TW200839235A - Portable multi-ions sensing system and fabrication thereof - Google Patents

Portable multi-ions sensing system and fabrication thereof Download PDF

Info

Publication number
TW200839235A
TW200839235A TW096109657A TW96109657A TW200839235A TW 200839235 A TW200839235 A TW 200839235A TW 096109657 A TW096109657 A TW 096109657A TW 96109657 A TW96109657 A TW 96109657A TW 200839235 A TW200839235 A TW 200839235A
Authority
TW
Taiwan
Prior art keywords
sensing
ion
portable multi
layer
sensing system
Prior art date
Application number
TW096109657A
Other languages
Chinese (zh)
Other versions
TWI334025B (en
Inventor
Shen-Kan Hsiung
Jung-Chuan Chou
Tai-Ping Sun
Nien-Hsuan Chou
Gin-Chou Yang
Original Assignee
Univ Chung Yuan Christian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chung Yuan Christian filed Critical Univ Chung Yuan Christian
Priority to TW096109657A priority Critical patent/TWI334025B/en
Publication of TW200839235A publication Critical patent/TW200839235A/en
Application granted granted Critical
Publication of TWI334025B publication Critical patent/TWI334025B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The present invention provides a portable multi-ions sensing system, which comprises a sensing unit for sensing the pH value of to-be-tested liquid and concentrations of multiple kinds of ions so as to output a sensing signal, wherein the sensing unit includes: a substrate; an ITO layer disposed on the substrate; a sensing layer disposed on the ITO layer and connected to an extending wire; a packaging layer covering the sensing layer, the ITO layer and part of the substrate and having a sensing window for exposing part of the sensing layer; a multi-ions selection layer disposed on the part of the sensing layer in the sensing window for sensing the concentrations of the multiple kinds of ions; and a reference electrode for providing a reference voltage to the sensing layer for measurement; an analog signal processing unit for receiving the sensing signal and filtering, amplifying and level-adjusting the sensing signal to output a front-end signal; a microcontroller unit for receiving the front-end signal and performing analog/digital conversion and two-point correction process on the front-end signal to output a measurement data; and a real-time display unit for receiving and displaying the measurement data.

Description

200839235 九、發明說明: 【發明所屬之技術領域】 本發明係有關於離子濃度(ion concentration)感測系統及 其研製方法,特別是有關於可攜式多重離子感測系統及其研製 - 方法。 【先前技術】 離子場效電晶體(Ion Sensitive Field Effect Transistor ; ISFET)係70年代出現並且迅速發展之微型感測元件,其發展 至今僅30多年,但與其相關之論文已超過600多篇,而其他 與其相關元件之研究亦有150多篇,如酵素感測場效電晶體 (Enzyme Field Effect Transistor; EnFET)、免疫感測場效電晶體 (Immune Field Effect Transistor ; IMFET) [R Bergveld,“Thirty years of ISFETOLOGY : What happened in the past 30 years and what may happen in the next 30 years”,Sensors and Actuators B, ν〇1·88,ρρ·1·20,2003·]。 此外,ISFET亦可取代玻璃電極進行酸鹼值與離子濃度 (例如:Na+,K+,Cl·,NH4+,Ca2+等)之量測[Miao Yuqing,Guan Jianguo,and Chen Jianrong,“Ion sensitive field effect transducer-based biosensors”,Biotechnology Advances,Vol.21, ρρ·527-534, 2003·],其最早係由P.Bergveld所提出,主要係將 6 200839235 金屬氧化半導體場效電晶體(Metal Oxide Semiconductor Field Effect Transistor ; MOSFET)之金屬閘極去除,並將二氧化矽 (SiOJ層之元件與一參考電極置於水溶液中,則流過其元件之 電流會隨著氳離子之濃度而變化,其效應與玻璃電極相同,故 具酸鹼感測之特性[鄭建斌,李永利,高鴻,“離子敏感場效應 晶體管及其應用”,分析化學,第23卷第7期,ρρ·842-849, 1995·;武世香,虞惇,王貴華,“化學感測器量測,,,感測器技術, 第 3 期,ρρ·57·62,1990·]。 目前已有少數商品化之ISFET感測元件,例如·· ISFET 酸驗度計(pH meter),但其穩定性與壽命仍是一相當大問題, 例如·時漂現象及遲滯效應等。而本發明所使用之延伸式閘極 感測場效電晶體(Extended Gate Field Effect Transistor; EGFET) 係另一種形式之ISFET,其將FET由化學量測環境分離出來, 並將化學感測薄膜沉積於FET閘極區域所延伸出來之訊號線 末端上,且將電性之作用區與化學作用區作個別之封裝,故 EGFET係比傳統ISFET具有更容易封裝及保存等優點,並且 其穩定度亦較佳[廖漢洲,“應用於生物感測器之新型校正與 補償技術電路”,2004年6月,中原大學電子工程學系,頌士 學位論文,ρρ·11_29·]。 近年來’已有眾多學者著手研究EGFET之特性,如元件 設計[Li Te Yin, Jung Chuan Chou,Wen Yaw Chung,Tai Ping 7 200839235200839235 IX. INSTRUCTIONS: [Technical Field] The present invention relates to an ion concentration sensing system and a method for developing the same, and more particularly to a portable multi-ion sensing system and a method for the same. [Prior Art] Ion Sensitive Field Effect Transistor (ISFET) is a micro-sensing component that appeared in the 1970s and developed rapidly. It has only been developed for more than 30 years, but more than 600 papers have been published. There are more than 150 studies on other related components, such as Enzyme Field Effect Transistor (EnFET), Immune Field Effect Transistor (IMFET) [R Bergveld, "Thirty Years of ISFETOLOGY : What happened in the past 30 years and what may happen in the next 30 years”, Sensors and Actuators B, ν〇1·88, ρρ·1·20, 2003·]. In addition, ISFET can also replace the glass electrode for the measurement of pH and ion concentration (eg, Na+, K+, Cl·, NH4+, Ca2+, etc.) [Miao Yuqing, Guan Jianguo, and Chen Jianrong, "Ion sensitive field effect transducer] -based biosensors", Biotechnology Advances, Vol.21, ρρ·527-534, 2003·], the earliest of which was proposed by P. Bergveld, mainly based on 6 200839235 metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect) The metal gate of the MOSFET) is removed, and the cerium oxide (the element of the SiOJ layer and a reference electrode are placed in an aqueous solution, the current flowing through the element changes with the concentration of the cerium ion, and the effect is with the glass. The electrodes are the same, so they have the characteristics of acid-base sensing [Zheng Jianbin, Li Yongli, Gao Hong, "Ion-sensitive field effect transistor and its application", Analytical Chemistry, Vol. 23, No. 7, ρρ·842-849, 1995·; Wu Shixiang , 虞惇, Wang Guihua, “Chemical Sensor Measurement,,, Sensor Technology, No. 3, ρρ·57·62, 1990·] There are a few commercially available ISFET sensing components, such as · ISFET acid meter (pH meter), but its stability and longevity are still a considerable problem, such as · time drift phenomenon and hysteresis effect, etc. The extended gate sensing field effect transistor used in the present invention (Extended Gate Field Effect Transistor; EGFET) is another form of ISFET that separates the FET from the chemical measurement environment and deposits a chemical sensing film on the end of the signal line extending from the FET gate region, and The electrical action zone and the chemical action zone are individually packaged, so the EGFET is easier to package and store than the conventional ISFET, and its stability is also better [Liao Hanzhou, "The new correction applied to the biosensor Compensation Technology Circuit, June 2004, Department of Electronic Engineering, Chung Yuan Christian University, Ph.D. Thesis, ρρ·11_29·]. In recent years, many scholars have begun to study the characteristics of EGFETs, such as component design [Li Te Yin, Jung Chuan Chou, Wen Yaw Chung, Tai Ping 7 200839235

Sun, and Shen Kan Hsiung,“Study on separate structure extended gate H+-ion sensitive filed effect transistor on a glass substrate’’, Sensors and Actuators B,Vol.71,106-111,2000· ; Li Te Yin,Jung Chuan Chou,Wen Yaw Chung,Tai Ping Sun,and Shen Kan Hsiung,“Study of indium tin oxide thin film for separative extended gate ISFET”,Materials Chemistry and Physics,V〇1.70, pp.12-16, 2001. I Li Te Yin, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun,Kuang Pin Hsiung,and Shen Kan Hsiung,“Study on glucose ENFET doped with Mn02 powder’’,Sensors and Actuators B,Vol.76, ρρ·187_192, 2001·;殷立德,“以離子感測 場效電晶體做為生物感測器之研究”,2001年6月,中原大學 醫學工程學系,博士學位論文,ΡΡ.76-108·]、特性分析[覃永隆, “以CMOS製程技術製作延伸式場效電晶體及其訊號處理積體 電路之研究”,2001年6月,中原大學電子工程學系,博士學位 論文,ρρ·36-44·;陳佳琪,“可拋棄式尿素感測器與前置放大器 之研究”,2002年6月,中原大學電子工程學系,碩士學位論文, pp.51-80. I Jia Chyi Chen, Jung Chuan Chou, Tai Ping Sun, and Shen Kan Hsiung,“Portable urea biosensor based on the extended-gate field effect transistor”,Sensors and Actuators B, Vol.91,pp· 180-186, 2003· ; Chung We Pan,Jung Chuan Chou,I Kone Kao,Tai Ping Sun,and Shen Kan Hsiung,“Using 8 200839235 polypyrrole as the contrast pH detector to fabricate a whole solid-state pH sensing device”,IEEE Sensors Journal,Vol.3, pp· 164-170,2003·; Jui Fu Cheng,Jung Chuan Chou,Tai Ping Sun, and Shen Kan Hsiung,“Study on the chloride ion selective electrode based on the Sn02/ITO glass”, Proceedings of The 2003 Electron Devices and Materials Symposium (EDMS), National Taiwan Ocean University, Keelung,Taiwan,R.O.C·,pp.557-560, 2003. ; Jui Fu Cheng, Jung Chuan Chou, Tai Ping Sun5 and Shen Kan Hsiung,“Study on the chloride ion selective electrode based on the Sn02/ITO glass and double-layer sensor structure^, Proceedings of The 10th International Meeting on Chemical Sensors,Tsukuba International Congress Center, Tsukuba,Japan, ρρ·720-721,2004·]、時漂現象以及遲滯效應等特性[廖漢洲, “應用於生物感測器之新型校正與補償技術電路”,2004年6月, 中原大學電子工程學系,碩士學位論文,ρρ·11_29· ; Chu Neng Tsai,Jung Chuan Chou,Tai Ping Sun,and Shen Kan Hsiung, “Study on the hysteresis of the metal oxide pH electrode”, Proceedings of The 10th International Meeting on Chemical Sensors,Tsukuba International Congress Center, Tsukuba,Japan, pp.586-587? 2004. ; Chu Neng Tsai, Jung Chuan Chou, Tai Ping Sun,and Shen Kan Hsiung,“Study on the sensing characteristics 9 200839235 and hysteresis effect of the tin oxide pH electrode' Sensors andSun, and Shen Kan Hsiung, "Study on separate structure extended gate H+-ion sensitive filed effect transistor on a glass substrate'', Sensors and Actuators B, Vol. 71, 106-111, 2000·; Li Te Yin, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, and Shen Kan Hsiung, "Study of indium tin oxide thin film for separative extended gate ISFET", Materials Chemistry and Physics, V〇 1.70, pp. 12-16, 2001. I Li Te Yin, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Kuang Pin Hsiung, and Shen Kan Hsiung, "Study on glucose ENFET doped with Mn02 powder'', Sensors and Actuators B, Vol.76, ρρ·187_192, 2001· Yin Lide, “Study on the use of ion-sensing field-effect transistors as biosensors”, June 2001, Department of Medical Engineering, Chung Yuan Christian University, Ph.D. Thesis, ΡΡ.76-108·], Characteristic Analysis [覃Yong Long, “Study on the production of extended field effect transistor and its signal processing integrated circuit by CMOS process technology”, June 2001, Department of Electronic Engineering, Chung Yuan Christian University, Ph.D. Thesis, ρρ· 36-44·; Chen Jiaqi, “Research on Disposable Urea Sensors and Preamplifiers”, June 2002, Department of Electronic Engineering, Chung Yuan Christian University, Master Thesis, pp.51-80. I Jia Chyi Chen, Jung Chuan Chou, Tai Ping Sun, and Shen Kan Hsiung, "Portable urea biosensor based on the extended-gate field effect transistor", Sensors and Actuators B, Vol.91, pp. 180-186, 2003· ; Chung We Pan, Jung Chuan Chou, I Kone Kao, Tai Ping Sun, and Shen Kan Hsiung, "Using 8 200839235 polypyrrole as the contrast pH detector to fabricate a whole solid-state pH sensing device", IEEE Sensors Journal, Vol.3, pp· 164 -170,2003·; Jui Fu Cheng, Jung Chuan Chou, Tai Ping Sun, and Shen Kan Hsiung, “Study on the chloride ion selective electrode based on the Sn02/ITO glass”, Proceedings of The 2003 Electron Devices and Materials Symposium ( EDMS), National Taiwan Ocean University, Keelung, Taiwan, ROC·, pp.557-560, 2003. ; Jui Fu Cheng, Jung Chuan Chou, Tai Ping Sun5 and Shen Kan Hsiung "Study on the chloride ion selective electrode based on the Sn02/ITO glass and double-layer sensor structure^, Proceedings of The 10th International Meeting on Chemical Sensors, Tsukuba International Congress Center, Tsukuba, Japan, ρρ·720-721, 2004 ·], time drift phenomenon and hysteresis effect [Liao Hanzhou, "New correction and compensation technology circuit applied to biosensor", June 2004, Department of Electronic Engineering, Chung Yuan Christian University, master's thesis, ρρ·11_29· Chu Neng Tsai, Jung Chuan Chou, Tai Ping Sun, and Shen Kan Hsiung, "Study on the hysteresis of the metal oxide pH electrode", Proceedings of The 10th International Meeting on Chemical Sensors, Tsukuba International Congress Center, Tsukuba, Japan, Pp.586-587? 2004. ; Chu Neng Tsai, Jung Chuan Chou, Tai Ping Sun, and Shen Kan Hsiung, “Study on the sensing characteristics 9 200839235 and hysteresis effect of the tin oxide pH electrode' Sensors and

Actuators B,Vol· 108, pp.877-882,2005·],迄今對感測元件特性Actuators B, Vol. 108, pp. 877-882, 2005.], to date the characteristics of the sensing elements

已十分了解,故本發明將所製作之多重離子感測器結合嵌入式 系統(embedded system)技術[Microchip Technology Inc” http://www.microchip.com”,PIC18F452 datasheet ; Microchip Technology Inc” “http://www.microchip.com”,MPLAB Cl8 C Compiler User’s Guide·],使本發明具備LCD即時顯示、USB 及USART資料傳輸等功能,藉此完成一可攜式多重離子感測 系統之研製。 【發明内容】 本發明係提供一種可攜式多重離子感測系統,此可攜式 多重離子感測系統包含:一感測單元,係用以感測待測液體之 酸鹼值及複數種離子濃度以輸出一感測信號,其中此感測單元 係包含:一基板;一氧化銦錫層,係位於此基板上;一感測層, 係位於此氧化銦錫層上並連接一延伸導線;一封裝層,係包覆 此感測層、此氧化銦錫層與部分此基板,其係具有一感測窗以 暴露部分此感測層;一多重離子選擇層,係位於此感測窗内之 部分此感測層上,此多重離子選擇層係用以感測此複數種離子 濃度;及一參考電極,係用以提供此感測層量測之參考電位; 一類比信號處理單元,係用以接收此感測信號並且加以濾波、 200839235 放大及準蝴整處理以輸出—前端健;___微控制器單元,係 用以接收此前端信號並且加以類比/數位轉換及兩點校正處理 以輸出-量職料:以及—即咖示單元,侧以接收並顯示 此量測資料。 【實施方式】 本發明將詳細描述一些實施例如下。然而,除了所揭露 之實施例外,本發明亦可以廣泛地運用在其他之實施例施行。 本發明之範圍並不受該些實施例之限定,乃以其後之申請專利 範圍為準。而為提供更清楚之描述及使熟悉該項技藝者能理解 本發明之發明内容,圖示内各部分並沒有依照其相對之尺寸而 繪圖,某些尺寸與其他相關尺度之比例會被突顯而顯得誇張, 且不相關之細節部分亦未完全繪出,以求圖示之簡潔。 本發明之主要目的之一,係使用分離式架構之二氧化錫 酸鹼電極,並結合離子選擇層(薄膜)與嵌入式系統技術以實現 一可攜式多重離子感測系統之研製,其主要功能之一係提供將 量測結果即時顯示於LCD,使其具有可攜式之功能,並且亦 提供與電腦進行資料傳輸之功能(即USB與RS232傳輸線), 於應用方面,除可將本系統應用於酸鹼值檢測之外,亦可結合 鉀、納及氣等離子選擇層(薄膜),使其兼具鉀、鈉及氯等離子 之檢測功能及實用性,藉此增加臨床、生化訊號及環境檢測時 200839235 之產業應用性。 凊參照第一圖,其為本發明之一較佳實施例之概略系統 方塊圖。在本實施例中,可攜式多重離子感測系統係包含:一 感測單元110、一類比信號處理單元12〇、一微控制器單元13〇 以及一即時顯示單元140。感測單元110,係用以感測一待測 液體之酸鹼值及複數種離子濃度以輸出一感測信號。類比信號 處理單元120,係用以接收感測單元no所輸出之感測信號並 加以濾波、放大及準位調整處理以輸出一前端信號。微控制器 單元130,係用以接收類比信號處理單元12〇輸出之前端信號 並加以類比/數位轉換及兩點校正處理,以輸出一量測資料。 即時顯示單元140,係用以接收微控制器單元13〇輸出之量測 資料並顯示此量測資料,在本實施例中,即時顯示單元14〇係 包含一薄型顯示裝置,例如··液晶顯示器(Liquid Crystal Display ; LCD)等。而在另一實施例中,可攜式多重離子感測 系統更包含一資料傳輸單元15〇,係用以將微控制器單元13〇 輸出之量測資料傳送出可攜式多重離子感測系統,例如傳輸至 個人電腦等,而在此實施例中,資料傳輸單元15〇之傳輸介面 係包含通用序列匯流排(Universal Seriai bus ; USB)及/或通用 同步非同步收發傳輪器(Universai Synchronous Asynehromms Receiver Transmitter ; USART) ° 請接著參照第二圖,其為本發明之一較佳感測單元n〇 12 200839235 實施例之剖面結構示意圖。一基板210,在本實施例中,基板 210係包含一絕緣基板,例如··陶瓷基板、玻璃基板等,其中 以玻璃基板較佳。一氧化銦錫(Indium Tin Oxide ; ITO)層220, 係位於基板220上,其中氧化銦錫層220之厚度約230埃(A), 然不限於此厚度。一感測層230,係位於氧化銦錫層220上並 連接一延伸導線240,其中感測層230係包含二氧化錫(Sn〇2) 且其較佳厚度約2000埃,而延伸導線240係以銀線較佳。一 封裝層250,係包覆感測層230、氧化銦錫層220與部分基板 21〇’封裝層250係具有一感測窗260以暴露部分感測層230, 其中封裝層250係包含環氧樹脂(ep0Xy resin),而感測窗260 之較佳面積為2 X 2 mm2。在本實施例中,封裝層250所包覆 部分基板210係指完整包覆氧化銦錫層220與基板210之接面 周圍,而延伸導線240係穿出封裝層250。 一多重離子選擇層270,係位於感測窗260内之感測層 230上,其係用以感測待測液體内之複數種離子濃度,其中此 多重離子選擇層270係包含一鉀離子選擇層(薄膜)、一鈉離子 選擇層(薄膜)及/或一氣離子選擇層(薄膜),以形成鉀離子選擇 電極、鈉離子選擇電極及/或氯離子選擇電極,藉此感測待測 液體内之鉀離子、鈉離子及/或氯離子濃度。而此感測單元110 係更包含一參考電極以提供本感測單元11〇量測之參考電位 (將於稍後說明)。 13 200839235 在本實施例中,上述感測單元110在其製作及封装處理 係較為容易’且可降低製造成本以符合拋棄式感測器之條 I。 此感測單元11G係包含-分離架構之延伸式閘極離子感測器 並以此分離架構之延伸式閘極離子感測器為基礎,固定上卸ϋ 鈉及氣等離子選擇層,進而完成具感測待測液體之酸鹼值、 卸、鈉及氯離子濃度之多重離子感測器,其製作步驟係包含: (Α)在一基板上形成一氧化銦錫層,其中氧化銦錫層較佳 厚度約230埃,然不限於此厚度,基板為一絕緣基板,如陶瓷 基板及玻璃基板等,然以玻璃基板較佳。 (Β)分別曱醇溶液及去離子水(deionized water ; DI Wate ) 將上述具有氧化銦錫層之基板置於超音波震盪器中震盪,其中 於甲醇溶液及去離子水中震盪時間以分別約15分鐘較佳了 (C) 在氧化銦錫層上形成-感測層,其包含以—物理氣相 沉積法成長二氧化錫層,且以射頻濺鑛法較佳,而靶材為二氧 化錫,接著通入混合氣體,並將基板維持於一溫度,其中混合 氣體係氬氣與氧氣’而二氧化錫層成長時之基板溫度約維持於 150 C,沉積氣壓約維持於20毫托耳(mT〇rr),射頻功率約 瓦特(Watt) ’感測層(一氧化錫層)之較佳厚度約為2000埃,而 氬氣與氧氣之混合比例為4 ·· 1。 (D) 進行導線連接及封裝處理,以銀膠將一延伸導線黏附 於感測層上’並以封裝材料(封裝層)包覆感測層、氧化銦錫層 200839235 及部分基板,封裝層係具有一感測窗以暴露部分感測層,其中 延伸導線係以銀線較佳,而封裝層係以環氧樹脂較佳,感測窗 之較佳尺寸為2 X 2 mm2。 (E) 在感測窗内之感測層上形成一多重離子選擇層,其中 ^ 多重離子選擇層係包含鉀、鈉及氣等離子選擇層(薄膜),藉此 • 作為鉀、鈉及氯等離子選擇電極以進行待測液體内之鉀、鈉及 乳等離子濃度之檢測。 (F) 使用一參考電極提供穩定之參考電位,其中參考電極 係包含一玻璃電極,例如··銀/氯化銀之玻璃電極。 請參照第三圖’其為本發明之一較佳類比信號處理單元 120實施例之等效電路圖。一儀表放大電路121,係用以接收 感測單元110輸出之感測信號並加以放大處理,以輸出一第一 L说’其中儀表放大電路121具有南共模拒斥比、高輸入阻抗 與低輸出阻抗等電路特性,因此作為類比信號處理單元12〇之 ί 第一級讀出電路,可提高輸出端對原感測信號之訊號雜訊比 - (S/N),其相當適合對感測單元110微小電壓信號之擷取。 一南通;慮波電路122 ’係用以接收儀表放大電路121輸出 之第一乜號並加以濾波處理以輸出一第二信號,其中高通濾波 電路122係包含一一階南通巴特沃斯(Butterworth)濾波器,係 藉由其極點設定(pole setting)與通带調整(bandwidth modulation)等電路特性,濾除第一信號之直流偏移電壓,進而 200839235 維持高訊號雜訊比,提升輸出信號品質。 一增益放大電路123 ’係用以接收高通滤波電路122輪出 之第二信號並加以放大處理以輸出—第三信號,其中係藉由對 第二信號之增益罐’以卿二信狀削、錢纽大至適當 準位,便進行後續處理。 二準位調整電路124,_以接收增益放大電路123輪出 ,第三信號並加鱗位調整處理讀出—第四信號,其中係將 第三信號調整至適當準位,使其輸出之細信號能符合類比/ 數位轉換器之輸入限制及規格。 一低通濾波電路125,係用以接收準位調整電路124輸出 之第四信餘加㈣波處舰輸㈣述之前端錢,其中低通 ;慮波電路125係、包含—二階低通巴.斯濾波器,藉由其極點 叹疋與通带調整等電路雛,齡外界不必要之雜(如市電 之略雜訊),進而維持高訊號雜訊比,提升輸出信號品質。 上述之電路主要係考量當感測單元11G之感難號經由類比 L號處理單元12G處理後,盡可能轉高訊齡減,而考量 ,則係使輸出端訊號雜訊比相對於輸入端訊號雜訊比能維持 向雜訊邊限⑽_),進啸升後續之触/數位轉換器之量化 效率’以完成本可攜式多重離子感測系統所需之解析度。 請參照第四圖,其為本發明之一較佳微控制器單元130 之負料處理流程圖。一類比/數位轉換模組,係接收信號處理 200839235 單元12()輸出之前端信號,並進行類比/數位轉換程序310以 輸出第五k號,其中類比/數位轉換程序係對微控制器單元 之類比/數位轉模組進行控制,包含取樣率、通道選擇及參考 電壓準位之控制冑。―二點校正模組,係接收類比/數位矣 拉組輸出之第五信號,並進行二點校正程序320以輸出前述之 ^測資料。—即時顯示模組,係接收二點校正模組輸出之量測 二、科並進行即時顯示程序以將量測資料顯示於即時顯示 單元140例如LCD等。而在另一實施例中,微控制器單元 130更包含-資料傳輸模組,其接收二點校正模組輸出之量測 ,,並進行資料傳輸程序340⑽量測資料傳送出微控制器 單το 130,其中資料傳輸模組係包含通用序列匯流排介面及/ 或通用同步非同步收發傳輸器介面。而在本發a月中,微控制器 早7G 130係可以是一 PIC鹏52單晶片微控制器,然不限於此 微控制器。 請參照第五圖,其為本發明之-較佳微控制器單元13〇 (PICI8F452)與即時顯示單元_ (LCD)以及資料傳輸單元 150 (USB、USART)連接實施例之等效電路圖。 凊參照第六圖,其為本發明之—較佳實施例之系統架構 不思圖。-感測單it 11〇,係量測一待測液體61〇之換能器, 其結構係相同於第二圖所示之結構,故在此科贅述。一參考 電極620係屬感測單元11〇之部件,其係連接一第一導線㈣ 17 200839235 接地’藉此提供躺單元11G於量測時穩定之參考電位,其中 參考電極㈣係包含-賴電極,修:—歡氣化銀之玻璃 電極。-類比信號處理單元120,係經由一第二導線640接收 感測單元110所輸出之感測信號並加以濾波、放大及準位調整 處理以輸出—前端錢。—微控· 13G,係接收此前端信號 並加以類比/触雜及^點校正處理哺H職料。一 即時顯示單元14G,係接收並顯示此量測資料,其中顯示單元 係LCD。-負料傳輸單元15〇,係接收此量測資料並 將此樑測資料舰$本可攜式多重離子_纽,例如傳輸至 個人電腦等,其中資料傳輸單元15G係包含咖裝置及 USART裝置。 請分別參照第七入〜七〇圖,其等係分別為本發明之一 較佳可攜式多重離子感咐' 統之酸驗電極、鉀離子選擇電極、 納離子選擇電極及氣離子選擇電極穩態電壓輸出示意圖,依據 本發明之實驗結果,其等輸出之電壓隨時間變化時,係可維持 一穩定輸出電壓。 請分別參照第八八〜八0圖,其等係分別為本發明之一 較佳可攜式多重離子感m紐電極、鉀離子選擇電極、 納離子選擇電極及氯離子選擇電極校正曲線示意_,依據實驗 結果,其等之朗度係分職56.89毫伏/酸祕(mV/pH)、 52.92耄伏/單位(mV/decade)、55 16毫伏/單位(ιην/_叫及 200839235 -54.81 毫伏/單位(mV/decade)。 請參照表一,其為本發明之一較佳可攜式多重離子感測 系統實施例之酸鹼電極於不同酸鹼緩衝液(pH2〜ph12)之量測 結果。當商品化酸驗計之量測值分別為Hi、3.94、5.96、7.54、 9·63及II·46時,本發明之可攜式多重離子感測系統在其lcd 模組、USB模組及RS232模組係對應顯示及傳輪2·26、4 〇4、 6·14、7·12、9·33及11.28,其相較於商品化酸驗計之量測結果, 其誤差值(%)係相當小(誤差範圍係介於2〇/〇〜7%),此表示其已 具備良好之性能及市場發展潛力。 商品化 酸鹼計 量測結果(酸鹼值)It is well understood that the present invention combines multiple ion sensors fabricated into an embedded system technology [Microchip Technology Inc" http://www.microchip.com", PIC18F452 datasheet; Microchip Technology Inc" "http ://www.microchip.com", MPLAB Cl8 C Compiler User's Guide·], enables the present invention to have functions such as LCD instant display, USB and USART data transmission, thereby completing the development of a portable multi-ion sensing system. SUMMARY OF THE INVENTION The present invention provides a portable multi-ion sensing system. The portable multi-ion sensing system includes: a sensing unit for sensing a pH value and a plurality of ions of a liquid to be tested. The concentration is output to a sensing signal, wherein the sensing unit comprises: a substrate; an indium tin oxide layer is disposed on the substrate; a sensing layer is disposed on the indium tin oxide layer and connected to an extended wire; An encapsulation layer encapsulating the sensing layer, the indium tin oxide layer and a portion of the substrate, wherein the sensing layer has a sensing window to expose a portion of the sensing layer; a multiple ion selective layer is located a portion of the sensing layer in the sensing window, the multiple ion selective layer is configured to sense the plurality of ion concentrations; and a reference electrode is used to provide a reference potential for the sensing layer measurement; The processing unit is configured to receive the sensing signal and filter it, 200839235 amplify and quasi-shadow processing to output the front end; the ___ microcontroller unit is configured to receive the front end signal and perform analog/digital conversion and two Point correction processing to output-quantity material: and - that is, a coffee-sending unit, side to receive and display the measurement data. [Embodiment] The present invention will describe some embodiments in detail, for example, except for the disclosed embodiments, The present invention is also applicable to a wide range of other embodiments. The scope of the present invention is not limited by the embodiments, and the scope of the claims will be limited. The skilled artisan can understand the inventive content of the present invention, and the parts in the illustration are not drawn according to their relative sizes, and the ratio of some dimensions to other related scales will be highlighted. However, the exaggerated and irrelevant details are not completely drawn for the sake of simplicity. One of the main purposes of the present invention is to use a separate structure of a tin dioxide base electrode in combination with an ion selective layer ( Thin film) and embedded system technology to realize the development of a portable multi-ion sensing system. One of its main functions is to provide the measurement results instantly on the LCD, so that it has a portable function, and also provides The function of data transmission by computer (ie USB and RS232 transmission line), in addition to the application of the system to the detection of pH, it can also be combined with potassium, sodium and gas plasma selective layer (film) to make it With the detection function and practicability of potassium, sodium and chlorine ions, it can increase the industrial applicability of 200839235 in clinical, biochemical signal and environmental testing. Referring to the first figure, which is a schematic block diagram of a preferred embodiment of the present invention. In this embodiment, the portable multiple ion sensing system includes: a sensing unit 110, an analog signal processing unit 12A, a microcontroller unit 13A, and an instant display unit 140. The sensing unit 110 is configured to sense a pH value of the liquid to be tested and a plurality of ion concentrations to output a sensing signal. The analog signal processing unit 120 is configured to receive the sensing signal output by the sensing unit no and perform filtering, amplification, and level adjustment processing to output a front end signal. The microcontroller unit 130 is configured to receive the analog signal processing unit 12 and output the front end signal and perform analog/digital conversion and two-point correction processing to output a measurement data. The instant display unit 140 is configured to receive the measurement data outputted by the microcontroller unit 13 and display the measurement data. In the embodiment, the instant display unit 14 includes a thin display device, such as a liquid crystal display. (Liquid Crystal Display; LCD) and so on. In another embodiment, the portable multi-ion sensing system further includes a data transmission unit 15 for transmitting the measurement data outputted by the microcontroller unit 13 to the portable multi-ion sensing system. For example, the data transmission unit 15 includes a universal serial bus (Universal Seriai bus; USB) and/or a universal synchronous asynchronous transceiver (Universai Synchronous). Asynchronms Receiver Transmitter; USART) ° Please refer to the second figure, which is a schematic cross-sectional view of an embodiment of a preferred sensing unit n〇12 200839235 of the present invention. In the present embodiment, the substrate 210 includes an insulating substrate, such as a ceramic substrate, a glass substrate, etc., of which a glass substrate is preferred. An indium tin oxide (ITO) layer 220 is disposed on the substrate 220, wherein the indium tin oxide layer 220 has a thickness of about 230 angstroms (A), which is not limited thereto. A sensing layer 230 is disposed on the indium tin oxide layer 220 and connected to an extension wire 240, wherein the sensing layer 230 comprises tin dioxide (Sn〇2) and preferably has a thickness of about 2000 angstroms, and the extended wire 240 is It is better to use a silver wire. An encapsulation layer 250, a cladding sensing layer 230, an indium tin oxide layer 220, and a portion of the substrate 21' package layer 250 have a sensing window 260 to expose a portion of the sensing layer 230, wherein the encapsulation layer 250 comprises an epoxy The resin (ep0Xy resin), and the preferred area of the sensing window 260 is 2 X 2 mm2. In the present embodiment, the portion of the substrate 210 covered by the encapsulation layer 250 refers to the periphery of the junction between the indium tin oxide layer 220 and the substrate 210, and the extension wires 240 pass through the encapsulation layer 250. A multiple ion selective layer 270 is disposed on the sensing layer 230 in the sensing window 260 for sensing a plurality of ion concentrations in the liquid to be tested, wherein the multiple ion selective layer 270 comprises a potassium ion Selecting a layer (film), a sodium ion selective layer (film), and/or a gas ion selective layer (film) to form a potassium ion selective electrode, a sodium ion selective electrode, and/or a chloride ion selective electrode, thereby sensing the test The concentration of potassium, sodium and/or chloride in the liquid. The sensing unit 110 further includes a reference electrode to provide a reference potential measured by the sensing unit 11 (which will be described later). 13 200839235 In the present embodiment, the sensing unit 110 is relatively easy to manufacture and package, and the manufacturing cost can be reduced to conform to the strip I of the disposable sensor. The sensing unit 11G is based on an extended gate ion sensor of the separation structure and is based on the extended gate ion sensor of the separation structure, and is fixed with a sodium and gas plasma selective layer to complete the device. The multi-ion sensor for sensing the pH value, the unloading, the sodium and the chloride ion concentration of the liquid to be tested, the manufacturing step comprises: (Α) forming an indium tin oxide layer on a substrate, wherein the indium tin oxide layer is compared The thickness is about 230 angstroms, but it is not limited to the thickness. The substrate is an insulating substrate, such as a ceramic substrate or a glass substrate, and a glass substrate is preferred. (Β) respectively, a decyl alcohol solution and deionized water (DI Wate). The substrate having the indium tin oxide layer is placed in an ultrasonic oscillator and oscillated in a methanol solution and deionized water to about 15 times respectively. Preferably, the minute (C) forms a sensing layer on the indium tin oxide layer, which comprises growing the tin dioxide layer by physical vapor deposition, preferably by radio frequency sputtering, and the target is tin dioxide. Then, the mixed gas is introduced, and the substrate is maintained at a temperature in which the argon gas and the oxygen gas in the mixed gas system are maintained, and the substrate temperature at the time of growth of the tin dioxide layer is maintained at about 150 C, and the deposition gas pressure is maintained at about 20 mTorr ( mT〇rr), RF power Watt 'The sensing layer (tin oxide layer) preferably has a thickness of about 2000 angstroms, and the mixing ratio of argon to oxygen is 4··1. (D) Conducting wire bonding and encapsulation, attaching an extension wire to the sensing layer with silver glue' and coating the sensing layer, indium tin oxide layer 200839235 and part of the substrate with encapsulation material (encapsulation layer), encapsulation layer There is a sensing window to expose a portion of the sensing layer, wherein the extended wire is preferably a silver wire, and the encapsulating layer is preferably an epoxy resin, and the sensing window preferably has a size of 2 X 2 mm 2 . (E) forming a multiple ion selective layer on the sensing layer in the sensing window, wherein the multiple ion selective layer comprises a potassium, sodium and gas plasma selective layer (film), thereby serving as potassium, sodium and chlorine The plasma is selected to perform the detection of the potassium, sodium and milk plasma concentrations in the liquid to be tested. (F) Using a reference electrode to provide a stable reference potential, wherein the reference electrode comprises a glass electrode, such as a silver/silver chloride glass electrode. Please refer to the third figure, which is an equivalent circuit diagram of an embodiment of a preferred analog signal processing unit 120 of the present invention. An instrumentation amplifying circuit 121 is configured to receive the sensing signal outputted by the sensing unit 110 and perform amplification processing to output a first L saying 'where the meter amplifying circuit 121 has a south common mode rejection ratio, a high input impedance and a low Circuit characteristics such as output impedance, so as the analog signal processing unit 12 第 first-stage readout circuit, can improve the signal-to-noise ratio (S/N) of the original sense signal at the output, which is quite suitable for sensing The unit 110 captures a small voltage signal. a Nantong; the wave circuit 122' is configured to receive the first signal outputted by the meter amplifying circuit 121 and filter the signal to output a second signal, wherein the high pass filter circuit 122 comprises a first-order Nantong Butterworth The filter filters out the DC offset voltage of the first signal by circuit characteristics such as pole setting and bandwidth modulation, and further maintains the high signal noise ratio of 200839235 to improve the output signal quality. A gain amplifying circuit 123' is configured to receive the second signal rotated by the high-pass filter circuit 122 and amplify the output to output a third signal, wherein the gain tank of the second signal is cut by a binary signal. After Qian New is at an appropriate level, it will be processed. The second level adjusting circuit 124, _ is rotated by the receiving gain amplifying circuit 123, and the third signal is added with the scaling adjustment processing to read the fourth signal, wherein the third signal is adjusted to an appropriate level to make the output fine. The signal can meet the input limits and specifications of the analog/digital converter. A low-pass filter circuit 125 is configured to receive the fourth signal plus (four) wave at the level of the output of the level adjustment circuit 124 (four), the low-pass; the wave circuit 125 system, including the second-order low-pass bus The filter, with its extreme sigh and passband adjustment and other circuits, is not necessary for the outside world (such as the slight noise of the mains), and thus maintains the high signal noise ratio and improves the output signal quality. The above-mentioned circuit mainly considers that when the sensing number of the sensing unit 11G is processed by the analog L processing unit 12G, the conversion is as high as possible, and the signal noise ratio of the output is compared with the input signal. The noise ratio can maintain the margin of noise (10)_), and the quantization efficiency of the subsequent touch/digital converter can be increased to complete the resolution required by the portable multi-ion sensing system. Please refer to the fourth figure, which is a flow chart of the negative processing of the preferred microcontroller unit 130 of the present invention. A analog/digital conversion module receives signal processing 200839235 unit 12() outputs the front end signal, and performs an analog/digital conversion program 310 to output a fifth k number, wherein the analog/digital conversion program is for the microcontroller unit The analog/digital converter module controls the sampling rate, channel selection and reference voltage level control. The two-point correction module receives the fifth signal of the analog/digital pull group output, and performs a two-point calibration process 320 to output the aforementioned test data. - Instant display module, which receives the measurement of the output of the two-point calibration module, and performs an instant display program to display the measurement data on the instant display unit 140 such as an LCD or the like. In another embodiment, the microcontroller unit 130 further includes a data transmission module that receives the measurement output by the two-point calibration module, and performs a data transmission process 340 (10) to measure the data and transmit the microcontroller τ. 130, wherein the data transmission module comprises a universal serial bus interface and/or a universal synchronous asynchronous transceiver interface. In the month of this issue, the microcontroller 7G 130 system can be a PIC Peng 52 single-chip microcontroller, but not limited to this microcontroller. Please refer to the fifth figure, which is an equivalent circuit diagram of the embodiment of the preferred microcontroller unit 13A (PICI8F452) and the instant display unit_LCD (LCD) and the data transmission unit 150 (USB, USART). Referring to the sixth diagram, it is a system architecture of the preferred embodiment of the present invention. - The sensing unit is 11 〇, which measures a transducer of the liquid to be tested 61 ,, and its structure is the same as that shown in the second figure, so it is described in this section. A reference electrode 620 is a component of the sensing unit 11A, which is connected to a first wire (4) 17 200839235. Grounding ' thereby providing a stable reference potential for the lying unit 11G for measurement, wherein the reference electrode (4) includes a drain electrode , repair: - the glass electrode of the silver. The analog signal processing unit 120 receives the sensing signal output by the sensing unit 110 via a second wire 640 and filters, amplifies, and adjusts the level to process the front end money. —Micro Control · 13G, which receives this front-end signal and applies analogy/touch and ^ point correction processing. An instant display unit 14G receives and displays the measurement data, wherein the display unit is an LCD. The negative material transmission unit 15 receives the measurement data and transmits the beam data carrier to the personal computer, for example, the data transmission unit 15G includes the coffee device and the USART device. . Please refer to the seventh input to the seventh chart, respectively, which are respectively a preferred portable multi-ion sensation acid detector electrode, a potassium ion selective electrode, a nano ion selective electrode and a gas ion selective electrode. A steady-state voltage output diagram, according to the experimental results of the present invention, maintains a stable output voltage when the voltage of the output changes with time. Please refer to the eighth to eighth diagrams respectively, which are respectively a calibration curve of a preferred portable multi-ion sensor m-electrode electrode, a potassium ion-selective electrode, a nano-ion selective electrode and a chloride ion-selective electrode. According to the experimental results, its grading is divided into 56.89 mV / acid secret (mV / pH), 52.92 volts / unit (mV / decade), 55 16 mV / unit (ιην / _ call and 200839235 - 54.81 millivolts/unit (mV/decade). Please refer to Table 1, which is a preferred embodiment of the portable multi-ion ion sensing system of the present invention. The acid-base electrode is used in different acid-base buffers (pH 2~ph12). Measurement results. When the measured values of the commercial acid test are Hi, 3.94, 5.96, 7.54, 9.63 and II·46, respectively, the portable multi-ion sensing system of the present invention is in its lcd module, The USB module and the RS232 module are corresponding to the display and transmission wheels 2·26, 4〇4, 6·14, 7·12, 9·33 and 11.28, which are compared with the measurement results of the commercial acid test. The error value (%) is quite small (the error range is between 2〇/〇~7%), which means that it has good performance and market development potential. Commercial acid and alkali measurement Test result (pH value)

(酸鹼值)LCD模組USB模組RS232模組(pH) LCD module USB module RS232 module

表-本發明之-難可攜式多重離子_系&施例 之酸鹼電極於不同酸鹼緩衝液量測結果 重離子感測 請參照表二’其為本發明之—較佳可攜式多 200839235 系統實施例之鉀離子選擇電極於不同氣化鉀緩衝液(ισ3Μ〜 1M)之量測結果。當所調配之氯化鉀緩衝液分別為1M、 ΙΟ^Μ、1〇-2Μ及1〇-3Μ時,本發明之可攜式多重離子感測系統 在其LCD模組、USB模組及RS232模組係對應顯示及傳輸 0.841M、0.123M、0·025Μ及0·〇〇1Μ,其量測之誤差係屬於可 接受之範圍。 氣化鉀缓衝溶液 量測結果(M) (KC1㈣(M)) LCD模組 USB模組 RS232模組 1 0.841 0-841 0.841 10'1 0.123 0.123 0.123 10·2 0.025 0.025 0.025 10'3 0.001 0.001 0.001 表二本發明之一較佳可攜式多重離子感測系統實施例 之鉀離子選擇電極於不同氣化鉀緩衝液(10·3Μ〜1Μ)量測結果 請參照表三’其為本發明之_紐可獻乡重離子感測 系統實%例之納離子選擇電極於不同氯化納緩衝液(1〇_3μ〜 1Μ)之量測結果。當所調配之氣化鈉緩衝液分別為m、 10七、10·2Μ及ι〇-3μ時,本發明之可攜式多重離子感測系統 在其LCD模組、USB模組及RS232模組係對應顯示及傳輸 0.815M、0.135M、0.029M及_M,其量測之誤差係屬於可 20 200839235 接受之範圍。 氯化鈉緩衝溶液 量測結果(M) (NaCl㈣(M)) LCD模組 USB模組 RS232模組 1 0.815 0.815 0.815 10'1 0.135 0.135 0.135 10·2 0.029 0.029 0.029 1〇·3 0.001 0.001 0.001 表三本發明之一較佳可攜式多重離子感測系統實施例 之鈉離子選擇電極於不同氣化納緩衝液(1 〇_3M〜1M)量測結果 請參照表四,其為本發明之一較佳可攜式多重離子感測 系統實施例之氣離子選擇電極於不同氣化鈉緩衝液(1〇-3m〜 1M)之量測結果。當所調配之氣化鈉緩衝液分別為ιΜ、 K^M、10_2M及10·3Μ時,本發明之可攜式多重離子感測系統 在其LCD模組、USB模組及RS232模組係對應顯示及傳輸 0.913M、0.136M、0.019M及0.001M ’其量測之誤差係屬於可 接受之範圍。 氯化鈉緩衝溶液 量測結果(M) (NaCl㈣⑽) LCD模組 USB模組 RS232模組 21 200839235 —〜-- __ 1 ποιο 〇·913 ---—— 〇>913__ ^---- —-—-- _ 10"1 π Ί Ο/Ζ 0.136 0.136 、—__ —_ 0.019 0.019 0>019__ 1四 太恭aH. 0.001 0.001 0.001 之氯離子縣雜料賊仙猶液(1G'3M〜1M)量測結果 ^照表五’其為本發明之—較佳可攜式多重離子感測 系、’充實施例之詳細規格表。然而,發明人在此所要強調的是, 無論是表一、表二、表三及表四所顯示之量測資料,或是表五 所顯示之詳細規格表,其等係僅用以說明本發明之較佳實施例 之實施成效及規格,並非用以限定本發明之實施。 量測種類 pH、pK、pNa 及 pCl 量測方式 酸檢電極及ISE 量測範圍 pH : 2 〜12 ISE : 1(Γ3 Μ 〜1 Μ 量測環境 室溫〜50°C 解析度 pH : 0.01 ISE : 10'3 M 校正方式 pH : 4及7(兩點校正) ISE: 10_3M 及 104Μ 兔|功能 LCD、USB 及 RS232 22 200839235 電源供應 9VDC (電池) 尺寸大小 220mm x 135mm x 85mm (L x W x D) 表五本發明之一較佳可攜式多重離子感測系統實施例 之規格表 综觀上述,本發明之可攜式多重離子感測系統係以結合 半導體製程與嵌入式系統技術所研製而成,本系統之感測單元 係以二氧化錫/氧化銦鍚/玻璃等分離式架構之酸鹼感測電極為 基礎,並且結合複數種離子選擇層(薄膜)與嵌入式系統技術所 研製而成。本發明之可攜式多重離子感測系統在其應用方面係 可進行多種離子濃度之偵測,且由於半導體技術之發展進步, 故本系統之裝置亦具備大量生產以及低製作成本等優點。 以上所述僅為本發明之較佳實施例而已,並非用以限定 本發明之申請專利範圍;凡其他為脫離本發明所揭示之精神下 所完成之等效改變或修飾,均應包含在下述之申請專利範圍。 23 200839235 【圖式簡單說明】 第圖係本發明之-較佳可攜式多重離子感測系統實施例之 概略系統方塊圖; 第二圖係本發明之一較佳感測單元實施例之剖面結構示意圖; 第二圖係本發明之一較佳類比信號處理單元實施例之等效電 路圖; 第四圖係本發明之一較佳微控制器單元之資料處理流程圖; 第五圖係本發明之一較佳微控制器單元與即時顯示單元以及 資料傳輸單元連接實施例之等效電路圖; 第六圖係本發明之一較佳可攜式多重離子感測系統實施例之 系統架構示意圖; 第七A圖係本發明之可攜式多重離子感測系統之酸鹼電極穩 態電壓輸出示意圖; 第七B圖係本發明之可攜式多重離子感測系統之鉀離子選擇 電極穩態電壓輸出示意圖; 第七C圖係本發明之可攜式多重離子感測系統之鈉離子選擇 電極穩態電壓輸出示意圖; 第七D圖係本發明之可攜式多重離子感測系統之氯離子選擇 電極穩態電壓輸出示意圖; 第八A圖係本發明之可攜式多重離子感測系統之酸鹼電極線 性曲線示意圖; 24 200839235 第八B圖係本發明之可攜式多重離子感測系統之鉀離子選擇 電極線性曲線示意圖; 第八C圖係本發明之可攜式多重離子感測系統之鈉離子選擇 電極線性曲線示意圖;以及 第八D圖係本發明之可攜式多重離子感測系統之氯離子選擇 電極線性曲線示意圖。 25 200839235 【主要元件符號說明】 110 感測單元 120 類比信號處理單元 121 儀表放大電路 122 高通濾波電路 123 增益放大電路 124 準位調整電路 125 低通濾、波電路 130 微控制器單元 140 即時顯示單元 150 資料傳輸單元 210 基板 220 氧化銦錫層 230 感測層 240 延伸導線 250 封裝層 260 感測窗 270 多重離子選擇層 310 類比/數位轉換程序 320 兩點校正程序 330 即時顯示程序 340 資料傳輸程序 610 待測液體 620 參考電極 630 第一導線 640 第二導線 Vin 信號輸入端 V〇ut 信號輸出端 Vn、V12輸入電壓 vref 參考電壓 Αι 〜A7 運算放大器 Rl 〜Rl8 、Rg 電阻 Q〜C4 電容 26Table - The present invention - the portable multi-ion ion system and the acid-base electrode of the embodiment are measured in different acid-base buffers. For heavy ion sensing, please refer to Table 2, which is a preferred embodiment of the present invention. The measurement results of the potassium ion selective electrode of the system embodiment of 200839235 in different potassium carbonate buffers (ισ3Μ~1M). When the potassium chloride buffer solution is 1M, ΙΟ^Μ, 1〇-2Μ and 1〇-3Μ, the portable multi-ion sensing system of the invention is in its LCD module, USB module and RS232 The module system displays and transmits 0.841M, 0.123M, 0·025Μ and 0·〇〇1Μ, and the measurement error is within the acceptable range. Gasification potassium buffer solution measurement results (M) (KC1 (four) (M)) LCD module USB module RS232 module 1 0.841 0-841 0.841 10'1 0.123 0.123 0.123 10·2 0.025 0.025 0.025 10'3 0.001 0.001 0.001 Table 2 One of the preferred portable multi-ion sensing system embodiments of the present invention, the potassium ion selective electrode is measured in different potassium carbonate buffers (10·3Μ~1Μ), please refer to Table 3' The _ 纽 献 乡 heavy ion sensing system is the actual example of the nano-ion selective electrode in different sodium chloride buffer (1 〇 _ 3μ ~ 1 Μ) measurement results. The portable multi-ion sensing system of the present invention is in the LCD module, the USB module and the RS232 module when the formulated sodium carbonate buffer is m, 10, 7, 10.2 and ι -3μ, respectively. Corresponding display and transmission of 0.815M, 0.135M, 0.029M and _M, the measurement error is within the scope of acceptance of 2008 200839235. Sodium Chloride Buffer Solution Measurement Results (M) (NaCl(4)(M)) LCD Module USB Module RS232 Module 1 0.815 0.815 0.815 10'1 0.135 0.135 0.135 10·2 0.029 0.029 0.029 1〇·3 0.001 0.001 0.001 Refer to Table 4 for the measurement results of the sodium ion selective electrode of the preferred portable multi-ion ion sensing system embodiment of the present invention in different gasification nanobuffers (1 〇 _3M~1M), which is the present invention. A gas ion selective electrode of a preferred portable multi-ion sensing system embodiment is measured in different sodium carbonate buffers (1〇-3m~1M). When the formulated sodium carbonate buffer is ιΜ, K^M, 10_2M and 10·3Μ, the portable multi-ion sensing system of the present invention corresponds to its LCD module, USB module and RS232 module. Display and transmission of 0.913M, 0.136M, 0.019M and 0.001M 'measurement errors are within acceptable limits. Sodium Chloride Buffer Solution Measurement Results (M) (NaCl(4)(10)) LCD Module USB Module RS232 Module 21 200839235 —~-- __ 1 ποιο 〇·913 ---—— 〇>913__ ^---- -_-- _ 10"1 π Ί Ο/Ζ 0.136 0.136 , —__ —_ 0.019 0.019 0>019__ 1 四太恭aH. 0.001 0.001 0.001 chloride ion county thief fairy liquid (1G'3M~1M The measurement results are shown in Table 5' which is the preferred portable multi-ion sensing system of the present invention, and the detailed specification table of the 'charged embodiment. However, the inventors hereby emphasize that the measurement data shown in Table 1, Table 2, Table 3 and Table 4, or the detailed specification table shown in Table 5, are only used to illustrate the present invention. The implementation results and specifications of the preferred embodiments are not intended to limit the implementation of the invention. Measurement type pH, pK, pNa and pCl measurement method Acid detection electrode and ISE measurement range pH: 2 ~ 12 ISE : 1(Γ3 Μ 〜1 Μ Measurement environment room temperature ~50 °C Resolution pH: 0.01 ISE : 10'3 M Calibration method pH: 4 and 7 (two-point calibration) ISE: 10_3M and 104Μ Rabbit | Function LCD, USB and RS232 22 200839235 Power supply 9VDC (battery) Dimensions 220mm x 135mm x 85mm (L x W x D) Table 5 Specifications of a preferred portable multi-ion sensing system embodiment of the present invention. The portable multi-ion sensing system of the present invention is developed in combination with a semiconductor process and an embedded system technology. The sensing unit of the system is based on a pH-based sensing electrode of a separate structure such as tin dioxide/indium oxide bismuth/glass, and is combined with a plurality of ion selective layers (films) and embedded system technology. The portable multi-ion sensing system of the present invention can detect a plurality of ion concentrations in its application, and due to advances in semiconductor technology, the device of the system also has mass production and low production cost. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; all other equivalent changes or modifications made in the spirit of the present invention should be It is included in the scope of the following patent application. 23 200839235 [Simplified illustration of the drawings] The figure is a schematic system block diagram of an embodiment of the preferred portable multi-ion sensing system of the present invention; A schematic diagram of a cross-sectional structure of an embodiment of a preferred sensing unit; a second diagram is an equivalent circuit diagram of an embodiment of a preferred analog signal processing unit of the present invention; and a fourth drawing is a data processing flow of a preferred microcontroller unit of the present invention Figure 5 is an equivalent circuit diagram of an embodiment of a preferred microcontroller unit, an instant display unit, and a data transmission unit of the present invention. Figure 6 is a preferred portable multi-ion sensing system of the present invention. Schematic diagram of the system architecture of the embodiment; Figure 7A is a schematic diagram of the steady-state voltage output of the acid-base electrode of the portable multi-ion sensing system of the present invention; Schematic diagram of the steady-state voltage output of the potassium ion selective electrode of the portable multi-ion sensing system; FIG. 7C is a schematic diagram of the steady-state voltage output of the sodium ion selective electrode of the portable multi-ion sensing system of the present invention; The figure is a schematic diagram of the steady-state voltage output of the chloride ion selective electrode of the portable multi-ion sensing system of the present invention; FIG. 8A is a schematic diagram of the linear curve of the acid-base electrode of the portable multi-ion sensing system of the present invention; 24 200839235 FIG. 8B is a schematic diagram showing a linear curve of a potassium ion selective electrode of the portable multi-ion sensing system of the present invention; FIG. 8C is a schematic diagram showing a linear curve of a sodium ion selective electrode of the portable multi-ion sensing system of the present invention; And the eighth D diagram is a schematic diagram of a linear curve of a chloride ion selective electrode of the portable multi-ion sensing system of the present invention. 25 200839235 [Description of main component symbols] 110 Sensing unit 120 Analog signal processing unit 121 Instrument amplifying circuit 122 High-pass filter circuit 123 Gain amplifying circuit 124 Level adjusting circuit 125 Low-pass filter, wave circuit 130 Microcontroller unit 140 Instant display unit 150 data transmission unit 210 substrate 220 indium tin oxide layer 230 sensing layer 240 extension wire 250 encapsulation layer 260 sensing window 270 multiple ion selection layer 310 analog/digital conversion program 320 two-point calibration program 330 instant display program 340 data transmission program 610 Liquid to be tested 620 Reference electrode 630 First wire 640 Second wire Vin Signal input terminal V〇ut Signal output terminal Vn, V12 Input voltage vref Reference voltage Αι ~ A7 Operational amplifier Rl ~ Rl8, Rg Resistance Q ~ C4 Capacitor 26

Claims (1)

200839235 十、申請專利範圍: 1·一種可攜式多重離子感測系統,其包含: 一感測單元,係用以感測待測液體之酸鹼值及複數種離子 濃度以輪出一感測信號,其中該感測單元係包含: - 一基板; • 一氧化銦錫層,係位於該基板上; 一感測層,係位於該氧化銦錫層上並連接一延伸導線· c 一封裝層,係包覆該感測層、該氧化銦錫層與部分該基板, 該封裝層係具有一感測窗以暴露部分該感測層; 一多重離子選擇層,係位於該感測窗内之部分該感測層 上,該多重離子選擇層係用以感測該複數種離子濃度;及9 一參考電極,係用以提供該感測層量測之參考電位; -類比信號處理單元,制以接收該感測信號並加以渡 波、放大及準位調整處理以輪出一前端信號; i 一微控制器單元’係用以接收該前端信號並加以類比/數位 ‘ 轉換及兩點校正處理以輸出一量測資料;以及 一即時顯示單元,係用以接收並顯示該量測資料。 2·如申明專利範圍第1項所述之可攜式多重離子感測系統,更包含 一資料傳輸單元,該資料傳輪單元係用以將該量測資料傳送出該 可攜式多重離子感測系統。 27 200839235 3.如申請專利範圍第2項所述之可攜式多重離子感測系統,其中該 資料傳輸單元之傳輸介面係包含通用序列匯流排。 4·如申請專利範圍第2項所述之可攜式多重離子感測系統,其中該 資料傳輸單元之傳輸介面係包含通用同步非同步收發傳輸器。 5·如申請專利範圍第1項所述之可攜式多重離子感測系統,其中該 基板係包含一絕緣基板。 6·如申請專利範圍第5項所述之可攜式多重離子感測系統,其中該 絕緣基板係包含一陶兗基板。 7. 如申請專利範圍第5項所述之可攜式多重離子感測系統,其中該 絕緣基板係包含一玻璃基板。 8. 如申請專利範圍第1項所述之可攜式多重離子感測系統,其中該 氧化銦錫層之厚度約230埃。 9·如申請專利範圍第1項所述之可攜式多重離子感測系統,其中該 感測層係包含一二氧化鍚層。 10·如申請專利範圍第9項所述之可攜式多重離子感測系統,其中 該二氧化錫層之厚度約2000埃。 11. 如申請專利範圍第1項所述之可攜式多重離子感測系統,其中 該延伸導線係包含一銀線。 12. 如申請專利範圍第1項所述之可攜式多重離子感測系統,其中 該封裝層係包含環氧樹脂。 28 200839235 統,其中 13.如申請專利細第1項所述之可攜式多重離子感測系統, 該感測窗之面積為2 X 2mm2。 14·如申晴專利範圍第i項所述之可攜式多重離子感喝統, 該多重離子選擇層係包含一钾離子選擇層。 、中 15. 如申睛專利範圍第丨項所述之可攜式多重離子感測系統 該多重離子選擇層係包含一納離子選擇層。 16. 如申睛專利範圍第i項所述之可攜式多重離子感測系統, 該多重離子選擇層係包含一氯離子選擇層。 4 17·如申睛專利細第丨項輯之可攜式多重離子感敗统 該參考電㈣包含—銀/統銀之玻璃t極。 18.如申請專利範圍第i項所述之可攜式多重離子感測系統, 該類比信號處理單元係包含: ,、 j表放大電路’接收該感測信號並加贈大以輸$ —帛—作 回通澹波電路’接收該$ —錄並加赠波以触—帛二’ 一增益放大電路,接收該第二域並加以放大以輸出— 一準位調整,接收該第三域並純準賴整叫^^ ’ 信號;以及 第四 -低通濾波電路,接收該第四雜並純驗以輸岭 19.如申請__ 18項所述之可攜式多重離子感啦统^。 該高通濾波電路係包含—二階高通巴槪_波器中 29 200839235 20·如申請專利範圍第18項所述之可攜式多重離子感測系統,其中 該低通滤波電路係包含一二階低通巴特沃斯滤波器。 21. 如申請專利範圍第1項所述之可攜式多重離子劇系統,其中 該微控制器單元係包含: 一類比/數位轉換模組,係接收該前端信號並進行類比/數位轉換以 輸出一第五信號; --點校JL模組,係接收該第五信號並進行二點校正處理以輸出 該量測資料;以及 -即時顯賴組,係接㈣職量測資料並職量測資料顯示於 該即時顯示單元。 22. 如申請專利範圍第21項所述之可攜式多重離子感測系統,其中 該微控制器單元更包含-資料傳輸模組,該資料傳輸模組接收 處理該量測資料並將該量測資料傳送出該微控制器單元。 23. 如申請專利翻第22項所述之可攜式多重離子感_統,其中 該貝料傳輸她之傳輸介秘包含通財顺流排介面。 24. 如申請專利範圍第22項所述之可攜式多重離子感測系統,其中 該貝料傳驗組之傳輸介轉包含通賴步個步收發傳輸器 介面。 25. 如申請專繼圍第丨項所述之可攜式多重離子制祕,其中 該即時顯示單元係包含—液晶顯示器。200839235 X. Patent application scope: 1. A portable multi-ion sensing system, comprising: a sensing unit, configured to sense a pH value of a liquid to be tested and a plurality of ion concentrations to rotate a sensing a signal, wherein the sensing unit comprises: - a substrate; - an indium tin oxide layer on the substrate; a sensing layer on the indium tin oxide layer and connected to an extension wire · c - an encapsulation layer Coating the sensing layer, the indium tin oxide layer and a portion of the substrate, the encapsulation layer having a sensing window to expose a portion of the sensing layer; a multiple ion selective layer disposed within the sensing window a portion of the sensing layer, the multiple ion selective layer is configured to sense the plurality of ion concentrations; and a reference electrode is configured to provide a reference potential for the sensing layer measurement; - an analog signal processing unit, The system is configured to receive the sensing signal and perform a wave, amplification and level adjustment process to rotate a front end signal; i a microcontroller unit is configured to receive the front end signal and perform analog/digital 'conversion and two point correction processing To lose A measurement data; and a real-time display unit, used for receiving and displaying the measurement data. 2. The portable multi-ion sensing system of claim 1, further comprising a data transmission unit for transmitting the measurement data out of the portable multi-ion sensation Measurement system. The portable multi-ion sensing system of claim 2, wherein the transmission interface of the data transmission unit comprises a universal serial bus. 4. The portable multi-ion sensing system of claim 2, wherein the transmission interface of the data transmission unit comprises a universal synchronous asynchronous transceiver. 5. The portable multi-ion sensing system of claim 1, wherein the substrate comprises an insulating substrate. 6. The portable multi-ion sensing system of claim 5, wherein the insulating substrate comprises a ceramic substrate. 7. The portable multi-ion sensing system of claim 5, wherein the insulating substrate comprises a glass substrate. 8. The portable multi-ion sensing system of claim 1, wherein the indium tin oxide layer has a thickness of about 230 angstroms. 9. The portable multi-ion sensing system of claim 1, wherein the sensing layer comprises a layer of germanium dioxide. 10. The portable multi-ion sensing system of claim 9, wherein the tin dioxide layer has a thickness of about 2000 angstroms. 11. The portable multi-ion sensing system of claim 1, wherein the extension lead comprises a silver wire. 12. The portable multi-ion sensing system of claim 1, wherein the encapsulating layer comprises an epoxy resin. 28 200839235 System, wherein the portable multi-ion sensing system as described in claim 1 has an area of 2 X 2 mm 2 . 14. The portable multi-ionic sensing system of claim 1, wherein the multiple ion selective layer comprises a potassium ion selective layer. 15. Portable multi-ion sensing system as described in the scope of claim 2, the multiple ion-selective layer comprises a nano-ion selective layer. 16. The portable multiple ion sensing system of claim i, wherein the multiple ion selective layer comprises a chloride ion selective layer. 4 17·For example, the portable multi-ion sensation of the stencil of the stencil of the stencil of the stencil. The reference electric (4) contains the glass t pole of silver/silver. 18. The portable multi-ion sensing system according to claim i, wherein the analog signal processing unit comprises: , j, amplifying circuit 'receiving the sensing signal and adding a big to lose $-帛- a loopback chopper circuit 'receives the $-record and adds a wave to touch-帛2' a gain amplifying circuit, receives the second domain and amplifies it for output - a level adjustment, receives the third domain and Purely relying on the whole ^^ ' signal; and the fourth-low-pass filter circuit, receiving the fourth miscellaneous and purely tested to lose the ridge 19. As described in the application __ 18, the portable multi-inductance system ^ . The high-pass filter circuit includes a second-order high-pass filter, and the portable multi-ion sensing system according to claim 18, wherein the low-pass filter circuit includes a second-order low-voltage circuit. Pass Butterworth filter. 21. The portable multi-ion system according to claim 1, wherein the microcontroller unit comprises: an analog/digital conversion module that receives the front end signal and performs analog/digital conversion to output a fifth signal; - point school JL module, receives the fifth signal and performs two-point correction processing to output the measurement data; and - instant display group, system (4) job measurement data and job measurement The data is displayed on the instant display unit. 22. The portable multi-ion sensing system of claim 21, wherein the microcontroller unit further comprises a data transmission module, the data transmission module receiving and processing the measurement data and the quantity The test data is transmitted out of the microcontroller unit. 23. As claimed in claim 22, the portable multi-inductive sensation described in Item 22, wherein the transmission of the bead material comprises a pass-through interface. 24. The portable multi-ion sensing system of claim 22, wherein the transmission of the bedding test group comprises a pass-by-step transceiver interface. 25. The portable multi-ion secret system described in the above-mentioned application, wherein the instant display unit comprises a liquid crystal display.
TW096109657A 2007-03-21 2007-03-21 Portable multi-ions sensing system TWI334025B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096109657A TWI334025B (en) 2007-03-21 2007-03-21 Portable multi-ions sensing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096109657A TWI334025B (en) 2007-03-21 2007-03-21 Portable multi-ions sensing system

Publications (2)

Publication Number Publication Date
TW200839235A true TW200839235A (en) 2008-10-01
TWI334025B TWI334025B (en) 2010-12-01

Family

ID=44209678

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096109657A TWI334025B (en) 2007-03-21 2007-03-21 Portable multi-ions sensing system

Country Status (1)

Country Link
TW (1) TWI334025B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485400B (en) * 2012-11-19 2015-05-21 Univ Nat Yunlin Sci & Tech Chlorine ion measurement system
TWI617806B (en) * 2016-12-12 2018-03-11 華邦電子股份有限公司 Sensing device, nursing bra and method of fabricating the same
US10842421B2 (en) 2016-12-12 2020-11-24 Winbond Electronics Corp. Sensing device, nursing bra, and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485400B (en) * 2012-11-19 2015-05-21 Univ Nat Yunlin Sci & Tech Chlorine ion measurement system
TWI617806B (en) * 2016-12-12 2018-03-11 華邦電子股份有限公司 Sensing device, nursing bra and method of fabricating the same
US10842421B2 (en) 2016-12-12 2020-11-24 Winbond Electronics Corp. Sensing device, nursing bra, and manufacturing method thereof

Also Published As

Publication number Publication date
TWI334025B (en) 2010-12-01

Similar Documents

Publication Publication Date Title
US7348783B1 (en) Multi-functional pH meter and fabrication thereof
Maurya et al. Recent developments in RF magnetron sputtered thin films for pH sensing applications—An overview
TWI377342B (en) Method for forming an extended gate field effect transistor (egfet) based sensor and the sensor formed thereby
CN104950023B (en) TFT ion transducer, the TFT ion transducer device using the TFT ion transducer
Jang et al. Fabrication of high-performance fully depleted silicon-on-insulator based dual-gate ion-sensitive field-effect transistor beyond the Nernstian limit
Piacenti da Silva et al. Melanin as an active layer in biosensors
US7727370B2 (en) Reference pH sensor, preparation and application thereof
US7435610B2 (en) Fabrication of array pH sensitive EGFET and its readout circuit
Tsai et al. Study on the sensing characteristics and hysteresis effect of the tin oxide pH electrode
Sardarinejad et al. The pH sensing properties of RF sputtered RuO2 thin-film prepared using different Ar/O2 flow ratio
TWI279538B (en) Drift calibration method and device for the potentiometric sensor
Haur Kao et al. Multianalyte biosensor based on pH-sensitive ZnO electrolyte–insulator–semiconductor structures
TWI223062B (en) Manufacture of an array pH sensor and device of its readout circuit
Liu et al. Wearable Multiparameter Platform Based on AlGaN/GaN High‐electron‐mobility Transistors for Real‐time Monitoring of pH and Potassium Ions in Sweat
Kim et al. Self-sensitivity amplifiable dual-gate ion-sensitive field-effect transistor based on a high-k engineered dielectric layer
TW200839235A (en) Portable multi-ions sensing system and fabrication thereof
Weng et al. Enzymatic glucose biosensor based on TbYxOy electrolyte-insulator-semiconductor
US20110031119A1 (en) Plastic potentiometric ion-selective sensor and fabrication thereof
TW201211529A (en) Ion sensor
US20090119026A1 (en) Portable multi-ions sensing system and fabrication thereof
Hsieh et al. High-performance extended gate field-effect-transistor-based dissolved carbon dioxide sensing system with a packaged microreference electrode
TWI399537B (en) Multi-electrode measuring system
Yuan et al. Development of an Electrochemical Sensor for Chloride ion Detection Using Ion-Sensitive Field-Effect Transistor Array
CN111781266A (en) Electrochemical sensor, preparation method thereof and ion concentration detection system
TWI417539B (en) Nickel oxide base pH sensor and its manufacturing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees