TW200844291A - Microwave processing of ballistic composites - Google Patents

Microwave processing of ballistic composites Download PDF

Info

Publication number
TW200844291A
TW200844291A TW096143086A TW96143086A TW200844291A TW 200844291 A TW200844291 A TW 200844291A TW 096143086 A TW096143086 A TW 096143086A TW 96143086 A TW96143086 A TW 96143086A TW 200844291 A TW200844291 A TW 200844291A
Authority
TW
Taiwan
Prior art keywords
microwave
fabric
fibers
fiber
temperature
Prior art date
Application number
TW096143086A
Other languages
Chinese (zh)
Inventor
Ashok Bhatnagar
Lori L Wagner
Brian D Arvidson
Henry G Ardiff
Original Assignee
Honeywell Int Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell Int Inc filed Critical Honeywell Int Inc
Publication of TW200844291A publication Critical patent/TW200844291A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0471Layered armour containing fibre- or fabric-reinforced layers
    • F41H5/0485Layered armour containing fibre- or fabric-reinforced layers all the layers being only fibre- or fabric-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • B29B13/023Half-products, e.g. films, plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/08Conditioning or physical treatment of the material to be shaped by using wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0855Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength or toughness

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

The present invention relates to the production of ballistic resistant articles. Prior to molding, the ballistic resistant fabrics are heated with microwave energy as an alternative to conventional preheating heating methods, reducing heating time and increasing production efficiency.

Description

200844291 九、發明說明: 【發明所屬之技術領域】 本發明係關於可模製之抗衝擊物品梦 衣& °作為模制 程之部分,使用微波能量作為習知預熱加熱方法之替^ 法來加熱抗衝擊織物,從而減少加熱時 來。 j且&加生產效 【先前技術】200844291 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a moldable impact resistant article dream garment & ° as part of a molding process, using microwave energy as a substitute for a conventional preheating heating method Heat the impact resistant fabric to reduce heating. j and & plus production efficiency [prior art]

已知含有具有防高速投射物之優良性質之高強度纖维的 抗衝擊物品。諸如防彈背心、護盘、車輛面板及軍事裝備 結構構件之物品通常由包含高強度纖維之織物製成。習用 高強度纖維包括聚乙烯纖維、對芳族聚醯胺纖維(諸2聚 (苯一胺對苯二甲醯胺))、石墨纖維、耐綸纖維、玻璃纖維 及其類似物。對於諸如背心或背心部件之許多應用,纖維 可以編織物或針織物來使用。對於許多其他應用,將纖維 封入或嵌入基質材料中以形成剛性或可撓性織物。 已知適用於形成諸如護盔、面板及背心之物品的各種抗 衝擊構造。舉例而言,均以引用的方式併入本文中之美國 專利 4,403,012、4,457,985、4,613,535、4,623,574、 4,650,710、4,737,402、4,748,064、5,552,208、5,587,230、 6’642’159、6,841,492、ό,846,758描述包括由諸如伸展鏈 超高分子量聚乙烯之材料製成之高強度纖維的抗衝擊複合 物。此等複合物展示不同程度之對抗投射物(諸如子彈、 炮彈、榴彈及其類似物)高速衝擊穿入之抗性。 舉例而言,美國專利4,623,574及4,748,064揭示包含嵌入 126806.doc 200844291 彈性體基質中之高強度纏维的錄σ 涵度、截維的間早複合結構。美國專利 4,650,710揭示一種包含痛童f伽山一 a 硬數個由局強度伸展鏈聚烯烴 (ECP)纖維組成之可繞性居的 視注盾的可撓性製造物品。該網狀物 之纖維經低模數彈性體㈣塗佈。美國專利5,552,208及 5,587,2_示_種物品及製造物品之方法,該物品包含至 少-種高強度纖維網狀物及包括乙烯基_及鄰苯二甲酸二 烯丙醋之基質組合物。美國專利M42,i59揭示一種抗衝擊 剛性複合物,該複合物具有複數個包含安置於基質中之長 絲網狀物的纖維層,其中彈性體層在長絲網狀物與基質之 間。亥複&物與-硬板結合以增加保護以防穿甲投射物。 般而a,藉由使纖維、任何基質組合物及任何其他聚 合物層之組合經受熱及壓力歷時特定模製週期時間而將該 組合以所需組態模製來形成抗衝擊物品。在模製過程中, 極為重要的是模製溫度足夠低以避免對抗衝擊織物之組份 纖維的破壞。料言之,極為重要的是模製溫度小於形成 纖維之聚合物之熔點或纖維破壞發生所在之溫度。舉例而 σ對於伸展鏈聚乙烯纖維,諸如由Honeywell International,An impact resistant article containing high strength fibers having excellent properties against high speed projectiles is known. Articles such as bulletproof vests, guard panels, vehicle panels, and military equipment structural members are typically made from fabrics containing high strength fibers. Conventional high strength fibers include polyethylene fibers, para-aramid fibers (diphenylene terephthalamide), graphite fibers, nylon fibers, glass fibers, and the like. For many applications such as vest or vest components, the fibers can be used as a knit or knit. For many other applications, the fibers are enclosed or embedded in a matrix material to form a rigid or flexible fabric. Various impact resistant constructions are known which are suitable for forming articles such as helmets, panels and vests. For example, U.S. Patents 4,403,012, 4,457,985, 4,613,535, 4,623,574, 4,650,710, 4,737,402, 4,748,064, 5,552,208, 5,587,230, 6'642'159, 6,841,492, ό, 846, 758 are incorporated herein by reference. An impact resistant composite of high strength fibers made of a material such as an extended chain ultra high molecular weight polyethylene. These composites exhibit varying degrees of resistance to high velocity impact penetration of projectiles such as bullets, shells, grenades and the like. For example, U.S. Patent Nos. 4,623,574 and 4,748,064 disclose inter-early composite structures comprising a high-intensity wrap-around in the elastomeric matrix embedded in 126806.doc 200844291. U.S. Patent No. 4,650,710 discloses a flexible article of manufacture comprising a painful child, a viscous viscous shield composed of a local strength stretch chain polyolefin (ECP) fiber. The fibers of the web are coated with a low modulus elastomer (4). U.S. Pat. U.S. Patent No. M42, i59 discloses an impact resistant rigid composite having a plurality of fibrous layers comprising a long wire mesh disposed in a matrix, wherein the elastomeric layer is between the long wire mesh and the substrate. Haifu & and the hard board combine to increase protection against armor-piercing projectiles. Typically, the combination is molded in the desired configuration to form an impact resistant article by subjecting the combination of fibers, any matrix composition, and any other polymeric layer to heat and pressure for a particular molding cycle time. In the molding process, it is extremely important that the molding temperature is low enough to avoid damage to the fibers of the component of the impact fabric. In other words, it is extremely important that the molding temperature is lower than the melting point of the polymer forming the fiber or the temperature at which the fiber breakage occurs. For example, σ for stretch chain polyethylene fibers, such as by Honeywell International,

Inc·製造之 SPECTRA® 纖維,約 68°F(20°C)至約 293°F (145 C)之模製溫度大體上可接受。然而,在長時間曝露於 尚於265 F(129°C)之熱後纖維受影響且SPECTRA⑧纖維在 30(TF(149°C)下熔融。高於265°F之溫度可引起纖維層長絲 變形,從而降低其抗衝擊性質。其他纖維類型可能夠耐受 較而模製溫度。舉例而言,芳族聚醯胺纖維之溫度範圍上 限一般比伸展鏈聚乙烯纖維之溫度範圍上限高約2(rc至約 126806.doc 200844291 30〇C。 /匕外,纟—高效方法中,亦希望將模製溫度最大化以將 模製時間減至最少》使用常見之對流加熱,在約176卞 (8〇 C)至約293卞(145。〇之溫度範圍下及約1〇㈣(的叫至 約1〇,_ psi(69,000咖)之塵力下標準模製時間在約2〇至 叫鐘之範®内。此外,f見對流加熱需㈣製機在模製 前預熱至少U)分鐘。因此,在此項技術中對—種可在相對The SPECTRA® fibers manufactured by Inc. are generally acceptable for molding temperatures from about 68°F (20°C) to about 293°F (145 C). However, the fiber is affected after prolonged exposure to heat at 265 F (129 ° C) and the SPECTRA 8 fiber melts at 30 (TF (149 ° C). Temperatures above 265 ° F can cause fiber layer filaments Deformation, thereby reducing its impact resistance. Other fiber types can withstand higher molding temperatures. For example, the upper limit of the temperature range of the aromatic polyamide fiber is generally about 2 higher than the upper limit of the temperature range of the extended chain polyethylene fiber. (rc to approx. 126806.doc 200844291 30〇C. /匕,纟—Efficient method, it is also desirable to maximize the molding temperature to minimize molding time.” Use common convection heating at about 176卞 ( 8〇C) to about 293 卞 (145. 温度 temperature range and about 1 〇 (four) (called to about 1 〇, _ psi (69,000 coffee) under the dust force standard molding time is about 2 〇 to the bell In addition, f see convection heating requires (four) machine to preheat for at least U) minutes before molding. Therefore, in this technology, the species can be relative

低之溫度下經相對短之模製時間有效形成抗衝擊物品之更 有效織物模製方法存在需要。 本么月提供一種針對此項技術中此需要之解決方法。本 發明提供-種形成抗衝擊物品之方法,其中製備時用於模 製該等物品之加熱時間減少。抗衝擊織物,諸如由 Honeywell Internati〇nal,Inc·製造之 spectra shieid⑧織物一 為不良‘熱體。目在匕’在該等織物足夠熱以可模製為抗 衝擊物口 口之月ij而要長預熱時間。藉由減少此預熱時間,可 顯者k面生產效率。 *本’X月提供一種模製抗衝擊物品之方法,其包含:使用 微波能量加熱抗衝擊織物;接著模製經加熱之織物。藉由 使用微波能量來加熱,使總的加熱及模製時間顯著減少。 =發明之方法比習知加熱技術有效,且使生產率顯著提 门此夕卜焉使用習知熱源時,需要長時間曝露於高溫以 …戴隹之間的良好黏結且可導致纖維退化。微波處理藉 由允許❹熱時間及由於微波能量㈣分布及加熱均勻而 避免樣口口内之顯著溫度梯度來使此問題得以避免。 126806.doc 200844291 【發明内容】 本發明提供一種形成一物品之方法,其包含: a) 提供-種包含複數個轉列排列之纖維的織物,該等纖 維具有約7公克/丹尼爾(g/denier)或更高之勤度及約⑼公 克/丹尼爾或更高之拉伸模數;該等纖維在其上具有可選 之微波反應性組合物,·及 、There is a need for more efficient fabric molding methods that effectively form impact resistant articles over relatively short molding times at low temperatures. This month provides a solution to this need in this technology. The present invention provides a method of forming an impact resistant article wherein the heating time for molding the articles during preparation is reduced. Impact resistant fabrics, such as the spectra shieid8 fabric manufactured by Honeywell Internati〇nal, Inc., are undesirable 'hot bodies. The purpose is to have a warm-up time in which the fabric is hot enough to be molded into an impact-resistant mouth ij. By reducing this warm-up time, it is possible to produce k-plane production efficiency. * This 'X month provides a method of molding an impact resistant article comprising: heating the impact resistant fabric with microwave energy; and then molding the heated fabric. By using microwave energy to heat, the total heating and molding time is significantly reduced. The method of the invention is more effective than the conventional heating technique, and the productivity is remarkably improved. When a conventional heat source is used, it takes a long time to expose to a high temperature to cause good adhesion between the enamels and may cause fiber degradation. Microwave processing avoids this problem by allowing for hot times and due to the uniform distribution of microwave energy (four) and uniform heating to avoid significant temperature gradients within the mouth. 126806.doc 200844291 SUMMARY OF THE INVENTION The present invention provides a method of forming an article comprising: a) providing a fabric comprising a plurality of fibers arranged in a matrix having about 7 grams per denier (g/denier) Or higher dilatability and a tensile modulus of about (9) g/danier or higher; the fibers have optional microwave reactive compositions thereon,

b) 在微波爐内$由使該織物經受足以藉此將纖維或可選微 波反應性組合物加熱至至少約纖維之軟化溫度或可選微波 反應性組合物之軟化溫度的微波能量加熱該織物; Ο當由於施加微波能量使該織物具有至少約纖維之軟化溫 度或可選微波反應性組合物之軟化溫度的溫度時,將經加 熱之織物模製為物品;及 、 d)使所模製之織物冷卻。 本發明亦提供一種形成壓實纖維網狀物之方法,該壓實 纖維網狀物包含複數個纖維層,各纖維層包含複數個具有 約7公克/丹尼爾或更高之韌度及約15〇公克/丹尼爾或更高 之拉伸模數的纖維;且該等纖維在其上具有聚合基質組2 物;該壓實纖維網狀物在熱及壓力下經壓實,其中壓實2 熱係藉由施加足以藉此將聚合基質組合物加熱至至少約聚 合基質組合物之軟化溫度之溫度的微波能量來產生。 本發明進一步提供一種包含抗衝擊織物之抗衝擊物品, 該抗衝擊織物包含複數個以陣列排列之纖維,該等纖維具 有約7公克/丹尼爾或更高之韌度及約15〇公克/丹尼爾或更 高之拉伸模數;該等纖維具有塗佈於其上之乾微波反應性 126806.doc 200844291 組合物,該微波反應性組合物已藉由施加微波能量而加熱 至其軟化點溫度以上。 【實施方式】 知支波爐提供一種均勻加熱諸如抗衝擊織物之多種非傳導 性材料的有效方式。微波處理抗衝擊織物提供所需效益, 包括經由節約能量及時間提供之經濟效益及增加之方法產 率及產量。本文所製造之材料外表上具有其他加熱方法未b) heating the fabric in a microwave oven by subjecting the fabric to microwave energy sufficient to thereby heat the fiber or optional microwave reactive composition to at least about the softening temperature of the fiber or the softening temperature of the optional microwave reactive composition;将When the fabric has a softening temperature of at least about the softening temperature of the fiber or the softening temperature of the optional microwave reactive composition due to the application of microwave energy, the heated fabric is molded into an article; and d) is molded The fabric is cooled. The present invention also provides a method of forming a compacted fibrous web comprising a plurality of fibrous layers, each fibrous layer comprising a plurality of tenacities having a basis weight of about 7 grams per denier or more and about 15 inches per gram / Daniel or higher tensile modulus fibers; and the fibers have a polymeric matrix group thereon; the compacted fibrous web is compacted under heat and pressure, wherein the compacted 2 heat is used Microwave energy sufficient to thereby heat the polymeric matrix composition to a temperature of at least about the softening temperature of the polymeric matrix composition is applied. The present invention further provides an impact resistant article comprising an impact resistant fabric comprising a plurality of fibers arranged in an array having a tenacity of about 7 grams/denier or higher and about 15 gram/denier or higher. Tensile modulus; the fibers have a composition of dry microwave reactivity 126806.doc 200844291 coated thereon, which has been heated to above its softening point temperature by application of microwave energy. [Embodiment] The fulcrum furnace provides an effective way of uniformly heating a plurality of non-conductive materials such as impact resistant fabrics. Microwave treatment of impact resistant fabrics provides the desired benefits, including economic benefits through energy savings and time, and increased method yields and yields. The materials produced in this paper have other heating methods on the outside.

實現之獨特均勻微結構,此仙為來自微波之能量分布均 勻且加熱均勻。 、/、 發明之目的’具有優越抗衝擊穿透性之織物描 述展現優良抗高速投射物之性f之織物。如本 ”纖維”為長度尺寸遠大於寬度及厚度之橫向尺寸的伸長形 體。用於本發明之纖維的橫截面可廣泛變化。 ^ 二則=長方形。因此,術語纖維包括具有規則 不見則杈截面之長絲、帶、條及其類似物。 不規則或規則多葦开彡#截 ’、有 维夕“ 截面,该橫截面具有-或多個自输 維之直線或縱向軸柚ψ 目日丨 > 人夕似自纖 n釉伸出的規則或不規則葉片。悬奮目 維為單葉且且右誊所 被吊見之纖 朱具有實質上圓形橫截面。 本文所用之”紗線”為聯鎖纖維股線。 纖維或紗線之古皮十订陣列’’描述 、有序平行排列。纖維”層”描述編t 纖維或紗線之平 、、扁、成或非編織 維或紗線層。纖維 是數個互連纖 維或紗線可形成為 舉例而言,纖 〃、毛$毛或另一編織物、非繞 或藉由任何其他 、、、為物或針織物 白头方法形成為網狀物。一 126806.doc 为又而言,”織 •10- 200844291 其組合。如本文所用之術 之前或之後包括多個纖維 物”可涉及編織或非編織材料或 語”織物”描述在模製形成複合物 層之結構。 f \A unique uniform microstructure is achieved, which is uniform in energy distribution from the microwave and uniform in heating. / /, OBJECT OF THE INVENTION A fabric having superior impact penetration resistance describes a fabric exhibiting excellent properties against high-speed projectiles. For example, the "fiber" is an elongated shape having a length dimension much larger than the transverse dimension of the width and thickness. The cross section of the fibers used in the present invention can vary widely. ^ Two = rectangular. Thus, the term fiber includes filaments, tapes, strips and the like having a regular cross section. Irregular or ruled more than 截 截 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 截 截 截 截 截 截 截 截 截 截 截 截 截 截 截 截 截 截 截 截 截 截 截 截Regular or irregular leaves. The stalks are single-leaf and the right-handed shackles have a substantially circular cross-section. The "yarns" used herein are interlocking fiber strands. The line of the ancient skins is ordered in a 'description, ordered parallel arrangement. The fiber "layer" describes the flat, flat, or non-woven dimension or yarn layer of the t-fiber or yarn. The fiber is a number of interconnected fibers. Or the yarn may be formed, for example, as a web, a fiber, or another braid, non-wound or by any other, white or white method of forming a fabric. 126806.doc is In addition, "Weaving 10 - 200844291 its combination. The inclusion of a plurality of fibers before or after the procedure as used herein may refer to a woven or non-woven material or a "woven fabric" that describes the structure in which the composite layer is molded.

公克力(g/d)表示的韌度變化對表示為初始纖維長度之分數 如本文所用’尚強度、高拉伸模數纖維,’為具有至少約 7公綺尼爾或更高之較佳勒度、至少約ι $ 〇公克/丹尼爾 或更同之較佳拉伸模數(兩者均由astm DU%量測)及至 少約8 ;/g或更高之較佳斷裂所f能量的纖維。如本文所用 之術語”丹尼爾(denier)”係指、線性密度之單位,a等於每 侧公尺纖維或紗線之公克質量。如本文所用之術語"勒 度"係指拉伸應力,其表示為無應力樣本的每單位線性密 度(丹尼爾)之力(公克)。纖維之"初始模數"為表示材料抗 變形能力之材料性質。術語,’拉伸模數”係指以每丹尼爾之 (吋/吋)之應力變化的比率。 尤其合適之高強度、高拉伸模數纖維材料包括伸展鍵聚 烯烴纖維,諸如高度定向、高分子量聚乙烯纖維,尤其超 高分子量聚乙烯纖維及超高分子量聚丙烯纖維。亦合適者 為伸展鏈聚乙稀醇纖維、伸展鏈聚丙烯腈纖維、對芳族聚 醯胺纖維、聚苯并。比咯纖維(諸如聚苯并噁唑(pB〇)及聚苯 并噻唑(PBT)纖維)及液晶共聚酯纖維。此等纖維類型中之 每一者通常為此項技術中所已知。 在聚乙烯之狀況下,較佳纖維為具有至少5〇〇,〇〇〇,較 佳至少一百萬且更佳兩百萬與五百萬之間的分子量之伸展 鏈聚乙烯。該等伸展鏈聚乙烯(ECPE)纖維可以溶液紡絲法 126806.doc -11 - 200844291 生長,諸如以引用的方式併入本文中之美國專利4,137,394 或4,356,138中所述,或可自溶液紡絲以形成凝膠結構,諸 如亦以引用的方式併入本文中之美國專利4,551,296及 5,006,390 中所述。 用於本發明之最佳聚乙烯纖維為來自Honeywell International Inc·以商標Spectra®出售之聚乙烯纖維。The change in tenacity expressed by gyr (g/d) versus the fraction expressed as the initial fiber length, as used herein, is a 'strength, high tensile modulus fiber,' which is preferably at least about 7 mils or more. Leu, at least about ι 〇 gram / denier or the same preferred tensile modulus (both measured by astm DU%) and at least about 8 Å / g or higher of the preferred fracture energy fiber. The term "denier" as used herein refers to a unit of linear density, a being equal to the grams of fiber per side of the metric fiber or yarn. The term "lux" as used herein refers to tensile stress, expressed as the force per unit linear density (denier) of an unstressed sample (grams). The "initial modulus" of the fiber is a material property indicating the resistance of the material to deformation. The term 'tensile modulus' refers to the ratio of stress changes per denier. The particularly suitable high strength, high tensile modulus fiber materials include stretch-bonded polyolefin fibers such as highly oriented, high. Molecular weight polyethylene fibers, especially ultra high molecular weight polyethylene fibers and ultra high molecular weight polypropylene fibers. Also suitable are extended chain polyethylene fibers, extended chain polyacrylonitrile fibers, para-aramid fibers, polybenzoes. Fibrillary fibers (such as polybenzoxazole (pB) and polybenzothiazole (PBT) fibers) and liquid crystal copolyester fibers. Each of these fiber types is generally known in the art. Preferably, in the case of polyethylene, the fibers are extended chain polyethylene having a molecular weight of at least 5 Å, 〇〇〇, preferably at least 1 million and more preferably between 2 and 5 million. Stretch-stranded polyethylene (ECPE) fibers can be grown by solution spinning 126806.doc -11 - 200844291, such as described in U.S. Patent No. 4,137,394, the disclosure of which is incorporated herein to Glue structure Yi Yi incorporated by reference in the U.S. Patent No. 4,551,296 and 5,006,390, herein the. BEST polyethylene fibers of the present invention is a polyethylene fiber from Honeywell International Inc · sold by the trademark Spectra®.

Spectra®纖維為此項技術中所熟知且描述於(例 如)Harpell等人共同擁有之美國專利4,623,547及4,748,064 中。盎司對盎司下,Spectra®高效能纖維比鋼堅固1〇倍, 同時亦足夠輕而浮在水上。該等纖維亦具有其他重要特 性,包括抗衝擊、潮濕、磨蝕化學試劑及刺穿之性質。 合適聚丙烯纖維包括高度定向伸展鏈聚丙烯(ECPP)纖 維,如以引用的方式併入本文中之美國專利4,413,110中所 述。合適聚乙烯醇(PV-OH)纖維描述於(例如)以引用的方 式併入本文中之美國專利4,440,711及4,599,267中。合適聚 丙烯腈(PAN)纖維揭示於(例如)以引用的方式併入本文中 之美國專利4,535,027中。此等纖維類型中之每一者通常為 已知且可廣泛購得。 合適之芳族聚醯胺(aramid)(芳族聚醯胺,aromatic polyamide)或對芳族聚醯胺纖維可購得且描述於(例如)美 國專利3,671,542中。舉例而言,適用之聚(對苯二胺對苯 二甲酿胺)長絲由Dupont公司商業製造,商標為 KEVLAR®。在本發明之實施中亦適用者為由Dup〇nt商業 製造商標為NOMEX®之聚(間苯二胺間苯二甲醯胺)纖維。 126806.doc -12 - 200844291 用於實她本發明之合適聚苯并吼咯纖維可購得且揭示於 (例如)各以引用的方式併入本文中之美國專利、 5,296,185、5,356,584、5,534,205 及 6,040,050 中。較佳聚 苯并吡咯纖維為來自T〇y〇b〇 c〇·之ZYL〇N@牌纖維。用於 貝施本發明之合適液晶共聚酯纖維可購得且揭示於(例如) 各以引用的方式併入本文中之美國專利3,975,487、 4,118,372及 4,161,470。 用於本發明之其他合適纖維類型包括玻璃纖維、由碳形 成之纖維、由玄武岩或其他礦物形成之纖維、M5®纖維及 所有以上材料之組合,其所有均可購得。M5⑧纖維係由Spectra® fibers are well known in the art and are described in U.S. Patent Nos. 4,623,547 and 4,748,064, the entire disclosures of which are incorporated herein by reference. At ounces to ounces, Spectra® high-performance fibers are 1 times stronger than steel and are light enough to float on water. These fibers also have other important characteristics including impact resistance, moisture, abrasive chemicals and puncture properties. Suitable polypropylene fibers include highly oriented extended chain polypropylene (ECPP) fibers, as described in U.S. Patent 4,413,110, incorporated herein by reference. Suitable polyvinyl alcohol (PV-OH) fibers are described, for example, in U.S. Patent Nos. 4,440,711 and 4,599,267, the disclosures of which are incorporated herein by reference. Suitable polyacrylonitrile (PAN) fibers are disclosed, for example, in U.S. Patent 4,535,027, which is incorporated herein by reference. Each of these fiber types is generally known and widely available. Suitable aromatic aramids (aromatic polyamides) or aramid fibers are commercially available and are described, for example, in U.S. Patent 3,671,542. For example, suitable poly(p-phenylenediamine-p-xylylene) filaments are commercially available from Dupont under the trademark KEVLAR®. Also suitable for use in the practice of the present invention is the poly(m-phenylenediamine meta-xylamine) fiber manufactured by Dup〇nt under the trademark NOMEX®. 126806.doc -12 - 200844291 A suitable polybenzoxanthromeric fiber for use in the present invention is commercially available, for example, in U.S. Patent Nos. 5,296,185, 5,356,584, 5,534,205, each incorporated herein by reference. And 6,040,050. Preferably, the polybenzopyrrole fiber is a ZYL〇N@ brand fiber from T〇y〇b〇 c〇·. Suitable liquid crystal copolyester fibers for use in the present invention are commercially available and are disclosed, for example, in U.S. Patents 3,975,487, 4,118,372 and 4,161,470 each incorporated herein by reference. Other suitable fiber types for use in the present invention include glass fibers, fibers formed from carbon, fibers formed from basalt or other minerals, M5® fibers, and combinations of all of the above, all of which are commercially available. M58 fiber system

Magellan Systems International of Richmond(Virginia)製造 且描述於(例如)各以引用的方式併入本文中之美國專利 5,674,969、5,939,553、5,945,537及 6,G4G,478 中。 如上所述’咼強度、向拉伸模數纖維為具有各如ASTM D2256所量測之約7公克/丹尼爾或更高之較佳韌度、約15〇 公克/丹尼爾或更高之較佳拉伸模數及約8 j/g或更高之較 佳斷裂所需能量的纖維。為獲得更大抗衝擊性,纖維勃度 應為約15公克/丹尼爾或更高,較佳約2〇公克/丹尼爾或更 高,更佳約25公克/丹尼爾或更高且最佳約3〇公克/丹尼爾 或更高;纖維較佳亦具有約300公克/丹尼爾或更高,更佳 約400公克/丹尼爾或更高,更佳約5〇〇公克/丹尼爾或更 高,更佳約1,000公克/丹尼爾或更高且最佳約}。^公克/丹 尼爾或更高之拉伸模數。具有增加之衝擊保護性質之纖維 亦具有較佳約1 5 J/g或更高,更佳約25 J/g或更高,更佳約 126806.doc -13- 200844291 30 J/g或更向之斷裂所需能量,且最佳具有約4〇 或更高 之斷裂所需能量。此等組合之高強度性質可藉由使用熟知 之洛液生長或凝膠纖維方法獲得。美國專利13,11 〇、 4,440,711、4,535,G27、4,457,985、4,623,547、4,650,710 及4,748,G64大體上論述本發明中所用之較佳高強度伸展鍵 之聚乙稀纖維且將其揭示内容以引用的方式併人本文中。 ί 抗衝擊織物可包含—或多個編織或非編織纖維層或其組 合。編織及非編織纖維層可使用此項技術中通常已知之技 術來形成。合適之非編織纖維層包括包含如毛驗無規定 向纖維及複數個以實質上平行之陣列排列之纖維或紗線的 纖'准層纟私見構造中,本發明之非編織纖維層於彈性體 或剛性聚合物組合物(在此項技術中稱為基質組合物)中包 含單層壓實纖維網狀物。一般而言,"聚合基質組合物"為 在壓實或層壓步驟後將纖維黏合在_起之黏合劑。”壓實 之網狀物”描述多個纖維層與基質組合物之經壓實組合。 如本文所用’"皁層"結構係指已壓實成單個整體結構之由 -或多層個別纖維層組成的結構,其中壓實可經由乾燥、 ㈣H壓力或其組合而發生。壓實之網狀物亦可包 含複數個經該基質組合物塗佈、形成為複數個層且㈣成 單個織物層之紗線。 在無規或平行之非編織平行定向中,使用此項技術中熟 知之技術’形成織物層之個別纖維可能或可能不在其上塗 佈基負組合物、浸潰有基曾&人4 貝百基貝組合物、嵌入基質組合物中或 以其他方式用基質組合物塗覆。基質組合物可在形成該等 126806.doc -14- 200844291 層之前或之後塗覆於高強度纖維上’接著將基質材 維組合壓實在一起以形成多層複合物。最特定言之,本取 明之非編織纖維層包含:賴數個層,各層包含複數個^ 向排列之平行纖維,其中該等層係以相對於各相鄰纖維居 之縱向纖維方向之一角度交又絞合;且其中該等纖; 況於其上具有聚合基質組合物;或…或多個包含複數: 無規排列纖維之層;且其中該等纖維視情況於其上 合基質組合物。 ” ^ 如此項技術巾通常已知,當個敎份纖維層交又絞合致 j-層之纖維排列方向相對於另—層之纖維排列方向旋轉 行時’非編織物達成優良抗衝擊 等兩個纖維層係一起定 月之纖維層,該 於另-層之縱向纖唯方广::縱向纖維方向垂直 構,其中第二層方另一實例中,形成五層結 層旋轉…5。、二層及第五層係相料^ 發明之目的,相鄰層可實二::序)。為達成本 向以約〇。與約90。之門的/相對於另一層之縱向纖維方 纖堆定… 何角度排列,但以約〇。及約9〇。 、義、、隹疋向為較佳。雖然以 纖維層之織物……實例次月包括兩層或五層個別 經由多種熟知之方—二Γ:加以限制。非編織纖維層可 所述之方法建構。二太Γ藉由美國專利6,642,159中 包括可如夂接發明之單層塵實網狀物-般可 包括了如各種應用所需之任何數目之交又绞 20至約40或更多層。 σ曰,啫如約 126806.doc 200844291 可1吏用此項技術巾熟知之技術使用任何織物編織法,諸 如平、文、扁織、四經破緞紋編織、籃式編織、緞紋編織、斜 紋編織及其類似方法來形成編織纖維層。平紋編織最常 見。在編織之前,可或可不以與非編織纖維層類似之= 式、使用與非編織纖維層相同之基質組合物用聚合基質組 合物塗佈各編織纖維材料之個別纖維。 或者,織物可包含交替或非交替之編織與非編織纖維層 的此a、、且曰,諸如非編織/編織/非編織或編織/非編織/編 織結構。抗衝擊織物可包括任何數目之經組合之編織及/ 或非編織層,且各非編織層可包含併有多個組成層之單層 壓實網狀物。視情況相鄰層可與中間黏接層附接。詳言 之,各編織層較佳經由黏接層附接於相鄰層。 合適黏著劑非排他性地包括彈性體材料,諸如聚乙烯、 父聯聚乙烯、氯磺化聚乙烯、乙烯共聚物、聚丙烯、丙烯 共聚物、聚丁二烯、聚異戊二烯、天然橡膠、乙烯-丙烯 共I物、乙稀·丙稀-二稀三元共聚物、聚硫醚聚合物、聚 胺基甲酸酯彈性體、聚氯丁二烯、使用一或多種此項技術 中熟知之增塑劑(諸如,鄰苯二甲酸二辛酯)增塑之聚氯乙 烯、丁二烯丙烯腈彈性體、聚(異丁烯-共-異戊二烯)、聚 丙烯酸酯、聚酯、不飽和聚酯、聚醚、氟彈性體、聚矽氧 彈性體、乙烯共聚物、熱塑性彈性體、酚醛樹脂、聚縮丁 醛、環氧聚合物、苯乙烯嵌段共聚物(諸如,苯乙烯-異戊 二烯-苯乙烯或苯乙烯-丁二烯-苯乙烯類型)及此項技術中 通常已知之其他合適黏著劑組合物。尤其較佳之黏著劑組 126806.doc -16- 200844291 合物包括甲基丙烯酸醋黏著劑、氰基丙烯酸酿黏著劑、 uv固化黏著劑、胺基甲酸酯黏著劑、環氧樹脂黏著劑、 乙烯乙酸乙烯醋黏著劑及以上材料之播合物。黏著劑最佳 包含熱塑性聚合物,尤其乙埽乙酸乙烤醋。該等黏著劑可 例如以熱熔體、膜、漿糊或喷霧之形式或以兩組份液體黏 著劑形式應用。 1 可使用多種基質材料,包括低模數彈性體基質材料及高 f' 杈數剛性基質材料製備本發明之編織或非編織纖維層。合 、適基質材料非排他性地包括具有小於約6,〇〇〇 3 MPa)之初始拉伸模數的低模數彈性體材料及具有至少約 300.000 psi(2068 MPa)之初始拉伸模數的高模數剛性材料 (各均藉由ASTM D638在37°C下量測)。如整篇本文中所 用’術語拉伸模數意謂如藉由ASTM 2256針對纖維及藉由 ASTM D63 8針對基質材料所量測之彈性模數。 彈性體基質組合物可包含多種聚合及非聚合材料。較佳 ^ 彈性體基質組合物包含低模數彈性體材料。為達成本發明 之目的,低模數彈性體材料具有根據ASTM D638測試程序 i測約6,000 psi(41.4 MPa)或少於6,000 psi之拉伸模數。 彈性體之拉伸模數較佳為約4,〇〇〇 psi(27.6 MPa)或少於 4.000 Psi,更佳約 2400 psi(i6.5 MPa)或少於 2400 psi,更 仏約1200 psi(8.23 MPa)或少於1200 psi,且最佳為約5〇〇 psi(3.45 MPa)或少於500 pSi。彈性體之玻璃轉移溫度(Tg) 較佳低於約0°C,更佳低於約_4〇°C,且最佳低於約_50°C。 彈性體亦具有較佳至少約5〇%,更佳至少約1 〇〇%之斷裂伸 126806.doc -17- 200844291 長率且最佳具有至少約300%之斷裂伸長率。 多種具有低模數之基質材料及調配物可用作基質。代表 性只例包括聚丁二烯、聚異戊二烯、天然橡膠、乙烯·丙 烯共聚物、乙烯-丙烯-二烯三元共聚物、聚硫醚聚合物、 聚胺基甲酸酯彈性體、氯磺化聚乙烯、聚氯丁二烯、增塑 聚氣乙烯、丁二烯丙烯腈彈性體、聚(異丁烯_共_異戊二 烯)、聚丙烯酸酯、聚酯、聚醚、氟彈性體、聚矽氧彈性 體、乙烯共聚物及其組合及在聚烯烴纖維熔點以下可固化 之其他低模數聚合物及共聚物。亦較佳者為不同彈性體材 料之摻合物或彈性體材料與一或多種熱塑性塑料之摻合 物。 尤其適用者為共輛二烯與乙浠基芳族單體之嵌段共聚 物。丁二烯及異戊二烯為較佳之共軛二烯彈性體。苯乙 烯、乙烯基甲苯及第三丁基苯乙烯為較佳之共軛芳族單 體。併有聚異戊二烯之嵌段共聚物可經氫化以產生具有飽 和烴彈性體區段之熱塑性彈性體。聚合物可為A-B-A型簡 單三欲段共聚物、(AB)I^ (n=2-10)多嵌段共聚物或R_ (BA)XS(X=3-150)徑向構型共聚物;其中a為來自聚乙烯芳 族單體之後段且B為來自共輛二烯彈性體之嵌段。許多此 等聚合物係由Kraton Polymers of Houston(TX)商業製造且 描述於公報 f’Kraton Thermoplastic Rubber,,,SC-68-81 中。 最佳基質聚合物包含由Kraton Polymers商業製造以商標 KRATON®出售之苯乙烯嵌段共聚物。最佳低模數基質組 合物包含聚苯乙烯-聚異戊二烯-聚笨乙烯-嵌段共聚物。 126806.doc -18- 200844291 適用於本文之較佳高模數剛性基質材料包括諸如乙稀基 酉旨聚合物或苯乙烯·丁二烯嵌段共聚物以及諸如乙烯基酯 及鄰苯二甲酸二烯丙酯或苯酚曱醛及聚乙烯丁醛之聚合物 混合物的材料。用於本發明之尤其較佳之剛性基質材料為 熱固性聚合物,較佳可溶於諸如甲基乙基酮之碳_碳飽和 溶劑中且在固化時具有如ASTM D638所量測至少約ΐχΐ〇6 pS1(6895 MPa)之高拉伸模數。尤其較佳之剛性基質材料為Magellan Systems International of Richmond (Virginia) is manufactured and described, for example, in U.S. Patents 5,674,969, 5,939,553, 5,945,537 and 6, G4G,478, each of which is incorporated herein by reference. As described above, the 'strength, tensile modulus fiber is a preferred tenacity of about 7 gram/denier or higher as measured by ASTM D2256, preferably about 15 gram/denier or higher. A modulus of fiber and a fiber of about 8 j/g or higher which is preferably the energy required for fracture. For greater impact resistance, the fiber breech should be about 15 grams/denier or higher, preferably about 2 gram/denier or higher, more preferably about 25 gram/denier or higher and preferably about 3 〇. G/denier or higher; the fiber preferably also has about 300 g/denier or higher, more preferably about 400 g/denier or higher, more preferably about 5 g/denier or higher, more preferably about 1, 000 grams / Daniel or higher and best about}. ^ gram / Daniel or higher tensile modulus. The fiber having an increased impact protection property also preferably has a height of about 15 J/g or more, more preferably about 25 J/g or more, more preferably about 126806.doc -13 - 200844291 30 J/g or more. The energy required for the fracture, and preferably the energy required for the fracture of about 4 Torr or higher. The high strength properties of such combinations can be obtained by using well known methods of growth or gelling. US Patent Nos. 13,11, 4,440, 711, 4, 535, G27, 4, 457, 985, 4, 623, 547, 4, 650, 710, and 4, 748, G64 generally discuss preferred high strength stretch bond polyethylene fibers for use in the present invention and disclose the disclosure by way of citation. And this article. ί The impact resistant fabric may comprise - or a plurality of woven or non-woven fibrous layers or combinations thereof. Woven and non-woven fibrous layers can be formed using techniques generally known in the art. Suitable non-woven fibrous layers include fibers comprising a fiber or a plurality of fibers or yarns arranged in a substantially parallel array, the non-woven fibrous layer of the present invention is in an elastomer Or a rigid polymer composition (referred to in the art as a matrix composition) comprises a monolayer of solid fiber web. In general, "polymeric matrix composition" is a binder that bonds the fibers after the compacting or lamination step. "Compacted mesh" describes a compacted combination of a plurality of fibrous layers and a matrix composition. As used herein, "soap" structure refers to a structure that has been compacted into a single unitary structure - or a plurality of layers of individual fibers, wherein compaction can occur via drying, (d) H pressure, or a combination thereof. The compacted web may also comprise a plurality of yarns coated with the matrix composition, formed into a plurality of layers, and (d) formed into a single fabric layer. In a random or parallel non-woven parallel orientation, the individual fibers forming the fabric layer may or may not be coated with a base negative composition, impregnated with a base & 4 shell, using techniques well known in the art. The baiquibe composition, embedded in the matrix composition or otherwise coated with the matrix composition. The matrix composition can be applied to the high strength fibers either before or after the formation of the layers 126806.doc - 14 - 200844291. The matrix material combinations are then compacted together to form a multilayer composite. Most particularly, the non-woven fiber layer of the present invention comprises: a plurality of layers, each layer comprising a plurality of parallel fibers arranged in an orientation, wherein the layers are at an angle relative to a longitudinal fiber direction of each adjacent fiber. And the strands; and wherein the fibers have a polymeric matrix composition thereon; or ... or a plurality comprising: a plurality of randomly arranged fibers; and wherein the fibers are optionally combined with the matrix composition . ^ ^ As for this technical towel, it is generally known that when a fiber bundle is stranded and twisted, the fiber arrangement direction of the j-layer is rotated relative to the fiber arrangement direction of the other layer, and the non-woven fabric achieves excellent impact resistance. The fiber layer is a fiber layer of the moon, and the longitudinal fiber of the other layer is wide: the longitudinal fiber direction is perpendicular, and in the other example of the second layer, five layers of the layer are formed to rotate... 5. The layer and the fifth layer of the phase material ^ the purpose of the invention, the adjacent layer can be two:: order). To achieve the original direction of about 〇. and about 90. / relative to the other layer of longitudinal fiber square fiber pile It is ... which angle is arranged, but about 〇. and about 9 〇. 义, 义, 隹疋 is preferred. Although the fabric of the fiber layer... the example of the next month includes two or five layers individually through a variety of well-known - Γ 加以 加以 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非. Any number of intersections required for the application are twisted by 20 to about 40 or more layers. 126806.doc 200844291 Any fabric weaving method can be used with the technique known in the art, such as flat, woven, woven, satin weave, basket weave, satin weave, twill weave, and the like. To form a woven fiber layer. Plain weave is most common. Before weaving, each woven fiber may or may not be coated with a polymeric matrix composition using a matrix composition similar to that of a non-woven fibrous layer. Individual fibers of the material. Alternatively, the fabric may comprise alternating or non-intercalating layers of woven and non-woven fibers, such as non-woven/woven/non-woven or woven/non-woven/woven structures. Any number of combined woven and/or non-woven layers are included, and each non-woven layer may comprise a single laminated solid web having a plurality of constituent layers. Optionally, adjacent layers may be attached to the intermediate adhesive layer In particular, each woven layer is preferably attached to an adjacent layer via an adhesive layer. Suitable adhesives include non-exclusively elastomeric materials such as polyethylene, parent polyethylene, chlorosulfonated polyethylene, Ene copolymer, polypropylene, propylene copolymer, polybutadiene, polyisoprene, natural rubber, ethylene-propylene co-I, ethylene propylene-diuret ternary copolymer, polythioether polymer Polyurethane elastomer, polychloroprene, polyvinyl chloride, butadiene plasticized using one or more plasticizers well known in the art (such as dioctyl phthalate) Acrylonitrile elastomer, poly(isobutylene-co-isoprene), polyacrylate, polyester, unsaturated polyester, polyether, fluoroelastomer, polyoxyxene elastomer, ethylene copolymer, thermoplastic elastomer, Phenolic resin, polybutyral, epoxy polymer, styrenic block copolymer (such as styrene-isoprene-styrene or styrene-butadiene-styrene type) and generally used in the art Other suitable adhesive compositions are known. Particularly preferred adhesive compositions 126806.doc -16- 200844291 include methacrylate adhesive, cyanoacrylic adhesive, uv cured adhesive, urethane adhesive Agent, epoxy resin adhesive, ethylene vinyl acetate adhesive Sowing above compound materials. The adhesive is best composed of a thermoplastic polymer, especially ethyl acetoacetate. These adhesives can be applied, for example, in the form of a hot melt, a film, a paste or a spray or in the form of a two-component liquid adhesive. 1 A woven or non-woven fibrous layer of the present invention can be prepared using a variety of matrix materials, including low modulus elastomeric matrix materials and high f' turns rigid matrix materials. The suitable matrix material non-exclusively includes a low modulus elastomeric material having an initial tensile modulus of less than about 6, 〇〇〇3 MPa) and an initial tensile modulus of at least about 300.000 psi (2068 MPa). High modulus rigid materials (each measured by ASTM D638 at 37 ° C). As used throughout the text, the term tensile modulus means the modulus of elasticity as measured by ASTM 2256 for fibers and by ASTM D63 8 for matrix materials. The elastomeric matrix composition can comprise a variety of polymeric and non-polymeric materials. Preferably, the elastomeric matrix composition comprises a low modulus elastomeric material. For the purposes of the present invention, the low modulus elastomeric material has a tensile modulus of about 6,000 psi (41.4 MPa) or less than 6,000 psi as measured by ASTM D638 Test Procedure. The tensile modulus of the elastomer is preferably about 4, 〇〇〇 psi (27.6 MPa) or less than 4.000 Psi, more preferably about 2400 psi (i6.5 MPa) or less than 2400 psi, more preferably about 1200 psi ( 8.23 MPa) or less than 1200 psi, and most preferably about 5 psi (3.45 MPa) or less than 500 pSi. The glass transition temperature (Tg) of the elastomer is preferably less than about 0 ° C, more preferably less than about _4 ° C, and most preferably less than about _50 ° C. The elastomer also has an elongation at break of preferably at least about 5%, more preferably at least about 1%, and preferably has an elongation at break of at least about 300%. A variety of matrix materials and formulations having a low modulus can be used as the matrix. Representative examples include polybutadiene, polyisoprene, natural rubber, ethylene/propylene copolymer, ethylene-propylene-diene terpolymer, polythioether polymer, polyurethane elastomer , chlorosulfonated polyethylene, polychloroprene, plasticized polystyrene, butadiene acrylonitrile elastomer, poly(isobutylene-co-isoprene), polyacrylate, polyester, polyether, fluorine Elastomers, polyoxyxides, ethylene copolymers, and combinations thereof, and other low modulus polymers and copolymers that are curable below the melting point of polyolefin fibers. Also preferred are blends of different elastomeric materials or blends of elastomeric materials with one or more thermoplastics. Particularly suitable are block copolymers of a total of a diene and an ethyl fluorene aromatic monomer. Butadiene and isoprene are preferred conjugated diene elastomers. Astyrene, vinyltoluene and t-butylstyrene are preferred conjugated aromatic monomers. The block copolymer of polyisoprene can be hydrogenated to produce a thermoplastic elastomer having a saturated hydrocarbon elastomer segment. The polymer may be an ABA type simple trisole copolymer, (AB)I^(n=2-10) multiblock copolymer or R_(BA)XS (X=3-150) radial configuration copolymer; Wherein a is from the later stage of the polyethylene aromatic monomer and B is the block from the co-diene elastomer. Many of these polymers are commercially produced by Kraton Polymers of Houston (TX) and are described in the publication f'Kraton Thermoplastic Rubber,, SC-68-81. The preferred matrix polymer comprises a styrenic block copolymer commercially available from Kraton Polymers under the trademark KRATON®. The preferred low modulus matrix composition comprises a polystyrene-polyisoprene-polystyrene-block copolymer. 126806.doc -18- 200844291 Preferred high modulus rigid matrix materials suitable for use herein include, for example, ethylene-based polymers or styrene-butadiene block copolymers and such as vinyl esters and phthalic acid A material of a polymer mixture of allyl ester or phenol furfural and polyvinyl butyral. A particularly preferred rigid matrix material for use in the present invention is a thermoset polymer, preferably soluble in a carbon-carbon saturated solvent such as methyl ethyl ketone and having at least about ΐχΐ〇6 as measured by ASTM D638 when cured. High tensile modulus of pS1 (6895 MPa). Particularly preferred rigid matrix material is

以引用的方式併入本文中之美國專利6,642,159中所述之基 質材料。 由本發明之織物複合物形成之物品的剛性、撞擊及衝擊 性質受基質聚合物之拉伸模數影響。舉例而言,美國專利 4,623,574揭示用拉伸模數小於約6000 psi(41,300 kPa)之彈 f生體基貝建構之纖維增強複合物與用較高模數聚合物建構 之複口物相比以及與無基質之相同纖維結構相比,具有優 越衝擊性質。然而,低拉伸模數基質聚合物亦產生較低剛 :生禝口物。此外’纟某些應用中,尤其在複合物必須以抗 :擊及結構模式起作用之應用中,需要抗衝擊性與剛性之 % 口因此,奴使用之最合適類型之基質聚合物將視 奴由本發明之織物形成之物品類型而變。為實現兩種性質 :雇:σ適之基質組合物可組合低模數及高模數材料以 形成早一基質組合物。 抗衝擊織物可用於各 種應用。舉例而言,一或多種本發 月之織物可排列在一起 如北 起以形成可撓性物品,包括衣服,諸 如月心、褲子、帽早忐 /如此項技術中熟知之其他衣服物 126806.doc 200844291 w °需要時,本發明之織物亦可形成諸如護盔之其他個人 防護用品,或可形成防護罩、蓋或氈。其他常見結構包括 爲平、平面面板或定製形狀之面板。模製之織物可用以 (例如)加強用於NIJ I級、IIA級、II級、IIIA級及III級保護 之裝甲民用車輛;用作用於警察巡邏車及其他車輛之裝曱 門及車頂;用作用於NIJ I級、IIA級、II級、inA級及in級 保濩之抗衝擊背心的外傷襯墊或胸插板;用於NIJ I級、 IIA級、Π級、IIIA級及m級保護之手持式盾牌或用於爆炸 處理裝置。多個織物可以黏接或非黏接陣列堆疊或排列。 可使用此項技術中之任何習知方式進行黏接,諸如用黏著 材料、其他熱塑性材料或非熱塑性纖維或材料綁結或黏合 在一起。 為自抗衝擊織物製造該等所需物品,使織物經受此項技 術中稱為模製之製程。在典型模製製程中,將可包含任何 數目之編織及/或非編織層(亦稱為”層片”)之織物加熱或預 熱至允許織物形成成形物品或面板所需之模製溫度。經加 熱之織物通常在壓力下在合適之模製設備中成形或壓縮。 -、型模製壓力在約5〇 pSi至約5〇〇〇 pSi之範圍内,更通常在 、’勺200 psi至約15〇〇 psi之範圍内。模製步驟可耗時約&秒至 約4 5分鐘。 根據本發明,織物在微波爐中加熱而非藉由任何其他傳 、、先加熱方去來加熱。微波加熱為習知加熱之更有效替代方 弋此係因為其有效產生容積熱。容積加熱定義為整體之 加熱,與自表面朝内傳遞熱相反。微波藉由產生激發分 126806.doc -20- 200844291 子彳疋而弓I起分子旋轉之波引起材料内部加熱。”極性”且 具有=端及負端之任何分子將來回旋轉以與烘箱中波之變 化電場對準。此旋轉產生呈熱形式之能量。不同於習知加 熱,此效應在全部材料經微波處ί里之整個過程中同時發 生。微波為在300 MHZ(3xl〇8週期/秒)至300 GHz(3xl〇n 週』/&)之頻帶中之電磁波。此兩種頻率分別對應於^㈤及 1 mm波長。所有家用微波爐及實驗室微波處理器均在對應 於約12.2 cm波長之2·45 GHz下運作。工業微波可在厶“ GHz頻率下運作,且亦可在諸如9〇〇 MHZ2較低頻率下或 在諸如10 GHz之較鬲頻率下運作,且一般在1〇〇〇瓦特至 3〇〇〇瓦特功率下可用。本發明不限於任何特定之微波頻 率。 一般而言,微波處理系統由一微波源、一傳遞動力至樣 品之施用器及控制加熱之系統組成。微波發生器一般為真 空管或固態裝置。在微波爐中,該等管_般額定為15 kW。该等官需要一磁場以便運作,且該磁場由永久磁體 或電磁體提供。磁控管為材料處理應用中最常見之微波 源。一般而言,微波能量經由多模或單模微波施用器施加 於材料,且溫度控制通常藉由改變輸入功率或經由脈衝源 來達成。本發明涵蓋使用任何專用微波,包括足以在家使 用之微波爐、工業微波爐及可使用或可不使用用於獨特廣 用之獨特波長的其他獨特微波爐。 限制微波用於處理材料之潛在用途的一個重要因素為材 料吸收微波輻射(基本上為高頻無線電波)之能力。與習知 126806.doc -21 - 200844291 加熱不同,微波使用穿透性輻射穿過材料。熱量產生盘 由材料自身之特定介電性質所蚊,諸如材料^介電= 及介電損耗角正切。The matrix material described in U.S. Patent No. 6,642,159, incorporated herein by reference. The stiffness, impact and impact properties of articles formed from the fabric composites of the present invention are affected by the tensile modulus of the matrix polymer. For example, U.S. Patent No. 4,623,574 discloses the use of a fiber reinforced composite constructed with a tensile modulus of less than about 6000 psi (41,300 kPa) and a composite of a higher modulus polymer. It has superior impact properties compared to the same fiber structure as the matrix. However, low tensile modulus matrix polymers also produce lower stiffness: raw gargle. In addition, 'in some applications, especially in applications where the compound must act in a resistive and structural mode, the impact resistance and rigidity are required. Therefore, the most suitable type of matrix polymer used by slaves will be slaves. It is a function of the type of article formed by the fabric of the present invention. To achieve both properties: Hiring: Sigma-adapted matrix compositions can combine low modulus and high modulus materials to form an earlier matrix composition. Impact resistant fabrics are used in a variety of applications. For example, one or more of the fabrics of the present month may be arranged together, such as from the north, to form a flexible article, including clothing, such as a moon, pants, a hat, or other clothing 126806 as is well known in the art. Doc 200844291 w ° The fabric of the present invention may also form other personal protective articles such as helmets, or may form a shield, cover or felt, if desired. Other common structures include flat, flat panels or custom shaped panels. Molded fabrics can be used, for example, to strengthen armored civilian vehicles for NIJ Class I, Class IIA, Class II, Class IIIA, and Class III protection; for use as doors and roofs for police patrol cars and other vehicles; Used as a traumatic pad or chest insert for NIJ Class I, Class IIA, Class II, inA, and in class shock resistant vests; for NIJ Class I, Class IIA, Class I, Class IIIA, and Class M Protected hand-held shield or used in explosive treatment devices. Multiple fabrics can be stacked or aligned in a bonded or non-bonded array. Bonding can be carried out using any of the conventional means of the art, such as by bonding or bonding together with an adhesive material, other thermoplastic material or non-thermoplastic fibers or materials. These desired articles are made from self-impacting fabrics and subjected to fabrics known in the art as molding processes. In a typical molding process, a fabric that can include any number of woven and/or non-woven layers (also referred to as "plies") is heated or preheated to the molding temperature required to allow the fabric to form a shaped article or panel. The heated fabric is typically formed or compressed under pressure in a suitable molding apparatus. The molding pressure is in the range of from about 5 〇 pSi to about 5 〇〇〇 pSi, more typically in the range of from 200 psi to about 15 psi. The molding step can take from about & seconds to about 45 minutes. According to the invention, the fabric is heated in a microwave oven rather than by any other transfer, heating first. Microwave heating is a more effective alternative to conventional heating because it effectively produces volumetric heat. Volume heating is defined as the overall heating, as opposed to transferring heat from the surface inward. The microwave causes the internal heating of the material by generating an excitation score 126806.doc -20- 200844291. Any molecule of "polar" and having a = terminal and a negative terminal will rotate back and forth to align with the changing electric field of the waves in the oven. This rotation produces energy in the form of heat. Unlike conventional heating, this effect occurs simultaneously throughout the entire process of the material through the microwave. The microwave is an electromagnetic wave in a frequency band of 300 MHZ (3xl 〇 8 cycles/second) to 300 GHz (3xl〇n weeks)/& These two frequencies correspond to ^(f) and 1 mm wavelengths, respectively. All domestic microwave ovens and laboratory microwave processors operate at 2.45 GHz corresponding to a wavelength of approximately 12.2 cm. Industrial microwaves can operate at "GHz" frequencies and can operate at lower frequencies such as 9 〇〇 MHZ2 or at lower frequencies such as 10 GHz, and typically range from 1 watt to 3 watts. The invention is not limited to any particular microwave frequency. In general, the microwave processing system consists of a microwave source, an applicator that transmits power to the sample, and a system that controls heating. The microwave generator is typically a vacuum tube or solid state device. In microwave ovens, the tubes are rated at 15 kW. These officers require a magnetic field to operate and the magnetic field is provided by permanent magnets or electromagnets. Magnetrons are the most common source of microwaves for material handling applications. In contrast, microwave energy is applied to the material via a multimode or single mode microwave applicator, and temperature control is typically achieved by varying the input power or via a pulse source. The invention contemplates the use of any special microwave, including microwave ovens, industrials sufficient for use at home. Microwave ovens and other unique microwave ovens with or without the unique wavelengths that are uniquely used. Limiting the potential of microwaves for processing materials An important factor in the use is the ability of the material to absorb microwave radiation (essentially high frequency radio waves). Unlike conventional heating, 126806.doc -21 - 200844291, microwaves use penetrating radiation through the material. The specific dielectric properties of the material itself are mosquitoes, such as material ^ dielectric = and dielectric loss tangent.

在大部分材料中,微波功率吸收與材料之水含量成比 例。然而,在處理材料時,不同於食品之微波處理,微波 能量之輕合係針對除水外之原子或原子團。如通常所知, 許多聚合材料不能夠吸收微波輻射。特定言之,雖然適於 形成具有優越抗衝擊穿透性之織物的某些類型高強度纖維 可能能夠吸收微波輻射,但其他不能夠吸收微波輻射。然 而,已發現將微波吸收添加劑與聚合基質組合物摻合或以 其他方式將微波反應性組合物塗覆於材料上,可使另外不 月&夠吸收微波輻射之織物適於用微波輻射處理。如本文所 用,微波反應性組合物”為一種吸收足夠微波輻射以將纖 維或聚合基質組合物分別加熱至至少纖維或聚合基質組合 物之軟化溫度的組合物。 如上所討論’許多聚合材料不能夠吸收微波輻射。舉例 而口’已發現芳族聚醯胺纖維充分吸收微波輻射,但聚乙 烯纖維不能充分吸收微波輻射,以將織物加熱至至少纖維 之軟化溫度或更特定言之,加熱至至少約6〇〇c。特定言 之,已發現Spectra®聚乙烯纖維實質上可透過微波輻射。 耐綸、聚酯及聚萘二甲酸乙二酯纖維亦至少部分吸收微 波。 若織物由可透過微波輻射之纖維形成,則纖維必須至少 部分用充分吸收微波以達到纖維或聚合基質組合物之軟化 126806.doc -22- 200844291 溫度之材料塗佈或與其接觸。舉例而言,諸如微波吸收聚 合基質組合物之微波吸收材料可塗佈於織物表面上。聚入 基質組合物自身可具有微波吸收性,或可藉由與微波反應 性添加劑摻合而具有微波吸收性。微波反應性添加劑將2 收微波能Ϊ且將其傳遞至纖維。極性材料尤其具有微波反 應性,包括極性聚合纖維、極性聚合基質組合物及極性添 加劑。傳導性材料具有微波反應性,諸如傳導性纖維(例 如,碳纖維)及傳導性聚合基質組合物(聚笨胺、聚吼咯 等)。將非微波吸收性纖維類型與一或多種極性聚合物、 傳導性聚合物或微波反應性添加劑組合提供微波能量之良 好麵合。 合適之微波反應性添加劑非排他性地包括金屬顆粒(包 括(但不限於)磁性顆粒)及金屬粉末、介電顆粒及介電粉 末、不溶性微波吸收聚合顆粒及非可分散性微波吸收聚合 顆粒。雖然已知固體金屬反射微波輻射,但粉末金屬更吸 收微波輻射且可受熱。適用之介電及聚合粉末包括使聚合 基質材料在習知微波爐中經加熱達至聚合基質材料之至少 軟化點的介電及聚合粉末。合適材料之非排他性實例描述 於以引用的方式併入本文中之著作Micr〇wave pr〇cessing of Materials III? Ronald L. Beatty, Willard H. Sutton and Magdy F. Iskander編,Materials Research s〇ciety出版,第 269卷(1992年10月)中。亦合適者為美國專利5,349,168及 6,066,375中所述之材料,該等專利之揭示内容以引用的方 式併入本文中。此夠吸收微波場能量之電及磁部分且將該 126806.doc -23- 200844291 能量轉換為熱量之適用微波反應性材料的實例包括金屬粉 末,諸如粉末狀鎳、!弟、銅、鉬、青鋼、鐵、鋼、鉻、 錫、鋅、銀、金、鈷、鎢、鈦、鋁(包括片狀鋁粉)及其合 金。其他適用之添加劑為傳導性材料,諸如碳黑、碳纖 維、金i纖維及金屬、薄片、球或針(尺寸通常在約〇二至⑽ μ^η之範圍内)。此等微波反應性添加劑在與聚合基質組合 物摻合時尤其適用。In most materials, microwave power absorption is proportional to the water content of the material. However, when processing materials, unlike microwave processing of foods, the light energy of microwave energy is directed to atoms or radicals other than water. As is generally known, many polymeric materials are not capable of absorbing microwave radiation. In particular, while certain types of high strength fibers suitable for forming fabrics having superior impact resistance may be capable of absorbing microwave radiation, others are not capable of absorbing microwave radiation. However, it has been found that blending a microwave absorbing additive with a polymeric matrix composition or otherwise applying a microwave reactive composition to the material allows for additional fabrics that are absorbing microwave radiation to be suitable for treatment with microwave radiation. . As used herein, a microwave reactive composition" is a composition that absorbs sufficient microwave radiation to separately heat a fiber or polymeric matrix composition to at least the softening temperature of the fiber or polymeric matrix composition. As discussed above, 'many polymeric materials are not capable of Absorbing microwave radiation. For example, it has been found that aromatic polyamide fibers sufficiently absorb microwave radiation, but polyethylene fibers do not sufficiently absorb microwave radiation to heat the fabric to at least the softening temperature of the fibers or, more specifically, to at least About 6〇〇c. In particular, Spectra® polyethylene fibers have been found to be substantially transparent to microwave radiation. Nylon, polyester and polyethylene naphthalate fibers also absorb at least partially microwaves. When the irradiated fibers are formed, the fibers must be at least partially coated or contacted with a material that sufficiently absorbs the microwaves to achieve a softening of the fibers or polymeric matrix composition at a temperature of 126806.doc -22-200844291. For example, a combination of microwave absorbing polymeric matrices The microwave absorbing material can be applied to the surface of the fabric. The matrix composition itself is condensed. It may have microwave absorbability or may be microwave absorptive by blending with a microwave reactive additive. The microwave reactive additive will converge the microwave energy and transfer it to the fiber. The polar material is especially microwave reactive, including polar Polymeric fibers, polar polymeric matrix compositions, and polar additives. Conductive materials have microwave reactivity, such as conductive fibers (eg, carbon fibers) and conductive polymeric matrix compositions (polystyrene, polypyrrole, etc.). The absorbent fiber type in combination with one or more polar polymers, conductive polymers or microwave reactive additives provides a good face for microwave energy. Suitable microwave reactive additives non-exclusively include metal particles (including but not limited to) magnetic properties Particles and metal powders, dielectric particles and dielectric powders, insoluble microwave absorbing polymeric particles and non-dispersible microwave absorbing polymeric particles. Although solid metals are known to reflect microwave radiation, powdered metals absorb microwave radiation and can be heated. Dielectric and polymeric powders include conventional polymeric matrix materials Dielectric and polymeric powders in a furnace that are heated to at least the softening point of the polymeric matrix material. Non-exclusive examples of suitable materials are described in the literature incorporated herein by reference. Micr〇wave pr〇cessing of Materials III? Ronald L. Beatty, Willard H. Sutton and Magdy F. Iskander, ed., Materials Research s〇ciety, vol. 269 (October 1992). Also suitable are materials described in U.S. Patents 5,349,168 and 6,066,375. The disclosures of these patents are incorporated herein by reference. Examples of suitable microwave reactive materials that are capable of absorbing electrical and magnetic portions of microwave field energy and converting the energy of 126806.doc -23-200844291 into heat include metals Powder, such as powdered nickel,! Brother, copper, molybdenum, cyanum, iron, steel, chromium, tin, zinc, silver, gold, cobalt, tungsten, titanium, aluminum (including flake aluminum powder) and their alloys. Other suitable additives are conductive materials such as carbon black, carbon fiber, gold i fibers and metals, flakes, spheres or needles (typically in the range of about 〇2 to (10) μηη). These microwave reactive additives are especially useful when blended with polymeric matrix compositions.

亦可利用諸如石墨之其他傳導性材料及諸如碳化石夕之半 導體材料及諸如金屬氧化物(若可以顆粒形式使用)之磁性 材料。此等材料非排他性且一般可使用允許在Μ GHz下 之習知微波爐中將聚合基質材料或聚合纖維加熱至基質或 ,截、准之至V孝人化溫度的任何其他添加劑材料。所用該等材 料呈顆粒形式且可為薄片或粉末。該等顆粒之尺寸根據包 括所選特定材料、待產生熱量之量、待塗覆塗料組合物之 方式及其類似因素的多種因素而變。 其他適用之微波反應性添加劑包括諸如鐘錶油之油類以 及甘油、碳化石夕、氮化約及銘_。其他合適之添加劑包 括堵如有機鹽及無機鹽之具有旋轉、擺動或平移運動之高 度自由度的添加劍以万非嫂 .s 非傳¥性添加劑,包括金屬氧化物 及金屬二氧化物,妹t 一味 :—氧化鈦、氧化鈷、氧化鐵、氧化 二氧化纟適之有機鹽包括甦胺酸單納(MSG)、檸 檬酸鉀、碳酸鈣、酒 ^ # 酉石I鉀、曱酸銨、碳酸氫鈉、碳酸猛 以及許多其他有機鹽。合適之無機鹽包括硫酸 •二鈉、^酸亞鐵、硫酸錳、硫酸辞、焦 126806.doc -24- 200844291 亞硫酸鈉及其組合以及許多其他無機鹽。亦合適者為美國 專利4,219,361中所揭示之材料,該專利之揭示内容以引用 的方式併入本文中。此等微波反應性添加劑由2 45 頻 率之微波激發且由於分子摩擦而將微波能轉換為熱能。可 塗覆於織物上或摻合於基質組合物内之其他合適材料進一 步包括聚丙烯酸醋溶液、聚醯胺溶液、聚乙烯甲基醚溶 液、聚醯胺熱熔融黏著劑及基於聚乙烯甲基之熱熔融黏著 劑。亦可適合將織物浸於能夠#至少一部分入射微波能量 轉換為熱量且將熱量傳遞至織物的處理流體中,諸如水、 異丙醇或乙醇。此等材料可藉由此項技術中任何熟知之方 式應用。 ^添加劑之量可視聚合基質類型及添加劑類型而變。通 常,微波反應性添加劑應佔聚合基質組合物之約〇 〇1重量 /〇至、力1 0 · 〇重畺%,更通常為〇 · 〇丨重量%至約3 · 〇重量%且最 通常為聚合基質組合物之G G1重量%至約1()重量%。若熟 習此項技術者確定需要,則可使用較大量。然而,當添加 劑係與基質樹脂摻合時,較大量之添加劑將不駐留於基質 樹脂混合物中且會在混合槽中沈澱。視複合物原材料:溫 =敏感性及實現壓實或反應所需之溫度而定,極限溫度I 複合物達到該溫度之速率可需要調節。各特定組合具有其 自身較佳之添加劑濃度且該濃度可極大地變化。一般而 °在與微波輻射反應及吸收微波輻射方面,金屬比聚人 物、鹽及其他材料有效。因此’通常需要較少量之金屬基 126806.doc 25- 200844291 經受相g i之微波能量的不同物質以不同速率加熱。舉 例而言,不對稱極性分子易於藉由微波能量旋轉且快速加 熱。微波輻身ί肖聚合物輕纟之主要機制係、經由偶極藉由電 场重新疋向。特定言之,具有高濃度強偶極之材料被認為 係微波能量之活性吸收劑且尤其有效。偶極為一種化學排 列,其中正電荷及負電荷彼此保持於固定距離。當材料與 微波輻射之反應進行時,偶極矩類型及濃度改變且發生相 變,從而改變偶極活動性。偶極矩由具有不同吸電子/推 電子性之相鄰基團形成,使得淨電荷或部分電荷定位於一 個原子或基團上,且可視作小的弱條形磁鐵。形成此等偶 極之典型基團包括羥基、胺基、氰酸酯基等。此耦合之效 率視多種因素而定,包括偶極強度、偶極活動性及偶極質 里。小的強偶極似乎最有效耦合微波輻射且液體耦合最強 烈,接下來為橡膠、玻璃狀聚合物及結晶材料。 έ有偶極之水基樹脂以及溶劑基及1 〇〇〇/。固體材料以某 種私度吸收微波輻射。彼等偶極之強度與彼等偶極濃度及 聚合物運動自由度聯合(其允許偶極設法使自身與振盪磁 場對準,引起摩擦及熱量)將決定多少能量將轉換為熱 $。舉例而言,胺基甲酸酯鍵聯(-NH-coo-)為強偶極且聚 胺基甲酸酯樹脂具有高濃度之此等基團。因此,含聚胺基 甲&C酯之基質聚合物極為有效。含有亦為偶極之羧酸基的 夂合物亦較佳。其他較佳聚合物包括聚電解質、離子聚合 物、聚乙烯醇、聚乙烯丁醛、聚矽氧及聚醯胺。 具有較弱偶極或較低偶極濃度之其他適用聚合物非排他 126806.doc -26- 200844291 r生地包括丙烯酸樹脂、乙烯乙酸乙烯酯及乙烯丙烯酸。此 等材料具有某種程度之活性,其中升溫量級係與偶極之強 度及濃度相關。亦合適者為基質聚合物之摻合物,諸如活 性樹脂分散於非活性樹脂中使非活性樹脂經微波能量處理 之兩相基質。Other conductive materials such as graphite and a semiconducting material such as carbon carbide and a magnetic material such as a metal oxide (if used in the form of particles) may also be utilized. Such materials are non-exclusive and generally can be used with any other additive material that allows the polymeric matrix material or polymeric fibers to be heated to a substrate or to a V-human temperature in a conventional microwave oven at Μ GHz. The materials used are in the form of granules and may be flakes or powders. The size of the particles varies depending on a number of factors including the particular material selected, the amount of heat to be produced, the manner in which the coating composition is to be applied, and the like. Other suitable microwave reactive additives include oils such as watch oils and glycerin, carbon carbide, nitriding and ing. Other suitable additives include the addition of a high degree of freedom of rotation, oscillating or translational motion, such as organic salts and inorganic salts, to the addition of non-volatile additives, including metal oxides and metal dioxides. t One flavor: - titanium oxide, cobalt oxide, iron oxide, oxidized cerium oxide, suitable organic salts include sulphate monosodium (MSG), potassium citrate, calcium carbonate, wine ^ # 酉石I potassium, ammonium citrate, Sodium bicarbonate, carbonic acid and many other organic salts. Suitable inorganic salts include sulfuric acid • disodium, ferrous ferrous sulfate, manganese sulfate, sulfuric acid, coke 126806.doc -24- 200844291 sodium sulfite and combinations thereof, and many other inorganic salts. Also suitable is the material disclosed in U.S. Patent No. 4,219,361, the disclosure of which is incorporated herein by reference. These microwave reactive additives are excited by microwaves at a frequency of 2 45 and convert microwave energy into heat due to molecular friction. Other suitable materials that can be applied to the fabric or blended into the matrix composition further include polyacrylic acid vinegar solution, polyamidamine solution, polyvinyl methyl ether solution, polyamidamide hot melt adhesive, and based on polyvinyl methyl The heat melts the adhesive. It may also be suitable to immerse the fabric in a treatment fluid capable of converting at least a portion of the incident microwave energy into heat and transferring the heat to the fabric, such as water, isopropanol or ethanol. Such materials can be applied by any means known in the art. ^ The amount of additive can vary depending on the type of polymeric matrix and the type of additive. Typically, the microwave reactive additive will comprise from about 1 weight per gram of the polymeric matrix composition, a force of 10% by weight, more typically from about 3% by weight to about 3% by weight and most typically It is a G G1 wt% to about 1 () wt% of the polymeric matrix composition. A larger amount can be used if it is determined by those skilled in the art. However, when the additive is blended with the matrix resin, a greater amount of the additive will not reside in the matrix resin mixture and will precipitate in the mixing tank. Depending on the composite raw material: temperature = sensitivity and the temperature required to achieve compaction or reaction, the rate at which the extreme temperature I complex reaches this temperature may need to be adjusted. Each particular combination has its own preferred additive concentration and this concentration can vary greatly. In general, metals are more effective than polymers, salts and other materials in reacting with microwave radiation and absorbing microwave radiation. Thus, a relatively small amount of metal radicals is typically required. 126806.doc 25- 200844291 Different materials that are subjected to the microwave energy of phase g i are heated at different rates. For example, asymmetric polar molecules are susceptible to rotation by microwave energy and rapid heating. The main mechanism of the microwave radiation is the reversal of the electric field through the dipole. In particular, materials having a high concentration of strong dipoles are considered to be active absorbers of microwave energy and are particularly effective. Occasionally, there is a chemical arrangement in which positive and negative charges are kept at a fixed distance from each other. When the reaction of the material with microwave radiation is carried out, the dipole moment type and concentration change and a phase change occurs, thereby changing the dipole activity. The dipole moment is formed by adjacent groups having different electron withdrawing/electron pushing properties such that the net charge or partial charge is positioned on one atom or group and can be regarded as a small weak strip magnet. Typical groups forming such dipoles include hydroxyl groups, amine groups, cyanate groups, and the like. The efficiency of this coupling depends on a number of factors, including dipole intensity, dipole activity, and dipole. The small strong dipole seems to be the most effective coupling of microwave radiation and the liquid coupling is strongest, followed by rubber, glassy polymers and crystalline materials. έ There are dipole water-based resins and solvent bases and 1 〇〇〇/. Solid materials absorb microwave radiation at a certain degree of privacy. The strength of their dipoles combined with their dipole concentration and polymer motion freedom (which allows the dipole to align itself with the oscillating magnetic field, causing friction and heat) will determine how much energy will be converted to heat $. For example, the urethane linkage (-NH-coo-) is a strong dipole and the polyurethane resin has such a high concentration of such groups. Therefore, the matrix polymer containing the polyaminomethyl & C ester is extremely effective. A ruthenium containing a carboxylic acid group which is also a dipolar group is also preferred. Other preferred polymers include polyelectrolytes, ionic polymers, polyvinyl alcohol, polyvinyl butyral, polyoxymethylene, and polyamidamine. Other suitable polymers having a weaker dipole or lower dipole concentration are non-exclusive. 126806.doc -26- 200844291 r The raw material includes acrylic resin, ethylene vinyl acetate and ethylene acrylic acid. These materials have some degree of activity, with the magnitude of the temperature rise being related to the intensity and concentration of the dipole. Also suitable is a blend of matrix polymers, such as a two-phase matrix in which an inert resin is dispersed in an inert resin to subject the non-reactive resin to microwave energy treatment.

U 最有效微波反應性添加劑之選擇一般視待被吸收之微波 能量的頻率、功率及持續時間而定。已知加熱係藉由離子 效應及複合材料之比熱加速。舉例而言,油類為適用材 料此係口為其具有低比熱。許多因素亦促使所需微波反 應性添加劑之量最小。高度活性材料一般需要較低重量或 谷積百分比。協同組合物(複合物之其他成份中一些吸收 自由水、感生偶極等)減少所需活性組份含量。較低目標 處理溫度亦需要較低含量之高度活性組份或較高含量之較 低及收材料。通常,所需微波反應性添加劑之最小量將少 於織物之約10重量%,更佳少於聚合物基質組合物之10重 量%。更佳地,微波反應性添加劑之量為聚合物基質組合 物或織物(若基質不存在)之約1重量%至約6重量%,更佳 約3重量%至約6重量%。若微波反應性添加劑分散於溶劑 中呈混合物形式,則混合物通常包括約70重量%至約8〇重 量%之溶劑。 在本發明之方法中,在微波爐内藉由使織物處於足以藉 此將纖維或可選微波反應性組合物加熱至至少約纖維或可 選微波反應性組合物之軟化溫度的微波能量,將織物加 熱。在微波加熱之前,抗衝擊織物及可選微波反應性組合 126806.doc -27- 200844291 物較佳為完全乾燥且不含揮發性物質。應將材料加熱至一 低於使材料退化或燃燒之溫度的溫度。加熱後立即或在加 熱期間,當該織物具有至少約纖維之軟化溫度或可選微波 反應性組合物(若存在)之軟化溫度的溫度時,將織物模製 或壓實成物品。如本文所用之術語,,其後立即"意謂當由於 微波產生之熱量使得織物仍處於軟化溫度或在軟化溫度以 上時,將織物模製或壓實。據此,當經加熱之織物具有至 少約纖維之軟化溫度或可選微波反應性組合物(若存在)之 軟化溫度的溫度時,將該織物模製為物品。或者,織物可 在兼具加熱及模製能力之單個多功能設備中連續加熱及模 製。雖然預見經加熱之織物視情況自微波傳遞至獨立模製 設備可能導致織物損失一些熱量,但進行此製程以使得當 織物保持足夠微波產生之熱量時開始模製以使織物模製成 任何所需形㈣形式及使織物保持該形狀(若意欲如此)。 最後,使經模製之織物冷卻。 如本文所述,本發明之織物必須經加熱直至其達到適於 模製之溫度。織物之最小模製溫度通常由聚合基質組合物 之軟化溫度點或纖維(若不存在基質組合物)之軟化溫度點 決定。如此項技術中通常已#,塑料之軟化點可藉由 as™ D1525維卡軟化溫度測試方法(ASTM D1525 δ*— Tempemure testing methQd)來量測,該方法涵蓋 測疋當樣品處於指定㈣測試條件時指定針穿透發生所在 之=度。更特定言在此測試方法中,負載有指定物質 之平端針㈣置與賴樣品錢料。㈣品及針許 126806.doc -28· 200844291 之速率加熱,且針穿透至㈣別mm深度所在之溫度記錄 為維卡軟化溫度。 合適之最小模製溫度通常在約6〇它至約18〇t之範圍 内,但視特定纖維類型而改變且可能在此範圍之外。舉例 而言,Spectra⑧聚乙烯纖維在長時間曝露於265卞(129.4。^ 以上之熱後受到影響且在300卞(148.9。(:)下熔融。因此, Spectra®聚乙烯纖維較佳加熱至高於約2〇〇卞(93 3。〇)但低 於約257 F( 125。〇。當藉由對流加熱時,加熱步驟通常再 添加10至30分鐘至織物處理時間且需要預熱對流烘箱。藉 由微波處理織物,此加熱時間實質上減少。曝露於微波能 ϊ之時間應足以將織物充分加熱至所需溫度,而應足夠短 以避免纖維退化。最佳地,織物能夠在微波爐中在三分鐘 内加熱至200°F或更高。 本發明之完成之模製織物包含纖維、可選基質組合物、 可選中間黏接層及可選微波敏感材料之組合。一般而言, 為製造具有足夠抗衝擊性之織物,纖維比例較佳佔織物之 約45重量%至約95重量%,更佳佔織物之約6〇重量%至約 90重量% ’且最佳佔複合物之約65重量。/(>至約85重量%。 如此項技術中通常已知,基質組合物及/或可選黏著劑亦 可包括其他添加劑,諸如填充劑,諸如碳黑或二氧化矽, 可攙入油類,或可藉由硫、過氧化物、金屬氧化物或如此 項技術中熟知之輻射固化系統硫化。 視由本發明之織物形成之物品的所需結構及抗衝擊性質 而定’可控制諸如織物層數目及類型及基質類型的各種參 126806.doc -29- 200844291 數。舉例而口’對於形成用於減少抗衝擊背心變形之低成 本外傷襯車乂佳包括兩個織物層,亦即兩個編織纖維層 或兩個單層經壓實之非編織單向纖維網狀物,各由以 〇。/90。交叉絞合之兩個纖維層形成,在組合之織物之每一 外表面上具有橡膠層。此外,對具有见了 π級或nA級衝擊 防濩程度之抗衝擊面板而言,分別包括14個織物層及1〇個 織物層之織物為較佳。 不官織物之組份纖維是否能夠吸收微波輻射或不管是否 需要微波反應性組合物,本發明之織物均能夠在微波爐中 藉由微波輻射加熱至至少約6(rc之溫度。微波爐可在任何 頻率及任何微波功率設定下運作。最佳地,本發明之織物 旎夠在微波爐中在三分鐘内加熱至2〇〇卞(93 3。〇或更高。 以下非限制性實例用以說明本發明。 實例1-6(比較) 對用Spectra®纖維(1300-丹尼爾,1〇〇〇型)及kraTON® 苯乙稀-異戊二烯-苯乙烯(SIS)聚合基質樹脂(KrAt〇n@ D_ 1161 : 40重量%之所提供之固體,稀釋至16重量%固體含 量’塗覆於織物上)或SANCURE® 12929聚胺基甲酸酯基 貝树月曰(可講自 〇hi〇 Cleveland之 Noveon,Inc·,Lubrizol 公 司之子公司)形成之Spectra shield®(”ss”)非編織物樣品進 行微波加熱試驗。在各狀況下,樣品經製備具有20士2重量 %之樹脂含量且具有非編織交叉絞合之Spectra Shield®材 料(〇。、90。構造)。 將各包括兩個〇。/90。交叉絞合及壓實之層片的十個附體 126806.doc -30- 200844291 試片(2’’χ2Μ)(5·08 cmx5.08 cm)自每一樣品切割,堆疊且曝 露於不同程度之微波能量(使用標準2.45 GHz 1500瓦特家 用微波爐),歷時各種持續時間。量測加熱後織物之溫 度。結果概述於表1A中。U The choice of the most effective microwave reactive additive will generally depend on the frequency, power and duration of the microwave energy to be absorbed. Heating is known to be accelerated by the ion effect and the specific heat of the composite. For example, oils are suitable materials that have a low specific heat. Many factors also contribute to the minimization of the amount of microwave reactive additive required. Highly active materials generally require a lower weight or percentage of the valley. Synergistic compositions (some of the other components of the complex absorb free water, induce dipoles, etc.) reduce the amount of active ingredient required. Lower target treatment temperatures also require lower levels of highly active components or higher levels of lower yield materials. Generally, the minimum amount of microwave reactive additive required will be less than about 10% by weight of the fabric, more preferably less than 10% by weight of the polymer matrix composition. More preferably, the amount of microwave reactive additive is from about 1% to about 6%, more preferably from about 3% to about 6% by weight of the polymer matrix composition or fabric (if the substrate is not present). If the microwave reactive additive is dispersed in a solvent in the form of a mixture, the mixture typically comprises from about 70% by weight to about 8% by weight of solvent. In the method of the present invention, the fabric is placed in a microwave oven by subjecting the fabric to microwave energy sufficient to thereby heat the fiber or optional microwave reactive composition to at least about the softening temperature of the fiber or optional microwave reactive composition. heating. Prior to microwave heating, the impact resistant fabric and optional microwave reactive combination 126806.doc -27- 200844291 are preferably completely dry and free of volatile materials. The material should be heated to a temperature below the temperature at which the material degrades or burns. Immediately after heating or during heating, the fabric is molded or compacted into articles when the fabric has a temperature of at least about the softening temperature of the fibers or the softening temperature of the optional microwave reactive composition (if present). The term as used herein, immediately thereafter, means that the fabric is molded or compacted when the fabric is still at a softening temperature or above a softening temperature due to heat generated by the microwave. Accordingly, the fabric is molded into articles when the heated fabric has a temperature of at least about the softening temperature of the fibers or the softening temperature of the optional microwave reactive composition (if present). Alternatively, the fabric can be continuously heated and molded in a single multi-function device that combines heating and molding capabilities. While it is foreseen that the heated fabric may be transferred from the microwave to the separate molding apparatus as the case may result in some loss of heat from the fabric, the process is performed such that when the fabric retains sufficient heat generated by the microwaves, molding begins to mold the fabric into any desired Form (4) and keep the fabric in shape (if so intended). Finally, the molded fabric is allowed to cool. As described herein, the fabric of the present invention must be heated until it reaches a temperature suitable for molding. The minimum molding temperature of the fabric is typically determined by the softening temperature point of the polymeric matrix composition or the softening temperature point of the fiber (if no matrix composition is present). As is generally the case in the art, the softening point of the plastic can be measured by the ASTM D1525 δ*- Tempemure testing methQd, which covers the measurement when the sample is in the specified (four) test condition. Specify the degree at which the needle penetration occurs. More specifically, in this test method, the flat end needle (4) loaded with the specified substance is placed with the sample material. (4) Product and needle 126806.doc -28· 200844291 The rate is heated, and the needle penetrates to (4) The temperature at which the depth of the mm is recorded is the Vicat softening temperature. A suitable minimum molding temperature is typically in the range of from about 6 Torr to about 18 Torr, but varies depending on the particular fiber type and may be outside of this range. For example, Spectra8 polyethylene fiber is affected after prolonged exposure to 265 卞 (129.4. ^ heat) and melts at 300 卞 (148.9. (:). Therefore, Spectra® polyethylene fiber is preferably heated above About 2 〇〇卞 (93 3. 〇) but less than about 257 F (125. 〇. When heated by convection, the heating step is usually added for another 10 to 30 minutes to the fabric treatment time and requires a preheated convection oven. The heating time is substantially reduced by treating the fabric with microwaves. The time of exposure to microwave energy should be sufficient to sufficiently heat the fabric to the desired temperature, and should be short enough to avoid fiber degradation. Optimally, the fabric can be in a microwave oven at three Heating to 200 °F or higher in minutes. The finished molded fabric of the present invention comprises a combination of fibers, an optional matrix composition, an optional intermediate bonding layer, and an optional microwave sensitive material. Generally, for manufacturing A fabric having sufficient impact resistance, preferably having a fiber ratio of from about 45% by weight to about 95% by weight of the fabric, more preferably from about 6% by weight to about 90% by weight of the fabric, and preferably from about 65 weight percent of the composite. ./( > to about 85% by weight. As is generally known in the art, the matrix composition and/or optional adhesive may also include other additives, such as fillers, such as carbon black or cerium oxide, which can be incorporated into oils. Alternatively, it may be vulcanized by sulfur, a peroxide, a metal oxide or a radiation curing system well known in the art. Depending on the desired structure and impact properties of the article formed from the fabric of the present invention, the number of fabric layers may be controlled. And the type and type of matrix of various types of 126806.doc -29- 200844291. For example, the formation of a low-cost trauma liner for reducing the deformation of the impact resistant vest preferably includes two fabric layers, namely two woven fibers a layer or two single layer compacted non-woven unidirectional fiber webs each formed of two fiber layers of 〇./90. cross-stranded with a rubber layer on each outer surface of the combined fabric In addition, for an impact resistant panel having a degree of impact protection of π or nA grade, a fabric comprising 14 fabric layers and 1 fabric layer respectively is preferred. Whether the component fibers of the non-woven fabric can absorb Microwave radiation or whether or not a microwave reactive composition is required, the fabric of the present invention can be heated in a microwave oven by microwave radiation to a temperature of at least about 6 (rc). The microwave oven can operate at any frequency and any microwave power setting. The fabric of the present invention is heated in a microwave oven to 2 Torr (93 〇 or higher) in three minutes. The following non-limiting examples are illustrative of the invention. Examples 1-6 (Comparative) Spectra® fiber (1300-denier, 1〇〇〇 type) and kraton® styrene-isoprene-styrene (SIS) polymeric matrix resin (KrAt〇n@ D_ 1161 : 40% by weight of solids provided) , diluted to 16% by weight solids content 'applied to fabrics' or SANCURE® 12929 polyurethane urethanes (available from Noveon, Inc., a subsidiary of Lubrizol) Spectra shield® ("ss") non-woven samples were subjected to microwave heating tests. In each case, the sample was prepared to have a resin content of 20 ± 2 wt% and a non-woven cross-stranded Spectra Shield® material (〇, 90. construction). Each will include two 〇. /90. Ten attachments for cross-stranded and compacted layers 126806.doc -30- 200844291 Test strips (2''χ2Μ) (5·08 cmx5.08 cm) were cut from each sample, stacked and exposed to varying degrees The microwave energy (using a standard 2.45 GHz 1500 watt domestic microwave oven) lasts for a variety of durations. The temperature of the heated fabric was measured. The results are summarized in Table 1A.

表1A 實例 (比較) 聚合基質組合物 微波功率(%) 微波時間(min) 最高溫度(°F) 1 Kraton® SIS橡膠 70 1 113(45°〇 2 Kraton® SIS橡膠 70 2 113(45°〇 3 Kraton® SIS橡膠 70 5 113(45°〇 4 Kraton® SIS橡膠 100 1 113(45°〇 5 Kraton® SIS橡膠 100 2 113(45°〇 6 Kraton® SIS橡膠 100 5 113(45°〇 在實例1-6之每一實例中,當在指定條件下經受微波輻 射時,KRATON®聚合基質材料未能達到約113°F之溫度, 遠低於KRATON⑧聚合物之軟化點。因此,單獨KRATON⑧ 聚合物未能充分吸收微波來產生模製Spectra Shield®材料 所需之最低量之熱量。 實例7-10 對用 Spectra® 纖維(1300-丹尼爾,1000 型)及 SANCURE® 12929聚胺基甲酸醋基質樹脂(可購自Ohio Cleveland之 Noveon,Inc·,Lubrizol 公司之子公司)形成之 Spectra Shield⑧(’’SS’’)材料非編織物樣品進行微波加熱試驗。在各 狀況下,樣品經製備具有20士2重量%之樹脂含量且具有非 編織交叉絞合之Spectra Shield®(0。、90°)構造。 將各包括兩個〇°/90°交叉絞合及壓實之層片的十個附體 試片(2Mx2M)(5.08 cmx5.08 cm)自每一樣品切割,堆疊且曝 126806.doc -31 - 200844291 露於不同程度之微波能量(使用標準2.45 GHz 1500瓦特家 用微波爐),歷時各種持續時間。量測加熱後織物之溫 度。結果概述於表1B中。Table 1A Example (Comparative) Polymer Matrix Composition Microwave Power (%) Microwave Time (min) Maximum Temperature (°F) 1 Kraton® SIS Rubber 70 1 113 (45°〇2 Kraton® SIS Rubber 70 2 113 (45°〇) 3 Kraton® SIS rubber 70 5 113 (45°〇4 Kraton® SIS rubber 100 1 113 (45°〇5 Kraton® SIS rubber 100 2 113 (45°〇6 Kraton® SIS rubber 100 5 113 (45°〇 in the example) In each of Examples 1-6, the KRATON® polymeric matrix material failed to reach a temperature of about 113 °F when subjected to microwave radiation under specified conditions, well below the softening point of the KRATON8 polymer. Therefore, KRATON8 polymer alone Failure to adequately absorb microwaves to produce the minimum amount of heat required to mold Spectra Shield® materials. Examples 7-10 For Spectra® Fibers (1300-Daniel, Model 1000) and SANCURE® 12929 Polyurethane Matrix Resin ( Samples of Spectra Shield 8 (''SS'') non-woven fabrics, available from Noveon, Inc., a subsidiary of Lubrizol, Ohio Cleveland, were subjected to microwave heating tests. In each case, the samples were prepared to have a weight of 20 ± 2 % resin Spectra Shield® (0., 90°) construction with non-woven cross-stranding. Ten specimens (2Mx2M) each comprising two 〇°/90° cross-stranded and compacted plies (5.08 cmx5.08 cm) cut from each sample, stacked and exposed to 126806.doc -31 - 200844291 exposed to varying degrees of microwave energy (using a standard 2.45 GHz 1500 watt household microwave oven) for various durations. The temperature of the fabric. The results are summarized in Table 1B.

表1B 實例 聚合基質組合物 微波功率(%) 微波時間(min) 最高溫度(°F) 7 Sancure ⑧ 12929 70 1 175(79.44°〇 8 Sancure® 12929 70 2 213(100.6°〇 9 Sancure® 12929 100 1 213(100.6°C) 10 Sancure® 12929 100 2 213(100.6°〇 以上實例展示Sancure® 12929聚合基質樹脂對Spectra Shield⑧提供微波加熱能力以便預熱。 實例11-16(比較) 類似於實例1_1〇,對用Spectra®纖維(1300-丹尼爾, 1000型)及Good-Rite⑧SB-1168苯乙烯-丁二烯苯乙烯 (SBS)橡膠聚合基質樹脂(可購自Ohio Cleveland之No veon, Inc.)形成之Spectra Shield®非編織物樣品進行微波加熱試 驗。在各狀況下,樣品經製備具有20±2重量%之樹脂含量 且具有非編織交叉絞合之Spectra Shield®(0。、90°)構造。 將各包括兩個0°/90°交叉絞合及壓實之層片的十個附體 試片(2Mx2’’)(5.08 cmx5.08 cm)自每一樣品切割,堆疊且曝 露於不同程度之微波能量(使用標準2.45 GHz 1500瓦特家 用微波爐),歷時各種持續時間。量測加熱後織物之溫 度。結果概述於表2中。 126806.doc •32- 200844291 表2 實例(比較) 聚合基質組合物 微波功率 (%) 微波時間 (min) 最高熔融溫度 (T) 11 Good-Rite® SB-1168 SBS橡膠 70 1 113(45°〇 12 Good-Rite® SB,1168 SBS橡膠 70 2 113(45°〇 13 Good-Rite® SB-1168 SBS橡膠 70 5 113(45°〇 14 Good-Rite® SB-1168 SBS橡膠 100 1 113(45°〇 15 Good-Rite® SB-1168 SBS橡膠 100 2 113(45°〇 16 Good-Rite⑧ SB-1168 SBS橡膠 100 5 113(45°〇 以上實例展示Good-Rite㊣SB-1168 SBS橡膠聚合基質樹 脂未對Spectra Shi eld®提供用於預熱之微波加熱能力。 實例17-32 類似於實例1-16,對用Spectra⑧纖維(1300-丹尼爾, 1 000型)及各種聚合基質聚合物形成之Spectra Shield®非編 織物樣品進行微波加熱試驗。在各狀況下,樣品經製備具 有20士2重量%之樹脂含量且具有非編織交叉絞合之Spectra Shield® 材料(0。、90° 構造)。 所測試之聚合基質聚合物為: 實例17 : Airflex® 4500,經醯胺改質之乙烯-氯乙烯共聚 物,獲自 Air Products and Chemicals, Inc. 〇 實例18 : Permax™ 230,聚胺基曱酸酯樹脂,獲自Noveon, Inc. 〇 實例19 : Hycar⑧26523,丙烯酸樹月旨,獲自Noveon,Inc.。 實例20 : Hycar⑧26-1475,丙烯酸樹脂,獲自Noveon, 126806.doc -33- 200844291Table 1B Example Polymer Matrix Composition Microwave Power (%) Microwave Time (min) Maximum Temperature (°F) 7 Sancure 8 12929 70 1 175 (79.44°〇8 Sancure® 12929 70 2 213 (100.6°〇9 Sancure® 12929 100 1 213 (100.6 ° C) 10 Sancure® 12929 100 2 213 (100.6 ° 〇 The above example shows Sancure® 12929 Polymer Matrix Resin providing microwave heating capability to Spectra Shield 8 for preheating. Examples 11-16 (Comparative) Similar to Example 1_1〇 For the use of Spectra® fiber (1300-Daniel, Model 1000) and Good-Rite 8SB-1168 styrene-butadiene styrene (SBS) rubber polymer matrix resin (available from Ohio Cleveland Noveon, Inc.) Spectra Shield® non-woven samples were subjected to microwave heating tests. In each case, the samples were prepared with a Spectra Shield® (0., 90°) configuration with a resin content of 20 ± 2 wt% and non-woven cross-strand. Ten attached test pieces (2Mx2'') (5.08 cm x 5.08 cm) each comprising two 0°/90° cross-stranded and compacted plies were cut from each sample, stacked and exposed to varying degrees Microwave energy (using standard 2.45 GH z 1500 watts for household microwave ovens, for various durations. The temperature of the heated fabric was measured. The results are summarized in Table 2. 126806.doc • 32- 200844291 Table 2 Examples (Comparative) Polymer Matrix Composition Microwave Power (%) Microwave Time (min) Maximum melting temperature (T) 11 Good-Rite® SB-1168 SBS rubber 70 1 113 (45°〇12 Good-Rite® SB, 1168 SBS rubber 70 2 113 (45°〇13 Good-Rite® SB -1168 SBS rubber 70 5 113 (45°〇14 Good-Rite® SB-1168 SBS rubber 100 1 113 (45°〇15 Good-Rite® SB-1168 SBS rubber 100 2 113 (45°〇16 Good-Rite8 SB -1168 SBS rubber 100 5 113 (45°〇 above shows that Good-Rite SB-1168 SBS rubber polymer matrix resin does not provide Spectra Shi eld® with microwave heating capability for preheating. Examples 17-32 Similar to Examples 1-16, a Microwave heating test was performed on Spectra Shield® non-woven fabric samples formed from Spectra 8 fibers (1300-Daniel, Model 1 000) and various polymeric matrix polymers. In each case, the sample was prepared to have a non-woven cross-stranded Spectra Shield® material (0., 90° configuration) with a resin content of 20 ± 2 wt%. The polymeric matrix polymer tested was: Example 17: Airflex® 4500, a guanamine-modified ethylene-vinyl chloride copolymer available from Air Products and Chemicals, Inc. 〇 Example 18: PermaxTM 230, polyamine hydrazine The ester resin was obtained from Noveon, Inc. 〇 Example 19: Hycar 826523, Acrylic Tree, available from Noveon, Inc. Example 20: Hycar 826-1475, acrylic resin, available from Noveon, 126806.doc -33- 200844291

Inc. 〇 實例 21 : Hycar® 26-1199,丙烯酸樹脂,獲自 Noveon,Inc.。 實例22 : Sancure⑧20023,聚胺基曱酸酯樹脂,獲自 Noveon, Inc. ° 實例23 : Good-Rite SB-1168,經羧基改質之苯乙烯-丁二 稀-苯乙稀共聚物,獲自No veon,Inc.。 實例 24 : Daran® SL112,PVdC聚合物,獲自 W. R. Grace & Co. 〇 實例25 : PermaxTM 803,丙烯酸-PVdC共聚物,獲自 Noveon, Inc. ° 實例26 : Sancure® 777,聚胺基曱酸酉旨樹脂,獲自Noveon, Inc. 〇 實例27 : Sancure® 843,聚胺基甲酸酉旨樹脂,獲自Noveon, Inc. 〇 實例28 : Dispercoll⑧U53,聚胺基甲酸酯樹月旨,獲自 Bayer AG. 〇 實例 29 : Vycar⑧ 460X251,PVC 共聚物,獲自 Noveon, Inc. ° 實例30 : Sancure⑧20025,聚胺基甲酸酯樹脂,獲自 Noveon, Inc. ° 實例 31 ·· Butvar® RS-261,聚乙烯丁醛,獲自 Solutia,Inc.。 實例32 : Sancure⑧2026,聚胺基曱酸酯樹脂,獲自Noveon, Inc· 〇 將各包括兩個〇°/90°交叉絞合及壓實之層片的十個附體 126806.doc -34- 200844291 試片(2’’χ2")(5·08 cmx5.08 cm)自每一樣品切割,堆疊且曝 露於微波能ϊ(使用標準2.45 GHz特家用微波爐,以5〇%功 率),歷時60秒。量測經微波處理!分鐘後之最高織物溫 度,量測在習知烘箱中強行乾燥後在微波中丨分鐘後所達 到之溫度,且評估各樣品在2·45 GHz微波爐以5〇%功率達 到175°F之時間。結果概述於表3中。在第4行,具有短劃 線之列指示未量測在微波中丨分鐘後之最高織物溫度。 對各實例而言,在使樣品經受微波輻射前,將樣品在烘 箱中加熱以移除樹脂分散液中之任何水或其他揮發性組 份。最初將樣品在烘箱中於15(ΓΕΓ(65·56〇下乾燥5天。在 微波測試開始後,一些樣品發出爆裂聲,表明存在殘餘水 或其他揮發物。接著將此等樣品放回烘箱卡於 200 F(93.33 C)下再乾燥5天以完成任何水及/或揮發物之移 除。 對各實例而言,根據以下程序評估對微波輻射之反應。 1·將STYROFOAM™之圓形厚部分置放於1500 瓦特豕用微波爐之圓盤傳動裝置上。此STYr〇f〇AMtm用 以將評估之樣品所產生之任何熱量與陶瓷圓盤傳動板所 產生之任何熱量隔離。 2·將4個所評估之材料之樣品置放於styr〇f〇amtm部分 上。將此等樣品置放於styr〇f〇Am™邊緣12:00、 3:〇〇、6:00及9··00位置處。4個樣品彼此間隔3,,(7.62 cm) 〇 3.接著’使用由iiiinoisij出n〇is T〇〇1 w〇rks Inc.製造的 126806.doc -35- 200844291Inc. 实例 Example 21: Hycar® 26-1199, acrylic, available from Noveon, Inc. Example 22: Sancure 820023, Polyaminophthalate Resin, available from Noveon, Inc. Example 23: Good-Rite SB-1168, carboxy-modified styrene-butadiene-styrene copolymer, obtained from No veon, Inc. Example 24: Daran® SL112, PVdC Polymer, available from WR Grace & Co. 〇 Example 25: PermaxTM 803, Acrylic-PVdC Copolymer, available from Noveon, Inc. Example 26: Sancure® 777, Polyamine Hydrazine Acid Resin, available from Noveon, Inc. 〇 Example 27: Sancure® 843, Polyurethane Resin, available from Noveon, Inc. 〇 Example 28: Dispercoll 8U53, Polyurethane Tree From Bayer AG. 〇 Example 29: Vycar 8 460X251, PVC copolymer available from Noveon, Inc. ° Example 30: Sancure 820025, polyurethane resin, available from Noveon, Inc. Example 31 ·· Butvar® RS- 261, polyvinyl butyral, available from Solutia, Inc. Example 32: Sancure 82026, a polyamine phthalate resin, obtained from Noveon, Inc., will include ten 126806.doc-34- each of two 〇°/90° cross-stranded and compacted plies. 200844291 The test piece (2''χ2") (5·08 cmx5.08 cm) was cut from each sample, stacked and exposed to microwave energy (using a standard 2.45 GHz microwave oven with 5〇% power) for 60 second. Measure the highest fabric temperature after microwave treatment! minutes, measure the temperature reached after simmering in the microwave forcibly dried in a conventional oven, and evaluate each sample to reach 5 〇% power in a 2·45 GHz microwave oven. 175 °F time. The results are summarized in Table 3. In row 4, a column with a short line indicates that the highest fabric temperature after one minute in the microwave has not been measured. For each example, the sample was heated in an oven to remove any water or other volatile components of the resin dispersion prior to subjecting the sample to microwave radiation. The samples were initially dried in an oven at 15 (ΓΕΓ·65·56〇 for 5 days. After the start of the microwave test, some samples gave a popping sound indicating the presence of residual water or other volatiles. Then the samples were returned to the oven card. Dry for another 5 days at 200 F (93.33 C) to complete any removal of water and/or volatiles. For each example, the response to microwave radiation was evaluated according to the following procedure: 1. Round thickness of STYROFOAMTM Partially placed on a 1500 watt microwave oven disc drive. This STYr〇f〇AMtm is used to isolate any heat generated by the evaluated sample from any heat generated by the ceramic disc drive plate. Samples of the materials evaluated were placed on the styr〇f〇amtm section. These samples were placed at the edges of styr〇f〇AmTM at 12:00, 3:〇〇, 6:00 and 9··00 4 samples are spaced apart from each other by 3, (7.62 cm) 〇 3. Then 'use 126806.doc -35- 200844291 manufactured by iiiinoisij, n〇is T〇〇1 w〇rks Inc.

Tempilstik®溫度指示器來評估溫度臨限值。 4.使用兩個具有在目標溫度以下之額定溫度的Tempilstik 蠟筆及兩個具有在目標溫度以上之活化範圍的蠟筆測試 所需溫度範圍。 5 ·使用擦不掉之筆,將四個壓實織物樣品中之每一者用四 個溫度中之一者標記。將自蠟筆之一者刮下之刮屑刮至 具有寫在其表面上之合適溫度的織物樣品上。亦如此處 理其他三個蠟筆及另外三個樣品。 6. 關上微波爐,設定至所需功率水平,設定持續時間且開 始微波加熱。 7. 此後,測定何者蠟熔融至織物樣品表面上。 表3The Tempilstik® temperature indicator is used to evaluate the temperature threshold. 4. Test the required temperature range using two Tempilstik crayons with a nominal temperature below the target temperature and two crayons with an activation range above the target temperature. 5 • Mark each of the four compacted fabric samples with one of four temperatures using an indelible pen. Scrape scraped from one of the crayons is scraped onto a fabric sample having a suitable temperature written on its surface. Also here are the other three crayon and three other samples. 6. Turn off the microwave oven, set to the desired power level, set the duration and start microwave heating. 7. Thereafter, it was determined which wax melted onto the surface of the fabric sample. table 3

實例 聚合基質 組合物 在微波中1分鐘 後加熱至175°F 或175°F以上 在微波中1分 鐘後最高織物 溫度(°F) 在習知烘箱中乾 燥後在微波中所 達到之溫度(°F) 在微波中達 到I75°F之估 算時間(秒) 23 Airflex® 4500 是 175+ 30 24 Permax™ 230 是 175+ 20 25 Hycar® 26523 否 - 125-150 N/A 26 Hycar® 26-1475 否 113 <125 N/A 27 Hycar® 26-1199 是 175+ 175+ 45 28 Sancure® 20023 是 - 175+ 30 29 Good-Rite® SB-1168 否 113 <125 N/A 30 Daran® SL112 是 175+ 175+ 44 31 Permax™ 803 否 - <125 N/A 32 Sancure® 777 是 175+ 175+ 19 126806.doc -36- 200844291 33 Sancure® 843 是 175+ 175+ 30 34 Dispercoll® U53 是 175+ 175+ 25 35 Vycar® 460X251 是 175+ 175+ 40 36 Sancure® 20025 是 - 175+ 27 37 Butvar® RS-261 是 175+ 175+ 45 38 Sancure® 2026 是 - 175+ 5 實例7-3 8中所測試之所有聚合基質樹脂均為水基樹脂分The example polymeric matrix composition is heated in the microwave for 1 minute and heated to 175 °F or above 175 °F. The maximum fabric temperature (°F) after 1 minute in the microwave is the temperature reached in the microwave after drying in a conventional oven (°) F) Estimated time to reach I75°F in the microwave (seconds) 23 Airflex® 4500 is 175+ 30 24 PermaxTM 230 is 175+ 20 25 Hycar® 26523 No - 125-150 N/A 26 Hycar® 26-1475 No 113 <125 N/A 27 Hycar® 26-1199 is 175+ 175+ 45 28 Sancure® 20023 is - 175+ 30 29 Good-Rite® SB-1168 No 113 <125 N/A 30 Daran® SL112 is 175 + 175+ 44 31 PermaxTM 803 No - <125 N/A 32 Sancure® 777 is 175+ 175+ 19 126806.doc -36- 200844291 33 Sancure® 843 is 175+ 175+ 30 34 Dispercoll® U53 is 175+ 175+ 25 35 Vycar® 460X251 is 175+ 175+ 40 36 Sancure® 20025 is - 175+ 27 37 Butvar® RS-261 is 175+ 175+ 45 38 Sancure® 2026 is - 175+ 5 Example 7-3 8 All polymeric matrix resins tested were water based resins

散液。在吸收微波輻射方面,一些成功及另一些不成功。 實例1-6中所測試之Keaton⑧D-1161樹脂為溶劑基樹脂且在 吸收微波輻射方面不成功。然而,期望其他溶劑基樹脂成 功且不期望需要水性聚合基質組合物。 雖然已參考較佳實施例詳細展示及描述本發明,但一般 技術者易於瞭解在不悖離本發明之精神及範疇之情況下可 進行各種改變及修改。意欲認為申請專利範圍涵蓋所揭示 之實施例、上文已討論之彼等替代物及其所有等效物。Loose liquid. Some successes and others have been unsuccessful in absorbing microwave radiation. The Keaton 8D-1161 resin tested in Examples 1-6 was a solvent based resin and was unsuccessful in absorbing microwave radiation. However, other solvent based resins are expected to be successful and aqueous polymeric matrix compositions are not desired. While the invention has been shown and described with reference to the preferred embodiments of the embodiments of the present invention, it will be understood that various changes and modifications may be made without departing from the spirit and scope of the invention. The scope of the patent application is intended to cover the disclosed embodiments, the alternatives discussed above, and all equivalents thereof.

126806.doc 37-126806.doc 37-

Claims (1)

200844291 十、申請專利範圍: 1 · 一種形成物品之方法,其包含: a) 提供包含複數個以陣列排列之纖維之織物,該等纖 維具有約7公克/丹尼爾(g/denier)或更高之韌度及約15〇 公克/丹尼爾或更高之拉伸模數;該等纖維於其上具有可 選微波反應性組合物;及 b) 藉由使該織物在微波爐内經受足以藉此將該等纖維 或5亥可選微波反應性組合物加熱至至少約該等纖維之軟 化温度或該可選微波反應性組合物之軟化溫度的微波能 量,加熱該織物; C) ^由於應用微波能量使該織物具有至少約該等纖維 之軟化溫度或該可選微波反應性組合物之軟化溫度的溫 度時’將經加熱之織物模製成物品;及 d)使該所模製之織物冷卻。 2.如叫求項1之方法,其中該微波反應性組合物係存在 的’且藉由使該織物經受足以藉此將該微波反應性組合 物加熱至至少約其軟化溫度的微波能量來加熱該織物; 且當該織物具有至少約該微波反應性組合物之軟化溫度 .的溫度時,將該經加熱之織物模製成物品。 • 月求項2之方法’其中該微波反應性組合物包含塗佈 於該等纖維上之聚合基質組合物。 士明求項1之方法’其中該織物係被加熱至至少約之 温度° 5·如清求項1之方法,其中該織物包含複數個纖維,其中 126806.doc 200844291 該等纖維中之一或多者能夠吸收足以將該纖維加熱至至 少約60°C之溫度之微波輻射;其中藉由使該織物經受足 以藉此將該等纖維加熱至至少約該等纖維之軟化溫度的 微波能量來加熱該織物;且此後立即在該織物具有至少 約該等纖維之軟化溫度的溫度時,將該經加熱之織物模 製為物品。 6.如請求項1之方法,其中該微波反應性組合物包含含偶 極之聚合物。 7·如巧求項1之方法,其中該微波反應性組合物包含聚胺 基甲酸酯、聚電解質、離子聚合物、聚乙烯醇、聚乙烯 丁盤、聚石夕氧、聚醯胺、丙烯酸樹脂、乙烯乙酸乙烯 酉曰、乙烯丙烯酸或其組合。 月 &gt; 項1之方法,其中該微波反應性組合物包含含有 微波反應性添加劑之聚合物,該微波反應性添加劑能夠 吸收足納媒、士 A J做波輻射以將該纖維加熱至至少約60°C之溫 度。 9 · 如請求項&amp; 、&lt;万法,其中該微波反應性添加劑包含極性 組合物。 1 0 ·如請求項8之 万法,其中該微波反應性添加劑包含有機 鹽、無機商 …、1、金屬粉末、介電粉末、不溶性微波吸收聚 合粉末、 ' $可分散性微波吸收聚合粉末或其組合。 11.如δ青求項1 Λ 万法,其中該複數個纖維包含聚烯烴纖 維、芳族取 、+酿胺纖維、聚苯并吼咯纖維、聚乙烯醇纖 、、隹 t酸胺_雜 紙維、聚對苯二甲酸乙二酯纖維、聚萘二曱 126806.doc 200844291 =二略纖維、聚丙稀腈纖維、液晶共聚酉旨纖維、玻璃 纖、准、碳纖維、剛性棒狀纖維或其組合。 1之方法’其中該織物包含複數個聚乙稀纖 :座:、中該等聚乙稀纖維中之—或多個於其上具有微波 ,應性組合物,其中該微波反應性組合物能夠吸收足夠 微波輻射以將該纖維加熱至至少約60°C之溫度。200844291 X. Patent Application Range: 1 . A method of forming an article comprising: a) providing a fabric comprising a plurality of fibers arranged in an array having a tenacity of about 7 grams per denier or higher. And a tensile modulus of about 15 gram/denier or higher; the fibers having an optional microwave reactive composition thereon; and b) by subjecting the fabric to a microwave oven sufficient to thereby Or heating the fabric by heating the microwave reactive composition to a softening temperature of at least about the softening temperature of the fibers or the softening temperature of the optional microwave reactive composition; C) ^ the fabric is applied by application of microwave energy Forming the heated fabric into an article at a temperature of at least about the softening temperature of the fibers or the softening temperature of the optional microwave reactive composition; and d) cooling the molded fabric. 2. The method of claim 1, wherein the microwave-reactive composition is present and heated by subjecting the fabric to microwave energy sufficient to thereby heat the microwave-reactive composition to at least about its softening temperature. The fabric; and when the fabric has a temperature of at least about the softening temperature of the microwave reactive composition, the heated fabric is molded into an article. • The method of claim 2 wherein the microwave reactive composition comprises a polymeric matrix composition coated on the fibers. The method of claim 1 wherein the fabric is heated to at least about a temperature. The method of claim 1, wherein the fabric comprises a plurality of fibers, wherein 126806.doc 200844291 one of the fibers Many are capable of absorbing microwave radiation sufficient to heat the fibers to a temperature of at least about 60 ° C; wherein the fabric is heated by subjecting the fabric to microwave energy sufficient to thereby heat the fibers to at least about the softening temperatures of the fibers. The fabric; and thereafter thereafter, the heated fabric is molded into an article at a temperature at which the fabric has a softening temperature of at least about the fibers. 6. The method of claim 1, wherein the microwave-reactive composition comprises a dipolar-containing polymer. 7. The method of claim 1, wherein the microwave-reactive composition comprises a polyurethane, a polyelectrolyte, an ionic polymer, a polyvinyl alcohol, a polyvinyl butadiene, a polyoxo, a polyamine, Acrylic resin, ethylene vinyl acetate, ethylene acrylic acid or a combination thereof. The method of item 1, wherein the microwave-reactive composition comprises a polymer comprising a microwave-reactive additive capable of absorbing a foot-bearing medium, AJ wave radiation to heat the fiber to at least about 60 °C temperature. 9. The method of claim &&lt;RTIgt; </ RTI> wherein the microwave reactive additive comprises a polar composition. 1 0. The method of claim 8, wherein the microwave reactive additive comprises an organic salt, an inorganic s..., a metal powder, a dielectric powder, an insoluble microwave absorbing polymer powder, a 'dispersible microwave absorbing polymer powder or Its combination. 11. For example, the δ green item 1 Λ 10,000 method, wherein the plurality of fibers comprise polyolefin fiber, aromatic extract, +-doped amine fiber, polybenzopyrrole fiber, polyvinyl alcohol fiber, 隹t acid amine Paper dimension, polyethylene terephthalate fiber, polynaphthalene fiber 126806.doc 200844291 = bismuth fiber, polyacrylonitrile fiber, liquid crystal copolymer fiber, glass fiber, quasi-carbon fiber, rigid rod fiber or combination. The method of claim 1 wherein the fabric comprises a plurality of polyethylene fibers: a seat: or a medium of the polyethylene fibers, or a plurality of microwave-reactive compositions thereon, wherein the microwave reactive composition is capable of Sufficient microwave radiation is absorbed to heat the fiber to a temperature of at least about 60 °C. 长項1之方法,其中該加熱步驟包含使該織物經受 至少約2.45 GHz頻率之微波能量。 用東員1之方去,其中該加熱步驟包含使該織物經受 至少約10 GHz頻率之微波能量。 15.如明求項丨之方法,其中該模製步驟c)在該加熱步驟b)後 進行。 16·如請求項丨之方法,其中該模製步驟e)接連該加熱步驟μ 進行。 17·種形成壓實纖維網狀物之方法,該壓實纖維網狀物包 S複數個纖維層’各纖維層包含複數個具有約7公克/丹 尼爾或更咼之韌度及約15〇公克/丹尼爾或更高之拉伸模 數的纖維;且該等纖維在其上具有聚合基質組合物;該 疋κ纖維網狀物係在熱及壓力下壓實,其中該壓實熱係 藉由施加足以藉此將該聚合基質組合物加熱至至少約聚 合基質組合物之軟化溫度之溫度的微波能量產生。 18. 如請求項17之方法,其中如ASTM D1525所量測般,聚 合基質組合物之該軟化溫度為至少約6〇。〇。 19. 如請求項17之方法,其中該壓實纖維網狀物包含複數個 126806.doc 200844291 交叉絞合之非編織纖維層,各纖維層包含複數個以實質 上平行陣列排列之纖維。 20· —種抗衝擊物品,其包含抗衝擊織物,該抗衝擊織物包 含複數個以陣列排列之纖維,該等纖維具有約7公克/丹 尼爾或更高之韌度及約150公克/丹尼爾或更高之拉伸模 數,該等纖維具有塗佈於其上之乾微波反應性組合物, 該微波反應性組合物已藉由施加微波能量加熱至其軟化 點溫度以上。 21·如請求項20之抗衝擊物品’其已藉由施加微波能量被加 熱至其軟化點溫度以上,且在由於施加微波能量而處於 =該等纖維之軟化溫度或該可選微波反應性組合物 之軟化溫度的溫度下之同時’將其 22· 一種物品,其係藉由如請求項!之方法製造。 126806.doc 200844291 七、指定代表圖: (一) 本案指定代表圖為:(無) (二) 本代表圖之元件符號簡單說明: 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無) 126806.docThe method of item 1, wherein the heating step comprises subjecting the fabric to microwave energy at a frequency of at least about 2.45 GHz. The use of East member 1 is wherein the heating step involves subjecting the fabric to microwave energy at a frequency of at least about 10 GHz. 15. The method of claim </ RTI> wherein the molding step c) is performed after the heating step b). 16. The method of claim 1, wherein the molding step e) is performed in succession of the heating step μ. 17. A method of forming a compacted fibrous web comprising a plurality of fibrous layers - each fibrous layer comprising a plurality of tenacities having a basis weight of about 7 grams per denier or more and about 15 inches / Daniel or higher tensile modulus fibers; and the fibers have a polymeric matrix composition thereon; the 疋κ fiber network is compacted under heat and pressure, wherein the compaction heat is Microwave energy is generated sufficient to thereby heat the polymeric matrix composition to a temperature of at least about the softening temperature of the polymeric matrix composition. 18. The method of claim 17, wherein the softening temperature of the polymeric matrix composition is at least about 6 Torr as measured by ASTM D1525. Hey. 19. The method of claim 17, wherein the compacted fibrous web comprises a plurality of 126806.doc 200844291 cross-stranded nonwoven layers, each fibrous layer comprising a plurality of fibers arranged in a substantially parallel array. 20. An impact resistant article comprising an impact resistant fabric comprising a plurality of fibers arranged in an array having a tenacity of about 7 grams per denier or greater and about 150 grams per denier or higher. The tensile modulus of the fibers has a dry microwave reactive composition applied thereto that has been heated to above its softening point temperature by the application of microwave energy. 21. The impact resistant article of claim 20, which has been heated above its softening point temperature by application of microwave energy, and at or below the softening temperature of the fibers due to the application of microwave energy or the optional microwave reactive combination At the same time as the temperature at which the softening temperature of the article is reached, 'an article 22' is produced by the method of claim. 126806.doc 200844291 VII. Designated representative map: (1) The representative representative of the case is: (none) (2) The symbol of the symbol of the representative figure is simple: 8. If there is a chemical formula in this case, please reveal the best indication of the characteristics of the invention. Chemical formula: (none) 126806.doc
TW096143086A 2006-11-15 2007-11-14 Microwave processing of ballistic composites TW200844291A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US59982606A 2006-11-15 2006-11-15

Publications (1)

Publication Number Publication Date
TW200844291A true TW200844291A (en) 2008-11-16

Family

ID=40002801

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096143086A TW200844291A (en) 2006-11-15 2007-11-14 Microwave processing of ballistic composites

Country Status (8)

Country Link
EP (1) EP2089203A2 (en)
JP (1) JP2010525960A (en)
CN (1) CN101594973A (en)
CA (1) CA2669761A1 (en)
IL (1) IL198620A0 (en)
MX (1) MX2009005091A (en)
TW (1) TW200844291A (en)
WO (1) WO2008140567A2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8256019B2 (en) * 2007-08-01 2012-09-04 Honeywell International Inc. Composite ballistic fabric structures for hard armor applications
WO2011156577A1 (en) * 2010-06-11 2011-12-15 E. I. Du Pont De Nemours And Company Enhanced flexible lightweight ballistic, stab and spike resistant materials
EP2665985B1 (en) * 2011-01-18 2015-03-18 Teijin Aramid B.V. Ballistic resistant article comprising a styrene butadiene resin and process to manufacture said article
EP2802443A2 (en) * 2012-01-13 2014-11-19 Johnson Controls Technology Company Systems and methods for manufacturing foam parts
AU2014218035B2 (en) * 2013-02-14 2017-03-23 Teijin Aramid Gmbh Hard-ballistic article and process to manufacture said article
ITUA20164146A1 (en) * 2016-06-07 2017-12-07 Aseo SKI MANUFACTURING PROCEDURE, AND TYPICAL TOOLS FOR SLIDING ON THE SNOW, WITH THERMOFORMABLE MATERIALS WITH CARBON FIBER-BASED STRUCTURES, AND THERMOFORMING MOLDS OF SUCH PRODUCTS, AS WELL AS SKI AND SLIP TOOLS ON THE SNOW SO OBTAINED
KR102012753B1 (en) 2017-03-29 2019-08-21 주식회사 엘지화학 Precusor fiber for preparing carbon fiber, preparation method for producing the same and preparation method of carbon fiber
CN110831733B (en) 2017-06-27 2022-04-12 皇家飞利浦有限公司 Induction heated mold for personal use
KR102192363B1 (en) 2017-10-23 2020-12-17 주식회사 엘지화학 Optical film, and method of manufacturing an organic light emitting electronic device using the optical film
WO2019083255A2 (en) 2017-10-23 2019-05-02 주식회사 엘지화학 Optical film, optical film preparation method and organic light-emitting electronic device preparation method
US11502272B2 (en) 2017-10-23 2022-11-15 Lg Chem, Ltd. Optical film having antistatic layers, optical film preparation method and organic light-emitting electronic device preparation method
KR102192357B1 (en) 2017-10-23 2020-12-17 주식회사 엘지화학 Optical film, and method of manufacturing an organic light emitting electronic device using the optical film
KR102147418B1 (en) 2018-04-27 2020-08-24 주식회사 엘지화학 Stabilization method of precusor fiber for preparing carbon fiber and preparation method of carbon fiber using the same
KR102115655B1 (en) * 2018-05-25 2020-06-05 (재)한국건설생활환경시험연구원 Multilayer build sheet for 3D printers
US11666199B2 (en) 2018-12-12 2023-06-06 Owens Corning Intellectual Capital, Llc Appliance with cellulose-based insulator
US11207863B2 (en) 2018-12-12 2021-12-28 Owens Corning Intellectual Capital, Llc Acoustic insulator
KR102618963B1 (en) 2019-06-07 2023-12-29 주식회사 엘지화학 Carbon fiber manufacturing equipment
CN113400501A (en) * 2021-06-23 2021-09-17 周新宇 High-molecular kitchen and bathroom plate and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001300A (en) * 1989-12-06 1999-12-14 C.A. Lawton Company Method for making rigid three-dimensional preforms using directed electromagnetic energy
US5173138A (en) * 1990-08-08 1992-12-22 Blauch Denise A Method and apparatus for the continuous production of cross-plied material
US5354605A (en) * 1993-04-02 1994-10-11 Alliedsignal Inc. Soft armor composite
WO2006005983A2 (en) * 2003-11-26 2006-01-19 Hardin Montgomery G B Material for providing impact protection
EP1773580A2 (en) * 2004-05-28 2007-04-18 Addison Closson Adhesive Textiles, Inc. Method of forming adhesives mixtures and ballistic composites utilizing the same

Also Published As

Publication number Publication date
MX2009005091A (en) 2009-06-03
JP2010525960A (en) 2010-07-29
WO2008140567A3 (en) 2009-03-12
CN101594973A (en) 2009-12-02
CA2669761A1 (en) 2008-11-20
IL198620A0 (en) 2010-02-17
EP2089203A2 (en) 2009-08-19
WO2008140567A2 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
TW200844291A (en) Microwave processing of ballistic composites
JP6567623B2 (en) Polymer fiber with improved ballistic performance
TWI359935B (en) Frag shield
TWI414430B (en) Method to create an environmentally resistant soft armor composite
US5330820A (en) Ballistic resistant composition article having improved matrix system
EP1501673B1 (en) Ballistic fibre laminates
TWI401038B (en) Protective helmets
KR101569803B1 (en) Environmentally Resistant Ballistic Composite Based on a Nitrile Rubber Binder
JPH0659702B2 (en) Complex composite products with improved impact resistance
WO1989006190A1 (en) Ballistic-resistant composite article
JP2009518618A (en) Flame retardant shield
TW200902318A (en) Inhibition of water penetration into ballistic materials
JP2008504142A (en) Method for producing adhesive mixture and impact composite material using the mixture
KR20100101662A (en) Helmets for protection against rifle bullets
AU2002348787A1 (en) Laminated ballistic structure comprising alternating unidirectional and thermoplastic layers
EP1399703A1 (en) Laminated ballistic structure comprising alternating unidirectional and thermoplastic layers
EP2956737B1 (en) Hard-ballistic article and process to manufacture said article
JPH05501683A (en) Ceramic protective sheathing reinforced with high-strength fibers and cut-resistant articles made from the protective sheathing
US8132494B1 (en) Ballistic resistant composite article having improved matrix system
JP2008525243A (en) Moisture-resistant PBO fiber, article thereof and method for producing the same
US20230058501A1 (en) Ballistic-resistant composite with maleic anhydride-grafted polypropylene
CA2030137C (en) Ballistic resistant composite article having improved matrix system
JP2019515241A (en) Lightweight coated cloth as a trauma reducing body armor