistance to the power contact pad G is R11; the signal contact pad S2′ is transmitted through compression. The elastic protrusion 1 〇6, the resistance to the power contact pad G is R2l. Ideally, the elastic projections 1〇6 accurately align one corresponding contact pad set 100, because of the bilaterally symmetric relationship, R1() = Il2〇 and Rli = R2i. Comparing Figs. 4A and 4B, it can be seen that rl (or R2〇 or should be smaller than R1〇 (or R2〇) because the elastic protrusions 1〇6 are deformed under pressure, and there is a lot of conductivity in the elastic protrusions 106. The particles are pressed closer to the "is contact pad S1 (or S2) and the power contact pad G, providing a lower resistance conductive path. Perhaps when the attached film 104 is attached to the circuit substrate 1〇2 The elastic protrusions 106 do not align very precisely with the corresponding contact pad set 100 on one of the circuit substrates 1 〇 2. However, it can be understood that the pressure 0968-A22067TWF(N2); P53950124TW; edward 10 200844416 necessarily makes Rli< Rl〇 and R2i< R2〇. In other words, between the detected signal contact pad S1 and the power contact pad G, and between the signal contact pad S2 and the power contact 塾G, the common value of the resistance value change (c〇mmon resistance variation ), equivalently reflects the magnitude of the pressure experienced by the elastic protrusions 〇 6. Fig. 4C shows the situation when the haptic sensor 1 第 of Fig. 4A is subjected to the shear force. The tactile sensor 100 of Fig. 4C Shearing by the foreign object 114 in the left and right direction, therefore, The upper end of the elastic projection 106 is translated to the right (relative to the bottom thereof and the circuit substrate 102), and it is assumed here that the height of the elastic projection 106 in FIG. 4C is substantially equal to the height of the elastic projection 106 of FIG. 4A. Assume that the signal contact pad S1 in FIG. 4A passes through the elastic protrusion 106 thereon, and the resistance to the power contact pad G is R1G; the signal contact pad S2' transmits through the elastic protrusion 1〇6 to the power contact pad. The resistance of g is R20; however, it is assumed that the signal contact pad S1 in Fig. 4C passes through the elastic convex 1 〇 6 deformed by the shear force, and the resistance to the power contact pad G is Rl2; the signal contact pad S2 passes through The elastic convex shape of the shear deformation is 〇6, and the value of the nozzle to the power contact pad G is R22. Comparing Fig. 4c and Fig. 4A, Rh should be larger than R1〇, and R22 should be smaller than R2〇 because Because of the deformation caused by the shear force, many conductive particles are pulled away from the signal contact pad S1, but instead are closer to the signal contact pad S2. It is responsible for conducting the electrical conductivity between the signal contact pad S2 and the power contact pad G. The number of particles increases, and the resistance value decreases during the period; Since the number of particles responsible for conducting conductivity between the conductive signal contact pad S1 and the power contact pad G is reduced, the resistance value therebetween is increased. In other words, between the signal contact pad S1 to the power contact pad G, and the signal contact pad S2 Between the power contact pads G, 0968-A22067TWF (N2); P53950124TW; edward 200844416 The difference resistance variation of the pen resistance value, equivalently reflects the shear force of the spring protrusion 106. For example, suppose that after the pressure and shear force in Fig. 4A, the resistance between the contact potential S1 and the power contact pad G is detected, from R1〇=10 units to R1 τ > s 〇 mouth, and L 8 early position; resistance between the signal contact pad S2 and the power contact pad G '攸R2q=10 units becomes R2L=4 units. The resistance change amount (R1V) between the signal contact pad S1 and the power contact 塾G is 2 units, and the resistance change amount (R1V) between the signal contact 塾S2 and the power contact pad G is 6 units. It can be deduced that the common amount of the change in the resistance value is 4 (= (2+6) / 2) units, so the pressure of the elastic protrusion 106 in Fig. 4A can be checked by the table or 疋 " ^Formula, calculate how much pressure the common unit of 4 units should be; similar 'variation value change is 2 (= (6-2)/2) units, can also be calculated by looking up the table or calculating formula The amount of difference between 2 units should be how much shear. As can be seen from the above analysis and explanation of Fig. 4A-4C, the tactile sensor 1A of Fig. 4A can detect the shear force in the left and right direction. The shearing force in the other direction (the illustration perpendicular to Fig. 4A) can also be obtained by using a similar principle to calculate the difference in the change in resistance value. Figures 5A-5F show one possible manufacturing method for film 1〇4. In this method, the film 1〇4 is produced by a mold molding method. Figures 5A-5D depict the mastering process used; and 5E-5F depict the generation of film 104. FIG. 5A shows a hard mask layer 502 formed on the semiconductor substrate 500. The semiconductor substrate 500 may be a surface having a surface of <100> 0968-A22067TWF (N2); P53950124TW; edward 200844416. The hard mask 502 may be tantalum nitride (SiN), for example, formed by a general chemical vapor deposition method. FIG. 5B shows that a patterned photoresist layer 504 is formed on the hard mask layer. The patterned photoresist layer may be first coated with a flat photoresist layer on the hard mask layer 502 with a photoresist solution, and then the desired pattern is defined by a lithography method, and the photoresist layer is patterned. 504.笫5 C shows that the pattern on the patterned photoresist layer 504 is transferred onto the hard mask layer 502. The transfer operation may be an etching process, and the patterned photoresist layer 504 is not formed by etching liquid or gas. Part of the hard mask layer 502 is removed. In other words, the hard mask layer 502 is patterned. Thereafter, the patterned photoresist layer 504 is removed, and the remaining structure is as shown in Fig. 5C. FIG. 5D shows the formation of recesses 506 in the semiconductor substrate 500. With the hard mask layer 502 as a mask, the semiconductor substrate 500 not covered by the hard mask layer 502 in FIG. 5C is dried or wetted to form recessed holes 506. If the semiconductor substrate 500 is a stone substrate having a surface direction of <1〇〇>, a wet etching process of a K0H solution may be employed herein. The etching rate of the K0H solution for Shi Xi is related to the lattice direction. Therefore, a chamfered cone recess 506 as shown in Fig. 5D is formed on the crucible base having a surface direction of <100>. The four faces of the recessed holes have an angle of 54.74° with the reference surface of the semiconductor substrate 5, respectively. A preferred range of the aperture area of the recess 506 is ^. In one embodiment, the semiconductor substrate 5 has a thickness of 500 micrometers, the chamfered cone has a hole area of 550 micrometers * 550 micrometers square, and the chamfered cone has a depth of 317.5 micrometers. 0968-A22067TWF(N2); P53950124TW; edward 13 200844416 After forming the semiconductor substrate 500 having the recessed holes 506 in Fig. 5D, it can be subjected to a release treatment to facilitate film release after the future washing. The semiconductor substrate 500 in Fig. 5D becomes a wafer master 508. Figure 5E shows that the recess 506 in the semiconductor substrate 500 is filled with the localized material. Conductive particles or powders are mixed into a polymer material. The polymer material is silicone rubber, rubber or resin, and it can also be polyfluorene. The conductive particles or powder may be carbon particles or carbon powder, such as graphite powder, carbon black or carbon nanotubes, etc., wherein the conductive particles or powders have a weight ratio of 3% or more. The uniformly mixed polymer material is flooded into the recesses 5〇6 in the wafer master 508. In order to avoid the generation of bubbles, the Japanese yen mother mold 508, with the polymer material 51 其 thereon, is carried into the vacuum chamber to remove air bubbles. After the bubbles are removed, the flattening action is followed. For example, the knife will flatten and scrape the high-molecular material 51. This is followed by curing of the polymer (4). For example, the wafer master 508 and the polymer material 51 () which has been planarized thereon are placed in an oven and baked and solidified to obtain the result of the fifth graph. Fig. 5F shows the result of demolding of the polymer material 51 〇 θ 1 14 wafer master 508. After demolding, the polymer material 51 〇 # ^ is formed into a film 104 that can be used for the tactile sensor. Because of the polymer squeezing material, the film 1 〇 4 corresponds to the lining lining 508. The convex shape of each concave hole 506 on the elastic wafer master 508 can be selected to be elastic, and _like, „ There are mixed conductive particles in the mixture. In the thin moon Wu 104, a portion other than the convex portion can be regarded as a connecting film for substantially fixing the (four) (four) of the mixed convex. In the embodiment, the junction plate and the protrusion are formed in a body, and all of the polymer materials are used. 0968-A22067TWF(N2); P53950124TW; edward 14 200844416 After demolding, the wafer master 5〇8 can continue to be formed with μ after the film 1〇4 can be attached to ~= to make another film. The elastic projections are connected to one of the circuit boards on the 'bunny road substrate, as shown in Fig. 1. The oscillating group is electrically contacted, as shown in Figs. 5A-5F, which only shows the film 丨〇4, the method, and the film according to the present invention may also be manufactured in a possible manner, and has a different appearance from the film 104: If the concave hole in the manufacturing method is different from the shape of the chamfered concave hole, for example, the elastic convex on the film produced by the wafer master mode: the shape is 'pyramid shape' It may be said that the main Xing is more:: has a non-golden word with a convex surface on the upper surface of the square. ^+sphere, or with a connecting film and a protrusion in the film may be divided. Fig. 6A shows that the _ _ _ 5 material constituting example of the present invention is also applicable to a tactile sensor. In Fig. 6 , the fish pancreas 604, the elastic bulge of the film 604 towel is still a substantially similar 'thin, which is uniformly mixed with conductive particles; but early ν is the main body'. For example, the portion of the connecting film 608 is also a flexible film, but the conductive film is mixed with conductive particles. Although the method of making the film of the film and the film may be complicated, the advantage is that the portion 610 of the 疋, 胜, 胜 608 can isolate the electrical protrusions 606 from each other. One embodiment of the invention is a further film 614 of dry & Fig. 6B is substantially similar to Fig. 4A, in which the flute, the comrades are different from each other, and the bottom of the pyramid of the elastic protrusions 616 in the figure is the contact pad group. _1凡王盍盍住〇 968-A22067TWF(N2); P53950124TW; edward 15 200844416 Figure 6C shows another film 624 as an embodiment of the present invention, which combines some of the features of Figures 6A and 6B . The material of the junction film 628 of the thin crucible 624 is different from the material of the elastic protrusion 626, and the bottom of the elastic protrusion 626 completely covers the contact pad group. 7 ® shows a tactile sensing split implemented in accordance with the present invention. The tactile sensing device 700 has a circuit substrate 7〇2 and a film. The circuit board 702 and the film 704 can be moved to the film, so that the circuit board scanning circuits 7G8 and 71G of the first drawing are not more than v_S1-v_S6 and H_S1_HS6 are provided on the circuit board. ^; 'The elasticity of the signal line film 704 on the film 704 = V-GND and H-GND. Force), may cause four signal line pairs to be deformed (because of pressure or shear, for example, the elastic protrusion 70 "Γ the resistance value of the power line changes. Power line V-GND, signal line V__S2 pair ^ can make the signal 'line V -S1 changes the resistance value of H_S1 to power supply, line H_GND, and ^ source line V-GND, signal line H-GND. ° #b line H-^ pairs power lines V_S1-V-S6 and h_S1_H_S6 a ' As long as the resistance of the signal line H-GND is continuously monitored, it can be known to know whether or not the power line V-drain is deformed. As described earlier, the elastic convex shape in the film 704 is repeatedly used, and the resistance is The difference between the value change and the value change = the amount of common pre-contact pad group 11 〇 array, the power line v, = table shear force. Of course, there are only two, it can also be an array ~ H-GND It is not limited to V-GND, and - one of the arrays is configured with a corresponding power supply line. For each elastic protrusion: " should be the power line H-GND. The resistance value change caused by V can be 0968 -A2206丌WF(N2); P5395〇124TW; edward 200844416 Detected with a clearer scanned circuit. Used in this issue The arrangement of the contact pad groups of one of the circuit substrates may be different from the contact pad group 110 of FIGS. 3A and 3B. FIG. 8 shows a contact pad group 810 according to an embodiment of the present invention, wherein the squared shape of the dotted line 112 indicates 2 Corresponding area of the bottom of the pyramid of the elastic protrusions 106. Similar to FIG. 3B, the contact pad group 810 of FIG. 8 has four signal contact pads PV1, PV2, PH1 and PH2 placed on the square of the dotted line. The inside of the four sides of the pattern 112. Unlike the third panel, the contact pad group 810 of FIG. 8 has only one power contact pad GND, which is placed in the middle of the square shape 112 of the broken line. The film produced by one embodiment of the present invention, It can be used to detect shear and pressure, and can be attached to a flexible circuit board, which is very suitable for the touch of the skin of the robot finger or arm. Moreover, the film can be produced by mold molding, regardless of It is a material preparation or a process of the film, which is very simple and practical with respect to the prior art. The present invention has been disclosed above in the preferred embodiments, but it is not intended to limit the invention, and any familiarity The scope of protection of the present invention is defined by the scope of the appended claims. 0968-A22067TWF(N2), without departing from the spirit and scope of the present invention, the scope of the invention is defined by the scope of the appended claims. P53950124TW; edward 17 200844416, [Simple Description of the Drawing] Fig. 1 is a tactile sensor according to an embodiment of the present invention. Fig. 2 shows the film in Fig. 1. Fig. 3A shows Fig. 1 An example of a circuit board in the middle. Fig. 3B is an enlarged view showing the contact pad group at the uppermost right corner in Fig. 3A. Fig. 4A is a schematic cross-sectional view taken along line AA of the first figure, in the state where the external force is not applied. Fig. 4B shows the situation when the tactile sensor of Fig. 4A is only subjected to the up and down pressure. Fig. 4C shows the situation when the tactile sensor of Fig. 4A is subjected to shear. Figures 5A-5F show one possible manufacturing method for the film of Figure 1. Figures 6A-6C show three films as an embodiment of the present invention. I Figure 7 shows a tactile sensing device implemented in accordance with the present invention. Figure 8 shows another contact pad set in accordance with the practice of the present invention. [Description of main component symbols] 100 to tactile sensor 10 2 to circuit substrate 104 to film 106 to elastic convex 108 to connecting film 0968-A22067TWF (N2); P53950124TW; edward 18 200844416 110~ contact pad group 112 to square Type 114 to foreign material 500 to semiconductor substrate 502 to hard mask 504 to photoresist layer 5 06 to recess 508 to wafer mother mold 510 to south molecular material 604 to film 606 to elastic protrusion 608 to joint film 614 to Film 616 to elastic protrusion 624 to film 628 to connecting film 700 to tactile sensing device 7 02 to circuit substrate 704 to film 706 to elastic protrusion 810 to contact pad group 0968-A22067TWF (N2); P53950124TW; edward 19

Claims (1)

200844416 十、申請專利範圍: 1 · 一種可同時偵測剪力(shear force)與壓力(press f〇rce) 的觸覺感測器(tactile sensor),係包含有·· 一電路基板,至少一接觸墊組,設於該電路基板上, 具有數個信號接觸墊,以及至少一電源接觸墊;以及 一彈性凸狀物(elastic nub),設於該接觸墊組上,該彈 性凸狀物係以一彈性材料為主體,其中均勻混雜有導電性 之粒子,該彈性凸狀物電性連接該等信號接觸墊至該電源 接觸墊; 其中,透過偵測每一該等信號接觸墊至該電源接觸墊 的電阻值變化,來辨識是否該彈性凸狀物有變形,以偵測 施加於該彈性凸狀物的剪力與壓力。 2·如申請專利範圍第1項所述之觸覺感測器,其中, 該電路基板係為一軟性電路基板。 3.如申請專利範圍第1項所述之觸覺感測器,其中, 該導電性之粒子重量比例為3%以上。 4·如申請專利範圍第1項所述之觸覺感測器,其中, 該觸覺感測器包含有: 數個接觸墊組,構成一陣列,設於該電路基板上;以 及 數個彈性凸狀物,一對一的設於該等接觸墊組上。 5·如申請專利範圍第4項所述之觸覺感測器,其中, 每一彈性凸狀物具有一小於的底面積。 6·如申請專利範圍第1項所述之觸覺感測器,其中, 0968-A22067TWF(N2);P53950124TW;edward 20 200844416 ^ 該彈性材料係為橡膠。 7. 如申請專利範圍第1項所述之觸覺感測器,其中, 該彈性材料係為聚二曱基石夕氧$完(polydimethyl siloxane, PDMS) 〇 8. 如申請專利範圍第1項所述之觸覺感測器,其中, 該導電性粒子係為碳粉末。 9. 如申請專利範圍第1項所述之觸覺感測器,其中, 該彈性凸狀物具有一金字塔(pyramid)形狀。 " 10.如申請專利範圍第1項所述之觸覺感測器,其中, 該彈性凸狀物具有一圓柱形形狀。. 11. 如申請專利範圍第1項所述之觸覺感測器,其+, 該彈性凸狀物具有一半球形形狀。 12. 如申請專利範圍第1項所述之觸覺感測器,其中, 每一接觸墊組包含有: 至少二第一信號接觸墊,該等第一信號接觸墊相互平 行不重合,且沿著一第一方向設置,該第一方向位於該電 1' % 路基板上;以及至少二第二信號接觸墊,該等第二信號接 觸墊相互平行不重合,且沿著垂直該第一方向之一第二方 向設置。 13. 如申請專利範圍第12項所述之觸覺感測器,其中, 每一接觸墊組包含有四電源接觸墊,該等第一與第二信號 接觸墊係設於一正方形之四邊内侧,該等電源接觸墊係設 於該四邊外侧。 14. 一種觸覺感測器的製作方法,包含有: 0968-A2206丌 WF(N2);P53950124TW;edward 21 200844416 提供一模具,其上具有數個排成一陣列之數個凹孔 (recess); 將導電性之粒子粉末混合攙入一高分子材料中; 將均勻帶有該粒子粉末之該高分子材料注入該模具之 該等凹孔中; 固化該凹孔中之該高分子材料,並進行脫模,以形成 數個彈性凸狀物;以及 將該等彈性凸狀物貼附於一電路基板上,使每一彈性 凸狀物與該電路基板上之一接觸墊組電性接觸。 15. 如申請專利範圍第14項所述之製作方法,另包含 有: 提供一半導體基底;以及 圖案化(patterning)該半導體基底,使其表面具有該等 凹孔,以做為該模具。 16. 如申請專利範圍第15項所述之製作方法,其中, 該圖案化步驟包含有: 於該半導體基底上形成一硬罩幕(hard mask)層; 圖案化該硬罩幕層,以曝露部分之該半導體基底,以 及 進行一蝕刻製程,移除部份曝露之該半導體基底,以 形成該等凹孔。 17. 如申請專利範圍第15項所述之製作方法,其中, 該半導體基底係為一石夕基底,該硬罩幕層係為一氮化石夕 (silicon nitride),以及該餘刻製程以KOH溶液作為一#刻 0968-A2206丌 WF(N2);P53950124TW;edward 22 200844416 液。 18. 如申請專利範圍第17項所述之製作方法,其中, 該石夕基底具有< 1 〇〇>的表面方向,且每一彈性凸狀物具有 一金字塔(pyramid)形狀。 19. 一種觸覺感測裝置,包含有: 一電路基板, 數個接觸墊組,設於該電路基板上,每一接觸墊組具 有數個信號接觸墊,以及至少一電源接觸墊; 數個彈性凸狀物,一對一的設於該等接觸墊組上,每 一彈性凸狀物係以一彈性材料為主體,其中均勻混雜有導 電性之粒子,每一彈性凸狀物電性連接數個對應信號接觸 墊至一對應電源接觸墊;以及 一掃描電路,電性耦接至該等接觸墊組,用以偵測每 一該等信號接觸墊至該電源接觸墊的電阻值變化,來辨識 是否一對應彈性凸狀物有變形,以偵測施加於該對應彈性 凸狀物的剪力與壓力。 20. 如申請專利範圍第19項所述之觸覺感測裝置,其 中,該等彈性凸狀物係以一陣列方式排列。 21. 如申請專利範圍第19項所述之觸覺感測裝置,其 中,每一接觸墊組包含有: 至少二第一信號接觸墊,該等第一信號接觸墊相互平 行不重合,且沿著一第一方向設置,該第一方向位於該電 路基板上;以及 至少二第二信號接觸墊,該等第二信號接觸墊相互平 0968-A2206丌 WF(N2);P53950124TW;edward 23 200844416 行不重合,且沿著垂直該第一方向之一第二方向設置。 22. 如申請專利範圍第21項所述之觸覺感測裝置,其 中,每一接觸墊組包含有四電源接觸墊,該等第一與第二 信號接觸墊係設於一正方形之四邊内侧,該等電源接觸墊 係設於該四邊外側。 23. 如申請專利範圍第19項所述之觸覺感測裝置,其 中,每一彈性凸狀物具有一金字塔(pyramid)形狀。 24. 如申請專利範圍第19項所述之觸覺感測裝置,其 中,每一彈性凸狀物具有一圓柱形形狀。 25. 如申請專利範圍第19項所述之觸覺感測裝置,其 中,每一彈性凸狀物具有一半球形形狀。 26. —種可用於一觸覺感測器的薄膜,包含有: 數個彈性凸狀物,每一彈性凸狀物係以一彈性材料為 主體,其中均勻混雜有導電性之粒子;以及 連結膜,用以大致固定該等彈性凸狀物之相對位置。 27. 如申請專利範圍第26項所述之薄膜,其中,該連 結膜係與該等彈性凸狀物一體成形。 28. 如申請專利範圍第26項所述之薄膜,其中,該彈 性材料係為橡膠。 29. 如申請專利範圍第26項所述之薄膜,其中,該彈 性材料係為聚二曱基石夕氧烧(polydimethyl siloxane, PDMS) ° 30. 如申請專利範圍第26項所述之薄膜,其中,該導 電性粒子係為碳粉末。 0968-A2206丌 WF(N2); P53950124TW:edward 24200844416 X. Patent application scope: 1 · A tactile sensor capable of simultaneously detecting shear force and pressure (press f〇rce), comprising a circuit substrate, at least one contact a pad set, disposed on the circuit substrate, having a plurality of signal contact pads, and at least one power contact pad; and an elastic nub disposed on the contact pad set, the elastic protrusion being An elastic material is a main body, wherein the conductive particles are uniformly mixed, and the elastic protrusions are electrically connected to the signal contact pads to the power contact pads; wherein each of the signal contact pads is detected to be in contact with the power source The resistance value of the pad changes to identify whether the elastic protrusion is deformed to detect the shear force and pressure applied to the elastic protrusion. 2. The haptic sensor of claim 1, wherein the circuit substrate is a flexible circuit substrate. 3. The tactile sensor according to claim 1, wherein the conductive particles have a weight ratio of 3% or more. The haptic sensor of claim 1, wherein the haptic sensor comprises: a plurality of contact pad groups, forming an array, disposed on the circuit substrate; and a plurality of elastic convex shapes One-to-one is placed on the contact pad set. 5. The tactile sensor of claim 4, wherein each of the elastic protrusions has a smaller base area. 6. The tactile sensor of claim 1, wherein 0968-A22067TWF(N2); P53950124TW; edward 20 200844416^ The elastic material is rubber. 7. The haptic sensor of claim 1, wherein the elastic material is polydimethyl siloxane (PDMS) 〇 8. as described in claim 1 A tactile sensor, wherein the conductive particles are carbon powder. 9. The haptic sensor of claim 1, wherein the elastic protrusion has a pyramid shape. The haptic sensor of claim 1, wherein the elastic projection has a cylindrical shape. 11. The tactile sensor of claim 1, wherein the elastic protrusion has a hemispherical shape. 12. The haptic sensor of claim 1, wherein each contact pad set comprises: at least two first signal contact pads, the first signal contact pads are not parallel to each other, and along a first direction disposed on the electrical 1'% circuit substrate; and at least two second signal contact pads, the second signal contact pads are not parallel to each other, and are perpendicular to the first direction A second direction setting. 13. The haptic sensor of claim 12, wherein each contact pad group comprises four power contact pads, the first and second signal contact pads are disposed on the inner side of a square. The power contact pads are disposed on the outer sides of the four sides. 14. A method of fabricating a tactile sensor, comprising: 0968-A2206丌WF(N2); P53950124TW; edward 21 200844416 providing a mold having a plurality of recesses arranged in an array; Mixing the conductive particle powder into a polymer material; injecting the polymer material uniformly coated with the particle powder into the recessed holes of the mold; curing the polymer material in the recessed hole, and performing Demolding to form a plurality of elastic protrusions; and attaching the elastic protrusions to a circuit substrate such that each of the elastic protrusions is in electrical contact with one of the contact pads on the circuit substrate. 15. The method of manufacturing of claim 14, further comprising: providing a semiconductor substrate; and patterning the semiconductor substrate such that the surface has the recesses as the mold. 16. The method according to claim 15, wherein the patterning step comprises: forming a hard mask layer on the semiconductor substrate; patterning the hard mask layer to expose And partially performing the etching process to remove the partially exposed semiconductor substrate to form the recessed holes. 17. The method according to claim 15, wherein the semiconductor substrate is a stone substrate, the hard mask layer is a silicon nitride, and the KOH solution is used in the process. As a #刻0968-A2206丌WF(N2); P53950124TW; edward 22 200844416 liquid. 18. The manufacturing method according to claim 17, wherein the stone substrate has a surface direction of <1>, and each of the elastic protrusions has a pyramid shape. 19. A tactile sensing device comprising: a circuit substrate, a plurality of contact pad sets disposed on the circuit substrate, each contact pad set having a plurality of signal contact pads, and at least one power contact pad; The convex shape is one-to-one disposed on the contact pad group, and each elastic convex body is mainly composed of an elastic material, wherein conductive particles are evenly mixed, and each elastic convex material is electrically connected. Corresponding signal contact pads to a corresponding power contact pad; and a scanning circuit electrically coupled to the contact pad groups for detecting a change in resistance value of each of the signal contact pads to the power contact pad It is identified whether a corresponding elastic protrusion is deformed to detect the shear force and pressure applied to the corresponding elastic protrusion. 20. The tactile sensing device of claim 19, wherein the elastic projections are arranged in an array. 21. The haptic sensing device of claim 19, wherein each contact pad set comprises: at least two first signal contact pads, the first signal contact pads not parallel to each other, and along a first direction is disposed, the first direction is located on the circuit substrate; and at least two second signal contact pads, the second signal contact pads are flat with each other 0968-A2206 丌 WF (N2); P53950124TW; edward 23 200844416 Coincident and disposed along a second direction perpendicular to the first direction. 22. The haptic sensing device of claim 21, wherein each contact pad group comprises four power contact pads, the first and second signal contact pads being disposed on the inner side of a square. The power contact pads are disposed on the outer sides of the four sides. 23. The tactile sensing device of claim 19, wherein each of the elastic protrusions has a pyramid shape. 24. The tactile sensing device of claim 19, wherein each of the resilient projections has a cylindrical shape. 25. The tactile sensing device of claim 19, wherein each of the elastic projections has a hemispherical shape. 26. A film that can be used in a tactile sensor, comprising: a plurality of elastic protrusions, each of the elastic protrusions being mainly composed of an elastic material, wherein the conductive particles are uniformly mixed; and the connecting film For substantially fixing the relative positions of the elastic projections. 27. The film of claim 26, wherein the continuous film is integrally formed with the elastic projections. 28. The film of claim 26, wherein the elastic material is rubber. 29. The film of claim 26, wherein the elastic material is a polydimethyl siloxane (PDMS) 30. The film of claim 26, wherein The conductive particles are carbon powder. 0968-A2206丌 WF(N2); P53950124TW:edward 24
TW96117005A 2007-05-14 2007-05-14 A tactile sensor, the manufacturing method thereof, and a film for a tactile sensor TW200844416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96117005A TW200844416A (en) 2007-05-14 2007-05-14 A tactile sensor, the manufacturing method thereof, and a film for a tactile sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96117005A TW200844416A (en) 2007-05-14 2007-05-14 A tactile sensor, the manufacturing method thereof, and a film for a tactile sensor

Publications (1)

Publication Number Publication Date
TW200844416A true TW200844416A (en) 2008-11-16

Family

ID=44822603

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96117005A TW200844416A (en) 2007-05-14 2007-05-14 A tactile sensor, the manufacturing method thereof, and a film for a tactile sensor

Country Status (1)

Country Link
TW (1) TW200844416A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408036B (en) * 2009-10-14 2013-09-11 Univ Tohoku Sheet-like touch sensor system
TWI472730B (en) * 2012-05-24 2015-02-11
WO2016062435A1 (en) * 2014-10-21 2016-04-28 Robert Bosch Gmbh Sensor device, gripping device and production method
US9459712B2 (en) 2010-07-26 2016-10-04 Seiko Epson Corporation Detection device, electronic apparatus, and robot
US9569023B2 (en) 2011-09-30 2017-02-14 Canatu Oy Touch sensitive film, touch sensing device, and electronic device
CN110362196A (en) * 2019-06-10 2019-10-22 杨松 Electronic skin, intelligent terminal and tactile intervention signal processing method
TWI771741B (en) * 2020-08-20 2022-07-21 大陸商鵬鼎控股(深圳)股份有限公司 Virtual reality gloves and manufacturing method thereof
TWI817634B (en) * 2022-07-27 2023-10-01 大陸商宏啟勝精密電子(秦皇島)有限公司 Pressure sensor and method of fabricating the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408036B (en) * 2009-10-14 2013-09-11 Univ Tohoku Sheet-like touch sensor system
US9459712B2 (en) 2010-07-26 2016-10-04 Seiko Epson Corporation Detection device, electronic apparatus, and robot
US9569023B2 (en) 2011-09-30 2017-02-14 Canatu Oy Touch sensitive film, touch sensing device, and electronic device
TWI581135B (en) * 2011-09-30 2017-05-01 加拿都公司 Touch sensitive film, touch sensing device, and electronic device
TWI472730B (en) * 2012-05-24 2015-02-11
WO2016062435A1 (en) * 2014-10-21 2016-04-28 Robert Bosch Gmbh Sensor device, gripping device and production method
CN110362196A (en) * 2019-06-10 2019-10-22 杨松 Electronic skin, intelligent terminal and tactile intervention signal processing method
TWI771741B (en) * 2020-08-20 2022-07-21 大陸商鵬鼎控股(深圳)股份有限公司 Virtual reality gloves and manufacturing method thereof
TWI817634B (en) * 2022-07-27 2023-10-01 大陸商宏啟勝精密電子(秦皇島)有限公司 Pressure sensor and method of fabricating the same

Similar Documents

Publication Publication Date Title
TW200844416A (en) A tactile sensor, the manufacturing method thereof, and a film for a tactile sensor
Kim et al. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices
US11371961B2 (en) Method for assembling conductive particles into conductive pathways and sensors thus formed
Wang et al. Printed strain sensor with high sensitivity and wide working range using a novel brittle–stretchable conductive network
Chou et al. A method to pattern silver nanowires directly on wafer-scale PDMS substrate and its applications
CN108291797B (en) High sensitivity sensor containing linear induced cracking and method of making same
Thouti et al. Tunable flexible capacitive pressure sensors using arrangement of polydimethylsiloxane micro-pyramids for bio-signal monitoring
CN104406722B (en) Array pressure surface sensing imaging device
US20220252475A1 (en) A compliant tri-axial force sensor and method of fabricating the same
Tian et al. Ultrasensitive thin-film pressure sensors with a broad dynamic response range and excellent versatility toward pressure, vibration, bending, and temperature
KR20170103758A (en) Flexible transparent sensor with ionically-conductive material
Kim et al. Microdome-induced strain localization for biaxial strain decoupling toward stretchable and wearable human motion detection
Yoo et al. Elastomeric angled microflaps with reversible adhesion for transfer-printing semiconductor membranes onto dry surfaces
CN106370327A (en) Flexible pressure sensor and manufacturing method thereof
Hu et al. Discretely supported dry adhesive film inspired by biological bending behavior for enhanced performance on a rough surface
WO2015143307A1 (en) Flexible tactile sensors and method of making
Sun et al. A highly-sensitive flexible tactile sensor array utilizing piezoresistive carbon nanotube–polydimethylsiloxane composite
JP2006332588A (en) Electrode layer for capacitor and method for manufacturing same, unit sensor using the electrode layer, and tactile sensor using the unit sensor
Gul et al. Sensitivity-controllable liquid-metal-based pressure sensor for wearable applications
Yu et al. Two-sided topological architecture on a monolithic flexible substrate for ultrasensitive strain sensors
CN111473904A (en) Integrated flexible three-dimensional force touch sensor and manufacturing method thereof
US11366030B2 (en) Flexible tactile sensors
Wang et al. Ultra-sensitive and wide sensing-range flexible pressure sensors based on the carbon nanotube film/stress-induced square frustum structure
Wang et al. A flexible tactile sensor with dual-interlocked structure for broad range force sensing and gaming applications
Zhang et al. Flexible and highly sensitive pressure sensors based on microcrack arrays inspired by scorpions