200842350 本文為申請立案之專利,請勿複製内容 玖、發明說明: 【發明所屬之技術領域】 ,、本^明係有關利用生物自組裝技術與表面張力操控技術整合於實際的 微流體操控裝置,可即時調控輸送流道的表面親疏水性,應腑微流體之 傳輸_醫晶片檢測。並且具體設計生醫檢測晶片,麵檢體本身親、斥 水特性達到分離、檢驗之目的,並提高檢驗之正確性。 【先前技術】 • 微型化液珠的應用遍及許多產業,例如:霧化器、燃燒器、內燃機、 化工合成、新藥開發、噴墨技術、液相光學鏡頭、顯示器技術以及生化檢 測等’由於液珠具有高表面積/體積比的特性,可讓反應程序更爲均勻、快 速,達成高反應效率、低成本的效果。對於微小液珠而言,由於微尺度的 效應導致系統爲表面張力所主宰,如果可以任意調控表面張力,將可輕易 操控液珠的靜態或動態特性,讓液珠形貌、表面曲率以及接觸角改變,藉 此可應用於液珠的操控、傳輸以及形變等,特別是在液相光學鏡頭以及生 φ 化流體檢測的系統中。在生醫檢測領域,由於微製程技術的日新月異,檢 測的平台已由傳統的大型儀器逐漸轉化成微流體生醫晶片系統,檢體的體 積縮小將帶來許多優勢,如快速檢測、可大量檢測多項疾病、反應時間加 快、降低檢體的消耗,低成本之可拋棄性等。所以微流體生醫晶片的開發 儼然成爲一種趨勢,未來更可望成爲具潛力之新興產業。微流體系統在近 幾年逐漸劃分化成兩類型,分別爲連續微流體以及微液珠(數位流體)系 統’於是,晶片的發展也存在此兩類型之分野。對於微液珠而言,液珠較 連續流體容易被操控,最大的關鍵在於液珠表面張力或是固體表面特性的 200842350 本文為申請立案之專利,請勿複製内容 調控,如果調控得宜,將可達成液珠的精確定量、傳輸、定位以及操控, 不僅擴展液珠在生醫檢測上的實用性,更可以應用於其他產業的開發。 基本上’液珠在表面上移動的物理機制爲液珠沾於兩相異斥水程度界 面,由於表面能梯度分佈使得液珠兩端的接觸角度及曲率半徑不對稱,造 成液珠內部壓力的不平衡,因而產生變形、移動,此即液珠於相異斥水程 度表面之操控原理。目前,操控液珠最直接的方式即是操控它的表面張力 特性,利用熱毛細、光驅動、化學的表面改質、表面結構梯度以及電潤濕 φ 操控等。其中,電潤濕(electrowetting,EW)是一種利用外加電位勢來 改變固液介面之間的潤濕性或接觸角,達到操控液體表面張力的技術,假 如液珠外緣之表面張力不相同,進而產生不對稱的輪廓(接觸角的差異), 造成內部壓力不均而產生液珠的移動。先前技術有關使用電潤濕原理製作 微液珠致動器的專利[1] (US Pat· No· 6565727 B1),描述使用電潤濕原 理可以製作微幫浦、微混合器、陣列式液珠操控等微流體元件。另一種先 前技術使用電潤濕原理操控液珠[2] (US Pat. No. 6911132 B2),更詳盡 • 地規劃了使用電潤濕原理的使用,包括液珠的切割,生物檢體的檢測。另 一方面,一種先前技術[3](中華民國專利No. 1261572)實現了利用微結構 梯度操控液珠的行爲,採用微機電的製程,在矽晶圓表面上製作不同分佈 密度的表面梯度的結構,不同密度的結構將影響表面自由能的分布,進而 產生不同疏水程度的表面,藉由設計製作適當的表面結構密度與方向,可 達到微液珠的自發性傳輸。 電潤濕操控液珠的技術具備即時操控與高可逆性,然而,在生化流體 15 200842350 本文為申請立案之專利,請勿複製内容 的檢測上,由於液珠內含生物分子,其特性有別於一般性的流體,特別是 在環境忍受度上有許多的限制,並且檢體的保存亦有時間上的限制,因此 施加電壓的過程潛在造成生物流體變質的風險,因此提升檢體檢測上的潛 在不穩定性。而電所產生的熱亦會嚴重影響生物流體的本質。微結構梯度 雖然可造成液珠自發性的移動,但此種方法只可沿著微結構的排列設計移 動,操控的機動性較差,表面容易氧化失效。 於是,本案提出一種新式的調控表面親疏水性的控制裝置,利用生化 • 分子自組裝的特性,製作出具備雙特性(疏水性與親水性)的生物分子於表 面上’製做過程簡單、生物相容性強。最重要的是可藉由(電場或磁場), 來操控表面分子薄膜的親疏水性,使表面上的液珠,可任意被操控朝不同 方向輸送及定位。本技術在操控液珠上,具備高操控性、高機動性以及簡 便的設計與製作。本案設計可依檢測對象需求,採用不同之分子佈植於表 面’可達成多選擇性及高生化相容性。本技術之詳細具體實施例將在後文 陳述。 【發明內容】 以奈米自主裝方式形成可調控親疏水性之生化分子薄膜,藉由調整電 場或磁場的強度和單位面積上長碳鏈結構的密度,進而有效控制生化薄膜 中分子長碳鏈結構彎曲程度,並改變液珠接觸表面的親疏水性行爲,可應 用於生醫晶片上微流體的操控與傳輸。 下文藉由具體實施例配合所附的圖式詳加說明,更容易瞭解本發明的 16 200842350 本文為申請立案之專利,請勿複製内容 目的、技術內容、特點及其所達成的功效。 【實施方式】 本發明提出一種新穎可調控表面親疏水性之奈米自組裝生物晶片,主 要提出兩個最佳實施例。第一個實施例的結構示意圖,如圖1所示。 首先利用微機電微影製成在Pyrex 7740的glass wafer上(100),製 作液珠的傳輸路徑且蒸鍍一層金箔(102),並於glass wafer背面製作磁場 線圏(101),然後將高分子聚合物硫代十六醇酸(C16H3202S)旋佈到整片 • glass wafer正面上形成一表面薄膜。利用一種化學連接劑(EDC)以奈米自 組裝的方式,將具磁性的奈米粒子(103),與硫代十六醇酸形成鍵結,最後 整體的表面結構示意圖,如圖la所示。因此,在基版底座未加磁場時,生 物液珠與晶片輸送路徑的接觸屬於親水性表面,接觸角小於90。,如圖lb 所示;當產生磁場時,碳鏈頂端上的磁珠受到基版下的磁場所吸引靠近並 造成碳鏈彎曲而裸露出來,則此時生物液珠與晶片輸送路徑的接觸模式將 轉換成疏水性表面’接觸角大於90°,如圖lc所示。 鲁 而根據專利[3]指出在微液珠表面輸送過程中,將由較斥水的表面往較 親水的表面移動。因此,本專利第一個實施例設計,當液珠橫跨在基版上 兩兩不同磁場的區域時,可藉由磁場的開關改變表面的親疏水性,進而使 液珠產生連續性移動和控制改變傳輸方向,其原理示意圖,如圖ld所示。 根據上述的概念與現象更進一步提出兩款可行的生物微流體傳輸晶 片。第一款設計,如圖2a所示,藉由調控磁場開關的時序和強弱,可決定 該生物微流體傳輸晶片的傳輸方向和速度大小。因此,可進一步設計不同 17 本文為申請立案之專利,請勿複製内容 200842350 的操控模式,決定生物試劑反應的程序和時間,並控制劑量大小和輸送至 指定的區域進行反應和分類。第二款的設計,如圖2b所示,藉由改變在輸 送流道中磁場作用範圍,每單位面積具有不同比例的金箔密度(即改變單 位面積上長碳鏈結構的密度),可以此形成具有連續親疏水性梯度的傳輸表 面使液珠產生具有自發性和連續性傳輸,此一設計可進一步應用於微流體 閥門的控制,並簡化晶片的成本和設計。 第二個具體實施例的結構示意圖,如圖3所示,與上述第一個實施例 • 類似,主要不同技術是在奈米自組裝的過程,以具有極強負電性的三重磷 酸根(TTP)的奈米粒子(303)取代磁性奈米粒子(103)。因此,改變碳鏈的彎 曲程度和表面親疏水性也將以電場裝置(301)取代磁場裝置(101a)調控來 達成。 在第二個具體實施例的晶片設計上與第一個具體實施例亦較爲簡單, 最主要的優點在於,不需要在玻璃基板背面上設計額外的電場裝置,直接 利用金箔定義表面電極的位置和面積的大小,進而節省成本和簡化晶片設 • 計的複雜度。以下將根據其原理和概念提出兩款可行之設計。如圖如所示, 第三款的傳輸晶片是透過外部電壓經由導線提供金箔上的電場,並根據設 計需求依時序切換開關達成流體操控目的。第四款設計,如圖此所示,在 傳輸微流體晶片的路徑上,安排一系列電極並且逐漸縮小尺寸和密度分 佈,這樣的好處在於可形成連續表面張力梯度變化的表面,可減低金箔的 使用和電場能量的消耗,並且節省開關的裝置的設計,有效簡化晶片的成 本和設計。 18 本文為申請立案之專利,請勿複製内容 200842350 參考文獻 [1] Shenderov and A. David, ^Actuators for microfluidics without moving parts,” U· S· Patent Pub· No. 6,565,727.200842350 This is a patent for filing a patent. Please do not copy the contents and inventions: [Technical field of the invention]. This is a microfluidic control device that integrates bio-self-assembly technology and surface tension control technology into actual use. It can instantly regulate the surface hydrophobicity of the transport channel, and should be transmitted by micro-fluids. And the specific design of the biomedical test wafer, the pro-test body itself, the water-repellent characteristics to achieve the purpose of separation, inspection, and improve the correctness of the test. [Prior Art] • Miniaturized liquid bead is used in many industries, such as: atomizers, burners, internal combustion engines, chemical synthesis, new drug development, inkjet technology, liquid phase optical lenses, display technology, and biochemical detection. The bead has a high surface area to volume ratio, which makes the reaction process more uniform and fast, achieving high reaction efficiency and low cost. For micro-beads, the system is dominated by surface tension due to micro-scale effects. If the surface tension can be arbitrarily regulated, the static or dynamic characteristics of the bead can be easily manipulated to give the bead morphology, surface curvature and contact angle. The change can be applied to the handling, transmission and deformation of the bead, especially in liquid crystal optical lenses and systems for detecting φ fluids. In the field of biomedical testing, due to the rapid development of micro-process technology, the detection platform has gradually been transformed into a micro-fluid biomedical wafer system from traditional large-scale instruments. The volume reduction of the sample will bring many advantages, such as rapid detection and large-scale detection. A number of diseases, accelerated reaction time, reduced sample consumption, low cost and disposable. Therefore, the development of microfluidic biomedical wafers has become a trend, and the future is expected to become an emerging industry with potential. Microfluidic systems have been gradually divided into two types in recent years, namely continuous microfluidics and microfluidic (digital fluid) systems. Thus, there are also two types of divisions in the development of wafers. For micro-beads, the liquid bead is easier to handle than the continuous fluid. The biggest key is the surface tension of the bead or the surface characteristics of the solid. 200842350 This is a patent for the application. Please do not copy the content control. If the regulation is appropriate, it will be Accurate quantification, transmission, positioning and manipulation of the bead can not only expand the practicality of the liquid bead in biomedical testing, but also can be applied to the development of other industries. Basically, the physical mechanism of the movement of the liquid bead on the surface is that the liquid bead adheres to the interface of the two-phase water-repellent degree. Due to the surface energy gradient distribution, the contact angle and the radius of curvature of the liquid bead are asymmetric, resulting in the internal pressure of the liquid bead. Balance, thus causing deformation, movement, which is the principle of manipulation of liquid droplets on the surface of different degrees of water repellency. At present, the most direct way to manipulate the bead is to manipulate its surface tension characteristics, using hot capillary, light-driven, chemical surface modification, surface structure gradient, and electrowetting φ manipulation. Among them, electrowetting (EW) is a technique that uses an external potential to change the wettability or contact angle between the solid-liquid interface to control the surface tension of the liquid. If the surface tension of the outer edge of the liquid bead is different, Further, an asymmetrical profile (a difference in contact angle) is generated, causing uneven internal pressure to cause movement of the bead. A prior art patent for the manufacture of microball actuators using the principle of electrowetting [1] (US Pat. No. 6,565,727 B1), which describes the use of the principle of electrowetting to make microfluids, micromixers, array beads Control and other microfluidic components. Another prior art uses the principle of electrowetting to manipulate the bead [2] (US Pat. No. 6911132 B2), and more detailed planning of the use of the principle of electrowetting, including the cutting of liquid beads, the detection of biological samples . On the other hand, a prior art [3] (Republic of China Patent No. 1261572) implements the behavior of manipulating liquid droplets using a microstructure gradient, using a microelectromechanical process to produce surface gradients of different distribution densities on the surface of the germanium wafer. Structure, structure of different density will affect the distribution of surface free energy, and then produce different degrees of hydrophobic surface. By designing the appropriate surface structure density and direction, the spontaneous transfer of micro-beads can be achieved. The technology of electrowetting control bead has immediate control and high reversibility. However, in Biochemical Fluid 15 200842350 This is a patent for filing a patent. Do not copy the content. Because the liquid bead contains biomolecules, its characteristics are different. There are many limitations on general fluids, especially in environmental tolerance, and there are time limits on the preservation of specimens. Therefore, the process of applying voltage may cause the risk of deterioration of biological fluids, thus improving the detection of specimens. Potential instability. The heat generated by electricity can also seriously affect the nature of biological fluids. Although the microstructure gradient can cause the spontaneous movement of the liquid bead, this method can only move along the arrangement of the microstructure, the maneuverability of the manipulation is poor, and the surface is easily oxidized. Therefore, this paper proposes a new type of control device for regulating the surface hydrophobicity. Using biochemical and molecular self-assembly characteristics, biomolecules with dual properties (hydrophobicity and hydrophilicity) can be fabricated on the surface. Strong capacity. The most important thing is that the hydrophilicity of the surface molecular film can be manipulated by (electric field or magnetic field), so that the liquid droplets on the surface can be arbitrarily manipulated and transported in different directions. This technology is highly maneuverable, highly maneuverable and easy to design and manufacture on the control bead. The design of the case can be carried out on the surface by using different molecules according to the requirements of the test object, which can achieve multi-selectivity and high biochemical compatibility. Detailed embodiments of the present technology will be described later. SUMMARY OF THE INVENTION A biochemical molecular film capable of regulating hydrophilicity and hydrophobicity is formed by nanometer self-assembly method, and the molecular length and long carbon chain structure in the biochemical film are effectively controlled by adjusting the intensity of the electric or magnetic field and the density of the long carbon chain structure per unit area. The degree of bending and changing the hydrophilic and hydrophobic behavior of the contact surface of the bead can be applied to the manipulation and transmission of microfluidics on biomedical wafers. In the following, it will be easier to understand the present invention by way of specific embodiments in conjunction with the accompanying drawings. 16 200842350 This is a patent filed for filing, and does not duplicate the purpose, technical content, features, and effects achieved. [Embodiment] The present invention proposes a novel nanoparticle self-assembling biochip capable of regulating surface hydrophobicity, and two preferred embodiments are mainly proposed. A schematic structural view of the first embodiment is shown in FIG. First, using microelectromechanical lithography on the Pyrex 7740 glass wafer (100), making a droplet transfer path and evaporating a layer of gold foil (102), and making a magnetic field line (101) on the back of the glass wafer, then high The molecular polymer thiohexadecanol (C16H3202S) was spun onto the entire surface of the glass wafer to form a surface film. The magnetic nanoparticle (103) is bonded to thiohexadecanol by a chemical coupling agent (EDC) in a nano-self-assembly manner, and finally the overall surface structure is shown in FIG. . Therefore, when the base plate is not magnetically coupled, the contact of the biobeads with the wafer transport path is a hydrophilic surface with a contact angle of less than 90. As shown in Figure lb; when the magnetic field is generated, the magnetic beads on the top of the carbon chain are attracted by the magnetic field under the base plate and the carbon chain is bent and exposed. At this time, the contact mode of the biological liquid beads with the wafer transport path Will be converted to a hydrophobic surface 'contact angle greater than 90 °, as shown in Figure lc. According to the patent [3], it is pointed out that during the surface transport of the micro-beads, the surface which is more water-repellent is moved to the more hydrophilic surface. Therefore, the first embodiment of the present patent is designed to change the hydrophilicity of the surface by the switching of the magnetic field when the liquid bead traverses the regions of the two different magnetic fields on the substrate, thereby causing continuous movement and control of the bead. Change the transmission direction, the principle diagram, as shown in Figure ld. Two feasible biomicrofluidic transmission wafers are further proposed based on the above concepts and phenomena. The first design, as shown in Figure 2a, determines the direction and speed of transmission of the biological microfluidic transfer wafer by adjusting the timing and strength of the magnetic field switch. Therefore, the design can be further different. 17 This is a patent for the application. Do not copy the control mode of 200842350, determine the procedure and time of the biological reagent reaction, and control the dose size and delivery to the designated area for reaction and classification. The design of the second paragraph, as shown in Fig. 2b, can be formed by changing the density of the magnetic field in the transport channel, and having a different ratio of gold foil density per unit area (ie, changing the density of the long carbon chain structure per unit area). The continuous hydrophilic-hydrophobic gradient of the transport surface allows for the spontaneous and continuous transport of the bead, which is further applicable to the control of microfluidic valves and simplifies wafer cost and design. A schematic structural view of the second embodiment, as shown in FIG. 3, is similar to the first embodiment described above, and the main difference is in the process of nano self-assembly, with a very negatively charged triple phosphate (TTP). The nanoparticle (303) replaces the magnetic nanoparticle (103). Therefore, changing the degree of bending of the carbon chain and the surface hydrophobicity will also be achieved by the electric field device (301) replacing the magnetic field device (101a). The wafer design of the second embodiment is also relatively simple with the first embodiment. The main advantage is that no additional electric field device is required on the back surface of the glass substrate, and the position of the surface electrode is directly defined by the gold foil. And the size of the area, which in turn saves costs and simplifies the complexity of the chip design. Two possible designs are presented below based on their principles and concepts. As shown in the figure, the transmission chip of the third type is to provide an electric field on the gold foil via an external voltage through a wire, and to switch the switch according to the design requirement to achieve fluid control purposes. The fourth design, as shown here, arranges a series of electrodes on the path of transporting the microfluidic wafer and gradually reduces the size and density distribution. This has the advantage of forming a surface with a continuous surface tension gradient that reduces the gold foil. The use and consumption of electric field energy, and the design of the device that saves the switch, effectively simplifies the cost and design of the wafer. 18 This is a patent for filing a patent. Do not copy the content. 200842350 References [1] Shenderov and A. David, ^Actuators for microfluidics without moving parts,” U· S· Patent Pub· No. 6,565,727.
[2] Pamula, V. K. Pollack; M. G. Paik; P. Y. Ren; H. Fair and R. B.,[2] Pamula, V. K. Pollack; M. G. Paik; P. Y. Ren; H. Fair and R. B.,
Apparatus for manipulating droplets by electrowetting—based techniquesU. S. Patent Pub. No. 6,911,132.Apparatus for manipulating droplets by electrowetting-based techniquesU. S. Patent Pub. No. 6,911,132.
[3] 楊鏡堂,陳建洋,楊宗翰,陳琮瑜,2006, ”微流體分離傳輸裝置 (Microfluidics Device for Separation and Transportation),"中 華民國發明專利第1261572號(公告日:2006/09/11; 93/08/09 D案,[3] Yang Jingtang, Chen Jianyang, Yang Zonghan, Chen Yuyu, 2006, “Microfluidics Device for Separation and Transportation, " Republic of China Invention Patent No. 1261572 (Announcement Date: 2006/09/11; 93/08 In case /09 D,
No· 094125927,國科會計畫編號:NSC 93-2218-ΕΗ)〇7-〇48)·No· 094125927, National Accounting Drawing No.: NSC 93-2218-ΕΗ)〇7-〇48)·
19 本文為申請立案之專利,請勿複製内容 200842350 【圖式簡單說明】 圖式說明: 第1圖以奈米自組裝技術製作生化分子層過程示意圖 第2圖以磁場調控生化分子層之生醫晶片傳輸原理與設計示意圖 第3圖以電場調控生化分子層的表面親疏水性與傳輸機制示意圖 第4圖以電場調控生化分子層之生醫晶片傳輸原理與設計示意圖 圖示符號說明 100 Pyrex 7740 glass 玻璃基版; l〇la 電感裝置提供磁場切換; 101b 磁場範圍; 102 金箔; 103 磁性奈米粒子; 104 a 高分子聚合物硫代十六醇酸(C16H3202S); 104 b 受磁場而彎曲的高分子聚合物硫代十六醇酸(C16H3202S); 105 液珠; 106 液珠傳輸的方向; 200 Pyrex 7740 glass 玻璃基版; 201a 電感裝置; 2〇lb 磁場範圍; 20 200842350 ' 408 本文為申請立案之專利,請勿複製内容 第四款晶片整體架構; 拾、申請專利範圍: 1. 一種改變固體表面親疏水性之方法,其包括: (a) 表面有機或生化分子薄膜的製作; (b) 表面親疏水性的調控; 2. 如申請專利範圍第1項所述之實施方式,其表面生化分子薄膜的製作是 以化學合成技術或生物自組裝技術,製作出具有親疏水性的化學或生物 分子或內含奈米粒子之結構。 3. 如申請專利範圍第1項所述之實施方式,以電場、磁場或外部能量的作 用,進而調控生化分子薄膜之表面親疏水特性。 4. 一種可被調控表面親疏水性裝置,其包括: (a) 一基材,其上鋪上分子薄膜;薄膜下方得但爲必須設計一導電性 表面做控制分子結構之用。 (b) 一生化分子薄膜,其中生化分子結構具有如長鏈分子等可變形之 分子結構並可被電場、磁場或外部能量調控其結構,進而改變薄 膜之表面親疏水性; (c) 一裝置,能夠提供並控制磁場、電場或外部能量的大小、時間、 頻率和序列; (d) 一液珠,其成分可內含生化分子; 5. 如申請專利範圍第4項所述之裝置,構成基材之材料可爲矽晶圓、玻 璃、金屬、高分子材料之任一種或其組合。 2219 This article is a patent for the application, please do not copy the content 200842350 [Simple description of the schema] Schematic description: Figure 1 is a schematic diagram of the process of making biochemical molecular layer by nano self-assembly technology. Figure 2 is a biomedical layer of biochemical molecular layer. Schematic diagram and design of wafer transferFig. 3 Schematic diagram of the surface hydrophobicity and transport mechanism of the biochemical molecular layer controlled by electric field. Figure 4 shows the transmission principle and design diagram of the biomedical wafer with electric field control biochemical layer. 100 Pyrex 7740 glass Basic plate; l〇la inductive device provides magnetic field switching; 101b magnetic field range; 102 gold foil; 103 magnetic nanoparticles; 104 a high molecular polymer thiohexadecanol (C16H3202S); 104 b polymer bent by magnetic field Polymer thiohexadecanol (C16H3202S); 105 liquid beads; 106 direction of droplet transport; 200 Pyrex 7740 glass glass base; 201a inductive device; 2〇 lb magnetic field range; 20 200842350 ' 408 This is an application for filing Patent, please do not copy the entire structure of the fourth wafer; pick up, apply for patent scope: 1. Change the surface hydrophobicity of the solid surface The method comprises the following steps: (a) preparation of a surface organic or biochemical molecular film; (b) control of surface hydrophobicity; 2. production of a surface biochemical molecular film according to the embodiment described in claim 1 The chemically synthesized or bio-self-assembled technology is used to produce a chemically or biomolecule having a hydrophilic or hydrophobic structure or a structure containing nanoparticles. 3. The method of claim 1, wherein the surface of the biochemical molecular film is characterized by an electric field, a magnetic field or an external energy. 4. A surface-hydrophobic device capable of being conditioned, comprising: (a) a substrate having a molecular film deposited thereon; and a film underneath the film for designing a conductive surface for controlling the molecular structure. (b) a biochemical molecular film in which a biochemical molecular structure has a deformable molecular structure such as a long-chain molecule and can be controlled by an electric field, a magnetic field or an external energy to change the surface hydrophobicity of the film; (c) a device, The size, time, frequency and sequence of the magnetic field, electric field or external energy can be provided and controlled; (d) a liquid bead, the composition of which can contain biochemical molecules; 5. The device according to claim 4, the constituent base The material of the material may be any one or a combination of germanium wafer, glass, metal, polymer material. twenty two