TW200837825A - Wet cleaning process and method for fabricating semiconductor device using the same - Google Patents

Wet cleaning process and method for fabricating semiconductor device using the same Download PDF

Info

Publication number
TW200837825A
TW200837825A TW96107465A TW96107465A TW200837825A TW 200837825 A TW200837825 A TW 200837825A TW 96107465 A TW96107465 A TW 96107465A TW 96107465 A TW96107465 A TW 96107465A TW 200837825 A TW200837825 A TW 200837825A
Authority
TW
Taiwan
Prior art keywords
rinsing step
substrate
layer
deionized water
rinsing
Prior art date
Application number
TW96107465A
Other languages
Chinese (zh)
Other versions
TWI343078B (en
Inventor
Chien-En Hsu
Chih-Nan Liang
Po-Sheng Lee
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW96107465A priority Critical patent/TWI343078B/en
Publication of TW200837825A publication Critical patent/TW200837825A/en
Application granted granted Critical
Publication of TWI343078B publication Critical patent/TWI343078B/en

Links

Abstract

A wet cleaning process is provided. The wet cleaning process includes at least one first rinse process and a second rinse step. The first rinse step includes rinsing a substrate using deionized water containing CO2, and then draining the water containing CO2 to expose the substrate in an atmosphere of CO2. The second rinse step includes rinsing the substrate using deionized water containing CO2.

Description

200837825 UMCD-2006-0457 22494twf.doc/n 九、發明說明: 【發明所屬之技術領域】 、本發明是有關於-種半導體製程方法,且制是有關於— 種濕式清洗製程及使用此清洗製程之轉體元件的製造方法。 【先前技術】 微影製程可絲圖案化各種的材料層,或是用來在選擇的 ^域進行-些製程’例如是離子植人,是半導體元件的製程中 舉足輕重的步驟。典型職影製程松是在—材·上塗佈_ 層光阻層,然後,經由曝光製程,選擇性地照射光阻層上部分 2域,之後,再經由顯影液去除部分的光阻層,以形成光阻 ,木。當絲層為正絲時,顯影液去除岐產生裂解的曝光 ^當光阻層為負光阻時,顯影_是移除未產生交聯的 ^。當光阻圖案形成之後’則可以其做為罩幕,進行後續的 、金屬層侧或是離子植人製程等。當後續的侧 或疋料植人製程完紅後’則必驗紘層去除。光阻 =乾式法或是献絲去除之。通f,乾歧可㈣用^電 水,濕式法則是以有機溶劑或是各種的酸性溶液來去除之。之 行清洗的製程’以去絲絲面上朗的^層或是 、以上賴⑽微影、侧驗祕行金屬層的駭化 ί i進的=刻但祕刻的過程中裸厶金屬 層尤其疋金屬層的材質為鋁金屬層或是鋁鋼合金時,合造 成金_腐蝕(metal micro-c嶋i〇n)。金屬微腐二為i 的孔洞(pitting)問題。 …、 200837825 UMCD-2006-0457 22494tw£doc/n 美國專利第5,175,124號提出一種半導體元件的製造方 法。該專利中揭露在以有機溶液去除光阻層之後,以碳酸水 (carbonatedwater)沖洗基底,可以減少金屬微腐蝕的現象。 另,在美國專利第5,336371號中提出一種半導晶圓的清 洗方法。該專利中揭露在清洗槽中通入二氧化碳,並使水溢 流,可以減少金屬微腐蝕的現象。 上述二專利所揭露的方法雖可減少部分金屬微腐蝕的現 象,但是,仍無法將金屬微腐蝕的問題降低到可以接受的範圍。 【發明内容】 本發明就是在提供一種濕式清洗製程,其可以減少金屬微 腐姓的現象。 本發明提供一種半導體元件的製造方法,其可以減少金屬 微腐姓的現象。 本發明提出一種濕式清洗製程,此製程包括至少進行一第 一沖洗步驟’此步驟包括以一含有二氧化碳的去離子水沖洗基 底’再排除含有二氧化碳的去離子水’使基底暴露於充滿二氧 化碳的氣體環境中。 依照本發明實施例所述,上述之濕式清洗製程中,以含有 二氧化碳的去離子水沖洗基底的方法包括在一清洗槽中持續 通入去離子水與二氧化碳,使去離子水溢流。 、 依照本發明實關所述,上述之濕式清洗製程巾,使美底 暴露於充滿二氧化碳的氣體環境中的方法包括翻清洗^中 的去離子水,但持續通入二氧化碳。 曰 依照本發明實施顺述’上叙濕式清洗抛巾,清洗槽 5 200837825 UMCD-2006-0457 22494twf.doc/n 包括一快排沖水清洗槽。 依照本發明實施綱述,场之濕綠洗製程 第二沖洗步驟’第二沖洗步驟是峰有二氧化麵去離子 洗基底。 依照本發明實施例所述,上述之濕式清洗製程 步驟和第-沖洗步驟是在同-個清洗槽中進行, =牛 驟是以溢流的含有二氧化碳的去離子水沖洗基底。一/T〜 ^ 一卑照本發明實施例所述,上述之濕式清洗製程 第三沖洗步驟’第三沖洗步驟是以去離子水沖洗基底。 依照本發明實施例所述,上述之濕式清洗製程 ^步驟是在-清洗射進行,且是以溢流的姆子水縣基 依照本發明實施例所述,上述之濕式清洗製程 包括一金屬材料。 一 依照本發明實施例所述,上述之濕式清 料包括銘或紹銅合金。 衣往甲至屬材 ^照本剌實施制述,上述之濕式清崎 料上包括一抗反射層。 孟萄材 本發明提出-種半導體元件賴程方法 底^底上具有-金屬層,接著,在金屬層上方 阻= =,以光阻層輕刻罩幕,進行一綱製程钱 其後,以乾式法移除光阻層,再以一有機 蚀心屬層 irrtrr成的聚合物副產物以及雜質。之後,進行 乂弟-沖洗步驟,其包括:以一含有二氧化石炭的去離子水 6 200837825 UMCD-2006-0457 22494tw£doc/n 沖洗基底,以及排除該含有二氧化碳的去離子水,使基底暴露 於充滿二氧化碳的氣體環境中。 _、° 依照本發明實施例所述,上述之半導體元件的製程方法 中,第-沖洗步驟之後更包括-第二沖洗步驟,第二沖洗步驟 疋以含有一氧化碳的去離子水沖洗基底。 依照本發明實施例所述,上述之濕式清洗製程中第二沖洗 步驟和第-沖洗步驟是在同-個清洗射進行,且第二沖洗步 驟是以溢流的含有二氧化碳的去離子水沖洗基底。 ,照本發明實關所述,上述之半導體元件的製程方法 中,第二沖洗步驟之後更包括—第三沖洗步驟,第三沖洗步驟 是以去離子水沖洗基底。 依照本發明實酬所述,上述之半導體元件的製程方法 中所述之钕刻製程是用以飿刻金屬層,以开》成一金屬線。 依照本發明實施綱述,上述之半導體耕的製程方法, 更包括在金屬層與光阻層之間形成一絕緣層,且餘刻製程更包 括蝕刻絕緣層,以形成裸露出金屬層之一開口。 依照本發明實施例所述,上述之半導體元件的製程方法 中,絶緣層為一金屬層間介電層,開口包括一介層窗開口。 ^照本發明實施例所述,上述之半導體元件的製程方法 $、、、巴緣層為-金屬層間介電層,開口包括—雙重金屬镶嵌開 依照本發明實施例所述,上述之半導體元件的製程方法 中,絕緣層為一保護層,開口為一銲墊開口。 依照本發明實施例所述,上述之半導體元件的製程方法 7 200837825 UMCD-2006-0457 22494twf.doc/n 中’在形成光阻層之前,更包括在金屬層上形成一抗反射;。 本發明確實可以有效減少金屬微腐蝕的現象,使金屬^腐 姓的現象降低到可以接受的範圍。 肉 為讓本發明之上述和其他目的、特徵和優點能更明顯易 懂’下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 ° 實施例一200837825 UMCD-2006-0457 22494twf.doc/n Nine, the invention description: [Technical field of the invention] The present invention relates to a semiconductor manufacturing process, and the system relates to a wet cleaning process and uses the cleaning A method of manufacturing a rotating element of a process. [Prior Art] The lithography process can pattern various layers of materials, or can be used to perform processes in selected domains, such as ion implantation, which is a significant step in the fabrication of semiconductor components. The typical job production process is to apply a layer of photoresist layer on the material, and then selectively irradiate the upper portion 2 of the photoresist layer through an exposure process, and then remove part of the photoresist layer through the developer. To form a photoresist, wood. When the silk layer is a positive yarn, the developer removes the ruthenium to cause cracking exposure. When the photoresist layer is a negative photoresist, development _ is to remove the ^ which does not cause cross-linking. When the photoresist pattern is formed, it can be used as a mask for subsequent metal layer side or ion implantation process. When the subsequent side or sputum implant process is finished, the sputum layer will be removed. Photoresist = dry method or silk removal. Pass f, dry dispensing (4) with ^ electric water, wet method is removed with organic solvent or various acidic solutions. The process of cleaning the process is to remove the layer of the surface of the silk surface, or the lithography of the top layer, the lithography of the metal layer of the side, and the bare metal layer during the process of engraving. In particular, when the material of the base metal layer is an aluminum metal layer or an aluminum steel alloy, it is combined with metal micro-c嶋i〇n. Metal micro-corrosion is a pitting problem of i. A method of fabricating a semiconductor device is proposed in U.S. Patent No. 5,175,124, issued to U.S. Patent No. 5,175,124. This patent discloses that after the photoresist layer is removed with an organic solution, the substrate is washed with carbonated water to reduce the micro-corrosion of the metal. A cleaning method for a semi-conductive wafer is proposed in U.S. Patent No. 5,336,371. The patent discloses that carbon dioxide is introduced into the cleaning tank and the water is allowed to overflow, which can reduce the phenomenon of micro-corrosion of the metal. Although the method disclosed in the above two patents can reduce the phenomenon of partial metal micro-corrosion, it is still impossible to reduce the problem of metal micro-corrosion to an acceptable range. SUMMARY OF THE INVENTION The present invention is directed to a wet cleaning process which can reduce the phenomenon of metal micro-corrosion. The present invention provides a method of fabricating a semiconductor device which can reduce the phenomenon of metal micro-corrosion. The present invention provides a wet cleaning process which includes performing at least a first rinsing step 'This step includes rinsing the substrate with a deionized water containing carbon dioxide and then removing the deionized water containing carbon dioxide' to expose the substrate to carbon dioxide-rich In a gaseous environment. According to an embodiment of the invention, in the wet cleaning process described above, the method of rinsing the substrate with deionized water containing carbon dioxide comprises continuously introducing deionized water and carbon dioxide into a cleaning tank to overflow the deionized water. According to the present invention, the wet cleaning process towel described above exposes the beauty substrate to a carbon dioxide-filled gas environment, including deionized water in the cleaning process, but continuously passes carbon dioxide.实施 In accordance with the present invention, the above-described wet cleaning wipes are provided, and the cleaning tank 5 200837825 UMCD-2006-0457 22494twf.doc/n includes a quick discharge flushing tank. In accordance with an embodiment of the present invention, a wet green wash process of the field, a second rinse step, a second rinse step, is to wash the substrate with a dioxide deionized surface. According to an embodiment of the invention, the wet cleaning process step and the first flushing step are carried out in the same cleaning tank, and the substrate is flushed with overflowed carbon dioxide-containing deionized water. A/T~^ A sensation according to the embodiment of the present invention, the wet cleaning process described above, the third rinsing step, the third rinsing step, rinsing the substrate with deionized water. According to the embodiment of the present invention, the wet cleaning process step is performed in the -cleaning process, and is based on the overflow of the Mizhui County base. According to the embodiment of the present invention, the wet cleaning process includes a metallic material. According to an embodiment of the invention, the wet cleaning described above comprises an inscription or a copper alloy.衣衣甲至属材 ^ According to the implementation of this article, the above-mentioned wet-type clearing material includes an anti-reflection layer. According to the invention, the semiconductor device has a metal layer on the bottom, and then a resistance layer is formed on the bottom of the metal layer, and the mask is lightly masked by the photoresist layer to carry out a process of the process. The dry method removes the photoresist layer, and then uses a organic core layer irrtrr to form polymer by-products and impurities. Thereafter, a step-rinsing step is performed, which comprises: rinsing the substrate with a deionized water containing carbon dioxide carbon 6 200837825 UMCD-2006-0457 22494 tw/doc/n, and removing the deionized water containing carbon dioxide to expose the substrate In a gas atmosphere filled with carbon dioxide. According to an embodiment of the invention, in the above method for fabricating a semiconductor device, the first rinsing step further comprises a second rinsing step, and the second rinsing step rinsing the substrate with deionized water containing carbon monoxide. According to an embodiment of the invention, the second rinsing step and the first rinsing step in the wet cleaning process are performed in the same cleaning shot, and the second rinsing step is rinsing in the overflowed carbon dioxide-containing deionized water. Substrate. According to the method of the present invention, in the above method for manufacturing a semiconductor device, the second rinsing step further includes a third rinsing step, and the third rinsing step rinsing the substrate with deionized water. According to the invention, the engraving process described in the above method for fabricating a semiconductor device is for etching a metal layer to form a metal line. According to an embodiment of the present invention, the semiconductor cultivating method further includes forming an insulating layer between the metal layer and the photoresist layer, and the etching process further comprises etching the insulating layer to form an opening of the exposed metal layer. . According to an embodiment of the invention, in the method of fabricating the semiconductor device, the insulating layer is a metal interlayer dielectric layer, and the opening comprises a via opening. According to the embodiment of the present invention, the method for manufacturing the semiconductor device described above, the barrier layer is a metal interlayer dielectric layer, and the opening includes a double metal damascene. The semiconductor component is described in accordance with an embodiment of the present invention. In the process method, the insulating layer is a protective layer, and the opening is a pad opening. According to the embodiment of the present invention, the above-mentioned semiconductor device manufacturing method 7 200837825 UMCD-2006-0457 22494twf.doc/n ' before forming the photoresist layer, further includes forming an anti-reflection on the metal layer; The invention can effectively reduce the phenomenon of metal micro-corrosion and reduce the phenomenon of metal corrosion to an acceptable range. The above and other objects, features, and advantages of the present invention will become more apparent and understood. Embodiments ° Embodiment 1

圖1為依據本發明實施例所繪示之一種濕式清洗製程的流 程圖。 請參照圖1,本發明之濕式清洗製程,適用於一基底,此 基底上包括-金屬材料,金屬材料為易於腐钱的材料,例如β ,或銘銅合金。此外,金屬材料上還可包括—抗反射層,例= 料在谁氮脸、氮氧姆或其組合物等。金屬材 枓在進订_的過程中裸露出來,且金屬材料上方的光阻声已 經去除,並錄騎程中所產生的聚合物副產物以及^ 以驗性溶液如醜鱗去除,再以錢溶劑,例' I 财烧_^)或異稱將基底表面上殘留的胺類去除。 此清洗方法包括至少進行一第一沖洗步驟1〇,以去祕底 表面上的錢溶_義。第—沖洗 ^及 f14。轉12是含有二氧化韻去離子水 ,14是嫌步驟12中含有二氧化碳,“ 露於充滿二氧化碳的氣體環境中。 ^使基底暴 第-沖洗步驟10可以在一清洗 -快排沖水清洗槽购。在進行步驟⑽ 8 200837825 UMCD-2006-0457 22494twf.doc/n 中持續通人水例如是去離子水與二氧化碳,並使去離子水决 流^步驟12進行的時間可以是大約5秒至9〇秒。所通入二= 化碳的流量例如是約為3至20公升/分鐘。 在進行步雜14時,雖排出步驟12所使用之清洗槽中的去 離子,’但三氧化碳並不停止供應,而還是在清洗槽中持續通 入二氧化碳,以使基底暴露於充滿二氧化碳的氣體環境中。步 驟14所通入二氧化碳的流量例如是約為3至2〇公升/分鐘通 入的時間可以是大約5秒至120秒。 在本發明實施例中’在含有二氧化後的去離子水中進行沖 洗的步驟12,可以去除基絲面上財機溶劑或醜,並且 =以減少金屬微腐蝕的現象。而步驟14,排出清洗槽中的去 離子水,但持續通人二氧化碳,則可以確保基底暴露於充滿二 氧化,的氣體環境中,避免基底與空氣接觸。經實驗證實,在 進行第一清洗步驟10中,避免基底暴露於空氣中,可以有效 減少金屬微腐㈣現象,這可能是因為二氧化碳可以減少基底 上的驗或是有機溶劑的作用。 在本發明實施例中,第一沖洗步驟1〇進行的次數依實際 的需要而定。在一實施例中,第一沖洗步驟1〇至少進行丨次, 但不超過7次。當進行㈣-沖洗步驟1G次數過低,基底無 法完全清洗乾淨。當進行的第一沖洗步驟1〇次數過多,則反 而容易導致金屬微腐蝕的現象。 在一實施例中,上述之濕式清洗製程還包括一第二沖洗步 驟20,其可以在清洗槽中持續通入水例如 一 化碳,並使去離子水溢流。第二沖洗步驟2〇所通入二氧;;碳 9 200837825 UMCD-20〇6-〇457 22494twf.doc/n ^_如疋約為3至2G紳麵,進行㈣間可以是 3 =〇秒。第二沖洗步驟20所使用的清洗槽可以 一>月洗步驟!0所使_清洗槽,例如是快排沖水清洗槽。 實施财’上述之濕式清洗製程還包括—第三沖洗步 驟30 ’弟三沖洗步驟3〇是以去離子水坪洗基底。第三沖洗步 槽巾騎’且可似减的去離子水沖洗 土 -。進仃第三沖洗步驟30時’可以同日夺進行檢測,以 斷基底清洗的程度是否符合所需。 、 本發明之清洗綠可以助於各種 以下特舉數筒_來賴之。 + 實施例二 严綠圖^ %為依據本發明第二實施例崎示之一種金 屬線之製造方法的流程剖面示意圖。 ” 金屬ϋΓΠ、在一基底獅上方形成—層金屬層202, 在^^ 易於_的材料’例如是__合金。 ίΠ 金屬層2°2上還形成一層抗反射層2。4,其材 如疋鈦、Μ、氮化鈦、氮倾或其組合 材 一微^ 向性抛了製ΓΖΓ ’以光阻圖案22°為罩幕,進行非等 屬線205。£ I卞化抗反射層2G4與金屬層2G2,形成金 之後’請參照圖2C,移除光阻圖案22〇 :,以去除殘留的鹼液或是有機溶液。清洗製程 實施例一所述之太汰甘1 衣狂」以知用上述 法、、可以避免金屬線205的側壁遭受腐蝕 200837825 UMUU-ZU06-0457 22494twf.doc/n 而形成孔洞。其後,再將基底乾燥。例如可以利用異丙醇 來施行之。 實施例三 圖3A至圖3C為依據本發明第三實施例所緣示之一介層 窗開口之製造方法的流程剖面示意圖。 請參照圖3A,提供—基底3〇〇,其上已形成一層金屬層 302 ’金屬層3G2之材料為易於腐鋪材料,例如是紹或紹銅 合金。在-實施例巾’金屬層3G2上還戦—層抗反射層3〇4, 其材料^如是鈦、輕、氮化鈦、氮脸、氮氧化梦或其組合物 等。接著’在抗反射層3G4上形成一層介電層遍。介電層3〇6 之材質例如是氧化石夕或是介電常數低於 料。之後,進行-微影製程,在介電層306上形成=二g 320 〇 參 接著,請芩照圖3B,以光阻圖案32〇為罩幕,進行非等 向性侧製程,以侧介電層3〇6,並钱穿抗反射層綱,形 成裸露出金屬層302的介層窗開口 308。 之後,請參照圖3C,移除光阻圖案32〇,再進行清洗製 程’以去除殘留的驗液或是有機溶液。清洗製程可以採用上述 實施例-所述之方法,其可以避免裸露出來的金屬層地的表 面遭文腐蝕而形成孔洞。其後,再將基底3〇〇乾燥。例如 利用異丙醇來施行之。 實施例四 圖4A至圖4D為依據本發明第四實施例所繪示之—雔 金屬鑲細π之製造方法的流程·示意圖。 111 is a flow chart of a wet cleaning process in accordance with an embodiment of the invention. Referring to Fig. 1, the wet cleaning process of the present invention is applied to a substrate comprising a metal material which is a material which is easy to rot, such as β, or a copper alloy. In addition, the metal material may further include an anti-reflection layer, for example, who is in the nitrogen face, nitroxide or a combination thereof. The metal material is exposed during the process of ordering, and the light resistance above the metal material has been removed, and the polymer by-products produced in the riding process are recorded, and the test solution such as the ugly scale is removed, and then the money is removed. The solvent, for example, 'I 烧 _ ^) or a different name removes the amine remaining on the surface of the substrate. The cleaning method includes performing at least a first rinsing step 1 去 to remove the money on the surface of the secret substrate. No. - Flushing ^ and f14. Turn 12 is deionized water containing dioxin, 14 is suspected to contain carbon dioxide in step 12, "exposed in a gas atmosphere filled with carbon dioxide. ^ Make the base burst - rinse step 10 can be in a cleaning - fast discharge flushing bath In the step (10) 8 200837825 UMCD-2006-0457 22494twf.doc/n, the continuous pass water is, for example, deionized water and carbon dioxide, and the deionized water is allowed to flow. Step 12 may take about 5 seconds to 9 sec. The flow rate of the carbon dioxide introduced is, for example, about 3 to 20 liters/min. When the step 14 is performed, the deionization in the cleaning tank used in step 12 is discharged, 'but carbon monoxide. The supply is not stopped, but carbon dioxide is continuously introduced into the cleaning tank to expose the substrate to a carbon dioxide-filled gas atmosphere. The flow rate of the carbon dioxide introduced in step 14 is, for example, about 3 to 2 liters per minute. The time may be from about 5 seconds to 120 seconds. In the embodiment of the present invention, the step 12 of rinsing in the deionized water containing the dioxide may remove the solvent or ugly on the surface of the base wire, and = reduce the metal micro Rot In step 14, the deionized water in the cleaning tank is discharged, but the carbon dioxide is continuously passed, thereby ensuring that the substrate is exposed to a gas atmosphere filled with dioxide, and the substrate is prevented from coming into contact with the air. In a cleaning step 10, avoiding exposure of the substrate to the air can effectively reduce the phenomenon of metal micro-corrosion (4), which may be because carbon dioxide can reduce the effect of the test on the substrate or the organic solvent. In the embodiment of the present invention, the first rinse The number of steps 1 〇 is determined according to actual needs. In one embodiment, the first rinsing step 1 〇 is performed at least once, but not more than 7. When the (4)-flushing step 1G is too low, the substrate cannot be completely The cleaning process is performed. When the number of times of the first rinsing step 1 is too large, the phenomenon of micro-corrosion of the metal is easily caused. In an embodiment, the wet cleaning process further includes a second rinsing step 20, which can be cleaned. Water is continuously introduced into the tank, such as carbon monoxide, and the deionized water is overflowed. The second flushing step 2 is introduced into the dioxane; carbon 9 200837825 UMCD-20〇6 -〇457 22494twf.doc/n ^_ If the 疋 is about 3 to 2G, the (4) can be 3 = 〇 seconds. The cleaning tank used in the second rinsing step 20 can be a > month wash step! The _cleaning tank is, for example, a quick-discharge flushing tank. The above-mentioned wet cleaning process further includes a third rinsing step 30, a third rinsing step, 3 〇 washing the substrate with deionized water, and a third rinsing. The step towel rides and can be washed with deionized water like a reduced amount. When the third rinse step 30 is entered, the test can be performed on the same day to determine whether the degree of the base cleaning is satisfactory. Help a variety of the following special number of _ to rely on. + Embodiment 2 The strict green pattern is a schematic cross-sectional view showing a method of manufacturing a metal wire according to the second embodiment of the present invention. The metal crucible, formed on top of a base lion, is a layer of metal 202, and the material that is easy to use is, for example, an alloy. The metal layer also forms an antireflection layer on the 2° 2 layer.疋Titanium, tantalum, titanium nitride, nitrogen tilt or a combination thereof is thrown into a micro-directional ΓΖΓ 'With a photoresist pattern of 22° as a mask, the non-equal line 205. £ I anti-reflective layer 2G4 and metal Layer 2G2, after forming gold, please refer to FIG. 2C, remove the photoresist pattern 22〇: to remove residual alkali or organic solution. The cleaning process is described in the first example of the process. In the above method, the sidewall of the metal wire 205 can be prevented from being corroded by 200837825 UMUU-ZU06-0457 22494twf.doc/n to form a hole. Thereafter, the substrate is dried again. For example, it can be carried out using isopropyl alcohol. Embodiment 3 Figs. 3A to 3C are schematic cross-sectional views showing a method of manufacturing a via opening according to a third embodiment of the present invention. Referring to Fig. 3A, a substrate 3 is provided on which a metal layer 302' is formed. The metal layer 3G2 is made of a material which is easy to smear, such as a copper or a copper alloy. Further, on the metal layer 3G2 of the embodiment, a layer of antireflection layer 3〇4 is used, such as titanium, light, titanium nitride, nitrogen face, nitrogen oxide dream or a combination thereof. Next, a dielectric layer is formed on the anti-reflection layer 3G4. The material of the dielectric layer 3〇6 is, for example, an oxide oxide or a dielectric constant lower than that of the material. Thereafter, a lithography process is performed, and a second g 320 〇 is formed on the dielectric layer 306. Referring to FIG. 3B, the photoresist pattern 32 is used as a mask to perform an anisotropic side process. The electrical layer 3〇6 and the anti-reflective layer are formed to form a via opening 308 of the bare metal layer 302. Thereafter, referring to Fig. 3C, the photoresist pattern 32 is removed, and the cleaning process is performed to remove residual test solution or organic solution. The cleaning process can be carried out by the method described in the above-mentioned embodiment, which can prevent the surface of the exposed metal layer from being corroded to form a hole. Thereafter, the substrate 3 is dried again. For example, it is carried out using isopropyl alcohol. Embodiment 4 FIG. 4A to FIG. 4D are schematic diagrams showing a manufacturing method of a metal-inlaid π according to a fourth embodiment of the present invention. 11

200837825 um^O〇6.〇457 22494tw£d〇〇/n -4〇0 * 合金。在為易於雜的材料,例如是銘或_ 苴材伽層搬上還形成一層抗反射層404, ,、氮化鈦、氮化组或其組合物等。接著, ί = 2上形成—層介電層概。介電層_之材_ =0或疋介電她低於4之低介電常數材料。之後,進 订一微,程:在介電層條上形成-光阻圖案420。 接著,請參照圖4B,以光阻圖案42〇為罩幕 ΐ性!^程’以侧介電層條,並解抗反射層侧,形 成稞路出金屬層402的介層窗開口 4〇8。 之後,請參照® 4C,移除光阻圖案42〇,再進行清洗# 程,以去除殘㈣或是有機溶液。清洗製程可崎用上述 實施例一所述之方法’其可以避免裸露出來的金屬層4〇2的表 面遭受腐蝕而形成孔洞。 然後,請參照圖4C ’在介電層條上形成另—層光阻圖 案410,並以其為罩幕,蝕刻介電層4〇6,以在介電層恥6中 形成與介層窗開口 408連通的溝渠412,溝渠412與介層窗開 口 408構成一雙重金屬鑲嵌開口 414。 其後,請參照圖4D,移除光阻圖案41〇,再進行清洗製 程,以去除殘留的鹼液或是有機溶液。清洗製程可以採用上= 實施例一所述之方法’其可以避免裸露出來的金屬層4〇2的表 面遭受腐蝕而形成孔洞。其後,再將基底4〇〇乾燥。例如可以 利用異丙醇來施行之。 上述的實施例是以先形成介層窗開口再形成溝渠來說 12 200837825 uiv^U06>0457 22494twf.doc/n 明,然而,也可以先形成溝渠再形成介層窗開口。只 案時,金屬層已被裸露出來,都可以採用本發明實施 面、卜=方絲進行清洗,達到避免裸露出來的金屬層的表 面延冗扃蝕而形成孔洞之功效。 實施例互 圖5A至圖5。為依據本發明第五實施例所緣示之一種銲 塾碭口之製造方法的流程剖面示意圖。 請參照圖5A,提供-基底漏,其上 :,金屬㈣2之材料為易於賴的材料,例如是;二 在—實施例中,金屬層5〇2上還形成一層抗反射層撕, /、材料例如是鈦、叙、氮化鈦、氮化组或其組合物等。接著, ,抗反射層504上形成-層保護層鄕。保護層撕例如是由 乳化石夕層506a魏化韻5G6b所_。 保護層506上形成一光阻圖案52〇。 P衣枉在 接著,請參照圖5B,以光阻圖案520為罩幕,進行非等 向! 生,刻製程’以钱刻保護層5〇6 ’並餘穿抗反射層谢,形 成裸露出金屬層502的銲墊開口 508。 。之後,請參照圖5C,移除光阻圖案52〇,再進行清洗製 私’以去除殘留的鹼液或是有機溶液。清洗製程可以採用上述 實^卜所述之方法’其可以避免裸露蜂的金屬層502的表 面遭文腐麵而形成孔洞。其後,再將基底5〇〇乾燥。例如可以 利用異丙醇來施行之。 實例 以表1所不的步驟1至8之順序進行具有鋁銅合金金屬 13 200837825 umuu-zu06-0457 22494twf.doc/n 線之基底清洗製程。其是先在快排沖水清洗槽中以含有二氧化 碳的去離子水沖洗基底,步驟H,再排除快排沖水清洗槽中含 有二氧化碳的去離子水,但持續通入二氧化碳,步驟2,使基 底暴露於充滿二氧化碳的氣體環境中。接著,進行步驟, 其中步驟3、5與步驟1相同’但,時間略有不同;步驟4、6 與步驟2相同,但,時間略有不同。步驟7、8,則還是在同 一個快排沖水清洗槽中以含有二氧化碳的去離子水沖洗基 底。實驗的結果顯示基底上金屬触所造成的孔職陷大概是 10顆左右,孔洞的直徑大小小於0·3微米。 步驟時間(秒) 表1 供應去 離子水 排除去離 供應二 氧化碳200837825 um^O〇6.〇457 22494tw£d〇〇/n -4〇0 * Alloy. An anti-reflective layer 404, titanium nitride, nitrided group or a combination thereof is also formed on the material which is easy to be mixed, for example, the glaze or the garnish. Then, ί = 2 forms a layer of dielectric layers. Dielectric layer _ material _ =0 or 疋 dielectric material lower than 4 low dielectric constant material. Thereafter, a micro-step is formed: a photoresist pattern 420 is formed on the dielectric layer strip. Next, please refer to FIG. 4B, and the photoresist pattern 42 is used as a mask. The process is performed by the side dielectric strip and the side of the anti-reflection layer is formed to form a via opening 4〇8 of the routing metal layer 402. After that, please refer to ® 4C, remove the photoresist pattern 42〇, and then perform the cleaning process to remove the residual (four) or organic solution. The cleaning process can be carried out by the method described in the first embodiment, which can prevent the surface of the exposed metal layer 4〇2 from being corroded to form a hole. Then, referring to FIG. 4C', another layer photoresist pattern 410 is formed on the dielectric layer strip, and as a mask, the dielectric layer 4〇6 is etched to form a via window in the dielectric layer shame 6. A trench 412 that communicates with the opening 408, the trench 412 and the via opening 408 form a dual damascene opening 414. Thereafter, referring to Fig. 4D, the photoresist pattern 41 is removed, and a cleaning process is performed to remove residual alkali or organic solution. The cleaning process can be carried out by the method described in the first embodiment, which can prevent the surface of the exposed metal layer 4〇2 from being corroded to form a hole. Thereafter, the substrate 4 is further dried. For example, it can be carried out using isopropyl alcohol. The above embodiment is based on the formation of a via opening to form a trench first. However, it is also possible to form a trench to form a via opening first. In the case of the case, the metal layer has been exposed, and the surface of the invention can be cleaned by using the surface of the invention, so as to avoid the effect of forming a hole by obscuring the surface of the exposed metal layer. The embodiments are shown in Figures 5A through 5. BRIEF DESCRIPTION OF THE DRAWINGS Fig. is a schematic cross-sectional view showing a method of manufacturing a soldering opening according to a fifth embodiment of the present invention. Referring to FIG. 5A, a substrate drain is provided, on which: the material of the metal (4) 2 is a material that is easy to lay, for example; in the embodiment, an anti-reflective layer is also formed on the metal layer 5〇2, The material is, for example, titanium, ruthenium, titanium nitride, nitrided group or a combination thereof. Next, a -layer protective layer 形成 is formed on the anti-reflective layer 504. The tearing of the protective layer is, for example, from the emulsified stone layer 506a Weihua rhyme 5G6b. A photoresist pattern 52 is formed on the protective layer 506. Next, please refer to FIG. 5B, and the photoresist pattern 520 is used as a mask to perform an anisotropic process. The engraving process is performed by engraving the protective layer 5〇6′ and leaving the anti-reflection layer to be exposed. Pad opening 508 of metal layer 502. . Thereafter, referring to Fig. 5C, the photoresist pattern 52 is removed and then cleaned to remove residual lye or organic solution. The cleaning process can be carried out by the method described above, which can prevent the surface of the metal layer 502 of the bare bee from being corroded to form a hole. Thereafter, the substrate 5 was dried again. For example, it can be carried out using isopropyl alcohol. EXAMPLES A substrate cleaning process having an aluminum-copper alloy metal 13 200837825 umuu-zu06-0457 22494twf.doc/n line was carried out in the order of steps 1 to 8 which are not shown in Table 1. The first step is to rinse the substrate with deionized water containing carbon dioxide in the fast flushing rinse tank, step H, and then remove the deionized water containing carbon dioxide in the fast flushing rinse tank, but continue to pass carbon dioxide, step 2, The substrate is exposed to a gaseous environment filled with carbon dioxide. Next, steps are performed, in which steps 3, 5 are the same as step 1 'However, the time is slightly different; steps 4 and 6 are the same as step 2, but the time is slightly different. In steps 7, 8, the substrate is rinsed with deionized water containing carbon dioxide in the same flush flush bath. The experimental results show that the hole trap caused by the metal contact on the substrate is about 10, and the diameter of the hole is less than 0.3 micron. Step time (seconds) Table 1 Supply deionized water to remove the separation supply carbon dioxide

以表2所示的步驟1至8之順序進行具有铭銅合金 線之基底的清洗製程。比較例與實例的方法相似, + 驟2、4、6時,僅是將含有二氧化碳的去離子水翻快排沖ς 200837825 wivxv^jLy-^.u06-0457 22494twf.doc/n 清洗槽’使基底裸露妙氣之中,而不持續通人二氧化礙。此 外,在進行步驟7、8時,也僅以去離子水沖洗,而不通入二 ^碳。實賴絲顯祿紅金屬賴触成祕洞缺陷大 概疋50顆左右,孔洞的直徑大小約為〇 8微米。 ——~^ 2 步驟時間(秒) 供應去 離子水 排除去離 子水 供應二 氧化碳The cleaning process of the substrate having the copper alloy wire was carried out in the order of steps 1 to 8 shown in Table 2. The comparative example is similar to the method of the example. When the 2, 4, and 6 are used, only the deionized water containing carbon dioxide is quickly rushed out. 200837825 wivxv^jLy-^.u06-0457 22494twf.doc/n The base is barely scented, and it does not continue to pass through the oxidation. In addition, when steps 7 and 8 were carried out, only the deionized water was rinsed without passing through the di-carbon. Really, the silk red metal is exposed to the secret hole. It is about 50 pieces, and the diameter of the hole is about 8 microns. ——~^ 2 Step time (seconds) Supply deionized water to remove deionized water supply carbon dioxide

離子 可以進一 以 由以上的結果顯示,本發明在以含有二氧化韻去Ions can be further analyzed by the above results, and the present invention is to contain a dioxin

水峋洗之後’在排出水的過程中持續通入二氧化炉 步減少孔洞缺陷。 KAfter the water is washed, the furnace is continuously introduced into the oxidation furnace to reduce the hole defects. K

If定發數個實施例揭露如上,然其並非用- 和範圍内,當可作些許之更動與潤飾,因此本 範圍當視後社申請專鄕_界定者騎。之保護 【圖式簡單說明】 圖1為依據本發明第一實施例所緣示之一種緣示濕式清 15 200837825 υινι^.ζϋ06-0457 22494twf doc/n 洗製程的流程圖。 圖2A至圖2C為依據本發明第二實施例所緣示之_ 線之製造方法的流程剖面示意圖。 ^圖3A至圖3C為依據本發明第三實施例所繪示之一介層 自開口之製造方法的流程剖面示意圖。 囷4A至圖4D為依據本發明第四實施例所纟會示之一雙重 金屬鑲嵌開口之製造方法的流程剖面示意圖。 ► 圖5A至圖5c為依據本發明第五實施例所繪示之一種銲 墊開口之製造方法的流程剖面示意圖。 【主要元件符號說明】 10〜30 ·•步驟 200、3GG、侧、_ :基底 202、302、402、502 :金屬層 204、304、404、504 :抗反射層 205 ··金屬線 丨 220、320、410、420、520 :光阻圖案 306 :介電層 ’ 308、408 ··介層窗開口 412 :溝渠 414 :雙重金屬鑲嵌開口 506 :保護層 506a :氧化矽層 506b ··氮化石夕層 508 :銲墊開口 16If the number of embodiments is disclosed above, it is not used - and the scope, when a little change and refinement can be made, so this scope is considered as a special _ definer ride. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 2A to 2C are schematic cross-sectional views showing a process of manufacturing a wire according to a second embodiment of the present invention. 3A to 3C are cross-sectional views showing the flow of a method for fabricating a self-opening layer according to a third embodiment of the present invention. 4A to 4D are schematic cross-sectional views showing a process of manufacturing a double damascene opening according to a fourth embodiment of the present invention. FIG. 5A to FIG. 5C are schematic cross-sectional views showing a method of manufacturing a pad opening according to a fifth embodiment of the present invention. [Description of main component symbols] 10 to 30 ·• Steps 200, 3GG, side, _: substrate 202, 302, 402, 502: metal layers 204, 304, 404, 504: anti-reflection layer 205 · metal wire 丨 220, 320, 410, 420, 520: photoresist pattern 306: dielectric layer '308, 408 · via window opening 412: trench 414: double damascene opening 506: protective layer 506a: hafnium oxide layer 506b · · nitride rock Layer 508: pad opening 16

Claims (1)

200837825 um^-zu06>0457 22494twfdoc/n 十、申請專利範圍: L 一種濕式清洗製程,包括: 至少進行一第一沖洗步驟,該步驟包括: 以§有一氧化碳的去離子水沖洗一基底·,以及 、—"排除該含有二氧化碳的去離子水,使該基底暴露於 充滿二氧化碳的氣體環境中。 人=申請專利範圍第1項所述之濕式清洗製程,其中以該 含有了氧化碳的去離子水沖洗該基底的方法包括在一清洗槽 中持續通入去離子水與二氧化碳,使該去離子水溢流。 3.=申請專利範圍第2項所述之濕式清洗製程,其中使該 ^底暴露於該充滿二氧化碳的氣體環境中的方法包括排出該 清洗槽中的去離子水,但持續通入二氧化碳。 、4.如申請專利範圍第2項所述之濕式清洗製程,其中該清 洗槽包括一快排沖水清洗槽。 ▲〜5·如申請專利範圍第1項所述之濕式清洗製程,更包括在 邊第一沖洗步驟之後進行一第二沖洗步驟,該第二沖洗步驟是 Φ 以含有一氧化碳的去離子水沖洗該基底。 6·如申睛專利範圍第5項所述之濕式清洗製程,其中該第 二冲洗步驟和該第一沖洗步驟是在同一個清洗槽中進行,且該 ' 第二沖洗步驟是以溢流的含有二氧化碳的去離子水沖洗該基 底。。 #7·如申請專利範圍第6項所述之濕式清洗製程,其中進行 該第二沖洗步驟和該第一沖洗步驟之該清洗槽為一快排沖水 凊洗槽。 8·如申請專利範圍第7項所述之濕式清洗製程,更包括在 17 200837825 〇ivi^jl^-^J06-0457 22494twf. doc/n 該第二沖洗步驟之後進行一第三沖洗步驟,該第三沖洗步驟是 以去離子水沖洗該基底。 一 9·如申請專利範圍第8項所述之濕式清洗製程,其中該第 三沖洗步驟是在-清洗财進行,且是以溢流的去離子水冲洗 該基底。 ^ ι〇·如申請專利範圍第1項所述之濕式清洗製程,其中 该基底上包括一金屬材料。 η·如申請專利範圍第ίο所述之清洗製程,其中該金屬 材料包括紹或銘銅合金。 ;I2·如申請專利範圍第10項所述之濕式清洗製程,其中 該金屬材料上包括一抗反射層。 13· —種半導體元件的製程方法,包括: 提供一基底,該基底上具有一金屬層; 在該金屬層上方形成一光阻層; 以該細層域鮮幕’撕—蝴製程,錢刻該金 以乾式法移除該光阻層;以及 n ί二f機溶液或是—驗性溶液移除蝴製程形成之聚合 物副產物與雜質; ^ 進行至少一第一沖洗步驟,包括: 以-含有二氧化碳的去離子水沖洗該基底 :以及 充潘含有二氧化销去離子水,使該基底暴露於 充滿一虱化奴的氣體環境中。 方法H申—料概财13韻述之半導體元件的製程 ’更〇括在該第-沖洗步驟之後進行—第二沖洗步驟,該 18 w〜v J06-0457 22494twfdoc/n 200837825 第二沖洗步驟是以含有二氧化碳的去離子水沖洗該基底。 15·如申請專利範圍第14項所述之半導體元件的製程 方法,其中該第二沖洗步驟和該第一沖洗步驟是在同一個清洗 槽中進行’且該第二沖洗步驟是以溢流的含有二氧化碳的 子水沖洗該基底。 16·如申請專利範圍第15項所述之半導體元件的製程 f法,更包括在該第二沖洗步驟之後進行一第三沖洗步驟,該 第三沖洗步驟是以去離子水沖洗該基底。 μ 17.如申請專利範圍第13項所述之半導體元件的製程 方法,其中該蝕刻製程,是用以蝕刻該金屬層以形成一金屬線。 18·如申請專利範圍第13項所述之半導體元件的製程 方法,更包括在該金屬層與該光阻層之間形成一絕緣層,且該 餘刻製&更包括働j該絕緣層,以形絲露$該金屬層之— D〇 、、19.如申請專利範圍第18所述之半導體元件的製程方 去,其中該絕緣層為一金屬層間介電層,該開口包括一介声 開口。 曰因 /〇.如申請專利範圍第18項所述之半導體元件的製程 去,其中該絕緣層為一金屬層間介電層,該開口包一雒 金屬鑲嵌開口。 又重 21·如申請專利範圍第18項所述之半導體元件的製程 法,其中该絕緣層為一保護層,該開口為一銲墊開口。 22·如申請專利範圍第13項所述之半導體元件的製程 射t在形成該光阻層之前,更包括在該金屬層上形成一抗反 19200837825 um^-zu06>0457 22494twfdoc/n X. Patent Application Range: L A wet cleaning process comprising: performing at least a first rinsing step, the step comprising: rinsing a substrate with deoxidized water of § carbon monoxide, And, "excluding the deionized water containing carbon dioxide to expose the substrate to a gaseous environment filled with carbon dioxide. The method of claim 1, wherein the method of rinsing the substrate with the oxidized carbon-containing deionized water comprises continuously introducing deionized water and carbon dioxide into a cleaning tank to make the removal Ion water overflows. 3. The wet cleaning process of claim 2, wherein the method of exposing the bottom to the carbon dioxide-laden gas atmosphere comprises discharging deionized water in the cleaning tank but continuously introducing carbon dioxide. 4. The wet cleaning process of claim 2, wherein the cleaning tank comprises a quick discharge flushing tank. ▲~5· The wet cleaning process as described in claim 1, further comprising performing a second rinsing step after the first rinsing step, the second rinsing step being Φ rinsing with deionized water containing carbon monoxide The substrate. 6. The wet cleaning process of claim 5, wherein the second rinsing step and the first rinsing step are performed in the same cleaning tank, and the 'second rinsing step is overflowing The substrate is rinsed with deionized water containing carbon dioxide. . #7. The wet cleaning process of claim 6, wherein the cleaning tank for performing the second rinsing step and the first rinsing step is a fast flushing rinsing tank. 8. The wet cleaning process as described in claim 7 of the patent application, further comprising a third rinsing step after the second rinsing step, 17 200837825 〇ivi^jl^-^J06-0457 22494twf.doc/n The third rinsing step rinses the substrate with deionized water. 9. The wet cleaning process of claim 8, wherein the third rinsing step is performed in a cleaning process and the substrate is rinsed with overflowing deionized water. ^ ι〇. The wet cleaning process of claim 1, wherein the substrate comprises a metal material. η. The cleaning process as described in the scope of the patent application, wherein the metal material comprises a Shao or Ming copper alloy. The wet cleaning process of claim 10, wherein the metal material comprises an anti-reflection layer. 13. A method for fabricating a semiconductor device, comprising: providing a substrate having a metal layer thereon; forming a photoresist layer over the metal layer; and tearing the butterfly process into the fine layer The gold removes the photoresist layer by a dry method; and the n-solution or the test solution removes polymer by-products and impurities formed by the butterfly process; ^ performs at least a first rinsing step, including: - rinsing the substrate with deionized water containing carbon dioxide: and filling the deionized water with a deoxidized pin to expose the substrate to a gas atmosphere filled with a sulphur. The method of the semiconductor device of the method of claim 1 is further included after the first rinsing step - the second rinsing step, the 18 Hz to J J06-0457 22494 twfdoc / n 200837825 second rinsing step is The substrate was rinsed with deionized water containing carbon dioxide. The method of manufacturing a semiconductor device according to claim 14, wherein the second rinsing step and the first rinsing step are performed in the same cleaning tank and the second rinsing step is overflowing The sub-water containing carbon dioxide is rinsed with the substrate. The process of the semiconductor device of claim 15, further comprising performing a third rinsing step after the second rinsing step, the third rinsing step rinsing the substrate with deionized water. The method of manufacturing a semiconductor device according to claim 13, wherein the etching process is for etching the metal layer to form a metal line. The method of manufacturing a semiconductor device according to claim 13, further comprising forming an insulating layer between the metal layer and the photoresist layer, and further comprising: the insulating layer In the process of the semiconductor device of the invention of claim 18, wherein the insulating layer is a metal interlayer dielectric layer, the opening comprises a dielectric layer. Opening. The process of the semiconductor device of claim 18, wherein the insulating layer is a metal interlayer dielectric layer, and the opening comprises a metal damascene opening. The method of manufacturing a semiconductor device according to claim 18, wherein the insulating layer is a protective layer, and the opening is a pad opening. 22. The process of claim 4, wherein the forming of the semiconductor device according to claim 13 further comprises forming an anti-reflection on the metal layer before forming the photoresist layer.
TW96107465A 2007-03-05 2007-03-05 Wet cleaning process and method for fabricating semiconductor device using the same TWI343078B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96107465A TWI343078B (en) 2007-03-05 2007-03-05 Wet cleaning process and method for fabricating semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96107465A TWI343078B (en) 2007-03-05 2007-03-05 Wet cleaning process and method for fabricating semiconductor device using the same

Publications (2)

Publication Number Publication Date
TW200837825A true TW200837825A (en) 2008-09-16
TWI343078B TWI343078B (en) 2011-06-01

Family

ID=44820336

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96107465A TWI343078B (en) 2007-03-05 2007-03-05 Wet cleaning process and method for fabricating semiconductor device using the same

Country Status (1)

Country Link
TW (1) TWI343078B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI616944B (en) * 2010-11-15 2018-03-01 栗田工業股份有限公司 Method for cleaning silicon wafer and silicon wafer-cleaning apparatus
US10685870B2 (en) 2017-08-30 2020-06-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufacture
US11335589B2 (en) 2017-08-30 2022-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI616944B (en) * 2010-11-15 2018-03-01 栗田工業股份有限公司 Method for cleaning silicon wafer and silicon wafer-cleaning apparatus
US10685870B2 (en) 2017-08-30 2020-06-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufacture
TWI706459B (en) * 2017-08-30 2020-10-01 台灣積體電路製造股份有限公司 Methods for forming semiconductor devices
US11335589B2 (en) 2017-08-30 2022-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufacture

Also Published As

Publication number Publication date
TWI343078B (en) 2011-06-01

Similar Documents

Publication Publication Date Title
TWI279859B (en) Method of manufacturing a semiconductor device, and a semiconductor substrate
TW200539330A (en) Ozone vapor clean method
TW200536052A (en) Process for removing organic materials during formation of a metal interconnect
TW200300569A (en) Semiconductor device and method of manufacturing the same
JP5424848B2 (en) Semiconductor substrate surface treatment apparatus and method
JP5283687B2 (en) Deposition method of local film
TW200540972A (en) Pattern forming method and method for manufacturing semiconductor device
US7732346B2 (en) Wet cleaning process and method for fabricating semiconductor device using the same
TW201145380A (en) Semiconductor substrate surface treatment method
US7442652B2 (en) Method for removing contamination and method for fabricating semiconductor device
TW200837825A (en) Wet cleaning process and method for fabricating semiconductor device using the same
TWI316737B (en) Method for manufacturting gate electrode for use in semiconductor device
TWI375987B (en) Verfahren zur reinigung, trocknung und hydrophilierung einer halbleiterscheibe
Cacho et al. Etching of sub-10 nm half-pitch high chi block copolymers for directed self-assembly (DSA) application
TWI239042B (en) Method of manufacturing semiconductor device
WO2010150134A2 (en) Method for treating a semiconductor wafer
KR100762907B1 (en) Method for forming gate of semiconductor device
JP2003273064A (en) Method and apparatus for removing deposit
JP4086567B2 (en) Manufacturing method of semiconductor device
CN101266914B (en) Humid cleaning technology and method for making semiconductor component using this cleaning technology
KR19990073861A (en) Manufacturing Method of Semiconductor Device
TWI229917B (en) Interconnect process and method for removing silicide
JP2012531735A (en) Method for processing a semiconductor wafer
TWI253688B (en) Method for removing post-etch residue from wafer surface
TW440998B (en) Removing method for photoresist pattern and the contact opening process using the removing method for photoresist pattern to extend the Q-time