TW200843188A - Liquid fuel for fuel cell, fuel cartridge for fuel cell, and fuel cell - Google Patents

Liquid fuel for fuel cell, fuel cartridge for fuel cell, and fuel cell Download PDF

Info

Publication number
TW200843188A
TW200843188A TW096148768A TW96148768A TW200843188A TW 200843188 A TW200843188 A TW 200843188A TW 096148768 A TW096148768 A TW 096148768A TW 96148768 A TW96148768 A TW 96148768A TW 200843188 A TW200843188 A TW 200843188A
Authority
TW
Taiwan
Prior art keywords
fuel
fuel cell
liquid
ppm
electrode assembly
Prior art date
Application number
TW096148768A
Other languages
Chinese (zh)
Inventor
Yumiko Takizawa
Original Assignee
Toshiba Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Kk filed Critical Toshiba Kk
Publication of TW200843188A publication Critical patent/TW200843188A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

Disclosed is a liquid fuel for fuel cells, which enables to improve long-term stability of power generation of a fuel cell. Also disclosed are a fuel cartridge for fuel cells, and a fuel cell wherein long-term stability of power generation is improved. Specifically disclosed is a fuel cell comprising a membrane electrode assembly (2) including a fuel electrode, an oxidant electrode and an electrolyte membrane arranged between the fuel electrode and the oxidant electrode, and a fuel storing means for storing a liquid fuel containing at least one substance selected from methanol, ethanol, dimethyl ether and formic acid. This fuel cell is characterized in that at least one of the fuel storing means and the membrane electrode assembly (2) contains at least one substance selected from methanol, ethanol, dimethyl ether and formic acid, and not less than 10 ppb but not more than 1 ppm of a metal cation.

Description

200843188 九、發明說明 【發明所屬之技術領域】 本發明係爲有關燃料電池用液體燃料,燃料電池用燃 料卡匣及燃料電池的構成。 【先前技術】 近年,PC電腦,行動電話等之各種電子機器係隨著 半導體技術的發達同時而被作爲小型化,並嘗試將燃料電 池’使用在此等小型機器用的電源,而燃料電池係因可僅 由供給燃料與氧化劑而進行發電,並具有只交換燃料,進 行連接而可發電之利點,故如可小型化可說是對於攜帶電 子機器之作動極爲有利之系統,特別是直接甲醇型燃料電 池(DMFC: Direct Methanol Fuel Cell)係使用會g 量密度高 之甲醇於燃料,可從甲醇’在電極觸媒上直接取出電流, 並亦無須改質器,因此,直接甲醇型燃料電池係可小型化 ,更加地,在直接甲醇型燃料電池之中,從燃料的處理亦 比氫氣燃料而容易,可望作爲小型機器用電源,因而,直 接甲醇型燃料電池係對於行動電話,攜帶播放器,行動遊 戲機,筆記型電腦等之電池式攜帶機器,作爲最佳的電源 而期待其實用化。 作爲DMFC之燃料的供給方法,係知道有將液體燃料 氣化之後,由風箱等送入於燃料電池內之氣體供給型 DMFC,和直接由閥等送入液體燃料於燃料電池內之液體 供結型D M F C ’更加地’在燃料電池內氣化液體燃料而使 200843188 用之內部氣化型DMFC等,其中,在內部氣化型dMFC中 ’從無須設置爲了進行燃料供給之閥或風箱等之大規模的 裝備情況’如可加濃燃料濃度而達成液體燃料儲藏部之小 型化’則可實現高能量密度之小型燃料電池。 但’對於日本特開20 04_31 1 163號公報,係記載有經 由將燃料電池之電極的觸媒層中之鹼性金屬成分濃度,作 爲2 0 0PPm以下之情況,抑制觸媒電極接合體的電壓劣化 之情況。 【發明內容】 本發明之目的係提供可改善燃料電池之發電的長期安 定性情況之燃料電池用液體燃料及燃料電池用燃料卡匣, 更加地可改善燃料電池之發電的長期安定性情況之燃料電 有關本發明之燃料電池用液體燃料係其特徵乃含有由 甲醇’乙醇’二甲醚及犠酸而成的群所選擇之至少1種類 ’與金屬之陽離子作爲lOppb以上,lppm以下者。 有關本發明之燃料電池用燃料卡匣係屬於具備燃料收 容容器,和收容於前述燃料收容容器之液體燃料的燃料電 池用燃料卡匣, 其特徵乃前述液體燃料係含有由甲醇,乙醇,二甲醚 及犠酸而成的群所選擇之至少1種類,與金屬之陽離子作 爲lOppb以上,lppm以下者。 有關本發明之燃料電池係屬與具備含有燃料極,與氧 -5- 200843188 化劑極’與配置於如述燃料極及前述氧化劑極之間的電解 質膜之膜電極接合體, 和儲藏含有由甲醇,乙醇,二甲醚及蟻酸而成的群所 ®擇之至少1種類之液體燃料的燃料儲藏手段之燃料電池 其特徵乃於前述燃料儲藏手段及前述膜電極接合體之 中之至少1種,含有由甲醇,乙醇,二甲醚及蟻酸而成的 群所選擇之至少1種類,與金屬之陽離子作爲10ppb以上 ,1 p p m以下者。 更加地’有關本發明之燃料電池係其特徵乃在前述燃 料電池,對於前述燃料儲藏手段及前述膜電極接合體之間 ’係具有爲了供給前述液體燃料於前述燃料極之燃料供給 手段者。 更加地,有關本發明之燃料電池係其特徵乃對於前述 燃料極含有燃料極觸媒層及燃料極氣體擴散層,而前述氧 化劑極含有氧化劑極觸媒層及氧化劑極氣體擴散層,且於 前述膜電極接合體,含有lOppb以上,lOOOppm以下金屬 之陽離子之情況,由前述燃料極觸媒層,前述燃料極氣體 擴散層,前述氧化劑極觸媒層,前述氧化劑極氣體擴散層 及前述電解質膜而成的群所選擇之至少一種,含有l〇Ppb 以上,lOOOppm以下金屬之陽離子者。 更加地,有關本發明之燃料電池係其特徵乃於前述燃 料儲藏手段及前述膜電極接合體’含有10PPb以上, lOOOppm以下金屬之陽離子者。 200843188 另外,更加地,有關本發明之燃料電池係其特徵乃於 前述燃料儲藏手段,前述燃料供給手段及前述膜電極接合 體’含有lOppb以上,i〇〇〇ppm以下金屬之陽離子者。 【實施方式】 [爲了實施發明之最佳型態] 首先,關於燃料卡匣,進行說明。 作爲燃料卡匣係可舉出具有液體燃料收容容器,和設 置於前述容器之液體燃料出口部之構成者,而燃料卡匣係 可爲與燃料電池拆裝自在之構成,亦可爲維安置型,可補 充燃料的構成。 作爲形成液體燃料收容容器之高分子材料,例如可舉 出低密度聚乙烯(LDPE),直鏈低密度聚乙烯(LLDPE),變 性聚乙烯,聚丙烯(PPE),聚醯胺(PA),聚對苯二甲酸乙 二醇酯(PET)等。 燃料液體係由甲醇,乙醇,二甲醚及蟻酸而成的群所 選擇之至少1種類之有機燃料,而燃料液體係亦可爲實質 上由上述有機燃料所構成,或有機燃料之水溶液,例如, 作爲有機燃料而選擇甲醇之情況,甲醇水溶液之濃度係期 望爲作爲超過50摩爾%,而更期望之範圍係超過50摩爾 %之濃度,最期望的情況係爲使用醇甲醇,由此,可謀求 液體燃料收容容器之小型化的同時,可提升能量密度者, ,純甲醇的濃度係期望作爲95重量%以上100重量%以下 200843188 液體燃料係含有lOppb以上,lOOOppm以下金屬之陽 離子’然而,含於液體燃料中之金屬陽離子之種類爲2種 類的情況,使用合計各金屬陽離子濃度者。 作爲成爲對象之金屬,例如可舉出從Al,Ba,Ca, Co,Cr,Cu,Fe,K,Mg,Μη,Na,Zn,Sr 及 Ni 等所選 擇之1種以上,特別是經由作爲從 Al,Ca,Cr,Cu,Ni ’ Fe及Zn所選擇之至少l種類之情況,可針對在長期安 定性的改善得到充分的效果者。 說明將金屬陽離子的濃度作爲前述範圍之理由。 當提升液體燃料之有機燃料濃度時,收容液體燃料之 燃料卡匣或含於將液體燃料作爲燃料而使用之燃料電池的 聚合物構件材料,例如,從構成燃料卡匣之聚合物,金屬 陽離子則容易溶出於液體燃料,而其金屬陽離子係爲源自 在合成聚合物時使用之觸媒的不可避不純物,本發明者們 係當於液體燃料,預先使金屬陽離子作爲存在有1 Oppb以 上時,發現控制了從收容其液體燃料之燃料卡匣,或燃料 電池主體對於液體燃料之金屬陽離子的溶出情況,究明經 由將金屬之陽離子作爲lOppb以上,lppm以下之情況而 提升長期安定性,然而,將金屬之陽離子作爲1 ppm以下 之情況係當超過lppm時,經由儲存於膜電極接合體 (Μ E A)之金屬陽離子,阻抗則上升,因對於電極之氣體擴 散層產生堵塞’而無法改善長期安定性,更加地,理想的 範圍係爲lOppb以上,lppm以下。 於以下說明金屬陽離子濃度之測定方法,將從燃料卡 -8 - 200843188 匣等採取之液體燃料,直接稀釋,或稀釋爲適當的濃度之 後,以ICP_OES(誘導結合電漿發光分光分析裝置)或lcp_ OES(誘導結合電漿質量分析裝置),測定燃料中的金屬陽 離子濃度,對於ICP發光分光分析裝置,係可使用 THERMO ELECTRO公司製之IRIS Ad vantage或可作爲其 之替代品而使用之裝置,另外,對於ICP質量分析裝置, 係可使用SII Nano Technology公司製之SPQ9000或可作 爲其之替代品而使用之裝置。 將ICP-OES之測定條件,表示於表1,將將ICP-MS 之測定條件,表示於表2 表l(ICP-OES測定條件) RF power(RF 電力) 1 . 1 5kW Auxiliary gas(補助氣體) 低 Nebulizer gas(噴霧氣體) 28 PIS Nebulizer flow rate(噴霧流量) 1 . 85mLl/min 表2(ICP-MS測定條件) RF power(RF 電力) 1 .1 OkW Nebulizer gas(噴霧氣體) 0.9 6 L / m i n Auxiliary gas(補助氣體) 1.0 0 L / m i n Plasma gas(電槳氣體) 1 6.0 L / m i n Sampling depth(樣品深度) 13.0mm Chamber gas(腔室氣體) 0.1 5 L / m i n[Technical Field] The present invention relates to a liquid fuel for a fuel cell, a fuel cartridge for a fuel cell, and a fuel cell. [Prior Art] In recent years, various electronic devices such as PCs and mobile phones have been miniaturized with the development of semiconductor technology, and attempts have been made to use fuel cells for power sources such as small-sized devices. Since it is possible to generate electricity only by supplying fuel and an oxidant, and to exchange fuel only, and to connect and generate electricity, it is possible to reduce the size of the system, and it is extremely advantageous to carry out the operation of the electronic device, especially direct methanol. DMFC: Direct Methanol Fuel Cell uses methanol with a high density and a high density. It can take current directly from the methanol 'on the electrode catalyst and does not need a reformer. Therefore, the direct methanol fuel cell In addition, in the direct methanol fuel cell, the treatment from the fuel is easier than the hydrogen fuel, and it is expected to be used as a power source for small machines. Therefore, the direct methanol fuel cell system is portable for mobile phones. Battery-operated devices such as mobile games, mobile phones, and notebook computers are expected as the best power source. Use of them. As a method of supplying the fuel of the DMFC, there is known a gas supply type DMFC that is supplied to the fuel cell by a bellows or the like after vaporizing the liquid fuel, and a liquid supply for directly feeding the liquid fuel into the fuel cell by a valve or the like. The junction type DMFC 'further' vaporizes the liquid fuel in the fuel cell and uses the internal gasification type DMFC for 200843188, among which, in the internal gasification type dMFC, there is no need to set a valve or a bellows for fuel supply. A large-scale equipment situation, such as miniaturization of the liquid fuel storage portion, such as enriched fuel concentration, enables a small fuel cell of high energy density. In the case of the concentration of the alkali metal component in the catalyst layer of the electrode of the fuel cell, the voltage of the catalyst electrode assembly is suppressed by the case where the concentration of the basic metal component in the catalyst layer of the electrode of the fuel cell is 200 ppm or less. Deterioration. SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel cartridge for a fuel cell and a fuel cartridge for a fuel cell which can improve the long-term stability of power generation of a fuel cell, and can further improve fuel for long-term stability of power generation of a fuel cell. The liquid fuel for a fuel cell according to the present invention is characterized in that at least one type selected from the group consisting of methanol 'ethanol' dimethyl ether and decanoic acid and a metal cation are 10 ppb or more and 1 ppm or less. A fuel cartridge for a fuel cell according to the present invention is a fuel cartridge for a fuel cell including a fuel storage container and a liquid fuel contained in the fuel storage container, wherein the liquid fuel contains methanol, ethanol, and dimethyl carbonate. At least one type selected from the group consisting of ether and citric acid, and the cation of the metal is not more than 10 ppb and not more than 1 ppm. A fuel cell according to the present invention is a membrane electrode assembly comprising an electrolyte membrane including a fuel electrode, an oxygen-carbonatorium, and an electrolyte membrane disposed between the fuel electrode and the oxidant electrode, and a storage containing A fuel cell of a fuel storage device of at least one type of liquid fuel selected from the group consisting of methanol, ethanol, dimethyl ether and formic acid is characterized in that at least one of the fuel storage means and the membrane electrode assembly It contains at least one type selected from the group consisting of methanol, ethanol, dimethyl ether and formic acid, and the cation of the metal is 10 ppb or more and 1 ppm or less. Further, the fuel cell according to the present invention is characterized in that, in the fuel cell, a fuel supply means for supplying the liquid fuel to the fuel electrode is provided between the fuel storage means and the membrane electrode assembly. Further, a fuel cell according to the present invention is characterized in that the fuel electrode includes a fuel electrode catalyst layer and a fuel electrode gas diffusion layer, and the oxidant electrode includes an oxidant electrode catalyst layer and an oxidant gas diffusion layer, and The membrane electrode assembly includes a cation of a metal of 10 ppb or more and 1000 ppm or less, and the fuel electrode catalyst layer, the fuel electrode gas diffusion layer, the oxidant electrode catalyst layer, the oxidant gas diffusion layer, and the electrolyte membrane. At least one selected from the group consisting of a cation having a metal of 1 〇Ppb or more and 1000 ppm or less. Further, the fuel cell according to the present invention is characterized in that the fuel storage means and the membrane electrode assembly '1 contain a metal cation of 10 ppm or more and 1000 ppm or less. Further, the fuel cell according to the present invention is characterized in that the fuel supply means and the membrane electrode assembly '1' contain 10 ppb or more and i 〇〇〇 ppm or less of a metal cation. [Embodiment] [In order to implement the best mode of the invention] First, a description will be given of a fuel cartridge. The fuel cartridge may be a liquid fuel storage container and a liquid fuel outlet portion provided in the container, and the fuel cartridge may be configured to be detachable from the fuel cell, or may be a dimensionally disposed type. , can supplement the composition of the fuel. Examples of the polymer material forming the liquid fuel storage container include low density polyethylene (LDPE), linear low density polyethylene (LLDPE), denatured polyethylene, polypropylene (PPE), and polydecylamine (PA). Polyethylene terephthalate (PET) and the like. The fuel liquid system is at least one type of organic fuel selected from the group consisting of methanol, ethanol, dimethyl ether and formic acid, and the fuel liquid system may be substantially composed of the above organic fuel or an aqueous solution of an organic fuel, for example In the case where methanol is selected as the organic fuel, the concentration of the aqueous methanol solution is desirably more than 50% by mole, and more desirably, the concentration is more than 50% by mole, and most desirably, alcohol methanol is used, whereby In order to reduce the size of the liquid fuel storage container and increase the energy density, the concentration of pure methanol is desirably 95% by weight or more and 100% by weight or less. 200843188 Liquid fuel contains cations of 10 ppb or more and 1000 ppm or less of metal. However, When the type of metal cation in the liquid fuel is two types, the total concentration of each metal cation is used. The metal to be used is, for example, one or more selected from the group consisting of Al, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Μη, Na, Zn, Sr and Ni, and the like. When at least one type selected from Al, Ca, Cr, Cu, Ni 'Fe and Zn is used, it is possible to obtain a sufficient effect for improvement in long-term stability. The reason why the concentration of the metal cation is used as the above range will be described. When the concentration of the organic fuel of the liquid fuel is raised, the fuel cartridge containing the liquid fuel or the polymer member material of the fuel cell used for using the liquid fuel as a fuel, for example, from the polymer constituting the fuel cartridge, the metal cation It is easy to dissolve in liquid fuel, and its metal cation is an unavoidable impurity derived from a catalyst used in synthesizing a polymer. The present inventors discovered that when a metal cation is present in a liquid fuel as a presence of 1 Oppb or more, it is found. Controlling the elution of the fuel enthalpy from the liquid fuel contained in the liquid fuel or the metal cation of the fuel cell body, and improving the long-term stability by using the cation of the metal as 10 ppb or more and 1 ppm or less, however, the metal is improved. When the cation is 1 ppm or less, when it exceeds 1 ppm, the metal cation stored in the membrane electrode assembly (ΜEA) increases in impedance, and the gas diffusion layer of the electrode is clogged, and the long-term stability cannot be improved. More preferably, the ideal range is lOppb or more and 1 ppm or less. The method for measuring the concentration of the metal cation will be described below, and the liquid fuel taken from the fuel card -8 - 200843188 直接 or the like is directly diluted or diluted to an appropriate concentration, and then ICP_OES (induced combined plasma luminescence spectroscopic analyzer) or lcp_ OES (Induction Combined Plasma Mass Analysis Apparatus), the concentration of metal cations in the fuel is measured, and for the ICP emission spectroscopic analyzer, IRIS Ad vantage manufactured by THERMO ELECTRO Co., Ltd. or a device which can be used as a substitute thereof can be used, and For the ICP mass spectrometer, SPQ9000 manufactured by SII Nano Technology Co., Ltd. or a device usable as a substitute thereof can be used. The measurement conditions of ICP-OES are shown in Table 1, and the measurement conditions of ICP-MS are shown in Table 2 Table 1 (ICP-OES measurement conditions) RF power (1.5 kW Auxiliary gas) Low Nebulizer gas 28 PIS Nebulizer flow rate 1. 85mLl/min Table 2 (ICP-MS measurement conditions) RF power 1 .1 OkW Nebulizer gas 0.9 6 L / min Auxiliary gas 1.0 0 L / min Plasma gas 1 6.0 L / min Sampling depth 13.0 mm Chamber gas 0.1 5 L / min

上述液體燃料及收容液體燃料之燃料卡匣係例如爲適 -9- 200843188 合於使用於內部氣化型之燃料電池情況之構成,於圖1表 示內部氣化型燃料電池之一實施型態,而圖1係爲表示有 關本發明之一實施型態之直接甲醇型的燃料電池的模式圖 〇 ffl 之燃料電池丨係具備作爲主要由成爲起電部 燃料電;'池單元2與燃料儲藏部3所構成之燃料電池主體 4 ’和供給 '液體燃料於燃料儲藏部3之外部注入室之燃料 卡Ε 5 ’對於燃料儲藏部3之下面側,係設置有具有成爲 液體燃料之供給口的插座部6之燃料供給部7,插座部6 係閥機構,除供給液體燃料時以外係作爲關閉狀態 〇 3 —方面’燃料卡匣5係具有作爲收容燃料電池用之 '液體燃料的液體燃料收容容器之卡匣主體8,對於卡匣主 B 8之前端’係設置有成爲在供給收容於其內部之液體燃 料於燃料電池主體4時之燃料注入口之噴嘴部9,而噴嘴 ^ 9係內藏有閥機構,除供給液體燃料時以外係作爲關閉 ^態’如此之燃料卡匣5係爲例如只有在注入液體燃料於 燃料儲藏部3時連接於燃料電池主體4之構成。 設置於前述之燃料電池主體4之燃料儲藏部3的插座 @ 6與設置於燃料卡匣5之卡匣主體8的噴嘴部9係爲構 成一對之連接機構之構成。 於圖2表示作爲主要由成爲起電部之燃料電池單元2 與燃料儲藏部3所構成之燃料電池主體4之實施型態。 如圖2所示,作爲燃料電池單元2之膜電極接合體 -10- 200843188 (ME A)係爲具備由陰極觸媒層10及陰極氣體擴散層11而 成之陰極(空氣極),和由陽極觸媒層及陽極氣體擴散層 13而成之陽極(燃料極),和配置於陰極觸媒層10與陽極 觸媒層12之間的質子傳導性之電解質膜14的構成。 作爲含於陰極觸媒層1 〇與陽極觸媒層1 2之間的觸媒 係可舉出例如爲白金族元素之單體金屬(Pt,Pu,Rh,Ir, 〇s,Pd等),含有白金族元素之合金等,對於陽極觸媒, 理想則採用對於甲醇或一氧化碳而言,具有強耐性之Pt-Ru,對於陰極觸媒係期望使用白金者,但並不侷限於此構 成,另外,亦可使用如碳素材料之導電性載持體的載持觸 媒,或亦可使用無載持觸媒,而對於陰極氣體擴散層11 及陽極氣體擴散層1 3係例如可使用炭紙。 作爲構成質子傳導性之電解質膜之質子傳導性材料, 係可舉出具有磺酸基之氟素樹脂(例如,全氟磺酸聚合體) ,具有磺酸基之氫碳系樹脂,鎢酸或磷鎢酸等之無機物, 但,並不限定於此。 陰極觸媒層10係層積於陰極氣體擴散層11,且陽極 觸媒層1 2係層積於陽極氣體擴散層1 3,而陰極氣體擴散 層1 1係爲擔負均一地供給氧化劑於陰極觸媒層1 0之作用 的構成,亦兼具陰極觸媒層10之集電體,另一方面,陽 極氣體擴散層1 3係達成均一地供給氧化劑於陽極觸媒層 12之同時,亦兼具陽極觸媒層12之集電體。 陰極導電層15a及陽極導電層i5b係各自與陰極氣體 擴散層1 1及陽極氣體擴散層1 3連接,陰極導電層1 5 a係 -11 - 200843188 具有爲了導入氧化劑氣體(例如,空氣)於陰極之開口部(未 圖示),陽極導電層1 5 b係具有爲了導入燃料於陽極之開 口部(未圖示),對於陰極導電層15a及陽極導電層i5b係 可各自使用金,鎳等之金屬材料而成之多孔質層(例如, 金屬篩孔),金,鎳等之金屬材料而成之箔體,或被覆金 等之良導電性金屬於不銹鋼(SUS)的複合材料等。 矩形框體之陰極密封材1 6a係位置於陰極導電層i 5 a 與質子傳導性電解質膜1 4之間的同時,圍住陰極觸媒層 10及陰極氣體擴散層11之周圍,另一方面,矩形框體之 陽極密封材1 6 b係位置於陽極導電層1 5 b與質子傳導性電 解質膜14之間的冋時’圍住陽極觸媒層12及陰極氣體擴 散層13之周圍,而陰極密封材16a及陽極密封材16b係 爲爲了防止從膜電極接合體2之燃料洩漏及氧化劑拽漏的 環墊。 對於膜電極接合體2之下方,係配置有作爲燃料儲藏 手段之液體燃料儲藏部3,對於液體燃料儲藏部3內係收 容有液體燃料1 7,對於液體燃料儲藏部3與陽極3之間, 係配置有爲了供給液體燃料於陽極之燃料供給手段,例如 ,任意配置氣液分離膜1 8,氣液分離膜1 8係爲爲了供給 液體燃料之氣化成分的構成,只使液體燃料之氣化成分透 過,液體燃料無法透過之膜,而液體燃料之中,唯氣化成 分透過氣液分離膜1 8,成爲可供給氣化燃料於陽極之情況 ,對於氣液分離膜1 8係例如可使用具有甲醇透過性之撥 水性膜,而作爲具有甲醇透過性之撥水性膜,係例如可舉 •12- 200843188 出砂薄板,聚乙儲多孔膜,聚丙燒多孔膜,聚乙烯-聚丙 烯多孔膜,聚四氟乙烯多孔膜等。 對於氣液分離膜18與陽極導電層15b之間,係配置 有框體1 9,由框體1 9所圍繞的空間係做爲爲了調整對於 陽極之氣化燃料的供給量之氣化燃料收容室2 0而發揮機 能。 對於燃料氣化層1 3與陽極導電層9之間,係任意地 配置有框體1 4,由框體1 4所圍繞的空間係做爲爲了調整 對於陽極之氣化燃料的供給量之氣化燃料收容室1 5而發 揮機能。 另一方面,膜電極接合體2之陰極導電層15a,係任 意地層積框體2 1,對於框體2 1上方,層積抑制在陰極觸 媒層1 〇生成的水之蒸散的保濕板22,保濕板22係做爲爲 了將在陰極產生的水供給至陽極的水供給手段而發揮機能 ,即,保濕板2 2係爲了抑制從陰極的水分之蒸發,伴隨 著發電反應之進行,陰極觸媒層1 0中的水分保持量則增 加,因此,作出陰極觸媒層1 0之水分保持量較陽極觸媒 層1 2之水分保持量爲多之狀態’其結果,因促進了浸透 壓現象,故生成於陰極觸媒層1 0的水則通過質子傳導性 膜14而供給至陽極觸媒層12。 保濕板2 2係期望爲對於甲醇而言由,爲不活性,具 有耐溶解性,氧透過性及透濕性之絕緣材料所形成者,作 爲如此之絕緣材料係可舉出聚乙烯或聚丙烯等之聚烯。 保濕板22係期望爲在JIS P-8117-1998所規定之透氣 -13- 200843188 度爲50秒Π 〇〇Cm3以下者,而此係當透氣度超過50秒 /100cm3時,因有著阻礙從空氣導入口 23對於陰極之空氣 擴散而無法得到高輸出之虞,而透氣度更理想的範圍係1 〇 秒/100cm3以下。The liquid fuel and the fuel cartridge for accommodating the liquid fuel are, for example, a configuration of a fuel cell for use in an internal gasification type, and FIG. 1 shows an embodiment of an internal gasification fuel cell. 1 is a schematic diagram showing a fuel cell of a direct methanol type fuel cell according to an embodiment of the present invention, which is provided mainly as a fuel for electrification; "pool unit 2 and fuel storage unit" The fuel cell main body 4' configured as three and the fuel cartridge 5' for supplying the liquid fuel to the external injection chamber of the fuel storage portion 3 are provided with a socket having a supply port serving as a liquid fuel to the lower surface side of the fuel storage portion 3. In the fuel supply unit 7 of the unit 6, the socket unit 6 is a valve mechanism, and the liquid fuel storage container is a liquid fuel storage container for storing a fuel cell. The cassette body 8 is provided with a fuel injection port for supplying the liquid fuel contained in the fuel cell main body 4 to the front end of the cassette main B 8 The nozzle portion 9 has a valve mechanism incorporated therein, and the fuel cartridge 5 is used as a closed state when the liquid fuel is supplied. For example, the fuel cartridge 5 is connected to the fuel only when the liquid fuel is injected into the fuel storage portion 3, for example. The structure of the battery body 4. The socket portion 6 provided in the fuel storage portion 3 of the fuel cell main body 4 described above and the nozzle portion 9 of the cassette main body 8 provided in the fuel cartridge 5 are configured to form a pair of connection mechanisms. FIG. 2 shows an embodiment of the fuel cell main body 4 mainly composed of the fuel cell unit 2 and the fuel storage unit 3 which are the electrification portions. As shown in FIG. 2, the membrane electrode assembly-10-200843188 (ME A) as the fuel cell unit 2 is a cathode (air electrode) including a cathode catalyst layer 10 and a cathode gas diffusion layer 11, and The anode (fuel electrode) formed by the anode catalyst layer and the anode gas diffusion layer 13 and the proton conductive electrolyte membrane 14 disposed between the cathode catalyst layer 10 and the anode catalyst layer 12 are configured. The catalyst system contained between the cathode catalyst layer 1 and the anode catalyst layer 12 may, for example, be a single metal of a platinum group element (Pt, Pu, Rh, Ir, 〇s, Pd, etc.). For alloys containing a platinum group element, Pt-Ru which is highly resistant to methanol or carbon monoxide is preferably used for the anode catalyst, and platinum is desired for the cathode catalyst system, but it is not limited thereto. Alternatively, a carrier catalyst such as a conductive carrier of a carbon material may be used, or a carrier-free catalyst may be used, and for the cathode gas diffusion layer 11 and the anode gas diffusion layer 13, for example, carbon paper may be used. . Examples of the proton conductive material constituting the proton conductive electrolyte membrane include a fluorocarbon resin having a sulfonic acid group (for example, a perfluorosulfonic acid polymer), a hydrogencarbon resin having a sulfonic acid group, and tungstic acid or An inorganic substance such as phosphotungstic acid, but is not limited thereto. The cathode catalyst layer 10 is laminated on the cathode gas diffusion layer 11, and the anode catalyst layer 12 is laminated on the anode gas diffusion layer 13, and the cathode gas diffusion layer 11 is uniformly supplied with an oxidant at the cathode contact. The structure of the dielectric layer 10 also has the current collector of the cathode catalyst layer 10. On the other hand, the anode gas diffusion layer 13 uniformly supplies the oxidant to the anode catalyst layer 12, and also has both The collector of the anode catalyst layer 12. The cathode conductive layer 15a and the anode conductive layer i5b are each connected to the cathode gas diffusion layer 1 1 and the anode gas diffusion layer 13 , and the cathode conductive layer 15 5 a -11 - 200843188 has a cathode for introducing an oxidant gas (for example, air). In the opening (not shown), the anode conductive layer 15b has an opening (not shown) for introducing fuel into the anode, and each of the cathode conductive layer 15a and the anode conductive layer i5b can be made of gold or nickel. A porous material (for example, a metal mesh) made of a metal material, a foil made of a metal material such as gold or nickel, or a composite material made of a good conductive metal such as gold or a stainless steel (SUS). The cathode sealing material 16a of the rectangular frame is positioned between the cathode conductive layer i 5 a and the proton conductive electrolyte membrane 14 while surrounding the cathode catalyst layer 10 and the cathode gas diffusion layer 11 on the other hand. The anode sealing material 1 6 b of the rectangular frame is positioned around the anode catalyst layer 12 and the cathode gas diffusion layer 13 when the anode between the anode conductive layer 15 b and the proton conductive electrolyte membrane 14 is located. The cathode sealing material 16a and the anode sealing material 16b are ring mats for preventing leakage of fuel from the membrane electrode assembly 2 and leakage of the oxidizing agent. Below the membrane electrode assembly 2, a liquid fuel storage unit 3 as a fuel storage means is disposed, and a liquid fuel 17 is accommodated in the liquid fuel storage unit 3, and between the liquid fuel storage unit 3 and the anode 3, The fuel supply means for supplying the liquid fuel to the anode is disposed, for example, the gas-liquid separation membrane 18 is disposed arbitrarily, and the gas-liquid separation membrane 18 is configured to supply the vaporized component of the liquid fuel, and only the liquid fuel gas is supplied. The liquid component is permeated through the membrane, and the vaporized component passes through the gas-liquid separation membrane 18 in the liquid fuel, so that the gasification fuel can be supplied to the anode. For the gas-liquid separation membrane, for example, The water-repellent film having methanol permeability is used as the water-repellent film having methanol permeability, for example, 12-200843188 sand-sanding sheet, poly-storage porous film, polypropylene-fired porous film, polyethylene-polypropylene porous Membrane, polytetrafluoroethylene porous membrane, and the like. Between the gas-liquid separation membrane 18 and the anode conductive layer 15b, a frame body 19 is disposed, and a space surrounded by the frame body 19 is used as a gasification fuel container for adjusting the supply amount of the vaporized fuel to the anode. Room 20 functions to function. Between the fuel vaporization layer 13 and the anode conductive layer 9, a frame body 14 is arbitrarily disposed, and the space surrounded by the frame body 14 is used as a gas for adjusting the supply amount of the vaporized fuel to the anode. The fuel storage chamber 15 functions to function. On the other hand, in the cathode conductive layer 15a of the membrane electrode assembly 2, the frame body 2 is arbitrarily laminated, and the moisturizing plate 22 which suppresses the evaporation of the water generated in the cathode catalyst layer 1 is laminated on the frame body 2 1 . The moisturizing plate 22 functions as a water supply means for supplying water generated at the cathode to the anode, that is, the moisturizing plate 2 2 is for suppressing evaporation of moisture from the cathode, and the cathode contact is accompanied by the progress of the power generation reaction. The amount of moisture retained in the dielectric layer 10 is increased, so that the amount of moisture retained by the cathode catalyst layer 10 is larger than that of the anode catalyst layer 12, and as a result, the soaking pressure phenomenon is promoted. Therefore, water generated in the cathode catalyst layer 10 is supplied to the anode catalyst layer 12 through the proton conductive film 14. The moisturizing sheet 2 2 is desirably formed of an insulating material which is inactive and has solubility resistance, oxygen permeability and moisture permeability for methanol. As such an insulating material, polyethylene or polypropylene is exemplified. Polyene. The moisturizing sheet 22 is desirably set to have a gas permeability of -13 to 200843188 degrees as specified in JIS P-8117-1998 of 50 seconds 〇〇 〇〇 Cm3 or less, and this is because the air permeability exceeds 50 sec/100 cm3 due to obstruction from the air. The inlet 23 is not capable of diffusing the air of the cathode to obtain a high output, and the more desirable range of the gas permeability is 1 sec/100 cm3 or less.

保濕板22係期望爲在JIS L- 1 099- 1 993 A1法所規定 之透濕度爲6000g/m224h以下者,然而,上述透濕度的値 係如由JIS L- 1 099- 1 993 A1法之測定方法所示,爲40±2°C 之溫度的値,而當透濕度超過6000g/m224h時,因從陰極 之水分蒸發量變多,而有無法充分得到促進從陰極對於陽 極之水擴散的效果之虞,另外,當將透濕度作爲未達 5 00 g/m224h時,從有著供給過剩量的水於陽極而無法得到 高輸出之虞的情況,透濕度期望爲作爲5 00〜6000g/m224h 之範圍,而更理想之透濕度爲1000〜4000g/m224h。 形成複數個爲了取入氧化劑之空氣的空氣導入孔2 3 之蓋板24係層積於保濕板22的上方,而蓋板24係因加 壓含有膜電極接合體之排氣管而亦完成提升其密著性的作 用’故例如由如SUS304 ’炭素鋼,不鏽鋼,合金鋼,鈦 合金,鎳合金之金屬所形成。 針對在上述圖1,2所示之構成的燃料電池,將含於 燃料儲藏手段之液體燃料1 7及膜電極接合體2之中之至 少1種的金屬之陽離子’作爲10ppb以上,1〇〇〇ppm以下 ,燃而,燃料儲藏手段,係有只有液體燃料儲藏部3之情 況’和爲了直接連接燃料卡匣5於燃料電池主體4而使用 ,包含液體燃料儲藏部3與燃料卡匣5之情況,經由將含 -14- 200843188 於燃料儲藏手段之液體燃料及膜電極接合體之金屬之陽 子,作爲1 0 p p b以上,1 0 0 0 p p m以下之情況,可抑制從 成燃料電池之聚合物構件至液體燃料的金屬成分之溶出 時,因可抑制經由儲存於膜電極接合體之金屬之陽離子 阻抗上升與氣體擴散層之阻塞,故可提升長期安定性, 理想的範圍係20ppb以上,lOOOppm以下,更理想的範 爲50ppb以上,lOOOppm以下,最理想的範圍爲5 0ppb 上,5 OOppm以下。 金屬之陽離子量成爲lOppb以上,lOOOppm以下之 料電池係例如,經由使用本發明之液體燃料或燃料卡匣 情況所得到。 燃料儲藏手段之液體燃料中之金屬之陽離子量係經 前述之方法所測定,另一方面,關於氣化燃料供給手段 膜電極接合體中之金屬之陽離子量,係對於從氣化燃料 給手段及膜電極接合體,由精密分析用甲醇,抽出金屬 陽離子之溶液及固體成分,在以濃硫酸灰化之後,將經 濃硫酸分解的構成,稀釋成適當的濃度,將所得到的溶 ’以ICP質量分析法或ICP發光分光分析法而定量,經 ICP質量分析法或ICP發光分光分析法之定量方法係如 述’將合計燃料儲藏手段,氣化燃料供給手段及膜電極 合體各自之金屬陽離子濃度者,作爲所求之金屬陽離子 度。 隹十tt €本發明,針對燃料電池,對於燃料儲藏手段 ^ ®極ί妾合體之間係理想具有爲了供給液體燃料於燃料 離 構 同 的 而 圍 以 燃 之 由 及 供 之 由 液 由 前 接 濃 與 極 -15- 200843188 之燃料供給手段,例如針對在上述圖〗,2所示構成之燃 料電池’係理想爲具有爲氣化燃料供給手段之氣液分離膜 1 8者’對於其構成之情況,係於燃料儲藏手段,燃料供給 手段與膜電極接合體,理想爲含有10ppb以上,1〇〇〇ppm 以下金屬之陽離子,而此理由係爲與前述相同。 在此’對於膜電極接合體2,含有lOppb以上, 1 OOOppm以下金屬之陽離子的情況,構成陽極之陽極觸媒 層12及陰極氣體擴散層13,構成氧化劑之陰極觸媒層1〇 及陰極氣體擴散層11,以及電解質膜14之中之至少一種 ’電解質fe 14,如爲含有lOppb以上,1〇 〇〇 ppm以下金屬 陽離子的構成即可。 然而’燃料儲藏手段與膜電極接合體雙方,理想爲滿 足本發明’另外,前述燃料儲藏手段,前述燃料供給手段 及前述膜電極接合體,理想爲滿足本發明。The moisturizing sheet 22 is desirably one having a moisture permeability of not more than 6000 g/m224h as defined in the JIS L-10099-1993 A1 method. However, the above-mentioned moisture permeability is as described in JIS L-10099-1993 A1. As shown in the measurement method, it is a temperature of 40±2° C., and when the moisture permeability exceeds 6000 g/m 224 h, the amount of water evaporation from the cathode increases, and the effect of promoting diffusion of water from the cathode to the anode cannot be sufficiently obtained. In addition, when the moisture permeability is less than 500 g/m 224 h, the moisture permeability is desirably as 500 to 6000 g/m224h from the case where the excess amount of water is supplied to the anode and the high output is not obtained. The range, and more preferably the moisture permeability is 1000~4000g/m224h. A cover plate 24 that forms a plurality of air introduction holes 2 3 for taking in oxidant air is laminated on the upper portion of the moisturizing plate 22, and the cover plate 24 is also lifted by pressurizing the exhaust pipe including the membrane electrode assembly. The effect of the adhesion is, for example, formed of a metal such as SUS304 'carbon steel, stainless steel, alloy steel, titanium alloy, or nickel alloy. In the fuel cell having the configuration shown in FIGS. 1 and 2, the cation 'of at least one metal of the liquid fuel 17 and the membrane electrode assembly 2 included in the fuel storage means is 10 ppb or more, 1 〇〇. 〇ppm or less, the fuel storage means is only the case of the liquid fuel storage unit 3, and is used for directly connecting the fuel cartridge 5 to the fuel cell main body 4, and includes the liquid fuel storage portion 3 and the fuel cartridge 5 In the case where the liquid fuel of the liquid fuel and the membrane electrode assembly including the fuel storage means of -14 to 200843188 is 10 ppb or more and 100 ppm or less, the polymer of the fuel cell can be suppressed. When the metal component of the liquid fuel is eluted, the cation resistance of the metal stored in the membrane electrode assembly and the blockage of the gas diffusion layer can be suppressed, so that the long-term stability can be improved, and the desired range is 20 ppb or more and 1000 ppm or less. More preferably, the range is 50 ppb or more and 1000 ppm or less, and the most desirable range is 50 ppb or less and 5 OO ppm or less. The battery having a metal cation amount of 10 ppb or more and 1000 ppm or less is obtained, for example, by using the liquid fuel or fuel cartridge of the present invention. The amount of cations of the metal in the liquid fuel of the fuel storage means is measured by the above method, and on the other hand, the amount of cations of the metal in the membrane electrode assembly of the gasification fuel supply means is for the gasification fuel supply means and The membrane electrode assembly is obtained by extracting a metal cation solution and a solid component from methanol for precise analysis, and after ashing with concentrated sulfuric acid, the composition is decomposed by concentrated sulfuric acid, diluted to an appropriate concentration, and the obtained solution is ICP. Quantitative method by mass spectrometry or ICP emission spectrometry, and the quantitative method by ICP mass spectrometry or ICP luminescence spectrometry is as follows: the total metal cation concentration of the fuel storage means, the gasification fuel supply means and the membrane electrode assembly As the metal cation degree sought.隹10 tt € The present invention is directed to a fuel cell, and it is desirable for the fuel storage means to be connected to the fuel in order to supply the liquid fuel to the fuel. For the fuel supply means of the rich and the -15-200843188, for example, the fuel cell of the configuration shown in the above drawings and 2 is preferably configured to have a gas-liquid separation membrane 18 which is a gasification fuel supply means. In the case of the fuel storage means, the fuel supply means and the membrane electrode assembly preferably contain a cation of a metal of 10 ppb or more and 1 〇〇〇 ppm or less, and the reason is the same as described above. Here, in the case where the membrane electrode assembly 2 contains a cation of a metal of 10 ppb or more and 1 0.000 ppm or less, the anode catalyst layer 12 and the cathode gas diffusion layer 13 constituting the anode, the cathode catalyst layer 1 〇 and the cathode gas constituting the oxidant. The diffusion layer 11 and at least one of the electrolyte membranes 14 may be composed of a metal cation containing 10 ppb or more and 1 〇〇〇 ppm or less. However, it is preferable that both the fuel storage means and the membrane electrode assembly satisfy the present invention. Further, the fuel storage means, the fuel supply means, and the membrane electrode assembly preferably satisfy the present invention.

[實施例] 以下’參照圖面詳細說明本發明之實施例。 (實施例1) <陽極之製作> 於陽極用觸媒(Pt : Pu=l : 1)載持碳黑,經由添加全 氟磺酸溶液與水及甲氧基丙醇,並使前述處媒載持碳黑分 散而調製塗漿,經由將所得到之塗漿,塗佈於做爲陽極氣 體擴散層之多孔質碳紙之情況,得到陽極觸媒層。 -16- 200843188 <陰極之製作> 於陰極用觸媒(Pt)載持碳黑,經由添加全氟磺酸溶 液與水及甲氧基丙醇,並使前述處媒載持碳黑分散而調製 塗漿,經由將所得到之塗漿,塗佈於做爲陰極氣體擴散層 之多孔質碳紙之情況,得到陰極觸媒層。 於陽極用觸媒與陰極觸媒層之間,配置作爲質子傳導 性電解質膜,含水率爲1〇〜20重量%之全氟磺酸膜( Nafion (商品名、DuPont公司製),經由對於此等施以熱 壓之情況,得到膜電極接合體(MEA)。 作爲氣液分離膜,準備矽橡膠薄板。 作爲保濕板,準備厚度爲5 00 //m,透氣度爲2秒 /100cm3(JIS P-8117-1998),透濕度爲 4000g/m224h(JIS L-1099-1993 A1法)之聚乙烯製多孔質薄膜。 使用所得到之膜電極接合體,保濕板及氣液分離膜, 組裝具有前述圖1〜圖2所示之構造的內部氣化型之直接甲 醇型燃料電池。 於燃料卡匣,收容作爲金屬陽離子,含有l〇ppbA13 + 之純度爲9 9 · 9重量%的甲醇,使用其燃料卡匣,於燃料電 池之液體燃料儲藏部,供給液體燃料。 (例 1,3 〜29) 如下記表3所不地設定燃料卡匣之液體燃料中之金屬 陽離子的種類及濃度之情況以外,係組裝具有與例2同樣 之構造的內部氣化型之直接甲醇型燃料電池。 -17、 200843188[Examples] Hereinafter, examples of the invention will be described in detail with reference to the drawings. (Example 1) <Production of anode> Carbon black was carried on a catalyst for anode (Pt: Pu = 1 : 1), and a perfluorosulfonic acid solution, water and methoxypropanol were added thereto, and the above was carried out. The carrier was dispersed with carbon black to prepare a slurry, and the obtained slurry was applied to a porous carbon paper as an anode gas diffusion layer to obtain an anode catalyst layer. -16- 200843188 <Production of Cathode> Carbon black is carried on a cathode catalyst (Pt), and a perfluorosulfonic acid solution and water and methoxypropanol are added, and the carbon black is dispersed in the medium. On the other hand, the slurry is prepared, and the obtained paste is applied to a porous carbon paper as a cathode gas diffusion layer to obtain a cathode catalyst layer. Between the catalyst for the anode and the cathode catalyst layer, a perfluorosulfonic acid membrane (Nafion (trade name, manufactured by DuPont)) having a water content of 1 to 20% by weight is disposed as a proton conductive electrolyte membrane. A membrane electrode assembly (MEA) is obtained by applying a hot press. As a gas-liquid separation membrane, a ruthenium rubber sheet is prepared. As a moisturizing plate, a thickness of 500 00 //m and a gas permeability of 2 sec/100 cm 3 (JIS) are prepared. P-8117-1998), a polyethylene porous film having a moisture permeability of 4000 g/m224h (JIS L-1099-1993 A1 method). The obtained membrane electrode assembly, moisturizing plate and gas-liquid separation membrane were assembled. The internal vaporization type direct methanol fuel cell having the structure shown in Fig. 1 to Fig. 2 is used. In the fuel cartridge, methanol having a purity of 9 9 · 9 wt% containing l〇ppbA13 + is contained as a metal cation. The fuel cartridge is supplied to the liquid fuel storage unit of the fuel cell to supply the liquid fuel. (Examples 1, 3 to 29) The types and concentrations of metal cations in the liquid fuel of the fuel cartridge are set as shown in Table 3 below. In addition, the assembly is the same as in Example 2. The configuration of the internal vaporization type direct methanol fuel cell. -17 200 843 188

金屬陽離子 種類 卡匣之液體燃料中 金屬陽離子濃度 燃料電池 金屬陽離子濃度 例1 無添加 0 0 例2 Al3 + 1 0 p p b 1 5 p p b 例3 ai3 + 1 0 Oppb ϊ 0 5 ppb 例4 ai3 + 1 ppm 1 . 5 p p m 例5 ai3 + 2 ppm 2.5 ppm 例6 Ca2 + 1 Oppb 5 4 p p b 例7 Ca2 + 1 OOppb 145ppb 例8 Ca2 + 1 ppm 1 . 5 p p m 例9 Ca2 + 2 ppm 2.5 p p m 例10 Cr3 + 1 0 p p b 1 2ppb 例11 Cr3 + 1 OOppb 1 0 3 p p b 例12 Cr3 + 1 ppm 1 . 5 p p m 例13 Cr3 + 2 ppm 2.5 p p m 例14 Cu2 + 1 0 p p b 7 Oppb 例15 Cu2 + 1 0 0 p p b 1 62ppb 例16 Cu2 + 1 ppm 1 . 5 p p m 例17 Cu2 + 2 ppm 2.5 p pm 例18 Ni2 + 1 0 p p b 1 3ppb 例19 Ni2 + 1 0 0 p p b 1 14ppb 例20 Ni2 + 1 ppm 1 . 5 p p m 例21 Ni2 + 2 ppm 2.5 p p m 例22 Fe3 + 1 0 p p b 1 9 p p b 例23 Fe3 + 1 0 0 p p b 1 0 9 p p b 例24 Fe3 + 1 ppm 1 . 5 ppm 例25 Fe3 + 2 ppm 2.5 p pm 例26 Zn2 + 1 Oppb 1 7ppb 例27 Zn2 + 1 0 Oppb 1 08ppb 例28 Zn2 + 1 ppm 1 . 5 p p m 例29 Zn2 + 2 ppm 2.5 p p m -18- 200843188 將所得到的燃料電池,進行1 000小時連續 將例2 , 6, 10, 14, 18, 22, 26的輸出,作爲 出作爲100%之輸出保持率(%)而表示於圖3,在 橫軸爲運轉時間(hour),縱軸爲保持率(%)。 - 如圖3所示,1〇〇〇小時運轉後之輸出保持_ 最高,接著依序爲Cr,Cu,Fe,Zn,Ni,A1,絮 之燃料電池的1 000小時運轉後之輸出保持率係車 •。 另外,關於例1,6〜29之燃料電池,測定電 性,並將其結果表示於圖4,圖4之橫軸爲金屬 度(ppb),縱軸爲輸出(mWh/cm2)。 如以上結果所示,當根據本實施型態時,將 初期的電流電壓特性與輸出密度而可改善長期安 然而,對於作爲有機化合物而使用蟻酸乙基,醋 醋酸乙基之情況,亦確認到得到同樣的效果。 ® 然而,本發明係並不限定於上述實施形態之 在實施階段中,在不脫離其宗旨之範圍,可變形 . 而作具體化,另外,經由揭示於上述實施形態之 成要素之適當的組合,可形成各種發明,例如, 施形態所示之全構成要素,刪除幾個構成要素, 可適當組合不同實施形態之構成要素。 例如,在上述之說明之中,說明過於做爲燃 構成的膜電極接合體(MEA)之下部,具有燃料儲 造,但亦可爲從燃料儲藏部對於MEA之燃料的 運轉,並 將初期輸 圖3中, S係C a爲 $而,例1 父A1爲低 流電壓特 陽離子濃 不會損及 定性者, 酸甲基, 構成,而 構成要素 複數的構 亦可從實 更加地亦 :料電池之 藏部之構 供給係配 -19- 200843188 置流路所連接之構造,另外,舉例說明過做爲燃料電 體之構成的被動型之燃料電池,但對於主動型之燃料 ,更加地對於燃料供給等一部分,使用閥等之半被動 燃料電池而言’亦可適用本發明,而即使爲此等構造 可得到與上述說明同樣的作用效果。 在半被動型之燃料電池中,係從燃料儲藏手段供 膜電極接合體之燃料係使用於發電反應,而未使用的 則不會在之後進行循環而返回至燃料儲藏手段,在半 型之燃料電池中,從未使燃料循環之情況,與以往之 方式不同之構成,並未損及裝置之小型化等之構成, ,在燃料電池之中係對於燃料的供給,有使用閥,亦 以往之內部氣化型之純被動方式不同,因此,燃料電 如上述,稱作半被動方式。 圖5係表示如此之半被動型之燃料電池3 0 1的模 〇 燃料電池3 0 1係具備作爲發電部之膜電極接合體 ’作爲集電體之陰極導電層(未圖式)及陽極導電層(未 )° 膜電極接合體,係將質子導電性之電解質膜31 於之間,於其兩側,以熱壓一體化陰極32及陽極33 極3 2係於電解質膜3 i側,具有陰極觸媒層丨〇,於其 ’具有陰極氣體擴散層1 1,而陽極33係於電解質側 具有陽極觸媒層12,於其外側,具有陽極氣體擴散Λ ’而對於電解質側3 1,陰極32及陽極3 3,係可使用 池主 電池 型之 ,亦 給至 燃料 被動 主動 另外 與如 池係 式圖 301a 圖式 夾持 ,陰 外側 3 1, f 13 與針 -20- 200843188 對在前述圖2說明之構成同樣的構成者。 更加地,對於膜電極接合體1〇之陰極氣體擴散層Η 係接觸有陰極導電層(未圖示)’對於陽極氣體擴散層13係 接觸有陽極導電層(未圖示),成爲呈藉由此等陰極導電層 及陽極導電層,輸出在發電部所發電之電力於未圖示之負 荷,而對於陰極導電層與陽極導電層,係可使用與針對在 前述圖2說明之構成同樣的構成者。 對於電解質膜3 1與後述之燃料供給手段(燃料分配機 構)301e及蓋板24之間,係各自介入存在有橡膠製之圓環 1 6a,1 6b,經由此等而防止從燃料電池發電部3 0 1 a之燃 料洩漏或氧化劑洩漏。 蓋板24,係具有爲了攝入爲氧化劑之空氣的無圖示之 開口,而對於蓋板24與陰極3 2之間,係因應需要而配置 保濕層或表面層,而保濕層係爲浸含在陰極觸媒層1 0所 生成的水之一部分,控制水的蒸發之同時,促進了對於陰 @觸媒層1 0之空氣的均一擴散之構成,表面層係爲調整 @氣之攝入量的構成,並具有因應空氣之攝入量而調整個 數或大小等之複數之空氣導入口。 對於膜電極接合體301a之陽極33側,係配置有作爲 燃料供給手段之燃料分配機構3 0 1 e,而對於燃料分配機構 3 0 1 e係介由如配管之燃料的流路3 〇丨^而連接作爲燃料儲 藏手段之燃料收容部3 0 1 b。 對於燃料收容部3 〇1 b,係收容有對應於燃料電池3 0 1 之本發明之液體燃料。 -21 - 200843188 對於燃料分配機構3 e,係從燃料收容部3 〇 1 b,藉 由流路3 0 1 c而導入燃料’而流路3 0 1 c係並非限於燃料分 配機構301e或與燃料收容部301b獨立之配管所構成之構 成,例如,層積燃料分配機構3 0 1 e與燃料收容部3 0 1 b而 作爲一體化之情況,亦可爲連結此等之液體燃料的流路, 而燃料分配機構3 0 1 e係如藉由流路3 0 1 c而與燃料收容部 3 〇 1 b連接即可。 在此,燃料分配機構3 01 e係例如,如圖6所示,具 備具有燃料藉由流路3 0 1 c而流入之至少1個的燃料注入 口 3 4,和排出液體燃料或其氣化成分之複數個之燃料排出 口 3 5的燃料分配板3 6,另外,如圖5所示,對於燃料分 配板3 6的內部,設置有成爲從燃料注入口 3 4所引導之燃 料的通路之空隙部37,而複數之燃料排出口 35係各自直 接連接於做爲燃料通路而發揮機能之空隙部3 7。 從燃料注入口 3 4導入於燃料分配機構3 〇丨e之燃料係 流入於空隙部3 7,並藉由作爲燃料通路而發揮機能之空隙 部3 7,各自導入至複數之燃料排出口 3 5,而對於複數之 燃料排出口 3 5係亦可配置例如,只透過燃料之氣化成分 ’而不使液體成分透過之氣液分離膜(未圖示),由此,對 於燃料電池發電部3 0 1 a之陽極3 3係供給燃料之氣化成分 ’然而,氣液分離體係亦可做爲氣液分離膜而設置於燃料 分配機構3〇le與陽極33之間,而液體燃料的氣化成分 係從複數之燃料排出口 3 5,朝陽極3 3之複數個處而排出 -22· 200843188 燃料排出口 3 5係呈可供給燃料於膜電極接合體3 〇 i a 之全體地,複數設置於與燃料分配板3 6之陽極3 3接觸的 面,而燃料排出口 3 5之個數係如爲2個以上即可,但將 針對在燃料電池發電部3 0 1 a之面內的燃料供給量作爲均 一化之後,呈存在有0.1〜10個/cm2之燃料排出口 35地形 成情況則爲理想。 對於連接燃料分配機構3 0 1 e與燃料收容部3 0 1 b之間 的流路3 0 1 c係插入有閥3 0 1 d,而其閥3 0 1 d係並非爲循環 燃料之循環閥,而爲從燃料收容部3 0 1 b移送燃料於燃料 分配機構3 0 1 e的燃料供給閥,經由如此閥3 0 1 d在必要時 ’輸送燃料之情況,提升燃料供給量之控制性,此情況, 作爲閥3 0 1 d係可控制性佳地輸送少量的燃料,更加地從 可小型輕量化的觀點,理想爲使用旋轉葉片幫浦,電性浸 透流幫浦,隔片幫浦,汲取幫浦之情況,而旋轉葉片幫浦 係爲以馬達使葉片旋轉而進行輸送的構成,電性浸透流幫 浦係爲使用引起電性浸透流現象之二氧化矽等之燒結多孔 體之構成,隔片幫浦係爲經由電磁石或壓電陶瓷而驅動隔 片進行輸送的構成,汲取幫浦係壓迫具有柔軟性之燃料流 路的一部分,汲取燃料而進行輸送的構成,而在此之中, 從驅動電力或尺寸等之觀點,更理想爲使用電性浸透流幫 浦或具有壓電磁石之隔片幫浦者。 針對在如此構成,收容於燃料收容部3 0 1 b之液體燃 料係經由閥3 0 1 d而移送至流路3 0 1 c ’再供給至燃料分配 機構3 0 1 e,並且從燃料分配機構3 0 1 e所釋放之燃料係供 23- 200843188 給至燃料電池發電部3 0 1 a之陽極(燃料極)3 3,針對在燃料 電池發·電部3 0 1 a內,燃料係擴散陽極氣體擴散層1 3而供 給至陽極觸媒層1 2。 然而,如爲進行從燃料分配機構3 0 1 e對於ME A之燃 料供給的構成,亦可取代閥3 0 1 d,而可做爲配置燃料遮斷 閥之構成者,對於此情況,燃料遮斷閥係爲了控制經由流 路之液體燃料的供給而加以設置之構成。 即使爲此等構成,亦可得到與上述說明同樣之作用效 果,針對在供給至膜電極接合體之液體燃料的蒸氣,亦供 給所有液體燃料的蒸氣,但即使爲以液體狀態而供給一部 分之情況,亦可適用本發明。 [產業上之利用可能性] 如根據本發明,可提供可改善燃料電池之發電的長期 安定性情況之燃料電池用液體燃料及燃料電池用燃料卡E ’更加地可改善燃料電池之發電的長期安定性情況之燃米斗 電池。 【圖式簡單說明】 [圖1]係爲表示有關本發明之~實施型態之直接甲醇 型的燃料電池的模式圖。 [圖2]係爲模式性地表示圖1之燃料電池主體之實施 形態的剖面圖。 14, 18, 22, [圖3 ]係爲表示針對在例2 ’ 6,i 〇, -24- 200843188 26的燃料電池的運轉時間與輸出保持率之關係的特性圖。 [圖4]係爲表示針對在例1,6〜29之燃料電池的金屬 陽離子濃度(ppb)與輸出(mWh/cm2)之關係的特性圖。 [圖5]係爲表7]Κ有關本發明之其他實施型態的燃料 池之內部透視剖面圖。 [圖6 ]係爲表示圖5之燃料電池的燃料分配機構的斜 視圖。 【主要元件符號說明】 1 :燃料電池 2 :燃料電池單元 3 :燃料儲藏部 4 :燃料電池主體 5 :燃料卡匣 6 :插座部 7 :燃料供給部 8 :卡匣主體 9 :噴嘴部 I 0 :陰極觸媒層 II :陰極氣體擴散層 1 2 :陽極觸媒層 13 :陽極氣體擴散層 14 :電解質膜 15a :陰極導電層 •25- 200843188 15b:陽極導電層 1 6 a :陰極密封材 16b :陽極密封材 1 7 :液體燃料 1 8 =氣液分離膜 20 :氣化燃料收容室 22 :保濕板 23 :空氣導入口 24 :蓋板 3 1 :電解質膜 32 : 陰極 3 3 :陽極 301a :膜電極接合體 301b :燃料收容部 301c :流路 37 :空隙部 34 :燃料注入口 3 5 :燃料排出口 -26-Metal cations type Metal cation concentration in liquid fuels Fuel cell metal cation concentration Example 1 No addition 0 0 Example 2 Al3 + 1 0 ppb 1 5 ppb Example 3 ai3 + 1 0 Oppb ϊ 0 5 ppb Example 4 ai3 + 1 ppm 1. 5 ppm Example 5 ai3 + 2 ppm 2.5 ppm Example 6 Ca2 + 1 Oppb 5 4 ppb Example 7 Ca2 + 1 OOppb 145ppb Example 8 Ca2 + 1 ppm 1. 5 ppm Example 9 Ca2 + 2 ppm 2.5 ppm Example 10 Cr3 + 1 0 ppb 1 2ppb Example 11 Cr3 + 1 OOppb 1 0 3 ppb Example 12 Cr3 + 1 ppm 1.5 ppm Example 13 Cr3 + 2 ppm 2.5 ppm Example 14 Cu2 + 1 0 ppb 7 Oppb Example 15 Cu2 + 1 0 0 ppb 1 62ppb Example 16 Cu2 + 1 ppm 1.5 ppm Example 17 Cu2 + 2 ppm 2.5 p pm Example 18 Ni2 + 1 0 ppb 1 3ppb Example 19 Ni2 + 1 0 0 ppb 1 14ppb Example 20 Ni2 + 1 ppm 1.5 ppm Example 21 Ni2 + 2 ppm 2.5 ppm Example 22 Fe3 + 10 ppb 1 9 ppb Example 23 Fe3 + 1 0 0 ppb 1 0 9 ppb Example 24 Fe3 + 1 ppm 1. 5 ppm Example 25 Fe3 + 2 ppm 2.5 p pm 26 Zn2 + 1 Oppb 1 7ppb Example 27 Zn2 + 1 0 Oppb 1 08ppb Example 28 Zn2 + 1 ppm 1. 5 ppm Example 29 Zn2 + 2 ppm 2.5 ppm -18- 200843188 For the fuel cell, the output of the example 2, 6, 10, 14, 18, 22, 26 was continuously performed for 1 000 hours, which is shown as the 100% output retention rate (%) and is shown in Fig. 3, and the horizontal axis is the operation time. (hour), the vertical axis is the retention rate (%). - As shown in Figure 3, the output after 1 hour of operation is kept at the highest, followed by Cr, Cu, Fe, Zn, Ni, A1, and the output retention of the fuel cell after 1000 hours of operation. Cars. Further, regarding the fuel cells of Examples 1, 6 to 29, electrical properties were measured, and the results are shown in Fig. 4. The horizontal axis of Fig. 4 is the metallurgy (ppb), and the vertical axis is the output (mWh/cm2). As shown in the above results, in the case of the present embodiment, the initial current-voltage characteristics and the output density can be improved in the long-term. However, in the case of using an ethyl antate or an ethyl acetate as an organic compound, it was confirmed. Get the same effect. However, the present invention is not limited to the above-described embodiments in the implementation stage, and can be modified without departing from the spirit and scope of the invention, and is appropriately combined with the elements disclosed in the above embodiments. Various inventions can be formed. For example, the entire constituent elements shown in the embodiment can be deleted, and several constituent elements can be deleted, and constituent elements of different embodiments can be combined as appropriate. For example, in the above description, the lower part of the membrane electrode assembly (MEA) which is configured to be ignited is described as having fuel storage, but the operation of the fuel from the fuel storage unit to the MEA may be performed, and the initial operation may be performed. In Fig. 3, the S system C a is $, and the parent A1 is a low-flow voltage, and the cation concentration is not detrimental to the qualitative one, and the acid methyl group is formed, and the constituents of the plural components can also be realized. The structure of the battery storage unit is -19-200843188. The structure in which the flow path is connected, and the passive type fuel cell which is a fuel electric body is exemplified, but for the active type fuel, it is more The present invention can also be applied to a part of a fuel supply or the like using a semi-passive fuel cell such as a valve, and the same effects as those described above can be obtained even with such a structure. In a semi-passive type fuel cell, a fuel system for supplying a membrane electrode assembly from a fuel storage means is used for a power generation reaction, and if it is not used, it is not recycled later and returned to a fuel storage means, in a half type fuel. In the battery, the fuel is never circulated, and the configuration is different from the conventional method, and the configuration of the device is not impaired. In the fuel cell, the fuel is supplied, and the valve is used. The internal gasification type is purely passive, and therefore, the fuel power is referred to as the semi-passive mode as described above. Fig. 5 is a view showing a semi-passive type fuel cell 301 fuel cell 301 having a membrane electrode assembly as a power generating portion as a current collector, a cathode conductive layer (not shown), and an anode conductive layer. a membrane electrode assembly in which a proton conductive electrolyte membrane 31 is interposed therebetween, and a thermocompression integrated cathode 32 and an anode 33 pole 3 2 are attached to the electrolyte membrane 3 i side on both sides thereof. The cathode catalyst layer 丨〇 has a cathode gas diffusion layer 11 and the anode 33 has an anode catalyst layer 12 on the electrolyte side, and has an anode gas diffusion Λ ' on the outer side and a cathode side 3 1 on the electrolyte side. 32 and anode 3 3, can be used in the pool main battery type, also given to the fuel passive active and the same as the pool diagram 301a pattern clamping, the outer side of the 3 1 f 13 and the needle -20- 200843188 pairs in the Fig. 2 illustrates the same constituents. Further, the cathode gas diffusion layer of the membrane electrode assembly 1 is in contact with a cathode conductive layer (not shown). The anode gas diffusion layer 13 is in contact with an anode conductive layer (not shown). The cathode conductive layer and the anode conductive layer output electric power generated by the power generation unit to a load (not shown), and the same configuration as that described above with respect to FIG. 2 can be used for the cathode conductive layer and the anode conductive layer. By. Between the electrolyte membrane 31 and the fuel supply means (fuel distribution mechanism) 301e and the cover 24, which will be described later, there are rubber rings 16a, 16b interposed therebetween, and the fuel cell power generation unit is prevented from passing through the fuel cell power generation unit. 3 0 1 a fuel leak or oxidant leak. The cover plate 24 has an opening (not shown) for taking in air as an oxidizing agent, and a moisture-retaining layer or a surface layer is disposed between the cover plate 24 and the cathode 32, and the moisturizing layer is impregnated. In the part of the water generated by the cathode catalyst layer 10, the evaporation of the water is controlled, and the uniform diffusion of the air to the cathode@catalyst layer 10 is promoted, and the surface layer is adjusted to adjust the intake of the gas. The air inlet of the plural is adjusted in accordance with the amount of air intake. The fuel distribution mechanism 3 0 1 e as a fuel supply means is disposed on the anode 33 side of the membrane electrode assembly 301a, and the fuel distribution mechanism 3 0 1 e is connected to the flow path 3 of the fuel such as piping. Further, a fuel accommodating portion 3 0 1 b as a fuel storage means is connected. The fuel accommodating portion 3 〇 1 b accommodates the liquid fuel of the present invention corresponding to the fuel cell 301. -21 - 200843188 The fuel distribution mechanism 3 e is introduced from the fuel accommodating portion 3 〇 1 b by the flow path 3 0 1 c, and the flow path 3 0 1 c is not limited to the fuel distribution mechanism 301e or with the fuel The accommodating portion 301b is configured by a separate pipe. For example, when the fuel distribution mechanism 3 0 1 e and the fuel accommodating portion 301b are integrated, the flow path of the liquid fuel may be connected. The fuel distribution mechanism 3 0 1 e may be connected to the fuel containing unit 3 〇 1 b by the flow path 3 0 1 c. Here, the fuel distribution mechanism 310e is provided with, for example, at least one fuel injection port 34 having a fuel flowing in through the flow path 3 0 1 c as shown in FIG. 6, and discharging the liquid fuel or vaporizing it. A fuel distribution plate 3 6 of a plurality of fuel discharge ports 35 of the components, as shown in Fig. 5, a passage for the fuel guided from the fuel injection port 34 is provided inside the fuel distribution plate 36. The gap portion 37 and the plurality of fuel discharge ports 35 are each directly connected to the gap portion 37 which functions as a fuel passage. The fuel introduced into the fuel distribution mechanism 3 〇丨 e from the fuel injection port 34 flows into the gap portion 3 7 , and is introduced into the plurality of fuel discharge ports 35 by the gap portions 3 7 that function as fuel passages. Further, for the plurality of fuel discharge ports 35, for example, a gas-liquid separation membrane (not shown) that transmits only the vaporized component of the fuel without passing the liquid component may be disposed, thereby the fuel cell power generation unit 3 The anode 3 3 of 0 1 a is a gasification component for supplying fuel. However, the gas-liquid separation system may be provided as a gas-liquid separation membrane between the fuel distribution mechanism 3〇le and the anode 33, and the vaporization of the liquid fuel. The components are discharged from a plurality of fuel discharge ports 35 to a plurality of anodes 3 -22. 200843188 The fuel discharge ports 35 are all fuel supply to the membrane electrode assembly 3 〇ia, and are plurally disposed. The surface which is in contact with the anode 3 3 of the fuel distribution plate 36, and the number of the fuel discharge ports 35 may be two or more, but will be supplied to the fuel in the surface of the fuel cell power generation unit 3 0 1 a. After the quantity is normalized, it exists 0.1 to 10 / cm2 of fuel discharge port 35 terrain is ideal. The flow path 3 0 1 c between the connection fuel distribution mechanism 3 0 1 e and the fuel storage portion 3 0 1 b is inserted with a valve 3 0 1 d, and the valve 3 0 1 d is not a circulation valve for circulating fuel. The fuel supply valve for transferring the fuel to the fuel distribution mechanism 3 0 1 e from the fuel accommodating portion 3 0 1 b is configured to increase the controllability of the fuel supply amount when the fuel is supplied as necessary through the valve 3 0 1 d. In this case, as the valve 3 0 1 d, a small amount of fuel can be conveyed with good controllability, and from the viewpoint of being small and light, it is preferable to use a rotary vane pump, an electric permeation flow pump, and a spacer pump. In the case of the pump, the rotating blade pump is configured to rotate the blade by the motor, and the electrically-impregnated flow pump is a sintered porous body using cerium oxide or the like which causes an electrical permeation phenomenon. The spacer pump system is configured to drive the separator through the electromagnet or the piezoelectric ceramic, and the pumping system is configured to compress a part of the flexible fuel flow path and extract the fuel for transportation. , from drive power or size From the point of view, it is more desirable to use an electrically immersed flow pump or a spacer pumper with a pressure electromagnetic stone. With this configuration, the liquid fuel accommodated in the fuel accommodating portion 3 0 1 b is transferred to the flow path 3 0 1 c ' via the valve 3 0 1 d and supplied to the fuel distribution mechanism 3 0 1 e, and the fuel distribution mechanism is provided. The fuel released by the 3 0 1 e is supplied to the anode (fuel electrode) 3 3 of the fuel cell power generation unit 3 0 1 a for the fuel cell diffusion anode in the fuel cell power generation section 3 0 1 a. The gas diffusion layer 13 is supplied to the anode catalyst layer 12. However, in order to perform the fuel supply from the fuel distribution mechanism 3 0 1 e to the ME A, the valve 3 0 1 d may be replaced as a component of the fuel shut-off valve. For this case, the fuel cover The shutoff valve is configured to control the supply of liquid fuel via the flow path. Even in such a configuration, the same effects as those described above can be obtained, and the vapor of all the liquid fuels is supplied to the vapor of the liquid fuel supplied to the membrane electrode assembly, but even if a part of the liquid is supplied in a liquid state The invention can also be applied. [Industrial Applicability] According to the present invention, it is possible to provide a liquid fuel for a fuel cell and a fuel card for a fuel cell E' which can improve the long-term stability of power generation of a fuel cell, and can further improve the long-term power generation of the fuel cell. Combustion battery for stability. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] is a schematic view showing a direct methanol type fuel cell according to an embodiment of the present invention. Fig. 2 is a cross-sectional view schematically showing an embodiment of the fuel cell main body of Fig. 1. 14, 18, 22, [Fig. 3] is a characteristic diagram showing the relationship between the operation time and the output retention ratio of the fuel cell of Example 2'6, i 〇, -24-200843188 26. Fig. 4 is a characteristic diagram showing the relationship between the metal cation concentration (ppb) and the output (mWh/cm2) of the fuel cells of Examples 1, 6 to 29. Fig. 5 is an internal perspective sectional view showing a fuel cell of another embodiment of the present invention. Fig. 6 is a perspective view showing a fuel distribution mechanism of the fuel cell of Fig. 5. [Description of main components] 1 : Fuel cell 2 : Fuel cell unit 3 : Fuel storage unit 4 : Fuel cell main body 5 : Fuel cartridge 6 : Socket portion 7 : Fuel supply portion 8 : Cartridge main body 9 : Nozzle portion I 0 : Cathode catalyst layer II: cathode gas diffusion layer 1 2 : anode catalyst layer 13 : anode gas diffusion layer 14 : electrolyte membrane 15 a : cathode conductive layer • 25- 200843188 15b: anode conductive layer 1 6 a : cathode sealing material 16b : anode sealing material 1 7 : liquid fuel 18 = gas-liquid separation membrane 20 : gasification fuel storage chamber 22 : moisturizing plate 23 : air introduction port 24 : cover plate 3 1 : electrolyte membrane 32 : cathode 3 3 : anode 301a : Membrane electrode assembly 301b: fuel accommodating portion 301c: flow path 37: void portion 34: fuel injection port 3 5 : fuel discharge port -26-

Claims (1)

200843188 十、申請專利範圍 1. 一種燃料電池用液體燃料,其特徵乃含有由甲醇, 乙醇,二甲醚及犠酸而成的群所選擇之至少1種類,與金 屬之陽離子作爲lOppb以上,Ippm以下者。 2 · —種燃料電池用燃料卡匣,屬於具備燃料收容容器 ’和收容於前述容器內之燃料電池用燃料卡匣,其特徵乃 前述液體燃料係含有由甲醇,乙醇,二甲醚及蟻酸而 成的群所選擇之至少1種類,與金屬之陽離子作爲lOppb 以上,Ippm以下者。 3 · —種燃料電池,屬於具備含有燃料極,與氧化劑極 ’與配置於前述燃料極及前述氧化劑極之間的電解質膜之 膜電極接合體, 和儲藏含有由甲醇,乙醇,二甲醚及犠酸而成的群所 Μ _ t至少i種類之液體燃料的燃料儲藏手段之燃料電池 ’其特徵乃 Μ Μί述燃料儲藏手段及前述膜電極接合體之中之至少 1種’含有將金屬之陽離子作爲10ppb以上,Ippm以下者 〇 4·如申請專利範圍第3項之燃料電池,其中,對於前 _ ;燃#儲藏手段及前述膜電極接合體之間,係具有爲了供 @ Μ述液體燃料於前述燃料極之燃料供給手段者。 5 ·如申請專利範圍第3項或第4項任一之燃料電池, # ’ Μ ^&燃料極含有燃料極觸媒層及燃料極氣體擴散層 t ’前述氧化劑極含有氧化劑極觸媒層及氧化劑極氣 -27- 200843188 體擴散層; 封於於前述膜電極接合體,含有l〇ppb以上, lOOOppm以下前述金屬之陽離子之情況,前述金屬之陽離 子係含於由前述燃料極觸媒層,前述燃料極氣體擴散層, 前述氧化劑極觸媒層,前述氧化劑極氣體擴散層及前述電 解質膜而成的群所選擇之至少一種者。 6 ·如申請專利範圍第3項之燃料電池,其中,對於前 述燃料儲藏手段及前述膜電極接合體之間,係含有1 〇 p p b 以上’ lOOOppm以下前述金屬之陽離子者。 7 ·如申請專利範圍第4項之燃料電池,其中,於前述 燃料儲藏手段,前述燃料供給手段及前述膜電極接合體, 含有l〇ppb以上,lOOOppm以下金屬之陽離子者。200843188 X. Patent Application Area 1. A liquid fuel for a fuel cell, characterized in that it contains at least one type selected from the group consisting of methanol, ethanol, dimethyl ether and decanoic acid, and a cation of a metal as lOppb or more, Ippm. The following. 2. A fuel cell fuel cartridge, comprising a fuel storage container ′ and a fuel cell fuel cartridge housed in the container, wherein the liquid fuel contains methanol, ethanol, dimethyl ether and formic acid. At least one type selected from the group is formed, and the cation of the metal is not more than 10 ppb and not more than 1 ppm. A fuel cell comprising a membrane electrode assembly including a fuel electrode, an oxidant electrode 'and an electrolyte membrane disposed between the fuel electrode and the oxidant electrode, and a storage containing methanol, ethanol, dimethyl ether and The fuel cell of the fuel storage means of the liquid fuel of at least i type is characterized in that at least one of the fuel storage means and the membrane electrode assembly is contained The cation is a fuel cell of 10 ppb or more, and Ippm or less 〇4. The fuel cell of the third aspect of the patent application, wherein the liquid storage means is provided for the @ _ combustion means and the membrane electrode assembly. The fuel supply means of the fuel electrode. 5. The fuel cell according to any one of claims 3 or 4, # ' Μ ^& fuel electrode contains a fuel catalyst layer and a fuel electrode gas diffusion layer t 'the oxidant electrode contains an oxidant electrode catalyst layer And the oxidant gas -27-200843188 bulk diffusion layer; the membrane electrode assembly is contained in the membrane electrode assembly, and the cation of the metal is contained in the fuel electrode layer of 1 ppb or more and 1000 ppm or less. At least one selected from the group consisting of the fuel electrode gas diffusion layer, the oxidant electrode catalyst layer, and the oxidant gas diffusion layer and the electrolyte membrane. The fuel cell according to the third aspect of the invention, wherein the fuel storage means and the membrane electrode assembly include a cation of the metal of 1 〇 p p b or more and more than 100 ppm. The fuel cell according to the fourth aspect of the invention, wherein the fuel supply means and the membrane electrode assembly include a cation of a metal of 100 ppb or more and 1000 ppm or less. -28--28-
TW096148768A 2006-12-22 2007-12-19 Liquid fuel for fuel cell, fuel cartridge for fuel cell, and fuel cell TW200843188A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006346399 2006-12-22

Publications (1)

Publication Number Publication Date
TW200843188A true TW200843188A (en) 2008-11-01

Family

ID=39562345

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096148768A TW200843188A (en) 2006-12-22 2007-12-19 Liquid fuel for fuel cell, fuel cartridge for fuel cell, and fuel cell

Country Status (4)

Country Link
JP (1) JPWO2008078551A1 (en)
CN (1) CN101558525A (en)
TW (1) TW200843188A (en)
WO (1) WO2008078551A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311163A (en) * 2003-04-04 2004-11-04 Matsushita Electric Ind Co Ltd Catalyst layer membrane of fuel cell and its manufacturing method
JP2004342350A (en) * 2003-05-13 2004-12-02 Matsushita Electric Ind Co Ltd Fuel cell
JP4738790B2 (en) * 2004-10-27 2011-08-03 キヤノン株式会社 Liquid fuel, cartridge and fuel cell system for direct methanol fuel cell
JP4481861B2 (en) * 2005-03-31 2010-06-16 株式会社東芝 Fuel cell cartridge and fuel cell system
JP4468234B2 (en) * 2005-05-09 2010-05-26 株式会社東芝 Liquid fuel for fuel cell, fuel cartridge for fuel cell, and fuel cell

Also Published As

Publication number Publication date
WO2008078551A1 (en) 2008-07-03
CN101558525A (en) 2009-10-14
JPWO2008078551A1 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
WO2006101132A1 (en) Fuel cell
TW200845465A (en) Fuel cell
WO2009141985A1 (en) Fuel battery
TWI328899B (en)
WO2008023634A1 (en) Fuel cell
TW201011960A (en) Membrane-electrode assembly and fuel cell
JP4945914B2 (en) Fuel cell
TW200836394A (en) Fuel cell
TW200843188A (en) Liquid fuel for fuel cell, fuel cartridge for fuel cell, and fuel cell
JP2010277782A (en) Membrane electrode assembly, fuel cell, and method of manufacturing them
TW200836393A (en) Fuel battery
JP2006213882A (en) Fuel composition for fuel cells
TW200836392A (en) Fuel cell
JP2008276990A (en) Electrode for fuel cell, and fuel cell
WO2011052650A1 (en) Fuel cell
JP2011096468A (en) Fuel cell
JP2006249122A (en) Fuel composition for fuel cell
JP2009266676A (en) Membrane electrode assembly and fuel cell
TW200818583A (en) Fuel cell socket and fuel cell using the same
JP2010211959A (en) Fuel cell
JP2009238647A (en) Fuel cell
TW200937723A (en) Fuel cell
JP2009043720A (en) Fuel cell
JP2008153133A (en) Fuel cell
JP2010049930A (en) Fuel cell