TW200840073A - Photo-detecting device - Google Patents

Photo-detecting device Download PDF

Info

Publication number
TW200840073A
TW200840073A TW96109596A TW96109596A TW200840073A TW 200840073 A TW200840073 A TW 200840073A TW 96109596 A TW96109596 A TW 96109596A TW 96109596 A TW96109596 A TW 96109596A TW 200840073 A TW200840073 A TW 200840073A
Authority
TW
Taiwan
Prior art keywords
region
source
layer
light
sensing
Prior art date
Application number
TW96109596A
Other languages
Chinese (zh)
Other versions
TWI329933B (en
Inventor
Chien-Sen Weng
Chieh-Chou Hsu
Chih-Wei Chao
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW96109596A priority Critical patent/TWI329933B/en
Publication of TW200840073A publication Critical patent/TW200840073A/en
Application granted granted Critical
Publication of TWI329933B publication Critical patent/TWI329933B/en

Links

Abstract

A photo-detecting device includes a substrate, a semiconductor layer, a first interlayer dielectric layer, a second interlayer dielectric layer, and two electrodes. The semiconductor layer is disposed on the substrate and has a first doped region, a second doped region, and an intrinsic region between the first doped region and the second doped region. The first interlayer dielectric layer is disposed on the semiconductor layer and includes a first oxide layer and a first nitride layer. The second interlayer dielectric layer is disposed on the first interlayer dielectric layer and includes a second oxide layer and a second nitride layer. The two electrodes are disposed on the second interlayer dielectric layer and connected to the first doped region and the second doped region.

Description

200840073 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種光感測元件,特別是有關於一種能 夠降低光感測元件之暗電流,並增加其光靈敏度的光感測元 件。 【先前技術】 現今各種消費性電子產品,無論是電腦的液晶顯示器、 液晶電視、電漿電視或是手機、個人數位助理(pDA)、數位 相機及掌上__顯示螢幕,乃錄自動提款機(ATM)的 觸控螢幕’皆廣泛運用平面顯示器的技術。因此,大幅提升 了消費者對於平賴示n畫輯色彩及亮度敏銳度的要求。 基於上述之需求,現今的顯示器,大多組裝了可感應外 部光線之光_元件,使平面顯示器於外在環境光線變化 時,可適當變化畫面的亮度與色彩,讓消費者無論在何種情 況下,均可獲得更佳的視覺效果。 明參閱第-圖,是習知光感測元件之結翻面圖。如圖 中所示,習知的-光_元件1G,是在玻珊f所組成之〆 絕緣基板11上’設置有—緩衝層(bu版Iayer)i2,缓衝 層12上’具有由多晶卿組成之—半導體層13,包括二極 性相反之第-摻雜區13a與第二摻雜區⑽以及位於二者之 6 200840073 間的一本徵區13c。 於半導體層13上,依序堆疊一絕緣層14及一間介電層 15。其中,絕緣層14直接覆蓋於半導體層13之上,其材質 通常為氮切,絕緣層14之厚度…般為誦埃左右;絕 緣層14上形成該間介電層15,依序包括一氧化矽層15&及 一氮化矽層15b,其中氧化矽層15a之厚度為3000埃,而氮 化矽層15b之厚度則為1000埃。 最後’形成二電極16a及16b,穿過間介電層15及絕緣 層14,分別連接至半導體層13之第一摻雜區13&與第二摻 雜區13b。 请參閱第二圖,為根據上述習知之光感測元件之製作技 術及結構,經測試後所得之光電流及暗電流邮 特性曲線®,其中,光制元件之本觀之寬度及長度分別 為5微米(//m)為實驗條件。粗實線尅為暗電流變化曲線, 為給予不同之逆向偏壓下,光感測耕1G之暗電流的大小, 細實線B1則為光電流的變化曲線;衡量光感測元件丨〇之光 靈敏度的方式,即是在相同之逆向偏壓下,光電流除以暗電 流,所得值之大小,所得值越大表示對光之靈敏度越高。如 圖中所不,若提供-逆向偏壓之絕對值為5V時,經測試得 知’習知的光感測70件10,計算所得之光靈敏度僅為伽。 ▲針對現今消費者對於平面顯示器畫面之色彩細緻度及 亮度敏銳度之的高度要求,以f知光感測元件做為檢測外部 7 200840073 環境之光線明暗變化之控制元件,來調整平面顯示器畫面亮 度及色彩變化,實已不足以因應消費者日益嚴格之需求,有 必要提出一種有較佳的光靈敏度之新的光感測元件,以符合 市場所需。 【發明内容】 本發明之一目的,在於提供一種光感測元件,特別是一 種可降低光感測元件之暗電流,增加其光靈敏度之光感測元 件0 本發明之另一目的,是提供一種具有較佳之光靈敏度之 光感測元件,應用於顯示器上,提升顯示器對環境光線明暗 變化之敏感程度,以增加顯示器畫面之色彩的細緻度及亮度 的敏銳度。 本發明揭示一種光感測元件,包括一基板、一半導體 層、一第一間介電層、一第二間介電層以及二電極。其中, 該半導體層,設置於基板上,包括—第—摻雜區、一第二換 雜區及位於第一摻雜區與第二摻雜區之間的本徵區。 而第-間介電層,覆蓋於該半導體層上,其中包含有一 第-氧化物層以及-第-氮化物層;第二間介電層,則形成 在第-間介電層上,其中包含-第二氧化物層以及一第二氮 化物層。 一電極,设置於第一間介電層上,並分別連接於該半導 8 200840073 體層之該第一換雜區及該第二換雜區。 本發明另揭示一種形成光感測元件的方法,該方法包含 提供一基板;形成一半導體層於基板之上,使半導體層具有 一第一摻雜區、一第二摻雜區以及一位於第—摻雜區與第二 摻雜區之間之一本徵區。 形成一第一間介電層覆盍於半導體層上,且盆包括一第 , 一氧化物層以及一第一氮化物層;形成一第二間介電層於第 一間介電層上,且其包括一第二氧化物層以及一第二氮化物 層。 形成一開口分別穿越第一間介電層及第二間介電層,以 曝露出半導體層至少一部份之第一摻雜區及至少一部份之 第二摻雜區;形成二電極於第二間介電層上,並透過二開 口,为別連接至少一部份之第一摻雜區及至少一部份之第二 捧雜區。 關於本發明之優點與精神,可藉由以下的發明詳述及所 附圖式得到進一步的了解,然而所附圖式,僅供參考與說 明’非以對本發明加以限制。 【實施方式】 本發明在於提供一種光感測元件,特別是一種可降低光 感測70件暗電流,增加其光錄度之光感測元件 。並以其應 用於顯示器上,提升顯示器對環境光線明暗變化之敏感程 9 200840073 晝面之色彩的細緻度及亮度的敏銳 度,以增加平面顯示器 度0 第二Γ5圖示將本發明較佳實施例詳細說明如下。請參閱 - ’其為本發明—種光_元件第—實細之結構剖面 =本實施例之-光感測元件_設置於—基板⑽上其 二:半導體層330、一第二間介電層34°、-第二間介電 層以及1極删、362。其中,半導體層33G形成於基 反上,且該半導體層330包含一第一推雜區如、一第 二摻雜區微峨帛—她331 第二摻雜區 332之間的本徵區333。 土板310之材質包含一透明材料(如:玻璃、石英、或 其它材料、或上述之組合)、—秘光材料(如:陶兗、判、 或其它材料、或上述之齡)、—可触倾如:聚稀類、 聚酼類、料類、聚_、橡膠、熱紐聚合物、熱固性聚 合物、聚芳香醜、聚f基丙醯酸甲_、聚碳酸醋類、或 其它、或上述讀生物、肚述德合)。本發明之實施例 是以玻璃為實施範例,但不限於此。 半導體層3GG之材質包含含碎之單晶材料、含梦之微晶 材料、含石夕之多晶材料、含石夕之非晶材料、或上述之組合。 其中,第-摻雜區331及第二摻雜區332可同時形成或依序 形成’且第一掺雜區331及第二摻雜區332之極性實質上相 同或實質上不同’而第-摻雜區331及第二摻雜區332之至 200840073 少一者,其摻雜子包含N型、P型、或上述之組合。本發明 之實施例是以第一摻雜區331及該第二摻雜區332之極性, 實質上不相同為實施範例,但不限於此。 第一間介電層340形成於半導體層330上。第一間介電 層340包含一第一氧化物層341及一第一氮化物層342,在 本實施例中,為了降低後續製程所產之缺陷,因此,第一氧 化物層341及第一氮化物層342之堆疊方式,較佳地,以第 一氧化物層341形成於半導體層330上,然後,形成第一氮 化物層342於該第一氧化物層341上,但不限於此,亦可選 擇性地第一氧化物層341形成於第一氮化物層342上。 第二間介電層350形成於第一間介電層34〇上。該第二 間介電層350包含一第二氧化物層351及一第二氮化物層 352 ’在本實施例中,為了降低後續製程所產之缺陷,因此, 第一氧化物層351及第二氮化物層352堆疊方式,較佳地, 以第一氧化物層351形成於第一氮化物層342上,然後,形 成第二氮化物層352於第二氧化物層351上,但不限於此, 亦可選擇性地第二氧化物層351形成於第二氮化物層352 上其中,第一氧化物層341及第二氧化物層351,至少其 中之一者的材質,包含無機材料、有機材料、或上述材料之 組合。無機材料包含石夕之氧化物(如:由矽曱烧所形成的二 氧化矽、由四乙烷基氧矽甲烷所形成的二氧化矽)、含矽之 氮氧化物、或其它材料、或上述之組合。有機材料包括含矽、 200840073 奴及氫之氧化物、含矽、碳及氫之氮氧化物、或其它材料、 或上述之組合。 於本實施例中,較佳地,以由四乙烷基氧矽曱烷所形成 的二氧化矽,且厚度約500埃及以厚度約3〇〇〇埃之二氧化 矽來當作第一氧化物層341及以厚度約5〇〇埃及以厚度約 3000埃之二氧化矽來當作第二氧化物層351為實施範例但 不限於此實施例所述之材料及厚度。 而第一氮化物層342及第二氮化物層352之至少一者之 材質,包含無機材料、有機材料、或上述之組合。無機材料 包含石夕之氮化物(如:氮化石夕)、含石夕之氮氧化物、或其它材 料、或上述之組合。有機材料包括含矽、碳及氫之氮化物、 含石夕、碳及氫之氮氧化物、或其它材料、或上述之組合。在 本實施例中,舉例而言,以厚度約2〇〇埃至5〇〇埃之氮化矽 來當作第一氮化物層342及以厚度約500埃至3〇〇〇埃之氮 化石夕來當作第二氮化物層352為實施範例,但不限於此實施 例之材料及厚度。較佳地,第—氮化物層342為厚度約2〇〇 埃之氮化珍。第二氮化物層352為厚度約誦埃且富含氮 之氮化石夕,其化合物簡式為_χ,X約等於133。此外第 -氮化物層342之沈積速率可選擇性地實質上低於第二氮化 物層352之沈積速率。也就是說,第一氮化物層⑽之材質 實質上比第二氮化物層352之材為緻密。 -電極36卜362形成於第二間介電層上,較佳地, 12 200840073 可選擇性地形成於第二氮化物層352上,並且經由第一間介 電層340及第二間介電層350所具有之孔洞(未標註)連接於 半導體層330中之第一摻雜區331及第二摻雜區332。 另外,在本實施例中,為了降低光感測元件3〇〇與基板 310之親合性,較佳地,一緩衝層320先形成於基板31〇上, 也就是,緩衝層320位於基板310及半導體層330之間,但 不限於此。 第四A圖至第四E圖,其為本發明之第一實施例之製程 的結構剖面圖。 請參閱第四A圖所示,本發明之光感測元件結構,形成 於基板(例如:玻璃、或其它之材質)310之上。在基板31〇 上形成半導體層330,之後,再以離子植入法或其它方法於 半導體層330内,同時形成或依序形成第一摻雜區331、第 二摻雜區332以及位於第一摻雜區331與第二摻雜區332之 間的本徵區333。較佳地,在半導體層330之表面,利用氫 氣、重氫、含氮之氣體(如··一氧化氮、二氧化氮、或其它 氣體)、其它處理半導體表面之氣體(如:氧氣、氬氣、氦氣、 氖氣、氪氣、氙氣、氡氣、或其它氣體)、或上述之組合, 施行一氣體處理之程序,以修補半導體層33〇表面上之垂懸 鍵(dangling bond)為完整鍵結,以增加半導體層之電壓忍 文能力。其中,第一摻雜區331及第二摻雜區332之至少一 者,其掺雜子包含_、p型、或上狀組合。而本發明之 13 200840073 f例是以第一摻雜區331及該第二摻雜_之極性,實 、上不_為實施制,但不限於此,亦可姉 細之她___、切儀侧、含毅 多晶材料、含石夕之非晶材料、或上述之組合。。 另外,在本實施例之製程中,射降低光感測元件3〇〇 與基板310之親合性,較佳地,先形成一緩衝層32〇於基板 310上為實施範例。也就是說,緩衝層32〇位於基板及 半導體層330之間為實施範例,但不限於此。 明參閱第四B圖所示,形成第一間介電層34〇覆蓋於半 導體層330上。第-間介電層34〇包括第一氧化物層341及 第一氮化物層342 ;在本實施例中,為了降低後續製程所產 之缺陷,因此,第一氧化物層341及第一氮化物層342之堆 疊方式,較佳地,以第一氧化物層341形成於半導體層330 上,然後,形成第一氮化物層342於該第一氧化物層341上, 但不限於此,亦可選擇性地第一氧化物層341形成於第一氮 化物層342上。 請參閱第四C圖所示,在第一間介電層340上,繼而形 成第二間介電層350。第二間介電層350包括第二氧化物層 351及第二氮化物層352,在本實施例中,為了降低後續製 程所產之缺陷,因此,第二氧化物層351及第二氮化物層352 堆疊方式,較佳地,以第二氧化物層351形成於第一氮化物 層342上,然後,形成第二氮化物層352於第二氧化物層351 200840073 上,但不限於此,亦可選擇性地第二氧化物層351形成於第 二氮化物層352上。其中,第一氧化物層341及第二氧化物 層351,至少其中之一者的材質,包含無機材料、有機材料、 或上述之組合。無機材料包含矽之氧化物(如:由矽甲烷所 形成的二氧化矽、由四乙烷基氧矽曱烷所形成的二氧化 石夕)、含梦之氮氧化物、或其它材料、或上述之組合。有機 材料包括含石夕、碳及氫之氧化物、含石夕、碳及氫之氮氧化物、 或其它材料、或上述之組合。 於本實施例中,較佳地,以由四乙烧基氧石夕甲烧所形成 的二氧化矽,且厚度約5〇〇埃及以厚度約3〇〇〇埃之二氧化 石夕來§作第-氧化物層341及以厚度約5〇〇埃及以厚度約 3000埃之二氧化石夕來當作第二氧化物| 351鱗施範例,但 不限於此實施例之之材料及厚度。 而第一氮化物層342及第二氮化物層352之至少一者之 材質,包含無機材料、有機材料、或上狀組合。無機材料 包含石夕之氮化物(如:氮化梦)、含石夕之氮氧化物、或其它材 料、或上述之齡。械㈣包括切、碳及氫之氣化物、 含石夕、碳及氫之氮氧化物、或其它材料、或上述之組合。在 本實施例中,舉例而言,分別以厚度約2〇〇埃至5〇〇埃之氮 化石夕來當作第-氮化物層342及以厚度約5〇〇埃至3_埃 之氮化♦來當作第二氮化物層352為實施範例,但不限於此 實施例之材料及厚度。齡地,第—氮錄層⑽為厚度約 15 200840073 2⑻埃之氮化發。第二氮化物層352為厚度約圓埃且富含 氫之氮化石夕,其化合物簡式為施,x約等於h 33。此外, 第一氮化物層342之沈積速率可選擇性地實質上低於第二氮 化物層352之沈積速率。也就是說,第一氮化物層撕之材 質實質上比第二氮化物層352之材質較為敏密。 請參閱第四D圖所示,形成第二間介電層之後,再 形成二開口 37卜372,並使二開口 37卜372可穿越第-間 "電層340以及第二間介電層35〇,到達半導體層33〇之第 掺雜區331與第二摻雜區332處,以暴露出半導體層33〇 邛刀之第一摻雜區331與一部分之第二摻雜區332。 最後,請參閱第四E圖所示,形成二電極gw、362於 第二間介電層350上,較佳地,可選擇性地形成於第二氮化 物層352上,並且經由第一間介電層34〇及第二間介電層350 所具有之孔洞371、372連接於半導體層330中之第一摻雜 區331及第二摻雜區332。 請參閱第五圖,為本發明上述光感測元件3〇〇 ,經測試 後所得之光電流與暗電流(dark current)特性曲線圖,其 中,光感測元件之本徵區之寬度及長度分別為5微米(//m)。 粗虛線A1及細實線B1為習知技術製作之光感測元件1〇之 暗電流變化曲線與其光電流變化曲線;粗實線A2與細虛線 B2則為本發明上述結構之光感測元件300於相同逆向偏壓 變化下之暗電流與光電流大小變化之曲線,其中,光感測元 200840073 件之本徵區之寬度及長度分別為5微米(//m)為實驗條件。 如圖所示,可明顯得知,若提供一逆向偏壓之絕對值約 為5V時,本發明之光感測元件300的暗電流值A2較習知技 術製作之光感測元件1〇的暗電流值A1下降約為lpA,且本 發明之光感測元件300的光電流值B2亦較習知技術製作之 光感測元件10的光電流值B1增加。因此,在相同逆向偏壓 之絕對值(如5V)下,本發明之光感測元件3〇〇的光靈敏度 (光電流值/暗電流值),計算得知為3558 ,增加之程度為原 有習知技術製作之光感測元件10的光靈敏度480的7· 4倍 左右。因此,可明白的知道本發明之光感測元件3〇〇之結構 透過降低暗電流的方式,已大幅提升其光靈敏度。 請參閱第六圖、第七圖及第八圖之實施例,均為本發明 上述光感測元件應用於一顯示面板5〇〇上之示意圖。請參閱 第六圖之第一實施例,如圖所示,一顯示面板5〇〇,具有一 顯示區501及相鄰且環繞於該顯示區5〇1之一非顯示區 502。顯示面板500更包括至少一驅動電路51〇、一發光源 530、一光感測區域540以及設置於顯示區内的複數個畫素 550 ;本發明上述之光感測區域54〇的設置處,可為顯示面 板500之顯示區501及非顯示區502其中至少之一者上。 驅動電路510電性連接於上述複數個畫素550以及上述 之光感測區域540内之至少一光感測元件(圖未示)。 如第六圖所示,驅動電路510電性連接於發光源530以 17 200840073 及顯示區501之複數個晝素550,以顯示出影像及色彩於顯 示面板500之顯示區501内,而光感測區域540設於非顯示 區502中之至少一處,而本實施例是鄰近於顯示面板5〇〇的 角落處’但不限於此,而光感測區域540包括本發明之實施 例所述之至少一光感測元件(圖未示),電性連接於驅動電 路510。因此,光感測區域540之光感測元件所傳遞之訊號 可選擇性地協助顯示面板顯示較佳之晝面。發光源530包含 點光源(如:無機發光二極體、有機發光二極體、或上述之 組合)、螢光燈管(如:冷陰極螢光燈管、熱陰極螢光燈管、 外部電極螢光燈管、平面螢光燈管、或其它、或上述之組 合)、表面發射光源(如:奈米碳管發光源、電漿發光源、或 其它、或上述之組合)。再者,本發明之驅動電路51〇可選 擇性地包括一訊號驅動電路511、一光源驅動電路512、電 源提供電路、訊號處理電路、或其它功能電路、或上述二者 之組合。 请參閱第七圖’為本發明之實施例所述之光感測區域 540的設置處之第二實施例,是以光感測區域54〇設置於非 顯示區502上,鄰環繞於顯示區5〇1為實施範例。光感測區 域540鄰近於顯示區501之一側邊至鄰近於顯示面板5〇〇邊 緣之另一侧邊之寬度,較佳地,實質上寬度為〇.4毫米,但 不限於此。本實施例之光感測區域54〇之光感測元件所傳遞 之訊號可選擇性地協助顯示面板顯示較佳之晝面。發光源 200840073 530包含點光源(如:無機發光二極體、有機發光二極體、或 上述之組合)、螢光燈管(如:冷陰極螢光燈管、熱陰極螢光 燈官、外部電極螢光燈管、平面螢光燈管、或其它、或上述 之組合)、表面發射光源(如:奈米碳管發光源、電漿發光源、 或其匕、或上述之組合)。再者,本發明之縣動電路51〇可 選擇性地包括一訊號驅動電路511、一光源驅動電路512、 電源提供電路、訊號處理電路、或其它功能電路、或上述之 組合。亦可如第八圖,為光感測區域54()的設置處之第三實 施例’是以光感測區域540設置於顯示區5〇1内之至少一部 份或全部之畫素550中為實施範例。上述之光感測區域540 的設置處’僅為本發明之較佳實施例而已,非限定光感測區 域540於顯示面板5〇〇上之其他設置位置以及非限定光感測 區域540設置於非顯示區或顯示區上,亦可選擇性地依設計 所需設置於非顯示區及顯示區之至少一者上及其它位置上。 依上述顯示裝置之實施例得知藉由光感測區域540内之 光感測元件(圖未示)對外界環境光線及明暗之變化,經由一 感測電路(圖未示)傳遞訊號至上述實施例中所述之驅動電 路510’使其可選擇性地協助及/或調整顯示區5〇1内複數個 畫素550的色彩的細緻度及亮度的敏銳程度,讓顯示面板 500得以提供最佳化的影像品質。 請參閱第九圖,為本發明之光感測區域540與一感測電 路560電性連接之第一實施例電路圖。如圖所示,感測電路 200840073 560,連接於光感測區域中540之光感測元件541之二電極 其中之一者,且感測電路560包括有一第一訊號源561、一 第二訊號源562及一第一電壓源563,較佳地,第一訊號源 561與第二訊號源562之訊號,實質上不相同。而光感測元 件541之二電極其中之另一者可選擇性地連接於另一電壓源 (未標示),並與第一電壓源563實質上不相同。 此外,可選擇性地使用一放大器570以及一第一電晶體 580,其中,放大器570具有二輸入端,分別連接至光感測 區域540中之光感測元件541之二電極其中之一者及一參考 電位源571與一輸出端連接至驅動電路(圖未示);第一電 晶體580’具有一源極/沒極連接至放大器570之二輸入端其 中之一者,另一汲極/源極連接至驅動電路(圖未示)及一 閘極連接至一重置訊號源581。 對於本實施例所述之感測電路560,舉例而言,包含一 弟一電晶體564以及一第三電晶體565 ;其中,第二電晶體 564,具有一源極/汲極連接光感測區域54〇中之光感測元件 541之二電極其中之一者,一閘極連接至第一訊號源561及 另一汲極/源極,則連接至第一電壓源563;第三電晶體565 則具有一源極/汲極連接至放大器570之二輸入端其中之一 者,另一源極/汲極則連接於光感測區域54〇中之光感測元 件541 一電極其中之一者以及一閘極連接至第二訊號源 562。再者,本實施例所述之電晶體,是以p—忭卯的電晶體 200840073 為實施範例,亦可選擇性地使用N-type的電晶體、或上述 型態電晶體之組合。 睛參閱第十圖,為光感測區域540,設置於顯示區5〇1 内之晝素550時’光感測區域540與一感測電路⑽電性連 接之第一實施例電路示意圖。如圖所示,感測電路,設 置於顯示區之至少一部份之畫素或全部之畫素(圖未示) 中,連接於光感測區域中540之光感測元件541之二電極其 中之一者。其中,感測電路610是以電性連接於一第一選擇 線620、一第二選擇線621、一第一電壓源63〇以及至少一 放大器640為實施範例,亦可選擇性地電性連接於第一選擇 線620及一第二選擇線621其中一條、一第一電壓源630及 至少一放大器640或是三條以上之選擇線。 顯示區畫素(圖未示)中’較佳地,包含一第一電晶體 650以及至少一電容690 ;其具有一閘極連接於至少一資料 線660、一源極、以及一汲極連接於一掃描線68〇 ;以及電 容690連接於第一電晶體650 ,並可選擇性地電性連接於第 至少一共用電極線670及部份閘極線其中至少一者。 對於本實施例所述之感測電路61〇,舉例而言,包含一 第二電晶體611以及一第三電晶體612 ;其中,第二電晶體 611具有一閘極連接於第一選擇線62〇、一源極/汲極連接於 光感測區域540中之光感測元件541之該二電極其中之一者 及另一源極/汲極連接於第一電壓源63();第三電晶體612, 21 200840073 具有一閘極連接於第二選擇線621、一源極/没極連接於光感 測區域540中之光感測元件mi之該二電極其中之一者及另 一源極/汲極連接於放大器640,但不限於此,亦可使用一電 晶體電性連接於一選擇線來運作、或是三個以上之電晶體連 接至少一條之選擇線。其中,電晶體具有一閘極連接於該選 擇線、一源極/汲極連接於該光感測區域中之該光感測元件 之該二電極其中之-者及另一源極/赌連接於該放大器 640。再者,本實施例所述之電晶體,是以N—type的電晶體 為實施範例,亦可選擇性地使用p—type的電晶體、或上述 型態電晶體之組合。 除上述顯示面板之實施例外,其他光/電檢測器上之運 用,例如太陽能電池、電荷辆合元件CCD(charge coupledBACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a light sensing element, and more particularly to a light sensing element capable of reducing the dark current of a light sensing element and increasing its light sensitivity. [Prior Art] Today's various consumer electronic products, whether it is a computer LCD monitor, LCD TV, plasma TV or mobile phone, personal digital assistant (pDA), digital camera and handheld __ display screen, is the automatic cash machine (ATM) touch screens are widely used in flat panel display technology. As a result, consumers have greatly increased the demand for color and brightness acuity. Based on the above requirements, most of today's monitors are equipped with light-inducing elements that can sense external light, so that the brightness and color of the screen can be appropriately changed when the flat-panel display changes in external ambient light, so that the consumer can under any circumstances. , you can get better visual effects. Referring to the first figure, it is a reversal view of the conventional light sensing element. As shown in the figure, the conventional photo-element 1G is provided with a buffer layer (bu Iayer) i2 on the insulating substrate 11 composed of Bosa f, and has a plurality of buffer layers 12 The semiconductor layer 13 comprises a first doped region 13a and a second doped region (10) of opposite polarities and an intrinsic region 13c between 6 200840073. On the semiconductor layer 13, an insulating layer 14 and a dielectric layer 15 are sequentially stacked. The insulating layer 14 is directly over the semiconductor layer 13 and is usually made of nitrogen. The thickness of the insulating layer 14 is about 诵. The dielectric layer 15 is formed on the insulating layer 14 and includes oxidation. The tantalum layer 15 & and a tantalum nitride layer 15b wherein the tantalum oxide layer 15a has a thickness of 3000 angstroms and the tantalum nitride layer 15b has a thickness of 1000 angstroms. Finally, two electrodes 16a and 16b are formed, which pass through the interlayer dielectric layer 15 and the insulating layer 14, and are respectively connected to the first doping region 13& and the second doping region 13b of the semiconductor layer 13. Please refer to the second figure, which is a photocurrent and a dark current characteristic curve obtained after testing according to the manufacturing technique and structure of the above-mentioned light sensing element, wherein the width and length of the optical component are respectively 5 micrometers (/ / m) is the experimental conditions. The thick solid line is the dark current curve. In order to give different reverse bias, the light current is 1G dark current, and the thin solid line B1 is the photocurrent curve. The way of light sensitivity is that under the same reverse bias, the photocurrent is divided by the dark current, and the value obtained, the larger the value obtained, the higher the sensitivity to light. As shown in the figure, if the absolute value of the reverse bias is 5V, it is found that the conventional light sensing 70 is 10, and the calculated light sensitivity is only gamma. ▲In view of the high demands of today's consumers on the color detail and brightness acuity of flat panel display screens, the brightness of the flat panel display is adjusted by using the light sensing component as a control component for detecting the light and dark changes of the external environment of 200840073. And the color change is not enough to meet the increasingly stringent needs of consumers. It is necessary to propose a new light sensing component with better light sensitivity to meet the needs of the market. SUMMARY OF THE INVENTION It is an object of the present invention to provide a light sensing component, and more particularly to a light sensing component that can reduce the dark current of a light sensing component and increase its light sensitivity. Another object of the present invention is to provide A light sensing component with better light sensitivity is applied to a display to improve the sensitivity of the display to changes in ambient light and light, so as to increase the color detail and brightness acuity of the display screen. The invention discloses a light sensing device comprising a substrate, a semiconductor layer, a first dielectric layer, a second dielectric layer and two electrodes. The semiconductor layer is disposed on the substrate and includes a first doped region, a second doped region, and an intrinsic region between the first doped region and the second doped region. And an inter-dielectric layer covering the semiconductor layer, comprising a first oxide layer and a first-nitride layer; and a second dielectric layer formed on the first-inter-dielectric layer, wherein A second oxide layer and a second nitride layer are included. An electrode is disposed on the first dielectric layer and is respectively connected to the first change region and the second change region of the semiconductor layer of the semi-conductive 8 200840073. The invention further discloses a method for forming a photo sensing device, the method comprising: providing a substrate; forming a semiconductor layer on the substrate, the semiconductor layer having a first doping region, a second doping region, and a first - an intrinsic region between the doped region and the second doped region. Forming a first dielectric layer overlying the semiconductor layer, and the basin includes a first, an oxide layer and a first nitride layer; forming a second dielectric layer on the first dielectric layer, And it includes a second oxide layer and a second nitride layer. Forming an opening respectively through the first dielectric layer and the second dielectric layer to expose at least a portion of the first doped region and at least a portion of the second doped region of the semiconductor layer; forming a second electrode The second dielectric layer is connected through the two openings to connect at least a portion of the first doped region and at least a portion of the second doped region. The invention will be further understood from the following detailed description and the appended claims. [Embodiment] The present invention provides a light sensing element, and more particularly to a light sensing element capable of reducing the light current of 70 pieces and increasing the light recording degree thereof. And it is applied to the display to improve the sensitivity of the display to the change of ambient light and light. 9 200840073 The fineness of the color of the face and the acuity of the brightness to increase the degree of the flat display 0. The second embodiment of the present invention will be better implemented. The details are as follows. Please refer to - 'which is the invention - the light_component - the thin structure section = the light sensing element of the embodiment - is disposed on the substrate (10), the second layer: the semiconductor layer 330, a second dielectric Layer 34°, - second dielectric layer, and 1 pole deletion, 362. The semiconductor layer 33G is formed on the base, and the semiconductor layer 330 includes a first doping region, such as a second doped region, and an intrinsic region 333 between the second doped region 332. . The material of the earth plate 310 comprises a transparent material (such as: glass, quartz, or other materials, or a combination thereof), a secret material (such as: ceramics, judgment, or other materials, or the above-mentioned age), Touching: polythene, polybenzazole, material, poly-, rubber, hot polymer, thermosetting polymer, poly-aromatic, poly-f-propionate, polycarbonate, or other, Or read the above-mentioned creatures, and express the virtues. Embodiments of the present invention are examples of glass, but are not limited thereto. The material of the semiconductor layer 3GG includes a broken single crystal material, a dream-containing microcrystalline material, a polycrystalline material containing a stone, an amorphous material containing a stone, or a combination thereof. The first doped region 331 and the second doped region 332 may be formed simultaneously or sequentially and the polarities of the first doped region 331 and the second doped region 332 are substantially the same or substantially different. The doped region 331 and the second doped region 332 are less than 200840073, and the dopants thereof include an N-type, a P-type, or a combination thereof. The embodiment of the present invention is based on the polarity of the first doping region 331 and the second doping region 332, and is substantially different from the embodiment, but is not limited thereto. A first dielectric layer 340 is formed on the semiconductor layer 330. The first dielectric layer 340 includes a first oxide layer 341 and a first nitride layer 342. In this embodiment, in order to reduce defects generated by subsequent processes, the first oxide layer 341 and the first Preferably, the first oxide layer 341 is formed on the semiconductor layer 330, and then the first nitride layer 342 is formed on the first oxide layer 341, but is not limited thereto. Optionally, a first oxide layer 341 is formed on the first nitride layer 342. A second dielectric layer 350 is formed on the first dielectric layer 34A. The second dielectric layer 350 includes a second oxide layer 351 and a second nitride layer 352 ′. In this embodiment, in order to reduce defects generated by subsequent processes, the first oxide layer 351 and the first The second nitride layer 352 is formed on the first nitride layer 342, and then the second nitride layer 352 is formed on the second oxide layer 351, but is not limited thereto. Alternatively, the second oxide layer 351 may be formed on the second nitride layer 352. The first oxide layer 341 and the second oxide layer 351 are made of at least one material, including an inorganic material. Organic material, or a combination of the above. The inorganic material comprises an oxide of Shi Xi (eg, cerium oxide formed by strontium, cerium oxide formed by tetraethyl oxymethane), cerium oxide containing cerium, or other materials, or Combination of the above. Organic materials include antimony, 200840073 slaves and hydrogen oxides, nitrogen oxides containing barium, carbon and hydrogen, or other materials, or combinations thereof. In the present embodiment, preferably, the cerium oxide formed of tetraethyl oxoxane and the thickness of about 500 angstroms having a thickness of about 3 angstroms of cerium oxide are used as the first oxidation. The material layer 341 and the second oxide layer 351 having a thickness of about 5 Å and a thickness of about 3000 angstroms as the second oxide layer 351 are exemplified but are not limited to the materials and thicknesses described in the examples. The material of at least one of the first nitride layer 342 and the second nitride layer 352 includes an inorganic material, an organic material, or a combination thereof. The inorganic material contains a nitride of Shi Xi (e.g., a nitride nitride), a nitrogen oxide containing Shi Xi, or other materials, or a combination thereof. The organic material includes a nitride containing cerium, carbon and hydrogen, an oxynitride containing cerium, carbon and hydrogen, or other materials, or a combination thereof. In the present embodiment, for example, tantalum nitride having a thickness of about 2 Å to 5 Å is used as the first nitride layer 342 and nitride nitride having a thickness of about 500 angstroms to 3 angstroms. The second nitride layer 352 is taken as an example, but is not limited to the materials and thicknesses of the embodiments. Preferably, the first nitride layer 342 is nitrided to a thickness of about 2 angstroms. The second nitride layer 352 is a nitride-rich nitride having a thickness of about 诵 Å, and the compound is simply _ χ and X is approximately 133. Furthermore, the deposition rate of the first nitride layer 342 can be selectively substantially lower than the deposition rate of the second nitride layer 352. That is, the material of the first nitride layer (10) is substantially denser than the material of the second nitride layer 352. - an electrode 36 362 is formed on the second dielectric layer, preferably 12 200840073 is selectively formed on the second nitride layer 352, and via the first dielectric layer 340 and the second dielectric layer The holes (not labeled) of the layer 350 are connected to the first doping region 331 and the second doping region 332 in the semiconductor layer 330. In addition, in the embodiment, in order to reduce the affinity of the photo sensing device 3 〇〇 and the substrate 310 , a buffer layer 320 is preferably formed on the substrate 31 , that is, the buffer layer 320 is located on the substrate 310 . And between the semiconductor layers 330, but are not limited thereto. 4A to 4E are cross-sectional views showing the structure of the process of the first embodiment of the present invention. Referring to Figure 4A, the light sensing element structure of the present invention is formed on a substrate (e.g., glass, or other material) 310. A semiconductor layer 330 is formed on the substrate 31, and then, in the semiconductor layer 330 by ion implantation or other methods, the first doping region 331, the second doping region 332, and the first layer are simultaneously formed or sequentially formed. An intrinsic region 333 between the doped region 331 and the second doped region 332. Preferably, on the surface of the semiconductor layer 330, hydrogen, heavy hydrogen, a nitrogen-containing gas (such as nitric oxide, nitrogen dioxide, or other gases), and other gases for treating the surface of the semiconductor (eg, oxygen, argon) are used. Gas, helium, neon, xenon, xenon, xenon, or other gases, or a combination thereof, performing a gas treatment procedure to repair the dangling bond on the surface of the semiconductor layer 33 Complete bonding to increase the voltage capability of the semiconductor layer. Wherein at least one of the first doping region 331 and the second doping region 332 has a dopant comprising a _, a p-type, or an upper combination. However, the example of the 2008 200840073 f of the present invention is based on the polarity of the first doping region 331 and the second doping _, which is not implemented, but is not limited thereto, and may be thinned by her ___, cut Instrument side, containing polycrystalline material, amorphous material containing Shi Xi, or a combination thereof. . In addition, in the process of the embodiment, the affinity of the photo-sensing element 3A to the substrate 310 is lowered. Preferably, a buffer layer 32 is formed on the substrate 310 as an example. That is, the buffer layer 32 is located between the substrate and the semiconductor layer 330 as an example, but is not limited thereto. Referring to FIG. 4B, a first dielectric layer 34 is formed overlying the semiconductor layer 330. The first-intervening dielectric layer 34 includes a first oxide layer 341 and a first nitride layer 342; in this embodiment, in order to reduce defects generated by subsequent processes, the first oxide layer 341 and the first nitrogen layer Preferably, the first oxide layer 341 is formed on the semiconductor layer 330, and then the first nitride layer 342 is formed on the first oxide layer 341, but is not limited thereto. The first oxide layer 341 is selectively formed on the first nitride layer 342. Referring to the fourth C diagram, a second dielectric layer 350 is formed on the first dielectric layer 340. The second dielectric layer 350 includes a second oxide layer 351 and a second nitride layer 352. In this embodiment, in order to reduce defects generated in subsequent processes, the second oxide layer 351 and the second nitride are The layer 352 is stacked, preferably, the second oxide layer 351 is formed on the first nitride layer 342, and then the second nitride layer 352 is formed on the second oxide layer 351 200840073, but is not limited thereto. Optionally, a second oxide layer 351 is formed on the second nitride layer 352. The material of at least one of the first oxide layer 341 and the second oxide layer 351 includes an inorganic material, an organic material, or a combination thereof. The inorganic material comprises an oxide of cerium (eg, cerium oxide formed by cerium methane, cerium oxide formed by tetraethyl oxo oxane), dreamy nitrogen oxides, or other materials, or Combination of the above. The organic material includes an oxide containing cerium, carbon and hydrogen, an oxynitride containing cerium, carbon and hydrogen, or other materials, or a combination thereof. In the present embodiment, preferably, the cerium oxide formed by the sulphuric acid oxysulfide is formed, and the thickness of about 5 〇〇 Egypt is about 3 angstroms thick. The first oxide layer 341 and the second oxide layer having a thickness of about 5 〇〇 Egypt and a thickness of about 3000 angstroms are used as the second oxide 351 scale, but are not limited to the materials and thicknesses of the examples. The material of at least one of the first nitride layer 342 and the second nitride layer 352 includes an inorganic material, an organic material, or an upper combination. Inorganic materials include Shi Xi's nitrides (such as Nitriding Dreams), Nitrogen oxides containing Shi Xi, or other materials, or the ages mentioned above. The tool (4) includes cut, carbon and hydrogen gasification, zephyr, carbon and hydrogen oxynitride, or other materials, or a combination thereof. In the present embodiment, for example, a nitride layer having a thickness of about 2 Å to 5 Å is used as the first nitride layer 342 and a nitrogen having a thickness of about 5 Å to 3 Å. The second nitride layer 352 is taken as an example, but is not limited to the materials and thicknesses of the embodiments. Age, the first nitrogen recording layer (10) is a nitrided hair having a thickness of about 15 200840073 2 (8) angstroms. The second nitride layer 352 is a hydrogen nitride-rich nitride having a thickness of about angstroms, and the compound is simply applied, and x is approximately equal to h 33 . Additionally, the deposition rate of the first nitride layer 342 can be selectively substantially lower than the deposition rate of the second nitride layer 352. That is, the material of the first nitride layer is substantially more dense than the material of the second nitride layer 352. Referring to FIG. 4D, after forming the second dielectric layer, two openings 37 372 are formed, and the two openings 37 372 can pass through the first-between electric layer 340 and the second dielectric layer. 35〇, reaching the first doping region 331 and the second doping region 332 of the semiconductor layer 33〇 to expose the first doping region 331 of the semiconductor layer 33 and a portion of the second doping region 332. Finally, referring to FIG. E, a second electrode gw, 362 is formed on the second dielectric layer 350, preferably selectively formed on the second nitride layer 352, and via the first The holes 371 and 372 of the dielectric layer 34 and the second dielectric layer 350 are connected to the first doping region 331 and the second doping region 332 of the semiconductor layer 330. Please refer to FIG. 5 , which is a graph showing the photocurrent and dark current characteristics of the above-mentioned photo sensing element 3 为本 according to the present invention, wherein the width and length of the intrinsic region of the photo sensing element are They are 5 microns (//m). The thick broken line A1 and the thin solid line B1 are dark current change curves and photocurrent curves of the light sensing element 1 made by the prior art; the thick solid line A2 and the thin broken line B2 are the light sensing elements of the above structure of the present invention. The curve of the dark current and the photocurrent change under the same reverse bias voltage change, wherein the width and length of the intrinsic region of the light sensing element 200840073 are 5 micrometers (//m) respectively. As shown in the figure, it is apparent that the dark current value A2 of the light sensing element 300 of the present invention is higher than that of the light sensing element manufactured by the prior art, if the absolute value of a reverse bias is about 5V. The dark current value A1 drops by about lpA, and the photocurrent value B2 of the photo-sensing element 300 of the present invention is also increased by the photocurrent value B1 of the photo-sensing element 10 fabricated by the prior art. Therefore, under the absolute value of the same reverse bias voltage (for example, 5 V), the light sensitivity (photocurrent value/dark current value) of the photo sensing element 3 of the present invention is calculated to be 3558, and the degree of increase is the original There is about 4.7 times the light sensitivity 480 of the light sensing element 10 manufactured by the prior art. Therefore, it is understood that the structure of the photo sensing element 3 of the present invention has greatly improved its light sensitivity by reducing the dark current. Referring to the embodiments of the sixth, seventh and eighth embodiments, the light sensing elements of the present invention are applied to a display panel 5A. Referring to the first embodiment of the sixth figure, as shown, a display panel 5A has a display area 501 and a non-display area 502 adjacent to and surrounding one of the display areas 5〇1. The display panel 500 further includes at least one driving circuit 51, a light source 530, a light sensing area 540, and a plurality of pixels 550 disposed in the display area; where the light sensing area 54 is disposed in the above, It may be at least one of the display area 501 and the non-display area 502 of the display panel 500. The driving circuit 510 is electrically connected to the plurality of pixels 550 and at least one of the light sensing regions 540 (not shown). As shown in FIG. 6 , the driving circuit 510 is electrically connected to the plurality of pixels 550 of the light source 530 at 17 200840073 and the display area 501 to display images and colors in the display area 501 of the display panel 500. The measurement area 540 is disposed at at least one of the non-display areas 502, and the embodiment is adjacent to the corner of the display panel 5' but not limited thereto, and the light sensing area 540 includes the embodiment of the present invention. At least one light sensing component (not shown) is electrically connected to the driving circuit 510. Therefore, the signal transmitted by the light sensing component of the light sensing region 540 can selectively assist the display panel to display a better surface. The light source 530 includes a point source (eg, an inorganic light emitting diode, an organic light emitting diode, or a combination thereof), a fluorescent tube (eg, a cold cathode fluorescent tube, a hot cathode fluorescent tube, an external electrode) A fluorescent tube, a planar fluorescent tube, or other, or a combination thereof, a surface emitting source (eg, a carbon nanotube illuminating source, a plasma illuminating source, or the like, or a combination thereof). Furthermore, the driving circuit 51 of the present invention optionally includes a signal driving circuit 511, a light source driving circuit 512, a power supply circuit, a signal processing circuit, or other functional circuits, or a combination of the two. Referring to FIG. 7 , a second embodiment of the arrangement of the light sensing region 540 according to the embodiment of the present invention is disposed on the non-display area 502 with the light sensing area 54 , adjacent to the display area. 5〇1 is an example of implementation. The light sensing region 540 is adjacent to the width of one side of the display region 501 to the other side adjacent to the edge of the display panel 5, and preferably has a width of substantially 0.4 mm, but is not limited thereto. The signal transmitted by the light sensing component of the light sensing region 54 of the present embodiment can selectively assist the display panel to display a better surface. Light source 200840073 530 includes point light source (such as: inorganic light-emitting diode, organic light-emitting diode, or a combination thereof), fluorescent tube (such as: cold cathode fluorescent tube, hot cathode fluorescent lamp, external An electrode fluorescent tube, a planar fluorescent tube, or other, or a combination thereof, a surface emitting source (eg, a carbon nanotube illuminating source, a plasma illuminating source, or a crucible thereof, or a combination thereof). Furthermore, the county dynamic circuit 51A of the present invention may optionally include a signal driving circuit 511, a light source driving circuit 512, a power supply circuit, a signal processing circuit, or other functional circuits, or a combination thereof. As shown in FIG. 8 , the third embodiment of the arrangement of the light sensing region 54 ( ) is a pixel 550 that is disposed at least a part or all of the light sensing region 540 in the display region 5 〇 1 . In the middle of the example. The arrangement of the light sensing region 540 described above is only a preferred embodiment of the present invention, and the other non-limiting light sensing regions 540 are disposed on the display panel 5A and the non-limiting light sensing region 540 is disposed on The non-display area or the display area may also be selectively disposed on at least one of the non-display area and the display area and other positions as required by the design. According to the embodiment of the display device, the light sensing component (not shown) in the light sensing region 540 changes the ambient light and the brightness of the ambient light, and transmits a signal to the above through a sensing circuit (not shown). The driving circuit 510' described in the embodiment can selectively assist and/or adjust the fineness of the color of the plurality of pixels 550 in the display area 5〇1 and the sharpness of the brightness, so that the display panel 500 can provide the most The image quality of Jiahua. Referring to FIG. 9 , a circuit diagram of a first embodiment in which the light sensing region 540 of the present invention is electrically connected to a sensing circuit 560 is shown. As shown in the figure, the sensing circuit 200840073 560 is connected to one of the two electrodes of the light sensing component 541 in the light sensing region 540, and the sensing circuit 560 includes a first signal source 561 and a second signal. The source 562 and the first voltage source 563 are preferably substantially different from the signals of the first signal source 561 and the second signal source 562. The other of the two electrodes of light sensing element 541 is selectively connectable to another voltage source (not labeled) and is substantially different from first voltage source 563. In addition, an amplifier 570 and a first transistor 580 can be selectively used, wherein the amplifier 570 has two input terminals respectively connected to one of the two electrodes of the light sensing element 541 in the light sensing region 540. A reference potential source 571 and an output terminal are connected to a driving circuit (not shown); the first transistor 580' has a source/no electrode connected to one of the two inputs of the amplifier 570, and the other drain/ The source is connected to a driving circuit (not shown) and a gate is connected to a reset signal source 581. For example, the sensing circuit 560 of the embodiment includes a transistor 564 and a third transistor 565. The second transistor 564 has a source/drain connection light sensing. One of the two electrodes of the light sensing element 541 in the region 54 is connected to the first signal source 561 and the other drain/source, and is connected to the first voltage source 563; the third transistor 565 has one source/drain connected to one of the two input terminals of the amplifier 570, and the other source/drain is connected to one of the light sensing elements 541 of the light sensing region 54? And a gate is connected to the second signal source 562. Furthermore, the transistor described in this embodiment is a p-忭卯 transistor 200840073 as an example, and an N-type transistor or a combination of the above-described types of transistors may be selectively used. Referring to the tenth figure, a schematic diagram of a first embodiment of the light sensing region 540, when the pixel 550 is disposed in the display region 5〇1, and the light sensing region 540 is electrically connected to a sensing circuit (10). As shown, the sensing circuit is disposed in at least a portion of a pixel or all of the pixels (not shown) of the display area, and is connected to the second electrode of the light sensing element 541 of the light sensing region 540. One of them. The sensing circuit 610 is electrically connected to a first selection line 620, a second selection line 621, a first voltage source 63, and at least one amplifier 640. Alternatively, the connection may be electrically connected. One of the first selection line 620 and the second selection line 621, a first voltage source 630 and at least one amplifier 640 or three or more selection lines. Preferably, the display area pixel (not shown) includes a first transistor 650 and at least one capacitor 690; the gate has a gate connected to the at least one data line 660, a source, and a drain connection. The capacitor 690 is connected to the first transistor 650 and is selectively electrically connected to at least one of the at least one common electrode line 670 and a portion of the gate lines. For example, the sensing circuit 61 of the embodiment includes a second transistor 611 and a third transistor 612. The second transistor 611 has a gate connected to the first selection line 62. 〇, one source/drain is connected to one of the two electrodes of the light sensing element 541 in the light sensing region 540 and the other source/drain is connected to the first voltage source 63(); The transistor 612, 21 200840073 has one of the two electrodes and another source having a gate connected to the second selection line 621 and a source/no-pole connected to the light sensing element mi in the light sensing region 540 The pole/drain is connected to the amplifier 640, but is not limited thereto, and a transistor may be electrically connected to a select line to operate, or more than three transistors may be connected to at least one select line. Wherein the transistor has a gate connected to the select line, a source/drain connected to the photo-sensing region of the photo-sensing region, and the other source/bet connection In the amplifier 640. Furthermore, the transistor described in this embodiment is an N-type transistor, and a p-type transistor or a combination of the above-described types of transistors may be selectively used. In addition to the implementation of the above display panel, other optical/electrical detectors, such as solar cells, charge coupled components CCD (charge coupled

Device)、觸控功能等亦可為本發明之一種光感測元件的應 用範圍或是顯示面板包含上述之光/電檢測器上之運用之至 少一者功能。再者,依顯示面板之二相對之基板所夾置之具 有介電係數之層來分類,顯示硫,包含液晶顯示面板、有 機電激發光顯示面板,或上述之組合。再者,顯示面板可運 用於可攜式產品(如手機、攝影機、照相機、筆記型電 腦、遊戲機、手錶、音樂播放器、電子信件收發器、電 子相片、地圖導航器或類似之產品)、影音產品(如影 音放映器或類似之產品)、螢幕、電視、室内及/或室外 看板、引導裝置、投影機内之面板等。 22 200840073 綜上所述,當知本案之發明已具有產業利用性、新穎性 及進步性’符合發明專利要件。惟以上所述者,僅為本發明 之較佳實施_已,並制練林發明實施之範圍。及凡 本發明申請專概圍所㈣均㈣化與修飾,皆為本發明專 利範圍所涵蓋。 【圖式簡單說明】Device, touch function, etc. may also be the application range of a light sensing component of the present invention or the display panel includes at least one of the functions of the above-described optical/electrical detector. Further, the sulfur is displayed according to a layer having a dielectric coefficient sandwiched between the opposite substrates of the display panel, and includes a liquid crystal display panel, an electromechanical excitation light display panel, or a combination thereof. Furthermore, the display panel can be used in portable products (such as mobile phones, cameras, cameras, notebooks, game consoles, watches, music players, e-mail transceivers, electronic photos, map navigators or the like), Audio-visual products (such as audio-visual projectors or similar products), screens, televisions, indoor and / or outdoor billboards, guiding devices, panels in projectors, etc. 22 200840073 In summary, when the invention of this case has industrial applicability, novelty and progress, it meets the requirements of the invention patent. However, the above description is only a preferred embodiment of the present invention, and the scope of the invention is practiced. All of the four (four) and four modifications of the present application are covered by the patent scope of the present invention. [Simple description of the map]

習知光感測元件之結構剖面圖 @ 習知光感測元件之光電流及暗電流特 性曲線圖 第三圖 本發明光感測元件第一實施例結構剖 面圖 第四A圖〜第四E圖本發明光感測元件之第一實施例製程 的結構剖面圖 第五圖 第六圖 第七圖 第八圖 第九圖 本發明光感測元件光電流與暗電流特 性曲線圖 顯示面板上之光感測區域所在位置之 第一實施例之示意圖 顯示面板上之光感測區域所在位置之 第二實施例之示意圖 顯示面板上之光感測區域所在位置之 第三實施例之示意圖 顯示面板之光感測區域與感測電路連 接之第一實施例電路圖 23 200840073 第十圖 顯示面板之光感測區域與感測電路連 接之第二實施例電路圖 【主要元件符號說明】 10 光感測元件 11 絕緣基板 12 緩衝層 13 半導體層 13a 第一摻雜區 13b 第二摻雜區 13c 本徵區 14 絕緣層 15 間介電層 15a 氧化物層 15b 氮化物層 300 光感測元件 310 基板 320 緩衝層 330 半導體層 331 第一摻雜區 332 第二摻雜區 333 本徵區 340 第二間介電層 341 第一氧化物層 342 第一氮化物層 24 200840073 350 第二間介電層 351 第二氧化物層 352 第二氮化物層 36卜 362 電極 371、 372 開口 500 顯示面板 501 顯不區 502 非顯示區 510 驅動電路 511 訊號驅動電路 512 光源驅動電路 530 發光源 540 光感測區域 541 光感測元件 550 晝素 560 感測電路 561 第一訊號源 562 第二訊號源 563 第一電壓源 564 第二電晶體 565 第三電晶體 570 放大器 571 參考電位源 580 第一電晶體 581 重置訊號源 610 感測電路 25 200840073 611 612 620 621 630 640 650 690 660 670 680 第二電晶體 第三電晶體 第一選擇線 第二選擇線 第一電壓源 放大器 第一電晶體 電容 資料線 共用電極線 掃描線 26Schematic cross-sectional view of a conventional light-sensing element. Photocurrent and dark current characteristic of a conventional light-sensing element. FIG. 3 is a cross-sectional view of a first embodiment of the light-sensing element of the present invention. FIG. 4A to FIG. FIG. 5 is a cross-sectional view showing a structure of a first embodiment of a sensing element. FIG. 5 is a seventh embodiment, a seventh embodiment, and an eighth embodiment is a photo-sensing region on a display panel. The schematic view of the first embodiment of the position display shows the position of the light sensing area on the panel. The schematic view of the second embodiment of the position of the light sensing area on the display panel is the light sensing area of the schematic display panel of the third embodiment. FIG. 23 is a circuit diagram of a second embodiment connected to a sensing circuit. Layer 13 semiconductor layer 13a first doped region 13b second doped region 13c intrinsic region 14 insulating layer 15 dielectric layer 15a oxide layer 15b nitrogen Physical layer 300 Light sensing element 310 Substrate 320 Buffer layer 330 Semiconductor layer 331 First doped region 332 Second doped region 333 Intrinsic region 340 Second dielectric layer 341 First oxide layer 342 First nitride layer 24 200840073 350 second dielectric layer 351 second oxide layer 352 second nitride layer 36 362 electrode 371, 372 opening 500 display panel 501 display area 502 non-display area 510 drive circuit 511 signal drive circuit 512 light source drive Circuit 530 light source 540 light sensing area 541 light sensing element 550 pixel 560 sensing circuit 561 first signal source 562 second signal source 563 first voltage source 564 second transistor 565 third transistor 570 amplifier 571 reference Potential source 580 first transistor 581 reset signal source 610 sensing circuit 25 200840073 611 612 620 621 630 640 650 690 660 670 680 second transistor third transistor first select line second select line first voltage source amplifier First transistor capacitance data line common electrode line scan line 26

Claims (1)

200840073 十、申請專利範圍: 1· 一種光感測元件,包括: ^基板, 半導體層,設置於該基板上,包括一第—推雜區、一 第二摻雜區以及一位於該第一摻雜區與該第二摻雜區 之間之本徵區 #200840073 X. Patent application scope: 1. A light sensing component, comprising: a substrate, a semiconductor layer disposed on the substrate, comprising a first doping region, a second doping region and a first doping region Intrinsic region between the impurity region and the second doped region # 一第一間介電層,形成於該半導體層上,包括一第一氧 化物層以及一第一氮化物層; 一第二間介電層,形成於該第一間介電層上,包括一第 二氧化物層以及一第二氮化物層;以及 二電極’ ^置於鱗二間介電層上,且分概接於該第 一摻雜區及該第二摻雜區。 2·如申請專利範圍第1項所述之光感測元件,更包含一緩 衝層,設置於該基板上。 3·如申請專概圍第1撕述之光細元件,其中,該第 一氧化物層之厚度,實質上為5〇〇埃。 4·如申請專概圍第丨項所述之光_元件,其中,該第 一氮化物層之厚度,實質上介於200埃至5〇〇埃之間。 5·如申請專纖圍第丨項所述之光制元件,其中,該第 二氧化物層之厚度,實質上為3000埃。 6·如申请專概圍第丨項所述之光制元件,其中,該第 二氮化物層之厚度,實質上介於500埃至3000埃之間。 27 200840073 7·如申請專利範圍第1項所述之光感測元件,其中,該第 一摻雜區之極性不同於該第二摻雜區之極性。 8· —種形成光感測元件方法,其步驟包括: 提供一基板; 形成一半導體層於該基板上,該半導體層具有一第一摻 雜區、一第二摻雜區以及一位於該第一摻雜區與該第 二摻雜區之間之本徵區; 形成一第一間介電層於該半導體層上,且其包括一第一 氧化物層以及一第一氮化物層; 形成一第二間介電層於該第一間介電層上,且其包括一 第二氧化物層以及一第二氮化物層; 形成二開口分別穿越該第一間介電層及該第二間介電 層,以曝露出至少一部份之該第一摻雜區及至少一部 份之該第二摻雜區;以及 形成二電極於該第二間介電層上,並透過該二開口,分 別連接至少一部份之該第一摻雜區及至少一部份之該 第二摻雜區。 9.如申請專利細第8項所狀方法,更包含形成一緩衝層 於該基板上。 10·如申4專娜㈣8項所述之方法,更包含施行一氣體 處理程序以處理該半導體層之表面。 11·如申請專利範圍第8項所述之光感測树,其中,該第 28 200840073 一摻雜區之極性相反於該第二摻雜區之極性。 12· —種顯示面板,具有一顯示區及一相鄰於該顯示區之非 顯示區,包括: 複數個畫素,設置於該顯示區; 至少一驅動電路,電性連接於該複數個晝素;以及 至少一光感測區域,具有至少一光感測元件電性連接於 該驅動電路,該光感測元件包括·· -半導體層’包含-第-摻雜區、—第二摻雜區及一 位於該第一摻雜區與該第二摻雜區之間之本徵區; 一第一間介電層,形成於該半導體層上,且其包括一 第一氧化物層及一第一氮化物層; -第二間介電層,形成於該第—間介電層上,且其包 括-第二氧化物層及一第二氮化物層;以及 二電極,設置於該第二間介電層上,且分職接於該 第一摻雜區及該第二摻雜區。 13. 如申請專職圍第12項所述之顯示面板,其中,該光感 測區域之該減測元件之料—摻雜之錄相反於該 第二摻雜區之極性。 14. 如申請專利範圍第12項所述之顯示面板,其中,更包含 -緩衝層’紅於至少-部分之該非顯示區。 15. 如申料娜_丨2顧述之啦面板,其巾,該驅動 電路更包括-訊號驅動電路、—光源驅動電路、一訊號 29 200840073 處理電路、或上述之組合者。 16. 如申請專利範圍第12項所述之顯示面板,其中,該光感 測區域,設置於該非顯示區中且鄰近於該顯示面板之角 落處。 17. 如申請專利範圍第12項所述之顯示面板,其中,該光感 測區域’設置於該細示區巾且轉繞於該顯示區。 18. 如申請專利細第17項所述之顯示面板,其中,該感測 區域鄰近於該顯示區之一侧邊至鄰近於該面板邊緣之另 一侧邊之寬度實質上為〇· 4毫米。 19·如申請專利範圍第12項所述之顯示面板,其中,更包含 一發光源與該驅動電路電性連接。 20.如申請專利範圍第μ或17項所述之顯示面板,更包含: 一感測電路,連接於該光感測區域中之光感測元件之二 電極其中之一者、一第一訊號源、一第二訊號源及一 第一電壓源; 一放大器’具有二輸入端,分別連接至該光感測區域中 之光感測元件之二電極其中之一者及一參考電位源與 一輸出端連接至該驅動電路;以及 一第一電晶體,包括一源極/汲極連接至該放大器之二輸 入端其中之一者,另一汲極/源極連接至該驅動電路及 一閘極連接至一重置訊號源。 21·如申請專利範圍第20項所述之顯示面板,其中該感測 200840073 電路包含: -第二電晶體’具有-源極/祕連接該光感測區域中之 該光感測元件之該二電極其中之一者,一閉極連接至 -第-訊親及另-祕/源㈣接至該第一電壓 源;以及 -第三電晶體,具有i極々極分別連接至該放大器之 二輸入端其中之-者及—閘極連接至_第二訊號源。 22·如申明專利範圍第20項所述之面板,其中,該第一訊 號源與該第二訊號源為不相同。 23. 如申請專利範圍第12項所述之顯示面板,其中,該光 感測區域,設置於該顯示區内之至少一部份之畫素中。 24. 如申請專利範圍第23項所述之顯示面板,更包含: 一感測電路,設置於部份該等畫素中,且電性連接於第 -選擇線、-第二選擇線、一第一電壓源、至少一放 大器及該感測區$中之該光感冑元件之該i電極其中 之一者; 第電晶體,0又置於各該畫素中,且其具有一閘極連 接於至少-資料線、一源極、及一没極連接於該掃描 線,以及 至少一電容,電性連接於該第一電晶體。 25·如申請專利範圍第24項所述之顯示面板,其中,該感 測電路,包含: 31 200840073 -第二電晶體具有- _連接於該第—選擇線、一源極/ 沒極連接賊光_區域巾之該光_元件之該二電 極其中之-者及另-源極/汲極連接於該第 一電壓 源;以及 第二電晶體,具有-閘極連接於該第二選擇線、一源 極/沒極連接於該域職域巾之該光制元件之該 -電極其巾之-者及另—源極/祕連接於該放大器。 26·如申凊專利範圍第12項所述之顯示面板,其中該光感測 區分別設置在該顯示區以及該非顯示區上。 27·如申明專利範圍第23項所述之顯示面板,更包含: -感測電路,設置於部份該等晝素中,且電性連接於一 選擇線、-第-電壓源、至少一放大器及該感測區域 中之該光感測元件之該二電極其中之一者; 第電曰a體,没置於各該晝素中,且其具有一閉極連 接於至、負料線、一源極、及一没極連接於該掃描 線;以及 至少一電容,電性連接於該第一電晶體。 28·如申請專利範圍帛27項所述之顯示面板,其中,該感 測電路,包含: 一第二電晶體,具有-閘極連接於該選擇線、一源極/没 極連接於贼_區域巾之該光細元件之該二電極 其中之一者及另一源極/汲極連接於該放大器。 32a first dielectric layer is formed on the semiconductor layer, including a first oxide layer and a first nitride layer; a second dielectric layer is formed on the first dielectric layer, including a second oxide layer and a second nitride layer; and a second electrode '^ disposed on the interscale dielectric layer and substantially connected to the first doped region and the second doped region. 2. The photo sensing element of claim 1, further comprising a buffer layer disposed on the substrate. 3. If the application is specifically directed to the thin component of the first torn, the thickness of the first oxide layer is substantially 5 angstroms. 4. The application of the photo-element of the first aspect, wherein the thickness of the first nitride layer is substantially between 200 angstroms and 5 angstroms. 5. The light-emitting component of claim 2, wherein the thickness of the second oxide layer is substantially 3000 angstroms. 6. The light-emitting component of claim 2, wherein the thickness of the second nitride layer is substantially between 500 angstroms and 3000 angstroms. The light sensing element of claim 1, wherein the polarity of the first doping region is different from the polarity of the second doping region. a method for forming a photo sensing device, the method comprising: providing a substrate; forming a semiconductor layer on the substrate, the semiconductor layer having a first doping region, a second doping region, and a first An intrinsic region between a doped region and the second doped region; forming a first dielectric layer on the semiconductor layer, and comprising a first oxide layer and a first nitride layer; forming a second dielectric layer on the first dielectric layer, and comprising a second oxide layer and a second nitride layer; forming two openings respectively crossing the first dielectric layer and the second Inter-dielectric layer to expose at least a portion of the first doped region and at least a portion of the second doped region; and form a second electrode on the second dielectric layer and pass through the second Opening, respectively connecting at least a portion of the first doped region and at least a portion of the second doped region. 9. The method of claim 8, further comprising forming a buffer layer on the substrate. 10. The method of claim 4, wherein the method further comprises performing a gas treatment process to treat the surface of the semiconductor layer. 11. The light sensing tree of claim 8, wherein the polarity of the doped region of the 28 200840073 is opposite to the polarity of the second doped region. The display panel has a display area and a non-display area adjacent to the display area, and includes: a plurality of pixels disposed in the display area; at least one driving circuit electrically connected to the plurality of pixels And at least one photo-sensing region having at least one photo-sensing element electrically connected to the driving circuit, the photo-sensing element comprising: - a semiconductor layer comprising - a - doping region, - a second doping a region and an intrinsic region between the first doped region and the second doped region; a first dielectric layer formed on the semiconductor layer and including a first oxide layer and a a first nitride layer; a second dielectric layer formed on the first dielectric layer, and including a second oxide layer and a second nitride layer; and a second electrode disposed on the first The two dielectric layers are separated from the first doped region and the second doped region. 13. The display panel of claim 12, wherein the material of the light-sensing region of the light-measuring region-doping is opposite to the polarity of the second doped region. 14. The display panel of claim 12, wherein the buffer layer is further red-disposed to at least a portion of the non-display area. 15. If the panel of the application of the _ _ 丨 2 述 , 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 16. The display panel of claim 12, wherein the light sensing area is disposed in the non-display area adjacent to an angle of the display panel. 17. The display panel of claim 12, wherein the light sensing region is disposed in the thin area towel and is circulated around the display area. 18. The display panel of claim 17, wherein the sensing area is adjacent to a side of the display area to a width adjacent to the other side of the panel edge, substantially 〇 4 mm . The display panel of claim 12, further comprising a light source electrically connected to the driving circuit. The display panel of claim 5, further comprising: a sensing circuit connected to one of the two electrodes of the light sensing component in the light sensing region, a first signal a source, a second signal source and a first voltage source; an amplifier 'having two input terminals respectively connected to one of the two electrodes of the light sensing element in the light sensing region and a reference potential source and a An output terminal is coupled to the driving circuit; and a first transistor includes a source/drain connected to one of the input terminals of the amplifier, and another drain/source connected to the driving circuit and a gate The pole is connected to a reset signal source. The display panel of claim 20, wherein the sensing 200840073 circuit comprises: - the second transistor 'having - source/secret connection to the light sensing element in the light sensing region One of the two electrodes, one closed to the first - the first and the other - the fourth source is connected to the first voltage source; and - the third transistor having the i pole is connected to the second of the amplifier The input and the gate are connected to the _second signal source. The panel of claim 20, wherein the first source of the signal is different from the second source of the signal. 23. The display panel of claim 12, wherein the light sensing region is disposed in at least a portion of a pixel of the display region. 24. The display panel of claim 23, further comprising: a sensing circuit disposed in a portion of the pixels and electrically connected to the first selection line, the second selection line, and one a first voltage source, at least one amplifier, and one of the i electrodes of the photo sensing element in the sensing region $; the second transistor, 0 is placed in each of the pixels, and has a gate The at least one data line, one source, and one pole are connected to the scan line, and at least one capacitor is electrically connected to the first transistor. The display panel of claim 24, wherein the sensing circuit comprises: 31 200840073 - the second transistor has - _ connected to the first selection line, a source / finite connection thief The light source_region of the light_the two electrodes of the element and the other source/drain are connected to the first voltage source; and the second transistor has a gate connected to the second select line The source/electrode is connected to the amplifier of the optical component of the domain and the source and the source are connected to the amplifier. The display panel of claim 12, wherein the light sensing regions are respectively disposed on the display area and the non-display area. The display panel of claim 23, further comprising: - a sensing circuit disposed in a portion of the pixels and electrically connected to a select line, a - first voltage source, at least one An amplifier and one of the two electrodes of the light sensing element in the sensing region; the first electrode is not disposed in each of the pixels, and has a closed electrode connected to the negative and negative wires a source and a gate are connected to the scan line; and at least one capacitor is electrically connected to the first transistor. The display panel of claim 27, wherein the sensing circuit comprises: a second transistor having a gate connected to the selection line and a source/no pole connected to the thief _ One of the two electrodes of the thin element of the zone towel and the other source/drain are connected to the amplifier. 32
TW96109596A 2007-03-20 2007-03-20 Photo-detecting device TWI329933B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96109596A TWI329933B (en) 2007-03-20 2007-03-20 Photo-detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96109596A TWI329933B (en) 2007-03-20 2007-03-20 Photo-detecting device

Publications (2)

Publication Number Publication Date
TW200840073A true TW200840073A (en) 2008-10-01
TWI329933B TWI329933B (en) 2010-09-01

Family

ID=44821048

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96109596A TWI329933B (en) 2007-03-20 2007-03-20 Photo-detecting device

Country Status (1)

Country Link
TW (1) TWI329933B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493392B (en) * 2009-09-30 2015-07-21 Au Optronics Corp Flat display, touch device and touch detecting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493392B (en) * 2009-09-30 2015-07-21 Au Optronics Corp Flat display, touch device and touch detecting method

Also Published As

Publication number Publication date
TWI329933B (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP6126184B2 (en) Display device and electronic device
KR101578448B1 (en) Display device and method for manufacturing the same
TWI450561B (en) Mobile phone
TWI353063B (en) Photo detector and method for fabricating the same
JPH11125841A (en) Integrated type liquid crystal display panel having image sensor function and its manufacture
TW202101759A (en) N/a
CN100521253C (en) Photosensing element, method of manufacturing the same and display panel using the photosensing element
JP4700659B2 (en) Liquid crystal display
TWI328884B (en) Photo detector and method for forming thereof
TW200840073A (en) Photo-detecting device
US9178071B2 (en) Method for manufacturing semiconductor device
JP2014063171A (en) Display device
JP5622812B2 (en) Display device
JP4999979B2 (en) Image sensor and electronic device
JP5100799B2 (en) Liquid crystal display