TW200839906A - Method of fabricating back-illuminated imaging sensors using a bump bonding technique - Google Patents

Method of fabricating back-illuminated imaging sensors using a bump bonding technique Download PDF

Info

Publication number
TW200839906A
TW200839906A TW96128880A TW96128880A TW200839906A TW 200839906 A TW200839906 A TW 200839906A TW 96128880 A TW96128880 A TW 96128880A TW 96128880 A TW96128880 A TW 96128880A TW 200839906 A TW200839906 A TW 200839906A
Authority
TW
Taiwan
Prior art keywords
layer
imaging
conductive
imaging device
handle wafer
Prior art date
Application number
TW96128880A
Other languages
Chinese (zh)
Inventor
Pradyumna Kumar Swain
Peter Levine
Mahalingam Bhaskaran
Norman Goldsmith
Original Assignee
Sarnoff Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sarnoff Corp filed Critical Sarnoff Corp
Publication of TW200839906A publication Critical patent/TW200839906A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Abstract

A method for fabricating a back-illuminated semiconductor imaging device on a semiconductor-on-insulator substrate, and resulting imaging device is disclosed. The method for manufacturing the imaging device includes the steps of providing a substrate comprising an insulator layer, and an epitaxial layer substantially overlying the insulator layer; fabricating at least one imaging component at least partially overlying and extending into the epitaxial layer; forming a plurality of bond pads substantially overlying the epitaxial layer; fabricating a dielectric layer substantially overlying the epitaxial layer and the at least one imaging component; providing a handle wafer; forming a plurality of conductive trenches in the handle wafer; forming a plurality of conductive bumps on a first surface of the handle wafer substantially underlying the conductive trenches; and bonding the plurality of conductive bumps to the plurality of bond pads.

Description

200839906 九、發明說明: 【發明所屬之技術領域】 本發明之領域係半導體裝置製造及裝置結構。更明確言 之,本發明係關於一種背照明影像陣列裝置及此一裝置之 構造方法。 【先前技術】 在包括肩費性、商用、工業及空間電子之範圍廣泛的領 域中,CMOS或CCD影像感測器在各種感測及成像應用中 〇 十分重要。基於電荷耦合裝置(CCD)之成像器目前應用得 最廣泛。CCD係用於前或背照明組態。前照明ccd成像器 與背照明CCD成像器相比,在製造方面具有成本效率,因 此前照明裝置主導消費性成像市場。前側照明,儘管傳統 上用於標準成像器,但其有明顯的性能限制,例如低填充 因數/低敏感度。低填充因數/低敏感度之問題一般係由於 因存在不透明金屬匯流排線而產生的陰影以及因形成於前 表面上在像素區域内的陣列電路結構之吸收所致。因此, G 在大像幅(高解析度)前照明成像器中,該像素之作用區域 一般很小(小填充因數)。 • 加薄的背照明半導體成像裝置因為高填充因數、電荷載 子產生及收集之更佳的整體效率而比前照明成像器更有 利,而適用於小像素陣列。背照明半導體成像裝置的性能 之一目的係應將藉由入射於背侧上的光或其他發射物產生 的電荷載子快速驅動至前側以避免任何水平漂移,否則可 能塗汙該影像。還需要使得所產生的載子在其到達前側前 123052.doc 200839906 因為此類再結合降低該裝置之整體效率 此等需要可藉由在此層内提供一薄半導體層與—200839906 IX. Description of the Invention: [Technical Field] The field of the invention is a semiconductor device fabrication and device structure. More specifically, the present invention relates to a backlighting image array device and a method of constructing such a device. [Prior Art] CMOS or CCD image sensors are important in a variety of sensing and imaging applications in a wide range of applications including shoulder, commercial, industrial, and space electronics. Imagers based on charge coupled devices (CCDs) are currently the most widely used. The CCD is used for front or back lighting configurations. Front-illuminated ccd imagers are cost-effective to manufacture compared to backlight CCD imagers, as previous lighting devices dominated the consumer imaging market. Front side illumination, although traditionally used in standard imagers, has significant performance limitations, such as low fill factor/low sensitivity. The problem of low fill factor/low sensitivity is generally due to shadows due to the presence of opaque metal bus bars and absorption by the array circuit structure formed in the pixel region on the front surface. Therefore, in a large image (high resolution) front illumination imager, the area of action of the pixel is typically small (small fill factor). • Thinned back-illuminated semiconductor imaging devices are more advantageous than front-illuminated imagers because of their high fill factor, better charge generation, and better overall efficiency of collection, and are suitable for small pixel arrays. One of the properties of a back-illuminated semiconductor imaging device is to quickly drive the charge carriers generated by light or other emitters incident on the back side to the front side to avoid any horizontal drift that would otherwise smear. It is also desirable to have the resulting carrier before it reaches the front side. 123052.doc 200839906 Because such recombination reduces the overall efficiency of the device, such a need can be provided by providing a thin semiconductor layer in this layer.

來實現。該場應延伸至背表面,以便可以將所產生::: (例士電子或电洞)快速驅動至該前側。此需要在該 月側進仃頟外處理,從而增加製程之複雜性。一當 匕括化干加薄半導體晶圓及在加薄後將一「快閃閘極」: 積於°亥“則。此需要該背側快閃閘極進行臨界厚度控制。 另一技術包括藉由利用分子束蟲晶(MBE)在—晶”上生 長一薄摻雜物層。用於提供一所需電場之另一習知方法係 藉由背側植人該層及隨後針對退火及活化進行適當的熱處 理而在該加薄半導體層内側建立一摻雜梯度。此等方法可 能不易包括於傳統的半導體鑄造處理中,而需要更昂貴的 定製處理。 、to realise. The field should extend to the back surface so that the resulting ::: (used electronics or holes) can be quickly driven to the front side. This requires additional processing on the side of the month, which increases the complexity of the process. Once the thin-film semiconductor wafer is packaged and thinned, a "flash gate" will be added after the thinning: This is required for the backside flash gate for critical thickness control. Another technique includes A thin dopant layer is grown on the crystal by using molecular beam worms (MBE). Another conventional method for providing a desired electric field establishes a doping gradient inside the thinned semiconductor layer by implanting the layer on the back side and then performing appropriate heat treatment for annealing and activation. These methods may not be easily included in conventional semiconductor casting processes and require more expensive custom processing. ,

的再結合最小化 及敏感度。 加薄背照明成像器之製造存在其他挑戰:例如,加薄背 妝明成像器可以具有存在於矽背表面的固有懸鍵 bond),從而可能導致所產生的電子在該背表面再結合。 因此,若不對該加薄成像器之背側進行處理以減少截獲, 則可能令量子效率(QE)下降。晶圓加薄帶來良率問題,例 如因猫晶層厚度之不均勻性而在加薄晶圓中產生的應力。 基於此等及上述原因,用於大量生產背照明成像器之條件 下的製造成本比用於前照明成像器者要高得多。 在共同待審的共有美國專利申請案第11/35〇,546號中建 羞用於製造基於絕緣物上矽的背照明CCD/CMOS成像器之 123052.doc 200839906 成本效率的製程,該案之揭示内容之全文係以引用 、"二开入於此1申請案中建議的製造方法不僅解決上 ㈣、’而且針對f照明CCD/C刪成像器還具有優於其 他建儀方案之數個優點,其中包括: 義之方法係與現有的CGD/(:MQS成像輯造程序 全相容。 •所建議的方法無須任何特殊的背側處理。Recombination is minimized and sensitive. There are other challenges in the manufacture of a thin backlit imager: for example, a thinned backside imager can have an inherent dangling bond present on the dove back surface, which can cause the generated electrons to recombine on the back surface. Therefore, if the back side of the thinned imager is not processed to reduce the intercept, the quantum efficiency (QE) may be degraded. Wafer thinning brings yield problems, such as stresses in thinned wafers due to non-uniformity in the thickness of the cat's crystal layer. Based on these and the above reasons, the manufacturing cost under conditions for mass production of backlighting imagers is much higher than for those used in front-illumination imagers. In the co-pending U.S. Patent Application Serial No. 11/35, No. 546, Jianshi is used to manufacture a cost-effective process for manufacturing a backlit CCD/CMOS imager based on an insulator. 1230009.doc 200839906 The full text of the disclosure is based on the reference, and the manufacturing method proposed in the application of this application not only solves the above (four), but also has several better than other construction schemes for the f-lighting CCD/C erasing imager. Advantages, including: The method is fully compatible with the existing CGD/(:MQS imaging program. • The proposed method does not require any special backside processing.

•灿晶《之内埋氧化物層用作—用於—高輸出加薄程序 之天然停止層。 •藉由利用此程序來生長的磊晶層厚度得到精確控制。與 傳統方法相比’此與該之天,然停止氧化物絕緣層結 合可以產生極均勻的厚度。 所建儀的方法允許多層級金屬處理。 •可以在應用晶圓加薄/層壓步驟之前全面地測試藉由利 用所建議方法來製造之裝置,從而使得在一生產環境中 的主要成本降低。 某些成像系統將濾光片與微透鏡併入該等影像感测器以 產生與波長相關之信號。迄今為止,此大多係結合前照明 成像器來實行。即使對於上面所建議的方法,: σ 用於加 薄月照明成像器的濾光片及微透鏡之製造亦係一複雜程 序。该背側上的濾光片/微透鏡與該前側上的像素之對準 十分關鍵。背側與前側對準係可行的,但對準精確声浐 小。此外,此類背加薄成像器與濾光片的導線結合及封穿 增加該程序之複雜性。 123052.doc 200839906 因此,儘管需要但尚未提供者係一種用以製造背照明成 像器之裝置及方法,其可以較高的成本效率併入濾光片、 微透鏡及導線結合技術。 【發明内容】 本文揭示一種用於採用絕緣體上半導體(semic〇nduct〇r_ 〇n-inSulator ; S0I)基板的背照明成像裝置之方法及所產生 的衣置用以製造該成像裝置之方法包括以下步驟:提供 Ο• Can crystal's buried oxide layer is used as a natural stop layer for high output thinning procedures. • The thickness of the epitaxial layer grown by using this program is precisely controlled. Compared with the conventional method, this is the same day, and the combination of stopping the oxide insulating layer can produce a very uniform thickness. The method of the instrument allows for multi-level metal processing. • The device manufactured by the proposed method can be thoroughly tested prior to applying the wafer thinning/lamination step, thereby reducing the major cost in a production environment. Some imaging systems incorporate filters and microlenses into the image sensors to produce wavelength dependent signals. To date, this has mostly been done in conjunction with a front illumination imager. Even for the method suggested above: σ The manufacture of filters and microlenses for thinning moonlight imagers is a complex procedure. The alignment of the filter/microlens on the back side with the pixels on the front side is critical. The alignment of the back side and the front side is possible, but the alignment is accurate and the vocalization is small. In addition, the combination and sealing of such back-thin imagers with the wires of the filters increases the complexity of the procedure. 123052.doc 200839906 Accordingly, an apparatus and method for fabricating a backlighting imager, though not required, is incorporated into the filter, microlens, and wire bonding techniques with greater cost efficiency. SUMMARY OF THE INVENTION A method for fabricating a back-illuminated imaging device using a semiconductor-on-insulator (S0I) substrate and a resulting device for manufacturing the imaging device include the following Step: Provide Ο

(J 包含一絕緣體層與一實質上覆蓋該絕緣體層的磊晶層之一 基板,製造至少部分覆蓋並延伸進該磊晶層之至少一成像 、、’件,幵乂成只貝上覆蓋該蠢晶層之複數個結合塾;製造實 質上覆蓋該磊晶層及該至少一成像組件之一介電層;提供 處置曰曰圓,在该處置晶圓中形成複數個 數個—導電凸塊形成於實質上在該等導電溝渠下的冓= 圓之第一表面上;以及將該複數個導電凸塊與該複數個 結合墊結合。 蟲晶層 所產生的背照明半導體成像裝置包含··一絕緣體層;一 乂 / 、其只貝上覆蓋該絕緣體層;至少一成像組件,其 係形成為至少部分覆蓋該磊晶層並延伸進該磊晶層;一介 :層:其係形成為實質上覆蓋該至少一成像㈣及爲晶 ::设數個結合墊,其實質上覆蓋該介電層;以及一處置 其具有形成於其中的導電溝渠,該等導電溝渠係與 该歿數個結合墊結合。 在某且 —^ 域,而其中 體實施例巾’至少一成像組件具有一成像區 只處上覆蓋該磊晶層的複數個結合墊之至少一 123052.doc 200839906 結合塾亦至少部分覆蓋該成像區域。藉由以下步驟在該處 置晶圓令形成複數個導電溝渠··蝕刻在該處置晶圓中的導 通孔,藉由一導電材料填充該等導通孔;以及讓該處置晶 圓之一表面變光滑。藉由利用一電鍍或濺鑛技術以-導電 材料填充該等導通孔。該導電材料可以係諸如金、錫或鶴 之類的一金屬。 曰曰 曰曰 複數個對準鍵係形成為至少部分覆蓋並延伸進該磊 層。該蟲晶層中的對準鍵係藉由以下步驟形成:在該蟲印 層之一頂部部分上印刷鍵㈣;藉由利用一溝渠蝕刻程; 姓刻在該等鍵圖案下的下部蟲晶層直至姓刻掉的石夕因下部 絕緣體/内埋氧化物層而停止 了止,以及猎由一矽氧化物、碳 化^氮切及多晶硬之—來填充開放的溝渠。 該等成像組件可以包括任加組合的cm〇s成像組件、電 荷輕合裝置(CCD)組件、光二極體、雪崩光二極體或光電 晶體。該等光學組件可以包括任加組合的遽光片與微透 鏡。 Ο 【實施方式】 以下具體實施例旨在作為鉻彳丨 任作為範例而非限制。為與慣例保持 一致,圖式不一定係按比例繪製。 圖1至1 5解說用以製造加缝 4的背照明成像器及-所產生 結構之一程序之一且體眘a v ’、 &例。圖1解說在此項技術中有 時稱為絕緣體上半導體(s〇I)基(J) comprising an insulator layer and a substrate substantially covering the epitaxial layer of the insulator layer, fabricating at least one image, at least partially covering and extending into the epitaxial layer, and covering the shell a plurality of bonding layers of the stupid layer; manufacturing a dielectric layer substantially covering the epitaxial layer and the at least one imaging component; providing a processing circle, forming a plurality of conductive bumps in the processing wafer Formed on a first surface of the circle of 冓= circle substantially under the conductive trenches; and combining the plurality of conductive bumps with the plurality of bonding pads. The back-illuminated semiconductor imaging device produced by the worm layer comprises An insulator layer; a germanium/shell covering the insulator layer; at least one imaging component formed to at least partially cover the epitaxial layer and extend into the epitaxial layer; a layer: a layer formed into a substance Overlying the at least one imaging (four) and being crystalline:: providing a plurality of bonding pads substantially covering the dielectric layer; and disposing a conductive trench having a conductive trench formed therein, the conductive trenches being combined with the plurality of turns Mat At least one imaging component having at least one imaging component having at least one imaging pad covering at least one of the bonding pads of the epitaxial layer, at least one 123052.doc 200839906, the binding layer at least partially covering the An imaging area, wherein the processing wafer is formed to form a plurality of conductive trenches, the via holes etched in the handle wafer, the conductive vias are filled with a conductive material; and one of the handle wafers is disposed The surface is smoothed by filling the vias with a conductive material by means of an electroplating or sputtering technique. The conductive material may be a metal such as gold, tin or a crane. Formed to at least partially cover and extend into the layer of protrusions. The alignment key in the layer of the insect layer is formed by printing a bond on a top portion of the layer of insects; using a trench etching process; The surname is engraved in the lower worm layer under the key pattern until the last name of the Shi Xi is stopped by the lower insulator/buried oxide layer, and the hunting is performed by a bismuth oxide, carbonized nitrogen and polycrystalline hard Come - come The open imaging trenches. The imaging components may include any combination of cm〇s imaging components, charge coupled device (CCD) components, photodiodes, avalanche light diodes, or optoelectronic crystals. The optical components may include any Combination of calendering sheets and microlenses. EMBODIMENT The following specific examples are intended to serve as exemplifications and are not to be construed as limiting, and the drawings are not necessarily drawn to scale. 5 illustrates one of the procedures for fabricating a backlit imager with a slit 4 and one of the resulting structures, and is a careful example. FIG. 1 illustrates that in the art, it is sometimes referred to as a semiconductor-on-insulator (s). 〇I) base

甘上 板之初始基板10。起始SOI 基板10(圖1所示)係由用於在 ^ 』間提供支撐的處置晶圓 25、一絕緣體層20(其可以係 J如一内埋矽氧化物層)及 123052.doc 200839906 b曰種層15組成。在本具體實施例中,該處置晶圓μ可以係 用於製造積體電路之一標準矽晶圓。或者,該處置晶圓25 可以係任何具有足夠剛性之基板,其係由—可與本文所揭 不的方法步驟相容之材料組成。絕緣體層Μ可以包含厚度 約為1微米之-石夕氧化物。在其他具體實施例中,絕緣體 層20之厚度可以在從約1〇 nm至約5〇〇〇⑽之一範圍内。晶 種層15可由厚度從約5奈米至約⑽奈米之㈣組成。The initial substrate 10 of the board is placed on the board. The starting SOI substrate 10 (shown in Figure 1) is a handle wafer 25 for providing support between the electrodes, an insulator layer 20 (which may be a buried oxide layer) and 123052.doc 200839906 b The seed layer 15 is composed. In this embodiment, the handle wafer μ can be used to fabricate one of the standard germanium wafers of the integrated circuit. Alternatively, the handle wafer 25 can be any substrate having sufficient rigidity to be comprised of materials that are compatible with the method steps disclosed herein. The insulator layer can comprise a stone oxide having a thickness of about 1 micron. In other embodiments, the thickness of the insulator layer 20 can range from about 1 〇 nm to about 5 〇〇〇 (10). The seed layer 15 may be composed of (4) having a thickness of from about 5 nm to about (10) nm.

U SOI基板可購得而且係藉由各種習知方法製造。在一方 法中,在矽晶圓上生長熱氧化矽。兩個此類晶圓係與氧化 面接觸接合並升高至_高溫。在某些變化中,橫跨該等兩 個晶圓及該等氧化物而施加一電位差。此等處理之效果係 導致在該等兩個晶圓上的氧化物層流入彼此内冑,從而在 該等晶圓之間形成一單石結合。一旦完成該結合,便將一 側上的石夕重豐並拋光至晶種層15之所需厚度,而在該氧化 物的相對側上之⑦形成處置晶圓25。該氧化物形成絕緣體 層20 〇 製造一 SOI基板之另_古、、土,# 之为方法從獲得一更標準的絕緣體上 半導體(SOI)晶圓開始,在該晶圓内該晶種層15之厚度在 從約⑽㈣㈣1000 nm範圍内。藉由利用習知的方法, 在该半導體基板上生長—熱氧化物。隨著該氧化物層生長 而消耗該半導體基板之丰藤栌^ ^ 双 < 千泠體材枓。接著選擇性地蝕刻掉 該氧化物層而留下具有—所需晶種層厚度之一加薄的半導 體基板。 藉由替代方法製造之SOI基板(稱為Smart Cut TM )係 123052.doc -11 · 200839906 由Soitec,S.A.公司出售。 晶種層15可包含矽(Si)、鍺(Ge)、SiGe合金、一第三至 四族半導體、-第二至六族半導體或適用於製造光電裝置 之任何其他半導體材料。 Γ: 現在參考圖2,藉由利用晶種層15作為樣板在該晶種層 15上形成磊晶層30。依據晶種層15之材料,磊晶層%可包 切⑼、鍺(Ge)、SiGe合金、一第三至四族半導體、一 第二至六族半導體或適用於製造光電裝置之任何其他半導 體材料:磊晶層30可具有從約“毁米至約5〇微米之一厚 度。可藉由控制晶生長程序來控制該蟲晶層%之電阻 率 〇 見在多考圖3,旦生長蟲晶層3〇 ’便將對準鍵印刷 於該蟲晶層3〇上並敍刻進該蟲晶層3〇。該等對準鍵45可用 於在該成像器製程期間對準後續層且還可用於在將該等晶 固加薄後對準在背侧上的攄光片。利用對準鍵可以使得以 米或更小的高精確度來對準隨後沈積的層。該等 對準鍵4 5還可用於問於έ士人 、開放、、、ϋ a墊區域以與所產生裝置之背側 i線、、、口合。藉由利用科旦彡 ]用镟衫蝕刻,將鍵圖案50印刷於該磊晶 ^之頂部部分5 5上。可以南丨田 ^ 利用一溝渠蝕刻程序以藉由 利用電4蝕刻來餘刻在爷 ,^ ^ 在4專鍵圖案5〇下的下部磊晶層30直 至名虫刻掉的碎因下部绍 因下°Μ邑緣體/内埋氧化層20而停止。接著 猎由电性絕緣材料(例如,一 夕虱化物、碳化矽、氮化矽 或多晶石夕)來填充開放的溝渠57。 現在參考圖4, 精由利用習知的半導體製造方法在 123052.doc -12- 200839906 该蠢晶層30上製造一或更多成像組件60。此等成像組件60 可以包括任加組合的電荷耦合裝置(CCD)組件、CMOS成 像組件、光二極體、雪崩光二極體、光電晶體或其他光電 裂置。该等成像組件60可以包括藉由利用習知的遮蔽方法 在猫日日層30之分離區域中製造的CCD與CMOS組件。還可 以包括其他電子組件,例如CMOS電晶體(未顯示)、雙極 %曰曰體(未顯示)、電容器(未顯示)或電阻器(未顯示)。可以 ΓU SOI substrates are commercially available and are manufactured by a variety of conventional methods. In one method, thermal yttrium oxide is grown on a tantalum wafer. Two such wafers are in contact with the oxidized surface and raised to a high temperature. In some variations, a potential difference is applied across the two wafers and the oxides. The effect of such processing is that the oxide layers on the two wafers flow into each other to form a single stone bond between the wafers. Once the bond is completed, the slabs on one side are polished and polished to the desired thickness of the seed layer 15, while the 7 on the opposite side of the oxidant forms the handle wafer 25. The oxide forms the insulator layer 20, and the other method of fabricating an SOI substrate is to start with obtaining a more standard semiconductor-on-insulator (SOI) wafer in which the seed layer 15 is formed. The thickness is in the range of about 1000 nm from about (10) (four) (four). A thermal oxide is grown on the semiconductor substrate by a conventional method. As the oxide layer grows, the semiconductor substrate is consumed by the Fujito 栌^^<> The oxide layer is then selectively etched away leaving a semiconductor substrate having a thickness of one of the desired seed layer thicknesses. An SOI substrate (referred to as Smart CutTM) manufactured by an alternative method 123052.doc -11 · 200839906 is sold by Soitec, S.A. The seed layer 15 may comprise germanium (Si), germanium (Ge), a SiGe alloy, a third to fourth semiconductor, a second to sixth semiconductor, or any other semiconductor material suitable for use in fabricating optoelectronic devices. Γ: Referring now to Figure 2, an epitaxial layer 30 is formed on the seed layer 15 by using the seed layer 15 as a template. Depending on the material of the seed layer 15, the epitaxial layer % may be coated with (9), germanium (Ge), SiGe alloy, a third to fourth semiconductor, a second to sixth semiconductor or any other semiconductor suitable for fabricating optoelectronic devices. Material: The epitaxial layer 30 may have a thickness from about "destroyed rice to about 5 〇 micron. The resistivity of the crystal layer can be controlled by controlling the crystal growth process." The seed layer 3〇 prints an alignment key on the insect layer 3〇 and engraves into the insect layer 3〇. The alignment keys 45 can be used to align the subsequent layers during the imager process and also It can be used to align the calendered sheets on the back side after the crystal solids are thinned. The alignment keys can be used to align the subsequently deposited layers with high precision in meters or less. 4 5 can also be used to ask the gentleman, open,,, ϋ a pad area to the i-line, and the back side of the device to be produced. By using the kedan 彡] to etch with a shirt, the key pattern 50 is printed on the top portion 5 5 of the epitaxy ^. It is possible to use a trench etching process to etch by using electricity 4 Engraved in the Lord, ^ ^ in the lower layer of the epitaxial layer 30 under the 5 key pattern 5 直至 until the worms are cut off due to the lower part of the lower edge of the body / buried oxide layer 20 and then stopped. An insulating material (for example, a bismuth telluride, tantalum carbide, tantalum nitride or polycrystalline spine) is used to fill the open trench 57. Referring now to Figure 4, the conventional semiconductor fabrication method is used at 123052.doc -12 - 200839906 One or more imaging components 60 are fabricated on the stray layer 30. These imaging components 60 may include any combination of charge coupled device (CCD) components, CMOS imaging components, photodiodes, avalanche light diodes, optoelectronics Crystal or other optoelectronic cleft. The imaging assembly 60 can include CCD and CMOS components fabricated in separate regions of the cat day layer 30 using conventional masking methods. Other electronic components, such as CMOS transistors, can also be included. (not shown), bipolar % carcass (not shown), capacitor (not shown) or resistor (not shown).

CJ 藉由利用该等對準鍵45作為一導引件將該等成像組件6〇對 =於該蟲晶層30上。當在該蟲晶層3G上製造若干成像器 、—在忒初日日層3〇中可能存在一或多個切割通道μ。作為 在猎由利用凸塊結合來附著一第二處置晶圓的程序(下面 將了說明)中之-預備步驟,可以將由一石夕氧化物或氮化 物製成之一介電層67沈積於該等成像組件60與該等對準鍵 =二在覆蓋該等成像組件之介電層67上以_對現在係― I二:結構73者的任何成像組件6°之一成像區域72不構 成阻擋的圖案形成複數個(導電)金屬結合墊7〇。 現,參考圖4及圖5’可以對該第一裝置結㈣之背側Μ I且件的進一步處理,其需要向該 側77添加-第二處置晶圓75以提供進一步的機;;^之: 向該篦一驻班^ 械槭支撐。為 裝置釔構73之前側77添加該第二 以將該第二處置晶圓75凸塊結合 :::’可 前側77上之結合墊該第二處置晶圓75可:;結構73的 撐之任何合適的材料(例一、^ 了由提供機械支 將任何合適金屬(例如金、錫、鶴等)之::)製成。可以 日日種層80沈積於 123052.doc 200839906 忒第一處置晶圓75之一第一側85上。所產生的第二裝置結 構88現在準備與該第一裝置結構乃凸塊結合。 現在參考圖6,複數個導通孔90係定義並蝕刻進該第二 處置晶圓75之一第二側95。該等導通孔9〇係與該第一裝置 結構73之結合墊7〇之位置對準。現在參考圖7,藉由電鑛 或濺鍍以一合適的導電材料填充該等導通孔90以形成經填 充的金屬溝渠100。若該第二處置晶圓75係由矽製成,則 而要在该第二處置晶圓75與經填充的金屬溝渠之間提 供電絶緣。作為該電鍍或濺鍍程序之一副產品,多餘的金 屬105可攸该第二處置晶圓75之第二側95上的金屬溝渠突 伸並J垂於▲等金屬溝渠之上。現在參考圖8,移除任何 S垂的至屬並藉由利用一化學機械拋光程序(CMp)令該第 二處置晶圓75之第二侧95之表面變得光滑而平坦。將一金 屬層110 /尤積於该第二處置晶圓75之第二側95及經填充的 金屬溝渠100上。現在參考圖9,藉由利用一微影蝕刻程序 以及藉由從該第二處置晶圓75的第二表面%蝕刻掉該金屬 層110之部A,在經填充的金屬溝渠100上定義複數個結合 墊115。現在參考圖10,在該第二處置晶圓乃的第一側Μ 上之釔合墊115上形成複數個金屬凸塊12〇。該等金屬凸塊 120係由一合適的金屬(例如銦)製成。該第二裝置結構μ現 在準備與該第一裝置結構73凸塊結合。 現在參考圖u,繪示該第二裝置結構88與該第一裝置結 構73之凸塊結合。在藉由利用該等結合墊作為鍵 來對準結構73、88後,將該第二處置晶圓乃之金屬凸塊 123052.doc -14· 200839906 120與該第二裝置結構88之前側77上的結合墊結合。藉 由向對準的結構88、73施加一適當的升高壓力及一適當的 溫度來實施結合。由於所施加之壓力及升高的溫度,該等 金屬凸塊120與該等結合塾70熔合,而形成該等^構二、 73之間牢固的金屬接點。為在該等結構“、73之間提供機 械支撐,藉由一合適的環氧樹脂/膠水來填充在該等結構 88、73之間的所產生間隙13〇以形成一單一的成像器結構 135。 參考圖12及圖13 ’該程序之後一步驟包括移除該第一處 置晶圓25。不再需要處置晶圓25來提供機械穩定性。可藉 由部分機械研磨及隨後的化學蝕刻、機械研磨或此等方法 之一組合來實現處置晶圓Μ之移除。藉由化學蝕刻,可以 選擇性地移除處置晶圓25,而不用移除絕緣體層2〇,以產 生該成像器結構135之一光滑的背側137。該絕緣層2〇用作 一蝕刻停止層。接著翻轉該成像器結構135(圖13)以作進一 步處理。 現在參考圖14,可以藉由利用該等對準鍵45作為精確導 引件,將光學組件140與該成像器結構135之背側137結 合。该一或該等多個光學組件可以包含濾光片與微透鏡來 產生與波長相關的信號。現在參考圖15,若存在切割通道 65用以製造複數個成像器,則此時可將該等切割通道65用 作用以將該成像結構135切割成複數個分離的成像結構15〇 之導引件。接著將結合導線14 5與結合塾11 5結合。 用於本t明之月照明成像器之凸塊結合製造技術提供優 123052.doc -15- 200839906 於藉由其他技術製造的前照明成像器之一明顯優點。圖16 顯示一前照明成像器155之一俯視平面圖。由於該前照明 成像器155需具有一不受阻擋的成像區域175來允許入射光 落在該成像區域175内的成像像素(未顯示)上,因此結合墊 160係分佈於該前照明成像器ι55之頂部ι7〇之外部周邊165 •附近。需要減小該前照明成像器1 55之尺寸,其需要減小 • 該成像區域175中的像素尺寸。由於無法減小該等結合墊 160之尺寸,因此該等結合墊ι6〇所佔據區域與該成像區域 Ο 170之比率增加。 圖17 A顯示依據本發明之凸塊結合技術而構造之一背照 明成像器180之一俯視平面圖,而圖17B係一側視圖。複數 個結合墊185可以係分佈於成像區域19〇上並與支撐晶圓 200之導通孔195對準。由於光僅穿過該成像器ι8〇之背側 205而進入,因此可以將該等結合墊185及導通孔I%放置 於該成像器1 80之前側2 15之區域210内而不影響收集在像 I、 素(未顯不)上的光。以此方式,可以減小該成像器180之整 體尺寸。可以藉由利用傳統的球格柵陣列或凸塊結合技術 來封裝經切割的晶片。 .應瞭解,範例性具體實施例僅係解說本發明,而熟習此 項技術者可以設計上述具體實施例之許多變化而不脫離本 發明之乾’。因此,期望所有此類變化皆包括於隨附申請 專利範圍及其等效内容之範疇内。 【圖式簡單說明】 圖1顯不依據本發明之一具體實施例在一用以 123052.doc 16 - 200839906 照明成像裝置之鞋皮 一 序中採用之一絕緣物上矽(SOI)基板; 圖2顯示在圖1 _ 口所、會不的SOI基板之晶種層上形成一磊晶 層之步驟; 0、T依據本發明之_具體實施例在該蠢 對準鍵之步驟; 圖4顯示在該磊晶層上製造-或多個成像組件以及在該 蠢晶層中介於圖3所示對準鍵之間的位置印刷及㈣結合 墊區域之步驟;The CJ aligns the imaging components 6 on the worm layer 30 by using the alignment keys 45 as a guide. When several imagers are fabricated on the wormhole layer 3G, one or more dicing channels μ may be present in the first day layer. As a preliminary step in the process of hooking up a second handle wafer by bump bonding (described below), a dielectric layer 67 made of a lithium oxide or nitride may be deposited thereon. The imaging component 60 and the alignment keys=2 are not blocked on the dielectric layer 67 covering the imaging components by any imaging component 72 of any imaging component of the current system. The pattern forms a plurality of (conductive) metal bond pads 7〇. Referring now to Figures 4 and 5', there may be further processing of the back side of the first device junction (4) and the need to add a second handle wafer 75 to the side 77 to provide a further machine; It: To the 篦 驻 ^ ^ ^ ^ ^ 槭 。 。 。 。 Adding the second to the front side 77 of the device structure 73 to bump the second handle wafer 75::: The bond pad on the front side 77 can be: the second handle wafer 75 can be: Any suitable material (Example 1, ^ is made of mechanically supported any suitable metal (eg, gold, tin, crane, etc.)::). The daytime seed layer 80 can be deposited on the first side 85 of one of the first disposal wafers 75 of 123052.doc 200839906. The resulting second device structure 88 is now ready to be bonded to the first device structure. Referring now to Figure 6, a plurality of vias 90 are defined and etched into one of the second sides 95 of the second handle wafer 75. The via holes 9 are aligned with the bonding pads 7 of the first device structure 73. Referring now to Figure 7, the vias 90 are filled with a suitable conductive material by electromine or sputtering to form a filled metal trench 100. If the second handle wafer 75 is made of tantalum, then the power supply is insulated between the second handle wafer 75 and the filled metal trench. As a by-product of the electroplating or sputtering process, the excess metal 105 can protrude from the metal trenches on the second side 95 of the second handle wafer 75 and hang over the metal trenches such as ▲. Referring now to Figure 8, any of the sacrificial genus is removed and the surface of the second side 95 of the second handle wafer 75 is made smooth and flat by utilizing a chemical mechanical polishing procedure (CMp). A metal layer 110 / is deposited on the second side 95 of the second handle wafer 75 and the filled metal trench 100. Referring now to FIG. 9, a plurality of defined metal trenches 100 are defined by a lithography process and by etching away portions A of the metal layer 110 from the second surface of the second handle wafer 75. Bond pad 115. Referring now to Figure 10, a plurality of metal bumps 12 are formed on the mating pads 115 on the first side of the second handle wafer. The metal bumps 120 are made of a suitable metal such as indium. The second device structure μ is now ready to be bonded to the first device structure 73. Referring now to Figure u, the second device structure 88 is shown in combination with the bumps of the first device structure 73. After aligning the structures 73, 88 by using the bond pads as keys, the second handle wafer is a metal bump 123052.doc -14·200839906 120 and the second device structure 88 on the front side 77 The combination of the mats is combined. Bonding is effected by applying a suitable elevated pressure to the aligned structures 88, 73 and a suitable temperature. Due to the applied pressure and elevated temperature, the metal bumps 120 are fused with the bond cymbals 70 to form a strong metal joint between the lands 2 and 73. To provide mechanical support between the structures ", 73, the resulting gap 13" between the structures 88, 73 is filled with a suitable epoxy/glue to form a single imager structure 135. Referring to Figures 12 and 13 'A subsequent step of the procedure includes removing the first disposal wafer 25. The wafer 25 is no longer needed to provide mechanical stability. Partial mechanical polishing and subsequent chemical etching, mechanical Grinding or one of these methods is combined to effect removal of the wafer defect. By chemical etching, the handle wafer 25 can be selectively removed without removing the insulator layer 2 to produce the imager structure 135. One of the smooth back sides 137. The insulating layer 2 is used as an etch stop layer. The imager structure 135 (Fig. 13) is then flipped for further processing. Referring now to Figure 14, the alignment keys can be utilized 45 as a precision guide, the optical assembly 140 is coupled to the back side 137 of the imager structure 135. The or plurality of optical components can include filters and microlenses to produce wavelength dependent signals. Figure 15, if There are cutting channels 65 for fabricating a plurality of imagers, which may be used as guides for cutting the imaging structure 135 into a plurality of separate imaging structures 15A. The bonding wires 14 are then bonded. 5 is combined with the combination 塾11 5. The bump-bonding manufacturing technique for the illuminating imager of the present invention provides a significant advantage of one of the front-illumination imagers manufactured by other techniques. Figure 16 A top plan view of a front illumination imager 155 is shown. Since the front illumination imager 155 needs to have an unobstructed imaging area 175 to allow incident light to fall on imaging pixels (not shown) within the imaging area 175, The bond pads 160 are distributed around the outer periphery 165 of the top of the front illumination imager ι 55. The size of the front illumination imager 1 55 needs to be reduced, which requires a reduction in the pixel size in the imaging area 175. Since the size of the bond pads 160 cannot be reduced, the ratio of the area occupied by the bond pads 与6〇 to the image area Ο 170 is increased. Figure 17A shows a bump knot in accordance with the present invention. One of the back illumination imagers 180 is constructed in a top plan view, and FIG. 17B is a side view. A plurality of bond pads 185 can be distributed over the imaging area 19A and aligned with the vias 195 of the support wafer 200. Since light enters only through the back side 205 of the imager ι8〇, the bond pads 185 and vias I% can be placed in the region 210 of the front side 2 15 of the imager 180 without affecting collection. In the case of light like I, prime (not shown). In this way, the overall size of the imager 180 can be reduced. The cut wafer can be packaged by using conventional ball grid array or bump bonding techniques. . It is understood that the exemplary embodiments are merely illustrative of the invention, and those skilled in the art can devise many variations of the specific embodiments described above without departing from the invention. Therefore, all such variations are intended to be included within the scope of the appended claims and their equivalents. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an on-insulator (SOI) substrate used in a shoe-skin order for an illumination imaging device of 123052.doc 16 - 200839906 according to an embodiment of the present invention; 2 shows the step of forming an epitaxial layer on the seed layer of the SOI substrate of FIG. 1; 0, T according to the embodiment of the present invention in the step of the stupid alignment key; FIG. 4 shows Fabricating - or a plurality of imaging components on the epitaxial layer and printing the position between the alignment keys shown in FIG. 3 in the stray layer and (iv) bonding pad regions;

圖5顯不製備欲附著於包含一或多個圖4所示成像組件的 裝置側之一第二處置晶圓之步驟; 圖6顯示在該第二處置晶圓中欲與圖4所示結合墊區域對 準的位置蝕刻導通孔之步驟; 圖7顯不藉由電鍍或濺鍍以一導電材料填充圖6所示導通 孔以形成經填充的金屬溝渠之步驟; 圖8顯示讓該第二處置晶圓之第二側之表面變光滑並將 金屬沈積於該第二側上之步驟; 圖9顯示在該第二處置晶圓之第二表面上的經填充金屬 溝渠上定義複數個結合墊之步驟; 圖1 0繪示在该弟二處置晶圓之第一側上的結合墊上开4成 複數個金屬凸塊之步驟; 圖11繪示將該第二處置晶圓結構與該S〇I裝置晶圓結構 凸塊結合以產生一合成的成像器結構之步驟; 圖12顯示移除屬於圖1所示初始SOI晶圓結構的第_處置 晶圓之步驟; 123052.doc 17 200839906 圖13顯示翻轉該合成的成像器結構以作進一步處理之步 驟; 圖14顯示藉由利用該等對準鍵作為導引件將光學組件與 合成的成像器結構之背側結合之步驟; 圖1 5顯示製造金屬接點並將結合導線附著於在該合成成 像器結構的背側上之金屬接點之步驟; 圖16係一前照明成像器之一俯視平面圖,其中結合墊係 分佈於其外部周邊附近以便提供一不受阻擋的成像區域; 圖1 7 A係依據本發明而構造之一背照明成像器之一俯視 平面圖,其中可以將結合塾放置於該成像器之前側之像素 區域内,從而使得能夠減小整體尺寸;以及 圖17B係圖1 7A所示背照明成像器之一側視圖,其顯示 在前側成像區域内的導通孔位置。 【主要元件符號說明】 10 初始基板/起始SOI基板 15 晶種層 20 絕緣體層/絕緣體/内埋氧化層 25 處置晶圓 30 蠢晶層 45 對準鍵 50 鍵圖案 55 磊晶層3 0之頂部部分 57 溝渠 60 成像組件 123052.doc -18. 200839906 65 切割通道 67 介電層 70 (導電)金屬結合墊 72 成像區域 73 第一裝置結構 74 第一裝置結構73之背側 75 苐二處置晶圓 77 第一裝置結構73之前側 80 晶種層 85 第二處置晶圓75之第一 88 第二裝置結構 90 導通孔 95 第二處置晶圓75之第二 100 經填充的金屬溝渠 105 多餘的金屬 110 金屬層 115 結合塾 120 金屬凸塊 130 間隙 135 成像器結構 137 成像器結構135之背側 140 光學組件 145 結合導線 150 分離的成像結構 123052.doc -19 - 200839906 155 160 170 175 180 185 190 195 Ο 200 205 210 215 前照明成像器 結合墊 前照明成像器155之頂部/成像區域 成像區域 背照明成像器 結合墊 成像區域 導通孔 支撐晶圓 成像器180之背側 前側2 1 5之區域 成像器180之前側 u 123052.doc -20-Figure 5 shows a step of preparing a second disposal wafer to be attached to one of the device sides of the imaging assembly shown in Figure 4; Figure 6 shows the combination of Figure 2 shown in Figure 2 The step of etching the via holes at the position where the pad regions are aligned; FIG. 7 shows the step of filling the via holes shown in FIG. 6 with a conductive material by electroplating or sputtering to form a filled metal trench; FIG. 8 shows the second The step of treating the surface of the second side of the wafer to be smooth and depositing metal on the second side; FIG. 9 shows the definition of a plurality of bond pads on the filled metal trench on the second surface of the second handle wafer Step 10; FIG. 10 illustrates a step of opening a plurality of metal bumps on the bonding pad on the first side of the second processing wafer; FIG. 11 illustrates the second processing wafer structure and the S〇 The step of combining the I device wafer structure bumps to produce a composite imager structure; FIG. 12 shows the steps of removing the first processing wafer belonging to the initial SOI wafer structure shown in FIG. 1; 123052.doc 17 200839906 FIG. Displaying the imager structure that flipped the composite for further processing Figure 14 shows the step of bonding the optical component to the back side of the resultant imager structure by using the alignment keys as guides; Figure 15 shows the fabrication of metal contacts and the bonding wires attached to the composite Figure 16 is a top plan view of a front illumination imager with a bond pad disposed adjacent its outer periphery to provide an unobstructed imaging area; A is a top plan view of one of the backlighting imagers constructed in accordance with the present invention, wherein the bonding cassette can be placed in the pixel area on the front side of the imager, thereby enabling a reduction in overall size; and FIG. 17B is FIG. A side view of one of the illustrated backlighting imagers showing the location of the vias in the front side imaging region. [Main component symbol description] 10 initial substrate / starting SOI substrate 15 seed layer 20 insulator layer / insulator / buried oxide layer 25 disposal wafer 30 stray layer 45 alignment key 50 key pattern 55 epitaxial layer 3 0 Top portion 57 Ditch 60 Imaging assembly 123052.doc -18. 200839906 65 Cutting channel 67 Dielectric layer 70 (conductive) Metal bond pad 72 Imaging area 73 First device structure 74 Back side 75 of first device structure 73 Circle 77 First Device Structure 73 Front Side 80 Seed Layer 85 Second Treatment Wafer 75 First 88 Second Device Structure 90 Via 95 Second Treatment Wafer 75 Second 100 Filled Metal Ditch 105 Excess Metal 110 metal layer 115 bonded 塾 120 metal bump 130 gap 135 imager structure 137 back side 140 of imager structure 135 optical component 145 bonded wire 150 separated imaging structure 123052.doc -19 - 200839906 155 160 170 175 180 185 190 195 Ο 200 205 210 215 front illumination imager combined with pad front illumination imager 155 top / imaging area imaging area back illumination imager combined pad Image area Via hole Support wafer Imager 180 back side Front side 2 1 5 area Imager 180 front side u 123052.doc -20-

Claims (1)

200839906 十、申請專利範圍: L 一種用以製造一背照明半導體成像裝置之方法,1 以下步驟: ”匕έ 提供一基板,其包含: 一絕緣體層;以及 一蠢晶層,其實質上覆蓋該絕緣體層; 製造至少部分覆蓋並延伸進該磊晶層之 • ν 一成像組 〇 〇 形成實質上覆蓋該磊晶層之複數個結合墊; 製造覆蓋該磊晶層與該至少一成像組件之一介電層 提供一處置晶圓; 曰 在该處置晶圓中形成複數個導電溝渠; 下的 將複數個導電凸塊形成於實質上在該等 該處置晶圓上之-第-表面上;以及 電溝木 將該複數個導電凸塊與該複數個結合墊結合。 2·:請求項1之方法,其中至少-成像組件具有-成像區 域,而其中實質上覆蓋該磊晶層的該複數個結合墊之至 少一結合墊亦至少部分覆蓋該成像區域。 :明求項2之方法’其進一步包含形成實質上覆蓋該磊 曰曰層的複數個對準鍵之步驟。 4·如4求項3之方法,其中形成實質上覆蓋該磊晶層的複 數個對準鍵之步驟進一步包括以下步驟: 將鍵圖案印刷於該蠢晶層之一頂部部分上; 藉由利用一溝渠餘刻程序來餘刻在該等鍵圖案下之下 123052 200839906 部蠢晶層直至蝕刻掉的矽因下部絕緣體層而停止;以及 以一電性絕緣材料填充開放的溝渠。 5·如請求項4之方法,其中該電性絕緣材料係一矽氧化 物、碳化矽、氮化矽及多晶矽之一。 6.如睛求項1之方法,其中在該處置晶圓中形成複數個導 私溝木之步驟進一步包含以下步驟: 在該處置晶圓中蝕刻導通孔; 以一導電材料填充該等導通孔;以及200839906 X. Patent Application Range: L A method for manufacturing a backlight semiconductor imaging device, 1 the following steps: 匕έ providing a substrate comprising: an insulator layer; and a stupid layer substantially covering the An insulator layer; at least partially covering and extending into the epitaxial layer; ν an imaging group 〇〇 forming a plurality of bonding pads substantially covering the epitaxial layer; manufacturing covering the epitaxial layer and the at least one imaging component The dielectric layer provides a handle wafer; 曰 forming a plurality of conductive trenches in the handle wafer; and forming a plurality of conductive bumps on the -first surface substantially on the handle wafer; The galvanic wood combines the plurality of conductive bumps with the plurality of bonding pads. The method of claim 1, wherein at least the imaging component has an imaging region, wherein substantially the plurality of the epitaxial layers are covered At least one bond pad of the bond pad also at least partially covers the imaged area. The method of claim 2, further comprising forming a plurality of substantially covering the stretch layer The method of aligning the keys. The method of claim 3, wherein the step of forming a plurality of alignment keys substantially covering the epitaxial layer further comprises the step of: printing the key pattern on top of one of the stray layers Partially; by using a trench remnant procedure to engrave under the key pattern 123052 200839906 stupid layer until the etched 矽 due to the lower insulator layer; and filling with an electrically insulating material 5. The method of claim 4, wherein the electrically insulating material is one of tantalum oxide, tantalum carbide, tantalum nitride, and polycrystalline germanium. 6. The method of claim 1, wherein the wafer is processed The step of forming a plurality of guide trenches further includes the steps of: etching via holes in the handle wafer; filling the via holes with a conductive material; Ο 讓4處置晶圓之該第一表面變光滑。 7·如明求項6之方法,其中藉由利用電鍍及濺鍍技術之一 以一導電材料填充該等導通孔。 月求項1之方法,其進一步包含以下步驟: 形成實質上覆蓋該處置晶圓之一第二表面的複數個結 合墊;以及 斤將後數個結合導線附著於實質上覆蓋該處置晶圓的該 第二表面之該複數個結合墊。 9·::青求項8之方法,丨中形成實質上覆蓋該處置晶圓的 …表面之複數個結合塾之該步驟進一步包含以下步 沈積一導電材 爲貝上在該處置晶圓之該第二表面上 料;以及 上獲 圖案化並飿刻該導電材 材科以在經填充的金屬溝渠 付该设數個結合墊。 10·如請求項9之方法,复 八‘電材料係由一金屬製成 123052 200839906 11 ·如睛求項10之方法,其中該金屬係金、錫及鎢之一。 月求項3之方法’其進一步包含藉由利用該複數個對 準鍵作為導引件來製造實質上覆蓋該磊晶層並最接近該 絕緣層的至少一光學組件之步驟。 13·如請求項12之方法,其中製造至少一光學組件之步驟包 括任加組合地製造濾光片與微透鏡之步驟。 M·如凊求項12之方法,其進一步包含在形成實質上覆蓋該 成像區域的複數個結合墊之該步驟前形成實質上覆蓋該 至成像組件及該蠢晶層之一介電層之步驟。 5·如明求項14之方法,其進一步包含在將該複數個金屬凸 塊與至少部分覆蓋該成像區域的該複數個結合墊結合之 該步驟前將複數個導電結合墊形成於實質上在該等經填 充導電溝渠下的實質上該處置晶圓之該第一表面上之步 驟。 16.如請求们之方法,#中製造一或多個成像組件之步驟 包括任加組合地製造〇^〇8成像組件、電荷耦合裝置 (CCD)組件、光二極體、雪崩光二極體或光電晶體之步 K如請求们之方法,其中在該蟲晶層中製造至少一成像 組件之步驟進一步包含以下步驟·· 形成至少部分覆蓋並延伸進該蟲晶層之一第二成像組 ^ :至V成像組件與該第二成像組件實質上係形成 於該等對準鍵之間。 18’如请求項1之方法,其中該處置晶圓係由矽、氮化鋁及 123052 200839906 陶莞之一製成。 19.如請求⑴之方法,#中將該複數個金屬凸塊與至少部 分覆蓋該成像區域的該複數個結合塾結合之步驟進一步 包含向該基板及該處置晶圓施加一預定壓力及溫度之步 20.如請求項1之方法 控制。 其中該I晶層之電阻率受蠢晶輪廓Ο Let the first surface of the 4 handle wafer be smoothed. 7. The method of claim 6, wherein the via holes are filled with a conductive material by using one of electroplating and sputtering techniques. The method of claim 1, further comprising the steps of: forming a plurality of bond pads substantially covering a second surface of the handle wafer; and attaching the plurality of bond wires to substantially cover the handle wafer The plurality of bonding pads of the second surface. 9::: The method of claim 8, wherein the step of forming a plurality of bonding defects substantially covering the surface of the handle wafer further comprises the step of depositing a conductive material on the handle wafer The second surface is loaded; and the conductive material is patterned and engraved to dispense the plurality of bonding pads in the filled metal trench. 10. The method of claim 9, wherein the electrical material is made of a metal. 123052 200839906 11 The method of claim 10, wherein the metal is one of gold, tin and tungsten. The method of claim 3, further comprising the step of fabricating at least one optical component substantially covering the epitaxial layer and closest to the insulating layer by using the plurality of alignment keys as a guide. 13. The method of claim 12, wherein the step of fabricating the at least one optical component comprises the step of fabricating the filter and the microlens in any combination. The method of claim 12, further comprising the step of forming a substantially covering dielectric layer to the imaging component and the doped layer prior to the step of forming a plurality of bonding pads substantially covering the imaging region . 5. The method of claim 14, further comprising forming a plurality of electrically conductive bond pads substantially prior to the step of combining the plurality of metal bumps with the plurality of bond pads at least partially covering the imaged region The steps of substantially filling the first surface of the wafer under the conductive trench. 16. The method of fabricating one or more imaging components in the method of claiming, comprising: assembling the imaging assembly, the charge coupled device (CCD) component, the optical diode, the avalanche photodiode, or the optoelectronic device in any combination. Step K of the crystal, wherein the method of fabricating at least one imaging component in the worm layer further comprises the step of: forming a second imaging group at least partially covering and extending into the worm layer: The V imaging assembly and the second imaging assembly are formed substantially between the alignment keys. 18' The method of claim 1, wherein the disposal wafer is made of tantalum, aluminum nitride, and one of 123052 200839906. 19. The method of claim (1), wherein the step of combining the plurality of metal bumps with the plurality of bond pads at least partially covering the imaged region further comprises applying a predetermined pressure and temperature to the substrate and the handle wafer. Step 20. Control the method as in claim 1. Wherein the resistivity of the I layer is affected by the stray crystal profile 21· —種背照明半導體成像裝置,其包含: 一絕緣體層; 一磊晶層,其實質上覆蓋該絕緣體層; 至少-成像組件,其係形成為至少部分覆蓋並延伸進 0亥蟲晶層; -介電層’其係形成為實質上覆蓋該至少一成像組件 與该蠢晶層; 複數個結合墊,其實質上覆蓋該介電層;以及 處置晶圓’其具有形成於其中的導電溝渠,該等導 電溝渠係與該複數個結合墊結合。 22.如請求項21之背照明半導體成像裝置,其中該至少一成 像組件具有-成像區域,而其中實質上覆蓋該蠢晶層的 口亥複數個結合墊之至少_結合塾亦至少部分覆蓋該成像 區域。 23. 如請求項22之背照明半導體成像裝置,其進—步包含形 成為至少部分覆蓋並延伸進^晶層之複數個對準鍵。 24. 如請求項23之背照明半導體成像裝置,其中以—石夕氧化 123052 200839906 物、礙切、氮化⑦及多_之—來填充料對準鍵。 25. 如請求項23之背照明半導體成像農置,其進一步包含實 質上在該等導電溝渠下並實質上覆蓋該等導電溝 數個結合塾。 26. 如請求項21之背照明半導體成像裳置,其進—步包含填 充於該處置晶圓與該介電層之間的間隙中之一黏性材料。、 2 7 ·如請求項21之背昭明丰藤辦士、你叫 月’、、、月午導體成像裝置,其中形成於該處 置晶圓中的該等導電溝渠係由一金屬製成。 28. 如請求項27之背照明丰莫坪士你# 。 月3千V體成像裝置,其中該金屬係 金、錫及鎢之一。 29. 如請求項21之背照明半導體成像裝置,其進一步包含製 造為實質上覆蓋該蟲晶層並最接近該絕緣層之至少一光 學組件。 30. 如請求項29之背照明半導體成像裳置,其中該至少一光 學組件包括任加組合的據光片與微透鏡。 k j 31. 如請求項3〇之背照明半導體成像裝置,其進一步包含與 置曰曰圓之„亥等導電溝渠結合之複數個金屬接點。 3 2 ·如睛求項21之背昭明坐道μ …、丰導體成像裝置,其中該處置晶圓 係由矽、氮化鋁及陶瓷之一製成。 其中該磊晶層包 33. 如請求項21之f照明半導體成像襄置 含石夕而該絕緣體層包含氧化物。 其中該一或多個 34. 如請求項21之背照明半導體成像裝置,、…、, 成像組件包括任加組合的CMOS成像組件、電荷耦合裝 ()、且件光—極體、雪崩光二極體或光電晶體 12305221. A back-illuminated semiconductor imaging device comprising: an insulator layer; an epitaxial layer substantially covering the insulator layer; at least an imaging component formed to at least partially cover and extend into the 0-worm layer a dielectric layer formed to substantially cover the at least one imaging component and the doped layer; a plurality of bonding pads substantially covering the dielectric layer; and a handle wafer having a conductive layer formed therein Ditches, the conductive trenches are combined with the plurality of bonding pads. 22. The backlight semiconductor imaging device of claim 21, wherein the at least one imaging component has an imaging region, and wherein at least a plurality of bonding pads substantially covering the dummy layer also at least partially cover the Imaging area. 23. The backlighting semiconductor imaging device of claim 22, further comprising a plurality of alignment keys formed to at least partially cover and extend into the layer. 24. The backlight illumination semiconductor imaging device of claim 23, wherein the material alignment key is filled with - xixi oxidizing 123052 200839906, obstructing, nitriding 7 and more. 25. The backlight illumination semiconductor imaging device of claim 23, further comprising substantially a plurality of bonded germanium under the conductive trenches and substantially covering the conductive trenches. 26. The backlit semiconductor imaging device of claim 21, further comprising a viscous material filling a gap between the handle wafer and the dielectric layer. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; 28. As requested in item 27, the backlight is Fengmo Pingshi you#. A monthly 3,000 V body imaging device in which the metal is one of gold, tin and tungsten. 29. The backlighting semiconductor imaging device of claim 21, further comprising at least one optical component fabricated to substantially cover the silicon dioxide layer and closest to the insulating layer. 30. The backlight illumination semiconductor imaging device of claim 29, wherein the at least one optical component comprises any combination of light and microlenses. Kj 31. The backlight illumination semiconductor imaging device of claim 3, further comprising a plurality of metal contacts combined with a conductive trench such as a 亥 之 。 3 3 3 3 3 3 3 21 21 21 21 坐 坐 坐 坐 坐 坐 坐a ..., a conductive conductor imaging device, wherein the processed wafer is made of one of tantalum, aluminum nitride, and ceramic. The epitaxial layer package 33. The illumination semiconductor imaging device of claim 21 has a stone The insulator layer comprises an oxide. The one or more 34. The backlight illumination semiconductor imaging device of claim 21, ..., the imaging component comprises any combination of CMOS imaging components, charge coupled devices, and light —polar body, avalanche light diode or photoelectric crystal 123052
TW96128880A 2007-03-28 2007-08-06 Method of fabricating back-illuminated imaging sensors using a bump bonding technique TW200839906A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US90843607P 2007-03-28 2007-03-28

Publications (1)

Publication Number Publication Date
TW200839906A true TW200839906A (en) 2008-10-01

Family

ID=44821001

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96128880A TW200839906A (en) 2007-03-28 2007-08-06 Method of fabricating back-illuminated imaging sensors using a bump bonding technique

Country Status (1)

Country Link
TW (1) TW200839906A (en)

Similar Documents

Publication Publication Date Title
US8178914B2 (en) Method of fabricating back-illuminated imaging sensors
US7541256B2 (en) Method of fabricating back-illuminated imaging sensors using a bump bonding technique
US8017426B2 (en) Color filter array alignment mark formation in backside illuminated image sensors
TWI452684B (en) Backside illuminated image sensor with backside trenches
US7915067B2 (en) Backside illuminated image sensor with reduced dark current
TW201031029A (en) Devices and methods for ultra thin photodiode arrays on bonded supports
TW200937628A (en) Method and device for reducing crosstalk in back illuminated imagers
US7777229B2 (en) Method and apparatus for reducing smear in back-illuminated imaging sensors
CN108807436A (en) Semiconductor devices and its manufacturing method
US7968358B2 (en) Digital radiographic flat-panel imaging array with dual height semiconductor and method of making same
TW201011906A (en) Image sensor with reduced red light crosstalk
KR100856942B1 (en) Method for manufacturing an image sensor
TWI248634B (en) Solid-state image sensing apparatus and method of manufacturing the same
US20090294883A1 (en) Method for electronically pinning a back surface of a back-illuminated imager fabricated on a utsoi wafer
TW200839906A (en) Method of fabricating back-illuminated imaging sensors using a bump bonding technique
JP2009065167A (en) Image sensor, and manufacturing method thereof
CN110168751A (en) Include the steps that the method for manufacturing optoelectronic device for etching growth substrates rear
JP2009065158A (en) Image sensor, and manufacturing method thereof
US20090065819A1 (en) Apparatus and method of manufacture for an imager starting material