TW200840368A - Techniques for content adaptive video frame slicing and non-uniform access unit coding - Google Patents

Techniques for content adaptive video frame slicing and non-uniform access unit coding Download PDF

Info

Publication number
TW200840368A
TW200840368A TW96149639A TW96149639A TW200840368A TW 200840368 A TW200840368 A TW 200840368A TW 96149639 A TW96149639 A TW 96149639A TW 96149639 A TW96149639 A TW 96149639A TW 200840368 A TW200840368 A TW 200840368A
Authority
TW
Taiwan
Prior art keywords
frame
slice
vau
frames
encoding
Prior art date
Application number
TW96149639A
Other languages
Chinese (zh)
Inventor
Seyfullah Halit Oguz
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200840368A publication Critical patent/TW200840368A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/129Scanning of coding units, e.g. zig-zag scan of transform coefficients or flexible macroblock ordering [FMO]

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

Techniques for content adaptive video frame slicing and non-uniform access unit coding for improved coding efficiency are provided. An encoder and decoder are disclosed to process (encode or decode) a single non-uniform video access unit (VAU) employing flexible macroblock ordering (FMO) in conjunction with different slice coding types in response to global motion detection of a camera pan or a scroll within the single VAU.

Description

200840368 九、發明說明: 【發明所屬之技術領域】 ’且更具體而言係關於用 致存取單元之編碼達成改 本發明概言之係關於視訊編石馬 於内容可調適視訊框切割及非一 良之編碼效率之技術。 請之美國臨時申請案第 以引用的方式併入本文 本申請案主張2006年12月22曰申 60/876,920號之權利,其全部内容 中0200840368 IX. Description of the invention: [Technical field to which the invention pertains] 'and more specifically regarding the use of the encoding of the access unit to achieve the generalization of the present invention regarding the video editing of the content of the video frame cutting and non- A good coding efficiency technology. The U.S. Provisional Application is hereby incorporated by reference. This application claims the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of

U 【先前技術】 在所有當前視減縮標準巾,視難或所謂之視訊存取 單元(VAU)之編碼表示包括作為編碼等級中下一較低層之 切片。切片層允許視訊框中整數個巨集區塊(之資料)之功 能的分組’該分組在訊框之編碼表示中在功能上用作一再 同步單元。為用作正敎再同步點,跨越所有切片邊界停 用諸如訊框内預測(基於相鄰像素)及運動向量預測等所有 預測編碼方案/從屬方案。 在Η·264(且不包括任選,附件κ : Η·263 +之切片結構化模 式’矩形切片子模式)之前,先前之諸如Η.261、MPECM、、 MPEG-2/H.262、H.263及MPEG-4等視訊壓縮標準支援一 實質上由整數個連續巨集區塊(以光柵掃描次序)組成之切 片結構,其中所限制之切片大小略有不同。 刀 — =•264立標準引入了 ”切片群組”之概念,其使得能夠以— 完全任意之方式將一訊框之巨集區塊劃分成多個切片群組 及切片群組中之多個切片中,且因此不受必須在光柵掃描 次序上係連續之約束。該任意分解係藉由所謂之,,切片^ 127986.doc 200840368 組映射”來說明 射傳輸至該解 (FMO) 〇 ’除訊框之屢縮資料外, 碼器。此規定稱作靈活 亦將切片群組映 巨集區塊排序U [Prior Art] In all current video reduction standards, the coded representation of the video or video access unit (VAU) is included as a slice of the next lower layer in the coding level. The slice layer allows the grouping of functions of integer macroblocks (data) in the video frame. The packet is functionally used as a resynchronization unit in the coded representation of the frame. To use as a positive resynchronization point, all predictive coding schemes/dependent schemes such as intraframe prediction (based on neighboring pixels) and motion vector prediction are discontinued across all slice boundaries. Prior to Η·264 (and excluding optional, attachment κ: Η·263 + slice structuring mode 'rectangular slice submode'), previously such as 261.261, MPECM, MPEG-2/H.262, H Video compression standards such as .263 and MPEG-4 support a slice structure consisting essentially of an integer number of consecutive macroblocks (in raster scan order), where the limited slice size is slightly different. Knife—The =264 standard introduces the concept of a "slice group" that enables the division of a macroblock of a frame into multiple slice groups and multiple slice groups in a completely arbitrary manner. The slices are, and therefore are not constrained by, having to be contiguous in raster scan order. The arbitrary decomposition is described by the so-called "slice ^ 127986.doc 200840368 group mapping" to describe the data transmitted to the solution (FMO) 除 'decoding frame. The code is called flexible. Slice group mapping macro block sorting

L 因此存在用於内容可調適視訊框切割及非-致存取單元 之編碼達成改良之編碼效率之技術的需要。 【發明内容】 仰本文提供多個用於内容可調適視訊框切割及非_致存取 單元之編碼達成改良之編碼效率之技術。本文提供一包括 -處理器之裝置,該處理器運作以實施劃分成多個切片群 組及切片,内容可調適訊框劃分且使用一或多個切片編碼 類型在-早個VAU中實施非—致視訊存取單元(VAU)之編 碼。在:個實施例中’有一記憶體耦合至該處理器。 在一恶樣中,本文提供一包括一編碼引擎之編碼設備, 該編碼引擎可運作以回應於一照相機之搖攝或一捲動之全 局運動偵測而結合一單個視訊存取單元(VAu)中之不同切 片編碼類型來應用靈活巨集區塊排序(FM〇)。 在另一您樣中,一編碼設備包括一編碼引擎,該編碼引 擎可運作以回應於一合成場景中之一或多個變化而結合— 單個視訊存取單元(VAU)中之不同切片編碼類型應用靈活 巨集區塊排序(FM0)’其中該一或多個變化影響該視訊框 之一或多個部分而非整個視訊框。該一或多個變化可包括 剪切場景變化、交又淡化、淡入或淡出、放大或縮小及諸 如搖攝或捲動等全局運動多樣化。 在另一態樣中,提供一包括一解碼引擎之解碼設備。該 解碼引擎可運作以結合一單個視訊存取單元(vau)中不同 127986.doc -6 - 200840368 之切片編碼類型來應用靈活巨集區塊排序(FMO)來解碼該 單個經非一致編碼之VAU。 在另一組態中,提供一電腦程式產品,其包括一包括用 於處理多媒體資料之指令之電腦可讀媒體。該等指令使一 電腦使用靈活巨集區塊排序(FM0)實施將一訊框内容可調 適訊框劃分成多個切片群組及切片。該等指令亦使該電腦 使用一或多個切片編碼類型對該等經劃分之訊框實施非一 致VAU之編碼。L therefore there is a need for techniques for adapting the content of video frame splicing and coding of non-access units to achieve improved coding efficiency. SUMMARY OF THE INVENTION A number of techniques are provided for content-enhanced video frame splicing and non- _ access unit coding to achieve improved coding efficiency. Provided herein is a device including a processor that operates to divide into a plurality of slice groups and slices, the content is tunable, and the one or more slice coding types are implemented in an early VAU. The encoding of the Video Access Unit (VAU). In one embodiment, a memory is coupled to the processor. In a bad example, the present invention provides an encoding device including an encoding engine operable to combine a single video access unit (VAu) in response to panning of a camera or global motion detection of a scroll. Different slice coding types are used to apply flexible macro block ordering (FM〇). In another example, an encoding device includes an encoding engine operative to combine in response to one or more changes in a composite scene - different slice encoding types in a single video access unit (VAU) Apply Flexible Macro Block Sorting (FM0) 'where the one or more changes affect one or more portions of the video frame instead of the entire video frame. The one or more changes may include cropping scene changes, intersecting and fades, fade in or fade out, zooming in or out, and global motion diversification such as panning or scrolling. In another aspect, a decoding device including a decoding engine is provided. The decoding engine is operative to apply a flexible macroblock ordering (FMO) to decode the single non-coherently encoded VAU in conjunction with a slice encoding type of 127986.doc -6 - 200840368 in a single video access unit (vau). . In another configuration, a computer program product is provided comprising a computer readable medium comprising instructions for processing multimedia material. These instructions enable a computer to use a flexible macroblock ordering (FM0) implementation to divide the frame of content into a plurality of slice groups and slices. The instructions also cause the computer to perform non-conforming VAU encoding of the divided frames using one or more slice encoding types.

在一又一組態中,提供一包括一電腦可讀媒體之電腦程 式產品,該電腦可讀媒體包括用於處理多媒體資料之指 々。该等指令使一電腦結合一單個視訊存取單元(VAU)中 不同之切片編碼類型而應用靈活巨集區塊排序(FM〇)來解 碼該單個經非一致編碼之VAU。 本文所述之該等技術提供一使用多個切片類型進行視訊 存取單元編碼以達成增強之編碼效率之方法。 自詳細說明中尤其在結合隨附圖式時,將更易明瞭額外 之態樣。 【實施方式】 用作一實例、例子 被視為較其他組態 ”引擎”、’·機器"、 在本文中,”實例性”一詞用於意指,, 或例解"。本文所述之組態或設計未必 或没汁為較佳或有利,且術語”核心,,、 ’’處理器’’及”處理單元”可互換使用。 下文詳細說明係關於某些 可以申請專利範圍所界定及 本說明中,參照其中使用相 樣本組態。然而,該揭示内容 覆蓋之多種不同形式體現。在 同之編號標識相同之部件之附 127986.doc 200840368 可以一系列圖片、訊框及/或域來表徵視訊信號,圖 片、訊框及/或域中之任-者均可進-步包括-或多個切 片如本文所用,術語’’訊框,,係一可囊括一或多個訊框、 域、圖片及/或切片之寬泛術語。 組悲包括促進—多媒體傳輸系統中頻道切換之系統及方 法。多媒體資料可包括—❹個運動視訊影像、運動音訊 影像、靜止影像、文本或任何其他合適_之音訊視訊 資料。 諸如視訊編碼器等多媒體處理系統基於諸如運動圖片專 豕組(MPEG)-1、_2及_4標準、國際電信聯盟(Ιτυ)_τ h 263 標準、及ITU-T H.264標準及其相似標準、IS〇/IEc MpEG_ 4 $刀10,即鬲級視訊編碼(AVC)等國際標準使用編碼方In a further configuration, a computer program product comprising a computer readable medium is provided, the computer readable medium comprising a fingerprint for processing multimedia material. The instructions cause a computer to apply the flexible macroblock ordering (FM〇) to a different non-coherently encoded VAU in conjunction with a different slice encoding type in a single video access unit (VAU). The techniques described herein provide a method of encoding video access units using multiple slice types to achieve enhanced coding efficiency. In the detailed description, especially when combined with the accompanying drawings, it will be easier to understand the additional aspects. [Embodiment] As an example, an example is considered to be more than other configurations "engine", "machine", and in this article, the term "institutive" is used to mean, or to clarify ". The configurations or designs described herein are not necessarily or preferably not preferred, and the terms "core,", "processor" and "processing unit" are used interchangeably. The definitions of the scope and in this description refer to the use of the phase sample configuration. However, the disclosure covers many different forms. 127986.doc 200840368 can be used in a series of pictures, frames and / or domain to characterize the video signal, any of the pictures, frames and / or domains can be further included - or multiple slices as used herein, the term 'frame, one can include one or more A broad term for frames, fields, pictures, and/or slices. Groups include systems and methods for facilitating channel switching in multimedia transmission systems. Multimedia data can include - one motion video image, motion video image, still image, text Or any other suitable audiovisual material. Multimedia processing systems such as video encoders are based on standards such as Motion Picture Experts Group (MPEG)-1, _2 and _4, International Telecommunication Union (Ιτυ) _τ h 263 standard, and the ITU-T H.264 standard and its similar standard, IS〇 / IEc MpEG_ 4 $ 10 knife, that Ge-level video coding (AVC) and other international standards using coding

法來編碼多媒體資料,上述標準中之每-者均出於所有目 的以參考方式完全併人本文巾。該等編瑪且延伸而言解碼 通常係關於壓縮多媒體資料以用於傳輸及/或儲存。 壓縮可廣泛地視為自多媒體資料移除冗餘之過程。 來說t —,5现’該等圖片包括訊框 (一正個圖片)或域(例如-交織視訊流包括-圖片之間隔之 奇數或偶數線之域)。進-步,每—訊框或域均可二—牛 =或多個切片、或該訊框或域之子部分。當單獨使: 或了 =他詞語結合使用時,本文所用術語”訊框"可指一圖 片汛框、-域或其-切片。視訊編蝎方法藉由使用叙 抽或有損之壓縮演算法壓縮每一訊框來壓縮視訊信號。: 127986.doc 200840368 框内編碼(本文亦稱作内㈣)純制—純 框1訊框間編碼(本文亦稱作訊框間編碼)指基於其他(參 考)讯框來編碼一訊框。舉 夕 間冗餘,其中在補之時門1 號通常表現時 Λ框之時間序列中彼此接近之訊框具有至 少-些彼此完全匹配或至少部分匹配之部分。The law encodes multimedia material, and each of the above-mentioned standards is entirely for reference. The encoding and extension are generally related to compressing multimedia material for transmission and/or storage. Compression can be widely seen as the process of removing redundancy from multimedia material. Let t -, 5 now 'the pictures include frames (a positive picture) or fields (for example - the interlaced video stream includes - the domain of the odd or even lines of the picture interval). Step-by-step, each frame or field can be two-negative = or multiple slices, or sub-parts of the frame or field. The term "frame" as used herein, when used alone or in combination with a word, may refer to a picture frame, a field, or a slice thereof. The video coding method uses a compressed or lossy compression algorithm. The method compresses each frame to compress the video signal.: 127986.doc 200840368 In-frame coding (also referred to as inner (four)) pure-frame-to-frame coding (also referred to as inter-frame coding) refers to other (Reference) frame to encode a frame. Redundancy, wherein the frames that are close to each other in the time series of the frame when the door number 1 is normally displayed have at least some matching or at least partially matching each other. Part of it.

Ο 諸如視訊編碼器等多媒體處理器可藉由將—訊框 f個像素子集來編碼一訊框。該等像素子集可稱作塊或互 集區塊_),且可包括舉例而言16xl6個像素。編碼Η 進一步將每一 16χ16巨集區塊劃分成多個子塊。每 均可進一步包括額外子塊。舉例而言叫㈤6巨集區塊 之子塊可包括16X8及8X16之子塊。該等16Χ8及8Χ16子塊之 每一者均可包括(舉例而言)多個㈣子塊,8χ8子塊自身可 包括(舉例而言)4χ4、4χ8及8Χ4子塊等。本文所用術語"塊" 可指一巨集區塊或任何大小之子塊。 編碼器使用基於訊框間編碼運動補償之演算法利用連續 訊框之間的時間冗餘。運動補償演算法識別至少部分心 配-塊之-❹個參考訊框之部分。該塊在該純中可相 對於該(等)參考訊框之匹配部分移位。該移位係藉由—或 多個運動向量來表徵。可以—或多個剩餘部分表徵該塊與 該(等)參考訊框之部分匹配部分之間的區別。該編碼器可 將一讯框編碼為包括針對訊框之一特定分區之一或多個運 動向量及剩餘部分之資料。可藉由近似地最大程度地減小 成本函數來選擇一特定塊分區以用於編碼一訊框,該成 本函數(舉例而言)針對由一編碼形成之訊框内容來平衡編 127986.doc -9- 200840368 碼大小與失真或所感知失真。 者。孔框間編碼較訊框内編碼賦予更多之屬縮效率。然而, 田參考貝料(例如參考訊框或參考域)因頻道錯誤及類似原 因而丟失時,訊框間編碼可出現問題。除因錯誤而丢失參 考資料外,參考資料亦可因—訊框間編碼訊框處視訊信號 之初始獲得或重新獲得而不可用。在該等情況下,可能無 法解碼訊框間編碼之資料,或可形成可傳播之不合意假像 及錯誤。該等情形可導致—延伸時間段之不合意使用者經 歷〇 一獨立可解碼訊框内編碼訊框係使視訊信號能夠同步/ 再同步之最常見訊框形式。該MpEG_x& H 26x標準使用稱 作圖片組(GOP)之内容,G0P包括一訊框内編碼訊框(亦稱 作I成框)及參考I訊框之臨時預測p訊框或雙向預測6訊框 及/或該GOP内之其他P及/*B訊框。較長之G〇p對於增加 之壓縮率係合意,但較短之GOP達成較快之獲得及/或同 步/再同步。增加I訊框之數量將允許較快之獲得及/或同 步/再同步,但以較低之壓縮為代價。 圖1圖解說明根據某些組態一實例性多媒體通信系統1 〇〇 之方塊圖。系統100包括經由一網路丨4〇與一解碼器裝置 150通信之編碼器裝置110。在一實例中,編碼器裝置11() 自一外部源1 02接收一多媒體信號且編碼彼信號用於在網 路140上傳輸。 在該實例中,編碼器裝置110包括一耦合至一記憶體114 及收發器116之處理器112。處理器112編碼來自多媒體 127986.doc -10- 200840368 資料源之資料且將其提供至收發器116用於在網路i4〇上通 信。在該實例中,解碼器裝置150包括一耦合至一記憶體 154及收發器156之處理器152。處理器152可包括一或多 個通用處理器及/或一數位信號處理器。記憶體可包括 或夕個固恶存儲器或基於磁碟之存儲器。收發器156經 組悲以藉由網路14〇接收多媒體資料及將該多媒體資料提 供至處理ϋ 152進行解碼。在—實例中,收發器⑸包括一 無線收發器。網路140可包括一或多個有線或無線通信系 統,其包含一乙太網路、電話(例如p〇TS)、電纜、電源線 路、及光纖系統及/或一無線系統之一者或多者,該無線 系統包括一分碼多重存取(cdma或CDMA2000)通信系 統、一分頻多重存取(FDMA)系統、一正交分頻多重 (OFDM)存取系統、一分時多重存取(TDMA)系統諸如 GSM/GPRS(通用封包無線電服務)/EDGE(增強之資料gSM 環境)、一 TETRA(地面中繼無線電)行動電話系統、一寬頻 分碼多重存取(WCDMA)系統、一高資料傳輸率(1xEV_d〇 或 1xEV-DO Gold Multicast)系統、一 IEEE 802.11 系統、一 MediaFLO系統、一 DMB系統、一 DVB-Η系統及類似系統 中之一或多者。 圖2 A圖解說明一根據某些組態可用於圖1之系統丨〇〇中之 一只例性編碼器裝置110之方塊圖。在該組態中,編碼哭 110包括一訊框間編碼編碼器元件i 18、一訊框内編碼編碼 器元件120、一參考資料產生器元件122及一發射器元件 124。訊框間編碼編碼器118編碼參考位於其他時間訊框中 127986.doc -11 · 200840368 之視訊資料之其他部分進行時間預測(例如使用運動補償 之預測)之視訊的訊框間編碼部分。訊框内編碼編碼器12"〇 編碼可不參考其他在時間上定位之視訊資料而單獨進行解 碼之視訊之訊框内編碼部分。在某些組態中,訊框内編碼 編碼器12 0可使用空間預測來利用位於相同時間訊框中之 其他視訊資料之冗餘。 。在-態樣中’參考資料產生器122產生指示分別由編碼 器120及118產生之訊框内編碼視訊資料及訊框間編碼視訊 資料所在位置之資料。舉例而言,該參考資料可包含子塊 及/或巨集區塊之識別符,—解碼器使用該等識別符來在 -訊框中定位-位置。該參考資料亦可包含一用於在一視 訊訊框序列中定位一訊框之訊框序號。 發射器124藉由-諸如圖i之網路14〇之網路來傳輸訊框 間編碼資料、訊框内編碼資料,且在某些組態中傳輸來考 資料。該㈣可在-或多個通信麟上傳輸。術語通信鍵 路係以通用意義使用’且可包含任何通信頻道,包含但不 限於有線或無線網路、虛擬頻道、光學鏈路及諸如此類。 在某些組態中’訊框内編碼之資料在-基礎層通信鏈路上 傳輸’且訊框間編碼之資料在—增強層通信鏈路上傳輸。 在某些組態中’訊框内編碼之資料及訊框間編碼之資料皆 在相同之鏈路上傳輸。纟某些組態中,訊框間編碼之 貧料、訊框内編碼之資料及參考資料中之-者或多者可在 -邊帶通信鏈路上傳輸。舉例而t,可使用諸如η·264之 補充增強資訊()訊息或MPEG_2之user_data訊息等一邊 127986.doc -12- 200840368 ▼通信鍵路。在羊此έ日能士 編媽之資料及夫考:二框内編碼之資料、訊框間 =及參考資料中之一者或多者藉由一 輸將=道可包括多個資料封包,該等資料封包含有 貝ί包4別為屬於該虛擬頻道之_可識別封包標 該技術中已知識別—虛擬頻道之其他形式,例如頻 率劃分、時間劃分、碼展頻等。Multimedia A multimedia processor, such as a video encoder, can encode a frame by f-pixel subsets of frames. The subset of pixels may be referred to as a block or inter-block_) and may include, for example, 16 x 16 pixels. The code Η further divides each 16χ16 macroblock into a plurality of sub-blocks. Each can further include additional sub-blocks. For example, a sub-block of a (5) 6 macroblock may include 16X8 and 8X16 sub-blocks. Each of the 16 Χ 8 and 8 Χ 16 sub-blocks may include, for example, a plurality of (four) sub-blocks, which may themselves include, for example, 4 χ 4, 4 χ 8 and 8 Χ 4 sub-blocks, and the like. The term "block" as used herein may refer to a macroblock or sub-block of any size. The encoder uses an algorithm based on inter-frame coding motion compensation to exploit temporal redundancy between successive frames. The motion compensation algorithm identifies at least a portion of the heartbeat-block-reference frame. The block can be shifted in the pure relative to the matching portion of the (equal) reference frame. The shift is characterized by - or multiple motion vectors. The difference between the block and the partially matched portion of the (equal) reference frame can be characterized as - or a plurality of remaining portions. The encoder can encode a frame to include data for one or more motion vectors and the remainder of a particular partition of the frame. A particular block partition can be selected for encoding a frame by approximately minimizing the cost function, the cost function (for example) balancing the 127986.doc for the frame content formed by a code - 9- 200840368 Code size and distortion or perceived distortion. By. Inter-hole coding gives more reduction efficiency than intra-frame coding. However, inter-frame coding can be problematic if the field reference material (such as a reference frame or reference field) is lost due to channel errors and the like. In addition to the loss of reference material due to errors, the reference material may also be unavailable due to the initial acquisition or re-acquisition of the video signal at the inter-frame coded frame. In such cases, it may not be possible to decode the inter-frame coded material or to create undesirable artifacts and errors that can be propagated. Such situations may result in the most common frame form in which the undesired user of the extended time period experiences an encoded frame within an independently decodable frame to enable the video signal to be synchronized/resynchronized. The MpEG_x& H 26x standard uses a content called a picture group (GOP), and the GOP includes an intra-frame coded frame (also referred to as an I-frame) and a temporary prediction p-frame or bi-directional prediction of the reference I frame. The box and/or other P and /*B frames within the GOP. A longer G〇p is desirable for increased compression, but a shorter GOP achieves faster acquisition and/or synchronization/resynchronization. Increasing the number of I-frames will allow faster acquisition and/or synchronization/re-synchronization, but at the expense of lower compression. 1 illustrates a block diagram of an exemplary multimedia communication system 1 根据 in accordance with certain configurations. System 100 includes an encoder device 110 that communicates with a decoder device 150 via a network. In one example, encoder device 11() receives a multimedia signal from an external source 102 and encodes the signal for transmission over network 140. In this example, encoder device 110 includes a processor 112 coupled to a memory 114 and transceiver 116. Processor 112 encodes material from the multimedia 127986.doc -10- 200840368 data source and provides it to transceiver 116 for communication over network i4. In this example, decoder device 150 includes a processor 152 coupled to a memory 154 and transceiver 156. Processor 152 can include one or more general purpose processors and/or a digital signal processor. The memory may include a memory or a disk-based memory. Transceiver 156 is responsive to receive multimedia material over network 14 and provide the multimedia data to processing 152 for decoding. In the example, the transceiver (5) includes a wireless transceiver. Network 140 may include one or more wired or wireless communication systems including one or more of an Ethernet network, a telephone (eg, p〇TS), a cable, a power line, and a fiber optic system and/or a wireless system The wireless system includes a code division multiple access (cdma or CDMA2000) communication system, a frequency division multiple access (FDMA) system, an orthogonal frequency division multiple (OFDM) access system, and a time division multiple access. (TDMA) systems such as GSM/GPRS (General Packet Radio Service) / EDGE (Enhanced Data gSM Environment), a TETRA (Terrestrial Relay Radio) Mobile Phone System, a Wideband Code Division Multiple Access (WCDMA) System, a High One or more of a data transmission rate (1xEV_d〇 or 1xEV-DO Gold Multicast) system, an IEEE 802.11 system, a MediaFLO system, a DMB system, a DVB-Η system, and the like. 2A illustrates a block diagram of an exemplary encoder device 110 that may be used in the system of FIG. 1 in accordance with certain configurations. In this configuration, the code cry 110 includes an inter-frame code encoder component i 18, an intra-frame codec component 120, a reference generator component 122, and a transmitter component 124. Inter-frame code encoder 118 encodes the inter-frame coding portion of the video referenced to other portions of the video material in other time frames 127986.doc -11 · 200840368 for temporal prediction (e.g., using motion compensated prediction). The intra-frame code encoder 12" code can encode the intra-frame code portion of the video that is decoded separately without reference to other video data that is temporally located. In some configurations, intra-frame code encoder 120 may use spatial prediction to utilize redundancy of other video data located in the same time frame. . In the - state, the reference data generator 122 generates information indicating the location of the intra-frame encoded video data and the inter-frame encoded video data generated by the encoders 120 and 118, respectively. For example, the reference material can include identifiers for sub-blocks and/or macroblocks - the decoder uses the identifiers to locate - position in the frame. The reference material can also include a frame number for locating a frame in a sequence of video frames. The transmitter 124 transmits the inter-frame encoded data, the intra-frame encoded data, and the transmitted data in some configurations by a network such as the network 14 of FIG. The (4) can be transmitted on - or a plurality of communication links. The term communication key is used in a generic sense and may include any communication channel including, but not limited to, a wired or wireless network, a virtual channel, an optical link, and the like. In some configurations, the information encoded within the frame is transmitted on the base layer communication link and the inter-frame encoded data is transmitted on the enhancement layer communication link. In some configurations, the data encoded in the frame and the data encoded between the frames are transmitted on the same link.纟 In some configurations, one or more of the inter-frame coded poor material, intra-frame coded data, and reference material may be transmitted on the sideband communication link. For example, t can be used such as η·264 supplementary enhancement information () message or MPEG_2 user_data message side 127986.doc -12- 200840368 ▼ communication key. In the sheep this day, the information of the mother and the husband's test: the data in the two boxes, the frame = and one or more of the reference materials can include multiple data packets by one input. The data package includes a packet that belongs to the virtual channel and is identifiable to the virtual channel. Other forms of the virtual channel are known, such as frequency division, time division, code spreading, and the like.

圖2B圖解說明根據某些組態用於01之系統⑽中之一實 例性解碼Μ置15G之-方塊圖。在該組態中,解碼器15〇 土括-接收器元件158、一選擇性解碼器元件⑽、一參考 貝料確定器元件162、及諸如-頻道切換谓測器元件164及 -錯誤:測器元件166等一或多個參考資料可用偵測器。 接收器158接收經編碼之視訊資料(例如藉由圖⑴入中 之編碼器11〇編碼之資料)。接收器158可藉由諸如圖i之網 路140等有線或無線網路接收該經編碼之資料。該資料可 精由-或多個通信鏈路接收。在某些組態中,該訊框内編 碼之資料在一基礎層通信鏈路上接收且該訊框間編碼之資 料在一增強層通信鏈路上接收。在某些組態中,該訊框内 、扁碼之 > 料及該訊框間編碼之資料皆在相同之通信鏈路上 接收。在某些組態中,訊框間編碼之資料、訊框内編碼之 貝料及參考資料中之一者或多者可在一邊帶通信鏈路上接 收。舉例而言,可使用諸如Η·264之補充增強資訊(sei)訊 息或MPEG-2之user—data訊息等一邊帶通信鏈路。在某些 組恶中,訊框内編碼之資料、訊框間編碼之資料及參考資 料中之一者或多者藉由一虛擬頻道傳輸。一虛擬頻道可包 127986.doc -13- 200840368 =個貧料封包,該等資料封包含有—將該資料封包識別 2屬於該虛擬頻道之—可識別封包標頭。在該技術中已知 識別一虛擬頻道之其他形式。 選擇性解竭器160解碼所接收到之訊框間編碼及訊框内 編石f之視訊資料。在某些組態中,該所接收之資料包括視 sfL ^料之一部分之% & μ处 ^ 之汛框間編碼之形式及視訊資料之一部分 之一訊框内編碼之形式。在將據以預測訊框間編碼之資料 ▲多考貝料解碼後’可解碼將訊框間編碼之資料。舉例而 使用運動補仏預測進行編碼之資料包括識別參考資 料之位置之-運動向量及一訊框識別符。若藉由訊框間編 碼形式之運動向量及訊框識別符識別之訊框之該部分係可 用⑽如已經解碼),則選擇性解碼器16〇可解碼該訊框間編 馬之形式然而’若該參考資料不可用,則選擇性解碼器 160可解碼該訊框内編碼之形式。 在L樣中’參考育料確定器162識別所接收之參考資 料,該參考資料指示該訊框内編碼及訊框間編碼資料在所 接收之經編碼視訊資料中所在之位置。舉例而言,該參考 資料可包括選擇性解碼器160用以在一訊框中定位一位置 之子塊及/或巨集區塊之識別符。該參考資料亦可包括一 用以在-視訊框序列中定位一訊框之訊框序列號。使用該 所接收之參考資料使一解碼器能夠確定訊框間編碼之資料 所相依之參考資料是否可用。 參考資料之可用性可受到使用者切換一多頻道通信系統 之一頻道影響。舉例而言,多個視訊廣播可使用一或多個 127986.doc •14- 200840368 通信鏈路供接收器158使用4❹命令接收器158改變至 一不同廣播頻道,則用於該訊框間編碼之f料之參 在新頻道上可能無法立即可供 、" 佶制51 ★ 、、 KM㈣㈣164 6〇、’員道切換命令已發出,且發訊選擇性解碼器 于貝訊來識別用於該訊框間編碼形式之參考資料是Figure 2B illustrates a block diagram of an exemplary decoding device 15G in a system (10) configured in accordance with some configurations. In this configuration, the decoder 15 includes a receiver component 158, a selective decoder component (10), a reference beauties determiner component 162, and a channel switching predictor component 164 and - error: One or more reference materials such as device element 166 may be used by the detector. Receiver 158 receives the encoded video material (e.g., the data encoded by encoder 11 in the figure (1)). Receiver 158 can receive the encoded material via a wired or wireless network, such as network 140 of FIG. This data can be received by - or multiple communication links. In some configurations, the encoded data within the frame is received on a base layer communication link and the inter-frame encoded data is received on an enhancement layer communication link. In some configurations, the information in the frame, the flat code > and the data encoded between the frames are received on the same communication link. In some configurations, one or more of the inter-frame coded data, the in-frame coded material, and the reference material may be received on one side of the communication link. For example, a side of the communication link may be used, such as 补充·264 supplemental enhancement information (sei) information or MPEG-2 user-data message. In some groups, one or more of the information encoded in the frame, the information encoded between the frames, and the reference material are transmitted by a virtual channel. A virtual channel can be packaged 127986.doc -13- 200840368 = a poor packet, the data packet contains - the data packet identification 2 belongs to the virtual channel - the identification packet header. Other forms of identifying a virtual channel are known in the art. The selective decompressor 160 decodes the received inter-frame coding and video data in the frame. In some configurations, the received data includes the form of the inter-frame coding of % & μ at a portion of the sfL^ material and the intra-frame coding of one of the video data. After decoding the data encoded by the inter-frame, ▲ multi-tested data, the information encoded between the frames can be decoded. Examples of data encoded using motion correction prediction include identifying the position of the reference material - the motion vector and the frame identifier. If the portion of the frame identified by the motion vector and frame identifier of the inter-frame coding format is available (10) if it has been decoded, the selective decoder 16 can decode the form of the inter-frame code. If the reference material is not available, the selective decoder 160 can decode the form of the intra-frame coding. In the L-sample, the reference breeding determiner 162 identifies the received reference material indicating the location of the encoded and inter-frame encoded material in the received encoded video material. For example, the reference data can include a selective decoder 160 for locating a sub-block of a location and/or an identifier of a macroblock in a frame. The reference material may also include a frame serial number for locating a frame in the video frame sequence. Using the received reference material enables a decoder to determine if the reference material to which the inter-frame encoded data is dependent is available. The availability of reference material can be affected by the user switching one of the channels of a multi-channel communication system. For example, multiple video broadcasts may use one or more of the 127986.doc • 14-200840368 communication links for the receiver 158 to change to a different broadcast channel using the 4❹ command receiver 158 for inter-frame coding. The reference to f material may not be available immediately on the new channel, " 51 51 ★ , , KM (four) (four) 164 6 〇, 'member switch command has been issued, and the selective decoder is sent to Beixun to identify the message. The reference material for the inter-frame coding format is

C 用,且繼而識別最近訊框内編碼形式之位置,且選擇性地 解碼该所識別之訊框内編碼形式。 ^考資料資料之可用性亦可受到所接收視崎料中錯誤 二=。錯誤❹j器16 6可使用錯誤偵測技術(例如前向糾 =識別位元流中無法糾正之錯誤。若在訊框間編碼形 =依之參考資料中存在無法糾正之錯誤,則錯誤谓測 益166可發訊選擇性解碼器⑽識別哪些視 =…選擇性解碼器16。然後可確定是否解碼該= 碼之二^式(例如若該參Μ料可用)或解碼該訊框内編 ”、、^ S (例如若該參考資料不可用)。 組態中’可重新佈置及/或組合圖2A之編碼器110 :二或多個元件。另外,編碼器11〇之元件可由硬體、軟 中,:體中間體、微碼或其任-組合構建。在某些組態 件。可重新佈置及/或組合圖2B之解碼器150之一或多個元 Η興另:’解石馬器150之元件可由硬體、軟體、拿刃體、中 曰—、微碼或其任一組合構建。 吕亥揭示内交^ 空中介面規二d用(舉例而言)用於咖 ^ Forward Link Only [FLO] Air Interface 127986.doc • 15- 200840368C, and then identifying the location of the intra-frame coding format, and selectively decoding the identified intra-frame coding format. The availability of the test materials can also be affected by the errors in the received data. Error ❹j 16 6 can use error detection technology (such as forward correction = identify errors that cannot be corrected in the bit stream. If there is an uncorrectable error in the reference data according to the frame, the error is measured. The 166 can send a selective decoder (10) to identify which video = ... selective decoder 16. It can then determine whether to decode the = code (for example, if the parameter is available) or decode the frame. , ^ S (for example, if the reference is not available). In the configuration, the encoder 110 of Figure 2A can be rearranged and/or combined: two or more components. In addition, the components of the encoder 11 can be hardware, Soft, medium intermediate, microcode or any combination thereof. In some configurations, one or more of the decoders 150 of Figure 2B can be rearranged and/or combined. The components of the horse 150 can be constructed by hardware, software, blade, middle, microcode or any combination thereof. Lu Hai reveals the internal communication ^ empty intermediary surface 2 d (for example) for the coffee ^ Forward Link Only [FLO] Air Interface 127986.doc • 15- 200840368

Specification for Terrestrial Mobile Multimedia Multicast*' 在TM3系統中遞送即時視訊服務之MediaFL〇TM視訊編碼來 構建,FLO空中介面規範作為技術標準TIA_1〇99公佈於 2006年8月,出於所有目的以引用方式將其完全併入本文 中〇 光柵掃描次序不可避免地給切片分區施加一水平性質。 圖3A及3B中圖解說明兩個分別針對之 切片劃分樣本。 圖3A圖解說明一根據使用一根據]^1>]£(}_1標準之切片結 構之某些組態的一訊框200之一第一實例性樣本切片劃 分。藉由不同之交叉影線來表示不同之切片分區。在該實 例中,該等切片之某些巨集區塊佔據兩個毗鄰之水平列。 在訊框200中,一切片結構包括位於一第一水平列上之巨 集區塊202及位於一第二水平列上之巨集區塊2〇4。在該等 結構中,並非一切片群組中之所有該等巨集區塊皆需要直 接毗鄰。 圖3B圖解說明-根據使用一根據MpEG_2標準之切片結 構之某些組態的-餘21〇之一第二實例性樣本切片劃 刀在圖3B中。亥等切片結構藉由a_q來個別表示。該等 切片結構按列水平地無序佈置。舉例而言,切片結構A延 伸整個第一水平列R1。同樣,切片結構B延伸整個第二水 平列R2。然而’在該實例中,在第三水平歹⑻中列们 由切片結構C及D共用。水平列以、R2、们、、μ、 R 6、R 7、R 8、R 9、R i 〇、ρ 1 u , οSpecification for Terrestrial Mobile Multimedia Multicast*' is built on the MediaFL〇TM video encoding that delivers instant video services in the TM3 system. The FLO empty mediation specification was published as a technical standard in TIA_1〇99 in August 2006, and will be cited for all purposes. It is fully incorporated herein that the raster scan order inevitably imposes a horizontal property on the slice partition. Two separate slices for the slices are illustrated in Figures 3A and 3B. Figure 3A illustrates a first exemplary sample slice partitioning according to a frame 200 using a certain configuration of a slice structure according to the standard of ^1>]. With different cross hatching Representing different slice partitions. In this example, some of the macroblocks of the slices occupy two adjacent horizontal columns. In frame 200, a slice structure includes a macroblock located on a first horizontal column. Block 202 and macroblocks 2〇4 on a second horizontal column. In these structures, not all of the macroblocks in a slice group need to be directly adjacent. Figure 3B illustrates - according to A second exemplary sample slice is used in accordance with one of the configuration of the MpEG_2 standard slice structure in Fig. 3B. The slice structures are individually represented by a_q. The slice structures are arranged by column. Horizontally disordered arrangement. For example, the slice structure A extends over the entire first horizontal column R1. Similarly, the slice structure B extends the entire second horizontal column R2. However, in this example, the third level 歹(8) is listed. Shared by slice structures C and D. Horizontal column, R2 ,, μ, R 6, R 7, R 8, R 9, R i square, ρ 1 u, ο

Rll及R12之切片結構之佈置皆 127986.doc -16- 200840368 意欲係實例性。但是,每—切片均可佔據最多僅—個水平 列且訊框右邊界始終標記一切片之界限。The arrangement of the slice structures of R11 and R12 is 127986.doc -16- 200840368 is intended to be exemplary. However, each slice can occupy up to only one horizontal column and the right edge of the frame always marks the boundary of a slice.

圖4A圖解說明一根據H 264/Avc標準具有基於類型:靈 活巨集區塊排序(FM0)之劃分的樣本訊框25〇。在圖4A 中,訊框250包括-由切料組#2標識之後臺及兩⑺個 ^別由切片群組㈣及#1標識用於興趣區域(r〇i)編碼之前 臺分區256及258。如圖十可見,前臺分區在該作為一 框形結構之訊框中具有一興趣區域,其包括對列之子集及 排之子集毗鄰之巨集區塊。然而,分區256中之巨集區塊 係毗鄰。因此,前臺分區258亦包括多個巨集區塊,該等 巨集區塊經佈置以包括在垂直方向上及水平方向上毗鄰之 巨集區塊之一子集。分區256及分區258標記為矩形區域以 標示彼具體分區之R〇I。因此,該等矩形之上左及下右座 標係必需,且自編碼器裝置11〇傳送至解碼器裝置15〇。 圖4B圖解說明一根據H.264/AVC標準具有基於類型i FMO之劃分的樣本訊框3〇〇。在圖4B中,訊框3〇〇包括一達 成改良之錯誤恢復力及隱藏之棋盤圖案。出於圖解說明之 目的’彼等繪示為白色之巨集區塊與切片群組#〇相關聯。 彼等繪示為黑色之巨集區塊用於切片群組#丨。因此,存在 一可藉由使用FMO加以影響之交替圖案。此被允許,乃因 FMO不再需要該等切片構成毗鄰之巨集區塊。因此,該棋 盤圖案實質上提供散列之切片。 H.264/AVC標準之FMO包括標注為類型〇 —類型6之7種 不同類型。然而,出於圖解說明之目的,本文僅說明類型 127986.doc -17- 200840368 1及類型2來提供切片結構之實例。用於錯誤恢復力目的之 FMO允許以一無巨集區塊被來自相同切片群組之任何其他 巨集區塊包圍之形式排序巨集區塊。因此,在出現一錯誤 (例如一切片在傳輸期間丟失)之情況下,丟失塊之重建可 依賴於可用關區塊之資訊。類型6 FM〇係最重要之 隨機類型。類型6 FM〇允許對使用者完全靈活。諸如類型 〇-類型5等其他FM0類型受限於必須遵循—特定圖案。 雖然嶋指派支援不同之用途,但目前主要將其視為 錯誤恢復力工具且作為一錯誤恢復力工具進行提升。Figure 4A illustrates a sample frame 25B having a partition based on type: flexible macroblock ordering (FM0) according to the H264/Avc standard. In FIG. 4A, frame 250 includes - the following table is identified by the cut group #2 and two (7) are identified by the slice group (4) and #1 for the interest area (r〇i) encoding before the stage partitions 256 and 258. . As can be seen in Figure 10, the foreground partition has an area of interest in the frame as a frame structure, which includes a subset of the columns and a macroblock adjacent to the subset of the rows. However, the macroblocks in partition 256 are adjacent. Thus, foreground partition 258 also includes a plurality of macroblocks arranged to include a subset of macroblocks that are adjacent in the vertical and horizontal directions. Partition 256 and partition 258 are labeled as rectangular areas to indicate the R 〇 I of the particular partition. Therefore, the left and lower right coordinates above the rectangles are necessary and are transmitted from the encoder device 11 to the decoder device 15A. 4B illustrates a sample frame 3〇〇 having a partition based on type i FMO according to the H.264/AVC standard. In Figure 4B, frame 3A includes an improved error resilience and a hidden checkerboard pattern. For illustrative purposes, the macroblocks that are depicted as white are associated with the slice group #〇. They are shown as black macroblocks for the slice group #丨. Therefore, there is an alternating pattern that can be influenced by the use of FMO. This is allowed because FMO no longer needs these slices to form adjacent macroblocks. Thus, the checkerboard pattern essentially provides a hashed slice. The FMO of the H.264/AVC standard includes seven different types labeled as Type 〇 - Type 6. However, for purposes of illustration, only the types 127986.doc -17-200840368 1 and type 2 are described herein to provide examples of slice structures. The FMO for error resiliency allows the macroblocks to be ordered in the form of a macroblock-free block surrounded by any other macroblock from the same slice group. Thus, in the event of an error (e. g., a slice is lost during transmission), the reconstruction of the lost block may depend on the information of the available blocks. Type 6 FM is the most important random type. Type 6 FM〇 allows full flexibility for the user. Other FM0 types, such as type 〇-type 5, are limited to having to follow a particular pattern. Although 嶋 is assigned to support different uses, it is currently regarded as an error resilience tool and is promoted as an error resilience tool.

在H.264視訊壓縮標準之前的壓縮標準中,在每一視訊 讯框之整個範圍内,該VAU之編碼類型必須一致。此使構 成汛框之切片必須使用相同之編碼類型1(内)、P(預測)或 (雙預測或雙向預測)進行編碼成為必需。隨著264標準 之引入,消除了該限制。H.264標準允許在一 VAU中使用 不同之編碼類型。目此一彻之切片可大致上具有不同 (編碼)之類型,導致非一致經編碼之vau。此外,H264亦 夠藉由使用對一整數視訊框一致之編碼類型產生一 VAU,例如—1型VAU、P型VAU、或㈣乂仙。 當前組態提供一編碼引擎5〇〇(圖7),用以結合在一 VAU I使用不同切片(編碼)類型之可能性利用Η 264之fm〇規 2,以達成在照相機之搖攝或捲動之(常見且因此最重要) ^局運動之情況中及其中場景由語意上不同之片段構成之 靶例中,達成改良之編碼效率。 圖1〇圖解說明一合成(即多個區域)場景VAU 900,其具 127986.doc •18- 200840368 有在語意上不同之多個片段9〇2、904、906、9〇8及91〇, 例:商業新聞。在由片段數字9〇2標識之場景左上部,有 現場直播視訊(新_廣告剪輯)。在右上部,有由片段數 字904及906標示之渲染為大字體大小之文本及圖形之財務 指標。在多區域場景VAU 900底部,有由片段數字9〇8標示 之以小字體大小文本及圖職染之自右向左流動之行情顯 示符號及報價及由片段數字910標示之渲染為文本之新聞 速遞。在該等多區域場景合成中,不同之場景片段因其語 意及内容差別將經歷諸如,,剪切”場景變化、交叉淡化、淡 入及淡出、放大及縮小等不同步變化。舉例而言,若片段 902之内容因一”剪切”場景變化而突然改變時,則僅將片 段902内之巨集區塊編碼為訊框内編碼巨集區塊最有效, 但將其餘巨集區塊編碼為訊框間編碼巨集區塊以利用片段 904、906、908及910中之連續時間相關性,9〇4、9〇6、 908及910片段中之内容此刻不變。因此,内容可調適訊框 劃分單元5 10經運作以偵測努切場景變化、交叉淡化、淡 入或淡出、放大或縮小及全局運動多樣化中之一者或多 圖5A圖解說明一經I型編碼之VAU(訊框# 0)350。圖5B圖 解說明一在I型及P型VAU之間具有兩個B型VAU(訊框# 1及 # 2,未圖示)且當照相機以訊框# 〇開始獲取視訊信號時向 左搖攝情況下之經P型編碼之VAU(訊框# 3)370。圖5A與圖 5B所繪示視訊框之内容實質上相同,只是在圖5B中該場 景如在VAU 370左側之虛垂直線所標示搖攝至左側,該虛 127986.doc -19- 200840368 垂直線標出新場景與舊場景細節之間的邊界,新場景之細 即在讯框#〇中不可見,而舊場景之細節在訊框#〇中可見且 因此可供用於預測。出於該樣本之圖解說明之目的,可假 設指向一具有明顯細節之特定場景之照相機正經歷一近似 元全之向左搖攝。 ΟIn the compression standard prior to the H.264 video compression standard, the coding type of the VAU must be uniform over the entire range of each video frame. This necessitates that the slices that make up the frame must be encoded using the same coding type 1 (inner), P (predictive), or (bi-predictive or bi-predictive). With the introduction of the 264 standard, this limitation was eliminated. The H.264 standard allows for different coding types to be used in a VAU. Such a slice can be roughly of a different (encoding) type, resulting in a non-uniformly encoded vau. In addition, H264 can also generate a VAU by using a coding type that is consistent with an integer video frame, such as a Type 1 VAU, a P type VAU, or (D). The current configuration provides an encoding engine 5〇〇 (Fig. 7) that combines the possibility of using different slice (coding) types in a VAU I to utilize the 〇264 fm〇 rule 2 to achieve panning or volume in the camera. Moving (common and therefore most important) ^ In the case of a local motion and in the case where the scene consists of segments that are semantically different, an improved coding efficiency is achieved. Figure 1A illustrates a composite (i.e., multiple regions) scene VAU 900 having 127986.doc • 18-200840368 having a plurality of semantically different segments 9〇2, 904, 906, 9〇8, and 91〇, Example: Business News. In the upper left part of the scene identified by the segment number 9〇2, there is live video (new_advertising clip). In the upper right, there are financial indicators for text and graphics rendered in large font sizes, as indicated by fragment numbers 904 and 906. At the bottom of the multi-region scene VAU 900, there is a market display symbol and a quote from the right-to-left color, which is indicated by the segment number 9〇8, and a text that is rendered by the segment number 910 and rendered as text. Courier. In the multi-region scene synthesis, different scene segments will undergo unsynchronized changes such as scene change, cross fade, fade in and fade out, zoom in and zoom out, etc. due to their semantics and content differences. For example, if When the content of the segment 902 suddenly changes due to a "cut" scene change, only the macroblock in the segment 902 is encoded as the intra-frame coded macroblock, but the remaining macroblocks are encoded as The inter-frame coding macroblocks utilize the continuous temporal correlation in segments 904, 906, 908, and 910, and the contents of the segments 94, 4, 9, 6, 908, and 910 are unchanged at the moment. Therefore, the content is adjustable. The frame dividing unit 5 10 is operated to detect one of the NVC scene change, cross fade, fade in or fade out, zoom in or out, and global motion diversity. FIG. 5A illustrates an I-coded VAU (frame # 0) 350. Figure 5B illustrates a two Type B VAU (frames #1 and #2, not shown) between the Type I and Type P VAUs and when the camera begins to acquire the video signal with the frame #〇 P-coded VAU in the case of panning to the left (frame # 3) 370. The content of the video frame is substantially the same as that illustrated in FIG. 5A and FIG. 5B, except that in FIG. 5B, the scene is panned to the left as indicated by the virtual vertical line on the left side of the VAU 370, the virtual 127986.doc -19- 200840368 The vertical line marks the boundary between the new scene and the old scene details. The details of the new scene are not visible in the frame #〇, and the details of the old scene are visible in the frame #〇 and are therefore available for prediction. For the purpose of illustration of the sample, it can be assumed that a camera pointing to a particular scene with significant detail is undergoing an approximate meta-panning to the left.

再次返回圖5Α,圖5Α及圖5Β分別以訊框〇及訊框3圖解 沉明來自在該等環境下捕獲之具有結構]^61^61>…之 之初始I訊框VAU 350及隨後之ρ訊框VAU 37〇。在ρ訊框 中,顯示訊框間編碼(即經時間預測)之巨集區塊372(具有 識別之邊界3 7 4)及其相應之運動向量(識別之方形區域内之 小則頭377)。巨集區塊376標示一在一水平面中緊臨於巨 集區塊372之巨集區塊。由邊界374標出水平相鄰之巨集區 塊372與376之間的邊界。對ρ訊框(未識別其邊界)之剩餘 巨集區塊進行訊框内編碼,該等巨集區塊中之大多數係沿 訊框之左側邊界,由於運動性質,新細節在此處進入該場 景。該巨集區塊類型之分佈及運動向量場結構對_照相機 搖攝(至左侧)之情況極其典型。相依於照相機之 及P型VAU 37。與其參考訊框之間的時間距離,主= 訊框左側邊界存在之訊框内編碼之巨㈣塊之垂直條可跨 越一或多個巨集區塊排。出於圖解說明之目的,在圖5时 沿左側邊界無框或塊之區域代表該等訊框内編碼之巨集區 土鬼° " 況成在一場景中照相機搖攝 運動之更複雜情況。 可以簡單方式將上述觀察概 及捲動之其他情況或全局平移 127986.doc -20- 200840368 表1·在不同切片類型中一訊框内一4χ4編碼MB之mb—型之經 編碼表不。 切片—類 型 一訊框内__4x4巨集區塊之 mb_型值 mb__型值之經編碼表示, 即ue(v)碼字 碼字長度 2 或7,(I) ~〇 - ~ 1 1 0 或5,(P) 5 00110 5 1或6, (B) ~23 ' 一~ 000011000 9 在所有視訊壓縮標準中,在位元流最前面發訊每一 MB(被跳過MB除外)之編碼類型(模式),以便解碼器之分 解及加密解碼製程可預計每一 MB資料之正確語法且正確 地解釋每一位元流。在經p型編碼切片/VAU中,訊框間編 碼(即經時間預測)之MB定義較佳之壓縮模式且其發生頻率 明顯大於經P型編碼切片/VAU中訊框内編碼Μβ之發生頻 率。此會得到如下觀察報告。C〇ntext Adaptive Variable Length Coding假設使用Η·264之内容可調適不定長編碼 (CAVLC)模式來表示Μβ型語法元素”mb一型”,則可如表工 總結在不同切片類型中一訊框内一4χ4編碼MB之類型之二 進製表示。 如所見,P及B切片中非預期訊框内一4χ4編碼之mb之使 用及發訊分別引起額外之4個位元及8個位元之開銷。此情 形類似於經外—16x16編碼之MB變數,雖然本文並未提供 相關細節。因此,其餘皆相等,例示Z切片中之訊框内編 碼之MB最有效。 經時間預測訊框(即經p型及B型編碼VAU)用以提供對編 碼效率最重要之作用,且其大小應合意小。由於訊框内編 127986.doc -21- 200840368 碼在三種類型中係效率最差之編碼類型,因而在p型或B型 VAU中存在數量增加之訊框内編碼_係一不合意情形。 然而’當f際發生此情形時’(例如)由於?或8型中複 雜之運動變形動力學或新物體進入PSVAU*之場景,編 碼器之任務係以可能最有效之方式執行該等内m B之編 碼。 圖6A圖解說明一單個訊框4〇〇,其具有一單個垂直條帶 結構之訊框内編碼巨集區塊群組41〇及複數個平行水平延 伸之訊框間編碼切片415,其中該訊框内編碼巨集區塊之 垂直條帶開始於訊框400之左側邊界上。在該實例中,切 片1-5係平行的且各自佔據相同數量之列。部分地重疊且 因此位於訊框間編碼切片i_5内之垂直條帶結構之訊框内 編碼巨集區塊群組410之配置限定於由巨集區塊41〇之變化 影線標示之一單個VAU内,且自訊框4〇〇之上邊界完全延 伸至下邊界。 圖6B圖解說明一具有一單個垂直條帶結構之訊框内編碼 巨集區塊群組425之單個訊框42〇。訊框42〇進一步包括複 數個平行之水平延伸之訊框間編碼切片43〇,其中訊框内 編碼巨集區塊之垂直條帶425在訊框420右側邊界開始。如 巨集區塊425之變化影線所標示,訊框内編碼巨集區塊之 垂直條帶425部分地重疊且因此位於訊框間編碼切片u 内。 圖6 C圖解說明一具有一單個水平條帶結構之訊框内編碼 巨集區塊群組460之單個訊框45〇。訊框450進一步包含複 127986.doc -22- 200840368 數個平行之水平延伸之訊框間編碼切片455,其中該單個 水平條帶結構之訊框内編碼巨集區塊群組46〇開始於訊框 45 0之下邊界且自訊框450之左側完全延伸至右側。Returning to FIG. 5 again, FIG. 5A and FIG. 5Β illustrate the initial I-frame VAU 350 with the structure]^61^61>... captured by the frame and frame 3, respectively. ρ frame VAU 37〇. In the frame, the inter-frame coding (ie, time-predicted) macroblock 372 (with the identified boundary 374) and its corresponding motion vector (the small header 377 in the identified square region) is displayed. . Macroblock 376 identifies a macroblock that is immediately adjacent to macroblock 372 in a horizontal plane. The boundary between horizontally adjacent macroblocks 372 and 376 is indicated by boundary 374. The remaining macroblocks of the ρ frame (the boundary is not recognized) are intra-frame coded, and most of the macroblocks are along the left boundary of the frame. Due to the nature of the motion, new details enter here. The scene. The distribution of the macroblock type and the motion vector field structure are very typical for the camera panning (to the left). It is dependent on the camera and the P-type VAU 37. The time between the reference frame and the reference frame on the left side of the main frame. The vertical bar of the block encoded in the frame can span one or more macro blocks. For the purposes of illustration, in Figure 5, the area of the frame on the left side of the frame or the area of the block represents the more complex case of the camera's panning motion in a scene. . Other situations or global translations of the above observations and scrolling can be done in a simple manner. 127986.doc -20- 200840368 Table 1. The encoding of the mb-type of MB in a frame of different slice types is not shown. The coded representation of the mb_type value mb__ value of the __4x4 macroblock in the slice-type frame, ie ue(v) codeword codeword length 2 or 7, (I) ~〇- ~ 1 1 0 Or 5, (P) 5 00110 5 1 or 6, (B) ~23 '1 ~ 000011000 9 In all video compression standards, the encoding of each MB (except for skipped MB) is sent at the front of the bit stream Type (mode) so that the decoder's decomposition and encryption decoding process can predict the correct syntax of each MB of data and correctly interpret each bit stream. In a p-type coded slice/VAU, the inter-frame coding (i.e., time-predicted) MB defines a preferred compression mode and its occurrence frequency is significantly greater than the frequency of occurrence of intra-frame coding Μβ in the P-type code slice/VAU. This will get the following observation report. C〇ntext Adaptive Variable Length Coding assumes that the content of the 264·264 adaptive variable length coding (CAVLC) is used to represent the mbβ type syntax element “mb type”, which can be summarized in the frame of different slice types as the table worker summarizes. A binary representation of the type of MB encoding MB. As can be seen, the use and signaling of a 4 χ 4 coded mb in the unintended frame in the P and B slices causes an additional 4 bits and 8 bits of overhead, respectively. This situation is similar to the external-16x16 encoded MB variable, although no relevant details are provided in this article. Therefore, the rest are equal, and it is exemplified that the MB encoded in the frame in the Z slice is most effective. The time prediction frame (i.e., the p-type and B-type coded VAUs) is used to provide the most important effect on coding efficiency, and its size should be small. Since the intra-frame code 127986.doc -21- 200840368 code is the least efficient coding type among the three types, there is an increase in the number of intra-frame coding in the p-type or B-type VAU. However, 'when this happens to the f' (for example) due to? Or the complex motion dynamics of the Type 8 or the scene where the new object enters the PSVAU*, the task of the encoder is to perform the encoding of the inner m B in the most efficient way possible. 6A illustrates a single frame 4〇〇 having a single vertical stripe structure of intra-frame coded macroblock groups 41〇 and a plurality of parallel horizontally extending inter-frame coded slices 415, wherein the message The vertical strip of the in-frame encoded macroblock begins on the left border of the frame 400. In this example, the segments 1-5 are parallel and each occupy the same number of columns. The configuration of the intra-frame coded macroblock group 410 that partially overlaps and thus is located within the inter-frame coded slice i_5 is limited to one of the VAUs indicated by the change of the macroblock block 41. Inside, and the boundary above the frame 4〇〇 extends completely to the lower boundary. Figure 6B illustrates a single frame 42 of an intra-frame coded macroblock group 425 having a single vertical stripe structure. The frame 42 further includes a plurality of parallel horizontally extending inter-frame coded slices 43A, wherein the vertical strips 425 of the encoded macroblocks within the frame begin at the right edge of the frame 420. As indicated by the change hatching of macroblock 425, the vertical strips 425 of the intra-frame coded macroblocks partially overlap and are therefore located within the inter-frame coded slice u. Figure 6C illustrates a single frame 45 of an intra-frame encoded macroblock group 460 having a single horizontal stripe structure. The frame 450 further includes a plurality of parallel horizontally extending inter-frame coding slices 455 of the 127986.doc -22-200840368, wherein the intra-frame coding macroblock group 46 of the single horizontal strip structure begins The lower boundary of block 45 0 and the left side of frame 450 extend completely to the right.

U 圖6D圖解說明一單個訊框470,其具有一單個水平條帶 結構之訊框内編碼巨集區塊群組475及複數個平行水平延 伸之訊框間編碼切片480,其中該單個水平條帶結構之訊 框内編碼巨集區塊群組475開始於訊框470之上邊界且自訊 框470之左側完全延伸至右側。當在一訊框之一相當大部 分中需要應用訊框内編碼且未關於該區域之幾何形狀仔細 裁剪該切片結構時,擬進行訊框内編碼之該區域内之切片 邊界將減小訊框内編碼效率。此實質上係由於跨彼等原本 用於進行内預測之田比鄰像素之切片邊界之不可用性及隨之 發生之由於毗鄰之不可用性引起之某些内預測模式之不可 用性引起。圖6A_6D圖解說明其中f見切片結構進一步割 分該等欲進行經編碼且根據某些組態與訊框内編二 抵觸之區域的情況。 ^ v μ ,机柩釗/刀、(劃分成 片群組及切片)及非一致则編碼之編碼引擎_。編 擎別包括-内容可調適訊框劃分單元5職—非—致視 L取勺早括^御)之編碼單元52G。内容可調適訊框劃分單^ ^包括-鏡頭邊界價測器512、運動場計算器514及 刀&器516°内容可調適訊㈣】分單元別進-步包括 切片群組之確定及指派模組518。 匕括― 鏡頭邊界悄測器512侦測-或多個訊框之-或多個鏡頭 127986.doc -23- 200840368 邊界。在-態樣中,偵測-鏡頭邊界包括制—場景變 化。場景變化及鏡頭邊界之_係重要,π因該等事件暗 不連續運動場之中斷及場景構成之變化。運動場計算器 514計算諸如〗訊框、p訊框、B訊框等一或多個訊框之運動 場。在-態樣中,所彳貞測之全局運動運作包括諸如對PD 類型之照相機搖攝或捲動、縮小或放大等運作,且在B及p 類型中運動變形實例將使在料原本時間預測存取單元中 之訊框内編碼之使用成為必需。由於確定了運動場,因而 可確定照相機之搖攝或捲動、縮小或放大,以便可因此非 一致地編碼該VAU。在一實施例中’可將關於在一訊框内 明顯不同之運動場片段(諸如該等運動場片段所含有運動 向量之方向及強度之不同)之資訊提供至訊框分段器單元 作為一有利於其分段任務之提示。 訊框分段器516用於分段一或多個訊框。訊框分段器516 將該等訊框分段或劃分成一或多個諸如彼等與切片群組# 〇 及切片群組#1相關聯之巨集區塊集合等巨集區塊群組,如 在圖9A-9D之任一者中所示。 切片群組之確定及指派模組518以使所識別之一或多個 巨集區塊群組與一或多個切片群組及每一該切片群組内之 一或多個切片相關聯之目的來分析該訊框分段器之輸出。 切片群組之確定及指派模組5丨8分析該等所識別之一或多 個巨集區塊群組之大小及幾何體、其諸如訊框間可預測或 訊框内可預測等可預測性屬性,將該一或多個巨集區塊群 組指派至一或多個切片群組,且確定該一或多個切片群組 127986.doc -24- 200840368 内一或多個切片之大小(諸如任一切片群組之任一切片所 佔據之列數)。切片群組之確定及指派模組5 i 8確定一或多 個訊框之切片群組、切片、及/或切片類型。非一致視訊 存取單元(VAU)之編碼單元520對彼等與所確定類型相關聯 之巨集區塊實施非一致編碼。U Figure 6D illustrates a single frame 470 having an intra-frame coded macroblock group 475 of a single horizontal strip structure and a plurality of parallel horizontally extending inter-frame coded slices 480, wherein the single horizontal strip The structured intra-frame coded macroblock group 475 begins at the upper boundary of the frame 470 and extends completely to the right of the left side of the frame 470. When intra-frame coding is required in a substantial portion of a frame and the slice structure is not carefully cropped with respect to the geometry of the region, the slice boundaries in the region to be intra-frame coded will be reduced by the frame. Internal coding efficiency. This is essentially due to the unavailability of the slice boundaries of the neighboring pixels that were originally used to perform the intra prediction, and the consequent inability of some of the intra prediction modes due to the unavailability of the adjacent. Figures 6A-6D illustrate the case where the slice structure further divides the regions that are to be encoded and that are inconsistent with the in-frame according to certain configurations. ^ v μ , machine/knife, (divided into slice groups and slices) and non-uniform coded coding engine _. The engine includes the coding unit 52G of the content-adjustable information box division unit 5 - non-viewing L. The content adjustable frame division unit ^ ^ includes - lens boundary price detector 512, the motion field calculator 514 and the knife & 516 ° content adjustable information (four)] sub-unit into - step including the determination of the slice group and the assignment mode Group 518. Included - Lens boundary Detector 512 detects - or multiple frames - or multiple lenses 127986.doc -23- 200840368 Boundary. In the -state, the detection-lens boundary includes the system-scenario change. The scene change and the lens boundary are important, π due to the interruption of the dark discontinuous motion field and the change of the scene composition. The sports field calculator 514 calculates a motion field of one or more frames such as a frame, a frame, a B frame, and the like. In the -state, the measured global motion operations include operations such as panning or scrolling, zooming out, or zooming in on the PD type, and the motion deformation examples in the B and p types will cause the original time prediction The use of intra-frame coding in the access unit is required. Since the playing field is determined, the panning or scrolling, reduction or enlargement of the camera can be determined so that the VAU can be encoded non-uniformly. In an embodiment, information about a distinctly different motion field segment (such as the direction and intensity of motion vectors contained in the motion field segments) may be provided to the frame segmenter unit as a benefit. A hint for its segmentation task. Frame segmenter 516 is used to segment one or more frames. The frame segmenter 516 segments or divides the frames into one or more macroblock groups such as the set of macroblocks associated with the slice group #〇 and the slice group #1, As shown in any of Figures 9A-9D. A determination and assignment module 518 of the slice group to associate the identified one or more macroblock groups with one or more slice groups and one or more slices within each of the slice groups The purpose is to analyze the output of the frame segmenter. The slice group determination and assignment module 5丨8 analyzes the size and geometry of one or more of the identified macroblock groups, such as predictability within the frame or predictability within the frame, and the like. Attributes, assigning the one or more macroblock groups to one or more slice groups, and determining the size of one or more slices within the one or more slice groups 127986.doc -24- 200840368 ( Such as the number of columns occupied by any slice of any slice group). The slice group determination and assignment module 5i 8 determines slice groups, slices, and/or slice types for one or more frames. Coding unit 520 of the non-uniform video access unit (VAU) performs non-coherent encoding on the macroblocks associated with the determined type.

再次參照圖2 A,依據切片群組及/或切片類型,將分別 藉由間編碼編碼器11 8或訊框内編碼編碼器ι2〇使用間編碼 或訊框内編碼來編碼該切片。因此,編碼裝置1 至少部 分地基於所確定之切片群組及/或切片及/或切片類型根據 間編碼或訊框内編碼技術來編碼該等切片。 内容可調適訊框劃分(劃分成切片群組及切片)及非一致 VAU之編碼處理由所述機制引起之降低之編碼效率。因 此,不適合硬體平移運動模型(例如一經歷轉動運動之對 象)之諸如在經P及B型編碼之v A u中之照相機搖攝或捲 動、縮小或放大、及經B&P型編碼VAU中之複雜運動變形 實例等全局運動運作將使在原本經時間預測之存取單元中 使用訊框内編碼成為必需。該非一致VAU編碼將以增加之 效率在經時間預測之存取單元中使用訊框内編碼。 為以最有效之方式實現該要求,一編碼器可採用類似於 圖8中所圖解說明之-處理流程。作為該增強處理之一結 果’應將圖6A-6D中所圖解說明之樣本情況之切片割分結 構修改成圖9A-9D所圖解說明之結構。應瞭解,提供圖 6A-6D及圖9A-9D中之樣本示例僅出於圖解說明之目的, 且可基於FMO之規定以完全$活之方式進行將—訊框基於 127986.doc -25- 200840368 預測性屬性分段/劃分成 組及切片。 多個區域(巨集區塊群組)、 切片群 ΟReferring again to Figure 2A, depending on the slice group and/or slice type, the slice will be encoded using inter-coded or intra-frame coding, respectively, by inter-coded encoder 11 or intra-frame code encoder ι2. Accordingly, the encoding device 1 encodes the slices based at least in part on the determined slice group and/or slice and/or slice type according to inter-coded or intra-frame coding techniques. The content-adapted frame division (divided into slice groups and slices) and the non-uniform VAU coding process reduce the coding efficiency caused by the mechanism. Therefore, it is not suitable for a hardware translational motion model (such as an object undergoing rotational motion) such as camera panning or scrolling, reduction or amplification, and B&P-type encoding in v A u encoded by P and B codes. Global motion operations such as complex motion variants in VAUs will necessitate the use of intraframe coding in originally time-predicted access units. This non-uniform VAU coding will use intra-frame coding in the time-predicted access unit with increased efficiency. To achieve this in the most efficient manner, an encoder can employ a process flow similar to that illustrated in Figure 8. As a result of this enhancement process, the slice segmentation structure of the sample case illustrated in Figs. 6A-6D should be modified to the structure illustrated in Figs. 9A-9D. It should be understood that the sample examples in Figures 6A-6D and Figures 9A-9D are provided for illustrative purposes only and may be based on FMO regulations in a fully live manner based on 127986.doc -25- 200840368 Predictive attributes are segmented/divided into groups and slices. Multiple regions (macroblock groups), slice groups Ο

在下文各種組離中, _ 士 〜 、、、θ不二人序實施該等流程圖塊,或 口同日守、並行地或以不同順序f f 部分。 项序實施该荨流程圖塊或其某些 :圖解說明過程_之一流程圖,其用於根據某些組態 成内各相依之視蘭分及非—致視訊存取單元之編碼。 過程600於塊602處以鏡頭-邊界/場景變化之價測開始。藉 由横測%* &化來識別具有增加—致性之高空間時間相似 性之基礎單元,場景變化打斷空間時間之相似性且標出該 等^礎單S之邊界。塊6〇4在塊6〇2之後,在此處,計算運 動场。在-態樣中,使用雙向及單項計算來:識別訊框或 訊框内一或多個區域之預測性屬性(諸如可訊框間預測或 否),諸如照相機搖攝或捲動、縮小或放大等全局運動運 作,及識別具有明顯不同運動特性之訊框内之區域(巨集 區塊群組),諸如靜態(無變化)、一致運動、非一致運動區 域0 應注意,在一鏡頭片段中,計算該視訊片段之除第一訊 框外之所有訊框之運動場。一般,一視訊序列將包括多個 鏡頭片段,即浯思上一致之由場景變化分開之連續視訊框 之集合。一 IBP…佈置將更準確地被稱作一 ”G〇p結構,,。雖 然合思之情況係使I 框與場景變化對準,但並非必須如 此,且存在插入均勻間隔且未必與場景變化對準之j訊框 之其他原因(例如啟用具有一上限延遲效能之隨機存取)。 127986.doc -26 - 200840368 舉例而言,圖5Α之訊框350係一 I訊框,且不會經受運動場 計算。然而,對於圖5B中之訊框370,其係一p型訊框,且 將實施運動場計算。第一訊框或I訊框將全部進行訊框内 編碼。 Ο 塊606在塊604之後,在此處對訊框進行分段。訊框之分 段基本上相依於時間預測性及運動場屬性。塊6〇8在塊6〇6 之後’在此處,進行切片群組之確定及指派。確定每一訊 框之切片群組、切片及切片(編碼)類型之指派。在塊6〇8 處,可識別每一切片内第一巨集區塊之絕對位址 (firslmb—injlice)及/或每一切片内之反掃描巨集區塊資 訊。在圖9A之具體關係巾,顯示訊框7〇〇。此處,識別切 片6具有I型編碼。確定切片邊界,例如經在切片6中包括 之垂直巨集區塊排數量。在一態樣中,切片6與巨集區塊 之垂直條帶相關聯且由於照相機搖攝至左側而需要進行訊 框内編碼。而且,此處確定切片i、2、3、4及5。在該具 體訊框中,切片i-5係P型切片。因此,概言之,切^應 係I型,而剩餘之切片全部係?型或全部係b型。 ‘巾、’扁碼态引擎亦可納含諸如用於錯誤恢復力In the various groups below, _ 士 ~ , , θ 不 实施 实施 实施 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 流程图 该 流程图 该 流程图 流程图 流程图 流程图 流程图 流程图 流程图 流程图The program sequence implements the block diagram or some of the blocks: a process flow chart for the encoding of the dependent and non-video access units in accordance with certain configurations. Process 600 begins at block 602 with a measure of shot-boundary/scene changes. The horizontal unit %* & is used to identify the basic unit with increased spatial time similarity, and the scene change interrupts the similarity of spatial time and marks the boundary of the unit S. Block 6〇4 is after block 6〇2, where the motion field is calculated. In the case, use bidirectional and single item calculations: identify predictive attributes of one or more areas within the frame or frame (such as inter-frame prediction or not), such as camera panning or scrolling, zooming out or Global motion operations such as zooming in, and identifying areas within the frame with significantly different motion characteristics (macroblock groups), such as static (no change), consistent motion, non-uniform motion region 0 should be noted, in a shot segment The motion field of all frames except the first frame of the video segment is calculated. Typically, a video sequence will include multiple shot segments, a collection of consecutive video frames separated by scene changes. An IBP... arrangement will be more accurately referred to as a "G〇p structure". Although the situation is a matter of aligning the I-frame with the scene change, it is not necessary, and there is a uniform insertion interval and does not necessarily change with the scene. Other reasons for aligning the frame (for example, enabling random access with an upper limit delay). 127986.doc -26 - 200840368 For example, the frame 350 of Figure 5 is an I frame and will not be subject to The field calculation. However, for frame 370 in Figure 5B, it is a p-type frame and the field calculation will be performed. The first frame or I frame will all be intra-frame coded. 块 Block 606 is at block 604. After that, the frame is segmented here. The segmentation of the frame is basically dependent on the temporal predictability and the motion field attribute. Block 6〇8 after block 6〇6 'here, the determination of the slice group and Assignment. Determine the assignment of slice group, slice and slice (code) type for each frame. At block 〇8, the absolute address of the first macro block in each slice (firslmb-injlice) can be identified. And/or anti-scan macro block information within each slice. The specific relationship of Figure 9A shows a frame 7. Here, the identification slice 6 has an I-type code. The slice boundary is determined, for example, the number of vertical macro block rows included in the slice 6. In one aspect The slice 6 is associated with the vertical strip of the macroblock and requires intra-frame coding as the camera pans to the left. Also, slices i, 2, 3, 4, and 5 are determined here. In the middle, the slice i-5 is a P-type slice. Therefore, in summary, the cut type should be type I, and the remaining slices are all type or all type b. The 'cloth,' flat code engine can also contain Such as for error resilience

Li外限制。塊啊塊叫後,在此處,基於所識別 之切片編碼類型對切片進行 ]W如進仃矾框内編碼及 間、扁碼。塊610結束過程6〇〇。 屮恭…s 在塊612處,將過程600之輸 出發迗至記憶體114之一檔 發写1】6田. ,、中及/或以一位元流發送至收 \ ,用於藉由網路14〇遞送至解碼器農置15〇。 目依於正使用之具體標準苴 ^ 他非&準視訊壓縮演算法 127986.doc -27- 200840368 之過程600之輸出將含有關於巨集區塊與切片群組及切片 相關聯之資訊。 圖11圖解說明一過程1〇〇〇之流程圖,其用於在存在使用 靈活巨集區塊排序(FMO)情況下進行非一致VAU解碼。 H.264標準中FM0規定使能夠完全靈活地將一視訊框之巨 集區塊集合劃分(不受暗示連續之光栅掃描順序限制)或分 組成一或多個切片群組及每一切片群組中之一或多個切 片。由編碼器確定將巨集區塊集合劃分成一或多個切片群 組及每一切片群組内之一或多個切片,且應將巨集區塊與 切片群組及切片之間所形成之聯繫提供至解碼器。舉例而 言,在H.264標準中,藉由切片群組映射(SGM)在該圖片參 數集合(PPS)中發訊該聯繫。解碼作業將使用切片群組映 射(SGM)所提供之資訊及每一切片之標頭中發訊該第一巨 集區塊在該切片中之絕對位址”first—mb—in—sHce"之語意元 素,以自其光柵外掃描次序至其正確之空間位置來反掃描 每一切片内之巨集區塊之資訊。因此,根據同樣在切片標 頭中發訊之切片編碼類型進行解碼及像素重建過程。解碼 器裝置150將使用SGM來實施非一致VAU解碼,該SGM係 當使用FMO規定時由編碼器產生且寫入該位元流中。 在下文各種組態中,以繪示次序實施該等流程圖塊,或 可同時、並行地或以不同順序實施該等流程圖塊或其某些 部分。 過程1000以塊1002開始,在此處,解碼器裝置15〇接收 pps且確定編碼器裝置110所產生之SGM。根據塊1〇〇4,解 127986.doc -28 - 200840368 碼器裝置1 50亦接收切片標頭中經非一致編碼VAU中之每 一發訊切片之語意元素。塊1006在塊1004之後,在此處確 疋母一切片中第一巨集區塊之絕對位址(first—ml3 slice)。塊loos在塊1006之後,在此處,自其光柵外掃描 次序至其正確之空間位置來進行反掃描每一切片内巨集區 塊位置資訊之運作。塊1〇1〇在塊1〇〇8之後,在此處,根據 切片標頭中所發訊之切片編碼類型解碼經非均勻編碼之 VAU及重建像素。 圖9A-9D圖解說明根據某些組態自内容可調適視訊框切 割獲得之經非一致編碼之VAU之實例性示例(關於切片幾 何體及切片編碼類型兩者)。在圖9A中,經非一致編碼之 VAU 700包括一作為位於VAU左侧之巨集區塊垂直條帶71 5 且指定為將進行訊框内編碼之I型之垂直切片#6。垂直條 帶715開始於VAU 700之左側邊緣或邊界處,且自此處延伸 一或多個巨集區塊排以界定該切片之右側邊緣或邊界。垂 直條帶715自視訊框之頂部延伸至底部。指定於71〇處之剩 餘切片1-5作為一 p型切片進行間編碼。切片1-5係平行水 平結構且分組成切片群組#0。切片群組#〇之左側邊界開始 於切片#6之最右側邊緣或邊界處,且延伸至經非一致編碼 之VAU 700之右側邊界。因此,將相應地設定切片^之每 一者中第一巨集區塊之絕對位址。 在圖9B中,經非一致編碼之VAU 73〇包括一作為位於 VAU右側之巨集區塊垂直條帶74〇且指定為將進行訊框内 編碼之I型之垂直切片#6。垂直條帶74〇遠離VAu 73〇之右 127986.doc -29- 200840368 邊緣或邊界延伸自—或多個巨集區塊排,以彻MO之 ^邊緣或邊界延伸—或多個巨集區塊排。垂直條帶740 '、VAU 73G之頂部延伸至底部。指定於735處之剩餘切片 1 5作為-p型切片進行間編碼。切片卜5係平行水平結構 且分組成切片群謂。在該示例中,切片群請之左侧邊 =開始於VAU 73G之左側邊緣或邊界處,且延伸至垂直條 帶二〇之左側邊界。因此,將相應地設定切片κ之每一者 中第一巨集區塊之絕對位址。Li is restricted. After the block is called, here, based on the identified slice coding type, the slice is subjected to intra-frame coding and inter- and flat codes. Block 610 ends the process 6〇〇. At block 612, the output of the process 600 is sent to a file of the memory 114 to be written, 1 , 6 , and/or transmitted as a bit stream to the receipt, for use by The network 14 is delivered to the decoder for 15 农. The output of process 600, which is based on the specific criteria being used, will contain information about the macroblocks associated with slice groups and slices. Figure 11 illustrates a flow diagram of a process for non-uniform VAU decoding in the presence of flexible macroblock ordering (FMO). The FM0 specification in the H.264 standard enables full flexibility to partition a macroblock set of a video frame (without implying a continuous raster scan order) or to group one or more slice groups and each slice group. One or more slices. Determining, by the encoder, dividing the macroblock set into one or more slice groups and one or more slices within each slice group, and forming a macro block and a slice group and a slice Contact is provided to the decoder. For example, in the H.264 standard, the association is signaled in the picture parameter set (PPS) by slice group mapping (SGM). The decoding operation will use the information provided by the slice group mapping (SGM) and the header of each slice to send the absolute address of the first macro block in the slice "first_mb_in_sHce" The semantic element reverse scans the information of the macroblocks in each slice from its outer raster scan order to its correct spatial position. Therefore, decoding and pixel are performed according to the slice encoding type also sent in the slice header. Reconstruction process. The decoder device 150 will implement non-uniform VAU decoding using SGM, which is generated by the encoder and written into the bit stream when specified using FMO. In the various configurations below, implemented in the illustrated order The flowchart blocks may implement the flowchart blocks, or portions thereof, simultaneously, in parallel, or in a different order. Process 1000 begins with block 1002, where decoder device 15 receives pps and determines the encoder SGM generated by device 110. According to block 〇〇4, solution 127986.doc -28 - 200840368 coder device 150 also receives semantic elements of each of the non-uniformly encoded VAUs in the slice header. 1006 at block 1004 After that, the absolute address (first-ml3 slice) of the first macroblock in the parent slice is determined here. The block loos is after block 1006, where it is scanned from its outer raster to its correct space. Position to perform inverse scanning of the operation of the macro block location information in each slice. Block 1〇1〇 after block 1〇〇8, where the decoding type is decoded according to the slice coding type sent in the slice header Uniformly encoded VAUs and reconstructed pixels. Figures 9A-9D illustrate example examples of non-uniformly encoded VAUs obtained from content compliant video frame cuts (both for slice geometry and slice encoding types) in accordance with certain configurations. In Fig. 9A, the non-coincidentally encoded VAU 700 includes a vertical slice #6 as a type I vertical block 7 5 located on the left side of the VAU and designated as intraframe coding. 715 begins at the left edge or boundary of the VAU 700 and extends one or more macroblock rows therefrom to define the right edge or boundary of the slice. The vertical strip 715 extends from the top to the bottom of the video frame. The remaining slices at 71〇 are 1-5 Inter-coding a p-type slice. Slices 1-5 are parallel horizontal structures and are grouped into slice group #0. The left boundary of slice group #〇 begins at the rightmost edge or boundary of slice #6 and extends to The right edge of the non-uniformly encoded VAU 700. Therefore, the absolute address of the first macroblock in each of the slices ^ will be set accordingly. In Figure 9B, the non-coincidentally encoded VAU 73A includes one The vertical strip 74 is located as the vertical strip of the macroblock located on the right side of the VAU and is designated as the vertical slice #6 of the type I to be intra-frame coded. The vertical strip 74 is away from the right of the VAu 73〇 127986.doc -29- 200840368 The edges or boundaries extend from - or a plurality of macroblock rows, extending through the edge or boundary of the MO - or a plurality of macroblock rows. The top of the vertical strip 740', VAU 73G extends to the bottom. The remaining slices designated at 735 15 are inter-coded as -p slices. Slices 5 are parallel horizontal structures and are grouped into slice groups. In this example, the left side of the slice group = starting at the left edge or boundary of the VAU 73G and extending to the left edge of the vertical strip. Therefore, the absolute address of the first macroblock in each of the slices κ will be set accordingly.

U 在圖9C中’ VAU 75G包括-作為位於VAU 75()頂側之水 平條帶715且指定為將進行訊框内編碼之⑶之單個水平切 片存1。指定於760處之剩餘切片2_?作為一p型切片進行間 編碼。在該示财,水平條帶755之右側及左側邊界與 VAU 750之右側及左側邊界或邊緣重合。水平條帶755之頂 邊緣與VAU 750之頂邊緣重合。然而,水平條帶755之底邊 緣自頂VAU邊緣向下延伸一或多個列。切片2_7平行且水 平地構建於切片群組#1中。在該示例中,切片群組#1中每 一切片之右側及左側邊界亦與VAU 75〇之右側及左側邊界 或邊緣重合。在該佈置中,切片1-7中之列數及其大小可 不4。切片群組# 1之隶後切片,在該示例中係切片# 7具有 一與VAU 750之底邊界重合之底邊界。 在圖9D中,VAU 800包括一作為位於VAU 8〇〇底部之水 平條帶804且指定為將進行訊框内編碼之I型之單個水平切 片#8。水平條帶804之底邊緣與VAU 8〇〇之底邊緣重合。水 平條帶804自頂VAU 800之底邊緣向上延伸一或多個巨集區 127986.doc -30 - 200840368 塊列。指定於802處之剩餘切片1-7作為一 p型切片進行間 編碼。切片1_7平行且水平地構建於切片群組#()中。在該 佈:中,切片W中之列數及其大小可不等。士刀片群組#〇 之第一切片,在該示例中係切片#1具有一與VAu 75〇之頂 邊界重a之頂邊界。所有切片之右側及左側邊界皆與 750之右側及左側邊界重合。 熟習此項技術者應瞭解,可使用眾多種不同技術及技法 中之任一種來表示資訊及信號。舉例而言,整個上述說明 中可能提及之資料、指令、命令、資訊、信號、位元、符 號及碼片可由電壓、電流、電磁波、磁場或粒子、光場或 粒子、或其任一組合來表示。 熟習此項技術者應進一步瞭解,結合本文所揭示實例所 闡述之各種例示性邏輯塊、模組、及演算法步驟可構建為 電子硬體、韌體、電腦軟體、中間體、微代碼、或其組 合。為清晰地顯示硬體與軟體之互換性,上文係根據其功 能度來概述各種闡釋性組件、方塊、模組、電路、及步 驟。此種功能度是作為硬體抑或軟體實施取決於特定應用 及施加於整個系統的設計製約條件。熟練人員可針對每一 具體應用以不同方式構建所述功能度,但該等實施方案決 定不應視為背離所揭示方法之範壽。 結合本文所揭示實例來闡述之各種例示性邏輯塊、組 件、模組及電路可使用通用處理器、數位信號處理器 (DSP)、應用專用積體電路(ASIC)、現場可程式化閘陣列 (FPGA)或其他可程式化邏輯器件、離散閘或電晶體邏輯、 127986.doc -31· 200840368 «硬體元件、或設計用於執行本文所述功能之其任一组 5來構建或執行。通用處理器可為_微處理器,作另一選 擇為,處理器亦可為任何習知處理器、控制器、微控㈣ 或狀態機。一處理器亦可構 再是马運异裝置之組合,例U in Fig. 9C 'VAU 75G includes - as a horizontal slice 715 on the top side of VAU 75() and designated as a single horizontal slice of (3) to be intra-frame coded. The remaining slice 2_? specified at 760 is inter-coded as a p-type slice. In the fortune, the right and left borders of the horizontal strip 755 coincide with the right and left borders or edges of the VAU 750. The top edge of the horizontal strip 755 coincides with the top edge of the VAU 750. However, the bottom edge of the horizontal strip 755 extends downwardly from the top VAU edge by one or more columns. Slices 2_7 are parallel and horizontally constructed in slice group #1. In this example, the right and left borders of each slice in slice group #1 also coincide with the right and left borders or edges of the VAU 75〇. In this arrangement, the number of columns in slices 1-7 and their size may not be four. The post-slicing slice of slice group #1, in this example, slice #7 has a bottom boundary that coincides with the bottom boundary of VAU 750. In Fig. 9D, the VAU 800 includes a single horizontal slice #8 which is a horizontal strip 804 located at the bottom of the VAU 8〇〇 and designated as type I to be intraframe coded. The bottom edge of the horizontal strip 804 coincides with the bottom edge of the VAU 8〇〇. The horizontal strip 804 extends upwardly from the bottom edge of the top VAU 800 to one or more macro zones 127986.doc -30 - 200840368 block columns. The remaining slices 1-7 designated at 802 are inter-coded as a p-type slice. Slices 1_7 are constructed in parallel and horizontally in slice group #(). In the cloth: the number of columns in the slice W and its size may vary. The first slice of the blade group #〇, in this example, slice #1 has a top boundary that is equal to the top boundary of VAu 75〇. The right and left borders of all slices coincide with the right and left borders of 750. Those skilled in the art will appreciate that information and signals can be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referred to throughout the above description may be by voltage, current, electromagnetic wave, magnetic field or particle, light field or particle, or any combination thereof. To represent. Those skilled in the art should further appreciate that the various illustrative logic blocks, modules, and algorithm steps set forth in connection with the examples disclosed herein can be constructed as electronic hardware, firmware, computer software, intermediates, microcode, or Its combination. To clearly illustrate the interchangeability of hardware and software, the above illustrative components, blocks, modules, circuits, and steps are summarized in terms of their functionality. Such functionality is implemented as a hardware or software depending on the particular application and design constraints imposed on the overall system. Skilled persons may construct the functionality in different ways for each particular application, but such implementations are not intended to be a departure from the disclosed method. Various illustrative logic blocks, components, modules, and circuits set forth in connection with the examples disclosed herein may use general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays ( FPGA) or other programmable logic device, discrete gate or transistor logic, 127986.doc -31·200840368 «The hardware component, or any group 5 designed to perform the functions described herein, is constructed or executed. The general purpose processor may be a microprocessor, and the processor may be any conventional processor, controller, microcontroller (4) or state machine. A processor can also be a combination of horse transport devices, examples

:’ 一DSP與—微處理器之組合、複數個微處理器之組 百、一或多個微處理器盥一 D 此類組態。 一核心之組合,或任意其他 Ο c 結合本文所揭示實例來闡述之方法或演算法之步驟可直 接體現於硬體中、由虛突、4 i / ^自處理w件執行之—或多個軟體模組 中或兩者之組合中。一軟體模組可駐存於r A Μ記憶體、快 閃記憶體、ROM記憶體、EPR〇M記憶體、卿罐記憶 體、暫存it、硬磁碟、可抽換磁碟、cd_r〇m、或此 2^知之任—其他形式之儲存媒體中。一實例性儲存媒 體_接至該處理器’以使該處理器可自該儲存媒體讀取資 訊及向該儲存媒體寫入資訊。或者,該儲存媒體可係處理 益之組成部分。處理器及存儲媒體可駐存於一應用專用積 體電路(ASIC)中。ASICT駐存於無線數據機中。作為另」 =。’處理器及儲存媒體可作為離散組件駐存在無線數據 上文對所揭示實例之說明旨在使任何熟習此項技術之人 員皆可製作或利用所揭示方法與設備。熟習此項技術者將 易知該等實例之各種修改形式,且本文所界定之原理可應 用於其他實例並亦可增加額外之要件。 ^ 【圖式簡單說明】 127986.doc -32- 200840368 結合該等圖式根據上文詳細說明,人們將更易解了該揭 示内容之態樣及組態,於所有圖式中,相同之參考字符表 示相應之元件。 圖1圖解說明根據某些組態一實例性多媒體通信系統之 方塊圖。 圖2A圖解說明可用於圖丨系統中之一實例性編碼器聚置 之方塊圖。 圖2B圖解說明可用於圖i系統中之一實例性解碼器裝置 之一方塊圖。 圖3A圖解說明一根據某些使用根據MPEG]標準之切片 結構之組態來圖解說明一具有一樣品切片劃分之第一實例 性訊框。 圖3B圖解說明一根據某些使用根據MPeg-2標準之切片 結構之組態來圖解說明一具有一樣品切片劃分之第二實例 性訊框。 圖4A圖解說明一根據H.264/AVC標準具有基於類型2靈 活巨集區塊排序(FMO)之劃分的樣本訊框。 圖4B圖解說明一根據H.264/AVC標準具有基於類型i FMO之劃分的樣本訊框。 圖5A圖解說明一經I型編碼之vau(訊框# 0)。 圖5B圖解說明當一照相機向左搖攝時一在訊框#〇與訊框 #3之間其中B型VAU的經P型編碼之VAU(訊框# 3)。 圖6A圖解說明一單個訊框,其具有一單個垂直條帶結構 之框内編碼巨集區塊群組及複數個平行水平延伸之訊框 127986.doc -33- 200840368 間編碼切片,其中該訊框内編碼巨集區塊之垂直條帶開始 於該訊框之左侧邊界上。 圖6B圖解說明一具有一垂直條帶結構之訊框内編碼巨集 區塊群組及複數個平行水平延伸之訊框間編碼切片之單個 訊框’其中該訊框内編碼巨集區塊之垂直條帶開始於該訊 框之右側邊界上。 圖6 C圖解說明一具有一單個水平條帶結構之訊框内編碼 巨集區塊群組及複數個平行水平延伸之訊框間編碼切片之 單個訊框,其中該水平條帶結構之訊框内編碼巨集區塊之 群組開始於該訊框之底邊界上。 圖6D圖解說明一具有一單個水平條帶結構之訊框内編碼 巨集區塊之群組及複數個平行水平延伸之訊框間編碼切片 之單個訊框,其中該水平條帶結構之訊框内編碼巨集區塊 之群組開始於該訊框之頂邊界上。 圖7圖解說明一用於實施内容可調適訊框劃分(劃分成切 片群組及切片)及非一致VAU編碼之編碼引擎。 圖8圖解說明一用於根據某些組態實施内容相依之訊框 劃分及非一致視訊存取單元之編碼之過程的流程圖。 圖9A-9D圖解說明根據某些組態自内容可調適視訊框切 割獲得之非一致VAU之實例性示例(關於切片幾何體及切 片編碼類型兩者)。 圖10圖解說明一具有在語意上不同之多個片段之多區域 合成場景VAU。 圖11圖解說明一非一致VAU解碼之過程之流程圖。 127986.doc -34- 200840368 出於圖解說明之目的簡化該等圖式中之影像,且該等影 像亚非按比例緣製。為幫助理解,在可能之情況下使用相 同之芩考編號來指定該等圖示所共用之相同元件,只是可 根據需要添加後綴以區別該等元件。 該等隨附圖式圖解說明本發明之實例性組態,且因此不 應將其視為限制可接納其他等效組態之本發明之範疇。本 發明涵蓋在不進行進一步復述之情況下可將一組態2 或步驟有利地併入其他組態中。 、试:' A combination of a DSP and a microprocessor, a group of multiple microprocessors, one or more microprocessors, one such configuration. Combination of a core, or any other Ο c The steps of the method or algorithm described in connection with the examples disclosed herein can be directly embodied in the hardware, executed by the imaginary, 4 i / ^ self-processing w - or multiple In a software module or a combination of both. A software module can reside in r A memory, flash memory, ROM memory, EPR memory, memory, temporary memory, hard disk, removable disk, cd_r〇 m, or this 2^ knows the way - in other forms of storage media. An exemplary storage medium is coupled to the processor </RTI> to enable the processor to read information from, and write information to, the storage medium. Alternatively, the storage medium may be part of a processing benefit. The processor and the storage medium can reside in an application specific integrated circuit (ASIC). The ASICT resides in a wireless modem. As another" =. The processor and storage medium may reside as discrete components in wireless data. The above description of the disclosed examples is intended to enable any person skilled in the art to make or utilize the disclosed methods and apparatus. Various modifications of the examples will be readily apparent to those skilled in the art, and the principles defined herein may be applied to other examples and additional elements may be added. ^ [Simple description of the schema] 127986.doc -32- 200840368 In combination with the above figures, according to the above detailed description, the aspects and configuration of the disclosure will be more easily solved, and in all the drawings, the same reference characters Indicates the corresponding component. 1 illustrates a block diagram of an exemplary multimedia communication system in accordance with certain configurations. 2A illustrates a block diagram of an exemplary encoder acquisition that may be used in a graphics system. Figure 2B illustrates a block diagram of one exemplary decoder device that may be used in the system of Figure i. Figure 3A illustrates a first example frame with a sample slice partitioning according to some configurations using a slice structure according to the MPEG] standard. Figure 3B illustrates a second example frame with a sample slice partitioning according to certain configurations using a slice structure according to the MPeg-2 standard. Figure 4A illustrates a sample frame having a partition based on Type 2 Flexible Macro Block Sorting (FMO) according to the H.264/AVC standard. 4B illustrates a sample frame having a partition based on type i FMO according to the H.264/AVC standard. Figure 5A illustrates an I-coded vau (frame #0). Figure 5B illustrates a P-type encoded VAU (frame #3) of a Type B VAU between frame #〇 and frame #3 when a camera pans to the left. 6A illustrates a single frame having a single vertical stripe structure of intra-coded macroblock groups and a plurality of parallel horizontally extending frames 127986.doc -33 - 200840368 coded slices, wherein the message The vertical strip of the in-frame encoded macroblock begins on the left border of the frame. 6B illustrates a single frame of a frame-coded macroblock group having a vertical stripe structure and a plurality of parallel horizontally extending inter-frame coded slices, wherein the frame encodes a macroblock. The vertical strip begins on the right border of the frame. 6C illustrates a frame of a frame-incorporated macroblock block having a single horizontal stripe structure and a plurality of parallel horizontally extending inter-frame coded slices, wherein the frame of the horizontal stripe structure The group of intracoded macroblocks begins at the bottom boundary of the frame. 6D illustrates a single frame of a group of intra-frame coded macroblocks having a single horizontal stripe structure and a plurality of parallel horizontally extending inter-frame coded slices, wherein the frame of the horizontal stripe structure The group of intracoded macroblocks begins on the top boundary of the frame. Figure 7 illustrates an encoding engine for implementing content tunable frame division (divided into slice groups and slices) and non-uniform VAU coding. Figure 8 illustrates a flow diagram of a process for implementing content dependent frame partitioning and encoding of non-uniform video access units in accordance with certain configurations. Figures 9A-9D illustrate an illustrative example of a non-uniform VAU obtained from a content-adapted video frame cut (both for slice geometry and slice coding type) in accordance with certain configurations. Figure 10 illustrates a multi-region composite scene VAU having a plurality of segments that are semantically different. Figure 11 illustrates a flow chart of a process for non-uniform VAU decoding. 127986.doc -34- 200840368 Simplifies the images in these figures for illustrative purposes, and such images are not proportional. To aid understanding, the same reference numbers are used wherever possible to specify the same components that are common to the illustrations, except that suffixes can be added as needed to distinguish the components. The exemplary configurations of the present invention are illustrated by the accompanying drawings, and thus should not be considered as limiting The invention contemplates that a configuration 2 or step can be advantageously incorporated into other configurations without further recitation. ,test

【主要元件符號說明】 多媒體通信系統 外部源 編碼器裝置 處理器 記憶體 收發器 訊框内編碼編碼器 訊框内編碼編碼器元件 參考資料產生器元件 發射器元件 網路 解碼器裝置 處理器 記憶體 收發器 100 102 110 112 114 116 118 120 122 124 140 150 152 154 156 127986.doc •35- 200840368 158 160 162 164 166 200 202 204 210 250 254 256 258 300 350 370 372 374 376 377 400 410 415 接收器元件 選擇性解碼器元件 參考資料確定器元件 頻道切換偵測器元件 錯誤偵測器元件 訊框 巨集區塊 巨集區塊 訊框 樣本訊框 後臺 前堂分區 前臺分區 樣本訊框 VAU VAU 巨集區塊 邊界 巨集區塊 小箭頭 訊框 垂直條帶結構之訊框内編碼巨集區 塊群組 訊框間編碼切片 127986.doc -36- 200840368 420 425 430 450 455 460 470 475 ί— 480 500 510 512 514 516 518 520 700 715 730 740[Major component symbol description] Multimedia communication system external source encoder device processor memory transceiver frame intra-coded encoder intra-frame code encoder component reference data generator component transmitter component network decoder device processor memory Transceiver 100 102 110 112 114 116 118 120 122 124 140 150 152 154 156 127986.doc • 35- 200840368 158 160 162 164 166 200 202 204 210 250 254 256 258 300 350 370 372 374 376 377 400 410 415 Receiver element Selective Decoder Component Reference Data Determiner Component Channel Switching Detector Component Error Detector Component Frame Macroblock Block Macro Frame Frame Sample Frame Background Front Hall Partition Front Partition Sample Frame VAU VAU Macro Area Block boundary macroblock small arrow frame vertical strip structure frame coding macroblock block inter-frame coding slice 127986.doc -36- 200840368 420 425 430 450 455 460 470 475 ί- 480 500 510 512 514 516 518 520 700 715 730 740

訊框 單個垂直條帶結構之訊框内編碼巨 集區塊群組 訊框間編碼切片 訊框 訊框間編碼切片 單個水平條帶結構之訊框内編碼巨 集區塊群組 訊框 單個水平條帶結構之訊框内編碼巨 集區塊群組 訊框間編碼切片 編碼引擎 内容可調適訊框劃分單元 鏡頭邊界偵測器 運動場計算器 訊框分段器 切片群組之確定及指派模組 非一致視訊存取單元(VAU)編碼單元 訊框 垂直條帶 VAU 巨集區塊垂直條帶 VAU 127986.doc -37- 750 200840368Frame single vertical stripe structure intra-frame coding macroblock block group inter-frame coding slice frame inter-frame coding slice single horizontal stripe structure intra-frame coding macroblock block group frame single level Strip structure intra-frame coding macroblock block inter-frame coding slice coding engine content adjustable frame division unit lens boundary detector motion field calculator frame segmentation slice group determination and assignment module Non-uniform video access unit (VAU) coding unit frame vertical strip VAU macro block vertical strip VAU 127986.doc -37- 750 200840368

755 800 804 900 902 904 906 908 910755 800 804 900 902 904 906 908 910

水平條帶 VAU 水平條帶Horizontal strip VAU horizontal strip

VAU 片段 片段 片段 片段 片段 127986.doc -38-VAU fragment fragment fragment fragment fragment 127986.doc -38-

Claims (1)

200840368 十、申請專利範圍·· 1 · 一種裝置,其包括: 處理盗’其運作以執行劃分成切 容可調適訊框劃分,及使用一或 :片之内 單個VAU中執行非一动、p — 片、、扁馬類型在一 致視汛存取單元(VAU)編碼;及 一耦合至該處理器之記憶體。 2. 如凊求们之裝置,其中該處理器在執行 訊框劃分時運作以.店、目丨々々 谷了调適 邊界、,曾,或多個訊框之-或多個鏡頭 n 或多個訊框之運動場、分段該-或多個 ° 及針對該一或多個訊框確 切片或該等切片類型。 …切片群組、該等 I 項2之褒置,其中該處理器在執行該非-致VAU編 =少:分地基於所確定之該等切片群組、該等切片 或專切片類型來編碼該一或多個訊框。 4 St項3之裝置,其中該處理器在執行該非-致狐編 碼=少部分地基於所確定之屬於一 ΡΜ型切片群組及 早型切片群組之該等切片群組來編碼一各別一個訊 框。 5·=求項4之裝置’其中該處理器在執行該非-致VAU編 馬、將各別一個訊框編碼成一具有一單個切片之第一 群組及-具有複數個平行水平延伸Μ之第二群组。 6·=項3之裝置,其中-第-切片群組包括-佈置於 /早固切片中之早個訊框内編碼巨集區塊條帶,該單個 訊框内編石馬巨集區塊條帶具有與該各別一個訊框之三個 127986.doc 200840368 苐一切片群組 塊之平行水平延 邊界邊緣或部分相重合之三個邊緣,且 包括複數個各自具有訊框間編碼巨集區 伸之切片。 7.如請求項6之裝置,其中該 邙摊匈八* 社執订该内容可調適 …分時包含偵測包含全局運動之運動場以… 相關聯之彼等巨集區塊指派為該等訊框内編碼 8. 如請求項7之裝置, 攝、照相機向右搖攝 動0 其中該全局運動包括照相機向左搖 、照相機向上捲動或照相機向下捲 項1之裝置,其中該處理器運作以回應於一合成 / 或多個變化在劃料制靈活^區塊排序 在編碼時使用該單個彻中之不同w編碼類 彻之全部。〜曰該VAU之-或多個部分而非該 10. —種多媒體系統,其包括·· 内谷可调適訊框書彳分置分 -g* ^ W I里彳刀早兀,其運作以將一訊框劃分 成切片群組及切片;及 j -致視訊存取單元(彻)編碼單元,其將該訊框 之第一部分編碼成一單個訊框内編碼巨集區塊條帶, 將名汛框之一第二部分編碼成複數個平行水平延伸之 訊框間編碼切片。 11 ·如π求項10之系統,其中該内容可調適訊框劃分單元包 括: 127986.doc 200840368 個訊框之一或多個鏡頭 群組 一谓測器,其用於偵測一或多 邊界; 或多個訊框之運動場 或多個訊框;及 或多個訊框確定切片 一計算器,其用於計算該一 一分段器,其用於分段該一 一確定器,其用於針對該一 及切片或切片類型。 之糸統’其中該非一致vau編碼單元包括一 f碼:V其運作以至少部分地基於所確定之該等切片群 二亥專切片或該等切片類型來編碼該一或多個訊框。 .::項12之系統’其中該編碼器運作以至少部分地基 於所確定之屬於一p型及-單船型切片群組之該等切片 群組來編碼一各別一個訊框。 %如請求項13之系、統,其中該編碼器運作以將—各別一個 訊忙、扁碼成一具有該單個條帶之第—切片冑組及一具有 複數個平行水平延伸訊框間編碼切片之第二群組。 請求項14之系統’其中一第一切片群組包括佈置於該 2固條帶中之複數個訊框内編碼巨集區塊,該單個條帶 具有與該各別一個訊框之三個邊界邊緣或部分相重合之 個邊緣,且一第二切片群組包括複數個平行水平延伸 之訊框間編碼切片。 、月求員1 5之系統,其中該計算器偵測包括全局運動之 運動場以用於將與該全局運動相關聯之彼等巨集區塊指 派為該等訊框内編碼巨集區塊。 曰 如明求項15之系統,其中該全局運動包括照相機向左搖 127986.doc 200840368 攝、相機向右搖攝、照相機向上捲動或照相機向下捲 動 18, -種用於處理多媒體資料之方法,其包括: 對一訊框執行内容可調適訊框劃分而劃分成切片 及切片;及 、 對忒汛框之一第一部分執行非一致視訊存取單元 (VAU)、、扁碼而編碼成一單個訊框内編碼巨集 及對該訊框之一第_邡八抽—μ 如 条贡, 、、 第一邛刀執仃非一致視訊存取單元編碼 I成複數個平行水平延伸之訊框間編碼切片。 19 ·如請求項1 &amp;夕士、+ , 、 方去,其進一步包括偵測一全局運動偵 測。 、 20·如明求項18之方法,其中該内容可調適訊框劃分包含: 偵測或多個訊框之一或多個鏡頭邊界、計算該一或多 個Λ忙之運動场、分段該一或多個訊框、及針對該一戋 多個訊框確定該等切片群組、該等切片或該等切片類 型。 如明长項1 8之方法,其中該非一致VAU編碼包含至少部 分地基於所確定之該等切片群組、該等切片或該等切二 類型來編碼該一或多個訊框。 22·如請求項21之方法,其中該非—致彻編碼包含至少邻 ㈣基於所確定之屬於—p型及—單個⑶切片群組之該 4切片群組來編碼一各別一個訊框。 23.如請求項22之方法’其巾該非—致VAU編碼包括·將— 各別一冑訊框編碼成一具有該單個條帶之第-切片群 127986.doc 200840368 =^單個條帶具有與該各別-個訊框之三個邊界邊緣 或部分相重合之三個邊緣;及編碼_具有複數個平行水 平延伸之訊框間編碼切片之第二群組。 月夂貝23之方法,其中該第一切片群組之該編碼包 • #使4各別—個訊框之-水平或垂直邊界邊緣與該等 ^内、爲碼巨集區塊之該單個條帶相關聯,·及編碼—包 ’ ^數個平行水平延伸之訊框間編碼切片之第二切片群 組。 25. 如响求項24之方法’其中該内容可調適訊框劃分包含偵 、J 〇 ^王局運動之運動場以用於將與該全局運動相關聯 之彼等E集區塊指派為該#訊㈣編碼巨集區塊。 26. 如請求項25之方法,其中該全局運動之該谓測包括谓測 -照相機向左搖攝、一照相機向右搖攝、一照相機向上 捲動或一照相機向下捲動中之一者。 27· ^種編碼設備’其包括—編碼引擎,該編碼引擎可運作 U 以回應於一照相機之搖攝或-捲動之全局運動偵測來社 合-單個視訊存取單元(VAU)内之不同切片編碼類型而 應用靈活巨集區塊排序(FM〇)。 . 28·如請求項27之編碼設備,其進一步包括: . 用於❹卜或多個訊框之—或多個鏡頭邊界之構件; 用於計算包含該全局運動之該—或多個訊框之運動場 之構件; 用於分段該一或多個訊框之構件;及 用於針對該-或多個訊框確定切片群組及切片或切片 127986.doc 200840368 m尘ι構件。 基於:其進-步包括用於至少部分地 來編碼該-或多二:框::件及該等切片或該等切片類型 3°.婢可讀媒體之電腦程式產品,該電腦可讀 二電:處理多媒體資料之指令,其中該等指令致 =靈:巨集區塊排序(fm〇)來對一訊框執行内容可 適讯框劃分而劃分成切片群組及切片,·及 :::個切片編碼類型對該經劃分之訊框執行非 31.如請求項30之電腦程式產品,其中該等用於執行内容可 =框劃分之指令包含用以致使該電腦執行如下作業 偵測一或多個訊框之一或多個鏡頭邊界; 計算該一或多個訊框之運動場; 分段該一或多個訊框;及 針對该一或多個訊框確定該等切片群組及該等切片气 該等切片類型。 3 32.如請求項31之電腦程式產品,其中該等用以執行該非一 致VAU編碼之指令包含用以致使該電腦執行如下作業 指令: μ 至少部分地基於所確定之該等切片群組及該等切片或 該等切片類型來編碼該一或多個訊樞。 127986.doc 200840368 33·如請求項31之電腦程式產品,其中該等用以計算該等運 動場之指令包含用以致使該電腦偵測一全局運動偵測之 指令。 34. 如請求項30之電腦程式產品,其中該VAu係一具有語意 上不同之片段之多區域場景,且該用以執行該内容可調 適訊框劃分之指令包含用以致使該電腦將該vau劃分成 該等語意上不同之片段的指令。 35. 如請求項34之電腦程式產品,其中該等用以劃分之指令 進一步包含用以致使該電腦確定剪切場景變化、交又淡 化、淡入或淡出、放大或縮小及全局運動多樣化中之任 何一或多者的指令。 36·如請求項31之電腦程式產品,其中該等用以執行該非一 致V A U編碼之指令包含用以致使該電腦至少部分地基於 所確定之屬於一 P型或B型切片群組及一單個1型切片群 組之該等切片群組來編碼一各別一個訊框的指令。 37·如請求項36之電腦程式產品,其中該等用以執行該非一 致VAU編碼之指令包含致使該電腦執行如下作業之指 令:將一各別一個訊框編碼成一具有一單個訊框内編碼 巨集區塊條帶之第一群組,該單個訊框内編碼巨集區塊 條帶具有與該各別一個訊框之三個邊界邊緣或部分相重 合之三個邊緣;及編碼一具有複數個平行水平延伸之訊 框間編碼切片之第二群組。 38·如請求項31之電腦程式產品,其中該等用以計算之指令 包含用以致使該電腦偵測全局運動以用於將與該全局運 127986.doc 200840368 動相關聯之彼等巨集區塊指派為訊框内編碼巨集區塊的 指令。 39.如請求項38之電腦程式產品,其中該等用以偵測該全局 運動之指令包含用以致使該電腦偵測一照相機向左搖 攝、一照相機向右搖攝、一照相機向上捲動及一照相機 向下捲動中之一者之指令。 40·種用於處理多媒體資料之設備,其包括:200840368 X. Patent application scope · · · · A device that includes: processing theft's operation to perform division into a tangible adjustable frame division, and using one or: a single VAU within a slice to perform non-action, p - The slice, the flat horse type is encoded in a consistent view access unit (VAU); and a memory coupled to the processor. 2. In the case of a request for the device, the processor operates in the execution of the frame division, the store, the valley, the adjustment boundary, the previous, or the plurality of frames - or multiple shots n or The motion field of the plurality of frames, the segmentation of the one or more degrees, and the exact slice or the slice type for the one or more frames. a slice group, the arrangement of the I items 2, wherein the processor is performing the non-VAU code = less: the code is encoded based on the determined slice group, the slice or the slice type One or more frames. 4 St device 3, wherein the processor encodes a non-fox code = a portion based on the determined slice groups belonging to a slice group and an early slice group to encode a respective one Frame. 5·=device of claim 4, wherein the processor is performing the non-VAU encoding, encoding each frame into a first group having a single slice, and having a plurality of parallel horizontal extensions Two groups. 6·= Item 3, wherein the -the-slice group comprises-arranged in the early frame of the early frame to encode the macroblock strip, and the single frame contains the macroblock block The strip has three edges that coincide with the parallel horizontally extended boundary edges or portions of the three 127986.doc 200840368 one slice group blocks of the respective frame, and includes a plurality of inter-frame coding macros Sliced area. 7. The device of claim 6, wherein the content is adapted to include the detection of the sports field containing the global motion to which the associated macroblocks are assigned. In-frame coding 8. As in the device of claim 7, the camera pans to the right by 0. The global motion includes a device that shakes the camera to the left, the camera scrolls up, or the camera scrolls down to item 1, where the processor operates In response to a composite/or multiple changes in the scribing system, the block sorting uses all of the different w coding classes in the encoding. ~ 曰 The VAU - or multiple parts rather than the 10. multimedia system, including · · 内谷 可调 适 框 彳 - - - - - - - - - - - - - 兀 兀 兀 兀 兀 兀 兀Dividing a frame into a slice group and a slice; and a j-to-video access unit (trans) coding unit, which encodes the first part of the frame into a single intra-frame coding macroblock strip, The second portion of one of the frames is encoded into a plurality of parallel horizontally extending inter-frame coded slices. 11. The system of claim 10, wherein the content adjustable frame division unit comprises: 127986.doc 200840368 one or more lens groups and a predator for detecting one or more boundaries Or a plurality of frames of motion fields or a plurality of frames; and or a plurality of frames determining a slice-calculator for calculating the one-segment segmenter for segmenting the one-to-one determiner for use For this one and slice or slice type. The non-uniform vau coding unit includes a f code: V operative to encode the one or more frames based at least in part on the determined slice group or slice types. .:: The system of item 12 wherein the encoder operates to encode a respective frame based at least in part on the determined group of slices belonging to a p-type and-single-ship slice group. % is the system of claim 13, wherein the encoder operates to: - each one busy, flat code into a first slice having the single slice and one having a plurality of parallel horizontally extending interframe coding The second group of slices. The system of claim 14 wherein one of the first slice groups includes a plurality of intra-frame coding macroblocks disposed in the 2 solid strips, the single strip having three of the respective frames A boundary edge or a portion of the coincident edge, and a second slice group includes a plurality of parallel horizontally extending inter-frame coded slices. A system of months 1 wherein the calculator detects a sports field comprising global motion for assigning the macroblocks associated with the global motion to the intra-coded macroblocks. For example, the system of claim 15, wherein the global motion includes the camera shaking left 127986.doc 200840368, the camera panning to the right, the camera scrolling up, or the camera scrolling down 18, - for processing multimedia materials The method includes: dividing a frame into a slice and a slice by performing content-tunable frame division; and performing a non-uniform video access unit (VAU) and a flat code on the first part of the frame The coded macro in a single frame and one of the frames _ 邡 抽 — μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ Intercoded slices. 19. If request 1 &amp; s, +, , go, it further includes detecting a global motion detection. The method of claim 18, wherein the content adjustable frame division comprises: detecting one or more lens boundaries of the plurality of frames, calculating the one or more busy sports fields, segmentation The one or more frames, and determining the slice groups, the slices, or the slice types for the one or more frames. The method of claim 18, wherein the non-uniform VAU encoding comprises encoding the one or more frames based at least in part on the determined group of slices, the slices, or the two types. The method of claim 21, wherein the non-stationary coding comprises at least ortho (4) encoding a respective frame based on the determined 4 slice groups belonging to the -p type and -single (3) slice group. 23. The method of claim 22, wherein the non-VAU encoding comprises: - encoding each frame into a first slice group having the single strip 127986.doc 200840368 = ^ a single strip having Each of the three boundary edges or portions of the three frames coincides with three edges; and the code_ has a plurality of parallel horizontally extending inter-frame coded slices of the second group. The method of the month of the mussel 23, wherein the encoding package of the first slice group • #使四间-frames-horizontal or vertical boundary edges and the same, is the code macroblock A single strip is associated with a code-packet' ^ a number of parallel second horizontally stretched inter-frame coded slices. 25. The method of claim 24 wherein the content adjustable frame partition comprises a sports field of the squad, J 〇 ^ king motion for assigning the E set blocks associated with the global motion to the # News (4) coding macro block. 26. The method of claim 25, wherein the predicate of the global motion comprises a predicate - one of panning to the left, one panning to the right, one camera scrolling up, or one camera scrolling down . 27· ^ encoding device 'which includes an encoding engine that can operate U in response to a camera panning or - scrolling global motion detection to the social-single video access unit (VAU) Flexible slice ordering (FM〇) is applied for different slice coding types. 28. The encoding device of claim 27, further comprising: a component for a plurality of frames or a plurality of shot boundaries; for calculating the one or more frames including the global motion a component of the sports field; a means for segmenting the one or more frames; and for determining a slice group and a slice or slice for the one or more frames 127986.doc 200840368 m dust ι component. Based on: the further step comprising: a computer program product for at least partially encoding the - or more two: box:: and the slice or the slice type 3°. readable medium, the computer readable Electricity: an instruction to process multimedia data, wherein the instructions are: macro: macro block sorting (fm〇) to divide the content of a frame into a slice group and slice, and: and: The slice encoding type performs the non-31. The computer program product of claim 30, wherein the instructions for performing the content=frame division include causing the computer to perform the following job detection. Or one or more shot boundaries of the plurality of frames; calculating a motion field of the one or more frames; segmenting the one or more frames; and determining the slice groups for the one or more frames and These slices are the same type of slice. The computer program product of claim 31, wherein the instructions for performing the non-uniform VAU encoding comprise causing the computer to execute the following job instruction: μ based at least in part on the determined slice group and the The slice or the slice types are used to encode the one or more pivots. 127986.doc 200840368 33. The computer program product of claim 31, wherein the instructions for calculating the motion field include instructions for causing the computer to detect a global motion detection. 34. The computer program product of claim 30, wherein the VAu is a multi-regional scene having a semantically different segment, and the instruction to perform the content tunable frame partitioning comprises causing the computer to cause the vau An instruction that is divided into segments that are semantically different. 35. The computer program product of claim 34, wherein the instructions for dividing further comprise causing the computer to determine a change in the cut scene, to fade, fade in or fade out, zoom in or out, and diversify in global motion. Any one or more instructions. 36. The computer program product of claim 31, wherein the instructions for performing the non-uniform VAU encoding comprise causing the computer to belong to a P-type or B-type slice group and a single 1 based at least in part on the determination. The slice groups of the type slice group encode an instruction for a respective frame. 37. The computer program product of claim 36, wherein the instructions for performing the non-uniform VAU encoding comprise instructions for causing the computer to perform the operation of: encoding a respective frame into a single intraframe coded macro a first group of block strips, the coded macro block strips of the single frame having three edges coincident with three boundary edges or portions of the respective frame; and the code one has a complex number A second group of coded slices between parallel horizontally extending frames. 38. The computer program product of claim 31, wherein the instructions for calculating include causing the computer to detect global motion for use in linking the macros associated with the global 127986.doc 200840368 The block is assigned as an instruction to encode a macroblock within the frame. 39. The computer program product of claim 38, wherein the instructions for detecting the global motion comprise causing the computer to detect that a camera pans to the left, a camera pans to the right, and a camera scrolls up And a camera scrolling down one of the instructions. 40. A device for processing multimedia material, comprising: 用於對-訊框執行内容可調適訊框劃分而劃分成切片 群組及切片之構件;及 用於使用-或多個切片編碼類型來對該經劃分之訊框 執行非一致視訊存取單元(VAU)編碼之構件。 仏如請求項40之設備,其中該用於執行内容可調適訊框割 分之構件包含:用於制-或多個訊框之-或多個鏡頭 邊界之構件;用於計算該一或多個訊框之運動場之構 件;用於分段該-或多個訊框之構件;及用於針對該— 或多個訊框確定該等切片群組、該等切片或該 、 型之構件。 1頌 42.=:1°:設備,其中該用於執行該非-致幾編碼 之構件包含至少部分地基於所確定之該等切片群D 等切片或該等切片類型來編碼該_或多個訊b Μ 43·如請求項40之設備,其中該用 娃〇人 刻於執行非—致VAU編碼之 構件3至少部分地基於所確定 唯疋之屬於一 Ρ型或Β型切Η 群組及一單個I型切片群組 片 -個訊框。 《㈣切片群組來編碼-各別 127986.doc 200840368 44.如明求項4〇之設備,其中該用於執行非一致Μι編碼之 構件包含··將一各別一個訊框編碼成一具有一單個訊框 内編碼巨集區塊條帶之第一群組及一具有複數個平行水 平延伸之訊框間編碼切片之第二群組,該單個訊框内編 馬巨集區塊條帶具有與該各別一個訊框之三個邊界邊緣 或部分相重合之三個邊緣。 45. 如7求項4G之設備,其中該彻係—具有語意上不同之 二段之多區域場景,且該用於執行該内容可調適訊框劃 分之構件包含將該VAU劃分成該等語意上不同之片段。 46. -種解碼設備’其包括一解碼引擎,該解褐引擎可運作 以結合-單個視訊存取單元(则)内之不同切片編碼類 里而應用1活巨集區塊排序(FMQ)來解碼該單個經非— 致編碼之VAU。 47. 如請求項46之解碼設備,其中該解碼引擎透過該觸接 收圖片參數集合及接收每一不同編碼類一一 區塊之-絕對位址。 集 48. 如明求項46之解碼設備,其中該解碼引擎包含一選擇性 解:器二其用以解碼-具有—單個訊框内編碼巨集區塊 U f #片群組’ $單個訊框内編碼巨集區塊條帶 具有與該單個爾之三個邊界邊緣或部分相重合之三個 邊緣;及解碼-具有複數個平行水平延伸之訊框間編碼 切片之苐二切片群組。 49. 一種包含一電腦可讀媒體 媒體包括用於處理多媒體 之電腦程式產品,該電腦可讀 資料之指令,其中該等指令致 127986.doc 200840368 使一電腦: 結合一單個視訊存取單元(VAU)内不同之切片編碼類 型而應用靈活巨集區塊排序(FMO)來解碼該單個經非一 致編碼之VAU。 5〇·如請求項49之電腦程式產品,其中該等用以解碼之指令 包含用以致使該電腦藉由該FM〇接收圖片參數集合^ ^ 收每一不同編碼類型之一第一巨集區塊之—絕對: 指令。a component for dividing a frame into a slice group and a slice by performing content-tunable frame division; and for performing a non-uniform video access unit on the divided frame using - or a plurality of slice coding types (VAU) The component of the code. For example, the device of claim 40, wherein the means for performing content tunable frame segmentation comprises: means for making - or a plurality of frames - or a plurality of lens boundaries; for calculating the one or more a component of a motion field of a frame; a component for segmenting the one or more frames; and means for determining the slice groups, the slices, or the components of the frame for the frame or frames. 1颂42.=:1°: a device, wherein the means for performing the non-coding comprises encoding the _ or more based at least in part on the determined slice or the like of the slice group D or the slice types The apparatus of claim 40, wherein the member 3 instructed to perform the non-VAU encoding is based, at least in part, on a determined type or a type of switching group and A single type I slice group slice - a frame. (4) Slice group to encode - each 127986.doc 200840368 44. The device of claim 4, wherein the means for performing non-uniform 编码 编码 encoding comprises: encoding a respective frame into one a first group of coded macroblock strips in a single frame and a second group of inter-frame coded slices having a plurality of parallel horizontal extensions, the blocklet macroblock block strips in the single frame having Three edges that coincide with the three boundary edges or portions of the respective frame. 45. The device of claim 4, wherein the device has a multi-regional scenario of two segments that are semantically different, and the means for performing the content adjustable frame division comprises dividing the VAU into the semantics Different segments. 46. A decoding device that includes a decoding engine operable to combine a different slice encoding class within a single video access unit (then) to apply a live macroblock ordering (FMQ) The single non-coded VAU is decoded. 47. The decoding device of claim 46, wherein the decoding engine receives the set of picture parameters through the touch and receives an absolute address of each of the different coding classes. 48. The decoding device of claim 46, wherein the decoding engine includes a selective solution: the second is used for decoding - having - a single intraframe coding macroblock U f # slice group ' $ a single message The in-frame coded macroblock stripe has three edges that coincide with the three boundary edges or portions of the single one; and decodes - a second slice group having a plurality of parallel horizontally extending inter-frame coded slices. 49. A computer-readable media medium comprising a computer program product for processing multimedia, the computer readable data instructions, wherein the instructions are 127986.doc 200840368 enabling a computer: combining a single video access unit (VAU) Flexible macroblock ordering (FMO) is applied to decode the single non-coherently encoded VAU. 5. The computer program product of claim 49, wherein the instructions for decoding comprise causing the computer to receive a set of picture parameters by the FM frame to receive a first macro region of each of the different coding types. Block - Absolute: Instruction. 5!.如請求項49之電腦程式產品,其中該用以解碼之指令包 ^用以致使該電腦執行如下作業之指♦:解石馬一具有— 單個訊框内編碼巨集區塊條帶之第_切片群組,該單個 訊框内編碼巨集區塊條帶具有與該單個VAU之三個邊界 邊緣或部分相重合之三個邊绫· U瓊緣,及解碼一具有複數個平 行水平延伸之訊框間編碼切片之第二切片群組。 52. —種編碼設備,其包括一 祜編碼引擎,該編碼引擎可運作 以回應於一合成場景中$ _十夕 厅、干之或多個變化而結合一單個視 5孔存取單元(vau)内之不同切片絶 个IJ切片編碼類型來應用靈活巨 木區塊排序(FMO),該一咬多偏料 及夕個定化影響該VAU之一戍 多個部分而非該VAU之所有部分。 53. 或多個變化包含剪切 Λ放大或縮小及全局 如請求項52之編碼設備,其中該— 場景變化、交又淡化、淡入或淡出 運動多樣化中之任何一或多者。 127986.doc5: The computer program product of claim 49, wherein the instruction packet for decoding is used to cause the computer to perform the following operations: ♦ the stone horse has one - a single frame intra-coded macro block strip a _th slice group, the coded macroblock strip in the single frame has three edges U·u 琼 edges that coincide with three boundary edges or portions of the single VAU, and the decoding one has a plurality of parallels A second slice group of sliced slices between horizontally extending frames. 52. An encoding device comprising an encoding engine operable to respond to a single viewing 5-hole access unit (vau) in response to a $_day, dry or multiple change in a composite scene The different slices within the IJ slice encoding type apply the flexible giant block sorting (FMO), which affects one or more parts of the VAU rather than all parts of the VAU. 53. The or changes include shearing, zooming in or out, and globally, as in the encoding device of claim 52, wherein the scene changes, fades, fades in, or fades out any one or more of the sports diversity. 127986.doc
TW96149639A 2006-12-22 2007-12-21 Techniques for content adaptive video frame slicing and non-uniform access unit coding TW200840368A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87692006P 2006-12-22 2006-12-22

Publications (1)

Publication Number Publication Date
TW200840368A true TW200840368A (en) 2008-10-01

Family

ID=41272868

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96149639A TW200840368A (en) 2006-12-22 2007-12-21 Techniques for content adaptive video frame slicing and non-uniform access unit coding

Country Status (2)

Country Link
CN (1) CN101578865A (en)
TW (1) TW200840368A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039523A (en) * 2010-08-10 2012-02-23 Sony Corp Moving image processing device, moving image processing method, and program
US9584819B2 (en) * 2011-10-24 2017-02-28 Qualcomm Incorporated Grouping of tiles for video coding
CN104885456A (en) 2012-09-18 2015-09-02 Vid拓展公司 Region of interest video coding using tiles and tile groups
US10134403B2 (en) * 2014-05-16 2018-11-20 Qualcomm Incorporated Crossfading between higher order ambisonic signals

Also Published As

Publication number Publication date
CN101578865A (en) 2009-11-11

Similar Documents

Publication Publication Date Title
US8428125B2 (en) Techniques for content adaptive video frame slicing and non-uniform access unit coding
CA2878293C (en) Coding sei nal units for video coding
US8229983B2 (en) Channel switch frame
EP3672249A1 (en) Inter frame prediction method and device and codec for video images
US9264658B2 (en) Implementing channel start and file seek for decoder
US8811483B2 (en) Video processing apparatus and method
JP2007104231A (en) Transcoder, recording apparatus, transcode method
JP5502798B2 (en) Channel switching frame
TW200840368A (en) Techniques for content adaptive video frame slicing and non-uniform access unit coding
JP2005311603A (en) Motion picture decoder and decoding method
CN102223544B (en) Method for processing error after detecting error in H264 video stream
JP4230289B2 (en) Video encoding method and video decoding method
JP2020108032A (en) Video code stream editing device and program
JP2011044771A (en) Apparatus and method for decoding moving image
CN117813819A (en) Video coding concept for handling motion vectors in streaming scenes
JP2010200357A (en) Transcoder, recording apparatus and transcode method